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Abstract
A nonlinear transport model with pressure dependent parameters for gas flow in tight porous media [I. Ali
and N. A. Malik. Transport In Porous Media Vol. 123 No. 2, (2018)] is used to to determine shale rock
properties, such as the porosity and the permeability, and to carry out forward simulations from the transient
model. The results show improvment on previous pressure indenpendent transport models.

1 Introduction
Transport models can predict future gas recovery, and they can also be used for determining rock properties,
so it is important to develop realistic transport models. However, at present, little is known about gas
transport processes through tight rocks. Darcy’s law fails for tight porous media because the pore size is
nanoscale and the pore network produces several flow regimes, such as slip flow, transitional flow, surface
diffusion, and Knudsen flow, and adsorption and desorption of the gas from the rock material also plays a
key role. The system is also pressure dependent. Shales have very small pore size compared to conventional
rock formations, typically in the range of 50-200 nm Wang et al (2013); Nia et al (2013). Shales also have
low porosity, typically in the range 4-15 %, and very low permeability in the range 10-2000 nD, Darishchev
et al (2013).

Here, we use the nonlinear transport model developed by Ali and Malik (2018) to determine shale rock
properties, such as the porosity and the permeability, and to carry out forward simulations from the transient
model.

2 A transport model for flow in tight porous media
Different flow regimes are classified through the Knudsen number, Ziarani and Aguilera (2012), which is
defined as the ratio of the molecular mean free path λ to the hydraulic radius Rh, of the flow channels, Kn =
λ

Rh
. The Mean Free Path (λ) is the average distance traveled by a gas molecule between collisions with other

molecules. There exists several models for the mean free path, such as given by Loeb (2004), λ = µ
p

√
πRgT
2Mg

,

where T is the absolute temperature (K), Rg is the universal gas constant and Mg is the molecular weight
of gas. The hydraulic radius Rh is the mean radius of a system of pores Carman and Carman (1956); Civan
(2010) and is given by Rh = 2

√
2τh

√
K
φ

, where φ is the porosity, and τh is the tortuosity which is the ratio of
apparent length of the effective mean hydraulic tube to the physical length of the bulk porous media.

Flow regimes are defined in different ranges of the Knudsen number, illustrated in Fig. 1. Viscous flow
occurs when λ << Rh and can be described by Darcy’s law; Knudsen flow occurs when λ >> Rh, Darcy’s
law completely fails in this regime; Slip flow occurs due to accumulation of gas molecules along the pore
surface.

Mass conservation, including the loss of mass of gas by adsorption in to the bulk volume of porous
medium, is given by,

∂(ρφ)

∂t
+

∂[(1−φ)q]
∂t

=−∇ · (ρu)+Q (1)
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Figure 1: Viscous flow occurs when λ << Rh and can be described by Darcy’s law; Knudsen flow occurs
when λ >> Rh, Darcy’s law completely fails in this regime; Slip flow occurs due to accumulation of gas
molecules along the pore surface.

where ρ is the gas density, q is the mass of gas absorbed per solid volume of rock, and Q is some external
source. Momentum conservation, through a modified Darcy’s law with a non-linear Forchheimer term
correction for high flow rates (turbulence), is given by,

−(∇p−ρg∇H) = µK−1
a ·u+ρB|u| ·u = µK−1

a

(
I+

ρ

µ
BKa|u|

)
·u (2)

where p is the pressure, u is the volumetric flux, µ (Pa s) is the dynamic viscosity of the flowing gas, g (m2/s)
is the magnitude of the gravitational acceleration vector, Ka (m2) denotes the apparent permeability tensor
of the rock, and B represents the inertial and turbulence effects where the velocity is high, it is considered to
be a function of Ka, φ, and τ. Furthermore, φ, µ, ρ are functions of pressure p.

From these equations, the most general transport equation for the pressure field in a single-phase gas flow
in tight porous media in three-dimensions, incorporating the various flow regimes, and including gravity and
a source term, is given by Ali and Malik (2018),

∂p
∂t

= Da(p) : ∇∇p+ 3(p)∇p ·Da(p) ·∇p

− ρgDa : ∇∇H−ρgζ3(p)∇p ·Da ·∇H−∇(ρg) ·Da ·∇H +ζt(p)Q (3)

H (m) is the depth function, Da (m2/s) is the the apparent diffusivity tensor. ζ3(p) and ζt(p) are compress-
ibility coefficients (defined below).

