Logo
User: Guest  Login
Authors:
Wang, Guanzhong; Ruser, Heinrich; Schade, Julian; Passig, Johannes; Adam, Thomas; Dollinger, Günther; Zimmermann, Ralf 
Document type:
Zeitschriftenartikel / Journal Article 
Title:
Machine learning approaches for automatic classification of single-particle mass spectrometry data 
Journal:
Atmospheric Measurement Techniques 
Volume:
17 
Issue:
Year:
2023 
Pages from - to:
299-313 
Language:
Englisch 
Abstract:
The chemical composition of aerosol particles is a key parameter for human health and climate effects. Single-particle mass spectrometry (SPMS) has evolved to a mature technology with unique chemical coverage and the capability to analyze the distribution of aerosol components in the particle ensemble in real-time. With the fully automated characterization of the chemical profile of the aerosol particles, selective real-time monitoring of air quality could be performed e.g. for urgent risk asses...    »
 
ISSN:
1867-8548 ; 1867-8610 
Department:
Fakultät für Luft- und Raumfahrttechnik; Fakultät für Maschinenbau 
Institute:
LRT 2 - Institut für Angewandte Physik und Messtechnik; MB 6 - Institut für Chemie und Umwelttechnik 
Chair:
Dollinger, Günther ; Adam, Thomas 
Research Hub UniBw M:
dtec 
Project:
LUKAS 
Open Access yes or no?:
Ja / Yes 
Type of OA license:
CC BY 4.0 
Miscellaneous:
Die Veröffentlichung wurde finanziell unterstützt durch die Universität der Bundeswehr München. 
If you experience problems opening the document, please try this link.