Logo
Benutzer: Gast  Login
Autoren:
Uhlig, Frieder; Struppek, Lukas; Hintersdorf, Dominik; Göbel, Thomas; Baier, Harald; Kersting, Kristian 
Dokumenttyp:
Zeitschriftenartikel / Journal Article 
Titel:
Combining AI and AM – Improving approximate matching through transformer networks 
Zeitschrift:
Forensic Science International: Digital Investigation 
Jahrgang:
45 
Heftnummer:
Supplement, DFRWS 2023 USA - Proceedings of the Twenty Third Annual DFRWS Conference 
Jahr:
2023 
Seiten von - bis:
301570 
Sprache:
Englisch 
Stichwörter:
Deep learning ; approximate matching ; DLAM ; Fuzzy hashes ; Approximate matching ; Transformer ; Deep learning ; Artificial intelligence 
Abstract:
Approximate matching is a well-known concept in digital forensics to determine the similarity between digital artifacts. An important use case of approximate matching is the reliable and efficient detection of case-relevant data structures on a blacklist (e.g., malware or corporate secrets), if only fragments of the original are available. For instance, if only a cluster of indexed malware is still present during the digital forensic investigation, the approximate matching algorithm shall be abl...    »
 
ISSN:
2666-2817 
Fakultät:
Fakultät für Informatik 
Institut:
INF 6 - Institut für Systemsicherheit 
Professur:
Baier, Harald 
(Forschungs)einrichtung UniBw M:
CODE 
Open Access ja oder nein?:
Ja / Yes 
Art der OA-Lizenz:
CC BY-NC-ND 4.0 Deed 
Wenn Sie Schwierigkeiten haben, das Dokument zu öffnen, versuchen Sie auch bitte diesen Link