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angenommen. Die mündliche Prüfung fand am 25.06.2018 statt.





To my parents.





Abstract

This thesis deals with pointwise error estimates for finite element discretizations of boundary
control problems on general polygonal domains, namely, the Neumann control problem and the
Dirichlet control problem with constant control constraints.

In order to show the quasi-optimal convergence rate h2|lnh| in the L∞-Norm for the discretiza-
tions of the Neumann control problem, first, this rate is derived for the piecewise linear dis-
cretization of the Neumann boundary value problems. We achieve this goal by exploiting graded
meshes which compensate the singular behavior of the solution in the vicinity of corner points.
Best possible rates of convergence on quasi-uniform meshes are also shown.

For the numerical analysis of the Neumann optimal control problem two discretization strategies
are considered, namely, the variational discretization and the postprocessing approach. In both
cases the quasi-optimal rate on graded meshes and best possible rates on quasi-uniform meshes
are shown.

The numerical analysis for the Dirichlet optimal control problem is performed only on quasi-
uniform meshes. Best possible convergence order for the piecewise linear approximation of the
control is obtained on convex domains.

All the theoretical results in this work are justified by numerical experiments.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit punktweisen Fehlerabschätzungen für Finite-Elemente-Dis-
kretisierungen von Randsteuerungsproblemen auf allgemeinen polygonalen Gebieten. Insbeson-
dere wird das Neumann-Randsteuerungsproblem sowie das Dirichlet-Randsteuerungsproblem
mit konstanten Steuerbeschränkungen betrachtet.

Um die quasi-optimale Konvergenzrate h2|lnh| in der L∞-Norm für die Diskretisierung des
Neumann-Rand- steuerungsproblems zu erhalten, zeigen wir diese Rate erst für die stückweise
lineare Diskretisie- rung des Neumann-Randwertproblems. Dies erreichen wir mit Hilfe von
graduell verfeinerten Netzen, die das singuläre Verhalten der Lösung in der Nähe von Eckpunkten
kompensieren. Außerdem werden bestmögliche Raten auf quasi-uniformen Netzen gezeigt.

Für die numerische Analysis des Neumann-Randsteuerungsproblems betrachten wir zwei Diskre-
tisierungsstrategien, die variationelle Diskretisierung sowie den Postprocessing-Zugang. In bei-
den Fällen können die quasi-optimale Rate auf graduell verfeinerten Netzen und die best-
möglichen Raten auf quasi-uniformen Netzen gezeigt werden.

Die numerische Analysis für das Dirichlet-Randsteuerungsproblem wird nur auf quasi-uniformen
Netzen durchgeführt. Wir erhalten die bestmögliche Konvergenzordnung für die stückweise
lineare Approximation der Steuerung auf konvexen Gebieten.

Die theoretischen Ergebnisse dieser Arbeit werden durch numerische Experimente bestätigt.
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CHAPTER 1

Introduction

The aim of this thesis is to provide sharp pointwise error estimates for the finite element (FE)
approximations of boundary control problems governed by elliptic partial differential equations
(PDEs) on general polygonal domains with pointwise control constraints.

Let us first give a short description of optimal control problems subject to PDEs. It is well-known
that PDEs are used in order to describe a wide range of physical phenomena (processes), see
e.g. [36]. Sometimes, one is interested in some optimization of a physical quantity by a certain
influence on the underlying process. In other words one is interested in an optimal control
problem governed by a PDE. Such problems in mathematical ”language” can be formulated as

min
y∈Y,u∈U

J(y, u) subject to e(y, u) = 0,

where y and u denote the state (physical quantity) and the control (influence on the physical
process) being functions from the Banach spaces Y and U , respectively. The objective functional
J : Y × U → R reflects the goals of the optimization, the state equation (PDE) e(y, u) =
0 describes the physical process and serves as a coupling between the state and the control.
The theory of optimal control problems subject to PDEs goes back to early seventies, see the
fundamental contribution by Lions [56]. The theory developed very rapidly and during the next
forty years many applications of PDE constrained optimization have been considered, see e.g.
[49, Chapter 4], [87, Chapter 1], [55, Part V] and [54, Part V].

In this thesis we consider linear-quadratic boundary control problems. The cost functional is a
standard tracking type functional given by

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ). (1.1)

This means that we want to find the state y as close as possible to the desired state yd in the
L2(Ω)-sense taking into account the weighted control costs in the L2(Γ)-sense. In the analytical



Chapter 1. Introduction

setting the control costs can be interpreted as a regularization term. The computational domain
Ω is a bounded two-dimensional domain with polygonal boundary Γ and m corner points. The
weight parameter ν > 0 is called regularization parameter.

We minimize the objective functional above subject to two boundary value problems. Namely,
the Neumann boundary value problem

−∆y + y = f in Ω,

∂ny = u on Γ,
(1.2)

and the Dirichlet boundary value problem

−∆y = f in Ω,

y = u on Γ.
(1.3)

Note that the optimal control problems we consider are called boundary control problems, since
the control u is the Neumann datum in (1.2) and the Dirichlet trace in (1.3). More precisely,
optimal control problems subject to (1.2) and (1.3) are called Neumann and Dirichlet control
problems, respectively. We also set f ≡ 0 in the optimization process, since the right hand side
does not play an important role in it. The set of admissible controls Uad ⊂ U in our case is
given by

u ∈ Uad :=
{
u ∈ L2(Γ) : ua ≤ u ≤ ub a.e. on Γ

}
,

where ua, ub ∈ R and ua < ub. This means that the control has to fulfill so-called box constraints.

As mentioned before, our aim is to derive sharp pointwise error estimates for FE approximations
of the boundary control problems described above. In particular we are mostly interested in
error estimates for the control variable. In the present work we consider only piecewise linear
FE approximations of the state variable and different approximation strategies for the boundary
control. Moreover, we emphasize that numerical approaches to Neumann and Dirichlet boundary
control problems are distinctly different. Hence, we consider these problems separately.

In order to get sharp error estimates for Neumann control problems, first, one has to derive
error estimates of the same quality for state equation (1.2). Since the boundary Γ is polygonal,
there occur singularities in the solution, which result in a reduced regularity. In case of two-
dimensional boundary value problems these singularities are explicitly known, see e.g [50, 42,
29, 43, 68, 51, 52, 63]. In the neighborhood of each corner point x(j), j = 1, . . . ,m, the solution
of (1.2) and (1.3) behaves like

r
λj,k
j cos(λj,kϕj),

r
λj,k
j sin(λj,kϕj),

λj,k :=
kπ

ωj
, k ∈ N, (1.4)

respectively, where (rj , ϕj) are polar coordinates centered at the corner point x(j), and λj is
the singular exponent depending on the opening angle ωj . It is easy to see that the regularity
assumption y ∈ W 2,∞(Ω) used in many contributions in general does not hold if the maximal
interior angle of the domain is equal to or greater than 90◦, even if the input data are regular.
However, the W 2,∞(Ω)-regularity is required to obtain a quasi-optimal convergence rate in the
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L∞(Ω)-norm on quasi-uniform meshes. In order to achieve the best possible convergence rate
in arbitrary polygonal domains, we use locally refined meshes, see e.g. [74, 16, 78, 17, 75].
For a moment let us assume that we have only one opening angle ω grater than 90◦ with
the corresponding singular exponent λ := π/ω. We choose the triangulation Th with maximal
element diameter h of the underlying domain Ω such that each element T from this triangulation
satisfies the mesh grading condition

hT := diamT ∼


h1/µ if rT = 0,

hr1−µ
T if 0 < rT < R,

h if rT > R,

where rT denotes the distance to the corner point, R is the radius of refinement and µ ∈ (0, 1]
is the refinement parameter depending on the singular exponent λ. We point out that for µ = 1
the mesh is quasi-uniform.

Let us give a brief overview of some fundamental contributions to pointwise error estimates for
elliptic problems, where convergence rates for piecewise linear FE approximations are considered.
Most of those papers deal with approximations on quasi-uniform meshes. In [69] Nitsche showed
the convergence rate of h for the homogeneous Dirichlet problem in convex polygonal domains
for a right hand side function from L2(Ω). Under the assumption that the solution belongs
to W 2,∞(Ω), Natterer [67] showed the convergence rate of h2−ε with arbitrary ε > 0. This
result is improved by Nitsche [70] who showed the approximation order h2|lnh|3/2. The sharp
convergence rate h2|lnh| has been finally shown by Frehse and Rannacher [38] and by Scott [83]
for the homogeneous Dirichlet problem and the Neumann problem, respectively. In genereal
polygonal domains, where the regularity might be reduced, Schatz and Wahlbin [80] showed the
convergence rate hmin(2,λ)−ε for the homogeneous Dirichlet problem. In a further paper [81] they
improved the convergence rate to h2−ε by refining the mesh with µ < λ/2 towards the corners,
which have opening angles grater than 90◦. However, in that reference the dependence on the
input data is hidden in the generic constant. A further improvement for locally refined meshes
under the same assumption is shown by Sirch [84], who obtained the rate h2|lnh|3/2. Moreover,
some norm of the input data appears explicitly on the right-hand side of the error estimate,
which is required to derive error estimates for optimal control problems.

Our first main result reads as follows. Under the assumption that the mesh is refined according
to µ < λ/2 near the corner with ω ≥ 90◦, we show the estimate

‖y − yh‖L∞(Ω) ≤ ch2|lnh| (1.5)

for the Neumann problem, where c > 0 is a generic constant independent of the mesh size,
and may have different values at each appearance. This estimate contains two improvements in
comparison to the results known from the literature. First, even for less regular solutions but
on locally refined meshes, we show that the exponent of the logarithmic term is equal to one.
This exponent is known to be sharp for piecewise linear elements [45]. Second, we can specify
the sufficient regularity of the input data on the right-hand side of the estimate. Therefore, we
show that the constant c depends linearly on some (weighted) Hölder norm of f and u.

3



Chapter 1. Introduction

With slight modifications our result can be applied to the homogeneous Dirichlet problem as
well. Although [11] claims an error estimate for the homogeneous Dirichlet boundary value
problem with the rate h2|lnh|, there is a mistake in the proof of [11, Lemma 2.13] fixed in [84],
which led to the error rate h2|lnh|3/2. Using the techniques from Chapter 4, one can guarantee
the reduced exponent of the logarithmic term for the homogeneous Dirichlet problem as well.

Now, let us go back to the optimal control problems, and first, discuss related papers on the
numerical approximation of Neumann boundary control problems. In this thesis we are going to
investigate two discretization strategies for Neumann control problems. The first one is called
the variational discretization approach proposed by Hinze in [47]. The main feature of this
approach is that the space of admissible controls is not discretized. Instead, by means of the
first order optimality condition, the discretization of the state and the adjoint state induces
a discretization of the control. Error estimates for the control variable in the natural L2(Γ)-
norm on quasi-uniform meshes have been derived in [48, 60, 7, 76, 8]. In the last reference Apel,
Pfefferer and Rösch investigated error estimates for the control variable on graded triangulations
of arbitrary polygonal domains, and showed the sharp rate h2|lnh|3/2 provided that the mesh
is refined according to µ < 1/4 + λ/4. The previous result can also be found in the doctoral
thesis of Pfefferer [76], where the quasi-optimal convergence rate hmin(2,1/2+λ−ε)|lnh|3/2 on quasi-
uniform meshes is also obtained. To the best of our knowledge, pointwise boundary estimates
have been investigated only by Hinze and Matthes [48]. From this reference one can deduce the
rate hmin(2,λ−ε)|lnh| on convex domains only. Using the pointwise error estimate (1.5) as well as
the L2(Ω)-error estimate for the state equation from [76] and the L2(Γ)-error estimate for the
control, we show the second main result of this thesis, namely, the quasi-optimal error estimate
for the control variable

‖ū− ūh‖L∞(Γ) ≤ ch2|lnh|,

where ū and ūh are the solutions of the continuous and discrete optimal control problems,
respectively.

A further technique for treating optimal control problems is the postprocessing approach intro-
duced by Meyer and Rösch for distributed control problems in [65]. The idea of this approach
is to compute a fully discrete solution first, see e.g. [37, 40], using piecewise constant elements
for the control, and afterwards introduce the piecewise linear postprocessed control ũh which
possesses better convergence properties. Extensions to Neumann boundary control problems
can be found in [60, 7, 76, 8]. In [8] Apel, Pfefferer and Rösch derived estimates for the control
of the same quality as in case of the variational discretization approach. To the best of our
knowledge there are no contributions dealing with maximum norm estimates for the postpro-
cessing approach applied to Neumann control problems. Using a similar idea of the proof as in
case of variational discretization approach, we show the quasi-optimal rate of convergence for
the postprocessed control as well

‖ū− ũh‖L∞(Γ) ≤ ch2|lnh|,

which is the third main result of this thesis.

It is also worth mentioning the following contributions dealing with local mesh refinement for
optimal control problems. Apel, Rösch and G. Winkler [12] considered distributed control prob-
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lems in arbitrary polygonal domains, and obtained optimal rates using graded trinagulations.
G. Winkler in [90], using anisotropic finite elements, showed error estimates in general poly-
hedral domains. Sirch in [84] contributed with several applications of mesh grading to two-
and three-dimensional problems. In particular, he obtained quasi-optimal pointwise error esti-
mates for distributed control problems. Finally, M. Winkler [91] studied refinement strategies
for Neumann control problems on polyhedral domains, see also [9, 10].

Now, we move to Dirichlet control problems, and the very first thing to emphasize is that the
solution of the state equation (1.3) is from H1/2(Ω), since we are looking for the optimal control
from L2(Γ). Hence, it can not be sought in the weak sense. As a remedy, one can use the method
of transposition also known as the very weak formulation, which to the best of our knowledge, is
first introduced in [57]. However, it can be shown that in convex domains in the unconstrained
case and on general polygonal domains in the constrained case the state is at least from H1(Ω),
which guarantees the existence of a weak solution.

In order to discretize Dirichlet control problems one uses piecewise linear finite elements for the
state and for the control, since it is the Dirichlet trace of the state. In this thesis we consider
only quasi-uniform triangulations due to a couple of reasons. First, there are some auxiliary
results needed for our proofs, which so far are available on quasi-uniform meshes only. Second,
despite the fact that error estimates on quasi-uniform meshes are in general easier to prove, with
some minor modifications one can apply our proof techniques on graded triangulations as well.

In comparison to the Neumann control case, there are not that many scientific papers dealing
with Dirichlet control problems, see [24, 30, 61, 59, 4]. All of them deal with estimates on
quasi-uniform triangulations and none of them deal with pointwise estimates. The numerical
investigation of Dirichlet control problems was launched by Casas and Raymond [24], where
control constained problems subject to semilinear elliptic equations on convex polygonal domains
were considered, and the convergence rate of hmin(1,λ/2)−ε for the control error in the L2(Γ)-norm
was shown. May, Rannacher and Vexler [61] considered unconstrained problems on convex
domains, and showed optimal rates in a weaker norm, however, the rate shown in [24] remained
unimproved. Finally, Apel, Mateos, Pfefferer and Rösch [4] obtained sharp error estimates for
both constrained and unconstrained problems on arbitrary polygonal domains.

In this thesis we deal with Dirichlet control problems on convex domains only. Via the first
order optimality conditions one can deduce that in the vicinity of convex corners the optimal
control behaves like the normal derivative of the optimal adjoint state. The adjoint state in turn
is a solution of the homogeneous Dirichlet problem, and possesses the singular behavior given
in (1.4). This means that in case of unconstrained problems the optimal control is a bounded
function only on convex domains. Hence, the pointwise error estimate is measurable only on
such domains. The constrained case is more complex. In this case we can expect better rates on
non-convex domains. However, due to some technical issues, this case is out of the scope of this
thesis. Here we show sharp error estimates on quasi-uniform meshes for constrained problems
on convex polygonal domains

‖ū− ūh‖L∞(Γ) ≤ chmin(1,λ−1−ε).

We also want to mention several other contributions. Of, Phan and Steinbach [71, 72] investi-
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gated Dirichlet control problems with the energy regularization, i.e., H1/2(Γ) instead of L2(Γ)
in (1.1), which helped to gain more regular solutions, and hence, better convergence rates. M.
Winkler [91] developed numerical analysis of Neumann control problems with the energy regu-
larization H−1/2(Γ), see also [15]. This approach, however, led to less regular solutions, and as
a consequence worse rates of convergence in the L2(Γ)-norm than in case of the standard L2(Γ)-
regularization. Here, we point out that the control from Neumann control problems with the
energy regularization possesses similar singular behavior as in case of Dirichlet control problems
with the standard regularization.

This thesis is outlined as follows. In Chapter 2 we give some basic definitions and notations.
Moreover, we give definitions of function spaces that we use in this thesis and some relations
among them. In Chapter 3 we discuss possible discretizations of the underlying domains, and
discuss different interpolation approaches dictated by the smoothness of interpolated functions.
Chapter 4 is devoted to the pointwise error estimates for the Neumann boundary value problem
on graded and quasi-uniform meshes. In this chapter we also discuss the regularity of the
solution and give an application of proven error estimates. In Chapter 5 we collect known results
regarding homogeneous and inhomogeneous Dirichlet problems, improve the existing pointwise
error estimate for the homogeneous Dirichlet problem on graded triangulations, and show an
estimate on quasi-uniform triangulations. Chapter 6 deals with maximum norm error estimates
for Neumann boundary control problems on graded and quasi-uniform meshes. Therein, we show
sharp convergence results for two discretization approaches introduced above. In Chapter 7 we
investigate L∞(Γ)-norm error estimates for Dirichlet control problems on quasi-uniform meshes.
We show sharp estimates forr constrained problems on convex domains. Finally we want to
emphasize that theoretical results shown in Chapters 4, 6 and 7 are confirmed by numerical
experiments in Matlab concluding each of these chapters.

6



CHAPTER 2

Preliminaries

In this chapter we give some basic definitions and notations and collect information about
function spaces that we use in this thesis. We begin with the definition of polygonal domains.
In Section 2.1 we give definitions of classical continuous and Hölder continuous as well as classical
Sobolev and Sobolev-Slobodetskij function spaces, and show relations between these spaces via
several embedding results. In Section 2.2 we introduce the concept of weighted Sobolev and
Hölder spaces concluding the section with some embedding theorems.

Definition 2.0.1. A two-dimensional and bounded domain Ω is called polygonal, if its boundary
Γ is a finite chain of m straight non-intersecting and non-overlapping line segments closing in
a loop.

Throughout this thesis we denote by

• C := {1, . . . ,m} the index set corresponding to the number of corners in the domain,

• {Γj}j∈C the set of edges enumerated counter-clockwise,

•
{
x(j)
}
j∈C the set of corner points such that x(j) = Γj ∩ Γj+1 with Γm+1 = Γ1,

• {ωj}j∈C the set of interior angles between Γj and Γj+1 with Γm+1 = Γ1,

• (rj , ϕj), polar coordinates centered at x(j) such that the points (·, ϕj = 0) lie on the edge
Γj+1.

Moreover, we always assume that

• c is a positive generic constant,

• ε, ε1 are positive and arbitrarily small numbers,

• ~ε = (ε, . . . , ε)T , ~ε1 = (ε1, . . . , ε1)T ∈ Rm.



Chapter 2. Preliminaries

2.1 Classical function spaces

We start with the definition of continuous and Hölder continuous function spaces, which describe
the so-called classical solutions of partial differential equations. From now on we assume that Ω
is a polygonal domain with boundary Γ, and Ω denotes the closure of Ω.

Definition 2.1.1. Let k ∈ N0, α = (α1, α2) ∈ N2
0 be a multi-index and

Dαv(x) :=
∂α1

∂xα1
1

∂α2

∂xα2
2

v(x)

denote the α-th derivative of v. The space of k-times continuously differentiable functions is
denoted by Ck(Ω). The corresponding norm is defined by

‖v‖Ck(Ω) := max
|α|≤k

sup
x∈Ω
|Dαv(x)|.

Furthermore, let σ ∈ (0, 1] denote the so-called Hölder exponent. The space of Hölder continuous
functions is denoted by Ck,σ(Ω) and the corresponding norm is given by

‖v‖Ck,σ(Ω) := ‖v‖Ck(Ω) + max
|α|=k

sup
x,y∈Ω

|Dαv(x)−Dαv(y)|
|x− y|σ

. (2.1)

If σ = 1 the derivatives Dαv of order |α| = k are called Lipschitz continuous.

We proceed with the definition of Lebesgue, classical Sobolev and Sobolev-Slobodetskij spaces,
which are used to describe weak solutions of partial differential equations.

Definition 2.1.2. Let p ∈ [1,∞], the Lebesgue space Lp(Ω) is defined as the space of all
Lebesgue-measurable functions v with the finite norm

‖v‖Lp(Ω) :=


(∫

Ω
|v(x)|pdx

)1/p

, p ∈ [1,∞),

ess sup
x∈Ω

|v(x)|, p =∞.

Definition 2.1.3. Let k ∈ N0, p ∈ [1,∞] and α ∈ N2
0. The Sobolev space W k,p(Ω) is defined as

the space of all function v ∈ Lp(Ω) with Dαv ∈ Lp(Ω) for |α| ≤ k. The corresponding norms
and seminorms are given by

‖v‖Wk,p(Ω) :=


( ∑
|α|≤k

‖Dαv‖pLp(Ω)

)1/p

, p ∈ [1,∞),

max
|α|≤k
‖Dαv‖L∞(Ω), p =∞

8



2.1. Classical function spaces

and

|v|Wk,p(Ω) :=


( ∑
|α|=k

‖Dαv‖pLp(Ω)

)1/p

, p ∈ [1,∞),

max
|α|=k
‖Dαv‖L∞(Ω), p =∞,

respectively.

Remark 2.1.4. In the sequel we use the equivalence W k,2(Ω) = Hk(Ω), where the space Hk(Ω)
is defined via the Fourier transform, see e.g. [92, 64, 85] for the definition and the equivalence
result.

Definition 2.1.5. Let k ∈ N0, σ ∈ (0, 1), p ∈ [1,∞) and α ∈ N2
0. The Sobolev-Slobodetskij

space W k+σ,p(Ω) is induced by the norm

‖v‖Wk+σ,p(Ω) :=
(
‖v‖p

Wk,p(Ω)
+ |v|p

Wk+σ,p(Ω)

)1/p
,

where the seminorm is given by

|v|Wk+σ,p(Ω) :=

∑
|α|=k

∫
Ω

∫
Ω

|(Dαv)(x1)− (Dαv)(x2)|p

|x1 − x2|2+σp
dx1dx2

1/p

.

In the following lemmas we collect some classical embedding results which can be found in [1,
Chapters 5, 6 and 7], [42, Section 1.4] or [2, Chapter 8].

Lemma 2.1.6. Let G be a domain Ω ⊂ R2 or a boundary part Γj, j ∈ C. Moreover, let
dim(G) = n.

(i) Let s, t ∈ R with s, t ≥ 0 and p, q ∈ [1,∞). Furthermore, let s ≥ t and s− n/p = t− n/q
hold. Then the continuous embedding

W s,p(G) ↪→W t,q(G)

holds.

(ii) Let s ∈ R with s ≥ 0, k ∈ N, p ∈ [1,∞) and σ ∈ (0, 1). Furthermore, let s− n/p = k + σ
holds. Then the continuous embedding

W s,p(G) ↪→ Ck,σ(G)

is valid.

(iii) Let s ∈ R with s ≥ 0, k ∈ N, p ∈ [1,∞) and σ ∈ [0, 1]. Furthermore, let s− n/p > k + σ
holds. Then the compact embedding

W s,p(G)
c
↪−→ Ck,σ(G)

holds.

9
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2.2 Weighted function spaces

In this section we introduce weighted Sobolev and Hölder spaces which serve to incorporate the
singular behavior of solutions to boundary value problems (1.2) and (1.3). For definitions of
these spaces we need to introduce some partitioning of the computational domain Ω.

