Logo
User: Guest  Login
Authors:
Hennen, Moritz; Babl, Florian; Geierhos, Michaela 
Document type:
Konferenzbeitrag / Conference Paper 
Title:
ITER: Iterative Transformer-based Entity Recognition and Relation Extraction 
Collection editors:
Al-Onaizan, Yaser; Bansal, Mohit; Chen, Yun-Nung 
Title of conference publication:
Findings of the Association for Computational Linguistics: EMNLP 2024 
Conference title:
Conference on Empirical Methods in Natural Language Processing (2024, Miami, Fla.) 
Conference title:
EMNLP 
Venue:
Miami, Florida, USA 
Year of conference:
2024 
Date of conference beginning:
12.11.2024 
Date of conference ending:
16.11.2024 
Publishing institution:
Association for Computational Linguistics 
Year:
2024 
Pages from - to:
11209–11223 
Language:
Englisch 
Abstract:
When extracting structured information from text, recognizing entities and extracting relationships are essential. Recent advances in both tasks generate a structured representation of the information in an autoregressive manner, a time-consuming and computationally expensive approach. This naturally raises the question of whether autoregressive methods are necessary in order to achieve comparable results. In this work, we propose ITER, an efficient encoder-based relation extraction model, that...    »
 
Department:
Fakultät für Informatik 
Institute:
INF 7 - Institut für Datensicherheit 
Chair:
Geierhos, Michaela 
Research Hub UniBw M:
CODE 
Open Access yes or no?:
Ja / Yes 
Type of OA license:
CC BY 4.0 
If you experience problems opening the document, please try this link.