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Abstract

A PTV-based method for estimating high-resolution turbulence statistics is presented, with a focus on
the mean velocity, the mean velocity gradient and the isotropic dissipation rate. The theoretical basis
of the method is derived from Taylor expansions of velocities and the assumptions that particles are
homogeneously seeded and their positions are independent of the flow field. We show that averaging
the Taylor expansion equation after some manipulations leads to many desired statistics. In particular,
the dissipation estimation relies on the fact that the velocity difference between two closely positioned
particles infers the local instantaneous flow strain rate. A PTV simulation using synthetic isotropic tur-
bulence has been performed to validate the method and to understand relevant errors. It is found that
the two key parameters that affect the achievable spatial resolution and the accuracy are the total num-
ber of sampling times and the seeding density. In addition, the errors associated with particle tracking
contribute usually negligible rms fluctuations to the mean velocity and the mean velocity gradient, but
they always appear as a positive bias to the dissipation. With the understanding of the errors, we also
briefly discuss the strategy to reliably extract a desired statistical quantity.This PTV-based method com-
plements the so-called ‘bin-average’ method that has been employed to estimate the mean velocity and
the Reynold stress. It also opens the way to many other hard-to-measure statistics that are important for
understanding and modeling turbulence.

1 Introduction

Dissipation rate is a key statistic for understanding turbulent kinetic energy (TKE) budget, energy cas-
cade and turbulence scaling. The TKE dissipation rate is given by εT = ν〈u′

i , j u′
i , j 〉+ν〈u′

i , j u′
j ,i 〉, wherein

u′
i , j is the derivative of a velocity fluctuation u′

i in the x j direction; ν is the fluid kinematic viscosity. The
first term on the right is the homogeneous isotropic dissipation, while the second term exists only when
the flow exhibits inhomogeneity. Precedent studies on dissipation have been mostly conducted with di-
rect numerical simulation (DNS) data (Spalart, 1988; Donzis et al., 2008) for its superior accuracy and
accessibility. Reliable measurement of dissipation is yet challenging. A common trouble encountered
by virtually any measurement technique that estimates velocity gradients by finite differencing is related
to the optimal grid spacing: dissipation is overestimated when the grid spacing is small enough so that
the random error in the measurement dominates; if one attempt to reduce the relative random error by
increasing the grid spacing, dissipation is underestimated due to unresolved velocity gradient.

In addition to the difficulty in selecting the optimal grid spacing a priori, different measurement
techniques also have their own limitations. Traditional point-wise techniques (hot wire anemometry
and laser Doppler velocimetry) rely on Taylor’s hypothesis to convert temporal derivatives to spatial
derivatives. However, the validity of Taylor’s hypothesis is not always guaranteed (Dahm and Souther-
land, 1997), and the resulting accuracy is questionable. Point-wise techniques also face the difficulty of
obtaining all nine components of the rate-of-strain tensor, with the exception of multi-sensor probes
(Wallace and Vukoslavčević, 2010). PIV allows easy evaluation of spatial derivatives by nature, especially
after decades of efforts in advancing PIV towards a fully 3-D, high-spatial/temporal-resolution and high-
accuracy tool (Adrian, 2005; Westerweel et al., 2013). However, there are very few successful dissipation
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measurements by PIV reported in the literature. Many experimentalists have observed underestimated
dissipation rate due to the insufficient spatial resolution of correlation-based PIV analysis (Sharp and
Adrian, 2001; Tokgoz et al., 2012).

In regard to spatial resolution, particle tracking analysis offers the capability ro resolve a velocity
gradient over a length scale of sub-pixel size (Kähler et al., 2012a). Moreover, the developments in cam-
era and laser technologies, in combination with the advances in particle tracking algorithms (Ohmi and
Li, 2000; Fuchs et al., 2017) and 3-D particle reconstruction algorithms (Wieneke, 2012; Schanz et al.,
2016), enable the performance of PTV to approach or even surpass PIV in many aspects. One promising
example is the capability of PTV to obtain high-resolution turbulence statistics, such as the mean veloc-
ity (Kasagi and Nishino, 1991; Kähler et al., 2012b) and the Reynolds stress (Discetti et al., 2015). This
method has been referred to as the ’bin-average’ method or ’ensemble PTV’. The basic idea is to average
particle velocities inside individual bins over a large number of ensembles to get the statistical estimate
at each bin center. An attractive feature of this method is that the achievable spatial resolution scales
inversely with the total number of sampling times, and thus the spatial resolution can be substantially
enhanced provided a sufficiently large dataset. It also circumvents the irregularity of PTV data that is not
desirable for estimating velocity gradient, vorticity, etc.

