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ABSTRACT  
 
The emerging use of GNSS (satellite navigation) is helping farmers to achieve high productivity without making compromise 
with the quality. Further development of the farming system could improve the contemporary agriculture. It is still possible by 
improving the precise placement of the seeds, ploughing, and harvesting down to the centimeter level accuracy.  
 



The present precise agriculture navigation systems are mostly limited to precise navigation of the main components, like 
tractors and combine harvesters. In the state of art technique, DGPS (Differential GPS) or RTK (real-time-kinematics) systems 
and inertial sensors are used to determine the precise relative position and attitude of the main driver. Precise seeding is more 
complex due to the complexity of the multicomponent machines. Assuring the positioning accuracy of any attached component 
to a tractor machine would require installation of an additional DGPS or RTK unit, which because of the high cost factor, is not 
the optimum solution.  
  
The approach presented in this paper demonstrates the use of a camera system to measure the precise relative position and, 
additionally, attitude of the trailer with respect to the tractor. The researched navigation system is suited for a trailer pulled 
by a tractor. In our test setup, the role of a tractor is perceived by a Volkswagen T5 van and the trailer is demonstrated by 
commercial cargo trailer. 
 
The paper also discusses the various approaches investigated for the development of the algorithm. The reader will have an 
insight into the challenges related to the attitude determination (van-trailer scenario) with in-depth analysis of the algorithm. 
The testing environment including testing procedure, results and comparison between attitude measurements using proposed 
algorithm and multiple DGPS/RTK and geodetic instruments will be discussed in details. The paper will conclude the future 
possibilities and the extension of the work to make it more precise and reliable to be ready for commercialization. 
 

INTRODUCTION  
 
The commercial positioning and navigation solutions available in the market are highly dependent on satellite availability. 
During bad weather, less satellite visibility decorate the positioning solution. Inertial navigation systems are one of the 
alternate solutions but the cost for such solution is sky high. On the other hand, farmers now a days try to cope up with the 
technology trends and are open to the solutions which could save their efforts and time. Seeding or sowing is a very important 
and critical step in farming.  
 
To perform better seeding, we must ensure proper distance between seed because if plants are overcrowded, they will not to 
get enough water, nutrients and sunlight, resulting in yield loss. If they are planted too far from each other, valuable land is 
left unused. The mechanical technique used for loosening the soil is also very time consuming. Precise loosing can help farmer 
to save time and fuel over a larger period of time. In order to meet this vision, the farmers shall be equipped, among the others, 
with an appropriate navigation system for the mobile machines. At the same time an economical aspect must be considered. 
It means in a consequence that the applied navigation system should be easy to use, should make it possible to save time and 
ultimately should be a part of an autonomous agriculture complex. 
 
Presented research targets for 10 cm accuracy of a seeding machine coordinates, assuming the distance from the host machine 
3 meters. The absolute position of fix point is known from tractor RTK/INS system. The relative host to seeding machine attitude 
accuracy required for the particular application is about 2 degrees. 

 
The basic idea behind the development of the algorithm is to determine the attitude and the position of the trailer using the 
images from a vision camera. This is possible thanks to the relative navigation w.r.t. the reference RTK/INS system mounted 
on the tractor. The reference RTK system combined with inertial sensors on the tractor does provide the position and attitude 
necessary. From the knowledge of the precise position and attitude of the tractor, the trailer is further observed from the 
tractor perspective through the camera system. 
 



 
 

Figure 1 : Tractor and Trailer in the Field 

 
The analysis depicted that the trailer can change the attitude freely in any axis with respect to fixing point on the tractor. The 
attitude of the trailer with respect to the tractor has been measured using a Giga Ethernet (GigE) camera. The development of 
the algorithm is performed using OpenCV platform. The algorithm includes the feature extraction using the camera and the 
frame transformation to achieve the attitude determination w.r.t to the reference points of the tractor and the trailer. The 
preliminary focus of feature extraction work is to read the images and localize the position of the trailer on the image  [1]. The 
image in 2D is then processed into 3D attitude determination.  
 
Since, the movement of trailer w.r.t tractor is free along fixing point (hook) on the tractor, we also need a mathematical model 
to converge from orientation in camera frame to orientation in hook frame to determine orientation of trailer w.r.t tractor. 
Where, C is direction cosine matrix, t is the reference point inside trailer, h is the hook point on tractor (joining of hook and 
trailer),  r is the reference point on the trailer used for image processing.  
 

𝐶ℎ
𝑡 =  𝐶𝑟

𝑡  ×  𝐶ℎ
𝑟                                                                                                         [1] 

 
Direction cosine matrices of reference point r on the trailer w.r.t hook is difficult to calculate due to free motion of the trailer. 
To determine the attitude of the trailer with respect to the reference point on the tractor, we must performed the frame 
transformation from the camera to the reference point on the tractor. Processing must be sensitive enough to assess the 
dynamic motion of the tractor and the trailer. The vibrant environment is one of the noise components, which is also 
investigated. 
 
