
 
 

 

 

 
MATERIAL FLOW CONTROL ON SHOP FLOORS IN JOB SHOPS: 

RELEASE, ROUTING, AND SEQUENCING 

 

by 
 

Tao Zhang 
 
 

 

 

 

 

 

Full copy of the thesis approved by the Department of Computer Science 

of the Bundeswehr University Munich for obtaining the doctoral degree 

 

Doktor der Naturwissenschaften (Dr. rer. nat.) 

 

 

 

 

Advisor:    1. Prof. Dr. rer. nat Oliver Rose 

                 2. Prof. Dr. rer. nat. Stefan Pickl 

 

 

 

The doctoral thesis was submitted at the Bundeswehr University Munich on 

12.06.2018 and accepted by the Department of Computer Science on 23.08.2018. 

The oral examination took place on 07.11.2018. 

 

 

 

November 2018 





iii 

 

 Abstract 

Material flows in manufacturing are the movements of materials through a defined 

route in a plant for producing a final product. Material flow control (MFC) oversees 

the movements of all materials. Our study focuses on the release, routing, and 

sequencing processes. The release process decides if a job will be released while the 

workload changes. The routing process specifies which machine a job will go to when 

the job is ready. The sequencing process determines which job will be processed first 

when machines become idle. These processes are sequential decision-making processes 

in which decisions are made in a sequence and aim to optimize a long-term objective. 

Due to the randomness and complexity of the material flows, these decisions are usually 

made by some decision rules. However, these rules often lack an overall view of the 

system, which in turn lead to an unstable performance.  

In our study, each decision-making process is an alternative selection procedure in 

which a priority value is computed for each possible alternative, and the alternative 

with the highest priority is chosen. The priority values are subject to the constraint 

from the sequential decision-making, i.e., all decisions made based on the priorities 

result in the good long-term performance. Apparently, the priority value is a function 

of the concerned alternative and the current and future states of the material flows. 

Because simulation is always the first choice to make predictions and analyses of the 

complex system while machine learning dedicates itself to finding knowledge from raw 

data, our basic idea is drawn to calculate the priority values by the machine learning 

according to the current and future information generated from the simulation. Three 

simulation-based methods are proposed, including a simulation try-then-decide method 

(STTD), an intelligent method based on the simulation try-then-decide method (INT1), 

and another intelligent method based on Markov decision process (INT2). Lots of 

techniques from the machine learning are utilized, such as clustering, neural networks, 

reinforcement learning, and so on. Because the methods highly depend on the 

simulation, an agent-based simulator for the material flows is developed first, which is 

also used to evaluate the methods at last. 

The three methods are employed to a sample manufacturing line and compare with 

each other as well as some decision rules. The results show that the STTD and INT1 

methods always outperform the rules. The STTD method performs best but consumes 

much time. Contrarily, the INT1 method takes less time while the performance is just 

a little bit worse than the STTD. Thus, the STTD is more suitable for offline 

applications, and the INT1 can be used in the real-time control. Unfortunately, the 

INT2 method performs unsteadily. It will be further studied in the future. 
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1 Introduction 

Manufacturing is always accompanied by material flows in which materials are moved 

from one place to another place or transformed from one form into another form. To 

control the manufacturing is essentially the control of the material flows. Lots of 

familiar issues are within the scope of the material flow control, such as production 

scheduling (Pinedo 2012, Baker 1974) which in a narrow sense controls sequences of 

the materials flowing through resources, inventory control (Tersine and Tersine 1994) 

which decides timing and quantity of the materials flowing into storages, routing 

(Ibaraki and Katoh 1988) which directs the materials to the next place or resource, 

material release (Graves, Konopka, and Milne 1995) which determines timing and 

quantity of the materials flowing from the storages into the shop floors, and so on. 

Obviously, the material flow control is multidisciplinary as it covers multiple domains 

spanning across manufacturing engineering,  industrial engineering, operations research, 

and computer science, in particular, mathematical optimization and decision science. 

Because most manufacturing systems are very complicated and highly stochastic, it is 

very difficult to make an optimal plan or schedule in advance by the mathematical 

optimization to facilitate the material flow control. In our study, the material flow 

control turns out to be sequential decision-making processes in which decisions are 

made in an unpredictable sequence, and the goal is not local optima but long-term 

global optima. Moreover, to comply with requirements for the future smart 

manufacturing that the resources and materials must be able to make their own 

decisions, the study is finally going to focus on the decentralized real-time sequential 

decision-making in the material flow control without any beforehand plans.  

1.1 Background and Context 

1.1.1 Material Flow in Manufacturing 

Material flow in manufacturing is the movement of materials through a defined route 

in a plant to produce a final product. Production and transportation are two main 

aspects of the material flow. The production is a chemical or physical transformation 

of the materials to new materials. According to the number of inputs and outputs, there 

are four types of transformation: one-to-one transformation, one-to-many 

transformation (e.g., decomposition process), many-to-one transformation (e.g., 

assembly process), and many-to-many transformation. In the plant, materials can be 

held in the following places: storages, machines, and buffers in front of/behind the 
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machines. The movement of the materials is the transportation among these places. 

There are two types of transportation: point-to-point transportation and pass-by 

transportation. For the point-to-point transpiration, vehicles carry materials directly 

to their destination without any stops. For the pass-by transportation, vehicles follow 

a given route and stop at certain places to load/unload materials. The types of 

production and transportation have significant influences on the material flow. They 

determine the characteristics of the material flow. 

Materials in manufacturing can be grouped into six types: raw materials, semi-

products, by-products, final products, reworking products, and scraps. Lots of raw 

materials are required for producing a final product. At last, not only the final product 

is produced, but also some by-products and scraps are obtained. The semi-products are 

the temporary forms of materials. They will be transformed into the final products or 

other semi-products. The reworking products are the final products or the semi-

products which failed in their qualities and will be reworked somewhere.  Thus, the 

material flow in manufacturing can be cut into four parts: main material flow (final 

products and semi-products), by-product flow, scrape flow, and reworking flow. These 

partial flows influence one another. Only all of them flow smoothly, the production can 

go well. The main material flow is the most important one in the material flow control. 

There are three typical forms: line flow(a), tree flow(b) and network flow(c) (shown in 

Figure 1.1 adopting the point-to-point transportation). The line flow contains only the 

one-to-one transformation. One semi-product is transformed into only one new 

semi/final product. The tree flow comprises the many-to-one transformation. Several 

semi-products can be transformed to one new semi/final product. The network flow 

contains the many-to-many transformation. 

Raw Mater. Final Prod. Semiprod. Semiprod.* Scrap/Byprod. Transform

(a) (b) (c)

Rework. Mater.

Figure 1.1: Types of material flow 

1.1.2 Material Flow and Material Flow Control in Job Shops 

The job-shop is a process type in which small volumes of a variety of products are 

made. In job shops, the main material flow can be any one of the three types, which 

depends on the structure of the process flow. Different products have different flows. 

The transportation can be either the point-to-point type or the pass-by transportation. 

Each transformation of materials is in conjunction with a processing operation on a 
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machine, and each movement of materials is a transportation operation. All operations 

to finish a final product make up a job. The job and the operation are fundamental 

units in the material flow control rather than the materials. Detailed characteristics of 

the material flows in job shops will be addressed in Section 4.1 when we create a 

material flow model. 

Material flow control (MFC) is the kernel of shop floor control (SFC). All the other 

functions of the SFC, e.g., WIP (work in process) tracking and quality control, is based 

on the MFC. The SFC is at the bottom of the enterprise resource planning platform. 

The higher level of the SFC is a production planning system including material 

requirement planning and capacity requirement planning. The production planning 

system generates production orders and specifies each order a due date according to a 

master production schedule. The generated orders are put into an order pool and wait 

for being released to the shop floor. Each order usually includes several jobs. The SFC 

decides if the shop floor accepts the released orders or not. Jobs in the accepted orders 

are put into a job pool. Then, the MFC is in charge of the job releasing and the 

movements of all materials involved in the jobs on the shop floor.  

1.1.3 Decisions on Material Flow Control in Job Shops 

The material flow control answers the following questions: 1) whether or not to move 

materials; 2) which materials to move; 3) where to move the materials to; 4) when to 

move the materials; 5) how to move the materials. To answer these questions, we must 

consider the location of the material. A different location of materials raises a different 

issue surrounding each question. Table 1.1 shows most issues of each question except 

4) and 5). The question that when to move the materials is mostly a planning or 

scheduling problem which is out of the scope of the real-time control. So we do not list 

it on the table. The question how to move the materials usually refers to decisions on 

the batch size of each movement and is overlapping with question 1). We do not put 

it on the table either. 

Moving raw materials from storage for the first operation implies the start of a new 

job. The number of jobs being carried out in a shop represents the workload of the 

shop. The main issue of the SFC is to balance the workload against the effective 

capacity of the shop. So controlling the movements of raw materials coming out from 

storage is the most important way to deal with the balance issue. This problem is 

usually called as a job release problem. Once the workload changes, the decisions on 

whether to release a certain amount of jobs into the shop should be made.  

No matter how we release jobs, materials may have to wait for a machine before 

being processed due to bottlenecks, machine failures, and other interruptions. A queue 

may often appear in front of the machine. In this case, the problem that in which 

sequence the waiting materials will be processed or which one should be processed first 

becomes very important. To process materials on a machine denotes an operation. So 

the problem is an operation sequencing problem. Similarly, the processed materials may 
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form a queue behind the machine to wait for transporters, and we have to decide which 

one should be transported first. We call this problem as a transportation sequencing 

problem. The problem is critical in some shops which have inadequate capacity for 

transportation. 

Table 1.1: Decisions on material flow control in job shops 

Place of 

materials 
Decision point 

Whether to 

move 

Which one to 

move 
Where to move 

storage  

(Raw mat.) 

the workload 

changes 
Job release - 

Routing 

(transporter) 

buffer 

before 

the machine 

becomes free 

Batching 

(process) 

Sequencing 

(process) 
- 

machine 

rush materials 

arrive 
Preemption - - 

the machine 

breaks down 
- - 

Rerouting 

(machine) 

buffer 

behind 

a transporter 

arrives 

Batching 

(transport) 

Sequencing 

(transport) 

Routing 

(transporter) 

transporter 

materials are 

loaded 
- - 

Routing 

(machine) 

the transporter 

breaks down 
- - 

Rerouting 

(transporter) 

 

Once a piece of materials is loaded on a transporter, another decision that where the 

materials should be carried to has to be made. This decision-making is a routing 

problem. The routing problem exists in both process design phase and material flow 

control phase. In the process design phase, the routing problem is to determine how to 

produce a product. At last, an operation path is assigned to the product. Each operation 

may be carried out on several machines which may have different capacities. In the 

material flow control phase, the routing assigns one of the related available machines 

to each operation. Sometimes the routing also makes changes on the operation path, 

such as changing operation sequence and adding/removing operations into/from the 

operation path. It makes the routing problem more complicated. In practice, the 

changes on the operation path are forbidden.  

There are still many other decisions which need to be settled in the material flow. 

If a machine processes materials in a certain size of the batch, we call the machine as 
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a batch processing machine. While the machine becomes free and batching is not ready, 

a decision should be made that whether to move the batches out the buffer and start 

the process or just wait for more materials. While a material arrives and the machine 

is waiting for batching at that time, the decision also needs to be made. This is an 

operation batching problem. It aims to process as many as possible materials in a batch 

but without waiting too long for batching. The similar problem happens on the 

transportation. A transporter usually can carry multiple materials. To wait or to start 

transportation should be determined while a transporter arrives or a piece of material 

comes to the transporter. When rush materials arrive at a busy machine, we have to 

decide whether to stop the current job and to process the rush materials. This is a 

preemption problem. Moreover, if there are multiple transporters which are capable of 

carrying the materials, we should choose one transporter. This is a transporter routing 

problem. If the machine or transporter breaks down, the materials on them have to be 

assigned a new machine or transporter. These are rerouting problems. 

1.1.4 Objectives of Material Flow Control in Job Shops 

The objectives of the shop floor control are to increase throughput, reduce cost and 

finally maximize the profit: profit = throughput*(price-cost). The material flow control, 

as the kernel of the shop floor control, must accomplish these objectives first of all.  

In the material flow control, the way to increase the throughput is to choose a proper 

job release rate. Here we assume that the accepted orders are always enough. If the 

material flow has a fixed capacity and is no-delay, i.e., machines and transporters 

cannot be idle while operations are waiting in front of them, the throughput only 

depends on the job release rate regardless of sequencing, routing and so on. When the 

release rate is slower than the effective capacity of the shop, the throughput is equal to 

the release rate; when the release rate is faster than the effective capacity, the 

throughput can only reach the effective capacity. Figure 1.2 (a) shows while the release 

rate keeps increasing, what will happen on the throughput, WIP level, and average 

cycle time. We can see that as the release rate increases the throughput raises linearly 

until reaching the effective capacity. After that, the throughput will keep at a steady 

level. After the release rate reaches the capacity, the WIP level and cycle time ascend 

dramatically. Apparently the release rate cannot exceed the capacity; otherwise, the 

profit will decrease because the throughput does not change while the WIP holding cost 

increases. Theoretically, the profit will be maximized while the release rate equals the 

effective capacity. In practice, the capacity changes a lot due to some interruptions, 

such as machine breakdowns, rush jobs, unexpected processing times and so on. The 

release rate should change and adapt to the new capacity dynamically.  

The way to reduce the cost by the material flow control is to reduce the WIP level 

to cut the holding cost. If we scale values of the WIP level and cycle time in Figure 1.2 

(a), we get Figure (b) where the WIP level is increasing slowly and the cycle time is 

nearly constant before the release rate reaches the capacity. If no interruptions occur 
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in this range, the WIP level is contributed only by jobs being processed on machines 

and jobs being moved by transporters. No jobs are waiting for machines and 

transporters. Thus no sequencing problem occurs in this range. Making good decisions 

on the routing and batching can shorten the cycle time in this case. According to the 

Little’ s Law Throughput=WIP/Cycle Time, the WIP level can be reduced by 

decreasing the cycle time while the throughput stays constant. We can make a profit 

from the WIP reduction using routing and batching processes. For a fixed release rate, 

there is the lowest WIP level. The routing and batching procedure can reduce the level 

to the lowest if the job shop is small and simple enough. However, it is impossible to 

find such a simple shop. The lowest WIP level is always an ideal. Also, if the 

interruptions happen very often, queues usually appear. The jobs waiting in the queues 

is also contributed to the WIP level. In this case, sequencing can also lower the WIP 

level.  

       

Figure 1.2: Relationship between throughput and release rate 

Except for the objectives of the shop floor control, the material flow control has its 

objectives. The main objective is to make sure the material flow goes smoothly and 

rhythmically. The smooth means no job jam and no flood of jobs. It can be described 

by the stability of the WIP level. The rhythm is related to the job release and the cycle 

time. Because multiple products are produced at the same time, a release sequence of 

products should be made by the cycle time, such as A-B-A-C-A-B-A-C. The jobs will 

be released in this sequence under certain tempo repeatedly. If the material flow goes 

in this way, it will be rhythmical. The stability of the cycle time is the foundation of 

the rhythmical flow. If the release rate keeps steady and does not exceed the capacity, 

the stability of the cycle time is equivalent to the stability of the WIP level. The 

variation of the WIP level and cycle time is caused mainly by the interruptions in the 

shops. The sequencing procedure can be used to stabilize the cycle time and the WIP 

level. If the interruptions last a long time, the only way to stabilize the WIP level and 

cycle time is to adjust the release rate. The sequencing procedure only has tiny influence 

in this case. WIP reduction and WIP stabilization seem like two contrary problems. 

Essentially, they are the same. The WIP reduction tries to lower the level to the lowest 
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value. The WIP stabilization tries to pull an unexpected level back to a normal level. 

Usually, the normal level is always expected to be the lowest level.  

There is still a very important objective: meeting due dates. These typically come 

from one of two sources: directly from the customer or the requirements of successor 

shops. If delays happen often, customers will not order products from the shop anymore. 

If let the successor shops wait too long, it might also lose lots of money. The due dates 

are specified by the production planning system. The order release procedure is the first 

stage to meet the due dates. The second stage is carried out by the job release procedure 

in the material flow control. The sequencing, routing and batching procedures are 

responsible for the last stage. The importance of each stage to the due date satisfaction 

is decreasing stage by stage. So in the material flow control, the job release is the most 

important method of meeting the due dates. Other procedures have fewer effects on the 

due date satisfaction. Also, in the material flow control, there is another type of due 

dates: the operational due date. The due date is assigned to each operation. If each job 

has a due date, the operational due date can be calculated backward according to the 

job’ s due date. The due date objective is distributed to each operation. The operational 

due date will be utilized in the sequencing procedure. Sometimes even there is no due 

date for each job, an operational due date calculated from the release date is also 

assigned to each operation. Essentially it aims to stabilize the cycle time. 

There are also many other objectives of the material flow control. For example, if 

machines in the shop, especially at bottlenecks, are very expensive, we hope to use them 

thoroughly. The objective is utilization maximization. This objective is equal to the 

throughput maximization. The job release procedure plays an important role to achieve 

the objective. If some jobs and their release date are given, we want to finish them as 

early as possible. To minimize makespan will be the objective. The sequencing, routing 

and batching will take responsibility.  

1.1.5 Approaches to Material Flow Control in Job Shops 

As we mentioned before, the material flow control is a decision-making process. Job 

release decides if a job will be released while the workload changed. The alternatives 

are yes and no. Sequencing determines which job will be processed or transported first. 

The alternatives are jobs in the buffer. Routing decides which machine or transporter 

the job will go to. The available machines and transporters are alternatives. Batching 

decides whether or not to wait for a job. We should answer yes or no. There are three 

types of approach to the decision-making: experiences & data approach, mathematical 

approach, and simulation approach. 

To the experiences & data approach, we assume the knowledge contained in the 

experiences and data are right and are capable of making decisions. We learn the 

decision-making knowledge from the experiences and dig useful information from the 

data. At last all information help us to make decisions. In the mathematical approach, 
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the decision-making processes are considered as an optimization problem and mostly a 

combinational optimization problem. An optimization model is built, and lots of 

algorithms can be used to solve the optimization model. For the simulation approach, 

a simulation model of the material flow is created. Simply a try-then-decide method is 

used. The alternatives will be tried by the simulation in advance, and the best one will 

be selected according to the simulation results. 

The experiences & data approach is low-risk and practical. It can make good feasible 

decisions. However, the best situation is that it performs as good as the experiences. 

We cannot get benefits from it to improve the material flow control. Theoretically, the 

mathematical model can obtain an optimal solution. However, because of the 

complexity of the problems it usually can get only a near-optimal solution and 

sometimes only a feasible solution. The simulation approach can forecast the future of 

the material flow. However, the accuracy of the results highly depends on the simulation 

model.  

1.2 Scope and Approach to the Research 

1.2.1 Scope of the Research 

As we analyzed before, so many types of decisions need to be made in the material flow 

control in job shops. However, the capacity of the transportation tools is usually 

adequate so that the transportation-related decision-making can be ignored. Also, the 

operation batching problem can be included in the sequencing problem by simply 

adding a null alternative before deciding which one should be processed. We also assume 

that once a machine starts to process a job, it cannot be interrupted. Thus there is no 

preemption problem.  

 

M2

M3

M4M1

\\

Release

Routing

Sequencing
Job Pool

 

Figure 1.3: Release, routing, and sequencing problems  

Moreover, we assume that if a machine breaks down, the job on the machine will be 

put back in the front buffer and wait for reprocessing. So there is no rerouting problem. 

Thus, job release, operation sequencing, and machine routing, shown in Figure 1.3, are 

the most critical decisions in the material flow control. In our study, we considered 

these three types of decision-making. The sequencing and routing aim to the reduction 
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of the cycle time and WIP level. The decision-making on the job release tries to meet 

the throughput constraints. 

1.2.2 Approach to the Research 

The release, routing, and sequencing problems are sequential decision-making problems. 

The goal of the sequential decision-making is that the decisions we made together can 

result in a good long-term performance. This means we must know the influence of the 

decisions on the long-term performance. On the other hand, the decision-making is the 

selection of the best alternative from possible alternatives. It can be described as a 

priority calculation problem. For each alternative, a priority value is computed. The 

alternative with the highest priority is selected. Obviously, the priority value is a 

function of the concerned alternative and the current state of the material flow. Thus 

if we find the function, the problems are solved.  

 Considered the goal of the sequential decision-making, the priority value must 

represent the influence of the decisions on the long-term performance. So the function 

must be able to analyze the current situation and predict the future after a decision is 

taken. Moreover, inputs of the function are a high-dimensional dataset which contains 

features extracted from the alternative and the state of the material flow. The 

relationship between the inputs and the output, i.e., the priority value of the alternative, 

is nonlinear. Therefore, it is very hard to obtain a mathematical function. Because 

simulation is always the first choice to make predictions and analyses of the complex 

system while machine learning dedicates itself to finding knowledge from raw data, 

especially data mapping, our basic idea is drawn to calculate the priority values by the 

machine learning according to the current and future information generated from the 

simulation. We proposed three simulation-based approaches to calculate the priority 

values of alternatives, including 

 Simulation try-then-decide method (STTD), 

 Intelligent method based on STTD, 

 And intelligent method based on Markov decision process (MDP).  

1.3 Goals and Significance of the Research 

1.3.1 Goals of the Research 

Based on the general idea of our three approaches, we divided our study into five stages 

(shown in Figure 1.4): agent-based simulation, simulation of material flow, simulation 

try-then-decide method, intelligent method based on the STTD, and intelligent method 

based on the MDB. The former stage supports the next stage. Different goals are 

established to a different stage. 
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Figure 1.4: Five stages of the study 

The goals of the agent-based simulation (stage 1) are, 

 Address a formal procedure of the agent-based simulation with the process-

interaction worldview (ABS&PIW);  

 Develop a framework for the ABS&PIW involving general behaviors and 

communications among agents;  

 Compare the framework to other frameworks. 

The goals of the simulation of material flow (stage 2) are, 

 Develop an agent-based simulator for the material flow in job shops using 

the framework above;  

 Include key features of the material flow in the simulation model, such as 

setup, breakdown, preventive maintenance, reworking flow, and so on; 

  Include common dispatching rules and release policies in the simulator, such 

as FIFO, SPT, EDD, CONWIP, CONINT, Starvation Avoidance, and so on; 

 Design a format to describe and store the information of the material flow 

and the results of the simulation; provide interfaces to connect to other 

simulators. 

The goals of the simulation try-then-decide method (stage 3) are: 

 Address a scenario of simulation try-then-decide method in the material flow 

control; The scenario must include alternatives, environment, simulation 

runs, and evaluation; 
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 Answer three questions about the simulation runs: how long the simulation 

runs; which base-rule should be selected; how to evaluate decisions according 

to the simulation results;  

 Implement the simulation try-then-decide method for the material flow 

control by the simulator we developed before, which can make decisions 

about the release, routing, and sequencing. 

The goals of the intelligent method based on the STTD (stage 4) are: 

 Develop a data collector obtaining data from the simulation which uses the 

STTD method to make decisions;  

 Analyze and reorganize factors upon which the decisions on the release, 

routing, and sequencing are made; 

 Cluster the states of the material flow into several patterns;  

 For each pattern create a data-driven model to map the relationships 

between the factors and the selection of alternatives; 

  Implement an intelligent decision-making system for the material flow 

control. 

The goals of the intelligent method based-on the MDP (stage 5) are: 

 Create a MDP model for the release, routing, and sequencing problems;  

 Map the relationship between the value of action and the state-action pair 

to a data-driven model; 

 Solve the MDP model by the simulation-based batch-model Q-learning 

algorithm. 

1.3.2 Significance of the Research 

Though many goals listed above have been more or less achieved by other researchers, 

we still put some new features on them and try to improve their advantages and 

meanwhile to avoid their disadvantages. There are also many new opinions and methods 

in our study.  The significance of this study lies in the following aspects. The research 

is the first to: 

 Combine the simulation and machine learning to solve the sequential decision-

making problems in the material flow control; The data needed by the machine 

learning comes from the simulation; 

 Convert the release, routing, and sequencing problems to decision-making 

problems in which a priority value is calculated for each alternative and the 

decision maker select an alternative according to the values. Especially, the 

release problem becomes a simple yes-or-no decision-making process; 
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 Propose three methods to calculate the priority values; They are simulation try-

then-decide method (STTD), intelligent method based on the STTD, and 

intelligent method based on Markov decision process; 

 Present a purely decentralized decision-making system for the material flow 

control. For each type of product, a release decision maker is created; for each 

machine, a sequencing decision maker is created; for each machine group, a 

routing decision maker is created. 

1.4 Overview of Dissertation 

The dissertation is structured in the sequence of the study stages. Chapter 1 is the 

introduction to our research. Some basic issues of the material flow control including 

concepts, decisions, objectives, and approaches are introduced. The scopes, approaches, 

goals, and significance of our research are also addressed here. Chapter 2 is the state-

of-the-art. Lots of papers about the release, routing, and sequencing problems are 

reviewed and summarized regarding the scope, approach, and advantages & 

disadvantages. Except for Chapter 1, 2 and 8, at the end of each other chapters, an 

experiment related to the approach proposed in the chapter is reported. In Chapter 3 

an approach to introducing the process-interaction worldview into the agent-based 

simulation is proposed. A framework is developed by using multi-threading and 

synchronization technology. In Chapter 4, a simulator for the material flow in job shops 

is developed within the framework. The simulator contains release agents, machine 

group agents, and job agents. The simulation-based try-then-decide method is carried 

out in Chapter 5 by using the simulator. A general scenario for the simulation try-then-

decide method is addressed first. And then it was used to solve the routing, sequencing, 

and release problems. In Chapter 6, the intelligent approach based on the data from 

the simulation try-then-decide method is introduced into the decision-making processes. 

According to the simulation data, the states of the material flow are divided into several 

patterns. A neural network is created for each pattern to map the relationships between 

the state and the selection of the alternatives. In Chapter 7, a different method of 

calculating the priority values for alternatives is presented. The method is based on the 

Markov decision process (MDP) which aims to find out an optimal action-value 

function to take the best action. The same data-driven model presented in Chapter 6 

is used to map the relationship between the value of action and the state-action pair. 

The model is solved by a simulation-based Q-learning algorithm. The thesis is 

concluded in Chapter 8, and a plan for the future works is given at the end. 
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2 Literature Review 

Lots of literature related to the decentralized real-time job release, routing, and 

sequencing are reviewed in this chapter. To remove ambiguities, we clarify and define 

some common terms at the beginning. An in-depth discussion is given at last.  

2.1 Basic Terms 

Even though there are lots of related literature, they usually use different terms to 

express the same problems or approaches. There is also some related literature which 

uses the same term but refers to the different problems. So, at the beginning of this 

chapter, we discuss some terms that frequently appear in the literature and explore the 

relationships among these terms. 

2.1.1 Planning, Scheduling, and Control 

In the business dictionary, planning is a basic management function involving the 

formulation of one or more detailed plans to achieve certain objectives. The plan is a 

set of decisions about how to do something in the future. Control is also a management 

function and means measuring actual performance and taking corrective action aimed 

at achieving certain objectives. Scheduling is to assign each task some resources (routing) 

and determine the sequence of tasks being carried out on the resources (sequencing) so 

as to achieve certain objectives under some constraints. 

We can see that all of them are optimization problems. The scheduling problem will 

be a planning problem if we create a schedule in advance. The scheduling problem can 

also be a control problem if the routing and sequencing decisions are made in real time. 

The job release problem is not included in the scheduling problem. Because it is an 

interface between the production planning and the production scheduling in practice. 

Similarly, the release is a planning problem if we make a release plan; If we make the 

release decision in real time, the release is a control problem. From another point of 

view, they all can be considered as a decision-making problem. The planning makes 

decisions in advance while the control makes decisions in real time. The release, routing, 

and sequencing can make decisions either in advance or in real time. 