In this work, we derive the theoretical basis for the ’bin-average’ method that has been employed
in a somewhat empirical way in the past. Following the same line, we also extend the method to the
estimation of isotropic dissipation rate and mean velocity gradient.

2 Theoretical background

2.1 Mean velocity

Although the validity of estimating the mean velocity by averaging particle velocities inside a subvol-
ume (bin) seems straightforward, the derivation and discussion for the mean velocity provide a more
complete picture in terms of the truncation error, the rms error and the optimal subvolume size.

The problem is to estimate the mean velocity at a prescribed location xxx∗ using velocity estimates
from tracer particles that randomly occur in a small domain around xxx∗. Suppose, at a sampling time t (q),
particle velocity estimates within a cubic domain D centered at xxx∗ are located at xxx(p,q), p = 1, ..., P (q). The

Taylor expansion of the velocity estimate of the p-th particle, u(p,q)
i = ui (xxx(p,q), t (q)), with respect to xxx∗ is

u(p,q)
i = u∗

i +u∗
i ,l (x(p,q)

l −x∗
l )+ 1

2
u∗

i ,mn(x(p,q)
m −x∗

m)(x(p,q)
n −x∗

n )+O (L3) (1)

wherein Einstein notation is used, and the superscript asterisks indicate the quantities are taken at xxx∗.
The time dependences of asterisked variables are omitted for succinctness, and one should infer they
belong to time t (q) in Equation (1) and subsequent equations. We now define a spatial average of a
variable α(p,q) for all xxx(p,q) ∈D at t (q):

≺α(p,q) ÂD≡ 1

P (q)

P (q)∑
p=1

α(p,q). (2)

We also define the long time average for a variable β(q) in its conventional way:

〈β(q)〉T→∞ ≡ lim
Q→∞

1

Q

Q∑
q=1

β(q) (3)

Applying the spatial and time averaging to Equation (1), we eventually obtain

〈≺ u(p,q)
i ÂD〉T→∞ = 〈u∗

i 〉+O (L2) (4)
There are two necessary assumptions used in the derivation of Equation (4). The first one is that flow
variables are independent of spatial variables, so, for instance,

〈u∗
i ,l ≺ x(p,q)

l −x∗
l ÂD〉 = 〈u∗

i ,l 〉〈≺ x(p,q)
l −x∗

l ÂD〉. (5)
The second assumption is homogeneous seeding, so the right hand side of Equation (5) vanishes, and
only the second-order term is left in Equation (4). Equation (4) represents a method to estimate the mean
velocity with second-order accuracy, namely the truncation error is proportional to L2.

Moreover, we can subtract the mean gradient term to achieve faster convergence. In principle, the

first-order term 〈u∗
i ,l ≺ x(p,q)

l −x∗
l ÂD〉 is identically zero when homogeneous seeding is assumed. How-



ICEFM 2018 Munich

ever, in a realistic situation when the time/ensemble average is calculated using finite number of sam-
ples, it becomes a zero-mean term whose rms fluctuation is proportional to 〈u∗

i ,l 〉. Therefore, an im-
proved procedure to estimate the mean velocity is to subtract the mean velocity gradient term before
time/ensemble averaging, i.e.

〈≺ u(p,q)
i −〈u∗

i ,l 〉(x(p,q)
l −x∗

l ) ÂD〉 =〈u∗
i 〉+〈u′∗

i ,l 〉〈≺ x(p,q)
l −x∗

l ÂD〉+O (L2)

=〈u∗
i 〉+O (L2) (6)

2.2 Mean velocity gradient

Following the same line, it will be seen that the mean velocity gradient is also obtainable. Subtracting the

mean velocity 〈u∗
i 〉 from both sides of Equation (1) and multiplying the equation by (x(p,q)

l ′ −x∗
l ′) give

(u(p,q)
i −〈u∗

i 〉)(x(p,q)
l ′ −x∗

l ′) = u′∗
i (x(p,q)

l ′ −x∗
l ′)+u∗

i ,l (x(p,q)
l −x∗

l )(x(p,q)
l ′ −x∗

l ′)+O (L3) (7)
Under the same assumptions as stated for the mean velocity, averaging Equation (7) in space and time
leads to

12

L2 〈≺ (u(p,q)
i −〈u∗

i 〉)(x(p,q)
l ′ −x∗

l ′) ÂD〉T→∞ = 12

L2 〈u′∗
i 〉〈≺ x(p,q)

l ′ −x∗
l ′ ÂD〉+〈u∗

i ,l 〉δl l ′ +O (L2)

= 〈u∗
i ,l ′〉+O (L2) (8)

wherein δl l ′ is the Kronecker delta arising from the identity 〈≺ (x(p,q)
l −x∗

l )(x(p,q)
l ′ −x∗

l ′) ÂD〉 = δl l ′L
2
/

12.
Here xl and xl ′ are also assumed to be independent when l , l ′. Equation (8) represents a method to
estimate the mean velocity gradient with second-order accuracy. The mean velocity is subtracted in
Equation (8) with a consideration of the rms fluctuation similar to that for the mean velocity. It becomes
clear now that the evaluation of the mean velocity and the mean velocity gradient, given in Equation (6)
and (8), respectively, can be implemented reciprocally and iteratively to improve their both accuracies.

