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Abstract

Data-driven decompositions of Particle Image Velocimetry (PIV) measurements are widely used for a
variety of purposes, including the detection of coherent features (e.g., vortical structures), filtering opera-
tions (e.g., outlier removal or random noise mitigation), data reduction and compression. This work presents
the application of a novel decomposition method, referred to as Multiscale Proper Orthogonal Decompo-
sition (mPOD, Mendez et al 2019) to Time-Resolved PIV (TR-PIV) measurement. This method combines
Multiresolution Analysis (MRA) and standard Proper Orthogonal Decomposition (POD) to achieve a com-
promise between decomposition convergence and spectral purity of the resulting modes. The selected test
case is the flow past a cylinder in unsteady conditions, featuring a frequency-varying Karman vortex street.
The results are compared to those obtained via classical POD in terms of decomposition convergence as
well as spatial and time-frequency localization.

1 Introduction and Motivation

Data-driven decompositions of PIV measurements are nowadays part of the standard toolbox for post-
processing techniques used to extract knowledge from experimental data. Originally developed for identify-
ing coherent structures in turbulent flows (Sirovichl (1987, [1989; |[Holmes et al., [1997) these decompositions
have found applications also as random noise removal (Raiola et al., [2015)), image pre-processing tools
(Mendez et al.,2017), model order reduction for advanced active flow control (Berger et al., 2014} [Brunton
and Noackl, [2015) and for validation of numerical simulations (Erik et al., [2007).

Although several variants exist (see [Taira et al.[[2017; Rowley and Dawson|[2017; |/Amor et al|2019/for a
review), the two fundamental decompositions are the Proper Orthogonal Decomposition (POD, |Sirovich
(1987); Lumley| (1970)) and the Dynamic Mode Decomposition (DMD, Schmid| (2010); Rowley et al.
(2009)). The first is based on the energy optimality formulation, so that the POD provides the most en-
ergetic modes with no constraints on their frequency content; the second is based on the spectral purity
formulation, so that the DMD provides the best harmonic modes describing the data.

Both the constraints of energy optimality and spectral purity are often unnecessary, as discussed by
Mendez et al. (2019)), and research on data-driven decompositions is currently focused on the development
of hybrid methods (see[Noack|2016)). Spectral Proper Orthogonal Decomposition (Sieber et al.,[2016)), Mul-
tiresolution Dynamic Mode Decomposition (Kutz et al., 2016b), Recursive Dynamic Mode Decomposition
(Noack et al., 2016) or Cronos-Koopman analysis (Cammilleri et al., 2013)) are some successful examples of
decompositions aiming at bridging spectral purity and energy optimality. These methods propose ingenious
combinations of POD and DMD of various degrees of complexity and are designed for data sets that are
statistically stationary (hinging on the time-frequency duality of the POD) or have short-duration departures
from fixed points (hinging on the linearization of the dynamics in the DMD). For datasets featuring more
complex transitory, e.g. having one or more growth/decay saturation, impulsive events (that are not easily
represented by harmonic decompositions nor linear dynamical systems) or phenomena having similar en-
ergy content (that leads to non-unique POD), these methods lose their theoretical fundamentals and yields
poor feature detection capabilities.

A flexible and robust approach to study such kind of datasets is the Multiscale Proper Orthogonal De-
composition (mPOD) proposed by Mendez et al. (2018b, [2019). The mPOD combines Multi-resolution
Analysis (MRA) via filter banks and POD. The MRA is used to decompose the correlation matrix of the



data into the contribution of different scales, each retaining non-overlapping portions of the frequency spec-
tra and leading to a POD constrained within the corresponding frequency bandwidth. The set of POD of
each scale is then used to assemble the mPOD basis, which is kept orthogonal by construction.

After a brief review of the mPOD algorithm in Sec[2] this work presents the mPOD analysis of an
exemplary TR-PIV test case and a comparison of its performances with those of classical POD in terms
of feature detection and time-frequency localization capabilities while the decomposition convergence is
compared also to classical Discrete Fourier Transform (DFT). Sec[3] presents the experimental setup and
selected test case: the flow past a cylinder in accelerating conditions, producing a vortex shedding with
varying frequency. The results are discussed in Sec[] while conclusions and perspectives are reported in
Sec

2 The Multiscale Proper Orthogonal Decomposition

All the data-driven decompositions discussed in this work break a discrete dataset, here the velocity field
i(x,t) produced by TR-PIV measurements, into the sum of n, < n; modes, with n; the number of spatial

points in and 7, the number of time steps (measurements). These modes have spatial structures ¢;, which
can be seen as dominant spatial patterns in the flow, temporal structure yy, that controls their evolution,
and an energy contribution G,, that weights their importance. The mPOD, POD and DMD/DFT modes are
distinguished using the subscripts M, P and D respectively. No subscripts are used in equations that hold
for all the decompositions.

It is important to highlight that it is not possible to define spatial and temporal structures independently
since one univocally identifies the other. Focusing on the identification of the temporal structures as bases for
the temporal evolution of the data, and assuming that these are orthogonal (uncorrelated), any decomposition
can be written in two equivalent forms:
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where (, )7 denotes the chosen inner product (typically a standard L?). The second form on the right-hand
side replaces the spatial structure by their definition, that is a set of n, projections of the dataset evolution in
each spatial point x onto the corresponding temporal structure.

A third representation consists in keeping the spatial structures in the summation and replacing the
temporal ones with their definition as a projection of the datasets onto the spatial basis. This, however,
requires that the spatial structures are orthogonal. In the case of the POD, for which this is the case, these
two forms are equivalent (see |Aubry| (1991)) and preferring the first over the second is only a matter of
memory saving. In the case of DMD or mPOD, this is symmetry does not hold: these decompositions
identify coherent patterns from their temporal evolution and only in a second step, via time projection, in
the spatial domain.