Most of the researchers considered the release, routing, and sequencing as a planning 

problem. Our study concerns the control problem about the release, routing, and 

sequencing. We do not make any schedules and plans. There is also another term 

“ dispatching”  in practice. It usually refers to the real-time sequencing problem. 
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2.1.2 Predictive, Proactive and Reactive Scheduling 

Many approaches to scheduling and rescheduling considering the presence of 

uncertainties in the shop floor have been proposed in the literature. They can be 

classified into five categories: predictive scheduling, proactive scheduling, reactive 

scheduling, predictive-reactive scheduling, and proactive-reactive scheduling. 

The predictive scheduling makes a schedule in advance without considering any 

disruptions. The predictive schedule is less robust(Busch et al. 2007). The proactive 

scheduling takes into account possible disruptions while constructing the original 

predictive schedule. This allows making the predictive schedule more robust(Beck and 

Wilson 2007). The reactive scheduling is based on up-to-date information regarding the 

state of the system. No predictive schedule is made, and the decisions are made locally 

in real time. These approaches are used when the level of disturbances is always 

important. Due to the constraints on the response time of the reactive algorithm, one 

cannot expect for an optimal or near-optimal decision(Sabuncuoglu and Bayı z 2000). 

In the predictive-reactive scheduling, a predictive schedule is generated without 

considering possible perturbations. Then, a reactive algorithm is used to maintain the 

feasibility of the schedule and improve its performances(Yang and Geunes 2008). In the 

proactive-reactive scheduling, a predictive schedule is generated by the proactive 

algorithm. Then, a reactive algorithm plays its role(Aloulou and Portmann 2005).  

The predictive and proactive scheduling are planning problems. Sometimes, we call 

them offline/non-real-time scheduling. The reactive scheduling problem is a complete 

control problem. The predictive-reactive and proactive-reactive scheduling are 

controlling problems based on a given plan. Sometimes we call them repair-based 

reactive scheduling. The reactive-related scheduling is also known as online/real-time 

scheduling. Also, these six concepts can be easily broadened and introduced to any 

other decision-making processes, e.g., the release problem. Our work concerns only the 

reactive decision-making for the release, routing, and sequencing problems. 

2.1.3 Order Release and Job Release 

The order in our study refers to the manufacturing order generated by the production 

planning system. Each order may contain several jobs. The orders are released at some 

points of time determined by the order release procedure which also is called the order 

review/release procedure (ORR). In practice, the released orders are usually accepted 

at a certain time, such as at the beginning of a shift or a day. Thus, a job pool is formed. 

The job release is responsible for releasing the jobs in the job pool to the shop floor. 

The order release is mainly dependent on the aggregate capacity of the shop while the 

job release pays attention to the even more detailed workload. If the release orders are 

accepted immediately and each order has only one job, no job pool is formed. The order 

release problem is equivalent to the job release problem in that case. 
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2.1.4 Resource Allocation and Routing 

Resource allocation is in charge of allocating required resources to jobs. A job may need 

several resources to finish one of its operations. The resource allocation is a wider 

concept than the routing we considered. Resource-constrained scheduling is very similar 

to the resource allocation. It includes both the sequencing problem and the resource 

allocation problem. The routing problem in our study refers to the selection of a 

machine for an operation in jobs. We assume that each operation just needs one 

resource, i.e., one machine. Usually, during the capacity requirement planning, a 

machine has already been specified for each operation before orders are released. Thus, 

the routing problem is mostly not considered in the material flow control phase. 

However, for the shops with multiple identical machines which are located in different 

places, the routing problem cannot be ignored. Although there is no difference among 

these machines during the capacity requirement planning, in the material flow control 

they are different from one another because of differences in transportation times. So, 

in this case, the routing should be involved in the material flow control to specify one 

of the identical machines. 

2.2 Related Works to the Real-time Job Release 

Job release, which decides when to release each job into the shop floor, is a primary 

function of the material flow control. It has significant influences on the performance 

of the materials flow control. To the real-time job release, the decision must be made 

from a policy rather than a release plan. If we change our view on the problem, the job 

release can also be another problem that decides which jobs should be released at a 

given point of time. We call the given point of time a decision point. The decision 

points can be generated either by a periodic method or by event-oriented methods. For 

the periodic method, the decision is made at certain time intervals. For the event-

oriented methods, the decision is made while some events occur. According to the 

information considered in the decision-making, the job release can be classified into 

three types: due-date-based job release, workload-based job release, and bottleneck-

based release. A shop may just use one of them always or dynamically select one of 

them according to the situation. It is also possible to consider more than one type of 

information with different weights on each type of the information.  

Most previous research studies implicitly ignore the releasing function. These studies 

assume that jobs are released immediately to the shop as they randomly arrive; while 

this may reflect the reality of some production systems, in most cases the assumption 

does not hold true. Practitioners give several reasons for not releasing jobs as they are 

received(Mahmoodi, Dooley, and Starr 1990). First, the required material may not be 

available, and the pre-production activities may not be completed. Second, parts 

released to the shop too early may be damaged and result in excessive work-in-process 

(WIP) inventory. Third, jobs released to the shop long before they are needed may 
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compete for resources (e.g., machines) with more urgent jobs and thus interfere with 

the timely progress of those jobs. Finally, controlled job releasing provides shop floor a 

means of maintaining the balance between the load on the floor and the capacity of the 

shop. 

2.2.1 Due Date-based Job Release 

The due date-based job release calculates a release date for each job at decision point 

according to the due dates and current cycle time estimates, and creates a release time 

window based on the release date. If the decision point is within the release time window, 

the related job will be released. The decision is usually made at certain time intervals.  

There are three common ways to estimate the cycle time. One assumes that the 

cycle time is proportional to its sum of processing times (Conway et al. 1967). They 

try to find the coefficient of the sum of processing times. One just uses the average 

cycle time obtained from the historical data of the shop floor. The last one believes that 

the cycle time does not only depend on the sum of the processing times, but also the 

situation of the shop floor at the decision point. Mahmoodi, Dooley, and Starr (1990) 

used regression analysis method to find the relationship between the total waiting time 

and the number of jobs on the concerned job’ s route. The simulation collects the data 

pair they needed. The obtained regression function is used to determine the due date 

of a job at a decision point, and the parameter of the function is the number of jobs on 

the job’ s route at the decision point. The cycle time equals the total waiting time plus 

the sum of processing times. Ragatz and Mabert (1988) calculate the cycle time 

according to the number of operations and the number of jobs on the concerned job’ s 

route. Two coefficients are set for these two numbers. 

2.2.2 Workload-based Job Release 

The workload is the amount of work that has to be done. It can be measured by the 

number of in-process jobs or the total processing time of in-process jobs. For the 

workload-based job release, the decision is made while the workload changed. A 

releasable job list is included in the method. The list stores the releasable jobs at the 

decision points in certain priority sequence. The following are three subtypes of the 

workload-based job release. 

2.2.2.1 Workload-based job release at the shop floor level 

The workload is measured at the shop floor level by terms of the number of in-process 

jobs or total processing time of in-process jobs in the shop at the decision point. A 

workload norm is set for the entire shop floor. While a job is finished, the first job in 

the list will be considered first. If releasing the first job does not cause that the workload 

exceeds the norm, the job will be released, and the workload will be updated. Otherwise, 

the job will continue to be kept in the pool. After that, the second job will be considered. 
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The remaining can be done in the same manner. If the workload exceeds the 

predetermined workload norm, the rest jobs will not be considered, and the release 

procedure ends. 

Framinan, Gonzá lez, and Ruiz-Usano (2006) developed a dynamic method to 

determine the norm (card number). The norm is adjusted dynamically according to the 

throughput of the shop floor at that moment. If the throughput is less than the target 

throughput, the norm will increase; otherwise, the norm will decrease. The lower and 

upper bounds on the norm restrict the adjustment. 

2.2.2.2 Workload-based job release at the product level 

The workload is measured at the product level by terms of the number of in-process 

jobs or total processing time of in-process jobs, which belong to the same product, in 

the shop at the decision points. A workload norm is set for each product. For each 

product, a releasable job list is created as well. While a job belonging to a product is 

finished, the jobs in the related list will be considered from the first to the last. If 

releasing a job does not cause that the workloads of the product exceed its norm, the 

job will be released. 

With a fixed number of Kanbans (norms) dedicated to each product, Ryan and 

Vorasayan (2005) use a nonlinear program to evaluate and optimize the allocation of 

Kanbans to product types. In numerical examples, the allocations identified are similar 

to those obtained by exhaustive enumeration with simulation but frequently differ 

significantly from a naive allocation according to demand rates. A variant of the model 

that minimizes the total work-in-process to achieve specified throughput targets yields 

results like a previous heuristic method. 

2.2.2.3 Workload-based job release at the machine level 

The workload is measured at the machine level by terms of the number of jobs or total 

processing time of jobs, which are/will be processed on the machine or are waiting for 

the machine, in the shop at the decision points. A workload norm is set for each machine. 

While an operation is finished on a machine, the jobs in the list which will visit the 

influenced machines will be considered in the original sequence. If releasing a job does 

not cause that the workloads of all related machines exceed their norm, the job will be 

released. 

Land and Gaalman (1998) give a general procedure for the workload-based job 

release. The procedure considers (1) the workload situation on the shop floor in 

combination with the workload contribution of the jobs, and (2) the relative urgency 

of the job. The release procedure is built up in two phases, sequencing and selecting. 

The jobs in the pool are sequenced in order of a planned release date to determine their 

relative urgency. Urgent jobs have a higher probability to be released. The selecting 

phase, choosing jobs that obey the workload norms, is responsible for the load balancing 

function. The term load balancing refers to maintaining a constant direct load level for 

each machine, which speeds up the throughput in the first place. 
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These three methods can also be used for the periodic release. At each decision point, 

no matter which level we are, if the workload is less than the norm, the same procedure 

will be used. If the workload is greater than the norm, we just skip this period. 

2.2.3 Bottleneck-based Job Release 

The bottleneck-based job release is a special case of the workload-based job release at 

the machine level. It focuses only on the workloads of bottlenecks. The bottleneck 

principle is converted into a manufacturing control method. 

Akhavan-Tabatabaei and Salazar (2011) propose a procedure based on trial and 

error to find the best values for the WIP threshold (norm) at bottlenecks in different 

cases. The procedure begins with running the simulation model for no policy case with 

norm =0 and recording the resulting cycle time and throughput. Then this step is 

repeated through norm value increment of one and increasing the value of arrival rate 

in such a way that the effective arrival rate of cases with policy remains very close to 

that of the no policy case. The iterations stop when no significant improvement in the 

cycle time is observed. 

2.3 Related Works to the Real-time Sequencing 

2.3.1 Dispatching Rules 

Dispatching rules are a very common method for the real-time sequencing. The 

dispatching rules specify a priority value for each alternative job according to the 

information of the job and the shop floor. The job with the highest priority will be 

selected. If the priority depends on static information, the dispatching rules are static; 

otherwise, the dispatching rules are dynamic. If the priority is obtained from the 

information of the job and the current machine, the dispatching rules are local 

dispatching rules. If the priority is related to the information of the shop floor, the 

dispatching rules are global dispatching rules. The studies on the dispatching rules focus 

on three fields: creating new rules for complex environments; combining old rules to 

improve the performance; selecting rules which adapt to a specific environment of the 

shop floor. 

2.3.1.1 Create new rules for complex environment 

Even though lots of dispatching rules have been developed, the step for creating new 

rules never stops. Because to date the research still did not find out any dispatching 

rules that can be used in any environment and always results in a good performance.  

Also, more and more complex environments will be considered as the relative simple 

environments have been studied. The variation of the environment relies on the complex 

objectives, special constraints, and other more specific configurations. Thus, once a new 
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environment appears, the old rules may not adapt to it. There is a need to develop new 

rules for it.  

Chen and Matis (2013) created a dispatching rule called the Weight Biased Modified 

RRrule (WBMR). The rule minimizes the mean tardiness of weighted jobs in a job 

shop. It is a significant extension of the RRrule in that it has linear complexity and 

considers weighted jobs. The rule allows for biasing of the schedule towards meeting 

the deadline of high priority jobs through the tuning of a single parameter, where such 

an effect is quantified by evaluating tardiness at different truncation thresholds. 

Numerical testing demonstrates the ability of the WBMR to outperform other 

traditional rules at various congestion and due-date tightness levels. Jayamohan and 

Rajendran (2004)  propose dispatching rules by explicitly considering different weights 

or penalties for flow time and tardiness of a job. Many measures of performance related 

to weighted flow time and weighted tardiness of jobs are considered. Chiang and Fu 

(2012) propose a dispatching rule for lot scheduling in wafer fabs, focusing on three due 

date-based objectives: on-time delivery rate, mean tardiness, and maximum tardiness. 

The rule implements good principles in existing rules by means of (1) an urgency 

function for a single lot, (2) a priority index function considering total urgency of 

multiple waiting lots, (3) a due date extension procedure for dealing with tardy lots, 

and (4) a lot filtering procedure for selecting urgent lots. Piplani and Wetjens (2007)  

give some background of manufacturing system flexibility, including its measurements 

and present quantifiable measures of flexibility and discuss parts dispatching based on 

entropic measures of part routing flexibilities. Two rules for the parts dispatching, 

namely “least reduction in entropy” and “least relative reduction in entropy,” are 

presented. It is proposed that to take advantage of system flexibility, parts dispatching 

rules based on flexibility measures should be used, especially in systems with high 

breakdown rates. An extensive simulation study is conducted to evaluate the 

performance of the dispatching rules. The simulation study confirms that entropy-based 

dispatching rules outperform traditional dispatching. 

2.3.1.2 Combine old rules to improve the performance 

In the real world, objectives are often more complicated. For example, an objective may 

be a combination of several basic objectives or a function of time and the set of jobs 

waiting for processing. Most of the dispatching rules target on optimizing a specific 

objective, and that may not perform well on other objectives. For instance, the Shortest 

Process Time (SPT) is known that has good performance in minimizing mean cycle 

time of jobs in a single machine environment, but it results in poor performance for 

variance of cycle time and due-date-related objectives. On the other hand, the Earliest 

Due Date (EDD) has good performance in minimizing mean tardiness of jobs in a single 

machine environment, but it does not perform well for cycle time-related objectives 

because it does not take information of processing time into account. Hence, a 

dispatching rule that focuses on single objective may not work well for the realistic 

objectives. A solution to address this problem is using composite dispatching rules. 
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Tzafestas and Triantafyllakis (1994) developed a new adaptively weighted 

combinatorial dispatching (AWCD) rule which is appropriate for complex scheduling 

problems with multiple and conflicting criteria. This rule identifies the constraints that 

are tightest, and adaptively estimates the tightness of each constraint. Valente and 

Schaller (2012) consider the single machine scheduling problem with weighted quadratic 

tardiness costs. Several efficient dispatching rules are proposed. These include existing 

heuristics for the linear problem, as well as procedures suitably adapted to the quadratic 

objective function. Also, both forward and backward scheduling procedures are 

considered. The computational results show that the heuristics that specifically take 

into account the quadratic objective significantly outperform their linear counterparts. 

Also, the backward scheduling approach proves to be superior, and the difference in 

performance is even more noticeable for the harder instances. The best of the backward 

scheduling heuristics are both quite efficient and effective. Indeed, this procedure can 

quickly generate a schedule even for large instances. Also, its relative deviation from 

the optimum is usually rather low, and it performs adequately even for the more 

difficult instances. Tay and Ho (2008) solved the multi-objective flexible job-shop 

problems by using dispatching rules discovered through genetic programming. They 

evaluated and employed suitable parameter and operator spaces for evolving composite 

dispatching rules using genetic programming, with an aim towards greater scalability 

and flexibility. Experimental results show that composite dispatching rules generated 

by the genetic programming framework outperform the single dispatching rules and 

composite dispatching rules selected from literature over five large validation sets 

concerning minimum makespan, mean tardiness, and mean flow time objectives. 

Further results on sensitivity to changes (in coefficient values and terminals among the 

evolved rules) indicate that their designs are robust. 

2.3.2 Dispatching Rule Selection 

There are two types of the rule selection: online and offline. Given an environment and 

selecting a better rule is the offline rule selection. Because the environment is always 

stochastic, one rule for all situations of the environment is not enough. A mechanism 

to dynamically select a rule according to the situation of the environment is the online 

rule selection. 

2.3.2.1 Offline rule selection 

The offline rule selection is based on the evaluation of all alternative rules. The rule 

resulting in the best performance will be selected. Simulation is always a very popular 

way to evaluate the rules. 

Abou-Ali and Shouman (2004) present a study of the effect of dynamic and static 

dispatching strategies on dynamically planned and unplanned FMS. The proposed 

simulation model comprised eight machines, storage buffer areas, receiving area, and 
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three robots and pallets. Parts enter and leave the FMS at load/unload stations and 

transfer between machine centers by available trucks. Based on some specific 

assumptions, 12 different dispatching strategies were considered. A simulation run was 

made for each strategy, where the design parameters were systematically changed. The 

analysis of the obtained results showed that an overall improvement could be achieved 

for dynamic dispatching than that rendered by static dispatching. Baykasoğ lu and 

Özbakı r (2010) study the reactive scheduling problems in a stochastic manufacturing 

environment. Specifically, they test several scheduling policies under machine 

breakdowns in a classical job shop system. In addition, they measure the effect of 

system size and type of work allocation (uniform and bottleneck) on the system 

performance. The performance of the system is measured by the mean tardiness and 

makespan criteria. They also investigate a partial scheduling scheme under both 

deterministic and stochastic environments for several system configurations. Lin, Chiu, 

and Tsai (2008) use analytical network process (ANP) method to construct a 

dispatching model based on the characteristics of all the production facilities on-site 

(such as the utilization of bottleneck machines), in order to explore the relationship 

among various performance indicators and correlation between performance indicators 

and the dispatching rules. The paper aims to analyze the production dispatching issues 

of wafer fabs in an effective and systematic approach, to provide an on-site dispatching 

analysis model that takes into consideration production characteristics and indicator 

adjustments. The paper finds that the most optimal dispatching method for ANP 

dispatch model is EDD dispatching method, followed by LS dispatching method. FIFO 

dispatching method yields the worst performance. The ANP dispatching assess model 

proposed in this paper can surely serve as an analytical architecture for decision makers 

to evaluate production dispatching models of multiple production indicators in the 

future. Pickardt et al. (2013) propose a two-stage hyper-heuristic for the generation of 

a set of work center-specific dispatching rules. The approach combines a genetic 

programming (GP) algorithm that evolves a composite rule from basic job attributes 

with an evolutionary algorithm (EA) that searches for a good assignment of rules to 

work centers. The hyper-heuristic is tested against its two components and rules from 

the literature on a complex dynamic job shop problem from semiconductor 

manufacturing. Results show that all three hyper-heuristics can generate (sets of) rules 

that achieve a significantly lower mean weighted tardiness than any of the benchmark 

rules. Moreover, the two-stage approach proves to outperform the GP and EA hyper-

heuristic as it optimizes on two different heuristic search spaces that appear to tap 

different optimization potentials. The resulting rule sets are also robust to most changes 

in the operating conditions. Petroni and Rizzi (2002)  present a fuzzy logic based tool 

intended to rank flow shop dispatching rules under multiple performance criteria. This 

tool is detailed concerning a significant industrial case of a major company operating 

in the boilermaker industry. The results show that the approach is robust and effective 

in providing practical guidance to scheduling practitioners in choosing priorities 

dispatching rules when there are multiple objectives.  
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2.3.2.2 Online rule selection 

The online rule selection tries to find out the relationship between the situation of the 

environment and the rule performing better in the situation. Lots of technologies from 

the artificial intelligence are introduced, such as Q-learning, neural networks, self-

organizing, and so on. 

Korytkowski, Wiś niewski, and Rymaszewski (2013) developed an evolutionary 

simulation-based heuristic to construct near-optimal solutions for dispatching rule 

allocation. The heuristic is easy to use and gives managers a useful tool for testing a 

configuration that can minimize certain performance measures. The optimization 

heuristics are used to determine priority strategies so as to maximize the performance 

of a complex manufacturing system with a large number of different products, along 

with an overtime that changes with a mix of different process types, including assembly 

and disassembly operations and with different types of internal and external 

disturbances. Modeling is carried out using discrete-event simulation. Wang and Usher 

(2004) use a single machine agent employing the Q-learning algorithm to develop a 

decision-making policy on selecting the appropriate dispatching rule from among three 

given dispatching rules. The system objective is to minimize mean tardiness. The paper 

presents a factorial experiment design for studying the settings used to apply Q-learning 

to the single machine dispatching rule selection problem. This study not only 

investigates the main effects of this Q-learning application but also provides 

recommendations for factor settings and useful guidelines for future applications of Q-

learning to agent-based production scheduling. Mouelhi-Chibani and Pierreval (2010) 

proposed a new approach based on neural networks (NN) to select in real time the most 

suited DR as a resource becomes available. The selection is made in accordance with 

the current system state and the workshop operating condition parameters. Contrary 

to the few learning approaches presented in the literature to select scheduling heuristics, 

no training set is needed. The NN parameters are determined through simulation 

optimization. Shiue, Guh, and Lee (2011) proposed an intelligent multi-controller that 

consists of three main mechanisms: (1) a simulation-based training example generation 

mechanism, (2) a data preprocessing mechanism, and (3) a self-organizing map (SOM)-

based MSR selection mechanism. The results reveal that over a long period this 

approach provides better system performance based on various performance criteria 

than the system performance of the machine learning-based RTS based on the SSR 

approach for two different types of manufacturing systems (FMS and FAB). Hence, 

the proposed intelligent multi-controller approach is efficient enough to be incorporated 

into the operation of an RTS system. Lee (2008) proposed a fuzzy rule-based system 

for an adaptive scheduling, which dynamically selects and applies the most suitable 

strategy according to the current state of the scheduling environment. The adaptive 

scheduling problem is generally considered as a classification task since the performance 

of the adaptive scheduling system depends on the effectiveness of the mapping 

knowledge between system states and the best rules for the states. A rule base for this 

mapping is built and evolved by the proposed fuzzy dynamic learning classifier based 
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on the training data cumulated by a simulation method. Distributed fuzzy sets 

approach, which uses multiple fuzzy numbers simultaneously, is used to recognize the 

system states. The developed fuzzy rules may readily be interpreted, adopted and, when 

necessary, modified by human experts. An application of the proposed method to a job-

dispatching problem in a hypothetical flexible manufacturing system (FMS) shows that 

the method can develop more effective and robust rules than the traditional job-

dispatching rules and a neural network approach. 

2.3.3 Cooperative Sequencing 

El-Bouri (2012) proposed a cooperative sequencing method. The Cooperative 

Dispatching is a real-time scheduling methodology, which consults downstream 

machines before making a job dispatching decision on any given machine. The paper 

proposes such an approach for minimizing the mean tardiness in a dynamic flow shop 

where new jobs arrive continuously, at random points in time, throughout the 

production cycle. Cooperative Dispatching is based on the idea that individual machines 

act self-interestedly, with the objective of optimizing their local performance criteria. 

A consulted machine attempts to influence upstream dispatching decisions in a manner 

that promotes its ability to minimize its total local tardiness. A machine's influence in 

the dispatching decision depends on current congestion and due-date tightness levels in 

the shop. A multiple regression model is proposed to help determine the weight, and a 

consulted machine's preferences will carry in the dispatching decision. Conflicting 

demands from the different machines are resolved by a minimum regret decision 

procedure, which aims to minimize the aggregate deviation from the consulted 

machines' preferences. The winning candidate that ultimately emerges from this 

procedure is the job that is dispatched. A comparative analysis to evaluate the 

performance of cooperative dispatching, compared to six other dispatching rules that 

are commonly favored for tardiness-based criteria, is performed by means of simulation, 

using randomly generated test problems. Computational results indicate that 

Cooperative Dispatching outperforms the other dispatching rules, across a broad range 

of flow shop congestion and due-date tightness levels. 

2.3.4 Intelligent Sequencing 

The intelligent sequencing can be treated as a complex dispatching rule which considers 

lots of local and global information. The relationship between the information and the 

priority of the concerned job is usually nonlinear.  

Olafsson and Li (2010) learn new scheduling rules from existing schedules using data 

mining techniques. However, direct data mining of scheduling data can at best mimic 

existing scheduling practices. They, therefore, propose a novel two-phase approach for 

learning, where they first learn which part of the data correspond to best scheduling 

practices and then use this data and decision tree induction to learn new and previously 
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unknown dispatching rules. The numerical results indicate that the newly learned rules 

can be a significant improvement upon the underlying scheduling rules, thus going 

beyond mimicking existing practice. Xanthopoulos et al. (2013) proposed two 

approaches for dynamic scheduling. One is a Reinforcement Learning-based, and one is 

based on Fuzzy Logic and multi-objective evolutionary optimization. The performance 

of the two scheduling approaches is tested against the performance of 15 dispatching 

rules in four simulation scenarios with the different workload and due date pressure 

conditions. The scheduling methods are compared regarding Pareto optimal-oriented 

metrics, as well as regarding minimizing mean earliness and mean tardiness 

independently. The experimental results demonstrate the merits of the proposed 

methods.  Shahzad and Mebarki (2012) presented a data mining based approach to 

discover previously unknown priority dispatching rules for job shop scheduling problem. 

The approach is based on seeking the knowledge that is assumed to be embedded in 

the efficient solutions provided by the optimization module built using tabu search. 

The objective is to discover the scheduling concepts using data mining and hence to 

obtain a set of rules capable of approximating the efficient solutions for a job shop 

scheduling problem (JSSP). A data mining-based scheduling framework is presented 

and implemented for a job shop problem with maximum lateness as the scheduling 

objective. Chen (2011) constructed a self-adaptive agent-based fuzzy-neural system to 

enhance the performance of scheduling jobs in a wafer fabrication factory. The system 

integrates dispatching, performance evaluation and reporting, and scheduling policy 

optimization. Unlike in the past studies, a single pre-determined scheduling algorithm 

is used for all agents, in this study every agent develops and modifies its scheduling 

algorithm to adapt it to the local conditions. To evaluate the effectiveness of the 

proposed methodology and to make a comparison with some existing approaches, 

production simulation is also applied in this study to generate some test data. According 

to experimental results, the self-adaptive agent-based fuzzy-neural system did improve 

the performance of scheduling jobs in the simulated wafer fabrication factory, especially 

concerning the average cycle time and cycle time standard deviation. 

2.4 Related Works to the Decentralized Material 
Flow Control 

2.4.1 Decentralized Decision-making  

Decentralized decision-making is a process where the decision-making authority is 

distributed throughout a larger group. It also connotes a higher authority given to lower 

level functionaries, executives, and workers. This can be in any organization of any size, 

from a governmental authority to a corporation. The decisions arising from a process 

of decentralized decision-making are the functional results of group intelligence and 

crowd wisdom. Decentralized decision-making is often favorable, not only because it 
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can speed up the computation considerably, but also because it can result in more 

robust and flexible solutions.  

The multi-agent system is usually used to address the decentralized decision-making 

system. Each agent denotes an individual decision maker and has its own goal. There 

are three types of the multi-agent-based decision-making: adaptive multi-agent 

decision-making, cooperative multi-agent decision-making, and competitive multi-agent 

decision-making.  

For the adaptive multi-agent decision-making, the agents adapt to the environment 

by means of learning knowledge from the environment. The decisions they made are 

dependent on the knowledge they learned. For the cooperative multi-agent decision-

making, the agents have the same goal. The decisions are made through the cooperation 

among them. The cooperative sequencing mentioned in Section 2.3.3 is an example. For 

the competitive multi-agent decision-making, the agents have conflict goals. The final 

decision is the results from the competition among them. The market mechanism is 

introduced in the competition processes, such as biding, negotiation, and so on. 

2.4.2 Multi-agent System for the Shop Floor Control 

Manufacturing has faced significant changes during the last years, namely the move 

from a local economy towards a global and competitive economy, with markets 

demanding for highly customized products of high quality at lower costs, and with short 

life cycles. In this environment, manufacturing enterprises, to remain competitive, must 

respond closely to customer demands by improving their flexibility and agility, while 

maintaining their productivity and quality. Dynamic response to emergence is becoming 

a key issue in manufacturing field because traditional manufacturing control systems 

are built upon rigid control architectures, which cannot respond efficiently and 

effectively to dynamic changes. In these circumstances, the current challenge is to 

develop manufacturing control systems that exhibit intelligence, robustness, and 

adaptation to the environment changes and disturbances. The introduction of multi-

agent systems and holonic manufacturing system paradigms address these requirements, 

bringing the advantages of modularity, decentralization, autonomy, scalability, and re-

usability (Leitã o 2009).  