2.3 Dissipation rate

We now derive the theoretical basis for estimating the isotropic dissipation rate,
ε= ν〈u′

i ,mu′
i ,m〉 (9)

To have the local instantaneous strain rate, we consider the differential between two simultaneous ve-
locity estimates at xxx(p,q) and xxx(p ′,q). Write Equation (1) for both velocities and calculate their difference:

u(p,q)
i −u(p ′,q)

i −〈u∗
i ,l 〉(x(p,q)

l −x(p ′,q)
l ) = u′∗

i ,l (x(p,q)
l −x(p ′,q)

l )+O (L2). (10)
The mean velocity gradient is subtracted from the above equation to reveal the fluctuating velocity gra-
dient responsible for dissipation. For succinctness, we use G∇u′

i
to denote the left side of Equation (10),

i.e.
G∇u′

i
= u(p,q)

i −u(p ′,q)
i −〈u∗

i ,l 〉(x(p,q)
l −x(p ′,q)

l ) (11)

Squaring Equation (10) and averaging in space and time yield

〈≺G∇u′
i
G∇u′

i
ÂD〉T→∞ = 〈u′∗

i ,mu′∗
i ,n〉〈≺ (x(p,q)

m −x(p ′,q)
m )(x(p,q)

n −x(p ′,q)
n ) ÂD〉+O (L4), (12)

wherein the spatial average of a variable α(p,p ′,q) = α(xxx(p,q),xxx(p ′,q), t (q)) involving two positions in D at
the same time t (q) is defined as

≺α(p,p ′,q) ÂD≡ 2

P (q)
[
P (q) −1

] P (q)∑
p,p ′=1
p<p ′

α(p,p ′,q) (13)

If, for a more general case, we specify the size of D to be L1 ×L2 ×L3, then we have the identity

〈≺ (x(p,q)
m −x(p ′,q)

m )(x(p,q)
n −x(p ′,q)

n ) ÂD〉 = δmnL2
m

/
6. (14)

Thereby, the homogeneous isotropic dissipation is obtained by letting Lm = L:
6

L2 〈≺G∇u′
i
G∇u′

i
ÂD〉T→∞ = 〈u′∗

i ,mu′∗
i ,m〉+O (L2) = ε+O (L2) (15)

Equation (11) and (15) represent a method to estimate the homogeneous isotropic dissipation.
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3 Numerical validation with synthetic turbulence

3.1 Mean velocity and mean velocigy gradient

We validated the method and studied relevant errors using a PTV simulation with synthetic turbulence.
The isotropic synthetic turbulence is generated from the random Fourier model proposed by (Kraich-
nan, 1970). One of the virtues of the random Fourier model is that many turbulence statistics are well
defined, such as the rms velocity, ur ms , the transverse Taylor microscale, λg , and the dissipation rate,
ε= 15νu2

r ms

/
λ2

g . In addition, a mean shear flow in the x-direction is superposed to the turbulence field
to introduce mean velocity gradient. We generated a total of Q = 1e05 independent turbulence fields in
a cubic domain of size 10λg , i.e. x, y, z ∈ [−5λg ,5λg ]. Particles are randomly distributed with a seeding
density C = 0.55 particles per λ3

g cube. 4-pulse particle tracks are calculated for each particle by numeri-
cally solving .

xxxp (t ) =uuu[xxxp (t ), t ] (16)
Three types of error are of our interests in the simulation: (1) rms fluctuation associated with finite time
averaging; (2) PTV bias error arising from particle trajectory interpolation; (3) PTV random error due
to random particle locating noise. To study the effect of PTV random error, particle positions are per-
turbed by Gaussian noise with the locating rms error, (δxp )r ms , ranging from 10−4λg to 10−2λg . This
corresponds to 1.6e-03 to 1.6e-01 voxel with a reconstruction resolution of 64 vox/mm.

