A user generally writes software requirements in ambiguous and incomplete form by using natural language; therefore, a software developer may have difficulty in clearly understanding what the meanings are. To solve this problem with automation, we propose a classifier for semantic annotation with manually pre-defined semantic categories. To improve our classifier, we carefully designed syntactic features extracted by constituency and dependency parsers. Even with a small dataset and a large number of classes, our proposed classifier records an accuracy of 0.75, which outperforms the previous model, REaCT.
«A user generally writes software requirements in ambiguous and incomplete form by using natural language; therefore, a software developer may have difficulty in clearly understanding what the meanings are. To solve this problem with automation, we propose a classifier for semantic annotation with manually pre-defined semantic categories. To improve our classifier, we carefully designed syntactic features extracted by constituency and dependency parsers. Even with a small dataset and a large num...
»