For each j ∈ C we define the subdomains ΩRj/i by

ΩRj/i := {x ∈ Ω: |x− x(j)| < Rj/i}

with radii Rj/i > 0, i ∈ {1, 2, 4, 8, 16, 32, 64}, centered at the corner point x(j). The radii Rj
can be chosen arbitrarily with the only restriction that the circular sectors ΩRj do not overlap.
Furthermore, for some technical reasons we require several subsets excluding the corners that
we denoted by

Ω̃0 := Ω \
m⋃
j=1

ΩRj/16, Ω̌0 := Ω \
m⋃
j=1

ΩRj/32, Ω0 := Ω \
m⋃
j=1

ΩRj/64.

Definition 2.2.1. Let k ∈ N0, p ∈ [1,∞] and ~β ∈ Rm. The weighted Sobolev spaces V k,p
~β

(Ω)

(spaces with homogeneous weights) and W k,p
~β

(Ω) (spaces with inhomogeneous weights) are defined

as the set of all functions defined in Ω with the finite norms

‖v‖
V k,p
~β

(Ω)
:= ‖v‖Wk,p(Ω0) +

m∑
j=1

‖v‖
V k,p
~β

(ΩRj )
,

‖v‖
Wk,p
~β

(Ω)
:= ‖v‖Wk,p(Ω0) +

m∑
j=1

‖v‖
Wk,p
~β

(ΩRj )
,

respectively. The weighted parts in the norms are defined by

‖v‖
V k,pβj

(ΩRj )
:=



∑
|α|≤k

‖rj(x)βj−k+|α|Dαv‖pLp(ΩRj )

1/p

, if 1 ≤ p <∞,

max
|α|≤k
‖rj(x)βj−k+|α|Dαv‖L∞(ΩRj ), if p =∞,

‖v‖
Wk,p
βj

(ΩRj )
:=



∑
|α|≤k

‖rj(x)βjDαv‖pLp(ΩRj )

1/p

, if 1 ≤ p <∞,

max
|α|≤k
‖rj(x)βjDαv‖L∞(ΩRj ), if p =∞.

10



2.2. Weighted function spaces

The corresponding seminorms are given by

|v|
V k,p
~β

(Ω)
:= |v|Wk,p(Ω0) +

m∑
j=1

|v|
V k,p
~β

(ΩRj )
,

|v|
Wk,p
~β

(Ω)
:= |v|Wk,p(Ω0) +

m∑
j=1

|v|
Wk,p
~β

(ΩRj )
,

where the weighted seminorms are defined by setting |α| = k in the definition of the corresponding
norms.

Definition 2.2.2. Let k ∈ N0, σ ∈ (0, 1) and ~β ∈ Rm. The weighted Hölder spaces Nk,σ
~β

(Ω)

(spaces with homogeneous weights) and Ck,σ~β
(Ω) (spaces with inhomogeneous weights) are defined

as the set of all functions defined in Ω \ {x(j)}j∈C with the finite norms

‖v‖
Nk,σ
~β

(Ω)
:= ‖v‖

Ck,σ(Ω
0
)

+

m∑
j=1

‖v‖
Nk,σ
βj

(ΩRj )
, (2.2)

‖v‖
Ck,σ
~β

(Ω)
:= ‖v‖

Ck,σ(Ω
0
)

+

m∑
j=1

‖v‖
Ck,σβj

(ΩRj )
, (2.3)

where Ck,σ(Ω) are the classical Hölder spaces, and

‖v‖
Nk,σ
βj

(ΩRj )
: =

∑
|α|≤k

‖rj(x)βj−σ−k+|α|Dαv‖C0(ΩRj ) + 〈v〉k,σ,βj ,ΩRj ,

‖v‖
Ck,σβj

(ΩRj )
: =

∑
|α|≤k

‖rj(x)max(0,βj−σ−k+|α|)Dαv‖C0(ΩRj ) + 〈v〉k,σ,βj ,ΩRj

with

〈v〉k,σ,βj ,ΩRj :=
∑
|α|=k

sup
x1,x2∈ΩRj

|rj(x1)βj (Dαv)(x1)− rj(x2)βj (Dαv)(x2)|
|x1 − x2|σ

.

We define the trace spaces of V k,p
~β

(Ω) and W k,p
~β

(Ω) according to [51, Section 6.2.1 and 7.3.1].

Definition 2.2.3. Let k ∈ N, p ∈ [1,∞] and ~β ∈ Rm. The traces of weighted Sobolev spaces

V
k−1/p,p
~β

(Γ) (spaces with homogeneous weights) and W
k−1/p,p
~β

(Γ) (spaces with inhomogeneous

weights) are defined as the set of all functions defined on Γ with finite norms

‖v‖
V
k−1/p,p
~β

(Γ)
:= inf

{
‖u‖

V k,p
~β

(Ω)
: u ∈ V k,p

~β
(Ω) and u

∣∣
Γ\{x(j)}j∈C

= v

}
,

‖v‖
W
k−1/p,p
~β

(Γ)
:= inf

{
‖u‖

Wk,p
~β

(Ω)
: u ∈W k,p

~β
(Ω) and u

∣∣
Γ\{x(j)}j∈C

= v

}
.

11
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Definition 2.2.4. Let k ∈ N0, σ ∈ (0, 1) and ~β ∈ Rm. The spaces Nk,σ
~β

(Γ) and Ck,σ~β
(Γ) denote

the trace spaces of Nk,σ
~β

(Ω) and Ck,σ~β
(Ω), respectively, and are given by

Nk,σ
~β

(Γ) := {v|Γ\{x(j)}j∈C : v ∈ Nk,σ
~β

(Ω)},

Ck,σ~β
(Γ) := {v|Γ\{x(j)}j∈C : v ∈ Ck,σ~β (Ω)}.

In the sequel we collect some embedding results in the weighted Sobolev and Hölder spaces
defined above. In the following G denotes either the domain Ω or its boundary Γ. The following
embedding results for the weighed Sobolev spaces are given in [76, Lemma 2.30 and 2.29].

Lemma 2.2.5.

(i) Let k ∈ N0 and 1 ≤ p < q ≤ ∞. Furthermore, let ~β, ~β′ ∈ Rm satisfy

βj +
2

p
> β

′
j +

2

q
∀j ∈ C.

Then the continuous embedding

V k,p
~β′

(G) ↪→ V k,q
~β

(G)

holds.

(ii) Let k ∈ N0, p ∈ [1,∞]. Furthermore, let ~β, ~β′ ∈ Rm satisfy

1 + βj ≥ β
′
j ∀j ∈ C.

Then the continuous embedding

V k+1,p
~β′

(G) ↪→ V k,p
~β

(G)

holds.

Lemma 2.2.6.

(i) Let k ∈ N0 and 1 ≤ p < q ≤ ∞. Furthermore, let ~β, ~β′ ∈ Rm satisfy

βj +
2

p
> β

′
j +

2

q
∀j ∈ C.

Then the continuous embedding

W k,p
~β′

(G) ↪→W k,q
~β

(G)

holds.

(ii) Let l ∈ N0, p ∈ [1,∞). Furthermore, let ~β, ~β′ ∈ Rm satisfy

1 + βj ≥ β
′
j and β

′
j > −

2

p
∀j ∈ C.

Then the continuous embedding

W k+1,p
~β′

(G) ↪→W k,p
~β

(G)

holds.

12



CHAPTER 3

Discretization

With this section we begin our investigation of pointwise estimates for finite element discretiza-
tions of the boundary value problems and the optimal control problems discussed in the Intro-
duction. In the following sections we introduce the mesh discretization, finite element spaces
and interpolation operators we use in this thesis.

3.1 Graded meshes and finite element discretization

We discretize the computational domain Ω by a family of graded triangulations {Th}h>0 admis-
sible in the sense of Ciarlet [25], i.e.,

• Ω =
⋃
T∈T T ,

• T1 ∩ T2 = ∅ for all T1, T2 ∈ Th with T1 6= T2,

• T 1 ∩ T 2 for all T1, T2 ∈ Th with T1 6= T2 is either the empty set or has a common edge or
a common node.

The global mesh parameter is denoted by h, h ≤ h0 < 1. Furthermore, throughout this thesis
we consider only shape regular triangulations, i.e., there exists some constant κ > 0 such that

ρT
hT
≥ κ ∀T ∈ Th

holds for all h ∈ (0, h0], where hT denotes the diameter of the smallest ball containing T and ρT
the diameter of the largest ball contained in T , respectively.

We denote by

µj ∈ (0, 1], j ∈ C,
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the mesh grading parameters which are collected in the vector

~µ ∈ (0, 1]m.

The distance between a triangle T ∈ Th and any corner point x(j) is defined by

rT,j := inf
x∈T
|x− x(j)|.

We assume that for j = 1, . . . ,m the element size hT := diam T satisfies

c1h
1/µj ≤ hT ≤ c2h

1/µj if rT,j = 0,

c1hr
1−µj
T,j ≤ hT ≤ c2hr

1−µj
T,j if 0 < rT,j < Rj , (3.1)

c1h ≤ hT ≤ c2h if rT,j > Rj ,

with some constants c1, c2 > 0 independent of h.

The triangulation Th naturally induces a segmentation Eh of the boundary Γ. We define the
distance between an element E ∈ Eh and a corner point x(j) by

rE,j := inf
x∈E
|x− x(j)|.

Due to conditions (3.1), the element size hE := diam E satisfies

c1h
1/µj ≤ hE ≤ c2h

1/µj if rE,j = 0,

c1hr
1−µj
E,j ≤ hE ≤ c2hr

1−µj
E,j if 0 < rE,j < Rj , (3.2)

c1h ≤ hE ≤ c2h if rE,j > Rj .

Remark 3.1.1. In case of µj = 1 for some j ∈ C we end up with a quasi-uniform triangulation
near the corresponding corner. If ~µ = ~1 the whole mesh is quasi-unform. We also emphasize that
the number of elements of Th and Eh is of order h−2 and h−1, respectively, which is independent
of the choise of ~µ, see e. g. [13].

For the finite element discretization of boundary value problems in Ω we use the space of
piecewise linear and globally continuous ansatz functions in Ω, this is

Vh :=
{
vh ∈ C(Ω) : vh|T ∈ P1(T ) for all T ∈ Th

}
, (3.3)

where P1(T ) denotes the space of linear polynomials on the element T .

In this thesis we denote by

• Ih the index set of nodal points of Th

• ITh the index set of nodal points of T ∈ Th

• {xi}i∈Ih the set of nodal points

14
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• {ϕi}i∈Ih the set of nodal basis functions — the so-called hat-functions — of Vh

For the finite element discretization of the control variable from Dirichlet control problems, see
Chapter 7, we define the restriction of Vh to the boundary by

Uh := {uh ∈ C(Γ) : uh|E ∈ P1(E) for all E ∈ Eh} (3.4)

with P1(E) denoting the space of linear polynomials on E.

We denote by

• I∂h the index set of nodal points of Eh

• I∂,Eh the index set of nodal points of E ∈ Eh

• {xi}i∈I∂h the set of boundary nodal points

• {ψi}i∈I∂h the set of nodal basis functions — hat-functions on the boundary — of Uh

Furthermore, for the finite element discretization of the control variable from Neumann control
problems, see Chapter 6, we need the piecewise constant discretization of the boundary

U0
h := {uh ∈ L∞(Γ) : uh|E ∈ P0(T ) for all E ∈ Eh} , (3.5)

where P0(E) denotes the space of piecewise constant functions on the segment E.

For some technical reasons we need the following estimates concerning functions from discrete
spaces.

Lemma 3.1.2. (Inverse inequality) Let the underlying mesh be quasi-uniform (~µ = ~1) and
s ∈ [0, 1], then the estimate

|vh|Hs(Ω) ≤ ch−s‖vh‖L2(Ω) ∀vh ∈ Vh (3.6)

is valid.

Proof. The desired assertion can be deduced from [25, Theorem 17.2], [22, Theorem 4.5.11] or
[85, Lemma 9.8] and a standard interpolation argument.

Lemma 3.1.3. (Discrete Sobolev inequality) Let vh ∈ Vh and ~µ ∈ [0, 1], then the estimate

‖vh‖L∞(Ω) ≤ c(1 + |lnh|)1/2‖vh‖H1(Ω)

holds.

The proof can be found in [22, Theorem 4.9.2].

15
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3.2 Interpolation

This section is devoted to several error estimates for interpolation and quasi-interpolation oper-
ators used in this thesis. A standard proof technique of interpolation error estimates exploits a
transformation to a reference element given e.g. by

• Ê := (0, 1) for n = 1,

• T̂ with vertices (0, 0)T, (1, 0)T and (0, 1)T for n = 2.

This approach guarantees that all generic constants depend only on the geometry of the element.
For the further considerations let K be an element either from Eh or Th. We denote by FK the
affine linear transformation from K̂ to a world element K. Moreover, via this transformation
for each function v : K → R we obtain a function v̂ : K̂ → R defined by

v̂(x̂) := v(FK(x̂)).

The transformation itself can be found in e.g. [25, Theorem 15.1].

Theorem 3.2.1. Let v ∈W k,p(K), k ∈ N0 and p ∈ [1,∞], then the estimates

|v|Wk,p(K) ≤ ch−kK |K|
1/p|v̂|Wk,p(K̂)

|v̂|Wk,p(K̂) ≤ ch
k
K |K|−1/p|v̂|Wk,p(K̂)

hold.

In this thesis we need interpolation error estimates for the nodal (Lagrange) interpolant on
quasi-uniform and graded meshes as well as for the Carstensen interpolant on quasi-uniform
triangulations only.

3.2.1 Nodal interpolant

The nodal interpolant

Ih : C(Ω)→ Vh

is defined by

(Ihv) (x) :=
∑
i∈Ih

v(xi)ϕi(x)

which is equivalent to

(Ihv) (x) :=
∑
i∈ITh

v(xi)ϕi(x) if x ∈ T .

Similarly, the nodal interpolant

I∂h : C(Γ)→ Uh

16
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is defined by (
I∂hv
)

(x) :=
∑
i∈I∂h

v(xi)ψi(x), (3.7)

equivalent to (
I∂hv
)

(x) :=
∑
i∈I∂,Eh

v(xi)ψi(x) if x ∈ E.

It means that the operator Ih maps any continuous function v to a function from Vh such that
Ihv(xi) = v(xi) for all nodal points {xi}i∈Ih . Obviously, the same holds also for the operator I∂h
applied to continuous functions for all nodal points {xi}i∈I∂h , respectively.

Elementwise interpolation error estimates for functions from weighted Sobolev spaces on graded
meshes are given in [76, Section 3.2]. However, for our considerations in Chapter 4 we need
stripwise interpolation error estimates stated in Lemma 4.2.11, which are proven via the ele-
mentwise estimates. Moreover, for the numerical investigation of Dirichlet control problems in
Chapter 7 we need elementwise interpolation estimates on quasi-uniform triangulations. We
collect these estimates in the following lemma. These results can be deduced from [25] or [22]
and the standard operator-interpolation theory, see e.g. [22, Chapter 14].

Lemma 3.2.2. Let the underlying mesh be quasi-uniform (~µ = ~1), and let 0 ≤ s ≤ t < ∞ and
p, q ∈ [1,∞]. Then the interpolation error estimates

‖v − Ihv‖W s,p(T ) ≤ ch2/p−2/q+t−s|v|W t,q(T ),

‖v − I∂hv‖W s,p(E) ≤ ch1/p−1/q+t−s|v|W t,q(E)

hold, provided that v ∈W t,q(T ) ↪→W s,p(T ) or v ∈W t,q(E) ↪→W s,p(E).

3.2.2 Carstensen interpolant

In order to interpolate discontinuous functions one uses the concept of quasi-interpolation op-
erators, see e.g. [26, 82, 23]. For the purposes dictated by the situation in Chapter 7 we use the
so-called Carstensen interpolant

Ch : L1(Ω)→ Vh

introduced in [23] and defined by

(Chv) (x) =
∑
i∈Ih

πi(v)ϕi(x), (3.8)

where πi(v) ∈ R is given by

πi(v) =
(v, ϕi)L2(Ω)

(1, ϕi)L2(Ω)
∀i ∈ Ih.

17
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Lemma 3.2.3. Let the underlying mesh be quasi-uniform (~µ = ~1). Moreover, let Ch be the
Carstensen interpolant defined by (3.8) and v ∈ H1/2(Ω). Then for all s ∈ [0, 1/2] the error
estimate

‖v − Chv‖Hs(Ω) ≤ ch1/2−s‖v‖H1/2(Ω)

holds.

Proof. From the definition of the Carstensen interpolant, [23, Theorem 3.1(3.)] and the inter-
polation theory we get

‖Chv‖Ht(Ω) ≤ c‖v‖Ht(Ω) ∀t ∈ [0, 1], (3.9)

provided that v ∈ Ht(Ω). Now, using the triangle inequality, the fact that Chp = p for all
p ∈ P0(Ω) and stability property (3.9), we arrive at

‖v − Chv‖Hr(Ω) ≤ c‖v − p‖Hr(Ω) ≤ c|v|Hr(Ω), r ∈ [0, 1] (3.10)

where in the last step we used [35, Theorem 6.1]. From (3.10) with r = 0, [23, Theorem 3.1(2.)]
and an interpolation argument we get

‖v − Chv‖L2(Ω) ≤ ch1/2‖v‖H1/2(Ω). (3.11)

Finally, the previous estimate and (3.10) with r = 1/2 yield the desired assertion.
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CHAPTER 4

Estimates for Neumann boundary value problems

The aim of this chapter is to derive sharp pointwise error estimates for the piecewise linear FE
discretization of the Neumann problem

−∆y + y = f in Ω,

∂ny = g on Γ,
(4.1)

where Ω is a general polygonal domain with boundary Γ. In order to achieve this aim, one has
to guarantee the weighted W 2,∞(Ω)-regularity of the solution. Therefore, we start this chapter
with a discussion of the regularity of the solution in weighted Sobolev spaces from Section 2.2.
This together with the mesh refinement strategy from Section 3.1 are essential tools for recovery
of optimal convergence rates. The proof itself expoits the so-called dyadic decomposition, see
e.g. [81], in some neighborhood of each singular corner. This approach guarantees that the
underlying mesh in each stripe of the decomposistion is quasi-uniform, and hence, properties
of quasi-uniform triangulations can be used. In those corners, where the W 2,∞(Ω)-regularity is
not violated, we apply the idea of a quasi-uniform mesh extension, see e.g. [32], and a global
pointwise discretization error estimate from [83]. In the inner part of the domain we apply a
local L∞-norm error estimate [88, Theorem 10.1] and, exploiting higher regularity of the solution,
standard interpolation error estimates, since the mesh in this subdomain is quasi-uniform.

This chapter has the following structure. In Section 4.1 we discuss the regularity and give some a
priori estimates needed for the proof of the main result. Section 4.2 starts with a list of auxiliary
discretization error estimates in different norms required in the main theorem of this chapter
or other chapters. Moreover, in this section we prove the main results of this chapter, namely
pointwise FE discretization error estimates on graded and quasi-uniform meshes. In Section
4.2.3 we give an application of the main results to semilinear elliptic problems, which can be
an important tool for the numerical investigation of the Neumann control problems subject
to a semilinear state equation. And finally, in the last section of this chapter, via numerical
experiments, we confirm the theoretical results.



Chapter 4. Estimates for Neumann boundary value problems

4.1 Regularity

This section is devoted to regularity results in weighted Sobolev spaces. But first, we give the
weak formulation of problem (4.1) and discuss corner singularities in polygonal domains.

The variational formulation of problem (4.1) reads as follows:

Find y ∈ H1(Ω) such that

a(y, v) = 〈f, v〉Ω + 〈g, v〉Γ ∀v ∈ V := H1(Ω), (4.2)

where a : V × V → R is the bilinear form defined by

a(y, v) :=

∫
Ω

(∇y · ∇v + yv). (4.3)

The existence and uniqueness of a solution y ∈ V follows from the Lax–Milgram theorem, see
e.g. [22, Theorem 2.7.7 and Remark 2.7.11], provided that f ∈ [H1(Ω)]∗ and g ∈ [H1/2(Γ)]∗,
where [ · ]∗ denotes the dual space.

In the theory of FE method the H1(Ω)-regularity is not sufficient to provide optimal (sub-
optimal) rates of convergence using piecewise linear approximations. Therefore, one has to
discuss higher regularity of the solution to (4.2), which in the context of polygonal domains
leads to a discussion of corner singularities.

It is a well known fact that, due to corner singularities, the solution of (4.2) might be less
regular in the vicinity of the corner points {x(j)}j∈C . Fundamental contributions to the study
of corner singularities are given by Kondrat’ev [50], Grisvard [42, 43], Dauge [29], Nazarov and
Plamenevsky [68], Kozlov, Maz’ya and Rossmann [51, 52]. A good summary on the derivation
of singular solutions can be found in [91, Section 2.2]. In order to give a motivation to the
forthcoming regularity results, here we discuss the singular solutions itself.

It is shown in e.g. [43, Chapter 2] that the solution of (4.2) in the neighborhood of each corner
point x(j), j ∈ C possesses the following structure

y =
∑
k∈Z

ckS
k
j (rj , ϕj)

with the stress intensity factors ck ∈ R and the singular functions

Skj (rj , ϕj) :=

r
λj,k
j cos(λj,kϕj), if λj,k /∈ Z,

r
λj,k
j (ln rj cos(λj,kϕj) + ϕj sin(λj,kϕj)) , if λj,k ∈ Z,

where k ∈ N and the singular exponents are defined by

λj,k :=
kπ

ωj
. (4.4)
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For our further considerations we define by

λ := min
j∈C

λj,1

the strongest singularity of the solution. This definition is needed for error estimates, since we
are always interested in worst-case estimates, and these are determined by λ for boundary value
problems.

First, let us discuss the H2(Ω)-regularity. It is known from the classical FE theory that conver-
gence rates of the error in the L2(Ω)- and H1(Ω)-norms are optimal for piecewise linear approx-
imations if the solution is H2(Ω)-regular. However, it is easy to check that S1

j (rj , ϕj) /∈ H2(Ω)

if ωj > π, and therefore, y /∈ H2(Ω) in general. As a remedy one can use the weighted Sobolev
spaces, which guarantee the weighted H2(Ω)-regularity of the solution. This consideration moti-
vates Lemma 4.1.1. Moreover, using the discretization strategy from Section 3.1, one can recover
the optimal convergence rate on general polygonal domains, see Lemma 4.2.3 for L2(Ω)-norm
error estimates or [76, Lemma 3.41] for both L2(Ω)- and H1(Ω)-norm error estimates.

Now, let us study the W 2,∞(Ω)-regularity of the solution. On the one hand, from Theorem 4.2.1
we can see that in order to get the quasi-optimal convergence rate for piecewise linear elements
in the L∞(Ω)-norm, the W 2,∞(Ω)-regularity of the solution has to be guaranteed or the mesh
grading has to be exploited. On the other hand, it is easy to see that S1

j (rj , ϕj) /∈ W 2,∞(Ω)
if ωj ≥ π/2. It means that also in this case the weighted Sobolev spaces have to be exploited
and the corresponding weights have to be greater than in case of the weighted H2(Ω)-regularity.
A priori estimates concerning the weighted W 2,∞(Ω)-regularity are collected in Remark 4.1.2.
As in case of L2(Ω)- and H1(Ω)-norm error estimates, using the mesh grading strategy from
Section 3.1, we can show the quasi-optimal convergence rate in the maximum norm on general
polygonal domains, which is the main result of this chapter, see Theorem 4.2.7.

Now, we recall an a priori estimate in the weighted H2(Ω)-norm. Comparable results can be
found in e.g. [62], [93], [68, Section 4.5], [51, Section 7]. However, due to similarities of the
considered problems as well as the notation we cite the result from [76, Lemma 3.11].