Applying the PTV method to the mean velocity, Figure 1 illustrates the relative mean velocity error,
|δ〈u〉|

/
ur ms , as a function of the normalized domain size, L

/
λg . The results from the lowest and the

highest locating noise are shown. It is clear that, at relatively large L, the error is dominated by the
truncation error and decreases as L2. When L reduces to below certain value, the error deviates from the
L2 line and starts to raise and wiggle, which is a direct result from the dominance of the rms fluctuation,
(〈u∗〉T )r ms (〈·〉T denotes a finite time average). It is understood that, when L is very small, the number of
independent velocity fields in which at least one particle is found in D dramatically decreases, resulting
in poor convergence of the mean and the dominance of (〈u∗〉T )r ms . If we assume Poisson distribution
for particle occurrence in a given volume, then the rms fluctuation is given by

(〈u∗〉T )r ms =
{

(u∗
i )r ms

/√
Q, forΛÀ 1

(u∗
i )r ms

/√
QC L3, forΛ¿ 1

(17)

Figure 1: Mean velocity estimation at (x, y, z) =
(0,0,0). The black dashed line indicates the L2

trend; the red dash-dot line is (〈u∗
i 〉T )r ms given

in Equation (17). The green and blue dotted
lines are the rms fluctuations of PTV random
error at two noise levels; the orange dashed line
represents the PTV bias error.

Figure 2: Effects of Q and C on the estimation
accuracy. Displayed is in logarithm scale.
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wherein Λ = C L3 is the averaged number of particles in D. Equation (17) is plotted as the red dash-dot
line in Figure 1, which predicts the simulation result well. With the understanding of the competition
between the truncation error and the rms fluctuation, the optimal L for evaluating the mean velocity
should be taken before the rms fluctuation becomes significant. For the simulation result shown in Fig-
ure 1, Lopt ≈ 2.5λg and the resulting accuracy is |δ〈u〉|

/
ur ms ≈ 2%. It is also evident in Figure 1 that the

PTV random and bias error only contribute rms fluctuations with negligible amplitudes to the mean ve-
locity, even when the locating rms is as high as 0.16 vox ((δxp )r ms = 10−4λg ). This finding should be
generally true in many experiments since nowadays recording highly temporally and spatially resolved
PIV data becomes more realistic than ever before.

Based on the above discussion, it now becomes clear that Q and C are two key parameters affecting
the achievable accuracy and resolution. Their effects are schematically illustrated in Figure 2: increasing
Q lowers the overall rms fluctuation amplitude, and increasing C moves the turning point of (〈u∗

i 〉T )r ms

(Lt p ∼ C−1/3, see Equation (17)) towards small L. Both of them allow using a smaller L to evaluate the
mean velocity, namely improving the accuracy and the spatial resolution. These findings for the mean
velocity estimation also apply to the mean velocity gradient.

3.2 Dissipation rate

Figure 3 presents the estimation of dissipation rate from the simulation. At a lower noise level when the
PTV error is insignificant (Figure 3a), we observe a similar behavior as in the mean velocity estimation:
ε̂ ( [̂·] denotes an estimated quantity) asymptotically approaches the true value until the rms fluctuation
becomes dominant. When the PTV error is considerable, as shown in Figure 3b, it constitutes an always
positive bias error that scales as L−2. This is a consequence of the square operation and the multiplica-
tion by L−2 in the calculation of dissipation (see Equations (12) and (15)). This finding is verified with the
simulation result in Figure 3b – if we subtract the L−2 PTV error, the same asymptote as in the low noise
case is recovered.

The above discussion clearly reveals the importance of reducing PTV error (both bias and random).
On the other hand, when experimental conditions do not allow sufficiently low PTV noise, the under-
standing of the error also suggests a strategy to extract the dissipation rate. In brief, one could use the
data at small L to determine the multiplier before L2, which is an estimate of the PTV error, and sub-
tract the PTV error to obtain the asymptote. The reliability of this strategy relies upon sufficiently large
Q and C to mitigate the influence of the rms fluctuation. Our test with the simulation data showed the
dissipation error is below 2%, which can be further reduced by increasing Q.

(a) (δxp )r ms
/
λg = 1.9e-04 (b) (δxp )r ms

/
λg = 1e-02

Figure 3: Dissipation estimation at different noise levels. The true normalized dissipation, 15, is indi-
cated. The ’PTV error’ line in (b) follows L−2.



ICEFM 2018 Munich

4 Concluding remarks

As PIV approaches its 35th anniversary, numerous efforts have been made to enable PIV to become a
versatile and robust experimental tool for fluid mechanics research. While PIV gained its fame as a ve-
locity field measurement tool, the limitations on spatial resolution compared to point-wise techniques
and on data accessibility and accuracy compared to DNS are well recognized. Thanks to the substantial
development of PTV techniques, this work demonstrates a good chance for PTV to break through the
limitations and become more attractive than ever before.
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