Logo
User: Guest  Login
Authors:
Pohlmann, Sebastian; Mashayekh, Ali; Kuder, Manuel; Neve, Antje; Weyh, Thomas 
Document type:
Zeitschriftenartikel / Journal Article 
Title:
Data Augmentation and Feature Selection for State of ChargePrediction of Lithium-Ion Batteries Based on Artificial Neural Networks 
Journal:
Energies 
Volume:
16 
Issue:
18 
Year:
2023 
Pages from - to:
6750 
Language:
Englisch 
Keywords:
lithium-ion batteries ; state of charge ; machine learning ; artificial neural networks ; data augmentation 
Abstract:
Lithium-ion batteries are a key technology for the electrification of the transport sector and the corresponding move to renewable energy. It is vital to determine the condition of lithium-ion batteries at all times to optimize their operation. Because of the various loading conditions these batteries are subjected to and the complex structure of the electrochemical systems, it is not possible to directly measure their condition, including their state of charge. Instead, battery models are used...    »
 
ISSN:
1996-1073 
Article ID:
6750 
Department:
Fakultät für Elektrotechnik und Technische Informatik 
Institute:
ETTI 2 - Institut für Verteilte Intelligente Systeme 
Chair:
Neve, Antje 
Open Access yes or no?:
Ja / Yes 
Type of OA license:
CC BY 4.0 
Miscellaneous:
Die Veröffentlichung wurde finanziell unterstützt durch die Universität der Bundeswehr München und die DFG. 
If you experience problems opening the document, please try this link.