Lemma 4.1.1. Let ~β ∈ [0, 1)m satisfy the condition

1− λj < βj , ∀j ∈ C.

For every f ∈ W 0,2
~β

(Ω) and g ∈ W 1/2,2
~β

(Γ), the solution of problem (4.1) belongs to W 2,2
~β

(Ω),

and satisfies the a priori estimate

‖y‖
W 2,2
~β

(Ω)
≤ c

(
‖f‖

W 0,2
~β

(Ω)
+ ‖g‖

W
1/2,2
~β

(Γ)

)
.

In the following remark we discuss the regularity results in the weighted W 2,∞(Ω)-norm required
for the forthcoming numerical analysis.

Remark 4.1.2. There are several contributions dealing with regularity results in weighted Hölder
spaces, which can be used to conclude the regularity result y ∈ W 2,∞

~γ (Ω) with some ~γ ∈ [0, 2)m.
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Chapter 4. Estimates for Neumann boundary value problems

Using the weighted N -spaces introduced in Section 2.2, one can deduce from [68, Chapter 4,
Section 5.5], [52, Theorem 1.4.5]

‖y‖
N2,σ
~δ

(Ω)
≤ c

(
‖f‖

N0,σ
~δ

(Ω)
+ ‖g‖

N1,σ
~δ

(Γ)

)
(4.5)

with the suitable weights δ ∈ [σ, 2 + σ)m. As a conclusion, in [76, Lemma 3.13] it is shown that
y ∈W 2,∞

~γ (Ω) under the assumption{
~γ ∈ [0, 2)m with γj > 2− λj ,

~δ ∈ [σ, 2 + σ)m with δj := γj + σ,
j ∈ C. (4.6)

A further possibility is to use the weighted C-spaces, see Section 2.2. These spaces are more
suitable for the Neumann problem, since N1,σ

~δ
(Γ) does not even contain constant functions if

δj < 1 + σ for some j ∈ C. However, to the best of our knowledge a direct proof of an estimate
like (4.5) using weighted C-spaces is not available in the literature, but can be deduced with
similar arguments as used in the proof of [76, Lemma 3.13]. Related results are also shown in
[63, Theorem 8.3.1] for polyhedral domains (n = 3). Therein, the estimate

‖y‖
C2,σ
~δ

(Ω)
≤ c‖f‖

C0,σ
~δ

(Ω)
(4.7)

under the assumption g ≡ 0 is proven, and with a trivial embedding we can conclude that
y ∈W 2,∞

~γ (Ω) with ~γ, ~δ as in (4.6).

4.2 Discretization error estimates

The finite element solution of problem (4.2) is the element yh ∈ Vh, which satisfies

a(yh, vh) = 〈f, vh〉Ω + 〈g, vh〉Γ ∀vh ∈ Vh, (4.8)

where the discrete test space is given by (3.3). The existence and uniqueness follows from the
Lax-Milgram theorem.

4.2.1 Existing results

This section is devoted to existing a priori discretization error estimates for problem (4.1) which
are used in this thesis. We begin with the global pointwise estimate of Scott [83]. We use this
result in the proof of Theorem 4.2.7, locally, near corners with opening angles less than 90◦.

Theorem 4.2.1. Assume that the solution y of (4.2) belongs to W 2,∞(Ω) and the domain Ω is
convex. Let yh ∈ Vh be the solution of (4.8). Then, the finite element error can be estimated by

‖y − yh‖L∞(Ω) ≤ ch2|lnh|‖y‖W 2,∞(Ω). (4.9)
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4.2. Discretization error estimates

Remark 4.2.2. Note that for ωj < 90◦, j = 1, . . . ,m, the condition y ∈W 2,∞(Ω) always holds,

provided that f ∈ C0,σ(Ω) and g ∈ C1,σ
pw (Γ) with σ ∈ (0, 1].

In what follows we give error estimates in the L2(Ω)-norm on both graded and quasi-uniform
triangulations. These results are essential in the proof of the main results of this chapter and in
the proof of one of the main results in Chapter 6. These results are given in [76, Lemma 3.41
and Corollary 3.42].

Lemma 4.2.3. Let y and yh be the solutions of (4.2) and (4.8), respectively. Moreover, let
y ∈W 2,2

~β
(Ω) with

~1− ~λ < ~β ≤ ~1− ~µ, ~β ≥ ~0.

Then the discretization error estimate

‖y − yh‖L2(Ω) ≤ ch2‖y‖
W 2,2
~β

(Ω)

holds.

Lemma 4.2.4. Let y and yh be the solutions of (4.2) and (4.8), respectively, and ~µ = ~1 (quasi-
uniform meshes). Moreover, let y ∈W 2,2

~β
(Ω) with

~β = ~1− ~λ+ ~ε, ~β ≥ ~0 and 0 < ε < λ.

Then the discretization error can be estimated by

‖y − yh‖L2(Ω) ≤ ch2 min(1,λ−ε)‖y‖
W 2,2
~β

(Ω)
.

The last error estimates that we recall in this section are the L2(Γ)-norm estimates, which we
apply in Chapter 6. The results can be found in [76, Theorem 3.48 and Corollary 3.49].

Theorem 4.2.5. Let y and yh be the solutions of (4.2) and (4.8), respectively. Moreover, let
% ∈ [0, 1/2], ~µ ∈ (%/2, 1]m and y ∈W 2,2

~β
(Ω) ∩W 2,∞

~γ (Ω) with

~1− ~λ < ~β ≤ ~1− ~µ, ~β > ~0,

and let ~γ fulfill one of the following conditions

(i) ~0 ≤ ~γ < ~2 + ~%− 2~µ, or (ii) ~γ = ~0 and ~µ ≤ ~1 if % = 0.

Then, the estimate

‖y − yh‖L2(Γ) ≤ ch2|lnh|1+%

(
‖y‖

W 2,2
~β

(Ω)
+ ‖y‖

W 2,∞
~γ

(Ω)

)
is valid.
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Chapter 4. Estimates for Neumann boundary value problems

Lemma 4.2.6. Let y and yh be the solutions of (4.2) and (4.8), respectively, and ~µ = ~1 (quasi-
uniform meshes). Moreover, let % ∈ [0, 1/2], y ∈W 2,∞

~γ (Ω) with

~γ = ~2− ~λ+ ~ε, ~γ ≥ 0 and 0 < ε < λ.

Then, the estimate

‖y − yh‖L2(Γ) ≤ chmin(2,%+λ−ε)|lnh|1+%‖y‖
W 2,∞
~γ

(Ω)

holds.

4.2.2 Pointwise estimates for the Neumann problem

In this section we present the main results of this chapter. Namely, we show the quasi-optimal
FE discretization error estimate in the maximum norm on graded meshes and the best possible
error estimate in the same norm on quasi-uniform meshes.

Theorem 4.2.7. Assume that y, the solution of (4.2), belongs to W 2,2
~β

(Ω) ∩W 2,∞
~γ (Ω) with

~1− ~λ < ~β ≤ ~1− ~µ, ~β ≥ ~0,

and ~γ satisfying one of the following conditions

(i) ~0 ≤ ~γ < ~2− 2~µ or (ii) ~γ = ~0 and ~µ ≤ ~1

Then, the solution yh of (4.8) fulfills the error estimate

‖y − yh‖L∞(Ω) ≤ ch2|lnh|
(
‖y‖

W 2,2
~β

(Ω)
+ ‖y‖

W 2,∞
~γ

(Ω)

)
.

Corollary 4.2.8. Let ~µ = ~1 (quasi-uniform meshes). Assume that y, the solution of (4.2),
belongs to W 2,∞

~γ (Ω) with

~γ = ~2− ~λ+ ~ε1, ε1 = ε/2 and 0 < ε < λ.

Then, the solution yh of (4.8) fulfills the error estimate

‖y − yh‖L∞(Ω) ≤ chmin(2,λ−ε)|lnh|
(
‖y‖

W 2,2
~β

(Ω)
+ ‖y‖

W 2,∞
~γ

(Ω)

)
.

Remark 4.2.9. The weighted H2(Ω)-regularity can be concluded from Lemma 4.1.1. Exploiting
also a trivial embedding we obtain

‖y‖
W 2,2
~β

(Ω)
≤ c

(
‖f‖

W 0,2
~β

(Ω)
+ ‖g‖

W
1/2,2
~β

(Γ)

)
≤ c

(
‖f‖L2(Ω) + ‖g‖H1/2(Γ)

)
.
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4.2. Discretization error estimates

Obviously, if the grading condition ~µ < ~λ is fulfilled, the range of feasible ~β is non-empty. In
Remark 4.1.2 we discussed several ways how the W 2,∞

~γ (Ω)-regularity can be guaranteed. Assum-
ing that f and g possess the regularity demanded by the right-hand side of (4.5), or (4.7) for
g ≡ 0, we can conclude that y ∈W 2,∞

~γ (Ω) under the assumption γj > 2−λj, compare also (4.6).
Moreover, taking into account the assumptions on ~γ, ~µ used in Theorem 4.2.7, we arrive at the
stronger grading condition ~µ < ~λ/2.

The remainder of this section is devoted to the proof of Theorem 4.2.7 and Corollary 4.2.8. To
prove Theorem 4.2.7 we distinguish among three cases, where the maximum can be attained:

1. If the maximum is attained in ΩRj/16, with ωj ≥ 90◦, we can restore the best-possible

convergence rate using weighted regularity results, i.e., y ∈ W 2,∞
γ (ΩRj ) with γ > 0, and

locally refined meshes, see Section 3.1. To prove the desired estimate, we apply a technique
of Schatz and Wahlbin [81], this is, we introduce a dyadic decomposition of ΩRj/16 around
the singular point, and apply local estimates on each subset, where the meshes are locally
quasi-uniform.

2. If the maximum is attained in ΩRj/16 with ωj < 90◦, we apply Theorem 4.2.1 for a localized
problem near the corner. Local refinement in ΩRj/16 is not needed in this case.

3. If the maximum is attained in Ω̃0, we use an interior maximum norm estimate, e.g. from
[88, Theorem 10.1], and exploit higher regularity in the interior of the domain.

To prove Corollary 4.2.8 we follow the same steps as for the proof of Theorem 4.2.7, however
the rates that we get are sub-optimal due to the quasi-uniformity of the underlying meshes.

In the following x0 ∈ Ω denotes the point where |y − yh|(x) attains its maximum.

Case 1: x0 ∈ ΩRj/16 with ωj ≥ 90◦.

For the further analysis we assume that x(j) is located at the origin and Rj = 1. Furthermore,
we suppress the subscript j such that ΩR = ΩRj , µ = µj , etc. Analogous to [81] we introduce a
dyadic decomposition of ΩR,

ΩJ := {x ∈ Ω : dJ+1 ≤ |x| ≤ dJ}, J = 0, . . . , I,

with dJ := 2−J for J = 0, . . . , I and dI+1 = 0. Obviously, there holds

ΩR =
I⋃

J=0

ΩJ , (4.10)

see also Figure 4.1. The largest index I is chosen such that

dI = cIh
1/µ

with a mesh-independent constant cI ≥ 1. This constant is specified in the proof of Lemma
4.2.15 where a kick-back argument is applied, which holds for sufficiently large cI only. We hide
this constant in the generic constant if there is no need in it.
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Chapter 4. Estimates for Neumann boundary value problems

Ω̃0

ΩRj/8

Ω0

ΩJ

Figure 4.1: Partition of Ω in subdomains Ω̃0 and ΩRj/8 (left) and partition of ΩR in subdomains
ΩJ (right)

We also introduce the extended domains Ω′J for J ≥ 1 and Ω′′J for J ≥ 2 by

Ω′J := ΩJ−1 ∪ ΩJ ∪ ΩJ+1,

Ω′′J := Ω′J−1 ∪ Ω′J ∪ Ω′J+1

with the obvious modifications for J = I − 1, I. Obviously, the meshes Th are locally quasi-
uniform with mesh sizes

hT ∼ hJ := hd1−µ
J if T ∩ ΩJ 6= ∅

for J = 0, . . . , I. This allows us to deduce local error estimates presented in the sequel.

For the convenience of the reader, we briefly summarize the forthcoming considerations. In
Lemma 4.2.14 we show local L∞-norm error estimates in the subsets ΩJ where the meshes are
locally quasi-uniform. We distinguish between two cases. In subdomains ΩJ for J > I − 2, we
can use a local pointwise error estimate from [88, Theorem 10.1], and for J = I − 2, I − 1, I we
use a different approach based on an inverse inequality which we prove in Lemma 4.2.10. Both
techniques allow a local decomposition of the finite element error into a best-approximation
term, for which we apply interpolation error estimates that we have in Lemma 4.2.11, and a
pollution term. The pollution term arises as a weighted L2-error which we discuss in Lemma
4.2.15. For the proof of this estimate we also require local error estimates in H1(ΩJ) stated in
Lemma 4.2.13 for the primal problem as well as the interpolation error estimates from Lemma
4.2.11 for the dual problem.

Before showing local interpolation error estimates, we show a stripwise inverse inequality.

Lemma 4.2.10. For every vh ∈ Vh and every J = I − 2, I − 1, I the estimate

‖vh‖L∞(ΩJ ) ≤ cd−1
J ‖vh‖L2(Ω′J )

26



4.2. Discretization error estimates

is valid.

Proof. We denote by T∗ the element where |vh| attains its maximum within ΩJ and by T̂ the
reference element. By Theorem 3.2.1 and norm equivalences in finite-dimensional spaces we
have

‖vh‖L∞(ΩJ ) ≤ ‖vh‖L∞(T∗) = ‖v̂h‖L∞(T̂ ) ≤ c‖v̂h‖L2(T̂ ) ≤ ch
−1
T∗
‖vh‖L2(Ω′J ) ≤ cd−1

J ‖vh‖L2(Ω′J ),

which proves the desired result, since hT∗ ≥ ch1/µ ∼ dI ∼ dJ for J = I − 2, I − 1, I.

In the following lemma stripwise interpolation error estimates on graded meshes are collected.
These estimates can be found in Lemma [76, Lemma 3.58].

Lemma 4.2.11. Let p ∈ [2,∞] and l ∈ {0, 1}.

(i) For 1 ≤ J ≤ I − 2 the estimates

‖v − Ihv‖W l,2(ΩJ ) ≤ ch2−ld
(2−l)(1−µ)+1−2/p−β
J |v|

W 2,p
β (Ω′J )

, (4.11)

‖v − Ihv‖L∞(ΩJ ) ≤ ch2−2/pd
(2−2/p)(1−µ)−β
J |v|

W 2,p
β (Ω′J )

(4.12)

are valid if v ∈W 2,p
β (Ω′J) with β ∈ R.

(ii) Let θl := max{0, (3 − l − 2/p)(1 − µ) − β} and θ∞ := max{0, (2 − 2/p)(1 − µ) − β}. For
J = I − 1, I the inequalities

‖v − Ihv‖W l,2(ΩJ ) ≤ cc
θl+1−2/p
I h(3−l−2/p−β)/µ|v|

W 2,p
β (Ω′J )

, (4.13)

‖v − Ihv‖L∞(ΩJ ) ≤ ccθ∞I h(2−2/p−β)/µ|v|
W 2,p
β (Ω′J )

(4.14)

hold if v ∈W 2,p
β (Ω′J) with 2/p− 2 < β < 2− 2/p.

Remark 4.2.12. Lemma 4.2.11 remains valid when replacing ΩJ by Ω′J and Ω′J by Ω′′J , respec-
tively. In this case the index range in part (i) is J = 2, . . . , I−3, and in part (ii) J = I−2, . . . , I.

The next result is needed in the proof of Lemma 4.2.15, and is given in [76, Lemma 3.60] or [8,
Lemma 3.9].

Lemma 4.2.13. The following assertions hold:

(i) For 2 ≤ J < I − 2 the estimate

‖y − yh‖H1(ΩJ ) ≤ c
(
hd2−µ−β

J |y|
W 2,∞
β (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
is valid for y ∈W 2,∞

β (ΩR) with β ∈ R.
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(ii) For J ≥ I − 2 the inequality

‖y − yh‖H1(ΩJ ) ≤ c
(
c5
Ih

(2−β)/µ|y|
W 2,∞
β (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
holds for y ∈W 2,∞

β (ΩR) with −2 < β < 2.

In the next lemma we show local pointwise error estimates.

Lemma 4.2.14. The following estimates hold:

(i) For 2 ≤ J < I − 2 the estimate

‖y − yh‖L∞(ΩJ ) ≤ c
(
h2|lnh|d2−2µ−β

J |y|
W 2,∞
β (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
is valid for y ∈W 2,∞

β (ΩR) with β ∈ R.

(ii) For J ≥ I − 2 the inequality

‖y − yh‖L∞(ΩJ ) ≤ c
(
h(2−β)/µ|y|

W 2,∞
β (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
holds for y ∈W 2,∞

β (ΩR) with −2 < β < 2.

Proof. Let us first consider the case J < I − 2. In Theorem 10.1 and Example 10.1 from [88]
the estimate

‖y − yh‖L∞(ΩJ ) ≤ c
(
|lnh| inf

χ∈Vh
‖y − χ‖L∞(Ω′J ) + d−1

J ‖y − yh‖L2(Ω′J )

)
(4.15)

is stated. The desired result in case 2 ≤ J < I − 2 follows from (4.15) and (4.12)

‖y − Ihy‖L∞(Ω′J ) ≤ ch2d2−2µ−β
J |y|

W 2,∞
β (Ω′′J )

.

For the case J = I, I − 1, I − 2 we use the triangle inequality

‖y − yh‖L∞(ΩJ ) ≤ ‖y − Ihy‖L∞(ΩJ ) + ‖Ihy − yh‖L∞(ΩJ ), (4.16)

where the first term on the right hand side of (4.16) can be estimated using inequality (4.14)

‖y − Ihy‖L∞(ΩJ ) ≤ ch(2−β)/µ|y|
W 2,∞
β (Ω′J )

.

We estimate the second term on the right hand side of (4.16) by applying the inverse inequality
from Lemma 4.2.10 and introducing the function y. We get

‖Ihy − yh‖L∞(ΩJ ) ≤ cd−1
J ‖Ihy − yh‖L2(Ω′J ) ≤ cd−1

J

(
‖y − Ihy‖L2(Ω′J ) + ‖y − yh‖L2(Ω′J )

)
.

Finally, using (4.13) with p =∞ we obtain

d−1
J ‖y − Ihy‖L2(Ω′J ) ≤ cd−1

J h(3−β)/µ|y|
W 2,∞
β (Ω′′J )

≤ ch2−β|y|
W 2,∞
β (Ω′′J )

,

where we used d−1
J h1/µ ≤ d−1

I h1/µ = c−1
I ≤ c.
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4.2. Discretization error estimates

The next lemma gives an estimate for the second terms on the right-hand sides of the estimates
from Lemma 4.2.14, the so-called pollution terms. To cover all cases J = 2, . . . , I, we introduce
the weight function σ(x) := r(x)+dI , and easily confirm that these pollution terms are bounded
by ‖σ−1(y−yh)‖L2(ΩR/8). To estimate this term, we can basically use the Aubin-Nitsche method

involving a kick back argument. Similar results can be found in [8, Lemma 3.10], where ‖σ−τ (y−
yh)‖L2(ΩR/8) with τ = 1/2 is considered, or in [76, Lemma 3.61], where the previous estimate is
generalized to exponents satisfying 1− λ < τ < 1. However, for τ = 1 some modifications have
to be made.

Lemma 4.2.15. Let 0 < γ ≤ 2− 2µ− 2ε with ε > 0 sufficiently small, then for y ∈W 2,∞
γ (ΩR)

and for the mesh size h small enough the estimate

‖(r + dI)
−1(y − yh)‖L2(ΩR/8) ≤ c

(
h2|lnh|‖y‖

W 2,∞
γ (ΩR)

+ |lnh|‖y − yh‖L2(ΩR)

)
is valid.

Remark 4.2.16. Note that the generic constant c depends on ε and tends to infinity for ε→ 0,
which follows from estimate (4.31) in the proof below. This means that the grading parameter
µ has to be chosen strictly smaller than λ/2, otherwise the generic constant will dominate in
numerical experiments. From the experiments presented in Section 4.3 it can be observed that
for λ = 2/3 it is enough to choose µ = 0.3 in order to get proven convergence rate for arbitrary
h values.

Proof of Lemma 4.2.15. We define by χ the characteristic function, which is equal to one in
ΩR/8 and equal to zero in Ω \ cl(ΩR/8). Next, we introduce the dual boundary value problem

−∆w + w = σ−2(y − yh)χ in Ω,

∂nw = 0 on Γ
(4.17)

with its weak formulation:

Find w ∈ V such that

a(ϕ,w) = (σ−2(y − yh)χ, ϕ)L2(Ω) ∀ϕ ∈ V. (4.18)

Let η ∈ C∞(Ω) be a cut-off function which is equal to one in ΩR/8, supp η ⊂ ΩR/4, and ∂nη = 0
on ∂ΩR, with ‖η‖Wk,∞ ≤ c for k ∈ N0. By setting ϕ = ηv in (4.18) with some v ∈ V one can
show that w̃ = ηw fulfills the equation

aΩR(v, w̃) = (ησ−2(y − yh)χ− (∆η)w − 2∇η · ∇w, v)L2(ΩR) ∀v ∈ V, (4.19)

where the bilinear form aΩR : H1(ΩR)×H1(ΩR)→ R is defined by

aΩR(ϕ,w) :=

∫
ΩR

(∇ϕ · ∇w + ϕw).
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Chapter 4. Estimates for Neumann boundary value problems

By this we get

‖σ−1(y − yh)‖2L2(ΩR/8) = (ησ−2(y − yh)χ, y − yh)L2(ΩR)

= aΩR(y − yh, w̃) + ((∆η)w, y − yh)L2(ΩR) + 2(∇η · ∇w, y − yh)L2(ΩR)

≤ aΩR(y − yh, w̃) +
(
‖(∆η)w‖L2(ΩR) + 2‖∇η · ∇w‖L2(ΩR)

)
‖y − yh‖L2(ΩR)

≤ aΩR(y − yh, w̃) + c‖w‖H1(ΩR)‖y − yh‖L2(ΩR). (4.20)

In the next step we are going to estimate the first term on the right-hand side of the previous
inequality. Since w̃ is equal to zero in ΩR \ΩR/4 we can use the Galerkin orthogonality of y−yh,
i.e.,

aΩR(y − yh, Ihw̃) = a(y − yh, Ihw̃) = 0.

By this and an application of the Cauchy-Schwarz inequality we get

aΩR(y − yh, w̃) = aΩR(y − yh, w̃ − Ihw̃) ≤ c
I∑

J=2

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ ). (4.21)

Due to supp η ⊂ ΩR/4 there holds w̃−Ihw̃ ≡ 0 in Ω0 and Ω1 provided that h is sufficiently small.
Now, using the results from the previous lemmas and distinguishing between 2 ≤ J ≤ I − 3 and
J = I − 2, I − 1, I we can estimate the terms on the right hand side of (4.21).