The practical testing of the algorithm has been performed constructing similar relative motion scenario. Test drives have been 
performed with complete setup in the premises of Universität der Bundeswehr Munich. The camera is fixed on the rear part 
of the van to have a clear view of trailer.  
 

 
 

Figure 2 : Van and Trailer to replicate tractor and trailer scenario 
 



 
To assess the accuracy of our low-cost trailer positioning system, we equip the trailer with a second RTK system and compare 
the vision based solution with the RTK solution. We focus on different test cases including static measurements and 
measurements for typical farming trajectories. The accuracy is expected to depend on the movement pattern due to 
unavoidable latencies and limitations of the vision based solution. 

 
LINEAR N-POINT CAMERA POSE ESTIAMTION 
 
Definition of Pose Estimation 

 
Space resection or Pose estimation is the process of determining the position and orientation of the calibrated camera with 
respect to the known reference points [3]. The pose can be changed either by moving the camera w.r.t object, or moving the 
object w.r.t camera. The goal of the pose estimation also referred as Perspective-n-Point problem is to find the pose of an 
object when we have a calibrated camera, and we know the location of n 3D points on the object and the corresponding 2D 
projections in the image [2]. 
 
A 3D rigid object is restricted to two types of motion with respect to camera [4].  
 

1. Translation Motion: Shifting or moving the camera from current 3D location (X, Y, Z) to another location (X’, Y’, Z’). 
The translation vector denoted by vector t is (X’-X, Y’-Y, Z’-Z). 

2. Rotation Motion: The other motion termed as rotation motion represents the rotation of camera or the object. 
Rotation motion can be represented in several ways including Euler angles (roll, pitch and yaw), a 3 x 3 rotation matrix, 
or a direction of rotation and angles. 
 

 
Figure 3 : Roll, Pitch and Yaw motion 

 
Pose Estimation mechanism 

 
In order to perform pose estimation of an object, we need the following inputs. 
 

1. 2D coordinates of a few points: 2D coordinates points is the 2D (X, Y) location of few points in the image. 
2. 3D locations of the same point: 3D location of similar 2D coordinates in some arbitrary reference frame (World 

Coordinates). Here the 3D coordinates position does not corresponds to some 3D model for the image.  
3. Intrinsic camera parameters: Focal length of the camera, optical center in the image and the radial distortion 

parameters comes under the category of intrinsic camera parameters. 
 



 
Figure 4: Coordinates Frame Description [5] 

 
In order to better understand the mechanism for Pose estimation consider figure [4], with O as a center of camera. We are 
intended to compute the equations for projection p (image plane) of 3D point P in world coordinate. Let’s us assume we know 
the coordinate of location (U, V, W) of a 3D point P in world coordinates. If we know the rotation matrix R and translation 
vector t, we can calculate the location (X, Y, and Z) of the point P in the camera coordinate system using the equations [2-4]. 
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In order to measure the rotation and translation vector we must know (X, Y, Z). Since we have no information regarding the (X, 
Y, Z) in camera coordinate frame, we must use direct linear transform by using available 2D coordinates and intrinsic camera 
parameters [5].  
 

[
𝑥
𝑦
1

] = 𝑠 [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1
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𝑍

] 
                                                                                                      [5] 

 
Where, 𝑓𝑥 and 𝑓𝑦 are the focal lengths of camera in x and y directions, and𝑐𝑥, 𝑐𝑦 is the optical center. s is the scaling factor used 

since, the depth of image is unknown. With all the available inputs the above equation can be solved for (X, Y, Z) and finally 
rotation and translation vectors. 
 
 



IMPLEMENTATION 

 
Hardware and Software Setup 
The camera used for the purpose is a Giga Ethernet VLG-20C.I, with the resolution of 1624 x 1228 pixels. The camera operates 
at the maximum of 27 fps with the operation voltage ranges from 12-24V DC. The detailed technical description about the 
camera are in the table [1]. 
 

Tools Platform 

Development Environment Visual C++ 2012 

OS Windows 10, x64 

Image Processing  OpenCV 2.4.13 

SDK Baumer GAPI2 (windows) 

Gig-Ethernet Camera • Baumer VLG-20C.I [5] 
• Resolution : 1624 X 1228 pixels 
• Maximum 27 fps 
• Operating voltage : 12-24V DC                                             

 
    Table 1: Description of hardware and Software Setup 

 
Figure 5 : Baumer GigaE Vision Camera 

 
 
The camera has been mounted on the rear top of the van to maximize the visibility of trailer.  The Image acquisition and Image 
processing algorithm is developed on c++ platform using OpenCV.  