Baker (1998) described various multi-agent architectures, including the heterarchical 

architecture. The paper reviews the claimed advantages for multi-agent heterarchies 

and describes the types of factories that could use this architecture. It surveys the three 

common types of factory control algorithms: dispatching algorithms, scheduling 

algorithms, and pull algorithms and describes how all common factory control 

algorithms used in industry can be implemented in a multi-agent heterarchy.  
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2.4.3 Decentralized Job Release 

The job release can be addressed in the cooperative multi-agent system. Whether to 

release a job at a decision point can be decided by the cooperation of related machine 

agents. The problem also can be described in the competitive multi-agent system. The 

decision that which jobs should be released results from the competition among the job 

agents. The problem, moreover, can be stated in the adaptive multi-agent system. The 

decision that which jobs should be released is made by a release agent who has learned 

enough knowledge.  

Rossi and Lödding (2012) proposed a Decentralized WIP Oriented Manufacturing 

Control (DEWIP). The approach is based on the cooperative multi-agent system. A 

centralized PPC system generates a list of urgent orders based on information about 

the market and/or customers’ orders. The orders in the list are released for production 

via the decentralized WIP control loops between the production’s workstations. DEWIP 

releases orders for each operation separately. The release decision is made based on the 

WIP on the next workstation. The corresponding request for a ‘go-ahead’ from the next 

workstations creates an information flow in the same direction as the material flow. 

The decision about whether the order can be processed and the receipt of this ‘go-ahead’ 

however result in information flow opposing the material flow.  

2.4.4 Decentralized Routing 

Similarly, the routing can also be described as the three types of multi-agent-based 

decision-making. The routing problem can be illustrated as the competition for the 

concerned job agent between the alternative machine agents. The problem also can be 

described as that the job agent selects routes by means of its knowledge.  

Csá ji and Monostori (2008) investigated stochastic resource allocation problems 

with scarce, reusable resources and non-preemptive, time-dependent, interconnected 

tasks. The proposed approach is a natural generalization of several standard resource 

management problems, such as scheduling and transportation problems. First, reactive 

solutions are considered and defined as control policies of suitably reformulated Markov 

decision processes (MDPs). They argue that this reformulation has several favorable 

properties, such as it has finite state and action spaces, and it is periodic. Hence all 

policies are proper, and the space of control policies can be safely restricted. Next, 

approximate dynamic programming (ADP) methods, such as fitted Q-learning, are 

suggested for computing an efficient control policy. In order to compactly maintain the 

cost-to-go function, two representations are studied: hash tables and support vector 

regression. Several additional improvements, such as the application of limited-look 

ahead rollout algorithms in the initial phases; action space decomposition; task 

clustering and distributed sampling are investigated, too. This approach uses an 

adaptive agent to make the decision. 
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2.4.5 Decentralized Sequencing 

The sequencing problem can be decentralized by means of cooperation between 

downstream machine agents. Whether a job is dispatched relies on the cooperation 

results. The problem can also be expressed as several job agents compete for a machine 

or a machine agent uses its sequencing knowledge to select the job. 

Liu and Sycara (1997) present a multi-agent problem-solving model and an effective 

coordination technique for job shop sequencing problem. The model involves a group 

of agents; each agent is associated with either a job or a resource. A solution to a 

sequencing problem is the result of coordinated conflict resolution in the iterative and 

asynchronous multi-agent decision-making process. Madureira (2005) modeled a 

Manufacturing System by means of a Multi-Agent Systems, where each agent may 

represent a processing entity. This work has an objective to deal with the complex 

problem of Dynamic Scheduling in Manufacturing Systems. He wanted to prove that a 

good global solution for a scheduling problem may emerge from a community of 

machine agents solving their schedules locally and cooperating with other machine 

agents that share some relations between the operations/jobs. The proposed approach 

is in line with reality and away from the approaches that deal with static and classic 

or basic Job-Shop scheduling problems. In fact, in the real world, where problems are 

essential of dynamic and stochastic nature, the traditional methods or algorithms are 

of very little use. This is the case with most algorithms for solving the so-called static 

scheduling problem for different settings of both single and multi-machine systems 

arrangements. This reality, motivated him to concentrate on tools, which could deal 

with such dynamic, disturbed scheduling problems, for multi-machine manufacturing 

settings, even though, due to the complexity of these problems, optimal solutions may 

not be possible to find. Miyashita (1998) proposed a new integrated architecture for 

distributed planning and scheduling that exploits constraints for problem 

decomposition and coordination. The goal is to develop an efficient method to solve 

densely constrained planning/scheduling problems in a distributed manner without 

sacrificing solution quality. A prototype system (CAMPS) was implemented, in which 

a set of intelligent agents try to coordinate their actions for ‘ satisfying’  

planning/scheduling results by handling several intra- and inter-agent constraints. The 

repair-based methodology for distributed planning/scheduling is described, together 

with the constraint-based mechanism of dynamic coalition formation among agents. 

Gabel and Riedmiller (2007a) adopt an alternative view on production scheduling 

problems by modeling the job-shop sequencing problems as multi-agent reinforcement 

learning problems. In fact, they interpret job-shop sequencing problems as sequential 

decision processes and attach to each resource an adaptive agent that makes its job 

dispatching decisions independently of the other agents and improves its dispatching 

behavior by trial and error employing a reinforcement learning algorithm. The 

utilization of concurrently and independently learning agents requires special care in 

the design of the reinforcement learning algorithm to be applied. Therefore, they 
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develop a novel multi-agent learning algorithm that combines data-efficient batch-mode 

reinforcement learning, neural network-based value function approximation, and the 

use of an optimistic inter-agent coordination scheme. The evaluation of the learning 

framework focuses on numerous established Operations Research benchmark problems 

and shows that the approach can compete very well with alternative solution methods.  

2.5 Discussions 

For the decision-making problem, theoretically, the more information that is 

considered, the better decision that is made and the wider scope the approach will have. 

However, from above review, most studies consider very limited information. For 

example, for the real-time job release, they considered either due dates or workloads. 

However, in reality, the due dates, workloads and even more information should be 

involved. The real-time routing and sequencing also face the similar problem. Because 

of the limitation on the considered information, the approaches work only in some 

specific situations. Different approaches must be developed to fit different situations. 

Like the rule selection approach in the sequencing problem, we should select rules 

according to the situation. Obviously, if we can consider all information which 

influences the decision-making, the approach will be applicable to all situations. Thus, 

how to organize and utilize all information to make decisions is an important issue. 

Unluckily, no literature study on it. Moreover, some information which influences the 

decision-making may be hard to quantize. We must find another way to consider them. 

Besides the information considered, the future prediction is also very important in 

the decision-making. The predicted future can help us to make good decisions. 

Especially, if we can predict what will happen in future after a decision is executed, the 

decision-making will become wiser. Nevertheless, lots of studies are even not aware of 

it. For example, the cooperative sequencing focused only on the current situation while 

most of the intelligent sequencing methods considered only the historical data. The 

release policies and dispatching rules may be able to see a very short future, like look 

ahead rule, but they do not know what the long-term influence of a single decision is. 

No literature introduces how to predict what will happen in future after a decision is 

executed and how to use the predicted information. 

Back to the problems that we are going to solve, i.e., the real-time job release, 

routing, and sequencing. We also did some reviews on the predictive job release, routing, 

and sequencing. Because they are out of the scope of the study, we do not note them 

in the thesis. Based on this unmentioned literature, we seldom find the works that 

combine these three types of decision-making together to carry out their study.  The 

reason probably is that the mixed predictive problem is too complicated. Even for the 

real-time problems, no one studies them together. These three decisions have a coherent 

relation between each other. Better performance may be obtained using coordination 

of the three decisions. From the review of the real-time and decentralized decision-

making, we find it will be easier to combine them in a decentralized real-time manner.  
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Furthermore, when we develop any system for the manufacturing shops, we must 

make sure the system is also suitable for the future manufacturing industry. Nowadays, 

smart factories are the trend of the manufacturing industry. The main principles of the 

smart factories are decentralization and intelligence, which means each resource and 

each piece of materials can learn and make decisions. Thus, the decentralized intelligent 

material flow control is required. However, most literature does not consider it. 

All in all, based on above discussion, the study will consider more information in the 

decision-making and try to organize the information and find a proper way to use the 

information. In the study, the simulation will be used to predict the future. Job release, 

routing, and sequencing problems will be solved together. At last, a decentralized 

intelligent real-time material flow control system will be developed. 
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3 Agent-based Simulation with 
Process-interaction Worldview 

Simulation is the foundation of our approaches. Because we need more flexible ways to 

initialize the simulation model and control the simulation progress, we decide to develop 

a simulator from scratch. In this chapter, in the beginning, we explain how we use the 

simulation in our approaches and why we select the agent-based simulation (ABS). 

After analyzing the agent-based simulation, we realize that most research focuses on 

the agent-based modeling, but only a little research pays attention to the simulation. 

The reason is that the agent-based model (ABM) can run directly in a real-time manner 

by communicating with each other and the running of the ABM is already one kind of 

simulation. Obviously, the ABS is less efficient when being used into a non-real-time 

system even though it can be speeded up by giving a timescale. So, to speed up the 

ABS, we introduce a process-interaction worldview (PIW) originated in the discrete 

event simulation to the ABS. The remaining parts of this chapter will give a detailed 

description of the method for combining the agent-based simulation and the PIW. A 

framework of the agent-based simulation upon this method is also depicted. Finally, 

the method is validated by applying in a simple queue system and compared with the 

normal ABS with a timescale. 

3.1 Role and Necessity of Simulation 

Our approaches we will state later are heavily dependent on the simulation. In the 

simulation try-then-decide method (STTD), the simulation is used both to evaluate 

alternatives and to emulate the environment. In the intelligent method based on the 

STTD, the simulation generates data for us to build data-driven models. In the 

intelligent method based on Markov decision process, the simulation is used to explore 

the state space and return rewards. All these usages require very flexible ways to control 

the simulation process, like programmatically generating and initializing simulation 

models, and communication among different simulation runs. Also, we want to observe 

every detail, e.g., concurrent events, while the simulation is running. The existing 

simulators fail to meet these requirements. Thus, it is necessary to develop a simulator 

by ourselves. Discrete event simulation (Fishman 1978) and agent-based simulation 

(Macal and North 2010) are two options for us. The reason why we select the agent-

based simulation has two points. The first is that it is a natural method which describes 
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a system composed of real-world entities and makes the model seem closer to reality. 

The second is its flexibility. The agent-based simulation  is easy to extend the system 

as a whole by adding more agents to an agent-based model, and also provides a 

framework for tuning the complexity of an individual agent or group of agents by 

elaborating on their behaviors, degree of rationality, interaction rules, or abilities to 

learn and evolve(Bonabeau 2002). This can be done, for example, by adding different 

behavioral algorithms to an agent’s code. In addition, the agent-based simulation will 

facilitate our study. In chapter 6 and 7, we will create a decision maker for each machine 

and each product, and, at last, these decision makers will be integrated into the 

simulation model. In this case, it is very easy to integrate the decision-makers to the 

ABM just by adding decision-making algorithms to the agents’ behaviors. 

3.2 Issues on the Agent-based Simulation 

3.2.1 Agents and Agent-based Simulation 

Before introducing agent-based simulation (ABS), we need to discuss the definition of 

the agent first. There still exists controversy over the definition. One concept of the 

agent appears in the distributed intelligence in Artificial Intelligence(Sugumaran 2008), 

in which besides distributed, autonomous, and social features, agents have to be 

intelligent, such as being able to perceive, learn, and adapt to the environment. Most 

of the researchers following this concept direct towards the multi-agent system(Lian, 

Shatz, and He 2009), and some researchers focus on the hardware agent(Tapia et al.) 

which has been widely used in the robotics(García et al. 2012). Another concept , which 

is derived from the emergence theory(Namatame 2007) in which a key notion is that 

simple rules generate complex behaviors, in other words, system properties emerge from 

its constituent agent interactions(Bonabeau 2002), is very similar to the cellular 

automata(Wolfram 1994) in which agents are asked to keep simple and short, which is 

contrary to the first concept because the intelligence certainly makes agents more 

complex. However, they also have a lot in common, such as autonomy, society, 

distribution and so on. In most research, the contrary parts of the agents seem to be 

discarded. Both the intelligence and the simplicity are not given weight, but much 

attention is paid to the common parts, autonomy, society, and distribution (Váncza 

and Márkus 2000, Oliva, Panzieri, and Setola 2010, McLane et al. 2011). These research 

lead to the formation of a new bottom-top modeling method(Macal and North 2010), 

i.e., agent-based modeling, in which a system is modeled as a collection of autonomous 

agents. Based on a set of rules each agent individually assesses its situation, makes 

decisions and may execute various appropriate behaviors for the system it 

represents(Bonabeau 2002). The agent-based modeling is kind of similar to the object-

oriented modeling(Davidsson 2001), but more flexible and more natural to describe the 

system. There are no strict requirements of intelligence or simplicity for the agents in 
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the agent-based model. Now we define the ABS. The ABS is the process of designing 

an ABM of a real system and conducting experiments with this model to understand 

the behavior of the system and evaluating various strategies for the operation of the 

system(Shannon 1975). At present, the researchers on the ABS mainly focus on two 

directions, agent-based modeling and its application. The first one is trying to build a 

standard, and universal framework for the modeling (Botta et al. 2011, Fortino and 

Russo 2012, Grimm, Berger, and Bastiansen 2006), Autonomy, society, and distribution 

features of agent involve in. Another one focuses on creating domain agents through 

studying their attributes and behaviors (Chen 2012, Rebaudo and Dangles , Cao and 

Chen 2012). Both have provided lots of approaches and mechanisms for agent-based 

modeling and application in practice. 

3.2.2 Simulation in the ABS 

Based on the literature review, the current studies on the ABS focus on the ABM, and 

few researchers pay attention to the simulation in the ABS. Probably because the ABM 

can run directly in a real-time way(Macal and North 2010), in which the running of 

the ABM is a simulation run, and there is no necessity to study the simulation 

separately. However, this type of simulation misses some important contents in the 

computer simulation such as the worldview in the simulation, also referred to as a 

simulation strategy. Therefore, many researchers studying on the computer simulation, 

especially the discrete event simulation, cannot help asking where the simulation is in 

the ABS. The so-called simulation in the ABS is a real-time simulation in which the 

simulation time equals the real time. However, the ABS is less efficient when being 

used in a non-real-time system. In some research, the ABS is speeded up by giving a 

timescale under the condition of synchrony. There are two ways to achieve the 

synchronization: conservative algorithm and optimistic algorithm. The Conservative 

algorithm keeps the model running in sync exactly, but the optimistic algorithm allows 

asynchronous phenomenon to occur and then makes it synchronous, such as SimJade 

does. The SimJade(Pawlaszczyk and Timm 2007) is a synchronization service for the 

JADE using an optimistic synchronization technique to manage the time in a 

distributed way. Because the optimistic synchronization techniques allow the 

asynchronous phenomenon to appear, the agents influenced by the asynchronous 

phenomenon have to roll back. So, lots of time is consumed by the rollback. In addition, 

the real-time ABS with a timescale has two features: (1) there is no central time 

manager, and the agents move on according to their local time (computer clock); (2) 

The time spent on executing code is counted in the simulation time. In the real-time 

ABS without a timescale, the time for code execution is very short and can be ignored. 

On the other hand, in the real world, it also takes time while people make a decision. 

So, the time for executing the codes exists reasonably in the real-time ABS. However, 

in the real-time ABS with the time scale, the execution time is enlarged, and errors 

occur. For example, an agent enters the system and informs other agents it's coming. 
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Then the agent stays in the system for 10000 s and leaves. Theoretically, the agent 

stayed in the system for 10000 s. However, in the real-time ABS, the time that the 

agent stayed in the system is 10000 s plus the time spent on informing other agents 

(code execution time). If we assume the execution time is 0.0001 s and the time scale 

is 1, the total time is 10000.0001 s. It is very close to the theoretical value. However, if 

the time scale is 10-8, the total time is (10000*10-8+0.0001)/ 10-8 =20000 s. This error 

is very big and cannot be ignored anymore. And the worse thing is that the precision 

of simulation results will decrease as the timescale increases. We face a tradeoff between 

the efficiency and the precision. So how to speed up the ABS without losing any 

precision is a key issue at this stage. 

3.2.3 Efficiency of the ABS 

If back to the computer simulation again, we can find that the simulation has different 

efficiencies when different worldviews are used. There are two main types of the 

worldview, time-driven worldview, and event-driven worldview. In the time-driven 

worldview, the world progresses as the time is passing with a fixed increment (time 

step). Correspondingly, the world progresses as some events occur in the event-driven 

worldview which includes three sub worldviews: event scheduling, activity scanning, 

and process interaction. Introducing a suitable worldview into the ABS will be a good 

way to speed up the simulation. But some researchers (Pawlaszczyk and Timm 2007, 

Davidsson 2001) argue that the simulation worldview violates the autonomy principle 

of the agents due to the centralization of time handling and sharing. So, most 

researchers did not study the ABS and the worldview together. Siebers even declares 

that the discrete event simulation is dead, long live the ABM (Siebers et al. 2010). 

However, the time handling is only in charge of simulation time which is independent 

and never affected by the agent. The local clocks in each agent merged into one sharing 

simulation clock does not intervene in the behavior of agents at all, and the agents still 

take action autonomously. Therefore, it is possible to introduce the worldview to the 

ABM. 

A little research has already focused on this field and obtained great progress, such 

as the entity-relationship and agent-oriented-relationship (ER\AOR) (Wagner 2004). 

Agents, objects, events, and messages are entities in the ER\AOR; the agents and the 

objects are distinguished; the messages and the events are managed together to control 

the simulation time. In the ER\AOR, it is natural to partition the simulation system 

into the environment simulator and some agent simulators. The environment simulator 

is responsible for advancing simulation time and managing the state of all external (or 

physical) objects and the external/physical state of each agent; a number of agent 

simulators are in charge of managing the internal (or mental) state of agents. By means 

of ER modeling and combination with the discrete event simulation, the ER\AOR has 

attracted extensive attention. However, we realize that the ER\AOR simulation is not 

a pure ABS because of the objects in the model. In the pure ABS, the objects which 
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cannot be modeled as agents must belong to certain agents (attributes). In addition, 

because the conditional events or messages are involved, and the lifecycle of the agent 

is divided into many activities, the AOR simulation is the ABS with the activity- 

scanning worldview. As we all know, the activities-scanning worldview is not the most 

efficient one. It is better to choose a more efficient worldview for the ABS. Now we 

come to the next question: which worldview is more suitable and efficient for the ABS. 

3.2.4 Worldview for the ABS 

The event-scheduling worldview focuses on the events that instantaneously transform 

a system’s state and schedule future events (Miller et al. 2004). The advantage of this 

worldview is that periods of inactivity can be skipped over by jumping the clock from 

one event time to the next event time. The event-based approach is the most 

computationally efficient one of the three classical worldviews. The activity-scanning 

worldview focuses on activities and their preconditions (triggers)(Miller et al. 2004).  

An activity’s preconditions must be satisfied for an activity’s operations. This worldview 

is less efficient than the event-scheduling worldview because it requires a frequent 

evaluation of conditions. The process-interaction worldview can be considered a 

combination (hybrid) of the activity-scanning worldview and the event-scheduling 

worldview (Zeigler, Praehofer, and Kim 2000).  It focuses on processes and the entities 

that flow through the processes and interact with resources (Banks and Carson 1985). 

The process-interaction worldview is more efficient than the activity-scanning 

worldview, but it is less efficient than the event scheduling worldview. 

From the analysis above, we can see that the process-interaction worldview is the 

second most efficient worldview. But besides efficiency, the choice of worldview should 

be made by considering other characteristics such as maintainability, modifiability, 

reusability, and ease of development. The process-interaction worldview is considered 

to be a natural way to describe models (Franta and Maly 1977) and is closer to most 

people’s mental model.  In addition, the notion of “process” corresponds closely to the 

lifecycle of the agent and the implementation of the process-interaction worldview is 

very similar to the agent-based model. Moreover, if we use the event-scheduling 

worldview or the activity-scanning worldview, the flexibility, maintainability, and 

modifiability of the ABM will shrink. Therefore, we introduce the process-interaction 

worldview into the ABS to speed up the simulation. 

3.3 Agent-based Simulation with the PIW 

In this section, we will introduce an approach (ABS&PIW) which brings the process- 

interaction worldview into the agent-based simulation. First, we discuss agents in detail 

including its attributes, behaviors, and messages. And then some concepts in the 

ABS&PIW are defined. To make the approach more formal and rigorous, we formulate 

the approach. At last, we discuss the parallelism in the ABS&PIW. 
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3.3.1 Agents in the Agent-based Simulation 

In our study, an agent has some attributes, behaviors, messages, and activation points 

(see Figure 3.1). The behaviors endow the agents with abilities to make independent 

decisions, and the messages are medium for their communications. Activation points 

are designed for the process-interaction worldview. 

Agent

Attribute

Static Dynamic

BehaviorMessage Activation

Transient Persistentin out

Logical State Active Positive

special attr. treated as

Local Time Physical State

 
Figure 3.1: Attributes, behaviors, messages, and activations in an agent 

3.3.1.1 Attributes 

Attributes are characteristics of the agent. An agent’s attributes can be static, i.e., not 

changeable during the simulation, or dynamic, i.e., changeable by behaviors as the 

simulation progresses. For example, a static attribute is an agent’s name; a dynamic 

attribute is an agent’s memory of past interactions. The agent adapts to the 

environment by changing its attributes. There can be a large number of attributes in 

an agent, but only attributes related to the goal of the system need to be considered. 

The agent has three special attributes: local time, physical state, and logical state. The 

local time is from the inner clock in the agent, and it may be not synchronous with the 

simulation time. The two states will be defined in Section 3.3.2.1. 

3.3.1.2 Behaviors 

There are two types of behaviors: persistent behaviors and transient behaviors. The 

persistent behaviors are equal to activities, and they will change the state of the agent. 

One persistent behavior is related to one logical state, so the persistent behaviors are 

treated as logical states. Transient behaviors can be divided into passive behaviors and 

active behaviors. The passive behaviors are responsible for receiving messages and 

updating dynamic attributes, and the active behaviors are in charge of generating and 

sending messages. 
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3.3.1.3 Messages and Activation 

Agents can receive/send messages from/to the other agents. The message has a given 

format and typically contains sender, receivers, sending time, keywords, and content.  

The sending time is the local time of the sender agent when the message is sent. The 

local time is updated with the sending time of the received messages. The concept of 

activation will be introduced in Section 3.3.2.1. 

3.3.2 Concepts in the ABS&PIW 

3.3.2.1 Concepts in the ABS&PIW 

Firstly, six concepts are given. Delays and activation points come from the process-

interaction method but offer some improvements. 

Physical state of the agent: active and blocked, is related to the implementation.  If an 

agent is blocked, it gives up control of the CPU. Otherwise, it occupies the CPU. 

Logical state of the agent closely connected to the application domain and is the same as 

the state of the entity. The logical state is a very important dynamic attribute. 

State of the agent-based model: ready or unready. If the physical states of all agents are 

blocked, the state is ready. Otherwise, it is unready. 

Straggler message is a message that its sending time is earlier than the local time of the 

receiver agent. It means a later message is received before the earlier message. The straggler 

message will make the simulation wrong and must be avoided. There are two ways to avoid 

it: a conservative algorithm which does not allow the straggler messages and an optimistic 

algorithm which allows them and corrects them later. 

Delay is a period in which the logical state of the agent stays the same. When a delay 

occurs, the agent will create the next activation point and become blocked. 

Activation point is a time position where a delay ends. The agent is activated at this point 

and performs actions until a new delay occurs. An activation point has such a given format 

including activation time, activation agent, and keywords. There are two types of activation 

points, conditional and non-conditional. Non-conditional activation points are explicit. In 

contrast, the conditional activation points are uncertain in which delays of the agents do not 

end until the agents meet the given condition. 

3.3.2.2 Relationship among some Concepts 

The relationship among these concepts is shown in Figure 3.3. The agent is similar to 

the active entity; the life cycle of the agent is the process of the entity and is made up 

of a series of activation-delay-activation. The activation point is located at the time an 

event occurs, and the physical state turns active at this time. The agent responds to 

the event through a transient behavior. During a delay, an activity is being carried out, 
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and the physical state of the agent turns blocked. The activity is a persistent behavior 

corresponding to a logical state. 

 

Life cycle (process)

Entity

Agent

Activation point

Event

Transient behavior  

Activity

Delay

Logical state(persistent behavior) Time

Physical state is active Physical state is blocked

 
Figure 3.2: Relationship between activation point, event, and so on 

3.3.3 Formulation of the ABS&PIW 

3.3.3.1 Symbol Definition 

t, plant   current and planned simulation time 

sat sampling interval time 

mos   state of the ABM(0-ready,1-unready) 

u   flag of model update (0-no update,1-update) 

FALR ,
0

FALR   activations in the future activation 

list and initial value 

CoALR ,
0

CoALR   activations in CoAL and initial 

value 

CuALR   current activations in CuAL 

a  an agent, a A ,A is a set of all agents 

ar    current activation point of the agent a 

ar
c type of activation point(1-conditional,0-

uncondt.) 

ar
g flag of the condition(0-unmeet,1-meet) 

aR   a set of activation types from the agent a 

am    a message received by the agent a 

out

aM  a set of message types sent by the agent a 

in

aM   a set of message types received by a
 

am   timestamp of the message m 

r activation time (timestamp of the activation 

point) 

 

a   local time of agent a updated by the time 

stamp 
am  or r  

as    physical state of the agent a 

af   agent attribute, a af F  

aF ,
0

aF  a set of all attributes and initial 

value 

b    agent behavior 
po

aB ,
ac

aB  a set of passive and active 

behaviors 
1 1

,( , ) { | , }po po

a a a r b a aH RS r b h r R b B   

relationship between activations and 

passive behaviors . If b is related to r,
1

, 1r bh  , otherwise 1

, 0r bh  . The following 

relationships have the same rule. 
2 2

,( , ) { | , }in po in po

a a a m b a aH RS m b h m M b B     

3 3

,( , ) { | , }ac ac

a a a r b a aH RS r b h r R b B     

4 4

,( , ) { | , }in ac in ac

a a a m b a aH RS m b h m M b B     

5 5

,( , ) { | , }po po

a a a b f a aH RS b f h b B f F     

6 5

, ',( , ', ) { |, ,

' , }

ac out ac

a a a b a m a

out

a

H RS b a m h b B

a A m M

  

 
 

7 7

,( , ) { |, , }ac ac

a a a b r a aH RS b r h b B r R     
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3.3.3.2 Four-tuple of the ABS&PIW 

We provide a mathematical framework for the ABS with the process-interaction 

worldview. The simulation is specified as a four-tuple ( , , , )SIM I TM ABM O . I is a 

set of inputs 0 0 0( , ,{ | })FAL CoAL aI R R F a A  including initial activation points and initial 

attributes of all agents. O is a set of outputs ({( , ) | ,0 ,t

a aimO t F a A t t     

mod( , ) 0})sat t  , which is made up by attributes of all agents at each sample point. 

TM is a time manager ( , ,planTM t t , , )FAL CoAL CuALR R R  who is in charge of the 

simulation time and manages all activation points created by agents.
 
The activation 

points are grouped into three lists: conditional activation list (CoAL), future activation 

list (FAL), and current activation list (CuAL). FAL and CoAL are direct lists. The 

activation points coming from the agents are put into them. CuAL is an indirect list 

and the earliest activation points are moved in from FAL. The planned time plant  is 

the maximal simulation time. The simulation will end when the simulation time t 

reaches the planned time. ABM is an agent-based model described as ( , ,moABM s u  

{( , , , , , , , , ) |po ac in out

a a a a a a a a as F B B M M R RS a  })A . The model state mos  and the 

updated flag u are used by the TM to advance the simulation. The simulation clock 

advances whenever the model state is ready and the model does not update anymore. 