Let us discuss the case 2 ≤ J ≤ I − 3 first. For the dual interpolation error we get from (4.11)
with β = 1 + ε and β = 1− ε the estimates

‖w̃ − Ihw̃‖H1(ΩJ ) ≤ chd
−µ−ε
J |w̃|

W 2,2
1+ε(Ω

′
J )
, (4.22)

‖w̃ − Ihw̃‖H1(ΩJ ) ≤ chd
−µ+ε
J |w̃|

W 2,2
1−ε(Ω

′
J )
. (4.23)

Both estimates are needed in the sequel. For the primal error using Lemma 4.2.13 we get

‖y − yh‖H1(ΩJ ) ≤ c
(
hdµ+2ε

J |y|
W 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
, (4.24)

where we used the assumption on the weight γ. To get an estimate for (4.21) in case of 2 ≤
J ≤ I − 3 we multiply the first term on the right hand side of (4.24) with the right hand side of
(4.22), and the second term on the right hand side of (4.24) with (4.23). This leads to

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ )

≤ ch2dεJ |y|W 2,∞
γ (Ω′′J )

|w̃|
W 2,2

1+ε(Ω
′
J )

+ chd−1−µ+ε
J ‖y − yh‖L2(Ω′J )|w̃|W 2,2

1−ε(Ω
′
J )
. (4.25)

Now, we recall the local a priori estimates from [76, Lemma 3.9, (3.25)–(3.27)], which yield in
our case

|w̃|
W 2,2

1+ε(Ω
′
J )
≤ ‖F‖

W 0,2
1+ε(Ω

′′
J )

+ ‖w̃‖
V 1,2
ε (Ω′′J )

(4.26)

with the right hand side of (4.19)

F := ησ−2(y − yh)χ− (∆η)w − 2∇η · ∇w.
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Inserting estimate (4.26) into (4.25) yields

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ ) ≤ ch2dεJ |y|W 2,∞
γ (Ω′′J )

(
‖F‖

W 0,2
1+ε(Ω

′′
J )

+ ‖w̃‖
V 1,2
ε (Ω′′J )

)
+ chd−µ+ε

J ‖σ−1(y − yh)‖L2(Ω′J )|w̃|W 2,2
1−ε(Ω

′
J )

(4.27)

for J = 2, . . . , I − 3, where we also used the fact that d−1
J ≤ cσ−1(x) for x ∈ Ω′J .

For the sets ΩJ with J = I − 2, I − 1, I we apply Lemma 4.2.13 for the primal problem to get

‖y − yh‖H1(ΩJ ) ≤ c
(
h2|y|

W 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
,

where we used that h(2−γ)/µ < h2, and Lemma 4.2.11 for the dual problem to get

‖w̃ − Ihw̃‖H1(ΩJ ) ≤ cc
max{0,−µ+ε}
I hε/µ|w̃|

W 2,2
1−ε(Ω

′
J )
.

Moreover, the Leibniz rule using ‖η‖Wk,∞(ΩR) ≤ c, k = 0, 1, 2, and the global a priori estimate
of Lemma 4.1.1 with β = 1− ε yield the estimate

|w̃|
W 2,2

1−ε(ΩR)
≤ c‖w‖

W 2,2
1−ε(ΩR)

≤ c‖σ−2(y − yh)‖
W 0,2

1−ε(ΩR/8)
≤ c‖σ−1−ε(y − yh)‖L2(ΩR/8). (4.28)

Combining the last three estimates leads to

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ )

≤ c
(
h2+ε/µ|y|

W 2,∞
γ (Ω′′J )

+ c
max{0,−µ+ε}
I hε/µ‖σ−1(y − yh)‖L2(Ω′J )

)
‖σ−1−ε(y − yh)‖L2(ΩR/8)

≤ c
(
h2|y|

W 2,∞
γ (Ω′′J )

+ c
max{−ε,−µ}
I ‖σ−1(y − yh)‖L2(Ω′J )

)
‖σ−1(y − yh)‖L2(ΩR/8), (4.29)

where we exploited the property σ−ε ≤ d−εI = c−εI h−ε/µ. Inserting inequalities (4.27) and (4.29)
into (4.21) yields

aΩR(y − yh, w̃)

≤ c
I−3∑
J=2

h2dεJ |y|W 2,∞
γ (Ω′′J )

(
‖F‖

W 0,2
1+ε(Ω

′′
J )

+ ‖w̃‖
V 1,2
ε (Ω′′J )

)
+ c

I−3∑
J=2

hd−µ+ε
I ‖σ−1(y − yh)‖L2(Ω′J )|w̃|W 2,2

1−ε(Ω
′
J )

+ c
I∑

J=I−2

(
h2|y|

W 2,∞
γ (Ω′′J )

+ c−εI ‖σ
−1(y − yh)‖L2(Ω′J )

)
‖σ−1(y − yh)‖L2(ΩR/8), (4.30)

where we used d−µ+ε
J ≤ d−µ+ε

I and µ > ε. The three sums in (4.30) are treated in a different
way. For the first two terms we apply the discrete Cauchy-Schwarz inequality. Moreover, for
the first sum we use a basic property of geometric series

I−3∑
J=2

d2ε
J ≤

I−1∑
J=0

(
2−2ε

)J
=

1− 2−2εI

1− 2−2ε
≤ c(1− d2ε

I ) ≤ c, (4.31)
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with c = (1− 2−2ε)−1, which implies
(∑I−3

J=2 d
2ε
J

)1/2
≤ c. To treat the second sum in (4.30) we

insert estimate (4.28) as well as use the properties σ−ε ≤ d−εI and hd−µI = c−µI . This leads to

aΩR(y − yh, w̃)

≤ ch2|y|
W 2,∞
γ (ΩR)

(
‖F‖

W 0,2
1+ε(ΩR)

+ ‖w̃‖
V 1,2
ε (ΩR)

)
+ cc−µI ‖σ

−1(y − yh)‖L2(ΩR)‖σ−1(y − yh)‖L2(ΩR/8)

+ c
(
h2|y|

W 2,∞
γ (ΩR)

+ c−εI ‖σ
−1(y − yh)‖L2(ΩR)

)
‖σ−1(y − yh)‖L2(ΩR/8), (4.32)

Due to the properties of the cut-off function η and ‖rε‖L∞(Ω) + ‖r1+ε‖L∞(Ω) ≤ c, one can show
that

‖F‖
W 0,2

1+ε(ΩR)
≤ c
(
‖σ−1(y − yh)‖L2(ΩR/8) + ‖w‖H1(ΩR)

)
.

To estimate the V 1,2
ε (ΩR)-norm of w̃ we use the trivial embedding

H1(ΩR) 'W 1,2
0 (ΩR) ↪→W 1,2

ε (ΩR),

and exploit that the norms in W 1,2
ε (ΩR) and V 1,2

ε (ΩR) are equivalent for ε > 0 [51, Theorem
7.1.1]. Taking also into account the Leibniz rule with ‖η‖Wk,∞(ΩR) ≤ c, we obtain

‖w̃‖
V 1,2
ε (ΩR)

≤ c‖w̃‖H1(ΩR) ≤ c‖w‖H1(ΩR) ≤ c|lnh|‖σ−1(y − yh)‖L2(ΩR/8). (4.33)

The last step is confirmed at the end of this proof. Using the previous results, inequality (4.32)
can be rewritten in the following way

aΩR(y − yh, w̃)

≤ c
(
h2|lnh||y|

W 2,∞
γ (ΩR)

+ c−εI ‖σ
−1(y − yh)‖L2(ΩR)

)
‖σ−1(y − yh)‖L2(ΩR/8). (4.34)

By inserting (4.34) and the last step of (4.33) into (4.20), and dividing by ‖σ−1(y−yh)‖L2(ΩR/8),
we obtain

‖σ−1(y−yh)‖L2(ΩR/8) ≤ c
(
h2|lnh||y|

W 2,∞
γ (ΩR)

+c−εI ‖σ
−1(y−yh)‖L2(ΩR/8) + |lnh|‖y−yh‖L2(ΩR)

)
.

Here, we used also σ−1 = (r + dI)
−1 ≤ r−1 ≤ (R/8)−1 ≤ c if r ≥ R/8. Finally, we get(

1− cc−εI
)
‖σ−1(y − yh)‖L2(ΩR/8) ≤ c

(
h2|lnh||y|

W 2,∞
γ (ΩR)

+ |lnh|‖y − yh‖L2(ΩR)

)
.

By choosing the constant cI large enough, such that cc−εI < 1 holds, the desired result follows.

It remains to prove the last step in (4.33). A similar proof was already given in [84, Lemma
4.13]. There holds

‖w‖2H1(ΩR) ≤ a(w,w) = (σ−2(y − yh)χ,w) = (σ−1(y − yh), σ−1w)L2(ΩR/8)

≤ ‖σ−1(y − yh)‖L2(ΩR/8)‖σ−1w‖L2(ΩR)

≤ c|lnh|‖σ−1(y − yh)‖L2(ΩR/8)‖w‖H1(ΩR), (4.35)

where in the last step we used estimate (4.36) from [84, Lemma 4.13], which is also valid for the
Neumann boundary value problem.
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From Lemma 4.2.14 with 0 < γ ≤ 2− 2µ− 2ε and Lemma 4.2.15 we conclude the local estimate

‖y − yh‖L∞(ΩR/8) ≤ ch2|lnh|‖y‖
W 2,∞
γ (ΩR)

+ c|lnh|‖y − yh‖L2(ΩR). (4.36)

Corollary 4.2.17. Let 0 < γ < 2 and µ = 1, then for y ∈W 2,∞
γ (ΩR) the inequality

‖(r + dI)
−1(y − yh)‖L2(ΩR/8) ≤ c

(
h2−γ−ε1‖y‖

W 2,∞
γ (ΩR)

+ |lnh|‖y − yh‖L2(ΩR)

)
holds.

Proof. The proof for this inequality is structured similarly to the proof of the previous lemma,
but is simpler. For the sake of completeness we give it here, however, we skip the identical steps.

We want to estimate inequality (4.21) in the case µ = 1. As in the proof of Lemma 4.2.15 we
start with the case 2 ≤ J ≤ I − 3. For the dual interpolation error we use (4.11) only with
β = 1− ε1

‖w̃ − Ihw̃‖H1(ΩJ ) ≤ chd−1+ε1
J |w̃|

W 2,2
1−ε1

(Ω′J )
, (4.37)

and for the primal interpolation error we get from Lemma 4.2.13

‖y − yh‖H1(ΩJ ) ≤ c
(
hd1−γ

J |y|
W 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
. (4.38)

By means of the previous two estimates we conclude for 2 ≤ J ≤ I − 3

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ )

≤ c
(
h2d−γ+ε1

J |y|
W 2,∞
γ (Ω′′J )

+ hd−1+ε1
J ‖σ−1(y − yh)‖L2(Ω′J )

)
|w̃|

W 2,2
1−ε1

(Ω′J )

≤ c
(
h2−γ+ε1 |y|

W 2,∞
γ (Ω′′J )

+ hd−1+ε1
J ‖σ−1(y − yh)‖L2(Ω′J )

)
|w̃|

W 2,2
1−ε1

(Ω′J )
(4.39)

where we used that d−1
J ≤ cσ−1(x) for x ∈ Ω′J and d−γ+ε1

J ≤ d−γ+ε1
I ≤ ch−γ+ε1 for ε1 > 0 small

enough, since 0 < γ < 2 and dI = cIh.

For J = I, I − 1, I − 2 we get from Lemma 4.2.13 for the primal variables

‖y − yh‖H1(ΩJ ) ≤ c
(
h2−γ |y|

W 2,∞
γ (Ω′′J )

+ d−1
J ‖y − yh‖L2(Ω′J )

)
,

and from Lemma 4.2.11 for the dual ones

‖w̃ − Ihw̃‖H1(ΩJ ) ≤ chε1 |w̃|W 2,2
1−ε1

(Ω′J )
.

Combining the last two estimates together we obtain

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ ) ≤ c
(
h2−γ+ε1 |y|

W 2,∞
γ (Ω′′J )

+ hε1‖σ−1(y − yh)‖L2(Ω′J )

)
|w̃|

W 2,2
1−ε1

(Ω′J )
, (4.40)

33



Chapter 4. Estimates for Neumann boundary value problems

where we used that d−1
J ≤ cσ−1(x) for x ∈ Ω′J .

Inequalities (4.39) and (4.40) together yield

aΩR(y − yh, w̃) ≤ c
I∑

J=2

(
h2−γ+ε1 |y|

W 2,∞
γ (Ω′′J )

+ hε1‖σ−1(y − yh)‖L2(Ω′J )

)
|w̃|

W 2,2
1−ε1

(Ω′J )
,

where we used that hd−1+ε1
J ≤ hd−1+ε1

I ≤ chε1 . Now, using the fact that
∑I

J=2 1 ∼ |lnh| and
the discrete Cauchy-Schwarz inequality, we obtain

aΩR(y − yh, w̃) ≤ c
(
h2−γ+ε1 |lnh|1/2|y|

W 2,∞
γ (ΩR)

+ hε1‖σ−1(y − yh)‖L2(ΩR)

)
|w̃|

W 2,2
1−ε1

(ΩR)
.

By applying estimate (4.28) we conclude

aΩR(y−yh, w̃)

≤ c
(
h2−γ+ε1 |lnh|1/2|y|

W 2,∞
γ (ΩR)

+ hε1‖σ−1(y − yh)‖L2(ΩR)

)
‖σ−1−ε1(y − yh)‖L2(ΩR/8)

≤ c
(
h2−γ |lnh|1/2|y|

W 2,∞
γ (ΩR)

+ c−ε1I ‖σ−1(y − yh)‖L2(ΩR)

)
‖σ−1(y − yh)‖L2(ΩR/8),

where we used that σ−ε1 ≤ d−ε1I ≤ c−ε1I h−ε1 . Finally, using the fact that |lnh|1/2 ≤ ch−ε1 for h
small enough we arrive at

aΩR(y−yh, w̃) ≤
(
h2−γ−ε1 |y|

W 2,∞
γ (ΩR)

+c−ε1I ‖σ−1(y−yh)‖L2(ΩR)

)
‖σ−1(y−yh)‖L2(ΩR/8). (4.41)

The remaining steps of the proof are identical with the part of the proof of Lemma 4.2.15 starting
with estimate (4.34).

Lemma 4.2.14 together with the estimate |lnh|d−γJ ≤ ch−γ−ε1 and Corollary 4.2.17 imply the
local estimate

‖y − yh‖L∞(ΩR/8) ≤ ch2−γ−ε1‖y‖
W 2,∞
γ (ΩR)

+ c|lnh|‖y − yh‖L2(ΩR), (4.42)

which holds on quasi-uniform meshes (~µ = ~1).

Case 2: x0 ∈ ΩRj/16 with ωj < 90◦.

We prove the result under the assumption that the mesh is quasi-uniform within ΩRj . Note
that the convergence rate is not reduced if mesh refinement is still used. We assume that the
corner x(j) is located in the origin, and drop the subscript j as in the previous case. The basic
idea is to apply Theorem 4.2.1 in a local fashion, which can be realized with a technique from
e.g. [32, Theorem 1]. First, we introduce a polygonal domain Ω̂R (see Figure 4.2). Note that
the distance l is positive for h small enough, which allows us to extend the mesh

Th|ΩR/2 := {T ∈ Th : T ∩ ΩR/2 6= ∅}

quasi-uniformly to an exact triangulation T̂h of Ω̂R. We also introduce a smooth cut-off function
η1 such that η1 = 1 in ΩR/2 and dist(supp η1, ∂Ω̂R \ Γ) ≥ c > 0. For our further considerations
we define the Ritz projection of ỹ = η1y as follows. Let
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R/2

R
l

Figure 4.2: Th|ΩR/2 - dark gray domain, Ω̂R - dark gray and light gray domains

Vh(T̂h) := {vh ∈ C(cl Ω̂R) : vh|T ∈ P1 for all T ∈ T̂h}

denote the space of ansatz functions with respect to the new triangulation T̂h. The function
ỹh ∈ Vh(T̂h) is the unique solution of

a(ỹ − ỹh, vh) = 0 ∀vh ∈ Vh(T̂h). (4.43)

As y = ỹ in ΩR/8, we get from the triangle inequality

‖y − yh‖L∞(ΩR/8) ≤ ‖ỹ − ỹh‖L∞(ΩR/8) + ‖ỹh − yh‖L∞(ΩR/8). (4.44)

Since ỹ ∈W 2,∞(Ω̂R), in order to estimate the first term in (4.44) we apply Theorem 4.2.1

‖ỹ − ỹh‖L∞(ΩR/8) ≤ ch2|lnh|‖ỹ‖W 2,∞(ΩR) ≤ ch2|lnh|‖y‖
W 2,∞
~γ

(Ω)
, (4.45)

where we used the Leibniz rule in the last step. Note that it is possible to construct η1 such that
‖η1‖Wk,∞(Ω) ≤ c for k = 0, 1, 2. Next, we confirm that the function ỹh − yh is discrete harmonic

in ΩR/2, this is, for every vh ∈ Vh with supp vh ⊂ ΩR/2 there holds

a(ỹh − yh, vh) = a(ỹ − y, vh) = 0.

This is a consequence of η1 ≡ 1 (and hence y = ỹ) on ΩR/2, as well as vh ≡ 0 in Ω \ ΩR/2. An
application of the discrete Sobolev inequality from Lemma 3.1.3 and the discrete Caccioppoli
type estimate from [31, Lemma 3.3] then yield

‖ỹh − yh‖L∞(ΩR/8) ≤ c|lnh|1/2‖ỹh − yh‖H1(ΩR/4) ≤ cd−1|lnh|1/2‖ỹh − yh‖L2(ΩR/2),

where d = dist(∂ΩR/2 \Γ, ∂ΩR/4 \Γ) and by construction d = 1/4 (remember R = 1). Next, we
use the triangle inequality and the fact that y = ỹ in ΩR/2

‖ỹh − yh‖L∞(ΩR/8) ≤ c|lnh|1/2
(
‖ỹ − ỹh‖L2(Ω̂R) + ‖y − yh‖L2(Ω)

)
≤ ch2|lnh|1/2‖ỹ‖H2(Ω̂R) + c|lnh|1/2‖y − yh‖L2(Ω), (4.46)
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where we used a standard L2-error estimate in the last step. Estimates (4.45) and (4.46) finally
yield the local estimate

‖y − yh‖L∞(ΩR/8) ≤ ch2|lnh|‖y‖
W 2,∞
~γ

(Ω)
+ |lnh|‖y − yh‖L2(Ω). (4.47)

Case 3: x0 ∈ Ω̃0.

It remains to obtain an estimate if |y−yh| attains its maximum at a point x0 ∈ Ω̃0. Note that the
auxiliary domains used in the following steps are defined in Section 2.2. We use [88, Theorem
10.1] with s = 0 to get

‖y − yh‖L∞(Ω̃0) ≤ c
(
|lnh|‖y − Ihy‖L∞(Ω̌0) + ‖y − yh‖L2(Ω̌0)

)
.

Since the domain Ω̌0 ⊂ Ω0 has a constant and positive distance to the corners of Ω, we conclude
with standard interpolation error estimates from Lemma 3.2.2

‖y − yh‖L∞(Ω̃0) ≤ c
(
h2|lnh|‖y‖W 2,∞(Ω0) + ‖y − yh‖L2(Ω̌0)

)
≤ c
(
h2|lnh|‖y‖

W 2,∞
~γ

(Ω)
+ ‖y − yh‖L2(Ω̌0)

)
. (4.48)

Finally, we are in a position to prove the main results.

Proof of Theorem 4.2.7. Estimates (4.36), (4.47) and (4.48) result in

‖y − yh‖L∞(Ω) ≤ ch2|lnh|‖y‖
W 2,∞
~γ

(Ω)
+ |lnh|‖y − yh‖L2(Ω).

For the remaining term on the right-hand side we apply Lemma 4.2.3 and conclude the desired
result.

Proof of Corollary 4.2.8. From estimate (4.42) together with ~γ = ~2−~λ+~ε1 and ~γ ≥ ~0, estimates
(4.47) and (4.48) we get

‖y − yh‖L∞(Ω) ≤ chmin(2,λ−ε)|lnh|‖y‖
W 2,∞
~γ

(Ω)
+ |lnh|‖y − yh‖L2(Ω).

For the right hand side term we apply Lemma 4.2.4 and by this conclude the desired estimate.

4.2.3 Pointwise estimates for semilinear elliptic problems

The aim of this section is to apply the results from the previous section to certain nonlinear
problems. Such a pointwise error estimate can be then applied in the numerical analysis of the
Neumann control problem subject to a semilinear problem. However, this is out of the scope of
this thesis. Here, we investigate the semilinear problem

−∆y + d(·, y) = f in Ω,

∂ny = g on Γ,
(4.49)
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where we assume that the input data f and g are sufficiently regular such that the solution y
belongs to W 2,2

~β
(Ω)∩W 2,∞

~γ (Ω) with ~β ∈ [0, 1)m and ~γ ∈ [0, 2)m. Under the assumptions, stated

below, this regularity is shown in e.g. [76, Corollary 3.26], provided that f and g belong to some
weighted N -space. Note that the forthcoming theory have been already done in [76], where only
sub-optimal rates are obtained.

The nonlinear part d : Ω× R→ R fulfills the following assumptions:

(A1) The function d = d(x, y) is measurable with respect to x ∈ Ω for all y ∈ R, and differen-
tiable with respect to y for almost all x ∈ Ω. Furthermore, the function d is monotonically
increasing with respect to y, i.e.,

∂d

∂y
(x, y) ≥ 0 for a. a. x ∈ Ω and y ∈ R,

and fulfills locally a mixed Lipschitz/Hölder condition of the following form:
For some σ ∈ (0, 1) and all M > 0 there exists Ld,M > 0 such that

|d(x1, y1)− d(x2, y2)| ≤ Ld,M (|x1 − x2|σ + |y1 − y2|)

for all xi ∈ Ω and yi ∈ R with |yi| < M , i = 1, 2.

(A2) The function d is strictly monotonically increasing w.r.t. y in some subset EΩ ⊂ Ω of
positive measure, i.e., some constant cΩ > 0 exists such that ∂d

∂y (x, y) ≥ cΩ in EΩ × R.

The variational solution of (4.49) is a function y ∈ H1(Ω) ∩ C0(Ω) which satisfies

a(y, v) + (d(·, y), v)L2(Ω) = (f, v)L2(Ω) + (g, v)L2(Γ) ∀v ∈ V, (4.50)

where a : V × V → R is the bilinear form defined by

a(y, v) :=

∫
Ω
∇y · ∇v.

Under the assumptions on d, this variational formulation possesses a unique solution [86, The-
orem 4.10]. Its finite element approximation yh ∈ Vh, with Vh given by (3.3), is the unique
solution of the variational formulation

a(yh, vh) + (d(·, yh), vh)L2(Ω) = (f, vh)L2(Ω) + (g, vh)L2(Γ) ∀vh ∈ Vh. (4.51)

Next, we show sharp pointwise error estimates for this approximate solution on graded triangula-
tions satisfying (3.1) and quasi-uniform triangulations (~µ = ~1). All the following considerations,
except an application of the pointwise error estimates from the previous section, are taken from
[76, Section 3.2.6], where the reader also can find a more detailed proof of the following result.

Theorem 4.2.18. Let the previous assumptions hold. Assume that the weight ~β ∈ [0, 1)m fulfills

~1− ~λ < ~β < ~1− ~µ, ~β > 0,
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and the weight ~γ ∈ [0, 2)m satisfies

(i) ~0 ≤ ~γ < ~2− 2~µ, or (ii) ~γ = ~0 and ~µ ≤ ~1.

Then the discretization error can be estimated by

‖y − yh‖L∞(Ω) ≤ ch2|lnh|
(
‖y‖

W 2,2
~β

(Ω)
+ ‖y‖

W 2,∞
~γ

(Ω)

)
.

Moreover, let ~µ = ~1 (quasi-uniform meshes), and the weight ~γ be chosen as

~γ = ~2− ~λ+ ~ε1, ε1 = ε/2 and 0 < ε < λ.

Then the discretization error estimate

‖y − yh‖L∞(Ω) ≤ chmin(2,λ−ε)|lnh|
(
‖y‖

W 2,2
~β

(Ω)
+ ‖y‖

W 2,∞
~γ

(Ω)

)
.

holds.