 
Image Acquisition and Image processing  

 
The image acquired from the image acquisition step is now processed to determine the orientation of the image in camera 
frame. In order to determine the extrinsic camera parameter, camera needs to be calibrated to minimize distortions. Radial 
and tangential distortions are the most common types of distortion in cameras. 
 
Radial Distortion: This distortion as we move away the center of camera. The effect of such distortion is that the straight lines 
appear to be curved one.  
 
Tangential Distortion: This time of distortion arises in case the image taking lens in not aligned parallel to the image plane. 
This results in some area of image appearing to be closer than actual.  
 

http://www.baumer.com/us-en/products/productfinder/?tx_baumerproductfinder_pf%5burl%5d=/pfinder_vision/scripts/product.php?cat%3DIndustriekameras%26psg%3DProduktgruppe2|VisiLine%26pid%3DVLG_20C_I%26language%3Den%26country%3D%26header%3D%26ptk%3D%26perpage%3D


Further, we need to obtain intrinsic camera parameters which are specific to a camera. This includes information related to 
focal length (fx, fy), optical center (cx, cy) etc. It is also termed as camera matrix as shown in equation [6]. 
 

𝑐𝑎𝑚𝑒𝑟𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 =  [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] 
                                                                                                      [6] 

 
To determine the extrinsic camera parameters is also called pose estimation. In order to do pose estimation, we have to provide 
some sample image of a well-defined patter (chess board). We find some specific points in it e.g. corners. We know its 
coordinate in real world space and we know its coordinate in image. Considering chessboard was kept stationary (z=0) the 3D 
points (object points) can be written as (0, 0, 0), (1, 0, 0), (2, 0, 0) for (x, y, z). 
 
In the next step we have to find chessboard pattern using function findchessboardcorners (). This function detects all the 
corners of the chessboard and gives us 2D image point’s matrix. Using 2D and 3D points function solvePnP () provides rotation 
and translation vector of the image as the output.  
 
 

         
 

Figure 6: (Left) Design Flow for Image processing Algorithm, (Right) Reference frame projection on chessboard [4] 

We want to draw our 3D coordinate axis (X, Y, Z axes) on our chessboard's first corner. X axis in blue color, Y axis in green color 
and Z axis in red color. So in-effect, Z axis should feel like it is perpendicular to our chessboard plane. Now let's create a function, 
draw which takes the corners in the chessboard (obtained using findChessboardCorners ()) and axis points to draw a 3D axis. 
[1] 

Then as in previous case, we create termination criteria, object points (3D points of corners in chessboard) and axis points. Axis 
points are points in 3D space for drawing the axis. We draw axis of length 3 (units will be in terms of chess square size since we 
calibrated based on that size). So our X axis is drawn from (0, 0, 0) to (3, 0, 0), so for Y axis. For Z axis, it is drawn from (0, 0, 0) 
to (0, 0, -3). Negative denotes it is drawn towards the camera. 

http://docs.opencv.org/trunk/d9/d0c/group__calib3d.html#ga93efa9b0aa890de240ca32b11253dd4a


Frame Transformation 

 
The goal of the algorithm is to determine orientation and position of the trailer w.r.t the bus. It is represented with the direction 
cosine matrix (DCM) between the t-frame and h-frame. This calculation is not possible to be performed in a direct relation. 
Therefore two additional frames, reference(r) and camera (c) have been introduced as shown in figure [7]. 
 

 
Figure 7: Frame representation 

 
 
 
 
 
 
 
 
Origin of the trailer frame (t) is located at the center of the sensor plate installed inside the trailer. Expressing mathematically, 
the direction cosine matrix for the orientation of frame t w.r.t the frame h can been written as [7]. 
 

𝐶ℎ
𝑡 =  𝐶𝑟

𝑡  ×  𝐶ℎ
𝑟                                                                                                                     [7] 

     
Due to the geometrical limitation, it is not possible to determine the Orientation of frame r w.r.t the h frame. The idea 
developed here, is to compute Orientation of frame r w.r.t to frame h using camera frame C. The equation can now be 
represented as [8].  
 

𝐶ℎ
𝑡 =  𝐶𝑟

𝑡  ×  𝐶𝑐 
𝑟   × 𝐶ℎ

𝑐                                                                                                        [8] 

 
Direction cosine matrix for frame t w.r.t frame r is based on the orientation determined using Euler angle rotation roll (), pitch 
(), and yaw () as represented in equation [9].  
 
 

𝐶𝑟
𝑡 = (

1 0 0
0 𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
0 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

) × (
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

) × (
𝑐𝑜𝑠∅ 𝑠𝑖𝑛∅ 0
𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅ 0

0 0 1
) 

 

 
for the X-Y-Z transformation              [9] 

 
 Direction cosine matrix for the reference frame w.r.t camera frame is dynamic and it changes with every processed image. 
All other DCMs are constant and express the geometry of the fixing camera or the reference points on the trailer. 