In this way, we can avoid the straggler messages and ensure that all conditional 

activation points which meet the corresponding conditions are activated as soon as 

possible. This is a conservative synchronization algorithm. Local time a  and physical 

state as  are two special attributes and play a great role in the simulation. We extract 

them from the attributes and consider separately. The physical state is used to 

determine the model state. The model state will be ready if the physical states of all 

agents are blocked. The ABM is different from the general one(Macal and North 2010) 

which contains only three elements: agents, relationship, and messages. In a complex 

system, the relationship changes dynamically and there are massive situations. It is 

difficult to express the relationship among all agents by a two-axis matrix. But for the 

individual agent, the situations of relationship with other agents are countable.  So, in 

our ABM, the relationship and messages are specified for the individual agents and the 

target agents with corresponding messages can be got by some simple IF-THEN rules. 

aRS  is a set of the relationship sets, 1 2 3 4 5( , , , , ,a a a a a aRS H H H H H 6 7, )a aH H , which 

contains seven relationships such as the relationship between received messages (in) 

and passive behaviors, as well as the relationship between active behaviors, target 

agents and corresponding messages (out).  

3.3.3.3 Procedure of the ABS&PIW 

The following is a procedure for the simulation. Simulation initialization (1), advancing 

time (2), and activating agents (3) are executed by the TM. The simulation is initialized 
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with the inputs. Simulation clock t advances according to the time of the earliest 

activation points. All concurrent activation points, including both current activation 

points and conditional activation points, are activated at a time.  

  

(1) Initialize 

0t  ,
0

FAL FALR R ,
0

CoAL CoALR R  

0

a aF F , 0as  , where a A  

1models   

(2) Advance time 

 if FALR    or plant t   then simulation 

ends 

min min({ | })r FALr R    

min{ | , }CuAL r FALR r r R     

FAL FAL CuALR R R   

mint   

(3) Activate 
' { , }CoAL CuALR R R , CuALR 

 

    if 
'R 

  
then   go to (2) 

' '

'{ ' | }aA a r R   

' 1AS  ,where 
' '

' '{ | }A aS s a A   

TM activates  
'A  at 

'R  

(4) When an agent
' 'a A  is activated at 

'

'ar R  

'' aa r   

Get passive behavior 1b by
1

'aH , 

which satisfies  
' 1 ' 1

1 1 1

, , '1,
a ar b r b ah h H 

 
if 

'
1

ar
c   then 

      ' 'a a

new

r rg g  ,where 
'a

new

rg  is new one 

from b1 

      If 
'

0
ar

g   then ' 0as 
 
and

 
go to (6) 

end if 

if 
'

'aF   then 
' '

' '

n

a aF F , 

where 
'

'

n

aF  are new values calculated by 

1b  and 

1 1

' 5 5 5

' , ' , '{ | 1, , }a b f a b f aF f h f F h H     

u=1 

Get active behavior 2b by
3

'aH  

which satisfies  
' 2 ' 2

3 3 3

, , '1,
a ar b r b ah h H   

if ' '
2 2

' 7 7 7

' ' ', ,
: 1,

a a
a a ab r b r

r R h h H    then 

      if 
' '

0
ar

c   then
'

'{ }FAL FAL aR R r   

      if n 
' '

1
ar

c   then
'

'{ }CoAL CoAL aR R r   

end if 

2 2

" ' 6 6 6

' , ", , ", '( , ) {( ", ) | 1, }out

a b a m b a m aA M a m h h H  

if 
"A  then 

     '' 1AS  ,where 
'' ''

'' ''{ | }A aS s a A   

       send messages 
'

'

out

aM  to 
"A  

end if 

if 
'

1
ar

c   then '{ }CoAL CoAL aR R r 
 

' 0as 
 

go to (6) 

(5) When an agent ""a A  eeceives the 

message "am  feom the agent 'a  

It is similar to step (4) and just needs the 

following replacements and to ignore condition 

activation: 
' "a a  , ' "a ar m  ,

1 2

' ''a aH H  ,

3 4

' ''a aH H  

(6) When an agent is blocked 

     if : 0aa A s    then 0mos   

 if 0mos 
 
then 

       if 1u    then  0u   and   go to (3) 

      if 0u   then   go to (2) 

end if 
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In steps (4, 5), when an agent becomes active or receives messages, passive behaviors 

handle the received messages or activations, and update its attributes. Active behaviors 

create new activation points and communicate with others. Decisions on the timing of 

advancing the time and quitting repeat of the conditional activations (6) are made by 

ABM according to the model state and the updated flag whenever the physical state of 

one agent becomes blocked. 

3.3.3.4 Parallelism in the ABS&PIW 

In the agent-based simulation, agents run in parallel. After the concurrent activation 

points are activated simultaneously, associated agents will respond in parallel. The 

parallelism in ABS is shown in Figure 3.3. To avoid the straggler messages mentioned 

above, we adopt the conservative synchronization algorithms to ensure the correct local 

time (see step 6). Even though it cannot fully take advantage of parallelism, it can 

prevent the straggler messages from appearing at all and save the rollback time spent 

on the optimistic algorithm. 

Non-condition 

activation points

Advance simulation clock

Condition 

activation points

Activate in parallel

Model moves(u=0)?
yes

no

Meet end condition?
no

Agent-based model

End

Initialization

Start

Model is ready(smo=0)

Earliest conc urrent activation points

yes

 
Figure 3.3: Parallelism in the agent-based model 

3.4 Development of a Framework for the ABS&PIW 

To reuse the code and make the development of the ABS easy, in this section we will 

give a general idea that how to develop a framework for the proposed approach. We 

will design the individual agent and the time manager first and then implement them. 
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Finally, a static structure of the framework is built, and a code sample shows how to 

use it. The framework is developed in Java programming language. 

3.4.1 Design of Individual Agent 

The structure of the agent is shown in Figure 3.4. The agent is composed of attributes, 

an initialization method, a behavior controller, and a message handler. 

Behavior controller

receive message

Active behaviors

Passive behaviors

process message

Agent Attributes

RS(M,B)

RS(B,F)

RS(B,A,M)send message

Agent initialization

Message queue

Message handler Behavior controller

 
Figure 3.4: Structure of individual agent 

3.4.1.1 Agent Initialization 

Agent initialization, which is applied to set the values of attributes when an agent is 

created, is the only possibility to change the state of an agent directly by the external 

environment and enables the simulation to start in any state of the agent. There are 

also many other common methods (e.g., reset, start, and stop) for controlling agents, 

but they are not visible to the environment and called only by agents themselves. 

3.4.1.2 Behavior Controller 

The behavior controller decides which behavior to be executed when receiving a 

message. The decision is made depending on the relationships RS mentioned in Section 

3.3.2. Here we just summarize them in three types of relationships: messages (in) with 

behaviors RS (M, B), behaviors with attributes RS (B, F), and behaviors with other 

agents and messages (out) RS (B, A, M). The behavior controller can also control 

behaviors, such as adding behavior, removing behavior, and changing behavior’s state 

according to the environment. 

3.4.1.3 Message Handler 

Through the message handler, the agent communicates with other agents. A message 

handler includes one message queue and two methods: “send” and “receive.” Messages 
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from other agents will be stored in the message queue and received by “receive” method. 

Similarly, the agent can send the messages to other agents by using the method “send.” 

These two methods are behaviors of the agent.  

3.4.2 Design of Time Manager 

In order to keep consistent with the agent-based model, the time manager is also 

developed as an agent to be responsible for advancing time, activating agents, and 

managing activation points. The time manager extends the class of agents, and Figure 

3.5 shows its structure. 

Time Manager

 Initialization

add new activation

activate Agent

advance Time

FAL

CuAL

CoAL

Message Handler

start/stop

Sim State

pause/continue

reset

U
s
e

r 
In

te
rf

a
c
e

 
Figure 3.5: Structure of the time manager 

3.4.2.1 Behavior of the Time Manager 

There are three main behavior types: advance simulation clock, receive activation point 

and activate agent. A user interface is provided to control the simulation. Before the 

simulation runs, at least one activation point needs to be given in advance. Activation 

points are conveyed in the form of messages between the time manager and other 

agents. After the activation, the time manager is blocked until a new activation point 

is received or the ABM notifies it to advance the simulation clock when the model state 

is ready. 

3.4.2.2 Activation Point Lists in the Time Manager 

Three lists of activation points are created in the time manager: conditional activation 

list (CoAL), future activation list (FAL) and current activation list (CuAL). The time 

manager puts new received activation points into the appropriate list. The earliest 

activation points are moved from the future list to the current list every time the 

simulation clock advances. After activation, the current list is cleared. Conditional 

activation points are tried again and again and removed from the list when the 

conditions are met. 
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3.4.3 Design of the Agent-based Model 

3.4.3.1 Single Group Agent-based Model 

The agent-based model includes the agent environment, the agent manager, and a set 

of agents (shown in Figure 3.6). The agent environment is a medium for communication 

among the agents. The time manager and the agents send or receive activation points 

in the environment. The agent manager is in charge of all agents and provides the 

model state to the time manager. A new agent needs to register with the manager. The 

agents report their physical states and updated flags when they become blocked. The 

time manager also needs to register.  In the model, each agent has a unique name which 

is used to specify the target agent in the communication. 

3.4.3.2 Multi-group Agent-based Model 

The agent-based model may also be divided into several groups. Each group has the 

same structure as the single group model. The time manager must be in one of the 

groups or a new group. For the multi-group ABM, the environment of a group only 

influences the agents in the group and the agent manager. Besides the environment of 

the group, the agent manager can also communicate with managers in other groups, 

shown in Figure 3.6. The agent managers share one agent manager environment (see 

Figure 3.7), which enables agents to communicate among the groups. 

Agent 

Manager

Agent Environment

Time Manager

Agents
register

External 

messages

Model

state

Agent 

Manager I

Agent Environment I

Agents IPhysical state

Updated flag

Agent 

Manager II

Agent Environment II

Agents II

Internal, 

external 

messages 

activations

Internal, external 

activations

Messages 

Activations

Ext. messages,

activation

 
Figure 3.6: Structure of the Agent-based Model 

Agents sending a message to an external agent must send a message to the agent 

manager first. The agent manager will hand the message over to another agent manager 

containing the target agent. And then the target agent will receive the message from 

its manager. The time manager communicates with external agents in the same way. 

The activation points of external agents must go through the local agent manager and 
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the target agent manager who is in the group containing the time manager, and at last, 

are received by the time manager. The time manager activates an external agent in the 

same way. 

Environment of the agent manager(AM) II

Group I

Group II Group III

Group IV
AM I

AM II AM III

AM IV

 
Figure 3.7: The environment of agent managers 

3.4.4 Implementation of the agent-based model 

3.4.4.1 Implementation of the Agent-based Model 

The agents in the model run in parallel. Therefore, an agent-based model is developed 

using multi-threading and synchronization technology. An agent acts as a thread in the 

computer to facilitate itself to run in parallel with other agents. To decrease the 

occupation time of the CPU, we set a synchronous locker for each agent. While a delay 

occurs in the agent, the thread will be blocked (physical state) by the locker calling 

method “wait” and gives up control of the CPU. After the delay, the thread becomes 

active again and starts running when the locker calls method “notify.” The agent 

environment is implemented as the data shared by the agent threads. Most of the 

sharing data is the message queues of agents, and the rest are synchronous lockers. The 

agent manager is also developed as a special agent. To make the relation between the 

time manager and the agent manager clear, we connect the time manager to the agent 

manager directly in Figure 3.8. The time manager communicates with the agent 

manager through the environment too. 

3.4.4.2 Implementation of the Communications 

Communications among agents are achieved by sharing data between threads. The 

safety of the data sharing is guaranteed by synchronization technology. The 

implementation of the communication is shown in Figure 3.8. There are two types of 

communication, internal and external. The internal way is that the agent directly puts 

the message into the associated queue according to the receiver name and notifies the 

receiver agent. If the receiver agent is blocked, it will be activated to receive the 

message. In an external way, the agent needs to put the message into the message 

queue of its manager first, and then the manager reads it and pushes the message into 
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the target agent manager’s queue. The target agent manager dispatches the message to 

the receiver’s queue and notifies it. The receiver agent will read the message from its 

queue. 
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Figure 3.8: Implementation of the agent communication 

3.4.5 Static Structure and Sample Code of the Framework 

Figure 3.9 shows a static structure of the framework package. The time manager, agent 

environment, and basic communications are already considered in the framework.  It is 

not necessary for users to consider them again while developing the simulator.  What 

the user needs to do are agent abstractions and definitions, such as the attributes F, 

behaviors B, messages M, and relationships RS. A code sample which gives a very brief 

idea how to use the framework for the single group ABS can be found in appendix A.1. 
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Figure 3.9: Static structure of the framework 
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3.5 Experiments 

Queuing system / /1rM M  with a batch service is one of the classical discrete event 

systems. We use it to validate the proposed approach. An ABM of the system is built 

for the queue system, and the simulation result is compared with the theoretical value. 

We also compare the efficiency of the approach with the real-time ABS by using the 

built model. 

3.5.1 Queuing System / /1rM M  

The queuing system / /1rM M  , shown in Figure 3.10, consists of an infinite 

population of customers, an infinite queue with FCFS (First Come First Serve) 

dispatching rule, and one batch server. The batch server provides service in batches (of 

size r) for arrived customers based on the rule. Customers who arrive and find the 

server busy join in the queue. Customers in a batch start service at the same time and 

depart together after served. The interarrival time and service time follow exponential 

distributions. 

 

Batch server

Queue
Service rulePopulation of 

customers Arrival Departure

 
Figure 3.10: A Queuing system 

3.5.2 Agent-based Model of the / /1rM M  Queuing System 

Three types of agent are abstracted from the queuing system: customer source, 

customer, and server. Because a server is considered as an active entity, activation 

points of the whole system are simplified to two types: customer arrival and service 

completion.  We build a single group ABM for the queuing system. The customer source 

generates customers according to the iterarrival time. The behaviors of the customers 

are requesting service, joining the queue to wait, accepting service, and leaving the 

system. The behaviors of the server include handling customer messages and providing 

service. The queue is part of the server agent. After a customer is served, the queue 

will use the given rule to choose new customers to begin the service. An interaction 

fragment among the three types of agents and the time manager is shown in Figure 

3.11. 
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Figure 3.11: Interaction fragment among agents of a / /1rM M queuing system 

3.5.3 Correctness Verification  

Assuming that customers arrive one by one; arrival rate λ is 9.76 per hour; the service 

batch r is 3; service rate  is 5 per hour. Measures of performance in the steady state 

can be calculated with the following formulas(Gelenbe and Pujolle 1987). 

The probability that n customers are 

in the system, 
1

0

1

0 0

(1 ) / 0

( 1)

n

n r n

s r n r
p

s s r n

 

 

   
 

 
 where / ( )r    , s0 satisfies

 

0 1s   and 
1

0 0(1 ) 1 0r rr s r s     

 The average number of customers in 

the system, 

0( 1) / 2 1/ ( 1)N r s     

The average number of customers in 

the queue, 
'

0( 1) / 2 1/ ( 1)N r s r    

 The average waiting time of 

customers, 

0( 1) / (2 ) 1/ ( ( 1))W r r s    
 

The average time of customers in the 

system, 

0( 1) / (2 ) 1/ ( ( 1)) 1/T r r s        

We assume that the system will be in the steady state after 1000 days, so the 

simulator runs 1000 days.  Table 3.1 is the comparison between theoretical values and 
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statistical values from simulation results. The comparison result shows that the 

simulation results match the theoretical results very well.  

Table 3.1: Comparison between theoretical result and simulation result 

Results p0 p(n>0) 
'

N  N  
W

(min) 
T (min) 

Theoretical 0.067 0.933 3.05 5.00 0.37 0.57 

ABS&PIW 0.067 0.933 3.01 4.96 0.31 0.51 

3.5.4 Comparison with the Real-time ABS (Time Scale) 

In order to prove the less efficiency and precision, a brief simulator for the real-time 

ABS with timescale is developed by using JADE (Java Agent Development 

Environment). In JADE, the messages are not in sync sent and received (asynchronous 

communication). To achieve the simulation with the timescale, we improved it to the 

synchronous communication. After improvements, an agent (1) who just sends a 

message (a) will move on only after the message (a) is received and handled by its 

receiver agent (2). If the receiver (2) needs to send another message (b) in the message 

(a)’s handling process, the agent (1) has to wait for the receiver (2) until its message 

(b) is received and handled by another receiver. In addition, when a delay occurs in the 

agent, the agent will be blocked until the delay ends. The timescale is used in such 

delays to decrease the delay time so as to speed up the simulation. 

We still use the queuing system but with the constant arrival rate (3 per hour) and 

service rate (3 per hour) to avoid the stochastic influences. The theoretical values can 

be got easily, shown in Table 3.2. The simulation runs ten days, and the simulation 

results from our approach and the real-time ABS are shown in Table 3.2 too.  

 

Table 3.2: Comparisons with real-time ABS (time scale) 

Results p0 p(n>0) 
'

N  N  
W

(min) 
T (min) 

Time spent 

(s) 

Theoretical 0.000 1.000 1.00 4.00 20.0 80.0 - 

ABS&PIW 0.000 1.000 1.00 4.00 20.0 80.0 0.374 

ABS 

(scale 70000) 
0.002 0.998 1.07 3.20 24.6 86.4 12.300 

ABS 

(scale 500000) 
0.041 0.959 1.05 1.85 147.5 300.4 1.743 

 

We can see that the results of our approach are the same as the theoretical values. 

It takes only 0.374 seconds (the configuration of hardware is Intel i3-330M 2.13GHz 
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CPU and 2GB memory). However, for the ABS with the timescale, the error is very 

big, and it also took the longer time. 

 

 
Figure 3.12: The relation between the scale and the error in the real-time ABS 

An additional experiment is carried out to analyze the relationship between the time 

scale and the error. An error ratio . .. . /theo sim theoe T T Tr  is used to denote the error 

from the real-time ABS. The results in Figure 3.12 show that: the more scale, the 

shorter time but, the greater error. If the simulation finishes in 0.374 seconds the same 

as the time spent in the ABS&PIW, the error ratio will be 26.7 which cannot be 

accepted obviously. Mostly, only the error ratio below 0.1 is acceptable. In this case, 

the time scale must be smaller than 70000. From Table 3.2, we can find that while the 

time scale is 70000, not only the error is greater, but also the time is longer than the 

ABS&PIW. 

3.6 Summary 

Because the PIW is more natural and closer to the mental model, it is combined with 

the ABS to speed up the simulation. The ABS&PIW approach is proposed on the basis 

of the agent-based model. We provide a four-tuple ( , , , )SIM I TM ABM O with 

elements, including inputs (I), time manager(TM), ABM, and outputs (O), to describe 

the approach strictly. The procedure of the approach is presented mathematically in 

which the simulation clock advances in a sequence of activation points and all 

concurrent activations are activated at a time, and associated agents respond in 

parallel. A conservative algorithm is adopted to avoid straggler messages. According to 

the formula, the framework is developed by using multi-threading and synchronization 

technology. The result from an application to the queuing system / /1rM M  shows the 

validity of the proposed approach. Comparing the efficiency with the real-time ABS, it 

performs more efficiently. Besides the advantages mentioned above, the ABM can be 

naturally combined with the process-interaction worldview. The flexibility, 

maintainability, and modifiability of the ABM are also enhanced in this way.  
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4 Agent-based Simulation of 
Material Flow in Job Shops 

On the basis of the framework presented in the previous chapter, a simulator for the 

material flow is developed. Because communication functions and simulation controllers 

have been included in the framework, agent abstraction, behavior definition, 

cooperation design, and data analysis are the main tasks of developing the simulator. 

Thus, in this chapter we will answer the following questions: who are the agents in the 

material flow; what do they do; and how do they cooperate with one another. At last, 

the simulator will be used to solve a job release problem in a wafer FAB. This will 

show a traditional and most used way to solve the real-time decision-making problems 

by the offline simulation in the manufacturing. The method will also be compared with 

our other three methods in the following three chapters lately.  

4.1 Analysis of Material Flow in Job Shops 

4.1.1 Job Shop Analysis 

A critical part of any manufacturing is the process flow (StudyMode.com 2013). The 

material flow is a visual expression of the process flow. The process flow consists of a 

series of steps which determine how a product is manufactured. The structure of the 

process flow determines how facilities will be laid out, how the working methods and 

the technology used, how the resources needed, and how efficient the process is. The 

process flow in job shops represents a general structure, which is characterized by 

manufacturing one or few quantity of products designed and produced as the 

specification of customers within prefixed time and cost. A job shop comprises general 

purpose machines and highly skilled operators arranged into different departments. 

Each job demands unique technical requirements and processing on machines in a 

certain sequence (Kumar and Kumar S. Anil 2009). Because of general purpose 

machines and facilities, a variety of products can be produced. However, this also leads 

to some limitations of job shop production: higher cost due to frequent setup changes; 

a higher level of inventory at all levels and hence higher inventory cost; and complicated 

production planning and material flow control. 
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4.1.2 Job Analysis 

A job is some tasks that need to be done in order to produce one product. After product 

and process design, these tasks are usually grouped into several successive operations.  

Each operation finishes one type of material transformation. For a simple process, the 

operations usually make up a chain (the line type of the flow in Section 1.1.1). If the 

process is complex, the operations usually form a tree or a network. Because the chain 

and the tree are only two special cases of the network, in our study, we consider the 

operations of each job form a network (shown in Figure 4.1). Some raw materials and 

semi-products are input into an operation, and by using some resources, the input 

materials are transformed to some other types of materials. The output materials often 

include some semi-products and sometimes scrap. If the operation is the last one, the 

final product is also on the output list. 

It is common that multiple resources are involved in one operation. Each resource 

has its function for the operation. So, the operation is made up of activities of all 

involved resources. These activities must meet some precedence constraints which are 

more flexible than the precedence constraints on the operations. For example, one 

activity can only start after a certain time of another activity’ s starting, or several 

activities must start at the same time. The processing time of each activity can be 

either resource-dependent or resource-independent. Loading and unloading activities 

connect the materials with the operation. One operation may have more than one 

loading and unloading activity. In other words, the input materials are not loaded 

together, and the output materials are not produced at the same time either. 

O1

O2

O3

O4

O5

O6

O8

O7

Operation
Semi-

products

Semi-

products

Resources

Raw Materials

 

Figure 4.1: Operation and operation networks in a job 

Once a job starts, the involved materials will be transported between two machines 

or between one machine and the related storage. The transportation will take a certain 

amount of time which is up to the distance, the transportation tool used, and so on. 

When the required materials arrive at the machine, they may wait before the machine 

if the machine is occupied or broken, or the materials have to wait for batching. The 

sequencing and batching procedures aim to handle the waiting time. The materials will 

be processed by several resources specified by the activities in the operations. The 

processing time may be deterministic or may be stochastic. After being processed, the 



 

 

Analysis of Material Flow in Job Shops  

53 

 

output materials may be blocked. The blocked state means when the related operation 

has finished, but the job still stays on the machine for some reasons. Figure 4.2 (a) 

shows the static state chart of a job. In a real material flow, jobs have lots of 

configurations, such as job priority, time-critical operations, rework, reentrant and so 

on. Different jobs may have different priorities in the material flow. For example, some 

rush jobs may have very high priority. The time-critical operation is an operation that 

may have to be carried out in a certain time after its predecessor. A job that needs to 

be processed on the same machine several times is a reentrant job.  If the semi-product 

or final product is of poor quality, the corresponding job may need to go through a 

rework loop. 
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(a)                                                         (b) 

Figure 4.2: State charts of the job (a) and machine (b) 

4.1.3 Resource Analysis 

There are two main types of resources in the material flow: machines and workforces. 

Usually, on the shop floor, the workforces are sufficient. In our study, we consider only 

the machines. The machine usually needs setup before starting a job or a new type of 

job. There are three types of setup: sequence-dependent setup (related to both current 

jobs and previous jobs), sequence-independent setup (related to current jobs), and 

product-unrelated setup. In order to improve machines’ reliability, preventive 

maintenances are carried out in the certain time interval. Some maintenance may not 

have an impact on processing jobs, and the machines can still process job during the 

maintenance; some may reduce the capacity of the machines; some may need the 

machines to stop work. In our study, we consider only the last situation, i.e., during 

the maintenances, the machines cannot process jobs. Because usually some routine 

inspections are taken during the maintenance, the time variances are not too big. We 

assume the maintenance time is deterministic. Even though the maintenances are 

carried out, the breakdown still cannot be avoided, and we need to repair the machines. 
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There are three situations during the repair: the machines can still work without any 

impact; the machines’ capacity is reduced, and the machines cannot work anymore. 

The breakdown occurs totally stochastically. The repair time may be determined or 

may be stochastic. The main cause of uncertainty in the material flow is due to the 

unpredictable machine downtime. Figure 4.2 (b) is the state chart of a machine. In 

addition, a machine may be a single processing machine or a batch processing machine. 

The single processing machine can only process one job at a time while the batch 

processing machine can process more. All jobs in a batch start and finish processing at 

the same time. Machines with the same function, which are usually located in the same 

place in the shop, make up a machine group and can be treated as a whole in the 

material flow control. If machines in the same group are dedicated to different products, 

the machines group will be separated. If the machines are not in the same place, they 

will be treated separately too. 

4.2 Agents in the Material Flow 

4.2.1 Agents in the Material Flow 

Agent-based modeling enables us to model the material flow more realistically and 

systematically comparing to other modeling methods, like discrete event simulation 

modeling, Petri nets, and so on. In chapter 3 we know that an agent-based model is 

composed of agents and their relationships. Thus we should determine who the agents 

are in the material flow first. Obviously, material plays a leading role in the material 

flow. However, materials are usually transformed to other types of materials in shops, 

and their lifecycle is very short. Paying attention to them makes no sense to the 

material flow control. We usually focus on jobs which organize all materials that one 

product needs in a serial of operations. Besides, machines and transporters also make 

up a large proportion of the material flow. Because we assume that the transportation 

capacity is infinite, the transporters are out of scope. The transportation in our study 

is only treated as a delay. We only consider the machines here. As a type of flow, the 

material flow must have one or more sources and let jobs derive from them. The sources 

are usually job pools. Each type of job, i.e., product, is connected to a job pool. There 

is also a valve controlling the flow from each pool. In the material flow, this valve is a 

job release procedure. The release procedure is what we will concentrate rather than 

the job pools because the method of forming the job pools is out of the scope of the 

material flow control. On the basis of analysis above, we list three types of entities 

concerned in the material flow: the jobs, machine groups, and release procedures. We 

will model these three entities as agents in the agent-based model: job agent, machine 

agent, and release agent. In this section, we will describe how to create them on the 

basis of the framework, including defining their attributes and behaviors, designing 
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communications and cooperation, and clarifying the simulation-related delays and 

activation. 

4.2.2 Release Agent 

In a release agent, there are one piece of product data, multiple release policies, and 

one buffer. The release agent creates the job agents based on a release policy which is 

given in the product data. The buffer is located behind the release agent (see Figure 

4.3). If the corresponding buffer is full in the first operations, the released job cannot 

start the operatons. It will be blocked and stay in the release buffer until the buffers of 

the first operations has free space. If the buffer of the release agent is full, the release 

agent stops releasing until the buffer is not fully occupied. 

 

Release Agent

Release 

Policies

Product 

Data

Buffer

 
Figure 4.3 the release agent with one buffer 

4.2.2.1 Product Data in the Release Agent 

At the beginning of the simulation, the simulator reads the product and process data 

from files and generates each product a release agent. Each product has a unique name 

and five data elements: a production probability, process, priority, the release 

interarrival time, and the target WIP level. The process element is the name of the 

process flow which is defined in the process file. Once the job agents are created, they 

will obtain their process flows from the product. The priority specifies the urgency of 

products. The value of the priority is from 0 to 1 and is used by some dispatch rules. 

The elements of interarrival time and WIP level are used by the release policies.  

