Logo
Benutzer: Gast  Login
Autoren:
Beladi, Seyedbehnam; Maurer, Linus; Stricker, Jonas; Pelz, Georg 
Dokumenttyp:
Konferenzbeitrag / Conference Paper 
Titel:
A Machine Learning Approach for Optimization of Automotive Power Switch Definition Space in Multi-Application Utilization 
Titel Konferenzpublikation:
2024 International Semiconductor Conference (CAS) 
Konferenztitel:
International Semiconductor Conference (47., 2024, Sinaia) 
Tagungsort:
Sinaia, Romania 
Jahr der Konferenz:
2024 
Datum Beginn der Konferenz:
09.10.2024 
Datum Ende der Konferenz:
11.10.2024 
Verlagsort:
Piscataway, NJ 
Verlag:
IEEE 
Jahr:
2024 
Seiten von - bis:
199-202 
Sprache:
Englisch 
Abstract:
The design process of power switches usually has time constraints, relies on computationally extensive simulation models and is performed for each application separately. A well-defined product is more likely to lead to a more efficient design and reduce the time-to-market by checking for application compatibility and parameter optimization in advance. The product definition space encompasses the multidimensional parameter space where specifications, constraints, and trade-offs of a product's design and functionality are defined and optimized. This work aims at leveraging machine learning surrogate models to discover this space in minutes rather than weeks, provides at least 99% coverage of solution spaces while having < 2% Pareto front error. 
ISBN:
979-8-3503-5207-8 
Fakultät:
Fakultät für Elektrotechnik und Informationstechnik 
Institut:
EIT 4 - Institut für Mikroelektronik und Schaltungstechnik 
Professur:
Maurer, Linus 
Open Access ja oder nein?:
Nein / No