Proof. For the further analysis of problem (4.49) we consider an equivalent formulation of vari-
ational equation (4.50). We define α ∈ C∞(Ω) by

α := ηEΩ
cΩ,

where ηEΩ
is an infinitely differentiable cut-off function, which is equal to one in a proper subset

of EΩ and supp ηEΩ
⊂ EΩ. Variational equation (4.50) can be reformulated by means of

ã(y, v) + (d̃(·, y), v)L2(Ω) = (f − d(·, 0), v)L2(Ω) + (g, v)L2(Γ) ∀v ∈ V, (4.52)

where ã : V × V → R denotes the bilinear form

ã(y, v) :=

∫
Ω

(∇y · ∇v + αyv), (4.53)

and the function d̃ is defined by

d̃(x, y) := d(x, y)− d(x, 0)− α(x)y.

Note that the function d̃ fulfills Assumption (A1), and bilinear form (4.53) is continuous and
coercive. Furthermore, we have d̃(x, 0) = 0 for a.a. x ∈ Ω.

We introduce an equivalent formulation of (4.51)

ã(yh, vh) + (d̃(·, yh), vh)L2(Ω) = (f − d(·, 0), vh)L2(Ω) + (g, vh)L2(Γ) ∀vh ∈ Vh. (4.54)

We also observe that the solution y ∈ V of (4.52) fulfills

ã(y, v) = Fd,y(v) := (f − d(·, 0)− d̃(·, y), v)L2(Ω) + (g, v)L2(Γ) ∀v ∈ V, (4.55)
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and we introduce a certain Ritz projection ỹh ∈ Vh with respect to the bilinear form ã, this is

ã(ỹh, vh) = Fd,y(vh) ∀vh ∈ Vh. (4.56)

Taking into account the previous considerations, we obtain

‖y − yh‖L∞(Ω) ≤ ‖y − ỹh‖L∞(Ω) + ‖ỹh − yh‖L∞(Ω)

≤ ‖y − ỹh‖L∞(Ω) + c|lnh|1/2‖ỹh − yh‖H1(Ω), (4.57)

where in the last step we used the discrete Sobolev inequality from Lemma 3.1.3.

In order to show a maximum norm estimate for the first term on the right-hand side of (4.57),
we can not directly use the result from Theorem 4.2.7, since the underlying differential equation
is a different one. To this end, we introduce a further approximation of y, namely y̆h ∈ Vh,
which solves

a(y̆h, vh) + (y̆h, vh)L2(Ω) = Fd,y(vh) + ((1− α)y, vh)L2(Ω) ∀vh ∈ Vh.

Note that the function ỹh is the solution of

a(ỹh, vh) + (ỹh, vh)L2(Ω) = Fd,y(vh) + ((1− α)ỹh, vh)L2(Ω) ∀vh ∈ Vh.

Using the triangle inequality, Theorem 4.2.7, the discrete Sobolev inequality and a Lipschitz
property for solutions of linear elliptic equations, we obtain

‖y − ỹh‖L∞(Ω) ≤ c
(
‖y − y̆h‖L∞(Ω) + ‖y̆h − ỹh‖L∞(Ω)

)
≤ ch2| lnh|

(
‖y‖

W 2,∞
~γ

(Ω)
+ ‖y‖

W 2,2
~β

(Ω)

)
+ c| lnh|1/2‖(1− α)(y − ỹh)‖L2(Ω). (4.58)

Using the finite element error estimate in L2(Ω) from Lemma 4.2.3, whose proof can be easily
extended to problems (4.55) and (4.56), the second term on the right-hand side can be bounded
by the first one.

For the second term in (4.57) we proceed as follows. Due to the coercivity of the bilinear form ã
with some coercivity constant c∗ = c∗(EΩ, cΩ), variational equations (4.54) and (4.56), and the
monotonicity and Lipschitz continuity of d̃, we conclude

c∗‖ỹh − yh‖2H1(Ω) ≤ ã(ỹh − yh, ỹh − yh) =

∫
Ω

(d̃(·, yh)− d̃(·, y))(ỹh − yh)

=

∫
Ω

(d̃(·, yh)− d̃(·, ỹh))(ỹh − yh) +

∫
Ω

(d̃(·, ỹh)− d̃(·, y))(ỹh − yh)

≤
∫

Ω
(d̃(·, ỹh)− d̃(·, y))(ỹh − yh)

≤ ‖ỹh − y‖L2(Ω)‖ỹh − yh‖H1(Ω). (4.59)

Consequently, the second term on the right hand side of (4.57) can be bounded by

‖ỹh − yh‖H1(Ω) ≤ c‖y − ỹh‖L2(Ω) ≤ ch2‖y‖
W 2,2
~β

(Ω)
. (4.60)
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This follows from a standard finite element error estimate in the L2(Ω)-norm, which can be
proven analogously to Lemma 4.2.3.

The proof for the estimate on quasi-uniform meshes is identical to the previous considerations
if one uses Corollary 4.2.8 and Lemma 4.2.4 instead of Theorem 4.2.7 and Lemma 4.2.3, respec-
tively.

4.3 Numerical examples

In this section, we verify the theoretical results from Theorem 4.2.7 and Corollary 4.2.8 by nu-
merical computations. To this end we use the following numerical example. The computational
domain Ωω depending on the interior angle ω ∈ (0, 2π) is defined by

Ωω := (−1, 1)2 ∩ {x ∈ R2 : (r(x), ϕ(x)) ∈ (0,
√

2]× (0, ω)}, (4.61)

where the interior angle ω is chosen either 3π/4 (convex domain) or 3π/2 (non-convex domain),
respectively.

To generate meshes satisfying the condition (3.1), we start with a coarse initial mesh and apply
several uniform refinement steps. Afterwards, depending on the grading parameter µ we trans-
form the mesh by moving all nodes xi within a circular sector with radius R around the origin
according to

xi,new = xi

(
r(xi)

R

)1/µ−1

∀xi ∈ Ωω ∩ SR

for all i ∈ Ih with |xi| < R. One can show that this transformation implies mesh condition
(3.1). Note that also other refinement strategies are possible. For instance, one can successively
mark and refine all elements violating (3.1). The local refinement can be realized with e.g. a
newest vertex bisection algorithm [18].

The benchmark problem we consider is taken from [76, Example 3.66] and reads

−∆y + y = rλ cos(λϕ) in Ωω,

∂ny = ∂n

(
rλ cos(λϕ)

)
on Γ := ∂Ωω

with λ = π/ω. The unique solution of this problem is y = rλ cos(λϕ). The experimental order
of convergence eoc(L∞(Ωω)) is calculated by

eoc(L∞(Ωω)) :=
ln
(
‖y − yhk−1

‖L∞(Ωω)/‖y − yhk‖L∞(Ωω)

)
ln(hk−1/hk)

,

where hk−1 and hk are the mesh sizes of two consecutive triangulations Thk−1
and Thk , respec-

tively.
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4.3. Numerical examples

Figure 4.3: Triangulation of the domain Ω3π/4 with a quasi-uniform (µ = 1) and a graded mesh
(µ = 0.5)

Example in a convex domain

In Table 4.1 one can find the computed errors ‖eh‖L∞(Ω3π/4) := ‖Ihy− yh‖L∞(Ω3π/4) on different

meshes with µ = 0.6 < 2/3 = λ/2 and µ = 1. We measure only the discrete L∞-norm, since the
initial error is dominated by this norm, due to

‖y − yh‖L∞(Ωω) ≤ ‖y − Ihy‖L∞(Ωω) + ‖Ihy − yh‖L∞(Ωω).

Note that the interpolation error is bounded by ch2 if µ < λ/2. From Theorem 4.2.7 we expect
that meshes with grading parameter µ < λ/2 = 2/3 yield a convergence rate tending to 2 if the
mesh size tends to zero. For the choice µ = 0.6 this is confirmed. As predicted in Corollary 4.2.8
the convergence rate λ− ε = 4/3− ε for arbitrary ε > 0 is confirmed for quasi-uniform meshes
as well.

Example in a non-convex domain

In Table 4.2 the errors ‖y − yh‖L∞(Ω3π/2) can be found. The grading parameters are µ = 0.3 <

1/3 = λ/2, µ = 0.6 and µ = 1. Meshes with µ = 1 and µ = 0.3 can be found in Figure 4.3.
One can see that for meshes with µ < λ/2 the convergence rate is optimal as it follows from
Theorem 4.2.7. If meshes are not graded optimally (µ = 0.6), the convergence order is not
optimal too. The rate 2/3 − ε stated for quasi-uniform meshes in Corollary 4.2.8 can also be
observed from the numerical results.
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µ = 1 µ = 0.6

mesh size h ‖eh‖L∞(Ωω) eoc ‖eh‖L∞(Ωω) eoc

0.707107 3.97e-02 3.97e-02
0.403914 1.18e-02 1.75 1.21e-02 2.12
0.233893 3.37e-03 1.82 3.87e-03 2.09
0.135498 9.43e-04 1.84 1.17e-03 2.19
0.070628 2.60e-04 1.86 3.42e-04 1.89
0.036008 1.09e-04 1.26 9.38e-05 1.92
0.018176 4.50e-05 1.27 2.48e-05 1.94
0.009131 1.83e-05 1.30 6.45e-06 1.96
0.004587 7.39e-06 1.31 1.66e-06 1.97
0.002298 2.96e-06 1.32 4.22e-07 1.98

Table 4.1: Discretization errors eh = y − yh with ω = 3π/4.

µ = 1 µ = 0.6 µ = 0.3

mesh size h ‖eh‖L∞(Ωω) eoc ‖eh‖L∞(Ωω) eoc ‖eh‖L∞(Ωω) eoc

0.707107 6.20e-02 6.20e-02 6.20e-02
0.403914 3.72e-02 0.74 4.27e-02 0.67 4.80e-02 0.68
0.233893 3.39e-02 0.64 1.85e-02 1.53 3.30e-02 0.98
0.135498 1.52e-02 0.65 8.31e-03 1.46 1.47e-02 2.09
0.070628 9.62e-03 0.66 3.83e-03 1.19 4.79e-03 2.00
0.036008 6.07e-03 0.66 1.77e-03 1.15 1.44e-03 1.91
0.018176 3.83e-03 0.67 8.17e-04 1.13 4.07e-04 1.92
0.009131 2.41e-03 0.67 3.78e-04 1.12 1.11e-04 1.92
0.004587 1.52e-03 0.67 1.75e-04 1.12 2.96e-05 1.95
0.002298 9.57e-04 0.67 8.09e-05 1.12 7.70e-06 1.96

Table 4.2: Discretization errors eh = y − yh with ω = 3π/2.
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CHAPTER 5

Estimates for Dirichlet boundary value problems

This chapter is devoted to descretization error estimates for two different types of Dirichlet
boundary value problems. We consider W 1,∞(Ω)-seminorm error estimates on quasi-uniform
meshes and L∞(Ω)-error estimates on both graded and quasi-uniform triangulations for the
homogeneous Dirichlet boundary value problem

−∆y = f in Ω,

y = 0 on Γ
(5.1)

with the right hand side function f being smooth enough, and L2(Ω)-error estimates on quasi-
uniform triangulations for the inhomogeneous Dirichlet problem

−∆y = 0 in Ω,

y = g on Γ,
(5.2)

where the boundary datum g ∈ L2(Γ).

The declared error estimates in the W 1,∞(Ω)-seminorm for (5.1) and in the L2(Ω)-norm on quasi-
uniform triangulations for (5.2) are needed in the forthcoming study of pointwise error estimates
for Dirichlet boundary control problems. Here we recall that Dirichlet boundary control problems
on graded meshes are out of the scope of this thesis. The L∞(Ω)-error estimate on graded
triangulations for (5.1) is an improvement of [11, Theorem 4.4], where the rate h2|lnh|3/2 is
shown, and here we get the rate h2|lnh|, using the proof techniques from the previous chapter.

5.1 Estimates for the homogeneous Dirichlet problem

Consider the homogeneous Dirichlet boundary value problem (5.1). The variational formulation
for this problem reads as follows:
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Find y ∈ H1
0 (Ω) such that

a(y, v) = (f, v)L2(Ω) ∀v ∈ V := H1
0 (Ω), (5.3)

where a : V × V → R is the bilinear form defined by

a(y, v) :=

∫
Ω
∇y · ∇v. (5.4)

The existence and uniqueness of a solution y ∈ H1
0 (Ω) follows from the Lax-Milgram Theorem,

provided that f ∈ [H1
0 (Ω)]∗.

5.1.1 Regularity

Now, as for the Neumann problem, we present two a priori results in weighted Sobolev spaces
for the homogeneous Dirichlet problem, namely, a priori estimates in the weighted H2(Ω)- and
W 2,∞(Ω)-norms, which we need for Theorem 5.1.5 and Corollary 5.1.6.

Lemma 5.1.1. Let ~β ∈ [0, 1)m satisfy the condition

~1− ~λ < ~β ≤ ~1.

Then for every f ∈ V 0,2
~β

(Ω), the solution of problem (5.1) belongs to V 2,2
~β

(Ω) and satisfies the a

priori estimate

‖y‖
V 2,2
~β

(Ω)
≤ c‖f‖

V 0,2
~β

(Ω)
.

Proof. The proof is just an application of [68, Theorem 3.1] in a general polygonal domain.

Lemma 5.1.2. Let the right hand side satisfy f ∈ N0,σ
~δ

(Ω) for arbitrary σ ∈ (0, 1) and weights

~γ ∈ [0, 2)m whose components γj, j ∈ C, satisfy one of the conditions

(i) max(0, 2− λj) < γj ≤ 2, δj = γj + σ,

(ii) γj = 0, 2− λj < 0, δj = σ.

Then the solution of the problem (5.1) belongs to V 2,∞
~γ (Ω) and the a priori estimate

‖y‖
V 2,∞
~γ

(Ω)
≤ c‖f‖

N0,2
~δ

(Ω)

holds true.

Proof. The desired estimates follows from the trivial embedding N2,∞
~δ

(Ω) ↪→ V 2,∞
~γ (Ω), see the

definitions of these spaces in Section 2.2, and [52, Theorem 8.7.1].
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5.1.2 Finite element discretization

The FE solution yh ∈ Vh,0 of problem (5.3) satisfies

a(yh, vh) = (f, vh)L2(Ω) ∀vh ∈ Vh,0, (5.5)

where

Vh,0 = {vh ∈ C(Ω) : vh|T ∈ P1 for all T ∈ Th and vh = 0 on Γ}. (5.6)

The existence and uniqueness of this function follows from the Lax-Milgram theorem.

W 1,∞(Ω)-seminorm error estimates

In Chapter 7 we consider pointwise error estimates for Dirichlet boundary control problems.
An important tool for such estimates is an estimate for the adjoint state. In case of Dirichlet
control problems, as one can see in Chapter 7, we need a pointwise estimate for the gradient
of the discretization error for the adjoint equation, which has the same structure as (5.1). For
quasi-uniform triangulations this estimate can be deduced from the main theorem of [77] or [32,
Theorem 2], which holds also for graded meshes.

Theorem 5.1.3. Let Ω be convex and ~µ = ~1 (quasi-uniform meshes). Moreover, let y and yh
be the solutions of (5.3) and (5.5), respectively. Then the best approximation property

‖∇(y − yh)‖L∞(Ω) ≤ c min
χ∈Vh,0

‖∇(y − χ)‖L∞(Ω)

holds.

Remark 5.1.4. If the solution of (5.1) possesses no singularities in the neighborhood of concave
corners, the best approximation property can be also applied in non-convex domains, see remarks
after the main theorem in [77].

L∞(Ω)-norm error estimates

Now, let us sharpen the convergence rate in the L∞(Ω)-norm on graded meshes. In [84, Theorem
4.4] it is shown that the estimate

‖y − yh‖L∞(Ω) ≤ ch2|lnh|3/2‖f‖C0,σ(Ω), (5.7)

holds on graded meshes with µ < λ/2, provided that f ∈ C0,σ(Ω) with σ ∈ (0, 1). Note that
in the reference only one singular corner is assumed, therefore, only one grading parameter is
needed for that result.

Now, using the proof techniques from Section 4.2.2, we reduce the exponent of the logarithmic
term in estimate (5.7). Moreover, we reformulate the result such that it holds for general
polygonal domains and also show an error estimate on quasi-uniform triangulations.
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Theorem 5.1.5. Assume that y, the solution of (5.3), belongs to V 2,2
~β

(Ω) ∩ V 2,∞
~γ (Ω) with

~1− ~λ < ~β ≤ ~1− ~µ, ~β ≥ ~0

and ~γ satisfying one of the following conditions

(i) ~0 ≤ ~γ < ~2− 2~µ, or (ii) ~γ = ~0 and ~µ ≤ ~1.

Then, the solution yh of (5.5) fulfills the error estimate

‖y − yh‖L∞(Ω) ≤ ch2|lnh|
(
‖y‖

V 2,2
~β

(Ω)
+ ‖y‖

V 2,∞
~γ

(Ω)

)
.

Proof. The proof is very similar to that of Theorem 4.2.7, however, there are some differences,
which we point out here. First, note that the stripwise interpolation error estimates in Lemma
4.2.11 hold also in weighted V -spaces, since the corresponding seminorms are equivalent. There-
fore, Lemmas 4.2.13 and 4.2.14 also hold true for weighted V -functions.

The modification of Lemma 4.2.15 needs more attention. The dual problem (4.17) in case of the
Dirichlet problem reads as

−∆w = σ−2(y − yh)χ in Ω,

w = 0 on Γ
(5.8)

with the obvious modification of the bilinear form aΩR(·, ·). Estimate (4.28) holds true using
the estimate from Lemma 5.1.1 instead of Lemma 4.1.1. All the other steps are either identical
or are valid due to the seminorm equivalence in Lemmas 4.2.13 and 4.2.14.

Estimate (4.47) holds true following the same steps as in Case 2 with only one exeption, namely,
instead of using the a priori error estimate for the Neumann problem from Theorem 4.2.1, we
have to use an equivalent one for the Dirichlet problem, e.g. the one from [38].

Inequality (4.48) in Case 3 obviously holds for y in the corresponding weighted V -norm. The
desired result follows from the prevoius considerations as well as the a priori estimate in the
L2(Ω)-norm on graded meshes, see e.g. [17], [73] and [78].

Corollary 5.1.6. Let ~µ = ~1 (quasi-uniform meshes). Moreover, assume that y, the solution of
(5.3), belongs to V 2,2

~β
(Ω) ∩ V 2,∞

~γ (Ω) with

~γ = ~2− ~λ+ ~ε1, ε1 = ε/2 and 0 < ε < λ.

Then, the solution yh of (4.8) fulfills the error estimate

‖y − yh‖L∞(Ω) ≤ chmin(2,λ−ε)|lnh|
(
‖y‖

V 2,2
~β

(Ω)
+ ‖y‖

V 2,∞
~γ

(Ω)

)
.

Proof. The proof follows the same steps as the proof of Corollary 4.2.8 adopting the modifications
used in the proof of Theorem 5.1.5.
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Remark 5.1.7. Similarly to the Neuman case, here we discuss the required regularity in Theorem
5.1.5 and Corollary 5.1.6. The weighted H2(Ω)-regularity follows from Lemma 5.1.1 and a trivial
embedding. We have

‖y‖
V 2,2
~β

(Ω)
≤ c‖f‖

V 0,2
~β

(Ω)
≤ c‖f‖L2(Ω).

Lemma 5.1.2 guarantees the required weighted W 2,∞(Ω)-regularity

‖y‖
V 2,∞
~γ

(Ω)
≤ c‖f‖

N0,σ
~δ

(Ω)
≤ c‖f‖C0,σ(Ω),

where the last estimate is trivially fulfilled.

Finally, we point out that in order to get the best possible rate of convergence, the assumptions
~β ≤ ~1− ~µ and ~γ < ~2− 2~µ from Theorem 5.1.5 have to be fulfilled. This is the case if ~µ < ~λ/2.

5.2 Estimates for the inhomogeneous Dirichlet problem

At the beginning of this chapter we mentioned that we are interested in L2(Ω)-norm error
estimates for problem (5.2) given that the boundary datum g is only an L2(Γ)-function. Such
estimates are of interest in the numerical investigation of Dirichlet boundary control problems
considered in Chapter 7. In this section we only collect existing results for the application in
Chapter 7.

5.2.1 Method of transposition

Since a solution of problem (5.2) can not be expected from the space H1(Ω), we are not allowed
to look for it as a weak solution. As a remedy to this issue, we can consider it as a very
weak solution of the state equation. The very weak solution can be computed via the so-called
methods of transposition. This method for convex domains goes back at least to [57]. For the
analysis of optimal control problems it is used in [39, 24, 30] and [61]. The very weak solution
of (5.2) in convex domains is the unique element y ∈ L2(Ω) which satisfies

(y,∆v)L2(Ω) = (g, ∂nv) ∀v ∈ V := H2(Ω) ∩H1
0 (Ω). (5.9)

If the underlying domain is non-convex, the test space V has to be substituted by

V∆ := H1
∆(Ω) ∩H1

0 (Ω) with H1
∆(Ω) :=

{
v ∈ H1(Ω): ∆v ∈ L2(Ω)

}
.

In convex domains the space V∆ coincides with V , and in non-convex domains the splitting

V∆ = V
⊕

λj<1, j∈C
span

{
ξr
λj
j sin(λjϕj)

}
holds, where ξ is a smooth cut-off function with ξ ≡ 1 in some neighborhood of the corresponding
non-convex corners, see [6, Remark 2.2].
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The existence and uniqueness of a solution to the very weak formulation (5.9) is proven in [61,
Lemma 2.1] for convex domains and in [6, Lemma 2.3] for non-convex domains. Note also that
if a weak solution y ∈

{
v ∈ H1(Ω): v|Γ = u

}
of problem (5.2) exists, it also satisfies the very

weak formulation (5.9), see [27].

From [6, Corollary 2.6] we can cite the following a priori estimate.

Theorem 5.2.1. For every g ∈ L2(Γ) there exists a unique solution y ∈ H1/2(Ω) of (5.9).
Moreover, the a priori estimate

‖y‖H1/2(Ω) ≤ c‖g‖L2(Γ)

holds.

There are two approaches for treating (5.9), namely, Berggren’s approach introduced in [20] and
the regularization approach proposed in [6]. The idea of Berggren’s approach is to avoid the
explicit use of test functions from V∆, and the idea of the regularization approach is an initial
regularization of the boundary data and an application of the standard variational method.

5.2.2 Finite element discretization

Here we consider a finite element discretization for the regularization approach only, since this
approach delivers slightly better convergence rates than Berggren’s discretization approach.

Introduce a sequence of functions gh ∈ H1/2(Γ) such that

lim
h→0
‖g − gh‖L2(Γ) = 0,

and define the spaces

V h
∗ :=

{
v ∈ H1(Ω): v|Γ = gh

}
,

as well as
Vh,∗ := V h

∗ ∩ Vh.

A finite element solution yh ∈ Vh,∗ of problem (5.9) satisfies

a(yh, vh) = 0 ∀vh ∈ Vh,0, (5.10)

where the bilinear form a(·, ·) is given by (5.4) and the space Vh,0 is defined according to (5.6).

For the numerical solution of (5.10) we have the following convergence result from [6, Corollary
3.3].

Lemma 5.2.2. Let y and yh be the solutions of (5.9) and (5.10), respectively. Then the dis-
cretization error estimate

‖y − yh‖L2(Ω) ≤ chmin(1/2,λ−1/2−ε)‖g‖L2(Γ)

holds, provided that g ∈ L2(Γ).
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CHAPTER 6

Estimates for Neumann boundary control problems

This chapter is devoted to maximum norm error estimates of the Neumann boundary control
problem

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ) → min! (6.1)

subject to

−∆y + y = 0 in Ω,

∂ny = u on Γ,
(6.2)

u ∈ Uad :=
{
u ∈ L2(Γ) : ua ≤ u ≤ ub a.e. on Γ

}
. (6.3)

In the formulation above J(·, ·) is the so-called objective functional, yd denotes the desired state,
which is first assumed to be an L2(Ω)-function. We require more regularity for the desired state
in the sequel when deriving error estimates. The function y is called the state and is coupled
with the control u via state equation (6.2). The control bounds ua, ub are assumed to be constant
and the regularization parameter ν is a positive real number.