4.2.2.2 Release Policies of the Release Agent 

The release policy is the criterion which decides when to release jobs. The release 

policies are a very common way to solve the job release problem. For now, the release 

agent has three very common types of release policies: constant interarrival time 

(CONINT), constant WIP level (CONWIP), and avoiding starvation (AS). CONINT 

releases the job in the same interval. To the policy of CONWIP, one target WIP level 

is given in advance. If the actual WIP level is less than the target WIP level, a new job 

is released. One interval time is still needed to release jobs before the shop reaches the 

target WIP. In the AS policy, a target buffer size is set for a bottleneck machine group. 

When the buffer size of the bottleneck is bigger than the target value, the releasing 

stops. When the buffer size is less than the target, new jobs are released. The quantity 
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of the jobs which will be released is the difference between the buffer size and the target 

value.  

4.2.2.3 Communication with the Time Manager and Other Agents 

If the release policy is CONINT, “releasing job” is an activation point which will be sent 

to the time manager and put in the activation list. When reaching the activation time, 

the time manager will send an activation message to the release agent. Receiving the 

activation message from the time manager, the release agent will be activated and start 

to release jobs. In the case of CONWIP, the finished job will send a message to the 

related release agent which will release a job immediately after receiving the message. 

For the AS policy, the machine agent of the bottleneck will request the release agent 

to stop releasing or ask the release agent to release jobs. If a released job is refused by 

the machine agent in the first operation due to the fullness of its buffer, the job sends 

blocked message to the release agent, and the release agent puts it into the buffer. 

When being accepted, the job sends unblocked message to the release agent. The job 

will be removed from the buffer and moved to the first operation.  

4.2.3 Job Agent 

The job agent is a temporary entity. After being released, it will be processed on many 

machines in the order of its process flow which depends on the target product, and after 

finished it will be destroyed. The job agent has a unique name in the model and four 

logical states: transporting, waiting, processing, and blocking. 

4.2.3.1 Behaviors and Lifecycle of the Job Agent 

A job agent has five behaviors: to request resources, to be transported, to enter the 

buffer, to wait, to be processed, and to be blocked. The lifecycle of a job agent is shown 

in Figure 4.4. After release, the job requests the next operations. If accepted, it begins 

transporting and then enters the buffer to wait. If refused, it is blocked on the current 

machine. After receiving the start message from the machine group, the job starts. The 

job finishes when receiving the end message from the machine group and then requests 

the next operation. If it is the last operation, the job completes. 

4.2.3.2 Delays and Activations in the Job Agent 

There are four types of delays related to the logical states: transporting, blocking, 

waiting, and processing. Blocking delay means that a finished job cannot move to the 

next operation due to the fullness of the related buffer and will continue to stay on the 

current machine. This is a conditional delay, and it will be activated by the time 

manager every time the simulation time advances. When a job begins to be transported 
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or is blocked, associated activation points (transporting end, blocking end) will be sent 

to the time manager. After that, the job agent will wait for activations from the time 

manager and the delay will end when it receives the activation messages. The waiting 

delay and the processing delay end when the job receives the related message from a 

machine.  
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Figure 4.4 Lifecycle of a job agent 

4.2.4 Machine Group Agent 

The machine group agent is a permanent and active entity. It includes one buffer and 

several machines (see Figure 4.5). The machines have the same function and share the 

buffer.  
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Figure 4.5 Structure of the machine group 
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There are five logical states of the machines: idle, busy, setup, breakdown, and 

maintenance. The machines may be single processing machines or batch processing 

machines. When a job arrives, and cannot be processed at once, the job joins the buffer. 

The buffer has a finite capacity, and it dispatches the waiting job to the idle machine 

according to a dispatch rule. There is no buffer behind the machine group. When a job 

finishes, the job will either be transported to the next machine group or be blocked on 

the current machine. 

4.2.4.1 Behaviors of Machine Group Agent 

The machine group agent has two behaviors: to respond to requests from the job agents 

and to select the best machine to process the jobs. The buffer has two behaviors: to 

store the job, and to dispatch the stored jobs to the machines in a certain batch and in 

an order of the given priorities. The machines have five behaviors: to request the jobs 

from the buffer, to setup, to process, to interrupt, and to recover.  
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Figure 4.6 Behavior flow of a machine group agent 

When a job enters a buffer, or a machine just finishes one job, the machine group 

will start a new process. If the buffer is not empty (in case of batch processing, a batch 

must be ready) while the machine group has an idle machine, the idle machine will 

start processing and inform related job agents. If there is more than one idle machine, 
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one machine will be selected according to an allocation rule. If the setup is needed, the 

machines will start the process after the setup. Figure 4.6 shows the behavior flow of 

the machine group agents.  

4.2.4.2 Dispatch and Allocation Rules in Machine Group Agent 

A dispatch rule is a criterion for determining the jobs’ priorities in the buffer. An 

allocation rule is for selecting one machine from the idle machines. The dispatch and 

allocation rules are very common ways to solve the sequencing and routing problems. 

A buffer may include a set of dispatch rules. When a job joins in the buffer, all messages 

associated with dispatch rules are sent to the buffer. Based on these messages and under 

a given dispatch rule, the buffer determines the priority of each job and queues them 

in that sequence. Once a job joins the buffer, the priority is updated. Currently, 17 

types of common dispatch rules, such as FIFO (First In First Out), EDD (Earlies Due 

Date), CR (Critical Ratio), etc., have been preset in the buffer. The allocation rules 

are used by the group agent. Once a job comes out from the buffer, the group agent 

will collect information of all machines and select one to process the job. 

4.2.4.3  Delays and Activations in Machine Group Agent 

There are four types of delays related to the logical states of machine group agents: 

setup, processing, breakdown and preventive maintenance. When the setup delay 

occurs, the machine group agent sends an activation message (setup end) to the time 

manager and informs the related jobs. The jobs will wait and cannot be processed by 

other machines. When the setup delay ends, the machine group agent sends an 

activation (process end) message to the time manager. Meanwhile, it informs the jobs 

and starts processing. Activated by the time manager, the machine finishes processing 

and informs the jobs.  
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Figure 4.7 communications among the agents and the time manager 
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4.2.5 Communication among the Agents 

We summarize the communication among the agents in Figure 4.7. It also includes the 

delays and activations conveying between the time manager and the agents.    

4.3 Agent-based Simulation of the Material Flow 

4.3.1 Overview of the Simulation 

The agent-based simulation of the material flow consists of a simulator, data about the 

material flow, and performance measures (see Figure 4.8). The Data about the material 

flow are inputs, and the performance measures are outputs.  
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Figure 4.8 Agent-based simulation of the material flow 

4.3.2 Data of the Material Flow 

We classify the data of the material flow into three parts: machine group data, product 

data, and process data, and then adopt three XML files to store the data. The machine 

group file includes data about all machine groups, e.g., the number of machines, buffer 

size, dispatching rule, etc. The process file consists of the process flows of all products. 

Each processing flows has many operations. The product file consists of data about all 

products which will be produced. Each product has a name of the process flow which 

is defined in the process file. The process file links the product file and the machine 

group file together. 

4.3.3 Simulator for the Material Flow 

The agent-based model (including release agents, machine group agents, and job 

agents), data collector and time manager make up the simulator for the material flow. 
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The time manager creates the release agents and the machine group agents according 

to the machine group data at the beginning of the simulation, and it is responsible for 

advancing the simulation time and handling the simulation control (e.g., start, stop, 

pause, etc.). The data collector is responsible for collecting simulation data and 

computing the performance measures. It can collect all simulation data in detail, as 

well as part of sample data.   

4.3.4 Performance Measures  

The performance measures include WIP level, cycle time, buffer size, waiting time (by 

machine group), blocking time (by machine group), and machine utilization information 

(e.g., idle time, processing time, breakdown time and setup time).  All data can be 

shown in graphs and tables. These measures can be used to improve the material flow 

and can also be provided for the optimization or control algorithms to achieve the goals. 

4.3.5 Static Structure of the Simulator 

The static structure of the simulator (see Figure 4.9) has three layers: framework layer, 

agent layer, and production characteristics layer. 
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Figure 4.9 Static structure of simulator 

 The framework layer provides the agent base class and the time manager. The agent 

layer contains the agents which are abstracted from the material flow, and these agents 

extend the base class of the agent in the framework. The data collector, which is also 

an agent, is in charge of data collection from machines, buffers, jobs, and release agents. 
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In the production characteristics layer, many characteristics are considered, such as 

reentrant flows, rework, setups, batch processing, breakdowns, and preventive 

maintenance. Dispatch rules and release policies are part of this layer. 

4.4 Experiments 

As mentioned in Chapter 2, developing decision rules and using simulation to evaluate 

and improve the rules are the general way to solve the job release, routing, and 

sequencing problems. The method is carried out simply by designing and running some 

scenarios with different rules or different parameters of the rules. At last the rule or 

the parameters are determined by the performance computed from the simulation 

results. Since the simulation model has been created, in this section, we will use an 

example to show this general way to solve a job release problem. The routing and 

sequencing problems can be solved in a very similar way. The method will be compared 

with our other approaches in the following three chapters.  

4.4.1 Problem Description 

Wafer FAB has complicated material flows and includes all characteristics mentioned 

above. The developed simulator is applied to a wafer FAB Mimac6 (Measurement and 

Improvement of Manufacturing Capacity (Fowler and Robinson 1995)) with some 

random modifications. The Mimac6 has 93 machine groups (46 machine groups are 

batch processing machines; six machine groups need set up before processing jobs) and 

produces nine products with nine process flows and nine different throughputs. Average 

operation number of the processing flows is nearly 300. Distribution of the interval 

between two interrupts and distribution of the recovery time are specified for each 

machine group.  

 We evaluate the material flows using the release policy CONINT and dispatch rule 

FIFO. The interarrival time of each product are calculated on the basis of their target 

throughputs, shown in Table 4.1. The simulator runs 40 weeks. The results are shown 

in Figure 4.10. We can find that the FAB is totally unstable. From (a), we can see that 

the WIP levels of all products are increasing. The reason can be found from (b) 

according to the buffer size of the machine groups: there is a bottleneck 

(13024_AME_4+5+7+8) in this case. After the simulation starts for a while, the 

utilization ratio of the bottleneck goes up to 100% shown in (c). 

Table 4.1: Product target throughputs and release intervals 

Product B5C B6HF C4PH C5F C5P C5PA C6N3 C6N2 OX2 

Target 

(lots/year) 
287 94 199 241 802 508 184 213 248 

Interval (hour) 30 93 44 36 11 17 48 41 35 
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(a)                                                   (b) 

                            
(c)                                                            (d) 

Figure 4.10: Problem description (a) WIP levels of 9 products (b) Buffer sizes of 

machine groups (c) Utilization ratio of the bottleneck (d) Utilization ratio of the 

bottleneck in detail 

The dispatch rules are incapable of improving the material flows in this case. What 

we will do is to find a better release policy and related parameters by means of the 

simulation. The goal is to maximize the utilization of the bottleneck as well as to keep 

WIP at a lower level. In the following sections, we will evaluate the three release policies 

which are preset in the simulator, and try to find optimal parameters for each policy. 

We also choose the best parameter for each policy according to the simulation results. 

At last, we compare the three policies with the chosen parameters and decide the best 

one. 

In addition, we need to mention that the maximal WIP level is 665 lots. Plus, the 

93 machine group agents, total 758 agents are running in parallel. The simulator works 

well and spends 1.3 minutes in this case (CPU: AMD Phenom™ II 2.6GHz, Memory: 

8.0GB). In one of the following case (see Figure 4.13), the maximal WIP level is 2715 

lots, and the simulator with 2808 agents runs 1.8 minutes and works well too. So the 

efficiency of the simulator is acceptable for offline analysis of the material flow. 
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4.4.2 Simulation with Three Release Policies 

4.4.2.1 Constant Time Interval 

The easy way to decrease and stabilize the WIP level is to increase the release time 

intervals. We carry out four cases with different time intervals to determine the best 

intervals. In Table 4.2, the intervals are specified in a scale form related to the intervals 

in Table 4.1. The intervals increase proportionally.  

Table 4.2 Cases of simulation with different release intervals 

Case Cons.1 Cons.2 Cons.3 Cons.4 

Time interval 

(increases by) 
0% 10% 20% 30% 

 

Figure 4.11 shows the simulation results. The total WIP level decreases as the 

intervals increase (from a). The utilization ratio goes down when the intervals increase. 

The throughput goes up when the intervals increase by 10% and then decreases (from 

b). Even though the case Cons.1 has the highest utilization ratio of the bottleneck, but 

the total WIP level is the highest one, and the throughput is lower than the case Cons.2. 

So the case Cons.2 is the best one. 

 

 
(a)                                                        (b) 

Figure 4.11 Comparison of the cases with different release intervals (a) Total WIP 

level of the products; (b) Utilization ratio of the bottleneck and total throughput 

4.4.2.2 Constant WIP Level 

The parameters of the CONWIP policy are the target WIP levels. From the case 

Cons.2, we can get initial target WIP levels of the products for the CONWIP policy 

shown in Table 4.3. On the basis of the initial target WIP levels, six cases are designed 

shown in Table 4.4. The target WIP levels increase or decrease according to the given 

scales. 
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Table 4.3 Initial target WIP levels from the case Cons.2 

Product B5C B6HF C4PH C5F C5P C5PA C6N3 C6N2 OX2 

Target WIP (lots) 28 14 22 21 47 34 15 16 23 

Table 4.4 Cases of simulation with different target WIP level 

Case 
C. 

WIP1 

C. 

WIP2 

C. 

WIP3 

C. 

WIP4 

C. 

WIP5 

C. 

WIP6 

Target 

WIP Scale 
×0.9 ×1.0 ×1.1 ×1.2 ×1.3 ×1.4 

 

Figure 4.12 is the simulation results. The total WIP levels become steady at the 

target levels after a while when the simulation starts. The utilization ratio of the 

bottleneck is increasing while the target WIP levels increase. The throughput is 

increasing too, but in case C. WIP6 the throughput declines. That is because a new 

bottleneck appears in this case. So we choose the case C. WIP5. 

 

 
(a)                                                  (b) 

  Figure 4.12 Comparisons of the cases with different target WIP levels (a) Total 

WIP level of the products (b) Utilization ratio of the bottleneck and total throughput 

4.4.2.3 Avoiding Starvation 

Firstly, we set the machine group 13024_AME_4+5+7+8 as the first level bottleneck 

with the initial target buffer size, i.e., 35 lots, which is getting from the case C.WIP5. 

The results are shown in Figure 4.13. Even though the buffer size of the bottleneck 

decreases, many new bottlenecks appear and the total WIP level increases more. So we 

set the first appeared new bottleneck 11026_ASM_B2 as the second level bottleneck with 

the initial target buffer size, i.e., ten lots, which is obtained from the case C.WIP5 too. 

The simulation results with these two levels AS policy show that no any other new 

bottlenecks appear.  So two is the final level number of the AS policy. 
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Six cases with different target buffer sizes (see Table 4.5) are carried out. The 

simulation results show in Figure 4.14.  As the target buffer size of the first level 

bottleneck increases, the total WIP level is increasing, and the utilization ratio of the 

first level bottleneck begins with the increase and then declines. As the target buffer 

size of the second level bottleneck increases, the total WIP level, the throughput, and 

the utilization ratio of the first level bottleneck varies irregularly. Even though the case 

A.S.4 gets the highest utilization ratio of the first level bottleneck, the throughput is 

lower than the case A.S.3 which achieves the second highest utilization. So the case 

A.S.3 is the best one. 

 

  
(a)                                                   (b) 

Figure 4.13 Simulation results using the avoiding starvation policy with one 

bottleneck (a) Buffer size of machine groups (b) Buffer size of the bottleneck 

(13024_AME_4+5+7+8) and total WIP level 

 

Table 4.5 Cases of simulation with different target buffer size at the bottlenecks 

Case A.S.1 A.S.2 A.S.3 A.S.4 A.S.5 A.S.6 

1st Level  

(3024) /lots 
5 25 35 35 35 45 

2nd Level 

(11026) /lots 
10 10 10 15 20 10 

 

 
(a)                                                    (b) 

  Figure 4.14 Comparisons of the cases with different target buffer sizes  (a) Total 

WIP level of the products; (b) Utilization ratio of the first level bottleneck and total 

throughput  
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4.4.2.4 Comparison of Three Release Policies 

In this section, we compare three policies above with the chosen parameters. The results 

are in Figure 4.15. The total WIP level in the case C.WIP5 is the steadiest one.  The 

case C.WIP5 also obtains the highest utilization ratio of the bottleneck and the largest 

throughput. The case Cons.2 has the lowest total WIP level, the shortest cycle time (of 

the product C5PA), and the smallest buffer size of the bottleneck 

(13024_AME_4+5+7+8), and its total WIP level is steadier than the case A.S.3. But 

the utilization ratio of the bottleneck and the throughput is lower than the case 

C.WIP5. The case A.S. performs worst, in which the total WIP level, the cycle time, 

and the buffer size vary a lot and the throughput is the lowest. So we choose the case 

C.WIP5 as the best release policy for the Mimac6. 

 

 
(a)                                                                      (b) 

 
(c)                                                                        (d) 

Figure 4.15 Comparisons of three best cases from three case groups (a) Total WIP 

level of the products (b) Utilization ratio of the bottleneck and total throughput (c) 

Cycle time of the product C5PA  (d) Buffer size of the bottleneck 

(13024_AME_4+5+7+8) 

4.5 Summary 

On the basis of the framework, an agent-based model of the material flow including 

release agents, machine group agents, and job agents is built. The behaviors and 

interactions among the agents are explicit defined. A large variety of dispatching and 
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allocation rules and release policies are preset in the model as well. The agent-based 

model, the data collector, and the time manager make up the simulator for the material 

flow. Information of the material flow is stored in XML files. Applying the simulator 

to a wafer FAB model, we found the best release policy for the FAB according to the 

simulation results. The application demonstrates the general way to solve the job 

release problem by using the simulation. This will make a strong contrast with our 

other approaches lately. In the coming chapters, we will give the agents abilities to 

learn how to make decisions on the release, routing, and sequencing.  



 

69 

 

5 Simulation Try-then-decide 
Method for Release, Routing, 
and Sequencing 

As we mentioned before, the material flow control is a decision-making process. The 

job release decides if a job will be released while the workload changed. The alternatives 

are yes and no. The sequencing decides which job will be processed first. The 

alternatives are jobs in the buffer. The routing decides which machine the job will go 

to. The available machines are alternatives. These three types of decisions are made 

throughout the manufacturing. The decisions make up sequential decisions in which 

decisions that made now have both immediate and long-term effects, and determine 

the later decision-making. The later decisions influence the performance of the earlier 

decisions. In this chapter, a simulation try-then-decide method (STTD) is introduced 

to solve such sequential decision-making problems. The method will be compared with 

the decision rules studied in the previous chapter. 

5.1 Sequential Decision-making in Release, Routing, 
and Sequencing 

5.1.1 Sequential Decision-making(Littman 1996) 

A sequential decision-making system includes a decision maker and its environment 

that the decision maker interacts with. The thing the decision maker interacts with, 

comprising everything outside the decision maker, is called the environment. The 

problem addressed is, given a complete and correct model of the environmental 

dynamics and a goal structure, to find an optimal way to behave (to make decisions). 

The behavior maps the state of the environment to the action choice. The action, i.e., 

the decision-making process, is usually turned to a selection of the best alternative from 

possible given alternatives. The decision maker observes the environment and carries 

out the proper action according to the state of the environment. The action results in 

some changes in the environment. Thus the decision maker will take another proper 

action again to adapt to the new state. The process is shown in Figure 5.1. The behavior 

usually follows a policy which tells the decision maker how to act according to the state 

of the environment. The policy may be a plan which specifies an action for each possible 

state. The policy can also be an equation in which the action is a function of the state. 
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The task of the sequential decision-making is to produce an optimal policy which can 

maximize a long-term performance.  

Environment Decision

Maker

Action

State
 

Figure 5.1: A decision maker interacts with its environment 

5.1.2 Sequential decision-making in Release, Routing, and 
Sequencing 

For our problem, the environment is the material flow. The decision maker is a 

scheduler who makes the release, routing, and sequencing decisions during the 

manufacturing according to the state of the material flow. The decisions will be 

executed by the operators. The decisions are made only at some discrete events. We 

call the time that the events occur as decision points. The release decisions are made 

while the workload of the related product changed, i.e., a job for producing the product 

is finished on a machine. The sequencing decisions are made while one of the following 

conditions is met: 1) while a machine becomes idle and jobs are waiting for it; 2) while 

a job arrives at a machine and the machine is empty; 3) while a machine has been 

repaired or maintained. The routing decisions are made 1) after a job is finished on a 

machine; 2) after a job is released.  

We aim to develop a plugin for MES to help or replace the real scheduler. To develop 

the plugin, firstly a model of the material flow is necessary. Chapter 4 exactly does 

what we need now. The agent-based simulation model can be used directly without any 

changes here. Secondly, a decision maker should be included and makes decisions by 

utilizing the model of the material flow.  

The decision-making in the release, routing, and sequencing problems is a selection 

process which selects the best alternative from all possible alternatives. On the other 

hand, we can treat the problems as priority calculation problems. For each alternative, 

we calculate a priority. The alternative with the highest priority will be selected. The 

scheme is shown in Figure 5.2. The priority calculation may utilize the model of the 

material flow directly or use it indirectly. In an indirect way, the model is used to build 

a new model to calculate the priority value. In our study, we use three methods to 

calculate the priority values for the alternatives. In this chapter, we introduce the first 

method, i.e., STTD which uses the model of material flow directly. The other two 

methods in Chapter 6 and Chapter 7 will use the model indirectly. 



 

 

Sequential Decision-making in Release, Routing, and Sequencing  

71 

 

Manufacturing Line

Decision

State and alternatives

Model of 

Manufacturing

Line

Plugin

Priority

Calculation

Alternative

Selection

Decision maker

 

Figure 5.2: Sequential decision-making in release, routing, and sequencing 

5.1.3 Decentralized Sequential Decision-making 

In our problem, there are three types of decision-making. If we use only one decision 

maker to make all decisions, the decision maker will be too complicated. We divide the 

task of the decision-making into some small tasks. For each type of product, a release 

decision maker is created. The release decision makers make the release decisions for 

the related product while the workload is changed. For each machine group, one 

sequencing decision maker is created. The sequencing decision makers make the 

sequencing decision for the related machine while a job arrived or the machine becomes 

idle. For each job, a routing decision maker is built. The routing decision makers are 

responsible for making the routing decision after the related job is finished on one 

machine. Once a decision needs to be made in the material flow, the corresponding 

decision maker will start work. All decision makers have the same right to utilize the 

model of the material flow.  
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Figure 5.3: Decentralized sequential decision-making 

The decentralized sequential decision-making has several advantages. Firstly, it is 

flexible. For example, if we want to add another type of decision-making into the plugin, 

we do not need to change too much on the origin plugin. Moreover, if the manufacturing 

line changed, e.g., adding one machine, it is also easy to add a decision maker. Secondly, 
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the decision-making problems can be simplified. For example, in the sequencing 

problem, if we create each machine a decision maker, the position of the machine in 

the layout of the manufacturing line can be ignored while we calculate the priority 

values. Thirdly, it can facilitate the evaluation of our approaches. Because we will use 

the agent-based simulation to evaluate the approaches, each decision maker exactly 

connects to one agent in the agent-based model. We just need put the decision makers 

into the related agents and run the simulation. Figure 5.3 shows the scheme of the 

decentralized sequential decision-making. 

5.2 Simulation Try-then-decide Method 

The biggest problem with the decision-making is that we do not know what will happen 

in future after the decision is executed, due to the complexity and randomness of the 

system. The simulation try-then-decide method uses the simulation to predict the 

future after one decision is carried out. It uses the predicted future information to make 

decisions. The method can be stated as follows: once we need to make a decision, the 

simulation will evaluate each alternative; for each alternative, the simulation runs once 

(determined model) or several times (stochastic model); the selection of an alternative 

is dependent on the evaluation of the simulation results.  

5.2.1 Branching Tree with a Time Axis  

First, we present the method in a branching tree with a time axis, shown in Figure 

5.4(a). A node denotes a decision point. A branch represents a selection of one 

alternative. The corresponding value of nodes on the time axis is the time when the 

decisions need to be made. A path from the root node to the last node is related to an 

active schedule. As time goes on, the tree will become bigger and bigger because of the 

exponential explosion. For example, ten decisions need to be made one by one, and 

each decision has two alternatives. The number of the paths will be 210. In the real case, 

the decisions are even huge and not fixed. Thus, it is impossible to enumerate all paths 

and evaluate them. Our method only focuses on the partial paths starting from the 

decision point and ending at a given time.   

We use the sequencing problem to give a general idea of our approach. In Figure 

5.4(a) we assume that current time is at decision point 1 and we need to select one job 

from two. Thus, the simulation sim3 and sim4 will start respectively from the decision 

point and end at a given time. The sim3 will simulate the future situation while we 

select job 1. The sim4 deals with the selection of job 2. The results of the sim3 and 

sim4 will be used to evaluate the selection of job 1 and job 2. Moreover, we can see 

that in both sim3 and sim4, there are also lots of decision points. For these decision 

points, we specify a base-rule to select jobs. We assume that the selection of job 1 

performs best, so we select job 1. When time advances to the decision point 4, shown 

in Figure 5.4(b), we have to select one job from three again. Thus, the simulation sim5, 
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sim6, and sim7 will start. The rest work will be done in the same manner. Note that 

the tree is only for demonstrations here and it cannot be determined in advance due to 

uncertainties in the system.  
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(a)                                                                 (b) 

Figure 5.4: A branching tree with a time axis (a) before the time advances (a) 

after the time advances 

5.2.2 Four-tuple of STTD Scheme 

Now we give a more general description of our approach in a four-tuple STTD= (S, A, 

Sim, V). S is the state of the environment at a decision point. A is a set of alternatives. 

Sim is the simulation. We call the simulation as alternative simulation. V is the 

evaluation. Before we start the simulations, the simulation model is initialized with the 

environment at a decision point. For a selection of each alternative, the simulation runs 

once or several times. The alternative will be selected according to the evaluation of 

the simulation results. In addition, scheduled events, e.g., starting maintenance on one 

machine, are also concerned. These events will be directly put on the event list of the 

alternative simulation and will occur during the simulation run. 

For the alternative simulation and the evaluation, there are four key questions: 1) 

how many times do the alternative simulations run; 2) how long does each alternative 

simulation run; 3) how to select the base-rule; 4) How to evaluate the selection 

according to the simulation results. 

For question 1), usually, if the simulation model is deterministic, the simulations 

just run once for each alternative. If the model is stochastic, the simulations need to 

run many times. The more times the simulations run, the better results we obtain. 

However, because the machines/jobs are waiting when we make the decision, we should 

make our decision as soon as possible in order to maximize the utilization or minimize 

the cycle time. The number of times can be calculated according to the time allowance 

in the real system. 
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For question 2), theoretically, the simulation ends when the effect of current decision 

disappears. But it is hard to determine this time. Usually, the decision influences only 

the jobs which are completed in a short period after the decision is executed. Thus, the 

period of simulation is decided by the number of completed jobs n after the decision 

point, n WIP , where   is a factor which denotes the length of the period.  WIP is 

the work in process level at the decision point.  

The selection of the base-rule will be analyzed in Section 5.3.2. In sequencing 

problem, the base-rule can be First In First Out (FIFO), Shortest Processing Time 

(SPT), Longest Processing Time (LPT), and so on. For the routing problem, the base-

rue can be the Shortest Queue Length (SQL), Shortest Queue Time (SQT), and so on. 

For the release problem, the base-rule can be CONINT, CONWIP, and so on. 

The evaluation is related to the objective. Here, we give two formulas under two 

common objectives for the sequencing and routing problems. While the objective is to 

minimize the cycle time, 

1/ ( / )
p

p

p j J

p P j J

v c n
 

   , (Eq. 5.1) 

where p denotes a product; P is the set of products. p  is the weight of product p. 

j is a job. Jp is the set of completed jobs whose product type is p. cj is job j’ s cycle 

time. 
pJn is the number of jobs in the set Jp. 

