Logo
User: Guest  Login
Authors:
Roy, Arjun; Iosifidis, Vasileios; Ntoutsi, Eirini 
Document type:
Konferenzbeitrag / Conference Paper 
Title:
Multi-fairness Under Class-Imbalance 
Collection editors:
Pascal, Poncelet; Ienco, Dino 
Title of conference publication:
Discovery Science 
Subtitle of conference publication:
25th International Conference, DS 2022, Montpellier, France, October 10–12, 2022, Proceedings 
Series title:
Lecture Notes in Computer Science 
Series volume:
13601 
Conference title:
International Conference on Discovery Science (25., 2022, Montpellier) 
Venue:
Montpellier, France 
Year of conference:
2022 
Date of conference beginning:
10.10.2022 
Date of conference ending:
12.10.2022 
Place of publication:
Cham 
Publisher:
Springer 
Year:
2022 
Pages from - to:
286-301 
Language:
Englisch 
Abstract:
Recent studies showed that datasets used in fairness-aware machine learning for multiple protected attributes (referred to as multi-discrimination hereafter) are often imbalanced. The class-imbalance problem is more severe for the protected group in the critical minority class (e.g., female +, non-white +, etc.). Still, existing methods focus only on the overall error-discrimination trade-off, ignoring the imbalance problem, and thus they amplify the prevalent bias in the minority classes. To so...    »
 
ISBN:
978-3-031-18840-4 ; 978-3-031-18839-8 
Department:
Fakultät für Informatik 
Institute:
INF 7 - Institut für Datensicherheit 
Chair:
Ntoutsi, Eirini 
Research Hub UniBw M:
CODE 
Open Access yes or no?:
Nein / No 
Miscellaneous:
Preprint auch ziteirt mit dem Titel: Multi-fair pareto boosting