In Section 6.1 we give preliminary definitions, and discuss optimality conditions and regular-
ity results for the continuous optimal control problem. In the next section we consider two
discretization strategies for the optimal control problems and derive sharp pointwise error es-
timates for the control. Finally, in Section 6.3 we confirm theoretical results via a numerical
experiment for one of the considered approaches.

6.1 Analysis of the continuous problem

Before we start with the numerical analysis of optimal control problem (6.1)–(6.3), we give some
preliminary definitions and discuss existence and uniqueness of a solution to the continuous
problem as well as some regularity results.



Chapter 6. Estimates for Neumann boundary control problems

Preliminaries

The variational formulation of state equation (6.2) reads:

Find y ∈ H1(Ω) such that

a(y, v) = (u, v)L2(Γ) ∀v ∈ H1(Ω), (6.4)

where the bilinear form a(·, ·) is given by (4.3), We define by

S : L2(Γ)→ L2(Ω), u 7→ Su := y

the solution operator of (6.4). Inserting Su into (6.1) eliminates the state variable y and gives
the reduced objective functional

j(u) :=
1

2
‖Su− yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ) → min! s.t. u ∈ Uad (6.5)

We also define the adjoint equation

−∆p+ p = z in Ω,

∂np = 0 on Γ,

where z ∈ L2(Ω), with its weak formulation:

Find p ∈ H1(Ω) such that

a(p, v) = (z, v)L2(Ω) ∀v ∈ H1(Ω). (6.6)

A weak solution of (6.6) is called the adjoint state and the solution operator of the adjoint
equation is given by

P : L2(Ω)→ H1(Ω), z 7→ Pz := p.

Optimality conditions

The existence and uniqueness of a solution to optimal control problem (6.1)–(6.3) is guaranteed
by the following result.

Theorem 6.1.1. There exists a unique element ū ∈ Uad, which solves optimal control problem
(6.5) associated with the optimal state ȳ = Sū and the optimal adjoint state p̄ = P (Sū − yd).
Moreover, the variational inequality

(p̄+ νū, u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad (6.7)

holds, and is equivalent to the projection formula

ū(x) = Π[ua,ub]

(
−1

ν
p̄(x)

)
for a.a. x ∈ Γ. (6.8)

where Π[ua,ub] is the L2(Γ)-projection onto Uad and possesses the pointwise representation(
Π[ua,ub]v

)
(x) := max(ua,min(ub, v(x))). (6.9)
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Proof. The existence and uniqueness of a solution ū ∈ Uad can be deduced from [86, Theorem
2.14]. The variational inequality (6.7) follows from the Fréchet differentiability of functional
(6.5) and [86, Theorem 2.22]. The equivalence of variational inequality (6.7) and projection
formula (6.8) can be found in e.g. [49, Sections 1.5.1 and 1.7.2].

Regularity

In the following theorem we collect regularity results needed for the further numerical analysis
of the optimal control problem. This result can be found in [76, Theorem 4.4].

Theorem 6.1.2. Let ȳ = Sū and p̄ = P (Sū− yd) be the optimal state and the optimal adjoint
state, respectively, associated with the optimal control ū ∈ Uad. Then the inequality

‖ȳ‖
W 2,2
~β

(Ω)
+ ‖p̄‖

W 2,2
~β

(Ω)
+ ‖p̄‖

W 2,∞
~γ

(Ω)
≤ c
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω)

)
holds provided that

yd ∈ C0,σ(Ω)

and

max(0, 1− λj) < βj < 1 or βj = 0 and 1− λj < 0,

max(0, 2− λj) < γj < 2 or γj = 0 and 2− λj < 0

is fulfilled for each j ∈ C.

6.2 Discretization error estimates

In this section, we investigate two different types of discretization of optimal control problem
(6.1)–(6.3), and derive sharp pointwise error estimates for the control variable on both graded
and quasi-uniform meshes.

6.2.1 Variational discretization

The first possible discretization strategy is the approach of variational discretization. This
approach is introduced by Hinze in [47] and applied to Neumann control problems in [48]. The
underlying feature of this approach is that the state and the adjoint state are approximated by
piecewise linear and globally continuous elements, and the control is not discretized, however,
it inherits its discretization via the discrete projection formula (6.14).

The variational formulation (6.4) now reads as:

Find yh ∈ Vh
a(yh, vh) = (u, vh)L2(Γ) ∀vh ∈ Vh, (6.10)
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where Vh is given by (3.3), and we define by

Sh : L2(Γ)→ Vh, u 7→ Shu := yh

the discrete counterpart of the solution operator S. The discretized optimal control problem in
the reduced form is given by

jh(u) :=
1

2
‖Shu− yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ) → min! s.t. u ∈ Uad. (6.11)

The weak formulation of the adjoint equation reads:

Find ph ∈ Vh such that

a(ph, vh) = (z, vh)L2(Ω) ∀vh ∈ Vh, (6.12)

where z ∈ L2(Ω). The corresponding discrete counterpart of the continuous adjoint operator P
is given by

Ph : L2(Ω)→ Vh, z 7→ Phz := ph.

Analogous to the continuous case one can show, see e.g. [48], that discrete optimal control
problem (6.11) has a unique solution ūh ∈ Uad.

Lemma 6.2.1. There exists a unique element ūh ∈ Uad, which solves optimal control problem
(6.11) associated with the discrete optimal state ȳh = Shū and the discrete optimal adjoint state
p̄h = Ph(Shū− yd). Moreover, the variational inequality

(p̄h + νūh, u− ūh)L2(Γ) ≥ 0 ∀u ∈ Uad (6.13)

holds and is equivalent to the projection formula

ūh = Π[ua,ub]

(
−1

ν
p̄h|Γ

)
. (6.14)

The following lemma gives us a tool for a compact proof of the desired error estimates for the
control.

Lemma 6.2.2. Let z ∈ L2(Ω) and v ∈ L2(Γ). Moreover let Ph and Sh be the discrete adjoint
operator and the discrete solution operator, respectively. Then for ~0 < ~µ ≤ ~1 the estimates

‖Phz‖L∞(Ω) ≤ c‖z‖L2(Ω),

‖Shv‖L∞(Ω) ≤ c‖v‖L2(Γ)

hold.

Proof. Both estimates follow from [76, Corollary 3.47] with r = 2 and s = 2, respectively.
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6.2. Discretization error estimates

6.2.2 Error estimates for the variational discretization approach

We start this section with recalling error estimates for the control in the L2(Γ)-norm. Such
estimates are essential in the forthcoming proof of pointwise estimates. Error estimates for the
control variable in the L2(Γ)-norm on graded meshes have already been studied in [7, 76, 8]. In
[7] the authors showed a suboptimal convergence rate and in [76, 8] a quasi-optimal one. In [76]
also an estimate on quasi-uniform meshes is given.

Although the rate of convergence in [76, Theorem 4.10] is h2|lnh|3/2, it is possible to obtain
h2|lnh| if one uses Theorem 4.2.5 with % = 0 instead of % = 1/2 in the proof of [76, Theorem
4.10]. This, however, leads to the stronger grading condition ~µ < ~λ/2.

In order to reduce the exponent of the logarithmic term in the L2(Γ)-estimate on quasi-uniform
meshes given in [76, Corollary 4.11], one can use Corollary 4.2.6 with % = 0 instead of % = 1/2
in the proof of [76, Corollary 4.11].

We collect the above considerations in the following theorem, and from now on we assume that

yd ∈ C0,σ(Ω),

where σ ∈ (0, 1]. Moreover, we recall that

λ := min
j∈C

λj,1, λj,1 :=
π

ωj
.

In the following considerations, the factors ‖ū‖L2(Γ), ‖yd‖C0,σ(Ω), ua, ub and ν are hidden in the
generic constant c.

Theorem 6.2.3. Let ū and ūh be given by projection formulas (6.8) and (6.14), respectively.

(i) If ~µ < ~λ/2, then the dicretization error estimate

‖ū− ūh‖L2(Γ) ≤ ch2|lnh|

holds.

(ii) If ~µ = ~1 and 0 < ε < λ, then the error estimate

‖ū− ūh‖L2(Γ) ≤ chmin(2,λ−ε)|lnh|

is valid.

In order to show the main result of this section, first, we have to derive quasi-optimal error
estimates for the adjoint state.

Lemma 6.2.4. Let p̄ = P (Sū − yd) be the optimal adjoint state and p̄h = Ph(Shūh − yd) the
discrete optimal adjoint state associated with the optimal control ū and the discrete optimal
control ūh be given by projection formulas (6.8) and (6.14), respectively.
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(i) If ~µ < ~λ/2, then the dicretization error estimate

‖p̄− p̄h‖L∞(Ω) ≤ ch2|lnh|

holds.

(ii) If ~µ = ~1 and 0 < ε < λ, then the error estimate

‖p̄− p̄h‖L∞(Ω) ≤ chmin(2,λ−ε)|lnh|

is valid.

Proof. We start with the first estimate. The proof is similar to [11, Theorem 3.8], which is
given for a distributed control problem. We introduce auxiliary functions and use the triangle
inequality

‖p̄− p̄h‖L∞(Ω) = ‖P (Sū− yd)− Ph(Shūh − yd)‖L∞(Ω)

≤ ‖(P − Ph)(Sū− yd)‖L∞(Ω) + ‖Ph(Sū− Shū)‖L∞(Ω)

+ ‖PhSh(ū− ūh)‖L∞(Ω). (6.15)

The first term in (6.15) can be estimated using Theorem 4.2.7 together with Theorem 6.1.2

‖(P − Ph)(Sū− yd)‖L∞(Ω) ≤ ch2|lnh|. (6.16)

Now, applying Lemma 6.2.2 for the second term in (6.15), we obtain

‖Ph(Sū− Shū)‖L∞(Ω) ≤ c‖Sū− Shū‖L2(Ω) ≤ ch2, (6.17)

where the last inequality follows from Lemma 4.2.3 and Theorem 6.1.2. To estimate the last term,
we apply the first estimate from Lemma 6.2.2 together with the trivial embedding L∞(Ω) ↪→
L2(Ω) and the second estimate from the same lemma

‖PhSh(ū− ūh)‖L∞(Ω) ≤ c‖Sh(ū− ūh)‖L∞(Ω) ≤ c‖ū− ūh‖L2(Γ) ≤ ch2|lnh|, (6.18)

where the last step is valid due to Theorem 6.2.3 (i). The desired assertion follows from inequal-
ities (6.16)–(6.18).

The proof for the estimate on quasi-uniform meshes is similar to the proof for the first one.
The desired result can be shown by using Corollary 4.2.8, Lemma 4.2.4 and Theorem 6.2.3 (ii)
instead of Theorem 4.2.7, Lemma 4.2.3 and Theorem 6.2.3 (i), respectively, in the proof of the
estimate on graded meshes.

Finally, we are able to show the main estimates of this section.

Theorem 6.2.5. Let ū and ūh be given by projection formulas (6.8) and (6.14), respectively.
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(i) If ~µ < ~λ/2, then the dicretization error estimate

‖ū− ūh‖L∞(Γ) ≤ ch2|lnh|

holds.

(ii) If ~µ = ~1 and 0 < ε < λ, then the error estimate

‖ū− ūh‖L∞(Γ) ≤ chmin(2,λ−ε)|lnh|

is valid.

Proof. Projection formulas (6.8) and (6.14), its Lipschitz continuity and the continuity of p̄− p̄h
yield

‖ū− ūh‖L∞(Γ) =
1

ν
‖p̄− p̄h‖L∞(Γ) ≤

1

ν
‖p̄− p̄h‖L∞(Ω).

The desired result follows from Lemma 6.2.4.

Remark 6.2.6. It is also possible to derive pointwise error estimates for the optimal state.
However, due to kinks of the optimal control caused by projection formula (6.8), the optimal
control belongs to some weighted W 1,∞(Γ)-space but not to some weighted C1,σ(Γ)-space. This,
in turn, means that ȳ belongs to some weighted W 2,p(Ω)-space with some arbitrary 1 ≤ p < ∞
but not to desired weighted W 2,∞(Ω)-space. One can show that the lack of the weighted W 2,∞(Ω)-
regularity in the proofs of Theorem 4.2.7 and Corollary 4.2.8 leads to

‖(S − Sh)ū‖L∞(Ω) ≤ ch2−ε

on graded meshes and

‖(S − Sh)ū‖L∞(Ω) ≤ chmin(2,λ)−ε

on quasi-uniform meshes, respectively. The triangle inequality together with the estimates above,
Lemma 6.2.2 and Theorem 6.2.3 imply the same rates for the error of the optimal state. There
holds

‖ȳ − ȳh‖L∞(Ω) ≤ ‖(S − Sh)ū‖L∞(Ω) + ‖Sh(ū− ūh)‖L∞(Ω) ≤ c

{
h2−ε,

hmin(2,λ)−ε

on graded and quasi-uniform meshes, respectively.

Note that if no kinks of the optimal control occur — which is the case, for instance, if control
constraints are not present — one can recover the desired weighted W 2,∞(Ω)-regularity of the
optimal state, and hence, the quasi-optimal convergence rate (h2|lnh|) on graded meshes and on
quasi-uniform meshes for λ > 2.
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6.2.3 Postprocessing approach

The second discretization strategy that we consider is the postprocessing approach introduced
by Meyer and Rösch in [65] with an extension to Neumann control problems given in [60]. This
approach is based on a full discretization of the optimal control problem (6.1)–(6.3). It means
that the state and its adjoint are discretized according to the previous section, and the control
u is discretized by piecewise constant functions

U0
h := {uh ∈ L∞(Γ) : uh|E ∈ P0 for all E ∈ Eh},

Uh,ad := U0
h ∩ Uad.

However, in the postpocessing approach the optimal control ũ /∈ Uh,ad is computed in the
postprocessing step, which essentially gives the name to the discretization strategy, and allows
to gain better convergence rates. The fully discretized optimal control problem reads as

jh(uh) :=
1

2
‖Shuh − yd‖2L2(Ω) +

ν

2
‖uh‖2L2(Γ) → min! s.t. uh ∈ Uh,ad. (6.19)

Using the same argumentation as in the continuous case, one can show the following existence
and uniqueness result.

Lemma 6.2.7. There exists a unique element ūh ∈ Uh,ad, which solves optimal control problem
(6.19) associated with the optimal discrete optimal state ȳh = Shūh and the optimal discrete
adjoint state p̄h = Ph(Shūh − yd). Moreover, the variational inequality

(p̄h + νūh, uh − ūh)L2(Γ) ≥ 0 ∀u ∈ Uh,ad (6.20)

holds.

6.2.4 Error estimates for the postprocessing approach

In order to obtain results of the same quality as in Lemma 6.2.4 and Theorem 6.2.5 we need an
assumption upon the active set which is, to the best of our knowledge, always used in derivation
of error estimates for the state in the L2(Ω)-norm. As already discussed in the previous section,
the control variable (in general) has kinks at transition points between active and inactive sets,
and hence, is less regular. However, we assume that these kinks can occur only at a finite number
of points, which motives the definition of the subsets

K1 :=
⋃

E∈Eh : ū/∈W 2,2
~2−2~µ

(E)

E, K2 :=
⋃

E∈Eh : ū∈W 2,2
~2−2~µ

(E)

E.

Remark 6.2.8. Note, that K1 contains the elements where kinks occur, and K2 contains the
elements that are strictly active or inactive, since p|Γ, ua, ub ∈W 2,2

~2−2~µ
(E) for E ⊂ K2.

Assumption 1. There exists a positive constant c independent of h such that |K1| ≤ ch.
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We do not use the previous assumption explicitly, however, it is essential for Theorem 6.2.9.

As mentioned before, the postprocessing approach is first considered in [65]. The idea is to
compute a fully discrete solution of problem (6.19) and to get an improved control by applying
projection formula (6.8) to the discrete optimal adjoint state p̄h to obtain

ũh = Π[ua,ub]

(
−1

ν
p̄h|Γ

)
. (6.21)

The standard approach in the analysis of L2(Ω)-norm error estimates for the postprocessing
approach is as follows. First, one shows an estimate for the state, which is usually the most dif-
ficult part of the numerical analysis. Having shown this estimate and using standard arguments,
one can show the same convergence rate (as for the state) for the adjoint state, and in the last
step — the postprocessing step itself — the rate for the error of the postprocessed control.

Here we argue in a different way, namely, as in the previous section by showing the quasi-optimal
rate for the adjoint state, and as a consequence of it, for the control. However, in comparison to
the previous section, here we show the estimate for the adjoint state via an L2(Ω)-norm estimate
for the state, which make the proof a bit shorter. The pointwise error estimate for the state can
be obtained separately from the first two estimates.

We start our discussion with the existing estimates for the state in the L2(Ω)-norm. Note
that these results have been studied in the same references and of the same quality as the
corresponding estimates for the control in case of the approach of variational discretization.

The forthcoming results are already shown in [76, Theorem 4.20, Corollary 4.21], however, here
we deal with the same issue as before, namely, the exponent of the logarithmic term in the
corresponding estimates is not equal to one. In order to overcome this issue, the corresponding
proofs require only one modification. Namely, one can apply Theorem 4.2.5 with % = 0 in the
proof of [76, Lemma 4.18], where a FE error in the L2-norm on the boundary for the adjoint
state is estimated. By the same idea, using Corollary 4.2.6 with % = 0 in the proof of [76,
Corollary 4.21], we can show the corresponding estimate on quasi-uniform triangulations.

As in the case of the variational discretization approach, we assume that

yd ∈ C0,σ(Ω),

where σ ∈ (0, 1], and recall that

λ := min
j∈C

λj,1, λj,1 :=
π

ωj
.

Moreover, we assume that in the following considerations the factors ‖ū‖L2(Γ), ‖yd‖C0,σ(Ω), ua,
ub and ν are hidden in the generic constant c.

Theorem 6.2.9. Let Assumption 1 hold. Furthermore, let ȳ = Sū be the optimal state and
ȳh = Shūh be the optimal discrete state associated with the optimal control ū and the discrete
optimal control ūh be given by projection formulas (6.8) and (6.14), respectively.
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(i) If ~µ < ~λ/2, then the discretization error estimate

‖ȳ − ȳh‖L2(Ω) ≤ ch2|lnh|

holds.

(ii) If ~µ = ~1 and 0 < ε < λ, then the error estimate

‖ȳ − ȳh‖L2(Ω) ≤ chmin(2,λ−ε)|lnh|

is valid.

Lemma 6.2.10. Let Assumption 1 be satisfied. Furthermore, let p̄ = P (ȳ − yd) be the optimal
adjoint state and p̄h = Ph(ȳh − yd) be the discrete optimal adjoint state associated with the
optimal control ū and the discrete optimal control ūh be given by projection formulas (6.8) and
(6.14), respectively.

(i) If ~µ < ~λ/2, then the discretization error estimate

‖p̄− p̄h‖L∞(Ω) ≤ ch2|lnh|,

holds.

(ii) If ~µ = ~1 and 0 < ε < λ, then the error estimate

‖p̄− p̄h‖L∞(Ω) ≤ chmin(2,λ−ε)|lnh|

is valid.

Proof. Introducing the auxiliary function Ph(ȳ − yd) and using the triangle inequality, there
holds

‖p̄− p̄h‖L∞(Ω) = ‖P (ȳ − yd)− Ph(ȳh − yd)‖L∞(Ω)

≤ ‖(P − Ph)(ȳ − yd)‖L∞(Ω) + ‖Ph(ȳ − ȳh)‖L∞(Ω).

The estimate for the first term on the right hand side of the previous estimate follows Theorem
4.2.7 together with Theorem 6.1.2

‖(P − Ph)(ȳ − yd)‖L∞(Ω) ≤ ch2|lnh|, (6.22)

and the estimate for the second term follows from Lemma 6.2.2 and Theorem 6.2.9 (i)

‖Ph(ȳ − ȳh)‖L∞(Ω) ≤ ‖ȳ − ȳh‖L2(Ω) ≤ ch2|lnh|. (6.23)

The desired estimate follows from (6.22) and (6.23).

To show the estimate on quasi-uniform meshes one can use Corollary 4.2.8 instead of Theorem
4.2.7 in (6.22) and Theorem 6.2.3 (ii) instead of its first part in (6.23).

58



6.3. Numerical example for the postprocessing approach

The main result of this section is stated in the following theorem.

Theorem 6.2.11. Let Assumption 1 be fulfilled. Moreover, let ū and ũh be given by projection
formulas (6.8) and (6.21), respectively.

(i) If ~µ < ~λ/2, then the discretization error estimate

‖ū− ũh‖L∞(Γ) ≤ ch2|lnh|,

holds

(ii) If ~µ = ~1 and 0 < ε < λ, then the error estimate

‖ū− ũh‖L∞(Γ) ≤ chmin(2,λ−ε)|lnh|

is valid.

Proof. Taking into account projection formula (6.21), the proof is identical to the proof of
Theorem 6.2.5.

Remark 6.2.12. In case of the postprocessing approach it is possible to show the same conver-
gence rates discussed in Remark 6.2.6 for the error of the optimal state. However, the proof is
not as trivial as the one in case of variational discretization. It requires some auxiliary results
involving estimates for the so-called regularized Green’s function.

Note also that, if the control possesses no kinks, the quasi-optimal convergence rates for the state
can be recovered on graded meshes.

6.3 Numerical example for the postprocessing approach

In this section we illustrate the theoretical estimates for the postprocessing approach. For this
reason, we compute the maximum norm error for the example from [76, Example 4.22].

The optimal control problem we consider reads as

1

2
‖y − yd‖2L2(Ωω) +

ν

2
‖u‖2L2(Γω) +

∫
Γω

g1y → min!

subject to
−∆y + y = f in Ωω,

∂ny = u+ g2 on Γω,

u ∈ Uad := {u ∈ L2(Γω) : ua ≤ u ≤ ub a.e. on Γω},

where the computational Ωω is given by (4.61).

The control problem from above has the additional term
∫

Γω
g1y in the objective functional and

the additional functions f and g2 on the in the state equation, which makes it possible to choose
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the data such that the exact solution has exactly the proven regularity. Nevertheless, one can
analyze this problem analogously to the initial one. The optimality system of the problem reads
as

−∆y + y = f in Ωω,

∂ny = u+ g2 on Γω,

−∆p+ p = y − yd in Ωω,

∂np = g1 on Γω,

u = Π[ua,ub]

(
−1

ν
p

)
on Γω.

We set ν = 1, ua = −0.5 and ub = 0.5. Moreover, the data f , yd, g1 and g2 are chosen as follows

f = rλ cos(λϕ) in Ωω,

yd = 2rλ cos(λϕ) in Ωω,

g1 = −∂n
(
rλ cos(λϕ)

)
on Γω,

g2 = ∂n

(
rλ cos(λϕ)

)
−Π[ua,ub]

(
rλ cos(λϕ)

)
on Γω.

The the unique solution of this problem is given by

ȳ = rλ cos(λϕ) in Ωω,

p̄ = −rλ cos(λϕ) in Ωω,

ū = Π[ua,ub]

(
rλ cos(λϕ)

)
on Γω,

which has exactly the regularity shown in Theorem 6.1.2.