While the objective is to minimize total weighted tardiness  

1/ ( max( ,0) / )
p

p

p j j J

p P j J

v C d n
 

   , (Eq. 5.2) 

where Cj is job j’ s completion time, and dj is job j’ s due date. If the simulation 

runs many times, the average value of the priorities is adopted. 

For the release problem, we have to achieve not only the objective of scheduling but 

also the objective of the throughput. The priority can be calculated by, 

( / | |)T T

p p p s

p P

v O O O v 


  
, (Eq. 5.3) 

where 
T

pO is the target throughput of product p; pO is the throughput of product p 

during the simulation; sv is the normalized priority value considering only the 

scheduling objective; ,  denote the importance of the meeting throughput and 

achieving objectives in the priority value. 

5.2.3 Alternative Simulation 

The agent-based simulation of the material flow proposed in chapter 4 will be used to 

evaluate each alternative. As we mentioned, a job shop model is stored in XML files. 
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Once we start to evaluate one alternative, firstly, we create a model from the files and 

initialize the model with the current environment information. Then we load the model 

to the simulator. An activation point (event) with the current time stamp is put on the 

activation list of the time manager. The activation point contains the information of 

the alternative and the agent who needs to make the decision. The simulation exactly 

starts at the activation point. Meanwhile, the time manager activates the agent and 

the agent takes the alternative. Another conditional activation point with some 

termination conditions is also put into the activation list together at the beginning. 

During the simulation, the conditions are checked whenever the clock advances. If the 

conditions are met, the simulation stops. The priority of the alternative is computed 

from the objective functions in the previous section based on the simulation results. 

Some example codes showing this procedure can be found in appendix A.2.  

5.2.4 Environment Simulation 

Before each alternative simulation run starts, the simulation model should be initialized 

according to the environment information of the real system at decision points. 

However, it is impossible and impractical to connect to the real system and read the 

environment information for now. Therefore, in order to evaluate the STTD method, 

we replace the real system with a simulation model shown in Figure 5.6.  

 
Figure 5.5: Environment simulation and alternative simulations 

The simulation is always running like a real system. We call the simulation as 

environment simulation. In this case, the state of the environment is actually the agent 

environment, i.e., all agents’ state. Once a decision needs to be made, the environment 

simulation will pause. The decision-making procedure will start. The alternative 

simulation is initialized according to the current state of the environment simulation. 

When the decision-making is done, the environment simulation will take the decision 

and continue (shown in Figure 5.5). The performance of the STTD method can be 

calculated according to the results of the environment simulation. 
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Figure 5.6: Replace the manufacturing system with the simulation 
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Figure 5.7: An agent with a decision maker 

 To simplify the evaluation process, we do not develop an independent software 

scheduler but put the decision makers into their appropriate agents in the environment 

simulation of the material flow. Each agent has one decision maker. The agent with the 

decision maker is illustrated in Figure 5.7. We replace the default decision-making 

behaviors, i.e., making decisions by the decision rules, with new behaviors, i.e., making 
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decisions by the decision makers. This approach will also be used to evaluate the other 

two decision-making approaches in Chapter 6 and 7. 

5.3 Experiments  

5.3.1 A Sample Manufacturing Line 

The STTD method is applied in a manufacturing system. The system contains five 

machines and produces two products (Pa and Pb) with two process flows and two 

different throughputs. The throughputs of product Pa and Pb are 110 and 197 units 

per week. There are no batch processing machines. The machines need sequence-

dependent setups. The interval between two breakdowns on the machines is subject to 

the exponential distribution and the repairing time follows an exponential distribution 

too. The objective is to minimize the cycle time. 

Table 5.1: Machines and their functions 

Machine M1 M2 M3 M4 M5 

Function 
function1 

function3 

function2 

function3 
function1 funciton2 

function1 

function2 

 

Each machine has multiple functions shown in Table 5.1. Machine requirement of 

each operation is specified by the function shown in Table 5.2. For example, operation 

Oa1 requires one machine which has function 1. Thus, Oa1 can be processed on 

machines M1, M3, or M5. 

Table 5.2: Products’  processing flows and machine requirements 

Product Processing Flow 

Pa Oa1(function1)- Oa2(function2)- Oa3(function3) 

Pb Ob1(function3)- Ob2(function1)- Ob3(function2) 

 

The processing time of an operation is dependent on the machine which processes 

the operation. All processing times are given in Table 5.3. The minus symbol means 

that the operation cannot be processed on the related machines. 

 

Table 5.3: Processing times (minutes) of operations on related machines 

 M1 M2 M3 M4 M5 

Oa1 10 - 10 - 11 

Oa2 - 40 - 42 35 

Oa3 59 61 - - - 
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Ob1 56 56 - - - 

Ob2 27 - 28 - 22 

Ob3 - 18 - 18 14 

 

The transportation time between two machines is given in Table 5.4. The time spent 

on a trip may be different from the time spent on the return trip. 

   

Table 5.4: Transportation time (minutes) 

To      
From 

M1 M2 M3 M4 M5 

M1 0 12 17 4 17 

M2 6 0 21 13 24 

M3 6 5 0 17 27 

M4 13 25 3 0 21 

M5 3 13 22 19 0 

 

The setup time on a machine is dependent on the previous operation and current 

operation. If these two operations are the same type, the machine does not set up. 

Otherwise, the machine has to set up. As an example, the setup times of machine M1 

is given in Table 5.5. 

Table 5.5: Setup times on machine M1 

Next    
Pre 

Oa1 Oa2 Oa3 Ob1 Ob2 Ob3 

Oa1 0 - 15 6 15 - 

Oa2 - - - - - - 

Oa3 6 - 0 2 12 - 

Ob1 16 - 9 0 25 - 

Ob2 29 - 3 11 0 - 

Ob3 - - - - - - 

5.3.2 Base-rule Analysis 

In the alternative simulations, the decision is made by a base decision rule. Different 

base-rules may result in different simulation results, thereby obtaining different priority 

values which influence the decision-making directly. Now we carry out some 

experiments to analyze the influences of the base-rules on the performance of the STTD 

method. For each experiment, the environment simulation runs for one week and ten 

replications. The statistical results are the average values over the replications. The 

decision in the environment simulation is made by the STTD method using one 

concerned base-rule. 
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For the release problem, the base-rule can be either CONINT or CONWIP. Thus 

the environment simulation runs twice. The routing decisions in the environment and 

alternative simulations are made by the allocation rule SQL. The sequencing decisions 

in the environment and alternative simulations are made by the dispatching rule FIFO. 

The experiment results are shown in Table 5.6 and Figure 5.8. The base-rule influences 

not only the average cycle time but also the throughput because both are considered 

in the equation of the priority calculation in the STTD-release method. We can see 

that the STTD-release method using any base-rules almost meets the throughput 

requirements. The method using the base-rule CONINT performs better on the average 

cycle time than the one using CONWIP does. Thus, in the latter study, we adopt 

CONINT base-rule in the STTD-release method.  

  
Figure 5.8: Influence of the base-rule on the performance of the STTD-release 

method 

 

Table 5.6: Throughputs and cycle times obtained by the STTD-release method 

under different base-rules  

Base-rule 
Throughput Cycle Time 

Pa Pb Pa Pb Summary 

CONINT 109 193 3.44 4.21 3.93 

CONWIP 108 191 4.03 4.80 4.53 

 

For the routing problem, we give two base-rules to experiment: SQL and SQT. The 

release decisions in the environment simulation and alternative simulations are made 

by the release policy CONINT. The sequencing decisions are made by the dispatching 

rule FIFO. The experiment results are shown in Figure 5.9 and Table 5.7.  The 

performances of these two base-rules are nearly the same. 
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Figure 5.9: Influence of the base-rule on the performance of the STTD-routing 

method 

 

Table 5.7: Average cycle times obtained by the STTD-routing method under 

different base-rules 

Product         
Base-rule SQL SQT 

Pa 3.20 3.22 

Pb 4.18 4.13 

Summary 3.84 3.81 

 

For the sequencing problem, five dispatching rules are concerned to be the base-rule 

in the experiment, including FIFO, SPT, LPT, LRPT (longest remaining processing 

time), and SRPT (shortest remaining processing time). The release decisions are made 

by the release policy CONINT in the environment simulation and alternative 

simulations while the routing decisions are made according to the allocation rule SQL. 

As Table 5.8 and Figure 5.10 indicate, the STTD method using LPT as the base-rule 

performs best.  

 

Table 5.8: Average cycle times obtained by the STTD-sequencing method under 

different base-rules 

           Base-rule
 

Product    
FIFO LRPT LPT SRPT SPT 

Pa 3.54 3.63 3.59 3.65 3.58 

Pb 4.43 4.3 4.26 4.3 4.42 

Summary 4.12 4.07 4.03 4.08 4.13 
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Figure 5.10: Influence of the base-rule on the performance of the STTD-sequencing 

method 

We also tried some other decision rules, such as starvation avoidance policy for the 

STTD-release method, SPT (shortest processing time) for the STTD-routing method, 

and so on. However, these decision rules perform badly when they are used 

independently, not to mention being used as the base-rule. Thus, for the selection of 

the base-rule, the principle is to select a rule which at least performs not too badly 

when it is used independently to make the decisions. 

5.3.3 Duration Analysis 

The duration of the alternative simulation is decided by the number of jobs which are 

finished during the simulation. When the given numbers of jobs are finished, the 

alternative simulation ends. The number n is k times of the WIP level at the decision 

point, n WIP . We analyze the duration’ influence on the performance here. 

For the release problem, we focus on two terms: the scheduling performance and the 

throughput. Figure 5.11 shows the throughput curves under different k values.  

 

 
Figure 5.11: Influence of the duration on the throughputs in the STTD-release 

method 
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We can see that if the values are too small, the throughputs cannot reach the target 

throughputs. The reason is that if the simulation duration is too short, the throughputs 

we get from the simulation results are too rough and the priority values calculated from 

the throughput are also not accurate. Therefore, the decision we made is not the best, 

sometimes even worse. After k increases to 20, the throughputs are varying near the 

targets. 

Figure 5.12 shows the average cycle times under different k values. The average 

cycle times keep increasing as the duration increases before k is 20. Because during this 

period, the throughputs increase too. It means the release rates are growing. Thus the 

cycle times are growing. To select a proper value for k, first, it should ensure the target 

throughputs. On the basis of meeting this condition, it should also minimize the cycle 

times. In this case, we set k to 40. 

 

 
Figure 5.12: Influence of the duration on the average cycle times in the STTD-

release method 

For the routing problem, if k is greater than 1, the average cycle times are nearly 

steady, i.e., k does not influence the performance. Thus to save time, we set k to 3.  

 
Figure 5.13: Influence of the simulation duration on the performance of the STTD-

routing method 
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For the sequencing problem, the curves of the average cycle times are like valleys. 

Thus we set k to the value at which the average cycle times are minimal.  

 

 
Figure 5.14: Influence of the duration on the performance of the STTD-sequencing 

method  

From the results of all these experiments, we cannot find any general ways to 

determine the duration. Therefore, the only way is to carry out experiments to find it, 

like what we did in this section. 

5.3.4 Comparisons with Decision Rules 

In the two foregoing sections, we determined the base-rules and the duration of the 

alternative simulations. Now we compare the STTD method with some decision rules. 

First, we compare the STTD-release method with the release policies CONINT and 

CONWIP. The routing decisions are made by the allocation rule SQL. The sequencing 

decisions are made by the dispatching rule FIFO. The results are shown in Figure 5.13 

and Table 5.9. The CONINT policy can meet the throughput requirements exactly 

while the CONWIP cannot (see the throughput of product Pb). The STTD can almost 

meet the throughput requirements. For the average cycle time, the STTD method 

performs best. 

 
Figure 5.15: Comparison of the STTD-release method with some decision rules 
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Table 5.9: Throughputs and average cycle times obtained by using release control 

Approach 
Throughput Cycle Time 

Pa Pb Pa Pb Summary 

CONINT 110 197 4.03 4.78 4.52 

CONWIP 111 189 4.43 5.14 4.89 

STTD 109 196 3.75 4.52 4.26 

  

For the routing problem, we compare the STTD-routing method with the allocation 

rules SQL and SQT. The release decisions are made by the release policy CONINT. 

The sequencing decisions are made by the dispatching rule FIFO. Figure 5.16 and Table 

5.10 show the results. Obviously, the STTD performs best. 

  
Figure 5.16: Comparison of the STTD-routing method with some decision rules 

 

Table 5.10: Average cycle times obtained by using routing control 

Product   
Approach SQL SQT STTD 

Pa 4.09 4.08 3.24 

Pb 4.78 4.87 4.18 

Summary 4.52 4.60 3.84 

 

For the sequencing problem, we compare the STTD-sequencing method with the 

dispatch rules FIFO and SPT. The release decisions are made by the release policy 

CONINT, and the routing decisions are made by the allocation rule SQL. The results 

are shown in Figure 5.17 and Table 5.11. The STTD method still performs best. 
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Figure 5.17: Comparison the of STTD-sequencing method with some decision rules 

 

Table 5.11: Average cycle times obtained by using sequencing control 

Product               
Approach FIFO SPT STTD 

Pa 4.09 3.64 3.53 

Pb 4.78 4.91 4.49 

Summary 4.52 4.46 4.12 

5.4 Summary 

The release, routing, and sequencing problems are sequential decision-making problems. 

The decision-making is the selection of the best one from some alternatives. The STTD 

method calculates each alternative a priority value. The alternative with the highest 

priority will be selected. The alternative simulations are used to predict the future after 

an alternative is taken and the priority value is calculated from the predicted future 

information. In order to evaluate the STTD method, the material flow system is 

replaced with an environment simulation. The decisions are executed in the 

environment simulation. The results from the environment simulation are used to 

evaluate the STTD method. At last comparing with many other decision rules, the 

STTD method always performs best in the release, routing, and sequencing problems. 
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6 Intelligent Release, Routing, and 
Sequencing Based on STTD 
Method 

In the preceding chapter, we use the simulation try-then-decide method to obtain the 

priority values of alternatives when we make decisions. The experiments prove the 

excellence of the STTD performance. However, because we have to run an alternative 

simulation for each alternative, it is kind of time-consuming. Especially for some 

systems which have high real-time requirements, the STTD method shows its shortages. 

In this chapter, we will introduce a new approach to calculate the priority values of the 

alternatives. The approach manages to learn knowledge from the STTD method and 

find out the relationship between the priority value and the factors which influence the 

priority. Once we know the relationship, the decision can be made quickly. 

6.1 A Scheme for Intelligent Release, Routing, and 
Sequencing 

6.1.1 Basic Idea 

The basic idea is shown in Figure 6.1. The simulation is replaced with an intelligent 

approach which is a data-driven model trained by the dataset obtained from the 

simulation. The intelligent approach is expected to be more efficient than the simulation. 
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state

alternative

priority Intelligent 
Approach

state

alternative

priority
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alternative

p
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Figure 6.1 Basic idea 
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6.1.2 Global Factors and Local Factors 

The priority of an alternative is not only dependent on the alternative itself, but also 

the state of the environment when we make the decision. The properties of the 

alternative influence its priority directly while the state of the environment has an 

indirect impact on the priority. We call the factors depicting the state as the global 

factors and the factors depicting the alternative’ properties as the local factors. The 

priority value depends on these two types of factors and can be described as follows, 

( , )local globalq Q G G
. 

The global factors set the weights of local factors first. The weights of local factors 

denote the importance of each local factor for decision-making. For example, in the 

sequencing problem, with the same objective the processing time dominates the value 

in one state, but in another state, the remaining processing time plays the most 

important role. Sometimes it is possible that in one state the shorter processing time 

leads to a higher value, but in another state, the longer processing time results in a 

higher value. These phenomena depend on the global factors. The relations between 

local and global factors are presented below.   

 

1 2 3''( ) { , , ,...}globalA Q G a a a 
 

1 2 3

1 2 3'( ) '( , , ,...)local local local localq Q AG Q a g a g a g   

 

where A is the weight vector. Different values of the global factors result in different A 

vectors. The problem is reformulated to determine the functions 'Q  and ''Q . However, 

''Q  is hard to know. Thus, we use a clustering method to replace function "Q . 

According to the values of the global factors, the state of the material flow is divided 

into several patterns. For each pattern, globalG  varies slightly and A is nearly constant. 

Therefore, the global factors can be ignored in the same pattern. Consequently, the 

function 'Q  is divided into the appropriate subfunctions too. Each pattern has one 

relevant subfunction to calculate the value. Because A is constant, it can be removed 

from function 'Q . For pattern i,  
' '( ) ( )i local i localq Q AG Q G  . 

Because ,global localG G  and q can be easily obtained from the STTD method, The 

function 'Q can be built from these data. 

6.1.3 Schemes for Data-driven Model 

On the basis of the previous analysis, we create a data-driven model to map the 

relationship between the priority value and the alternative-state pair. The input of the 

model is the alternative-state pair. The output is the priority value of the alternative.  
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The model includes five components: data preprocessing, pattern recognition, function 

'Q  selection, pattern pool, and function pool.  The data preprocessing reorganizes the 

local factors and the global factors. The pattern pool is made of all state patterns which 

are distinguished by the patterns’ centroid. The pattern recognition decides which 

pattern the current state belongs to in the pattern pool according to the distances from 

current values of global factors to each centroid. The state will fit the pattern whose 

centroid is closest to the current values of the global factors. As mentioned above, for 

each pattern we create one function to map the relationship between the local factors 

and the priority value. The pattern and the function 'Q have a one-to-one relationship. 

All functions make up the function pool. Thus the appropriate function is selected from 

the function pool by the function selection according to the pattern of the current state. 

The selected function is used to compute the priority value according to the local factors. 

While making a decision, for each alternative we use the model to calculate its priority 

value. The alternative with the greatest value will be taken. The process flow is shown 

in Figure 6.2. Obviously, the most important thing is to build the appropriate pattern 

pool and function pool 

 

Pattern 
Recognizer

Function Q 
Alternative

State
Priority

Function
Pool

Pattern
Pool

Function 
Selection

Data
Preprocess

global

local

 
Figure 6.2: Data-driven model for calculating the priority value of the alternative 

6.1.4 Decentralized Intelligent Release, Routing, and 
Sequencing 

Recalling the decentralized sequential decision-making in Section 5.1.3, for each type 

of product a release decision maker is created; for each machine, a sequencing decision 

maker is created; for each job a routing decision maker is created. For this approach, 

we still adopt the decentralized manner. Thus, lots of decision makers are developed 

the same as before, and each decision maker has its own data-driven model for 

calculating the priority values (see Figure 6.3). However, there are still some slight 

differences. The current approach is a data-driven method. We need the data to 

implement the method. If we still create each job a routing decision maker, as we did 

in the STTD method, this means we have to build a data-driven model for each job. 

However, jobs are temporary entities and the time that the jobs stay in the system is 

very short. We have not enough data for each job. Thus we connect the routing decision 

makers to the machine group agent.  
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Figure 6.3: Decentralized intelligent release, routing, and sequencing 

6.2 Data Acquisition and Preprocess 

6.2.1 Data Acquisition 

Both the pattern pool and function pool are data-driven models. Thus the first task is 

to collect data we need. The data we need include the alternative, state of the 

environment, and the priority value of the alternative. We collect these data from the 

simulation in which the decisions are made by the STTD method. Thus we can learn 

knowledge from the STTD. When a decision needs to be made in the simulation, the 

alternative and the state are collected first. The priority value of the alternative is also 

collected after the STTD method gets it. In order to obtain more general dataset, in 

the simulation, the decision is made by using a  -greedy method derived from the 

function 'Q . The  -greedy method allows us to select an alternative with certain 

probability   without considering the priority. Because the simulation is an agent-

based simulation and each agent (except job agents) connects to one decision maker, 

we create a dataset for each agent. The data will be stored in the corresponding dataset 

which will be used to build its data-driven model, i.e., pattern pool and function pool. 

The procedure is as follows. 

 

Let iY  for all agents i D , where D is a set of agents in the model 

except job agents 

Initialize simulation model randomly 

Start simulation 

Whenever the simulation enters a decision point in agent i Do 

       Pause simulation 

       Let scurrent state, ( )A s  alternative set 

       For each alternative , ( )a a A s  
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                 Calculate priority value for alternative a, 

( , ( ))q STTD s A s  

                 {( , , )}i iY Y s a q  , where q is the priority value of 

alternative a 

       Agent i takes an alternative which has the highest priority or 

randomly 

       Continue simulation 

Till the simulation ends then do 

        For each agent i, build its pattern pool and network pool using 

dataset iY        

6.2.2 Data Preprocess 

The state of environment we obtained from the agent-based simulation is the states of 

all agents. A generalized definition of an agent’s state is a set including values of all its 

dynamic attributes. A huge amount of attributes can be found in the agents, but only 

a few attributes are what we concerned. Moreover, sometimes a compound attribute 

may be more meaningful than the elementary attributes. So we are going to filter and 

reorganize the attributes in this section. The followings are some elementary attributes 

selected from the release, job, and machine agent. 

 

Attributes of the release agent are, 

 

 Local time 

 Starting time to release 

 Release end time 

 Total job number 

 Released job number 

 State (blocked/unblocked) 

 State starting time 

 Expected ending time of the state 

 

Attributes of the job agent are, 

 Local time, 

 Released time, 

 Current operation ID, 

 Current machine ID, 

 Priority, 

 Due date, 

 Product configuration, 



 

 

Intelligent Release, Routing, and Sequencing Based on STTD Method  

92 

 

 Job state, 

 State starting time, 

 Expected ending time of state. 

 

Attributes of the machine agent are, 

 Local time 

 Setup configuration 

 Batch configuration 

 Machine state 

 State starting time 

 Expected ending time of state 

 

These attributes have only a little meaning in the material flow control. We should 

aggregate or reorganize them and generate more meaningful factors. After 

reorganization, based on the experiments the following factors are built in the state of 

the environment, 

 

 Number of all unavailable machines (breakdown and maintenance), 

 Mean queue length of all machines, 

 Mean total processing time of jobs in the queues of all machines, 

 Mean total waiting time of jobs in the queues of all machines, 

 Work in process level, 

 Mean progress ratio of all in-process jobs ( finished step total stepratio n n ), 

 Number of unavailable machines in each machine group, 

 Mean queue length in front of each machine group, 

 Mean total processing time of jobs in the queue in front of each machine group, 

 Mean total waiting time of jobs in the queue in front of each machine group, 

 Work in process level of each product, 

 Mean progress ratio of jobs grouped by product type, 

 Current theoretical production capacity of each product. 

 

The first six factors are the overall state of the material flow. The following four 

factors are related to each machine group. The rest three factors refer to different 

products. The number of factors is 6 4 3M Pn n  , where Mn and Pn are the number of 

machine groups and the number of products respectively. In the last factor, the 

theoretical production capacity is the capacity while only the concerned product is 

produced in the material flow. 

While we make a sequencing decision, the action is the selection of one job from the 

queue before a machine. The factors of an alternative are, 

 

 Processing time for the job on the machine, 

 Setup time of the machine before processing the job, 
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 Waiting time of the job, 

 Remaining step number of the job, 

 Total step number of  the job, 

 Sum of the job’ s processing time at remaining steps, 

 Raw processing time of the job, 

 Priority of the job, 

 Due date for the job. 

  

While we make a routing decision, the action is the selection of one machine from 

all possible machines to process a job.  The factors of an alternative are, 

 

 Utilization of the machine, 

 Queue length of the machine, 

 Total processing time of jobs in the queue before the machine, 

 Processing time for the job on the machine, 

 Setup time of the machine before processing the job, 

 Transport time from current machine to the selected machine. 

 

While we make a release decision, the action is to decide the number of jobs which 

will be released.  The factors of an alternative are, 

 

 Number of jobs that will be released, 

 Number of jobs that have not been released, 

 Average release interval (releaseEndTime-currentTime )/ remainingJobNumber, 

 Work in process level of the concerned product 

 Current theoretical production capacity of the concerned product. 

6.3 Global State Clustering and Recognition 

This section will discuss how to cluster the global factor data and classify the state of 

material flow into several patterns. Because the amount of global factors is in direct 

proportion to the number of machines and jobs, the clustering may be a considerable 

effort. Thus, the dimension should be reduced before the clustering.  

6.3.1 Laplacian Eigenmaps for Dimensionality Reduction 

Lots of algorithms to dimensionality reduction have been developed, such as Principal 

components analysis (PCA) (Jolliffe 1986), kernel PCA (Mika et al. 1999, Smola and 

Schölkopf 1998), locally linear embedding (LLE)(Roweis and Saul 2000), 

Isomap(Tenenbaum 1998), Laplacian Eigenmaps (LEM)(Belkin and Niyogi 2003), and 

so on. Laplacian Eigenmaps find a low-dimensional data representation by preserving 

local properties of the manifold(Belkin and Niyogi 2002). In Laplacian Eigenmaps, the 



 

 

Intelligent Release, Routing, and Sequencing Based on STTD Method  

94 

 

local properties are based on the pairwise distances between near neighbors. Laplacian 

Eigenmaps compute a low-dimensional representation of the data in which the distances 

between a data point and its n nearest neighbors are minimized. This is done in a 

weighted manner, i.e., the distance in the low-dimensional data representation between 

a data point and its first nearest neighbor contributes more to the cost function than 

the distance between the data point and its second nearest neighbor. The Laplacian 

eigenmaps is selected in our study.  Because of the following: 1) The core algorithm is 

straightforward. It has a few local computations and one sparse eigenvalue problem. 

The solution reflects the intrinsic geometric structure of the manifold. 2) The framework 

of analysis presented makes explicit use of connections to interpret dimensionality-

reduction algorithms geometrically. 3) The locality-preserving character makes it 

relatively insensitive to outliers and noise. 

In the study, the Euclidean distance is selected to be the similarity function. The 

similarity graph is built by the n-nearest neighbor method. The normalized graph 

Laplacian is used. The application of the Laplacian Eigenmaps to the study is given 

here. 

6.3.1.1 Building the Similarity Graph 

We treat each record of global factor data as a data point. The collected data is 

represented by a matrix globalX . Rows of globalX  correspond to points x, columns 

correspond to global factors g, N is the number of points needed to be clustered; M is 

the number of global factors. The n-nearest neighbor method is used to build the 

similarity graph W. ix is connected to jx  if jx is one of the n-nearest neighbors. In this 

case, ,i jw  is the Euclidean distance between points jx  and ix , 

2

, , ,

1

( )
M

i j i k j k

k

w g g


  . 
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6.3.1.2 Reducing Dimension  

The dimensionality reduction is achieved by calculating eigenvectors of a Laplacian 

matrix L, L D W  , where D is a diagonal matrix and 
, ,

1

N

i i j i

j

d w


 . Then we 

compute the first M   generalized eigenvectors 1u , 2u ,…, 
M

u   corresponding to the first 

M   smallest eigenvalues of the generalized eigenproblem Lu Du . Let V be the 

matrix containing M   eigenvectors as columns. The matrix V is the result of the 

dimensionality reduction. 

1 2

1,1 1,2 1,1

2,1 2,22 2,

,1 ,2 ,
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u u u

v v vx

v v vx
V

x v v v









 
 
 
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6.3.1.3 Clustering and Centroid Calculation 

Now the M-dimension global factor data globalX  has been reduced to M  dimension data 

V. Using any classical clustering methods, such as K-means method, to cluster 

1 2{ , ,..., }kV V V V , in which each row denotes one point, into k classes. The data globalX  

is divided into k classes, 1 2{ , ,..., }global kX X X X , where { |j iX x ,* }i jv V ; ,*i means 

the i-th row of V. Then we calculate centroids C of classes according to the global 

factor data in the corresponding class, 1 2,{ , ..., }kC C C C . The centroids make up the 

pattern pool and will be used in the pattern recognition. A point belongs to class i if 

the distance between the points and the centroids Ci is the shortest. 

