Logo
Benutzer: Gast  Login
Autoren:
Alia, Gazmend 
Dokumenttyp:
Dissertation / Thesis 
Titel:
Artificial Intelligence Methodologies for Optimization in High Dimensional Spaces with focus in Transistor Models 
Betreuer:
Maurer, Linus, Univ.-Prof. Dr. techn. 
Gutachter:
Maurer, Linus, Univ.-Prof. Dr. techn.; Pelz, Georg, Prof. Dr. rer. nat. 
Tag der mündlichen Prüfung:
05.10.2023 
Publikationsdatum:
28.11.2023 
Jahr:
2023 
Seiten (Monografie):
83 
Sprache:
Englisch 
Schlagwörter:
Transistor ; Modell ; Kalibrieren, Messtechnik ; Automation ; Simulation ; Künstliche Intelligenz ; Maschinelles Lernen 
Stichwörter:
Machine learning, Artificial Intelligence, Differential Evolution, Transistor models, Calibration, Parameter extraction, Fitting, Automation 
Abstract:
The huge boost in computing power and speed has opened new horizons for science and technology. One key consequence is the possibility to simulate much faster and more accurately than ever before, thus allowing for very realistic modelling of phenomena, which opens new paths for better understanding and better solutions. More complex and more realistic models come hand in hand with many new challenges, which require novel approaches. One of the most important challenges is the calibration of the...    »
 
DDC-Notation:
621.381528 
Fakultät:
Fakultät für Elektrotechnik und Informationstechnik 
Institut:
EIT 4 - Institut für Mikroelektronik und Schaltungstechnik 
Professur:
Maurer, Linus 
Open Access ja oder nein?:
Ja / Yes 
Wenn Sie Schwierigkeiten haben, das Dokument zu öffnen, versuchen Sie auch bitte diesen Link