Illustration of frames 
Frame t: frame with point trailer as origin 

Frame r: reference frame of chessboard 

Frame c: camera frame 

Frame h: hook frame 

Frame v: van frame  



RESULTS  
 
Measurement -Van Setup for Reference Attitude Measurement 

 
In order to compare the attitude accuracy of the camera system, a reference system was used. The reference system works 
with the Theodolite as shown in figure [8]. 

 

  
 

Figure 8: (Left) Hardware setup for the measurement (right) theodolite setup to obtain reference orientation 

 
 

Hardware Location 

GNSS Receiver Roof of the trailer, van 

Camera Roof of the van 

Chessboard (9 X 6 crossings) Front of the trailer 

Inertial Meas. Unit Inside Van 

 
Table 2: Description of hardware placement 

 
The coordinate points with hook as reference point were then converted to obtain model of trailer w.r.t van and finally 
calculate the orientation of trailer w.r.t van. 
 
In order to testify the solution, trailer w.r.t van was setup in different positions and static test were performed. The detailed 
description about the test scenarios can be found in the table [3]. 
 
 
 

 
Scenario Position 

Scenario #1 Trailer – Van inline 

Scenario #2 Trailer Position left to van 

Scenario #3 Trailer Position left to van 

Scenario #4 Trailer left side inclined 

Scenario #5 Trailer right side inclined 

Scenario #6 Trailer lifted 

 
Table 3: Description of the various testing scenarios 

 



Testing measurements analysis 

 
In order to analyses the influence of external disturbances on the measurements and precision of the attitude determination, 
270 consecutive measurements were compared within different trailer-van settings each of the image processed delivered an 
attitude of the trailer. The results are presented on the histograms in a form of transformation angles, roll, pitch and yaw. The 
histograms for each scenario and for each transformation angle was compared to the normal distribution making it easier to 
rank the performance of the attitude determination.  Distributions is centered to mean values depicted by red line (--). All 
measurements have very similar output. The histograms of two of the scenarios are presented in the figures [9-10] below. 

 
Figure 9: Trailer and Van in -line 

  
Figure 10: Trailer position left to Van 

 
One observe the resolution of the angle in a range of 0.001°. The precision of the system is judged with the 1-sigma of the 
distributions of the angles. Additional to the highest available data rate, 27 Hz, averaging on the solution was performed in 



order to reduce numerical errors and noise. The averaging took up to 5 consecutive measurements, not overlapping. All 
available standard deviations of the angles are collected in one figure [11]. 

 
Figure 11: Standard Deviation vs Frequency of frames with different measurements scenario 

 
On that figure on can see that the standard deviation in total does not get bigger than 0.1°. This parameterization describes 
precision of the vision attitude determination system used in the testing. On the top of this the averaging does the 
improvement of the system precision only slightly. This enables to use the maximum output data rate without compromising 
the system precision. The high precision seen in this system is to be addressed, among the others, the uncompressed source 
data.  
 
It cannot be judged, however, the accuracy of the overall system basing on that output, until this measurement is compared 
with an external system. That benchmark is performed thanks to simultaneous measurements by the camera system and by 
the theodolite ranging and bearing. The table represents the averaged attitude values for all the different scenarios with 
camera measurement and reference measurements. For all the different scenarios, absolute angle difference between two 
measurements lies under 1.8 °. 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 4: Absolute Angle Difference for Different scenarios 

 
CONCLUSION 

 
With the executed test it is presented, that the camera system is very precise (0.1°, 1-sigma) and it can deliver 27 Hz rate 
attitude output. Secondly, the goal of accuracy determination absolute error within the range of 2° is reached and confirmed 
in the static tests. 
One can now only draw a conclusion that the room for the accuracy improvement is still possible to obtain. There are many 
stages, where it can be lost, for example in accuracy of the vehicles geometry determination or in the fine tuning of the 
camera parameterization. 
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 Reference Measurement using 
Theodolite (Theodolite reference frame, 

Radians) 

Measurement using Camera 
(camera reference frame, Radians) 

Abs. Angle 
Difference 
(Degrees) 

Scenario Roll Pitch Yaw Roll  Pitch  Yaw 
 

#1 -1.399 1.563 1.402 -2.589 0.008 -1.567 1.696 

#2 1.504 1.293 -1.500 -2.634 -0.266 -1.566 0.631 

#3 -1.543 1.296 1.540 -2.626 0.279 -1.575 0.356 

#4 2.425 1.488 -2.634 -2.528 -0.054 -1.774 1.536 

#5 -2.433 1.480 2.654 -2.529 0.0067 -1.374 1.742 

#6 -2.968 1.439 2.996 -2.465 0.026 -1.549 1.413 