6.3.2 K-means Clustering on Low Dimensional Data 

Thousands of clustering algorithms have been proposed in the literature in many 

different scientific disciplines(Jain 2010). Single-link(Sneath and Sokal 1973), complete-

link(King 1967), and minimum-variance(Ward Jr 1963, Murtagh 1983) are some very 

common hierarchical algorithms. K-means. (MacQueen 1967), ISODATA(Ball and Hall 

1965), and dynamic clustering(Diday 1973) are some partitional algorithms. The k-

means clustering is a method of vector quantization, originally from signal processing, 

that is popular for cluster analysis in data mining. It will be used in the study, because 

its time complexity is O(nml) and space complexity is O(k+h), where n is the size of 

the dataset, k is the number of clusters, and l is the number of iterations. The 
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underlying idea of the k-means algorithm is to try to find clusters that minimize the 

within-cluster variance and maximize the between-cluster variance because the total 

variance is fixed. To determine the cluster number and the initial clusters are the two 

most important tasks. 

6.3.2.1 Cluster Number 

The elbow method, which tries different cluster number and observes the value 

/F within group error between group error , is used to determine the cluster number. 

The within-group error is the sum of distances from each point to its centroid. The 

between-group error is the sum of average distances from each point to the other 

centroids. A curve can be drawn according to the F value and the cluster number, 

shown in Figure 6.4. On the curve, we can find a point of inflection after which the F 

value decreases very slowly. The cluster number related to the point is the cluster 

number we will use in the k-means algorithm. 

 
Figure 6.4: Elbow method to determine the cluster number 

6.3.2.2 Initial centroids 

The initial centroids are obtained by a particular procedure. The first centroid is 

selected randomly from the dataset. Then from the dataset, we select the second 

centroid which is the furthest from the first centroid. After that, we choose the third 

centroid which is the furthest from the first and second centroids, i.e., the maximal sum 

of distances from the concerned point to the first and second centroid. The other 

centroids will be selected in the same manner. In order to eliminate the influence of 

initial centroids, the k-means algorithm usually runs many times with different initial 

centroids. The result from the best run will be selected. 

6.4 Neural network  

In the study, neural networks are introduced to perform the function Q’. A neural 

network (Haykin 2009) is an interconnected group of artificial neurons that uses a 

mathematical or computational model for information processing based on a 
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connectionist approach to computation. In more practical terms neural networks are 

non-linear statistical data modeling or decision-making tools. Feedforward networks 

can be used for any kind of input to output mapping. A feed-forward network with one 

hidden layer and enough neurons in the hidden layers can fit any finite input-output 

mapping problem. Here, we use it to map the relationship between the local factor and 

the priorities of the alternatives. Backpropagation algorithm(Hecht-Nielsen 1988, 

Rumelhart, Hinton, and Williams 1988) is the most used training method for the 

feedforward neural networks. There are considerable methods to accelerate the 

convergence of the algorithm, such as varying the learning rate(Jacobs 1988), using 

momentum(Phansalkar and Sastry 1994) and rescaling variables(Tollenaere 1990, 

Rigler, Irvine, and Vogl 1991). In our study, the Marquardt algorithm for nonlinear 

least squares is introduced into the backpropagation algorithm. 

6.4.1 Neural Network Structure 

Three-layer feedforward networks are introduced into the model. The inputs X are the 

local factors, and the output Y is the priority. We use the tangent sigmoid transfer 

function ( ) 1/ (1 )x

hf x e   in the hidden layer and linear function ( )of x x  in the 

output layer. The sum of square errors (SSE) is defined to evaluate the training process. 

1
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N

n

n

SSE w e

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1
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where n is the index of training data, N is the data number. en denotes the error of 

the n-th training data. The symbols k, j, m  denote the node in the output layer, in the 

hidden layer, and in the input layer respectively; ,n ky is the target output of the node 

k in the output layer. ,n ko is the actual output. ,n jh is the node j’ s output. ,n mx  is the 

data of the node m in the input layer. 0, jw and 0,kw are biases of the node j in the 

hidden layer and the node k in the output layer. ,j kw is the weight between the node j 

in the hidden layer and the node k in the output layer. 

6.4.2 Neural Network Training 

We adopt Levenberg-Marquardt algorithm to train the networks in batches. The 

Levenberg-Marquardt algorithm combines the steepest descent method and the Gauss-

Newton algorithm. It inherits the speed advantage of the Gauss-Newton algorithm and 

the stability of the steepest descent method. A mathematical description of the LM 
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neural network training algorithm has been presented by Hagan and Menhaj (1994). 

The formula of updating weights and biases is 
1

1 ( )T T

s s s s s sw w Jac Jac I Jac E 

     

where I is an identity matrix, λ  is the damping factor. The damping factor λ  is 

adjusted at each epoch and guides towards the optimization process. If reduction of E 

is rapid, a smaller value can be used, bringing the algorithm closer to the Gauss-Newton 

algorithm, whereas if an epoch gives an insufficient reduction in the residue, λ  can be 

increased, providing a step closer to the gradient descent direction. Jacobian matrix 

Jac is shown as follows. It is a N-by-W matrix, where N is the number of training 

patterns, and W is the total number of weights. It can be computed by using the chain 

rule of calculus and the first derivatives of the transfer functions. 

In addition, the early stopping technique is used to avoid over-fitting. The data is 

divided into three subsets. The first subset is the training set, which is used for 

computing the gradient and updating the network weights and biases. The second 

subset is the validation set. The error on the validation set is monitored during the 

training process. The validation error will typically decrease during the initial phase of 

training. However, when the network begins to overfit the data, the error on the 

validation set will typically begin to rise. When the times of validation error increasing 

reach a specified number of iterations, the training is stopped, and the weights and 

biases at the minimum of the validation error are returned. The third subset is the 

testing set. When the training is done, the network is tested by using this set. 
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In Section 6.3, the global factor data is divided into k classes. Consequently, the 

local factor data and the priority data are grouped into k groups. Based on each group 

of local factor data and the priority data, one neural network is trained. These networks 

make up the function pool mentioned in Section 6.1.3.  

6.4.3 Parameter Determination using Ant Colony Algorithm  

Till now, there are not any theories for calculating the number of the nodes at the 

hidden layer. Through the experiments, we realized that the performance of the network 

is sensitive to the number of the hidden nodes. There are also many other parameters 

of the network which need to be determined before the training, such as iterate number, 

maximal failure number, initial damping factor, the factor for changing the damping 
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factor and so on. How to find out the best combination of these parameters directly 

determines the networks’ performance. In this section, we introduce the ant colony 

algorithm to calculate the parameters. 
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Figure 6.5: Ant colony algorithm determines the parameters for the neural 

networks 
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Figure 6.6: Discretization of the continuous problem for the ant colony algorithm 

Determination of the parameters is an optimization problem. The objective is to 

maximize the accuracy of the neural network. And the decision variables are the 

parameters we have to determine. The accuracy of the neural network comes from the 

test results by using the test dataset. Figure 6.5 shows the paradigm of the approach. 

All parameters make up an ant. The ants are evaluated by training and testing the 

network with the parameters that the ants represent. Because the parameters are 

continuous, but the ant colony algorithm is only suitable for a discrete model, the 

continuous parameters have to be converted to discrete variables first (Liao et al. 2014). 

We normalize all variables to [0, 1) and specify for each variable a number of digits 
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after the decimal point. Each decimal place can be one digit from 0 to 9. Thus a network 

can be created as shown in Figure 6.6. The start node and the end node have no real 

meaning. Each of other columns represents a decimal place of one variable. Figure 6.6 

shows an example having two variables and three decimal digits for each variable. Thus 

the continuous problem turns into a discrete routing problem in the network.  

Ants will run on the network and leave the pheromone on the sides. The pheromone 

can also be evaporated as time goes on. The side that the ant will choose depends on 

the volume of the pheromone on the sides. The probability to select one side is directly 

proportional to the volume of the pheromone (roulette wheel selection). The path that 

an ant goes through denotes a solution. We update the pheromones only after the ant 

finishes the run. The increased pheromone level is related to the evaluation results of 

the ant. The evaporation rate of pheromones is fixed. When more and more ants go 

through the network, there will be one path with the very high pheromone level, and 

most of the ants run on the path. This path will be the optimal solution. In our 

approach, the parameters are normalized according to their lower and upper bound. In 

order to speed up the convergence, we form batches of ants. For each batch, we select 

several best ants and update the pheromones according to these ants’  performances. 

The pheromone update is performed as follows. 

0 , ,(1 ) ( , )sim sim

i k i kf r Q     
, 

where  and 0 are the new and old value of the pheromone.  is the evaporation 

rate. Q  denotes the importance of the objective.  

6.5 Experiments 

We still use the manufacturing line mentioned in the previous chapter to carry out 

experiments. The simulation is used to evaluate the approaches. The simulation runs 

for one week. Because during the simulation, the simulation will stop and wait for the 

decision makers’ result, the whole time that the simulation spends can reflect the 

efficiency of the approaches. Here we compare the method (INT1) with some decision 

rules and the STTD method. First, we compare the INT1-release method with release 

policy CONINT and CONWIP, and the STTD-release method. The routing decisions 

are made by the allocation rule SQL. The sequencing decisions are made by the 

dispatching rule FIFO. The results are shown in Figure 6.7 and Table 6.1.  For the 

average cycle time, the STTD method performs best. However, it needs much time. 

The INT1-release method is the second best one and needs just very short time. 
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Figure 6.7: Comparison the INT1-release method with other approaches 

 

Table 6.1: Throughputs and average cycle times obtained by using release control 

Approach 
Throughput Cycle Time (Hour) Run 

Time (s) Pa Pb Pa Pb Summary 

CONINT 110 197 4.03 4.78 4.52 1.1 

CONWIP 111 189 4.43 5.14 4.89 1.2 

STTD 109 196 3.75 4.52 4.26 215.3 

INT1 111 195 3.85 4.41 4.21 1.8 

 

For the routing problem, we compare the INT1-routing method with the allocation 

rules SQL, SQT, and the STTD method. The release decisions are made by the release 

policy CONINT. The sequencing decisions are made by the dispatching rule FIFO. 

Figure 6.8 and Table 6.2 show the results. We can get the same conclusion. The INT1-

routing method takes very short time while its performance is better than the decision 

rules. 

Table 6.2: Average cycle times obtained by using routing control 

Items                        
Approach SQL SQT STTD INT1 

Cycle Time 

(Hour) 

Pa 4.09 4.08 3.24 3.51 

Pb 4.78 4.87 4.18 4.37 

Sum. 4.52 4.60 3.84 4.07 

Run Time (s) 1.0 1.2 167.9 1.5 
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Figure 6.8: Comparison the INT1-routing method with other approaches 

For the sequencing problem, we compare the INT1-sequencing method with the 

dispatch rules FIFO, SPT, and the STTD-sequencing method. The release decisions 

are made by the release policy CONINT, and the routing decisions are made by the 

allocation rule SQL. The results are shown in Figure 6.9 and Table 6.3. We can get the 

same conclusion for the INT1-sequencing method as the INT1-release and INT1-routing 

methods.  

   
Figure 6.9: Comparison the INT1-sequencing method with other approaches 

 

Table 6.3: Average cycle times obtained by using sequencing control 

Items                       
Approach FIFO SPT STTD INT1 

Cycle 

Time 

(Hour) 

Pa 4.09 3.64 3.53 3.58 

Pb 4.78 4.91 4.49 4.56 

Summary 4.52 4.46 4.12 4.21 

Run Time (s) 1.0 1.3 86.8 1.4 
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6.6 Summary 

A data-driven model is introduced to calculate the priority values for alternatives. It is 

built on the data from the simulation with the STTD method. So it manages to learn 

the knowledge of the STTD method. Two types of factors influence the priority value 

of the alternative: global factors and local factors. The environment is divided into 

several patterns by clustering the global data. In each pattern, the priority value is 

only up to the local factors. The relationship between the priority and the local factors 

is mapped in the neural networks. For each pattern, one neural network is created. In 

the decision maker, the centroids of the patterns make up a pattern pool, and the neural 

networks make up a function pool. While making the decision, the decision maker 

determines the pattern of the current environment according to the pattern pool and 

selects one corresponding neural network from the function pool. The neural network 

will calculate the priority for each alternative according to the local factors. Compared 

to other approaches, the approach always performs better than decision rules. Even 

though it performs not as well as the STTD method, it spends just very short time. 

Therefore, it can be used in the system which has high requirements on the efficiency 

of the approach.  
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7 Intelligent Release, Routing, and 
Sequencing Based on Markov 
Decision Process 

In this chapter, we present a different method of calculating the priority values for 

alternatives. The method is based on the Markov decision process (MDP) (Puterman 

2014) which aims to find out an optimal action-value function to take the best action. 

The concepts in the MDP are quite similar to the concepts appearing in Chapter 5 and 

6. The actions in the MDP are the selections of the best alternatives. The value of an 

action equals the priority value of the alternative, which is determined by both the 

state of the environment and the action itself. Reinforcement Learning (Sutton and 

Barto 1998) provides some good approaches to solve the MDPs problem, such as 

temporal difference learning (Tesauro 1992, 1995) and Q-learning(Watkins and Dayan 

1992, Rummery and Niranjan 1994). We still use the same data-driven model presented 

in Chapter 6 to map the relationship between the value of action and the state-action 

pair. The data-driven model is built from the data generated from a simulation-based 

Q-learning algorithm. Most concepts and notations in this chapter come from Sutton 

and Barto’s book. The initial idea is inspired by Gabel and Riedmiller (2008a). They 

introduced the reinforcement learning to a job-shop scheduling problem, i.e., the 

sequencing problem. For more information about Gabel and Riedmiller’s study, refer 

to (Gabel and Riedmiller 2012, 2008b, 2007b). We extend the study to the release and 

routing problems and combine the algorithms with the simulation.   

7.1 Markov Decision Process  

7.1.1 Introduction to Markov Decision Process  

A general Markov decision process has two components: a decision maker and its 

environment. To be more specific, the Markov decision process is a five-tuple 

, , ( ), ( ' | , ), ( ' | , )M T S A s P s s a R s s a  , where T is a set of decision points; S is a set of 

all possible states of the environment; ( )A s  is a set of possible actions (alternatives) 

while the state is ,s s S ; ( ' | , )P s s a  is a set of the probabilities that the state of the 

environment changes from state s to state s’ after taking action a, which satisfies 

'

( ' | , ) 1
s S

p s s a


 . ( ' | , )R s s a  is a set of rewards that the decision maker obtains after 
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taking action a and the state of the environment changes from state s to state s’. The 

decision maker and environment interact at decision points T. At each decision point 

,t t T , the decision maker receives the environment's state sat , and on that basis, the 

decision maker selects an action , ( )a a A s . One step later, in part as a consequence of 

its action, the decision maker receives a numerical reward 1 1,t tr r    and finds itself in 

a new state ', 's s S .  At each decision point, the decision maker implements mappings 

from states to probabilities of selecting each possible action. This mapping is called the 

policy and is denoted by t , where ( , )t s a is the probability that the decision maker 

takes action a in state s at t-th decision point.  

 

Action Set
Policy

State Space State 

Transition

Reward 

Function

StateAction Reward

Environment

Decision maker

Policy 

Learning

 

Figure 7.1: Markov decision process 

 

Informally, the decision maker's goal is to maximize the total amount of rewards it 

receives. This means maximizing not immediate reward, but the cumulative reward in 

the long run. At each decision point, a reward is a simple number tr  . In general, we 

seek to maximize the expected reward defined as some specific function of the reward 

sequence. A widespread way is that the decision maker tries to select actions so that 

the sum of the discounted rewards it receives in the future is maximized. The expected 

discounted reward is, 

1

0

k

t t k

k

R r


 



 , 

where r  is a parameter, 0 1   , called the discount rate. 

7.1.2 Value Function and Optimal Value Function 

Estimation of how good it is to perform a given action in a given state (or how good it 

is for the decision maker to be in a given state) is usually based on some value functions. 

The notion of "how good" here is defined in terms of future rewards that can be 

expected. The rewards the decision maker can expect to receive in the future depend 
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on what actions it will take. Accordingly, value functions are defined with respect to 

particular policies(Sutton and Barto 1998). 

Recall that policy, , is a mapping from each state, s S , and action, ( )a A s , to 

the probability ( , )s a of taking action a when in state s. Informally, the value of a state 

s under a policy  , represented by ( )V s
, is the expected reward. For MDPs, we can 

define ( )V s
formally as  

1

0

( ) { | }k

t k t

k

V s E r s s

 


 



  . 

We call the function ( )V s
 the state-value function for policy . Similarly, we define 

the value of taking action a in state s under a policy , denoted by ( , )Q s a
, as the 

expected reward starting from s, taking action a, and thereafter following policy  , 

1

0

( , ) { | , }k

t k t t

k

Q s a E r s s a a

 


 



   . 

We call the function ( , )Q s a
 the action-value function for policy . In order to 

obtain the value functions, we describe these two value functions in the form of Bellman 

equation. To solve the Bellman equation, we can obtain the value functions for policy

 . The Bellman equation for the state value function is defined below, which will be 

used in the policy iteration algorithm in the following section. 

'

( ) ( , ) ( ' | , )[ ( ' | , ) ( ')]
a s

V s s a p s s a r s s a V s      

The aim of a decision maker is to find the optimal policy. There is always at least 

one policy that is better or equal than all other policies. This policy is called the optimal 

policy. There is only one optimal-value-function, which is the base for an optimal policy. 

An optimal state-value function is, denoted by 
*( )V s , and defined as, 

*( ) max ( )V s V s

 , for all s S . 

Among all policies, there is also one that is at least equal or better than the others 

using the optimal action-value-function. We define an optimal action-value function, 
*( , ) max ( , )Q s a Q s a

 , for all s S , ( )a A s . 

Thus, we can rewrite 
*Q in terms of 

*V as follows: 
* *

1 1( , ) { ( ) | , }t t t tQ s a E r V s s s a a     . 

The optimal value of a state must equal the expected reward for the best action 

from that state. Thus, the optimal state-value function can be defined as, 
** *

( ) ( )
'

( ) max ( , ) max ( ' | , )[ ( ' | , ) ( ')]
a A s a A s

s

V s Q s a p s s a r s s a V s 
 

   . 

This is the Bellman equation for the optimal state value function. This equation will 

be used in the value iteration algorithm in the following section. We can see that in the 

equation the optimal values have been independent of the policy. To solve this Bellman 
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equation, we can obtain the optimal value function. Once we have the optimal value 

function, it is effortless to get the optimal policy. 

7.1.3 Algorithms for Solving Markov Decision Process 

Policy iteration and value iteration are two standard methods of computing an optimal 

MDP policy. Policy iteration starts with an arbitrary policy π0 (an approximation to 

the optimal policy which works best) and iteratively improves it. It carries out the 

following algorithm. 

 

Step 1 Initialization  

           ( ) , ( ) ( )V s s A s   arbitrarily for all s S  

Step 2 Policy Evaluation 

       Repeat 

           0   

           For each s S  

                 ( )v V s  

                 
'

( ) ( ' | , ( ))[ ( ' | , ( )) ( ')]
s

V s p s s s r s s s V s     

                 max( ,| ( ) |)v V s    

           End 

      Until    

Step 3 Policy Improvement 

     policy stable true   

      For each s S  

           ( )b s  

           
( )

'

( ) arg max ( ' | , )[ ( ' | , ) ( ')]
a A s

s

s p s s a r s s a V s 


   

            If ( )b s then policy stable false   

         End 

         If policy-stable, then stop; else go to Step 2 

 

In fact, the step of the policy evaluation in the policy iteration algorithm can be 

truncated in several ways without losing the convergence guarantees. One particular 

important case is when the policy evaluation is stopped after just one sweep (one 

backup of each state). This algorithm is called value iteration. The algorithm is shown 

as follows. 
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Initialize V arbitrarily, e.g., ( ) 0V s  , for all { }fs S s   

Loop 

       0   

       For each s S  

              ( )v V s  

              
'

( ) max ( ' | , )[ ( ' | , ) ( ')]a

s

V s p s s a r s s a V s   

              max( ,| ( ) |)v V s    

        End 

Until    ( _ _ min _s time s time is a small positive number) 

Output a deterministic policy,  , so that 

        
'

( ) arg max ( ' | , )[ ( ' | , ) ( ')]a

s

s p s s a r s s a V s    

 

Both two algorithms have to iterate over the state space and need the transition 

probabilities to be given. However, for most problems, the state space is infinite or very 

huge, and it is impossible or tough to acquire transition probabilities. Thus, we 

introduce another algorithm, called Q-learning, to solve the problem. Q-learning is a 

model-free reinforcement learning technique, which means we do not need to know 

details of the model, like the state space and transition probability. Q-learning can be 

used to find an optimal action-selection policy for any given (finite) Markov decision 

process (MDP). It works by learning an action-value function that ultimately gives the 

expected reward of taking a given action in a given state and following the optimal 

policy thereafter. The algorithm is presented as follows. 

 

Initialize Q(s, a) arbitrarily, e.g., ( , ) 0Q s a  , for all { }, ( )fs S s a A s   , let 

i=0 

While i < Max iteration number, do 

    Initialize current state s 

    While 
fs s , do 

  Take action a using a policy derived from Q (e.g.,   greedy) 

  Observe new state 's  , ( ' | , )r s s a , and action set ( ')A s  in state 's  

        ' ( ')[ ( ' | , ) max ( ',( , ) (1 ) ( , ) ')]a A sr s s a QQ s a Q ss a a      

  's s  

    End  

    i=i+1 

End 

Output a deterministic policy,  , so that 

        ( ) arg max ( , )as Q s a   
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7.1.4 Markov Decision Process with Multiple Decision Makers 

In the real world, one Markov decision process usually has various decision makers 

shown in Figure 7.2. The decision makers make their own decisions and influence the 

environment. They have their own action sets and policies and may interact with each 

other. In the environment, each decision maker may have its own transition and reward 

functions. Their local goals are to maximize their cumulative rewards, in the long run, 

to achieve a global goal together. The local goals may conflict with each other even 

though they have the same global goal. 
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Figure 7.2: Markov decision process with multiple decision makers 

7.2 MDP model of the Release, Routing, and 
Sequencing  

In this section, we will create an MDP model for the release, routing and sequencing 

problems with multiple decision makers. The task is to determine the decision makers 

and define the five-tuple for the problems, including the decision points, the state space, 

the action sets, the transition procedure, and the reward function.  

7.2.1 Multiple Decision Makers 

Similar to Chapter 6, for each type of product a release decision maker is created; for 

each machine group, a sequencing decision maker and a routing decision maker are 

created. 

7.2.2 Decision Points 

Points of referred time at which decisions are made are defined as decision points. The 

set of decision points T, a subset of the non-negative real line may be classified in two 



 

 

MDP model of the Release, Routing, and Sequencing  

111 

 

ways: either a discrete set or a continuum, and either a finite or an infinite set. In our 

study the decision point set is discrete, i.e., the decisions are made when certain discrete 

events occur. It can be either finitely or infinitely dependent on the type of the material 

flow. For example, some material flows never stop because the manufacturing orders 

come successively; some material flows will stop after finishing all current orders and 

wait for the next orders.  

7.2.3 State Space 

The state here refers to the state of the environment. The state space can be either 

discrete or continuous. It also may be either finite or infinite. In our model, the state 

space is discrete and finite but is huge. In order to facilitate the introduction to the 

transition procedure, the state space will be precisely defined here. 

The state space is defined as a set { }S s  for all possible state s. Because we use the 

agent-based model to represent the environment, the state of the environment is the 

integration of all agents’ states. A state s of the environment is, 

{{ | },{ | },{ | }}j l ms s j J s l L s m M    , 

where js is the state of job agent j; J is a set of job agents. ls is the state of release 

agent l; L is a set of release agents. ms is the state of machine agent m; M is a set of 

machine agents. Recall the states of the machine we addressed in Chapter 4, here we 

give each state an id, denoted by _ms id , _ {0,1,2,3,4}ms id  . The relation is shown as 

follows: 0 FREE ,1 SETUP , 2 BUSY , 3 BREAKDOWN , 4 MAINTAINENCE . 
Let _s time denote the remaining time that the state will hold. Thus, 

{ _ , _ }ms ms id s time . 

In addition to the state ID and the remaining time that the state will last, a job’ s 

state includes its position and progress. The position describes which machine or buffer 

or transport line the job can be found on. The progress indicates which step the job 

reaches. In order to simplify the model, we use only the machine ID to describe the 

position. If the job is on a transport line or in a buffer, we specify the machine that the 

job will go instead of the transport line and buffer. Thus,  

{ _ , _ , _ , _ }js js id s time m id o id , 

where _ {1,2,3,...}m id  is the id of the specified machine; _ {1,2,3,...}o id   is the 

current operation id of the job. _ { 1,0,1,2,3,...}js id    is the state id of the job. If the 

state id of a job is -1, it means the job has been released. If the state id is 0, it means 

the job has been finished. Others are normal states that we mentioned in Chapter 4. 

The relation is shown as follows: 1 ,0UNRELEASED FINISHED   ,

1 ,2TRANSPORTING WAITING  3 ,4PROCESSING BLOCKED  . 
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In each release agent, there is a counter which counts the number of released jobs. 

The state of the release agent is the current value of the counter and the remaining 

time to next release, { _ , _ }ls rj num s time , where _rj num is the number of the released 

job. Note that even though the remaining times _s time are continuous variables, in 

Section 7.2.5 we will know that the remaining times are updated discretely, so they are 

also discrete.  

7.2.4 Action set  

Action set A(s) is the set of actions that can be taken in state s. In our model, the set 

is finite and discrete. The size of the set is relatively small. The action is actually a 

selection of one decision from some alternatives. For each type of decision makers, they 

have their alternatives, i.e., an action set. For the release decision makers, the action 

set is, 

( ) {0,1,2,...,max_ }l lA s num , 

where the elements mean the number of jobs that will be released. max_ lnum denotes 

the maximal release number at a time, maxmax_ lnum WIP WIP  .WIP is the work-in-

process level of the product that the decision maker is in charge of. maxWIP  is the 

maximal WIP level of the product, which can be obtained according to the 

configuration of buffers in front of the related machines. This action set varies at 

different decision points due to the variable WIP level. 

For the sequencing decision makers, they will select one job from the buffer to 

process at a decision point. The action set at the decision point is  

( ) { ,{ | }}m mA s null j j J  , 

where mJ is used to define the jobs waiting in the buffer in front of the machine m at 

the decision point. Null means it will select nothing and keep itself free even though 

jobs are waiting for it. This selection is quite useful if the machine is a batch processing 

machine. In this way, the batching problem is included in the sequencing problem. mJ

changes at the decision points, thus the action set is also variable. 

For the routing decision makers, after a job is finished they will select one machine 

from a set of machines that can carry out the next operation o of the job. The action 

set at the decision point is 

,( ) { ,{ | }}j j oA s null m m M  , 

where ,j oM is a set of machines which can perform operation o in the job j. If the 

selection is null, the job will continue staying on current machine and block the machine 

(because we assume that there is no buffer behind the machine). The practical meaning 

of the null selection is that “waiting a moment and observing the environment, then 

making the decision.”  



 

 

MDP model of the Release, Routing, and Sequencing  

113 

 

From the definitions of the state and the action sets, we can see that, given a state, 

it is possible to check if any decision makers have decisions to make in the state and it 

is also possible to obtain action sets dynamically from the state.  The procedure is 

described as follows. 

Procedure I: Given a state, find out all decision makers who have decisions to make 

and generate the appropriate action sets.  We call the decision makers active decision 

makers.  

We scan all decision makers. For a sequencing decision maker on machine m, if the 

state of m is FREE, _ 0ms id  and there is at least one job whose position is on the 

machine m, _ ( )m id ID m , and the state of the job is WAITING, _ 2s id  , the 

sequencing decision maker will have to make a sequencing decision. mJ appearing in 

action set ( )mA s will be the set of the jobs which meet the conditions above. Similarly, 

if the state of the machine is 3 or 4 and the remaining time _ 0s time  , the decision 

maker also needs to make a decision. A routing decision maker will make a routing 

decision to select a machine for job j, if the state of job j _ 3js id  , and the remaining 

time of the state _ 0s time  . The action set for the current operation o in job j is always 

constant no matter if the state of the machines in the set is FREE or not. We assume 

that even if a machine is broken, the job can still go there and wait in the buffer in 

front of the machine, because it may result in a good performance. For a release decision 

maker, if there are jobs whose operation id is the last id and the state is PROCESSING, 

_ 3js id  , and the remaining time of the state _ 0s time  , the release decision maker 

has to make a release decision. max_ lnum will be updated according to current WIP 

level of the related product. 