There are many inter-related physical parameters in this model, and to complete the model in equation
(3), we need correlations that define these relationships. An other important relation is the correlation
between the intrinsic permeability and the apparent permeability which appears in the model, Beskok and
Karniadakis (1999), Ka = K f (Kn), where f (Kn) is the flow condition function and is given by f (Kn) =
(1+σKn)(1+ 4Kn

1−bKn
), σ is called the rarefaction coefficient correlation. Formulae for σ and other correlations

are given in Ali and Malik (2018).
A key feature of the present model is that in order to include as much physical realism in to the model as

possible, all model parameters are pressure dependent throughout the simulations – most previous models
make the parameters to be constants. Pressure dependency means that compressibility coefficients exist
in the model for every pressure dependent parameter to account for the locally changing conditions. A
compressibility coefficient, ζy for some physical quantity y is defined as the proportional rate of change
of a physical quantity with respect to the pressure, ζy(p) = 1

y
∂y
∂p = ∂ ln(y)

∂p . For example, ζρ = ∂ ln(ρ)/∂p,
and similarly for all other pressure dependent parameters, like ζK . Through the correlations defined above
the compressibility factors are inter-related so that there are only four basic ones, namely ζρ, ζ f , ζK , and
ζµ, Ali et al (2015); Ali and Malik (2018). In equation (3), ζ3 and ζt is a combination of the four basic
compressibility factors.
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Figure 2: Control volume discretization of the 1-dimensional domain where the points x j are chosen at the
center of the blocks. The left and the right boundary conditions are discretized by taking ghost cells adjacent
to the cells containing the point x1 and the point xN .

2.1 One-dimensional model
For the simplified one-dimensional system in a horizontal reservoir, without gravity and with no external
forcing, equation (3) reduces to,

∂p
∂t

+Ua(p, px)
∂p
∂x

= Da(p)
∂2 p
∂x2 (4)

where, Ua (m/s), the apparent convective flux (or convective velocity), and Da(p) (m2/s) are given by,
Ua =−ζ3(p)Da(p) ∂p

∂x and Da(p)= FKa
µζt(p) , where F and Ka are now scalar quantities; F = 1 if the Forchhiemer

non-linear flux correction term is excluded. (See Malkovsky et al (2009), Liang et al (2001), Civan et al

(2011) for simplified models.) The further assumption of steady state,
∂p
∂t

= 0 yields,

La(p, px)
∂p
∂x

=
∂2 p
∂x2 , where La =−ζ3(p)

∂p
∂x

, (5)

In model application, Ua(p), Da(p), F(p), ζ3(p), and all the model correlations are assumed known as
functions of the pressure, Ali et al (2015); Ali and Malik (2018).

3 Numerical Methods
The nonlinear transport system in equation (1) together with initial and boundary conditions must be solved
numerically. Because it is a nonlinear advection-diffusion system, care needs to be taken when high gra-
dients appear in the solution, which is possible when the local Peclet number becomes large. It was found
that an implicit finite volume staggered grid arrangement, Figure 2 with the velocity defined on the grid
boundaries, with a flux limiter (2nd order van Leer) adequately solved the system. The discretized system
produced a tri-diagonal system of nonlinear algebraic equations, A(p)p = S(p), where A is the coefficient
matrix, S is the vector of source terms of the right hand side, and p is the pressure vector at all grid points
for which we are solving. The matrix equation has to be linearized before inverting, and then iterated to
convergence before moving on to the next time step.

4 Determining rock characteristics

4.1 Pressure-pulse decay tests
Rock properties are estimated through an inverse problem whereby model parameters are adjusted to fit a
given set of experimental data. Experimental data from pressure-pulse decay test due to Pong et al (1994)
are available. In a pressure-pulse decay test a short homogeneous rock sample of length L is initially set to
a constant pressure inside the core sample. A pulse of high inlet pressure Pin is then sent through the sample
from the upstream boundary and the pressure field quickly reaches a steady state distribution across the core
length. The pressure is recorded at different stations along the core length.



ICEFM 2018 Munich

Figure 3: Pressure against distance along the core sample. Simulation (solid lines), and experimental data
(symbols) from Pong et al (1994), for different inlet flow pressures Pin, as indicated. (a) Left: Steady state
model with F = 1, and (b) Right: Steady state model with F 6= 1.

Pong’s data-sets consist of measurements of pressure, p, along a shale rock core sample of lenght L =
3mm, at a number of stations, x, along the rock length; this is repeated for several different inlet pressures,
Pin = 135,170,205,240,257 kPa. We solve the steady state transport model equation (5), adjusting the
model parameters to match Pong et al’s data, from which we estimate the rock properties.