We solve the discrete optimality system above using a primal-dual active set strategy described
in [87, Section 2.12.4], see also [21, 53, 46], and calculate the experimental order of convergence
eoc(L∞(Γω)) by

eoc(L∞(Γω)) :=
ln
(
‖ū− uhk−1

‖L∞(Γω)/‖ū− uhk‖L∞(Γω)

)
ln(hk−1/hk)

. (6.24)

Example in a convex domain

The first domain we consider is Ω3π/4. In Table 6.1 one can find the computed errors for the
control variable on a sequence of quasi-uniform meshes (µ = 1) and a sequence of graded meshes
(µ = 0.6). In the first case the calculated convergence order is equal to λ− ε = 4/3− ε. In the
case of graded meshes the calculated convergence rate tends to 2. In both cases the calculated
convergence orders agree with the theoretical results from Theorem 6.2.11.
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6.3. Numerical example for the postprocessing approach

µ = 1 µ = 0.6

mesh size h ‖eh‖L∞(Γω) eoc ‖eh‖L∞(Γω) eoc

0.403914 5.04e-03 6.00e-03
0.233893 1.82e-03 1.47 2.04e-03 1.98
0.135498 7.53e-04 1.27 9.11e-04 1.47
0.070628 3.01e-04 1.32 2.73e-04 1.85
0.036008 1.20e-04 1.32 7.63e-05 1.89
0.018176 4.80e-05 1.33 2.04e-05 1.93
0.009131 1.91e-05 1.33 5.37e-06 1.94
0.004587 7.58e-06 1.33 1.40e-06 1.95

Table 6.1: Discretization errors eh = u− uh with ω = 3π/4.

µ = 1 µ = 0.6 µ = 0.3

mesh size h ‖eh‖L∞(Γω) eoc ‖eh‖L∞(Γω) eoc ‖eh‖L∞(Γω) eoc

0.403914 3.23e-02 3.81e-02 4.52e-02
0.233893 2.25e-02 0.52 1.77e-02 1.40 2.50e-02 1.53
0.135498 1.48e-02 0.60 8.21e-03 1.40 1.21e-02 1.89
0.070628 9.53e-03 0.64 3.82e-03 1.17 3.60e-03 2.16
0.036008 6.05e-03 0.66 1.77e-03 1.14 9.47e-04 2.12
0.018176 3.82e-03 0.66 8.18e-04 1.13 2.41e-04 2.08
0.009131 2.41e-03 0.67 3.78e-04 1.12 6.05e-05 2.05
0.004587 1.52e-03 0.67 1.75e-04 1.12 1.52e-05 2.03

Table 6.2: Discretization errors eh = u− uh with ω = 3π/2.

Example in a non-convex domain

As an example for a non-convex domain we consider Ω3π/2. We calculated convergence rates for
the control variable on three different meshes and collected them in Table 6.2. We observe that
on the sequence of quasi-uniform meshes the convergence rate is equal to λ − ε = 2/3 − ε. In
case of the non-optimal grading parameter µ = 0.6, the condition µ < λ/2 is not fulfilled, and
this is why the convergence rates are also sub-optimal. If the mesh is graded optimally (in this
case µ = 0.3 < λ/2), the calculated rates of convergence are also optimal. Hence, the theoretical
results from Theorem 6.2.5 are confirmed for the example on the non-convex domain.
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CHAPTER 7

Estimates for Dirichlet boundary control problems

In this chapter we derive pointwise error estimates for another boundary control problem,
namely, the Dirichlet boundary control problem given by

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ) → min! (7.1)

subject to

−∆y = 0 in Ω,

y = u on Γ,
(7.2)

Uad := {u ∈ L2(Γ) : ua ≤ u ≤ ub a.e. on Γ}. (7.3)

First of all, we point out that we derive pointwise error estimates on quasi-uniform triangulations
of convex domains only.

As in Chapter 6, we denote by J(·, ·) the objective functional and by yd the desired state, which
initially is a function from L2(Ω), and later on is assumed to be as regular as we need. The state
variable y ∈ H1/2(Ω) is the very weak solution of state equation (7.2) and the control variable
u ∈ L2(Γ) is the natural boundary value in the corresponding very weak formulation. We also
assume that the control bounds ua, ub are constants and 0 ∈ [ua, ub].

This chapter has the following structure. In the first section we collect some preliminary def-
initions, state optimality conditions for the continuous problem, discuss the singular behavior
of the optimal control, and derive regularity results. In the second section we discuss the FE
discretization of the optimal control problem and derive sharp pointwise error estimates for
the control on quasi-uniform meshes. In the last section we confirm the theoretical results via
numerical experiments.



Chapter 7. Estimates for Dirichlet boundary control problems

7.1 Analysis of the continuous problem

We start the investigation of the optimal control problem above with the analysis of the state
equation. We also state the corresponding adjoint equation and give the first order optimality
conditions for the continuous problem. The latter parts of this section deal with the singular
behavior of the optimal control in the vicinity of corner points and regularity results.

Preliminaries

Remember, in Chapter 5 we discussed that for the initial choice of u ∈ L2(Γ) we are allowed
to consider only very weak solutions of (7.2). The corresponding very weak formulation of the
state equation reads as:

Find y ∈ L2(Ω) such that

(y,∆v)L2(Ω) = (u, ∂nv) ∀v ∈ H2(Ω) ∩H1
0 (Ω). (7.4)

We define by

S : L2(Γ)→ L2(Ω), u 7→ Su := y

the solution operator of (7.4). As before, inserting Su into (7.1), we eliminate the state variable
and get the reduced objective functional

j(u) :=
1

2
‖Su− yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ) → min! s.t. u ∈ Uad (7.5)

The adjoint equation is given by

−∆p = z in Ω,

p = 0 on Γ,

where z ∈ L2(Ω), and the corresponding weak formulation read as:

Find p ∈ H1
0 (Ω) such that

a(p, v) = (z, v)L2(Ω) ∀v ∈ H1
0 (Ω), (7.6)

where the bilinear form is given by (5.4). We define the solution operator of adjoint equation by

P : L2(Ω)→ H1
0 (Ω), z 7→ Pz := p.

From now on we define

λ := min
j∈C

λj,1, λj,1 :=
π

ωj
.

For solutions of (7.6) the following a priori result holds.
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7.1. Analysis of the continuous problem

Lemma 7.1.1. Let 1/2 < s < min(5/2, λ). Then for every z ∈ Hs−1(Ω) there exists a unique
solution p ∈ H1

0 (Ω) ∩Hs+1(Ω) of (7.6), and the a priori estimate

‖p‖Hs+1(Ω) ≤ c‖z‖Hs−1(Ω)

holds.

Proof. The desired a priori estimate is a direct consequence of [29, Corollary 18.18].

Optimality conditions

Next, we give the first order optimality conditions for the optimal control problem (7.5). This
result for convex domains can be found in [24], see also [3, Lemma 3.1] for general polygonal
domains.

Lemma 7.1.2. The optimal control problem (7.5) possesses a unique solution ū ∈ Uad associated
with the optimal state ȳ = Sū and the optimal adjoint state p̄ = P (Sū − yd). Moreover, the
variational inequality

(νū− ∂np̄, u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad (7.7)

holds, and is equivalent to the projection formula

ū(x) = Π[ua,ub]

(
1

ν
∂np̄(x)

)
for a.a. x ∈ Γ. (7.8)

where the operator Π[ua,ub] is defined according to (6.9).

Remark 7.1.3. From [27, Lemma 3.4] we can deduce that the normal derivative of the optimal
adjoint state is given by

(∂np̄, z)L2(Γ) = −(ȳ − yd, z)L2(Ω) + a(p̄, z)L2(Ω) ∀z ∈ H1(Ω), (7.9)

which is nothing else but the first Green formula.

Singular behavior of the optimal control

In this section we discuss the singular behavior of the optimal adjoint state and the optimal
control near corners. This is essential for the study of the regularity of the corresponding
quantities. For a better comprehension of the forthcoming discussion we recall the following
regularity result from [3, Theorem 3.2].

Lemma 7.1.4. Let yd ∈ L∞(Ω), m ∈ Z and p ∈ (1,∞]. Define

Jmt,p = {j ∈ C s.t. 0 < mλj < 2 + t− 2/p and mλj /∈ Z} .
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Chapter 7. Estimates for Dirichlet boundary control problems

Moreover, let p̄ = P (Sū − yd) be the optimal adjoint state, then there exists a unique function
p̄reg ∈W 2,p(Ω), with p < +∞ for the constrained problem and

p < pD :=
2

1−min(1, λ)
,

for the unconstrained problem, and unique real numbers {cj,m}j∈Jm0,p such that

p̄ = p̄reg +

3∑
m=1

∑
j∈Jm0,p

cj,mξjr
mλj
j sin(mλjϕ), (7.10)

where {ξj}j∈C are cut-off functions, which are equal to one in some neighborhood of the corner
points and decay smoothly to zero.

First, from (7.10) we deduce that

lim
rj→0

∂np̄(r, ϕ) =

{
0, if ωj < π,

±∞, if ωj > π,
(7.11)

where ϕ ∈ {0, ωj}. Second, we also know that projection formula (7.8) holds, and therefore,
in case of unconstrained problems (−ua = ub = +∞) the pointwise control error is measurable
on convex domains only. However, in case of constrained problems the optimal control is flat-
tened in the neighborhood of concave corners, which allows to measure the pointwise control
error on general polygonal domains, see the numerical example in Section 7.3. In this chapter,
however, due to some technical difficulties, we consider only constrained problems on convex do-
mains. Nevertheless, our results with some modifications can be extended to arbitrary polygonal
domains.

We also recall a result from [3, Corollary 4.4] which we use to show the regularity of the optimal
adjoint state.

Lemma 7.1.5. Let yd ∈W 1,q(Ω) with some q > 2, m ∈ Z and p ∈ (1,∞]. Define

Lmp = {j ∈ C s.t. 0 < mλj < 3− 2/p and mλj ∈ Z} .

Moreover, let p̄ = P (Sū− yd) be the optimal adjoint state. Then, for p > 2 with

2p− 2

λjp
/∈ Z ∀j ∈ C,

and

p ≤ q, p < min

(
pD,

2

2−min(λ, 2)

)
there exists a unique function p̄reg ∈W 3,p(Ω) and unique real numbers (cj,m)j∈Jm1,p and (dj,m)j∈Lmp
such that

p̄ = p̄reg +
5∑

m=1

∑
j∈Jm1,p

cj,mξjr
mλj
j sin(mλjϕ)

+
∑
m=1,3

∑
j∈Lmp

dj,mξjr
2
j (log(rj) sin(2ϕj) + ϕj cos(2ϕj)) , (7.12)
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7.2. Discretization error estimates

where the cut-off functions {ξj}j∈C are defined as in Lemma 7.1.4.

Regularity

From now on we assume that yd ∈W 1,q(Ω) with some q > 2.

Lemma 7.1.6. Let p̄ = P (Sū − yd) be the optimal adjoint state associated with the optimal
control ū ∈ Uad. Then

p̄ ∈ Hmin(3,λ+1−ε)(Ω),

∂np̄ ∈ Hmin(3/2,λ−1/2−ε)(Γj),

∂np̄ ∈ C0,min(1,λ−1−ε)(Γj), ∀j ∈ C.

Proof. The first assertion is a direct consequence of Lemma 7.1.5 together with Lemma 2.1.6 (i).
The second one can be deduced from Lemma 7.1.5, [42, Theorem 1.5.1.2] and Lemma 2.1.6 (i).
The third assertion follows from the second one and Lemma 2.1.6 (ii) if λ ≤ 2 or from Lemma
2.1.6 (iii) if λ > 2.

Remark 7.1.7. Note that in the previous lemma it is not possible to get the desired regularity
on the whole boundary, since it is only Lipschitz regular. However, the piecewise regularity stated
above is sufficient for the forthcoming FE error analysis.

The following regularity result for the optimal state can be deduced from [3, Corollary 4.2].

Lemma 7.1.8. Let ȳ = Sū be the optimal state associated with the optimal control ū ∈ Uad.
Moreover, let the optimal control has a finite number of kink points. Then there holds

ȳ ∈ Hmin(2,λ)−ε(Ω).

7.2 Discretization error estimates

In this section we derive sharp pointwise error estimates on quasi-uniform triangulations for the
Dirichlet control problem (7.1)–(7.3).

We discretize the optimal control problem according to [4]. The control is discretized by piecewise
linear ansatz functions on the boundary

Uh :=
{
uh ∈ C(Ω) : uh ∈ P1(E) for all E ∈ Eh

}
,

and the set of admissible controls is given by

Uh,ad := Uh ∩ Uad.

The state is discretized by piecewise linear functions in the domain and the corresponding
variational formulation reads as:
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Chapter 7. Estimates for Dirichlet boundary control problems

Find yh ∈ Vh such that

a(yh, vh) = 0 ∀vh ∈ Vh,0 and yh|Γ = uh, (7.13)

where Vh,0 is given by (5.6), and the discrete solution operator Sh : L2(Γ) → Vh is defined
according to (3.1) in [4]

a(Shu, vh) = 0 ∀vh ∈ Vh,0 and (Shu− u, uh)L2(Γ) = 0 ∀uh ∈ Uh. (7.14)

The applicability of the nonconforming discretization (7.14) is guaranteed by [6].

The discretized optimal control problem in the reduced form is given by

jh(uh) :=
1

2
‖Shuh − yd‖2L2(Ω) +

ν

2
‖uh‖2L2(Γ) → min! s.t. uh ∈ Uh,ad. (7.15)

The adjoint state is also discretized by piecewise linears and the corresponding variational equa-
tion reads as:

Find ph ∈ Vh,0 such that
a(ph, vh) = (z, vh)L2(Ω) ∀vh ∈ Vh,0, (7.16)

where z ∈ L2(Ω). The discrete adjoint operator Ph is given by

Ph : L2(Ω)→ Vh,0, z 7→ Phz := ph.

The following first order optimality conditions for the discretized optimal control problem are
given in [24].

Lemma 7.2.1. There exists a unique element ūh ∈ Uh,ad, which solves the optimal control
problem (7.15) associated with the discrete optimal state ȳh = Shūh and the discrete optimal
adjoint state p̄h = Ph(Shūh − yd). Moreover, the variational inequality

(νūh − ∂hn p̄h, uh − ūh)L2(Γ) ≥ 0 ∀uh ∈ Uh,ad (7.17)

holds, where the discrete normal derivative ∂hn p̄h ∈ Uh is defined as the unique solution of

(∂hn p̄h, vh)L2(Γ) = −(ȳh − yd, vh)L2(Ω) + a(p̄h, vh)L2(Ω) ∀vh ∈ Vh. (7.18)

The next lemma is devoted to the stability of the discrete solution operators.

Lemma 7.2.2. Let z ∈ Hε(Ω) with some ε > 0 and v ∈ L2(Γ). Moreover let Ph and Sh be the
discrete adjoint operator and the discrete solution operator, respectively. Then the estimates

|Phz|W 1,∞(Ω) ≤ c‖z‖Hε(Ω),

‖Shv‖Hs(Ω) ≤ c‖v‖L2(Γ)

hold, where 0 < s ≤ 1/2.
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7.2. Discretization error estimates

Proof. The first estimate follows from Theorem 5.1.3 with χ = 0, the embedding H2+ε(Ω) ↪→
W 1,∞(Ω) from Lemma 2.1.6 (ii) and Lemma 7.1.1

|Phz|W 1,∞(Ω) ≤ c‖Pz‖W 1,∞(Ω) ≤ c‖Pz‖H2+ε(Ω) ≤ c‖z‖Hε(Ω).

We start the proof for the second estimate by introducing the auxiliary function Sv and using
the triangle inequality

‖Shv‖Hs(Ω) ≤ ‖(S − Sh)v‖Hs(Ω) + ‖Sv‖Hs(Ω). (7.19)

The second term can be estimated using the trivial embedding H1/2(Ω) ↪→ Hs(Ω) and Theorem
5.2.1

‖Sv‖Hs(Ω) ≤ c‖Sv‖H1/2(Ω) ≤ c‖v‖L2(Γ). (7.20)

In order to estimate the first term in (7.19), we use the Carstensen interpolant Ch defined by
(3.8), and apply the triangle inequality

‖Sv − Shv‖Hs(Ω) ≤ ‖Sv − Ch(Sv)‖Hs(Ω) + ‖Ch(Sv)− Shv‖Hs(Ω). (7.21)

For the first term in (7.21) we can apply Lemma 3.2.3 and Theorem 5.2.1

‖Sv − Ch(Sv)‖Hs(Ω) ≤ ch1/2−s‖v‖L2(Γ).

For the second term in (7.21) we use an inverse inequality from Lemma 3.1.2 and the triangle
inequality with the additional term Sv. We have

‖Ch(Sv)− Shv‖Hs(Ω) ≤ ch−s
(
‖Sv − Ch(Sv)‖L2(Ω) + ‖Sv − Shv‖L2(Ω)

)
. (7.22)

Once again, we use Lemma 3.2.3 and Theorem 5.2.1 to estimate the first term in (7.22) and the
estimate for the second term in (7.22) is provided by Lemma 5.2.2

‖Ch(Sv)− Shv‖Hs(Ω) ≤ ch1/2−s‖v‖L2(Γ).

This concludes the proof.

For the FE discretization of the optimal state we have the following result. This result is
motivated by Lemma 7.2.5, where we apply the boundedness of the discrete solution operator
Ph between the Hε(Ω)-norm and the W 1,∞(Ω)-seminorm.

Lemma 7.2.3. Let ȳ = Sū be the optimal state and ȳh = Shūh the discrete optimal state
associated with the optimal control ū given by (7.8) and the discrete optimal control ūh defined
by (7.17), respectively. Furthermore, let the optimal control has a finite number of kink points.
Then the discretization error estimate

‖Sū− Shū‖Hε(Ω) ≤ chmin(2,λ)−2ε

holds, where 0 < ε < min(1, λ− 1).
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Chapter 7. Estimates for Dirichlet boundary control problems

Proof. Since we consider only the case λ > 1, the optimal state is at least an H1(Ω)-function,
and the desired result can be deduced from the proof of [4, Lemma 4.2], which is based on the
considerations from [19]. We have

‖Sū− Shū‖L2(Ω) ≤ chmin(2,λ)−ε,

and
‖Sū− Shū‖H1(Ω) ≤ chmin(1,λ−1)−ε.

The desired estimate follows from a standard interpolation argument between the spaces L2(Ω)
and H1(Ω).

In comparison to the Neumann boundary control problem, the derivation of pointwise discretiza-
tion error estimates for the optimal control depends on both an L2(Γ)-error estimate for the
optimal control and an L2(Ω)-error estimate for the optimal state. These estimates can be
deduced from [4, Theorem 5.1].

Theorem 7.2.4. Let ȳ = Sū be the optimal state and ȳh = Shūh the discrete optimal state
associated with the optimal control ū given by (7.8) and the discrete optimal control ūh defined
by (7.17). Moreover, let the optimal control has a finite number of kink points. Then the
discretization error estimates

‖ū− ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) ≤ chmin(1,λ−1/2−ε)|lnh|r

hold, where 0 < ε < λ− 1/2 and

r =

{
1 if λ ∈ (3/2, 2],

0 otherwise.
(7.23)

Remember, in case of pointwise error estimates for Neumann optimal control problems the
estimate for the control depends on the estimate of the same quality for the adjoint state. Here,
the pointwise error estimate for the control depends on the pointwise estimate for the gradient
of the error of the adjoint state.

Lemma 7.2.5. Let p̄ = P (Sū− yd) be the adjoint state and p̄h = Ph(Shūh − yd) be the discrete
adjoint state associated with the optimal control ū given by (7.8) and the discrete optimal control
ūh defined by (7.17). Furthermore, let the optimal control has a finite number of kink points.
Then the dicretization error estimate

‖∇(p̄− p̄h)‖L∞(Ω) ≤ chmin(1,λ−1−ε)

holds, provided that 0 < ε < λ− 1.

Proof. We start this proof as usual, by introducing auxiliary functions and using the triangle
inequality

‖∇(p̄− p̄h)‖L∞(Ω) = |P (Sū− yd)− Ph(Shūh − yd)|W 1,∞(Ω)

≤ |(P − Ph)(Sū− yd)|W 1,∞(Ω) + |Ph(Sū− Shū)|W 1,∞(Ω)

+ |PhSh(ū− ūh)|W 1,∞(Ω). (7.24)
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7.2. Discretization error estimates

The estimate for the first term in (7.24) follows from the best approximation property given in
Theorem 5.1.3, interpolation error estimates from Lemma 3.2.2, and the regularity result from
Lemma 7.1.6. We have

|(P − Ph)(Sū− yd)|W 1,∞(Ω) ≤ chmin(1,λ−1−ε). (7.25)

In order to estimate the second term in (7.24), we use Lemma 7.2.2 and Lemma 7.2.3

|Ph(Sū− Shū)|W 1,∞(Ω) ≤ c‖Sū− Shū‖Hε(Ω) ≤ hmin(2,λ)−2ε. (7.26)

The estimate for the third term follows from a double application of Lemma 7.2.2 with s = ε
and the estimate for the control from Theorem 7.2.4

|PhSh(ū− ūh)|W 1,∞(Ω) ≤ c‖Sh(ū− ūh)‖Hε(Ω)

≤ c‖ū− ūh‖L2(Γ)

≤ chmin(1,λ−1/2−ε)|lnh|r. (7.27)

The desired assertion follows from estimates (7.25), (7.26) and (7.27). Note that, due to the
definition of the parameter r, the logarithmic term is always hidden in h−ε.

Now, we are able to formulate the main result of this chapter.

Theorem 7.2.6. Let the optimal control ū be given by (7.8) and the discrete optimal control ūh
be defined by (7.17). Moreover, let the optimal control has a finite number of kink points. Then
the dicretization error estimate

‖ū− ūh‖L∞(Γ) ≤ chmin(1,λ−1−ε)

holds, provided that 0 < ε < λ− 1.

Before we proceed with auxiliary results for the proof of the theorem above, we observe that the
projection formula does not hold for the discrete optimal control, i.e.,

ūh 6= Π[ua,ub]

(
1

ν
∂hn p̄h

)
in general if the control constraints are present. The idea of the proof for the desired estimate
is as follows. We introduce the auxiliary function

Π[ua,ub]

(
1

ν
∂hn p̄h

)
,

and use the triangle inequality to get

‖ū− ūh‖L∞(Γ) ≤ ‖ū−Π[ua,ub]

(
1

ν
∂hn p̄h

)
‖L∞(Γ) + ‖Π[ua,ub]

(
1

ν
∂hn p̄h

)
− ūh‖L∞(Γ). (7.28)

We show this estimate at the nodal points in Lemma 7.2.11 and afterwards, exploiting the fact
that the discrete optimal control is a piecewise linear function, we show the desired result.

In the next lemma we estimate the first term on the right hand side of the (7.28).
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Lemma 7.2.7. Let p̄ = P (Sū− yd) be the adjoint state and p̄h = Ph(Shūh − yd) be the discrete
adjoint state associated with the optimal control ū given by (7.8) and the discrete optimal control
ūh defined by (7.17). Furthermore, let the optimal control has a finite number of kink points.
Then the dicretization error estimate

‖ū−Π[ua,ub]

(
1

ν
∂hn p̄h

)
‖L∞(Γ) ≤ chmin(1,λ−1−ε)

holds, provided that 0 < ε < λ− 1.

Proof. We start the proof with the estimate

‖ū−Π[ua,ub]

(
1

ν
∂hn p̄h

)
‖L∞(Γ) ≤ c‖∂np̄− ∂hn p̄h‖L∞(Γ), (7.29)

where we used projection formula (7.8) and the Lipschitz continuity of the corresponding projec-
tion operator. We proceed estimating (7.29) by introducing the intermediate function I∂h (∂np̄)
and using the triangle inequality

‖∂np̄− ∂hn p̄h‖L∞(Γ) ≤ ‖∂np̄− I∂h (∂np̄)‖L∞(Γ) + ‖I∂h (∂np̄)− ∂hn p̄h‖L∞(Γ), (7.30)

where the interpolation operator I∂h is given by (3.7). The estimate for the first term on the
right hand side of (7.30) follows the interpolation error estimates from Lemma 3.2.2 and the
regularity result from Lemma 7.1.6

‖∂np̄− I∂h (∂np̄)‖L∞(Γ) ≤ chmin(1,λ−1−ε). (7.31)

To estimate the second term in (7.30) we denote by

eh := I∂h (∂np̄)− ∂hn p̄h

and by E∗ ∈ Eh the element where eh admits its maximum. Using Theorem 3.2.1, we get

‖eh‖L∞(Γ) ≤ c|E∗|−1‖eh‖L1(E∗) = c
(
eh, δ

h
)
L2(E∗)

,

where

δh :=

{
|E∗|−1sgn(eh) on E∗,

0 elsewhere
(7.32)

is the so-called regularized Dirac function.