In addition, given a state of the environment, we may find that more than one active 

decision-makers, i.e., several decision makers may need to make decisions in the state 

at the same time. In this case, we give a sequence for the decision makers and let the 

decision makers make decisions in such order. The sequence is related to the scheduling 

objective. 

7.2.5 Transition Procedure 

The transition function is described by ( ' | , ), , ' , ( )P s s a where s s S a A s  . P is a set of 

the probabilities that the state of the environment changes from state s to state s’  

after taking action a. In our model, after an action is taken, the new state is also random. 

For example, when a sequencing decision maker selects a job to process, the state of 

the job agent will be updated as follows, _ 3js id   and ,0_ _ js time proc time  , where 

,_ j oproc time  is the processing time of operation o in job j on the machine. Because the 

processing time, following specific distribution function, is stochastic,  _s time  is 

stochastic too. Thus, the state of the job { _ , _ , _ , _ }js js id s time m id o id is random. 
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Except for the remaining time, other elements are determined. The probability that the 

state changes to a new state with certain remaining time is the probability that the 

remaining time is generated following the distribution function. 

Because the state space is quite huge and it is impossible to enumerate all possible 

states and create P, Q-learning will be used in our approach. We just need to sample 

the next new state from the current state rather than calculating the transition 

probabilities. A state transition procedure can be specified for each type of decision 

makers. 

Procedure II: Given a state and an action that one decision maker takes, randomly 

generate the next new state. Only the relevant agents in the agent-based model are 

considered. 

After a routing decision maker takes one routing action a (a machine) for a job, both 

the state of the job and the state of the previous machine have to be updated. For the 

job agent, the state is updated as follows: _ 1js id  , _ _ 1o id o id  , _ ( )m id ID a ,

_ _ m as time trans time  . For the machine agent, _ 0ms id  , _s time   . Because the 

machine becomes free, the machine needs to make sequencing decision. If the job agent 

selects null, the job is blocked. In this case, only the job agent needs to be updated, 

_ 4js id  , _ 1s time   . 

After a sequencing decision maker takes one sequencing action a (a job), the state 

of both the job and the current machine have to be updated. For the job agent, the 

state is updated as follows:  _ 3js id  , ,_ _ j os time proc time . For the machine agent, 

_ 1ms id  , ,_ _ j os time proc time . If the machine agent selects null, nothing will be 

changed. 

After a release agent takes one release action a (number of jobs that will be released), 

both the state of the release agent and the states of the released jobs need to be updated. 
For the release agent, the released job number num  is updated, _ _rj num rj num a  ; 

For all released jobs, the state IDs change from -1 to 1, _ 1js id  , and we set the 

current operation id, _ 1o id  . Then each released job agent has to make a routing 

decision. 

In our model, an initial state can be either empty or generated randomly. In order 

to find an optimal policy, the iteration always starts from the initial state. After that, 

we examine if there are any active decision makers. If so, the active decision makers 

will make decisions successively and update the states of the corresponding agents. 

Then we will examine again if in the new state there are still active decision makers, 

the active decision makers make decisions too. The loop ends when there are no more 

active decision makers. Now the problem is how to let the environment move to next 

state. In this situation, we carry out Procedure III, shown as follows, to generate the 

next new state. And then we examine the decision agents again. If the state space is 

finite, the iteration will end when the state enters the final state. 
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Procedure III: Given a state and Procedure I cannot find any active decision-makers 

in the state, generate the next new state. 

We scan all agents’  state and find out the agent which has the minimal _s time , 

where _ 1s time or   . We let _ _ min _s time s time , _ 0s time  , and update other 

agents’  remaining times _ _ _ _ mins time s time s time  . In this way, the environment 

moves to a new state.  

7.2.6 Reward Function 

The decision maker always learns to maximize its reward. If we want it to do something 

for us, we must provide rewards for it. When the rewards are maximized, the decision 

maker will also achieve our goals. It is thus critical that the rewards we set up truly 

indicate what we want to be accomplished. In particular, the reward is a way of 

communicating with the decision maker what we want it to achieve, not how we want 

it to achieve.  

A crucial precondition to enable the decision maker to learn to make sophisticated 

scheduling decisions is that the reward function coincides with the overall objective of 

scheduling. In our model, the reward, '( ' | , ) (1 ) a sr s s a r r     , includes two parts, 

where 0 1   indicates the relative importance of the parts. The first part is the 

reward for the action selection. The second part is the reward for the state sojourning 

in a period  , where  is the time between two successive decision points. The first 

part is only dependent on the new state 's  and the scheduling objective. If the objective 

is related to the due date of jobs, ar is the average time slack of all in-process jobs in 

state 's . If the objective is associated with the completion time of jobs, ar  is the 

reciprocal of the number of jobs which are waiting in buffers in state 's . For the release 

decision maker, besides factors above, the reward also considers the current average 

release rate to ensure to meet the throughput constraints. 

7.3 Simulation-based Q-learning Algorithm for 
Solving RRSMDP Model 

The algorithms for solving the model aim at generating for each decision maker a policy 

which maps the relation between states of the environment and actions which will be 

taken. The value iteration and policy iteration, given in Section 7.1.3, output the 

actions being taken in all possible states of the environment. They backup values for 

all states. However, in our model, even though the state space is finite, it is still too 

large to enumerate all the states. In addition, the output that we need is a 

parameterized policy for each decision maker rather than the results of the policy, i.e., 

actions we take. In other words, we try to find each decision maker a function which 

calculate the value of action according to the action-state pair. The decision maker 
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takes one action from the action set based on the values of the actions. Therefore, in 

our model, the Q-learning algorithm is changed to fit our problem. The data-driven 

model presented in Chapter 6 maps the value of the action to the state-action pair 

7.3.1 Improved Q-learning Algorithm in the Multi-agent 
Environment 

Procedure I, II and III are used to explore the state space from an initial state to a final 

state. The period from an initial state to the final is considered as an episode. The 

iteration times we give are the number of the episodes. If the number of the episodes is 

big enough, more and more state will be visited. The more states that the algorithm 

involves, the better policy we will obtain. We specify each decision maker a data-driven 

model iQ , i.e., action-value function, which will be updated after the decision maker 

takes action. The algorithm is given as follows: 

 

Input: initial state 0s , iteration times N and exploration rate   

Initialize data-driven model iQ randomly, for each decision maker i D , 

where D is a set of all decision makers 

Let index=0 

A: Let 0s s , previous state is null  , previous action ia null  for all 

agent i D  

B: Find out all active decision makers 'D D  in state s using Procedure 

I 

If | ' | 0D  then go to Line C 

For each active decision agent , ii i D  

 is s , ( )iA s current action set  

  If is null   then 

  ( )[ ( | , ) ma( , ) (1 ) ( , )]( x, )
ii a A s ii i i i i i i ii ir s s a Q s aQ s a Q s a       

   

   

  Update data-driven model ( , , ( , ))i i i ii iQ UpdateValueFunc s a Q s a     

 End 

 Select an action ia  by exploiting iQ  greedily according to  

            
' ( )

arg max ( , ')
i

i d i
a A s

a Q s a


 or select ia  randomly ( )i ia A s  with 

probability  

 i is s  , i ia a    

End 
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Execute actions { }ia  that the decision makes just selected 

Update states of the influenced agents using Procedure II, we get new 

state 's  

Let 's s , go to Line B 

C: Move to the next state 's using Procedure III, let 's s  

       If fs s  then  

  index=index+1 

        If index<N then go to Line A else the algorithm ends 

 Else 

  Go to Line B  

 End 

 

Given a state, we use Procedure I to find all active decision makers. After that, for 

each active decision maker, the data-driven model will be updated according to the 

previous action it took and the previous state in which the previous action is taken. 

Then, it selects an action by using a  -greedy method derived from the value function. 

The  -greedy method allows us to enter a new state with certain probability   

without considering the value function, to explore the state space. When all active 

decision makers have updated their value function and selected their actions, the 

selected actions will be executed in a specific sequence. After that, Procedure II will 

update the state of the environment, i.e., states of the influenced agents. The procedure 

I and II will repeat until Procedure I cannot find any active decision makers. Then 

Procedure III moves the environment to the next state, and Procedure I and II start 

again. When the environment enters the final state, we give a new initial state again 

and repeat all steps above. The algorithm ends when it reaches maximal iteration times 

given before. 

7.3.2 Batch-mode Q-learning Algorithm in the Multi-agent 
Environment 

In the previous algorithm, the data-driven models are updated every time immediately. 

Usually, batch-mode training can yield improvements regarding learning speed and 

performance. In this section, a batch-model value iteration algorithm is addressed. We 

create a training pattern set X for each decision maker. Once a decision maker made 

decisions, the related pattern data will be put into its training pattern set. When an 

episode finishes, the data-driven model of each decision maker will be trained using the 

training pattern sets. After that, the sets are emptied, and a new episode starts. 
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Input: initial state 0s , iteration times N and exploration rate   

Initialize data-driven model iQ randomly, for each decision maker i D , 

where D is a set of all decision makers 

Let index=0 

A: Let 0s s , previous state is null  , previous action ia null  , dataset

iX  for all agent i D  

B: Find out all active decision makers 'D D  in state s using Procedure 

I 

If | ' | 0D  then go to Line C 

For each active decision agent , 'i i D  

 is s , ( )iA s current action set  

  If is null   then 

  ( )( | , ) max ( , )( , )
iii i i a A s i i ii ir s s a Q s aQ s a    

     

  {( , , ( , ))}ii ii i iiX X s a Q s a      

 End 

 Select an action ia  by exploiting iQ  greedily according to  

            
' ( )

arg max ( , ')
i

i d i
a A s

a Q s a


 or select ia  randomly ( )i ia A s  with 

probability  

 i is s  , i ia a    

End 

Execute actions { }ia  that the decision makes just selected 

Update states of the influenced agents using Procedure II, we get new 

state 's  

Let 's s , go to Line B 

C: Move to the next state 's using Procedure III, let 's s  

       If 
fs s  then  

  For each decision maker i, i D   

   Update data-driven model ( )i iQ UpdateValueFunc X  

  index=index+1 

        If index<N then go to Line A else the algorithm ends 

 Else 

  Go to Line B  

 End  
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7.3.3 Simulation-based Batch-mode Q-learning Algorithm 

As we mentioned before, three procedures are used to explore the state from a large 

number of states. Once a decision-maker takes an action, some agents in the 

environment model will be influenced. We have to update not only the state of the 

connected agent but also the states of the influenced agents. The changes in the state 

of the affected agents may lead the relevant decision-makers to take some other actions 

too. A reaction chain exists in this case. In addition, every time the environment enters 

a new state, we have to use Procedure I to find out all active decision makers. Once 

the action chain ends, we have to use Procedure III to move to a new state. Things 

seem to be too complicated. 

But if we put the decision makers into their related agent as before we did, we can 

find that all of these procedures have been implemented in the agent-based simulation 

model we created before. Updating other agents’ states can be achieved by 

communications among them. What the procedure III did is exactly to advance and 

synchronize the time of all agents in the simulation. The simulation can capture all 

events including the events at which the decisions are made. So there is no need to find 

out the active decision makers as Procedure II did. Therefore, we can use the simulation 

model in the Q-learning algorithm. In practice, the transition procedure is more 

complicated than what we addressed in Section 7.2.5. If all features are considered, the 

transition will lead the MDP model unreadable. On the contrary, the agent-based 

simulation model can easily involve most of the features.  Thus we use the simulation 

model in the Q-learning algorithm. The combination of them is shown as follows.  

 

Input: iteration times N and exploration rate   

Initialize iQ randomly, for each agent i D , D is a set of all agents except job 

agents 

Let index=0 

A: Initialize simulation model randomly 

Start simulation 

Let iX  , previous state is null  , previous action ia null  for all agent 

i D  

Whenever the simulation enters a decision point in agent i do the following, 

       Pause simulation 

       is current state , ( )iA s current action set  

 If is null   then 

  ( )( | , ) max ( , )( , )
iii i i a A s i i ii ir s s a Q s aQ s a    

  

        {( , , ( , ))}ii ii i iiX X s a Q s a      
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 End 

       Agent i takes action ia  by exploiting iQ  greedily according to  

            
' ( )

arg max ( , ')
i

i i i
a A s

a Q s a


 or select ia randomly ( )i ia A s with 

probability  

       i is s  , i ia a   

       Continue simulation 

Till the simulation ends then do 

       For each agent i, 

                 update data-driven model ( )i iQ UpdateValueFunc X  

        Let index=index+1  

        If index<N, then go to Line A 

 

In each agent, a training dataset and a data-driven model representing the value 

function are created. Once a decision-making event occurs, the simulation will pause 

and wait for the related agent to make the decision.  The agent will use the data-driven 

model to make the decision and also communicate with the influenced agents which 

will update their state according to the messages they received. The old state, old action, 

and the new state are stored in the dataset. After that, the simulation continues. Each 

simulation run is an episode as we mentioned before. When the agents receive the signal 

about the simulation ends, they will start the training process for the data-driven model.

  

7.4 Experiments 

In this section, the algorithm in Section 7.3.3 will be evaluated. We still use the 

manufacturing line mentioned in Chapter 5 to carry out experiments. The simulations 

are used to evaluate the approaches. The simulation runs for one week. Because during 

the simulation, the simulation will stop and wait for the decision makers’ results, the 

whole time that the simulation spends can reflect the efficiency of the approach.  

7.4.1 Convergence 

Due to the generalization and extrapolation abilities of neural networks, unpredictable 

changes at different places in the state-action space can be built(François-Lavet, 

Fonteneau, and Ernst 2015). It is known that errors may be propagated and that this 

may even become unstable. It cannot be guaranteed that the current estimation for the 

accumulated rewards always underestimates the optimal reward, and therefore 

convergence is not assured (Tsitsiklis and Van Roy 1997, Gordon 1999). Convergence 
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may be slow or even unreliable with the neural networks(Riedmiller 2005). Moreover, 

in the multi-agent Markov decision process, the convergence is still an open 

question(Abtahi and Meybodi 2008). Thus, in the study, the convergence should be 

verified experimentally. 

In the algorithm in Section 7.3.3, all agents are trained together after each iteration 

(one simulation run). Thus, after each iteration, we record the integrated average cycle 

time and draw a curve. The curve will depict the convergence of the algorithm. Figure 

7.3 is the obtained convergence curve in which the convergence is not obvious. But 

from the trending line, we can see that the average cycle time is going down slowly and 

at last almost stays steady. 

 

 
Figure 7.3 Convergence curve of the algorithm for the sequencing problem  

7.4.2 Comparison 

Here we compare the intelligent method (INT2) in this chapter with some decision 

rules, the STTD method, and the intelligent method (INT1) in the previous chapters. 

First, we compare the INT2-release method with the release policies CONINT and 

CONWIP, the STTD-release method, and the INT1-release method.  

Table 7.1: Throughputs and average cycle times obtained by using release control 

Approach 
Throughput Cycle Time (Hour) Run 

Time (s) Pa Pb Pa Pb Summary 

CONINT 110 197 4.03 4.78 4.52 1.1 

CONWIP 111 189 4.43 5.14 4.89 1.2 

STTD 109 196 3.75 4.52 4.26 215.3 

INT1 111 195 3.85 4.41 4.21 1.8 

INT2 108 190 3.71 4.53 4.23 1.7 
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The routing decisions are made by the allocation rule SQL. The sequencing decisions 

are made by the dispatching rule FIFO. The results are shown in Figure 7.4 and Table 

7.1.  We can see that the INT2-release method performs better than the release policies 

and similar to the STTD-release method and the INT1-release method. 

 

  
Figure 7.4: Comparison between the INT2-release method and other approaches 

 

For the routing problem, we compare the INT2-routing method with the allocation 

rules SQL and SQT, the STTD method, and the INT1-routing method. The release 

decisions are made by the release policy CONINT. The sequencing decisions are made 

by the dispatching rule FIFO. Figure 7.5 and Table 7.2 show the results. We can see 

that the INT2- routing method performs better than the allocation rules but worse than 

the STTD- routing method and the INT1- routing method. 

 

 

  
Figure 7.5: Comparison between the INT2-routing method and other approaches 
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Table 7.2: Average cycle times obtained by using routing control 

Items                        
Approach SQL SQT STTD INT1 INT2 

Cycle 

Time 

(Hour) 

Pa 4.09 4.08 3.24 3.51 3.64 

Pb 4.78 4.87 4.18 4.37 4.80 

Sum. 4.52 4.60 3.84 4.07 4.38 

Run Time (s) 1.0 1.2 167.9 1.5 1.9 

 

For the sequencing problem, we compare the INT2-sequencing method with the 

dispatch rules FIFO and SPT, the STTD-sequencing method, and the INT1-sequencing 

method. The release decisions are made by the release policy CONINT, and the routing 

decisions are made by the allocation rule SQL. The results are shown in Figure 7.6 and 

Table 7.3. We can see that the INT2- sequencing method performs similar to the 

dispatch rules but worse than the STTD- sequencing method and the INT1- sequencing 

method. 

   
Figure 7.6: Comparison between the INT-sequencing method and other approaches 

 

Table 7.3: Average cycle times obtained by using sequencing control 

Items                       
Approach FIFO SPT STTD INT1 INT2 

Cycle 

Time 

(Hour) 

Pa 4.09 3.64 3.53 3.58 3.73 

Pb 4.78 4.91 4.49 4.56 4.88 

Summary 4.52 4.46 4.12 4.21 4.46 

Run Time (s) 1.0 1.3 86.8 1.4 1.5 
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7.5 Summary 

The release, routing, and sequencing problems are modeled as the Markov decision 

processes with multiple decision makers. We defined the five-tuple for the problems, 

including decision points, state space, action sets, transition procedure, and a reward 

function. The data-driven model is still used to map the value of the action to the state-

action pair. The simulation-based batch-mode Q-learning algorithm is introduced to 

solve the problem. It explores the state space by the simulation. Each simulation run 

is one iteration. The data-driven models are updated and improved gradually after each 

iteration. We compare the approach with other approaches; the results show that it 

performs unstable. Sometimes it performs better than the STTD method; occasionally 

it performs even worse than a simple rule. Though there are still lots of works to do on 

this approach, the study already shows the possibility of using the reinforcement 

learning to solve the problems.  
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8 Conclusions and Perspectives 

8.1 Conclusions 

The release, routing, and sequencing problems are sequential decision-making problems.  

The decision-making is the selection of the best alternative from possible alternatives. 

In other words, it is a priority calculation problem. For each alternative, a priority 

value is computed. The alternative with the highest priority is selected. We proposed 

three approaches to calculate the priority values of alternatives, including the 

simulation try-then-decide method (STTD), the intelligent method based on the 

simulation try-then-decide method (INT1), and the intelligent method based on Markov 

decision process (INT2).  

Because the methods highly depend on the simulation, we developed an agent-based 

simulator for the material flow. To speed up ABS, we introduced worldviews from the 

discrete event simulation into the ABS. Compared to other worldviews, the process-

interaction worldview is more natural and closer to the mental model ,and we took it 

into the ABS. The result from an application to the queuing system / /1rM M  shows 

the validity of the proposed approach. It performs more efficiently than the real-time 

ABS (timescale). The ABM and the process-interaction worldview are inextricably 

linked. The flexibility, maintainability, and modifiability of the ABM are also enhanced 

in this way. A framework for the ABS with the process-interaction worldview is 

developed for further uses. 

Within the framework, an agent-based model of the material flow including release 

agents, machine group agents, and job agents is built. The agent-based model, the data 

collector, and the time manager make up the simulator for the material flow. In the 

model, the release agents make release decisions according to the release policy, the 

routing and sequencing decisions are made by the machine and machine group agents 

according to the priority rules. It is also very easy to replace these rules with the 

decision makers we created later in our three methods. Thus, the simulation can also 

evaluate our methods. Applying the simulator to a wafer FAB model, we made a good 

release policy for the FAB according to the experimental results. 

Based on the simulator, the STTD method, a pure simulation approach, is proposed. 

It uses the alternative simulation to predict the future after an alternative is taken and 

select alternatives according to the future information from the simulation. The most 

important innovation is the usage of the base-rule in the alternative simulation. The 

base-rule avoids the exponential explosion of the number of the alternative simulations. 

To evaluate the STTD method, we replace the material flow system with an 

environment simulation. The decisions we made are executed in the environment 
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simulation. The results from the environment simulation can be used to evaluate the 

STTD method. At last, we compare the STTD method with many decision rules; and 

it always performs best in the release, routing, and sequencing problems. 

The INT1 method combines the experiences & data approach with the simulation 

approach. A data-driven model is introduced to calculate the priority values for 

alternatives. It is built on the data from the simulation with the STTD method. So, it 

manages to learn the knowledge of the STTD method. Two types of factor influence 

the priority value of the alternative: global factors and local factors. The states of the 

material flow are divided into several patterns by clustering the global data. In each 

pattern, the priority value is only up to the local factors. The relationship between the 

priority and the local factors is mapped in the neural networks. For each pattern, one 

neural network is created. In the decision maker, the centroids of the patterns make up 

a pattern pool, and the neural networks make up a function pool. While making the 

decision, the decision maker determines the pattern of the current state according to 

the pattern pool and selects one corresponding neural network from the function pool. 

The neural network will calculate the priority for each alternative according to the local 

factors. Compared to other approaches, the approach always performs better than the 

decision rules. Even though it performs not as well as the STTD method, it spends just 

very short time. Therefore, it can be used in the system which has high requirements 

on the efficiency.  

The INT2 method combines the experiences & data approach, mathematical 

approach, and simulation approach. It models the release, routing, and sequencing as 

Markov decision process with multiple decision makers. We defined the five-tuple for 

the problems, including decision points, state space, action sets, transition procedure, 

and a reward function. The data-driven model is still used to map the value of the 

action to the state-action pair. The simulation-based batch-mode Q-learning algorithm 

explores the state space by the simulation. Each simulation run is one iteration. The 

data-driven model is updated and improved gradually after each iteration. From the 

comparison with other approaches, the results show that this approach performs 

unsteadily. Occasionally it performs worse than a simple rule, but sometimes it can 

perform even better than the STTD method. Thus it is still well worth doing more 

works on this approach.  

Furthermore, these three methods are the decentralized decision-making approaches. 

For each machine, we created a sequencing decision maker to deal with the machine’ s 

sequencing problems. It can remove the influences of the machines’ position in the 

shop’ s layout on the decision-making process. We also create a release decision maker 

for each type of product to decide if we release a job while the workload changed. It 

simplifies the decision-making process. If we create only one decision maker for all 

products, it has to decide which type of product to release besides whether or not to 

release. For the STTD method, for each job, there is a routing decision maker who is 

in charge of making routing decisions. For the other two methods, a routing decision 
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maker connecting to a group of machines is created and responsible for the routing 

decisions.  

All in all, it is believed that the study and its findings provide a solid foundation for 

the research community in developing further research activities in this field. 

8.2 Perspectives 

As this research field is relatively young, the study has thrown up many questions in 

need of further investigation.  

 The initial idea is to study the release, routing, and sequencing problems together 

to achieve an even better performance of the material flows. However, from some 

other experiments, we realized that the performance is even worse when they are 

carried out together (These experiments are not reported in the dissertation) 

comparing to the cases in which these three problems are solved separately. In 

the future works, the reason must be figured out.  

 Once the above issue is settled, more details of the material flows should involve 

in the study, such as the workforces and the transportation. Consequently, more 

real-time decision-making problems should be studied together, such as workforce 

scheduling, inventory control, and so on. 

 For the simulation, because all three methods in the study are based on it, further 

emphasis might be put on the development of a general framework for the 

simulation to serve and evaluate the decision-making. It is also worth having a 

model of a real material flow system for further validations and evaluations. 

 For the STTD method, it runs very slowly now. In the future work, the 

alternative simulations can run on distributed machines in parallel. Moreover, 

there is only one level alternative simulation now, i.e., in the alternative 

simulation, the decisions are made by the base-rules. We can try two level 

alternative simulations to reduce the influence of the base-rule. In the first level, 

the decisions are made by the second level simulations in which the decisions are 

made according to the base-rule. Also, we need to point out that the method is 

evaluated by the environment simulation which uses the same model as the 

alternative simulation model. However, if the method is tested in the real system, 

the alternative simulation model may not be the same as the real system. The 

performance may not be good anymore. Thus, in the future test, the environment 

simulation model should be a little bit different from the alternative simulation 

model. 

 For the INT1 method, the most important thing is the data reorganization, 

especially the state of the environment. We should extract more meaningful 

features from the global factors to cluster the environment patterns. Because lots 

of machine learning techniques are used in the method, we should find an even 

better way to optimize the parameters of these techniques or try other similar 

techniques. After the data preparation, the method has three steps: dimension 
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reduction, clustering, and learning. We need to examine how do these three steps 

affect each other, for example, how the number of the reduced dimensions affects 

the clustering and how the number of the clusters affects the learning.  

 For the INT2 method, the problem we are trying to solve now is too complicated. 

It is very difficult to analyze the details of the method using such a complicated 

case. It would be helpful, for example, for future researchers to examine some 

elementary cases. This might enable us to derive some laws for the complicated 

cases.  For example, we can create a sequencing problem on a single machine. 

Then we can analyze the influences of the state definition and reward calculation. 

We can also use a two-machine-sequencing problem to analyze the multi-agent 

MDP (two agents) to see how their learning procedures interact and if the 

separate learning is better than the learning together. At last, the knowledge we 

learned from the simple cases can be applied in the complicated cases. 

The ultimate goal of the study is to apply the solution on a real shop floor and 

integrate our system with the manufacturing execution system(MES). Each entity, like 

one piece of material, one machine, and so on, will make their own decisions. The study 

will be the most critical part of the smart factories.  

At last, it needs to be noted that the proposed three methods are quite general and 

can solve not only the material flow control problem but also some other sequential 

decision-making processes which can be easily modeled and emulated.  
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Appendix Code Samples 

A.1 Agent-based Simulation with process-
interaction worldview 

Below is a code sample which gives a very brief idea how to use the framework for a 

single group ABS. 

 

using AgentBasedSimFramwork; 

public static void main (string[]   args){ 

AgentEnvironment ae=new AgentEnvironment(); 

AgentManager am=new AgentManager(ae); 

TimeManager sim=new TimeManager(); 

am.register(sim); 

… 

CustomAgent ca_1 =new CustomAgent (“CA_1”, 

null); 

am.register(ca_1); 

CustomAgent ca_2 =new CustomAgent (“CA_2”, 

null); 

am.register(ca_2); 

… 

Activation firstAct=new Activation(0,” CA_1” 

,””); 

sim.initialize (firstAct); 

sim.start () ； 

 

} 

public class CustomAgent extends  Agent{ 

     public CustomAgent(string name, Object[] 

args){ 

        super.Agent(name,args); 

        addBehaviour( new SimBehaviour()); 

     … 

     } 

     …//add other behaviors 

     private class SimBehaviour extends  Behavior{ 

          public void action() { 

                 Message msg=receive(); 

                 if(msg==null) return; 

                      //activation code here 

                      //send new activation point 

                       sendActivationPoint(new 

Actiation(…)); 

                 return;} 

         } 

} 

 

A.2 Alternative Evaluation in the STTD Method 

The following function shows how to evaluate one alternative by the simulation. 

double evaluate (Environment envy, Alternative alt) 

{ 

   Model mod= Model.fromFile(“ExampleShop.xml”); 
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   mod.setBaseRule(Rule.SPT); 

   mod.init(env); 

   Simulation sim=new Simulation(); 

   sim.loadModel(mod);      

   sim.setEndCondition(EndCondition.JobNumber); 

   sim.setFirstEvent(alt.createEvent()); 

   sim.setRunTimes(50); 

   sim.start(); 

   Evaluation eva=new Evaluation(); 

   eva.setPriorityEquation(…); 

   double v= eva.getPriority(sim.getResults()); 

   return v; 

} 
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