To test the importance of retaining all model parameters to be pressure dependent throughout the simu-
lations, sixteen different models are produced by taking each of the four basic compressibility coefficients
(ζρ,ζK ,ζ f ,ζµ), independently, to be pressure-dependent or pressure-independent. The rock properties, K,
and φ, are determined from the best fit model which yields the smallest error compared to the data. For more
details see ?.

4.2 Models without Forchhiemer’s correction, F = 1

In the transport models in which non-linear corrections for high flow rates are not included, F = 1, there
are thirteen model parameters. The simulation results, from Model 16 in Ali and Malik (2018) is shown
as pressure against the distance x along the core sample in Fig 3(a). The simulation results (lines) are
compared with the data Pong et al (1994) (symbols). All models match the data for the lowest inlet pressure
Pin = 135 kPa, showing that these tests are insensitive to such types of models at low pressure pulses. But,
most of the models are greatly in error of the data for the higher inlet pressures; Model 16 gives the smallest
error among all models, about 1×10−4. This illustartes to importance of pressure dependent parameters in
as a modeling strategy in general.

However, the estimates of rock properties from Model 16 are, the porosity φ = 0.2, and the rock perme-
ability K = 10−15 m2, (or 106 nD). These values are close to previous models, but they are not typical of
shale rocks.

4.3 Models witht Forchhiemer’s correction, F 6= 1

We now include a non-zero turbulence correction factor, F 6= 1, to produce a new set of transport models. As
the importance of retaining the pressure-dependence of all model parameters has already been established,
here we consider only Model 16 with F 6= 1 as the base case – there are now four additional model pa-
rameters, a total of seventeen parameters. After some parameter adjustment, Fig. 3(b) shows the simulation
results against the data. We observe an excellent match between the numerical solutions and the experi-
mental data. The error between the simulated and the measured pressure values is about 6×10−5, which is
smaller than from Model 16 with F = 1, Fig. 3(a).

Importantly, the range of porosity is in the range 0.10 < φ < 0.1038, and the intrinsic permeability lies in
the range 106 < K < 111 nD. These are much more realistic of shale rocks than obtained from any previous
model, we believe for the first time from such types of models.
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Figure 4: Pressure against distance along the core sample. Simulation (solid lines), and experimental data
(symbols) from Pong et al (1994), for different inlet flow pressures Pin, as indicated. (a) Left: Steady state
model with F = 1, and (b) Right: Steady state model with F 6= 1.

4.4 Forward Simulations: Transient Model
The transient transport model, equation (4), was used to simulate the pressure field in a shale rock core
sample of length L over a period of time. Initial conditions are set as p(x,0) = 0 for 0≤ x< 1 and p(x,0) =P
for x = 1. Boundary conditions are set as p(0, t) = pd(t) for t ≥ 0 and p(L, t) = pu(t) for t ≥ 0. pu is the
pressure in the upstream reservoir, pd is the pressure in the downstream reservoir.

We solve the transient nonlinear transport model (4) with initial and flux conditions to describe the
pressure distribution in a rock core sample of length L= 1m to simulate pressure-pulse decay test. We obtain
the pressure distribution under full pressure dependent reservoir parameters and compressibility coefficients.
A pressure pulse is induced in the upstream reservoir at t = 0, which is attached to a core plug containing a
rock sample. Figure 4 shows the results obtained from the numerical simulations.

5 Discussion and Conclusions
A fully pressure-dependent nonlinear transport model for the flow of shale gas in tight porous media de-
veloped in Ali and Malik (2018) was used to investigate rock properties and transient pressure fields. The
transport model accounting for the important physical processes that exist in the system, such as continuous
flow, transition flow, slip flow, surface diffusion, adsorption and desorption in to the rock material, and also
including a nonlinear correction term for high flow rates (turbulence).

A steady state one-dimensional version of the model without gravity and without external source was
used to determine shale rock properties by matching the pressure distribution across a shale rock core sample
obtained from pressure-pulse decay tests for different inflow pressure conditions. The best estimates of rock
properties was obtained when the high flow rate correction factor is included (F 6= 1) in the model, and when
all model parameters are kept pressure dependent throughout the simulations, at high inlet pressure pulses.
The estimates are much realistic than obtained from any previous transport models. The transient model
was used for simulating future pressure field distribution inside a rock sample over a period of time.

We can draw the following conclusions. Firstly, a realistic transport model should incorporate all of
the important physical transport sub-processes in the porous system. Secondly, model parameters and as-
sociated compressibility coefficients should be pressure dependent throughout the numerical procedure.
Thirdly, a Forchchiemer correction term for high flow rates is essential for good estimation of rock proper-
ties. Pressure-pulse tests should be carried out at elevated pressure pulses.
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