Next, we introduce the L2(Γ)-projection operator

Qh : L2(Γ)→ Uh

defined by
(v −Qhv, vh)L2(Γ) = 0 ∀vh ∈ Uh. (7.33)
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For the operator Qh the stability estimate

‖Qhv‖Lp(Γ) ≤ c‖v‖Lp(Γ), p ∈ [1,∞] (7.34)

holds [34], see also [88, Lemma 3.5] or [89, Theorem 3.2.3].

Using the definition of the L2(Γ)-projection Qh given above and introducing the auxiliary func-
tion ∂np̄, we proceed with(

eh, δ
h
)
L2(E∗)

=
(
eh, Qh(δh)

)
L2(Γ)

=
(
I∂h (∂np̄)− ∂np̄, Qh(δh)

)
L2(Γ)

+
(
∂np̄− ∂hn p̄h, Qh(δh)

)
L2(Γ)

. (7.35)

The first integral in (7.35) can be estimated using the Hölder inequality, stability of the L2(Γ)-
projection from (7.34), estimate (7.31) and the definition of the function δh(

I∂h (∂np̄)− ∂np̄h, Qh(δh)
)
L2(Γ)

≤ c‖I∂h (∂np̄)− ∂np̄‖L∞(Γ)‖Qh(δh)‖L1(Γ)

≤ chmin(1,λ−1−ε)‖δh‖L1(Γ)

≤ chmin(1,λ−1−ε).

It remains to estimate the second integral in (7.35). For this reason we introduce the extension
operator S̃h, which extends by zero a function from Uh to a function from Vh. Now, testing both
(7.9) and (7.18) with S̃hQh(δh) ∈ Vh, we get(

∂np̄, Qh(δh)
)
L2(Γ)

= −
(
ȳ − yd, S̃hQh(δh)

)
L2(Ω)

+
(
∇p̄,∇S̃hQh(δh)

)
L2(Ω)

(7.36)

and (
∂hn p̄h, Qh(δh)

)
L2(Γ)

= −
(
ȳh − yd, S̃hQh(δh)

)
L2(Ω)

+
(
∇p̄h,∇S̃hQh(δh)

)
L2(Ω)

. (7.37)

Subtracting (7.37) from (7.36) we arrive at(
∂np̄− ∂hn p̄h, Qh(δh)

)
L2(Γ)

= −
(
ȳ − ȳh, S̃hQh(δh)

)
L2(Ω)

+
(
∇(p̄− p̄h), S̃hQh(δh)

)
L2(Ω)

≤ c
(
‖ȳ − ȳh‖L2(Ω)‖S̃hQh(δh)‖L2(Ω)

+ ‖∇(p̄− p̄h)‖L∞(Ω)‖∇S̃hQh(δh)‖L1(Ω)

)
, (7.38)

where in the last step we used the Hölder inequality. Let us first estimate the terms involving
the extension operator S̃h. We start with the norm ‖S̃hQh(δh)‖L2(Ω), and observe that it does
not vanish only on the boundary strip consisting of elements touching the boundary. Having this
observation in mind, on each element from the boundary strip we can apply the transformation
to a reference element from Theorem 3.2.1 and the norm equivalence in finite dimensional spaces,
and summing over all elements, we get

‖S̃hQh(δh)‖L2(Ω) ≤ c‖Qh(δh)‖L1(Γ).
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Using the stability of the L2(Γ)-projection and the definition of the function δh, we obtain

‖S̃hQh(δh)‖L2(Ω) ≤ c‖Qh(δh)‖L1(Γ) ≤ c‖δh‖L1(Γ) ≤ c. (7.39)

The estimate for the norm ‖∇S̃hQh(δh)‖L1(Ω) can be shown in a similar way to (7.39). We have

‖∇S̃hQh(δh)‖L1(Ω) ≤ c‖Qh(δh)‖L1(Γ) ≤ c‖δh‖L1(Γ) ≤ c. (7.40)

Finally, Theorem 7.2.4, Lemma 7.2.5 as well as estimates (7.39) and (7.40) yield(
∂np̄− ∂hn p̄h, Qh(δh)

)
L2(Γ)

≤ hmin(1,λ−1−ε),

which concludes the proof.

In order to be able to estimate the second term on the right hand side of (7.28) at the nodal
points, we need the following lemma, which exploits the result from the previous one.

Lemma 7.2.8. Let the assumptions of Lemma 7.2.7 be satisfied. Then for all nodal points
xi ∈ Γ the estimate

1

ν
|∂hn p̄h(xi)− ∂hn p̄h(xi−1)| ≤ chmin(1,λ−1−ε)

holds, where xi−1 denotes one of the neighboring nodes of xi, and 0 < ε < λ− 1.

Proof. Introducing auxiliary functions and applying the Hölder inequality, we get

|∂hn p̄h(xi)− ∂hn p̄h(xi−1)| ≤ |∂hn p̄h(xi)− ∂np̄(xi)|+ |∂np̄(xi)− ∂np̄(xi−1)|
+ |∂np̄(xi−1)− ∂hn p̄h(xi−1)|, (7.41)

where the estimate for the first and the third terms on the right hand side of (7.41) follows from
(7.30)

|∂hn p̄h(xi)− ∂np̄(xi)|+ |∂np̄(xi−1)− ∂hn p̄h(xi−1)|≤ chmin(1,λ−1−ε),

and the estimate for the second term on the right hand side of (7.41) follows from the Lip-
schitz/Hölder continuity of ∂np̄ from Lemma 7.1.6. Namely, we have

|∂np̄(xi)− ∂np̄(xi−1)|≤ c|xi − xi−1|min(1,λ−1−ε) ≤ chmin(1,λ−1−ε).

Lemma 7.2.9. Let the assumptions of Lemma 7.2.7 be fulfilled. Then the estimate

max
xi∈Γ

∣∣∣∣ūh(xi)−Π[ua,ub]

(
1

ν
∂hn p̄h(xi)

)∣∣∣∣ ≤ chmin(1,λ−1−ε)

is valid, provided that 0 < ε < λ− 1.
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Proof. First, we assume that

M := max
xi∈Γ

∣∣∣∣ūh(xi)−Π[ua,ub]

(
1

ν
∂hn p̄h(xi)

)∣∣∣∣ =

∣∣∣∣ūh(xk)−Π[ua,ub]

(
1

ν
∂hn p̄h(xk)

)∣∣∣∣ > 0. (7.42)

Note that if M = 0, the desired estimate is trivially fulfilled. Next, we want to show that

Π[ua,ub]

(
1

ν
∂hn p̄h(xk)

)
=

1

ν
∂hn p̄h(xk). (7.43)

Without loss of generality we assume that∣∣∣∣ūh(xk)−Π[ua,ub]

(
1

ν
∂hn p̄h(xk)

)∣∣∣∣ = ūh(xk)−Π[ua,ub]

(
1

ν
∂hn p̄h(xk)

)
> 0.

The inequality above and the fact that ūh ≤ ub imply (7.43).

Moreover, without loss of generality one can show similarly to [66, Lemma 3.8] that there holds

ub = Π[ua,ub]

(
1

ν
∂hn p̄h(xk−1)

)
<

1

ν
∂hn p̄h(xk−1) (7.44)

for some neighboring node xk−1 of xk. From estimate (7.44) and Lemma 7.2.8 we conclude

0 < ub −
1

ν
∂hn p̄h(xk) ≤ chmin(1,λ−1−ε) (7.45)

Note that for h small enough the inequality

ub − chmin(1,λ−1−ε) > ua (7.46)

always holds. Finally, from the inequality ūh(xk) ≤ ub, equality (7.43) and inequality (7.45) we
get

0 < ūh(xk)−Π[ua,ub]

(
1

ν
∂hn p̄h(xk)

)
≤ ub −Π[ua,ub]

(
1

ν
∂hn p̄h(xk)

)
= ub −

1

ν
∂hn p̄h(xk)

≤ chmin(1,λ−1−ε).

Note that one can argue analogously for the bound ua.

Remark 7.2.10. In the previous proof we stated that (7.44) can be deduced from [66, Lemma
3.8]. This is possible due to the following argument. In [66] a pointwise error estimate for the
piecewise linear discretization of the control variable in a distributed control problem is consid-
ered. Hence the optimal control in that problem and in our case have a similar structure with
the only difference, namely, that the optimal control in case of Dirichlet control problems is de-
fined only on the boundary, whereas the optimal control in case of distributed control problems
is defined in the underlying domain. However, for the result exploited in the previous lemma it
does not make any big difference.
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In the next lemma we show the desired result at the nodal points.

Lemma 7.2.11. Let the assumptions of Lemma 7.2.7 hold. Then the estimate

max
xi∈Γ
|ū(xi)− ūh(xi)| ≤ chmin(1,λ−1−ε)

holds, provided that 0 < ε < λ− 1.

Proof. We start this proof like we did in (7.28), but only at the nodal points. We introduce the
intermediate value Π[ua,ub]

(
1
ν∂

h
n p̄h(xi)

)
and applying the triangle inequality we get

max
xi∈Γ
|ū(xi)− ūh(xi)| ≤ max

xi∈Γ

∣∣∣∣ū(xi)−Π[ua,ub]

(
1

ν
∂hn p̄h(xi)

)∣∣∣∣
+ max

xi∈Γ

∣∣∣∣Π[ua,ub]

(
1

ν
∂hn p̄h(xi)

)
− ūh(xi)

∣∣∣∣ . (7.47)

The estimate for the first term on the right hand side of (7.47) follows from projection formula
(7.8), the Lipschitz continuity of the projection operator and Lemma 7.2.7

max
xi∈Γ

∣∣∣∣ū(xi)−Π[ua,ub]

(
1

ν
∂hn p̄h(xi)

)∣∣∣∣ = max
xi∈Γ

∣∣∣∣Π[ua,ub]

(
1

ν
∂np̄(xi)

)
−Π[ua,ub]

(
1

ν
∂hn p̄h(xi)

)∣∣∣∣
≤ c‖∂np̄− ∂hn p̄h‖L∞(Γ)

≤ chmin(1,λ−1−ε).

The estimate for the second term on the right hand side of (7.47) is given in Lemma 7.2.9.

Remark 7.2.12. Note that, if inequality (7.46) does not hold, the assertion of Lemma 7.2.11
trivially holds true. This means

max
xi∈Γ
|ū(xi)− ūh(xi)| ≤ ub − ua ≤ chmin(1,λ−1−ε),

where in the last step we used that (7.46) does not hold.

In the previous lemma we showed the pointwise error estimate for the control at the nodal points
xi ∈ Γ. To get the estimate of the same quality on the whole boundary Γ, we use fact that the
discrete optimal control is linear on each element. The main result of this section can be proven
as follows.

Proof of Theorem 7.2.6. Assume that |ū− ūh|(x) attains its maximum at some point x∗ ∈ E∗ =
(xl∗, x

r
∗). Since the discrete optimal control is a piecewise linear function we can argue as follows

|ū(x∗)− ūh(x∗)| = |ū(x∗)− λ̃ūh(xl∗)− (1− λ̃)ūh(xr∗)|

≤ λ̃
(
|ū(x∗)− ū(xl∗)|+ |ū(xl∗)− ūh(xl∗)|

)
+ (1− λ̃) (|ū(x∗)− ū(xr∗)|+ |ū(xr∗)− ūh(xr∗)|) , (7.48)
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where λ̃ ∈ (0, 1). Using Lemma 7.2.11, we get

λ̃|ū(xl∗)− ūh(xl∗)|+ (1− λ̃)|ū(xr∗)− ūh(xr∗)| ≤ chmin(1,λ−1−ε). (7.49)

Next, exploiting the Lipschitz continuity of the projection operator onto the admissible set and
the Lipschitz/Hölder continuity of the normal derivative of the optimal adjoint state, we obtain

|ū(x∗)− ū(xl∗)| =
∣∣∣∣Π[ua,ub]

(
1

ν
∂np̄(x∗)

)
−Π[ua,ub]

(
1

ν
∂np̄(x

l
∗)

)∣∣∣∣
≤ c|∂np̄(x∗)− ∂np̄(xl∗)|
≤ c|x∗ − xl∗|min(1,λ−1−ε)

≤ chmin(1,λ−1−ε). (7.50)

Obviously, there also holds
|ū(x∗)− ū(xr∗)| ≤ chmin(1,λ−1−ε) (7.51)

Inserting estimates (7.49), (7.50) and (7.51) into (7.48) concludes the proof.

Having the pointwise error estimate for the control, we can show the following pointwise estimate
for the state.

Corollary 7.2.13. Let ȳ = Sū be the optimal state and ȳh = Shūh the discrete optimal state
associated with the optimal control ū given by (7.8) and the discrete optimal control ūh defined
by (7.17). Moreover, let the optimal control has a finite number of kink points. Then the
discretization error estimate

‖ȳ − ȳh‖L∞(Ω) ≤ chmin(1,λ−1)−ε

holds, provided that 0 < ε < min(1, λ− 1).

Proof. Using the auxiliary function Shū and applying the triangle inequality, we obtain

‖Sū− Shūh‖L∞(Ω) ≤ ‖Sū− Shū‖L∞(Ω) + ‖Sh(ū− ūh)‖L∞(Ω). (7.52)

The estimate for the first term on the right hand side of (7.52) follows from the best approx-
imation property given in [79, Theorem 2], an interpolation error estimate from Lemma 3.2.2
and the regularity result from Lemma 7.1.8

‖Sū− Shū‖L∞(Ω) ≤ c|lnh|‖Sū− Ih(Sū)‖L∞(Ω) ≤ chmin(1,λ−1)−ε.

To estimate the second term, we recall that the solution operator Sh coincides with the L2(Γ)-
projection on the boundary. Hence, the weak discrete maximum principle from [79, Theorem
1], the stability of the L2(Γ)-projection and the pointwise error estimate for the control from
Theorem 7.2.6 yield the estimate

‖Sh(ū− ūh)‖L∞(Ω) ≤ c‖Sh(ū− ūh)‖L∞(Γ) ≤ ‖ū− ūh‖L∞(Γ) ≤ chmin(1,λ−1−ε).
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Remark 7.2.14. In the proof of the previous result we used that ȳ ∈ H2−ε(Ω) for λ > 2 from
Lemma 7.1.8. However, using techniques from [3], it is possible to show that ȳ ∈ H2(Ω) for
λ > 2, and consequently recover the convergence order of one in the estimate above for λ > 2.

7.3 Numerical example

In this section we confirm the theoretical results proven in the previous section by numerical
experiments. We also confirm that in case of control constrained problems we can observe better
convergence rates on concave domains.

The optimal control problem we consider in this section reads as

1

2
‖y − yd‖2L2(Ωω) +

ν

2
‖u‖2L2(Γω) → min!

subject to
−∆y = f in Ωω,

y = u on Γω,

u ∈ Uad := {u ∈ L2(Γω) : ua ≤ u ≤ ub a.e. on Γω}.

The optimality system of the optimal control problem above reads as

−∆y = f in Ωω,

y = u on Γω,

−∆p = y − yd in Ωω,

p = 0 on Γω,

u = Π[ua,ub]

(
−1

ν
∂np

)
on Γω.

We consider an example for the unconstrained problem (−ua = ub = +∞). This is done due
to the following reason. The main goal of our numerical experiments is to observe how the
convergence rates depend on the largest interior angle of the underlying domain, see Figure
7.1. In case of the unconstrained problem it is possible to construct the exact solution of the
optimality system above, which guarantees more accurate calculation of the experimental order
of convergence. Otherwise, if an exact solution is not given, one has to compute a reference
solution uref on a much finer mesh than other solutions uk computed on, and after calculate
the convergence rates using the formula

eoc(L∞(Γω)) :=
ln
(
‖uref − uhk−1

‖L∞(Γω)/‖uref − uhk‖L∞(Γω)

)
ln(hk−1/hk)

, (7.53)

where the error ‖uref − uhk‖L∞(Γω) is evaluated at the nodal points of the mesh obtained after
k refinements.
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The optimality system of the optimal control problem read as

ȳ = −λrλ−1(x2
1 − 1)(x2

2 − 1) + 2rλ sin(λϕ)
(
(x2

1 − 1) + (x2
2 − 1)

)
in Ωω,

p̄ = −rλ sin(λϕ)(x2
1 − 1)(x2

2 − 1) in Ωω,

ū = −λrλ−1(x2
1 − 1)(x2

2 − 1) + 2rλ sin(λϕ)
(
(x2

1 − 1) + (x2
2 − 1)

)
on Γω.

Note that the optimal adjoint state possesses exactly the regularity showed in Lemma 7.1.6. We
set ν = 1, and prescribe the input data by the exact solutions

f = −∆ȳ in Ωω,

yd = ȳ −∆p̄ in Ωω.

The corresponding discrete optimality system can be found e.g. in [58, Section 3]. We solve the
system using Matlab, and calculate the experimental order of convergence eoc(L∞(Γω)) using
formula (6.24). Since we consider only convex domains, we compute numerical solutions on Γω
with

ω ∈ {π/2, 7π/12, 2π/3, 3π/4, 5π/6, 11π/12}.

Recall that the computational domain Ωω is given by (4.61). In Table 7.1 we can see that the
calculated convergence rates agree with the theoretical results, which can be also seen in Figure
7.1.

In Table 7.2 one can see the rates of convergence for constrained problems on the non-convex
domains Γ5π/4, Γ3π/2 and Γ7π/4. For this computations we used the same input data yd and f as
in the unconstrained one, and also set ν = 1. We solved the discrete optimality system using a
modification a primal-dual active set strategy [86], and calculated convergence rates according to
(7.53). In this case one can observe that the convergence rates are slightly better than one, which
can be explained by the fact that the optimal control is flattened in the neighborhood of concave
corners by the projection formula, and hence, is more regular. Theoretical considerations on
non-convex domains are postponed to the future work.
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ω = 90◦ ω = 105◦

mesh size h eh eoc(expect. 1.00) mesh size h eh eoc(expext. 0.71)

0.031250 0.1301 0.83 0.323523 0.1160 0.85
0.015625 0.0686 0.92 0.161761 0.0609 0.92
0.007812 0.0352 0.96 0.008088 0.0316 0.96
0.003906 0.0178 0.98 0.004044 0.0158 0.98
0.001953 0.0089 0.99 0.002022 0.0079 0.99
0.000976 0.0045 1.00 0.001011 0.0046 0.79

ω = 120◦ ω = 135◦

mesh size h eh eoc(expect. 0.50) mesh size h eh eoc(expect. 0.33)

0.072169 0.1863 0.67 0.088388 0.1667 0.55
0.036084 0.1027 0.86 0.044194 0.0923 0.70
0.018042 0.0537 0.93 0.022090 0.0716 0.85
0.009021 0.0296 0.86 0.011048 0.0563 0.36
0.004510 0.0209 0.50 0.005524 0.0445 0.34
0.002255 0.0148 0.50 0.002762 0.0353 0.34

ω = 150◦ ω = 165◦

mesh size h eh eoc(expect. 0.20) mesh size h eh eoc(expect. 0.09)

0.125000 0.3683 0.30 0.241481 0.3975 0.40
0.062500 0.3124 0.24 0.120740 0.2094 0.21
0.031250 0.2694 0.21 0.060370 0.1293 0.13
0.015625 0.2337 0.20 0.030185 0.1033 0.10
0.007812 0.2031 0.20 0.015093 0.0952 0.09
0.003906 0.1767 0.20 0.007546 0.0925 0.09

Table 7.1: Discretization errors eh = u− uh for the unconstrained problem.
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ω = 235◦ ω = 270◦ ω = 315◦

mesh size h eh eoc(expect. 1.00) eh eoc(1.00) eh eoc(1.00)

0.125000 0.2527 0.50 0.1344 0.37 0.3951 0.02
0.062500 0.2037 0.31 0.0823 0.71 0.2356 0.75
0.031250 0.1505 0.44 0.0506 0.70 0.1681 0.49
0.015625 0.0920 0.71 0.0308 0.72 0.1029 0.71
0.007812 0.0470 0.97 0.0166 0.89 0.0568 0.86
0.003906 0.0224 1.07 0.0071 1.21 0.0263 1.10

Table 7.2: Discretization errors eh = u− uh for the constrained problem.
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Figure 7.1: Numerically computed convergence rates depending on the largest interior angle.
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CHAPTER 8

Conclusion and outlook

In this thesis we derived pointwise error estimates for finite element discretizations of boundary
control problems with constant control constraints on polygonal domains. The first main result
of this work is the sharp pointwise error estimate on graded meshes and the best possible rates on
quasi-uniform meshes for the Neumann boundary value problem using piecewise linear elements.
These estimates play a very important role in pointwise estimates for the Neumann boundary
control problem, which we discretized using two approaches, namely, the concept of variational
discretization and the postprocessing approach. In both cases we obtained the same convergence
orders as for the Neumann problem itself. We finished this thesis by showing the best possible
rates for pointwise error estimates of the piecewise linear discretization for the Dirichlet control
problem on convex domains if control constraints are present. Our theoretical results have been
verified with numerical implementations performed in Matlab.

The first possible extension of the present work is a derivation of maximum norm error estimates
on graded meshes in three dimensional domains. Note that local error estimate (4.15) holds also
in 3D. However, the exponent of the factor dJ in that estimate depends on the dimension of the
underlying domain, which might cause additional difficulties in arguments similar to the ones
used in Lemma 4.2.15. To the best of our knowledge there is no reference dealing with pointwise
estimates for three-dimensional boundary value problems on graded meshes.

A further extension is pointwise error estimates for the constrained Dirichlet boundary control
problem on non-convex polygonal domains. In this case one would expect the rate of one if all
singular functions in expansion (7.12) are present, see the rates in Figure 7.1. It may, however,
happen that one of the leading singularities in that expansion is not the first one, which might
reduce the convergence order. In order to show such estimates one has to assume that there is no
error in the optimal control in the vicinity of the concave corners, where the leading singularity
is the first one, like [4, Assumption 5.2], and use some localization argument.

Another possible extension is obviously L∞(Γ)-norm error estimates for the Dirichlet control
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problem on graded meshes. In order to achieve this goal one needs fundamental results on
graded meshes analogous to Theorem 7.2.4, namely, the L2(Γ)- and L2(Ω)-norm error estimates
for the control and state, respectively, which will be available in [5]. Moreover, for the pointwise
error estimates one requires the stability of the L2(Γ)-projection on graded meshes exploited
in Lemma 7.2.7 in the quasi-uniform case. Taking into account that the boundary Γ is a one-
dimensional domain, this result can be deduced from [28].

The last extension we would like to mention here is the Stokes problem with the corresponding
local and global pointwise estimates on graded meshes. To the best of our knowledge estimates
on graded triangulations for the Stokes problem are considered only in [84], where the optimal
error estimates in the L2(Ω)n-norm with n = 2, 3 and the L2(Ω)-norm are obtained for the
velocity field and the pressure, respectively. In [41] the best approximation property for the
gradient of the velocity field and the pressure in the maximum norms is shown in polyhedral
domains under the assumption that the solution is regular enough. This assumption, however,
yields some additional restrictions on the underlying domain. This issue is overcome in [44],
where the best approximation property is shown in convex polyhedra.

84



Bibliography

[1] R. A. Adams. Sobolev Spaces, volume 65 of Pure and Applied Mathematics. Academic
Press, New York, 1975.

[2] H. W. Alt. Lineare Funktionalanalysis. Springer, Berlin, 1999.

[3] Th. Apel, M. Mateos, J. Pfefferer, and A. Rösch. On the regularity of the solutions of
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