Logo
User: Guest  Login
Authors:
Adler, Antonia; Geierhos, Michaela; Hobley, Eleanor U. 
Document type:
Konferenzbeitrag / Conference Paper 
Title:
Influence of Training Data on the Invertability of Neural Networks for Handwritten Digit Recognition 
Collection editors:
Wani, M. Arif; Sethi, Ishwar; Shi, Weisong; Qu, Guangzhi; Raicu, Daniela Stan; Jin, Ruoming 
Title of conference publication:
2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) 
Conference title:
IEEE International Conference on Machine Learning and Applications (20., 2021, Virtuell) 
Venue:
Virtuell 
Year of conference:
2021 
Date of conference beginning:
13.12.2021 
Date of conference ending:
15.12.2021 
Place of publication:
Piscataway, NJ 
Publisher:
IEEE 
Year:
2021 
Pages from - to:
73-737 
Language:
Englisch 
Keywords:
Model Inversion Attack ; Influence Factors 
Abstract:
Model inversion attacks aim to extract details of training data from a trained model, potentially revealing sensitive information about a person’s identity. To abide with protection of personal privacy requirements, it is important to understand the mechanisms that increase the privacy of training data. In this work, we systematically investigated the impact of the training data on a model’s susceptibility to model inversion attacks for models trained at the task of hand-written digit recognitio...    »
 
ISBN:
978-1-6654-4337-1 
Department:
Fakultät für Informatik 
Institute:
INF 7 - Institut für Datensicherheit 
Chair:
Geierhos, Michaela 
Research Hub UniBw M:
CODE 
Open Access yes or no?:
Nein / No