The temporal structures of the POD modes yg; are eigenvectors of the temporal correlation matrix
K; ;= (ii(x,1;),i(x,t;))7 (Sirovich, 1987). Arranging eq.(I) as a matrix decomposition, it is easy to see that
the POD of a dataset with a uniform spatial and temporal grid (as in classical TR-PIV data) is equivalent to
the Singular Value Decomposition (SVD) of the data rearranged as a single matrix. By definition, the POD
yields the optimal basis, in the sense that the error produced by cutting the summation in eq.(I) to r. < n,
modes is the minimum possible:
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where || ® ||2 denotes the L, norm. It is moreover possible to show that E(r.) = Gy 11, ||ii(X,)||» = G»; and

6, = /M, with Ay the eigenvalues of the correlation matrix K. By construction, the POD yields optimal
convergence, fast evaluation of the decomposition error and perfect symmetry between temporal and spatial
structures, which allows for fast algorithms for its computation (see|Sirovich| (1987)). However, as discussed
in previous contributions (Mendez et al., 2019, [2018b)), major problems occur when different phenomena
have similar energy content, resulting in nearly repeated eigenvalues A, and thus a non-unique decomposi-
tion. The lack of any constraint on the frequency content of its modes, combined with the requirement for
energy optimality and non-uniqueness problems, these circumstances leads to spectral mixing between the
modes as illustrated also in the test case presented in Sec/4]
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The temporal structures of the DMD modes Y are complex exponentials with (complex) frequency ob-
tained from the eigenvalues of the linear dynamical systems which better approximates the datasets (Budisi¢
et al., [2012; |Chen et al.,|2012). This dynamical system is identified by a propagator matrix ¥, which can
be computed from the dataset using classical inverse methods. Since such propagator is usually of pro-
hibitively large dimensions, standard DMD algorithms rely on a low order approximation of it (Schmid,
2010) or adaptations of the well known Arnoldi algorithm (Rowley et al., 2009)) for the numerical calcu-
lation of its eigenvalues. A detailed overview of the variants of DMD algorithms and their application is
provided by Kutz et al.|(2016a). The major advantage of the DMD is to provide modes that are harmonic but
do not suffer from the limitations of the classical Fourier Modes: the frequencies in the DMD are inferred
from the data and not defined a priori as integer multiples of a fundamental tone. Therefore, the DMD does
assume that the data-set is periodic and hence does not suffer from frequency leaking problems (Harris,
1978). Moreover, frequencies are allowed to be complex (as in the Z-transform), making DMD modes well
suited for describing exponentially decaying or growing phenomena. Because of the underlying assumption
of linear dynamics, however, the DMD is incapable of describing nonlinear dynamics such as growth/decay
saturation, and, because of the constraints of harmonic modes, it is equally incapable of providing time
localization. In the test case investigated in this work, neither the classical Companion based nor the SVD
based algorithm proved successful in decomposing the data. In particular, both formulations yields strongly
decaying exponential modes which in this case yields non-invertible temporal structure matrix ¥». To eval-
uate the convergence of a harmonic decomposition, the DMD is performed after subtracting the temporal
average, thus reducing the decomposition to the classical DFT |Chen et al.|(2012).

The Multiscale Proper Orthogonal Decomposition (mPOD) proposed in |Mendez et al.| (2018b), 2019)
presents a compromise between the POD and the DMD by adding spectral constraints to the energy op-
timality of the POD. Following the classical Multi-Resolution Analysis (MRA) formulation common in
Wavelet theory (Mallat, 2009), the mPOD starts by breaking the temporal correlation matrix K into the con-
tribution of M scales. These scales are obtained by a bank of 2D filters, with transfer function #,,, which
isolate the spectral content of the correlation matrix into non-overlapping portions, and such that the full
energy content is preserved. This is obtained by constructing the transfer functions such that ¥ 7, = 1,
and H; © H; = 0Vi # j, where 1 € R"*™ is the unitary matrix and ® is the Shur (entry by entry) product.

For symmetric filters, these contribution preserves the symmetry of the full correlation matrix and are
therefore equipped with n,, orthogonal eigenvectors:
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where Wy € C"*™ is the Fourier matrix W¢[i, j] = exp(2mj/n,)=*0-D | with i,j = [1,n,], and K =
WYs KW is the 2D Fourier transform of the correlation matrix, with over-line denoting complex conju-
gation. If no frequency overlapping occurs, it is possible to show (see Mendez et al.|(2019)) that the eigen-

vectors in each of the m scales are mutually orthogonal and therefore are orthogonal complements spanning

the entire R™ space (that is Z%:l ny, =~ ny). Therefore, the mPOD algorithm constructs the temporal basis by

sorting the structures in each scale in order of energy contribution, defined by the corresponding eigenvalues

xﬁ’”) regardless of their scale of origin.

The filter bank can be constructed using Dyadic Wavelet decomposition (as in|Mendez et al.| (2018alb)))
or more generally using a set of filters with user-defined band-pass widths (as in Mendez et al.| (2019)).
In this work, these are constructed as standard FIR filters, designed via windowing method (Oppenheim
and Schafer, 2009). The resulting decomposition has convergence that is comparable to the POD while
maintaining the frequency spectra of all its modes reasonably band-limited. Moreover, the MRA architecture
lets the mPOD recover the energy optimality of the POD at the limit of a single scale (spanning the entire
frequency range), and the spectral purity of the DMD at the limit of #, scales (each taking one frequency
bin).

3 Experimental Set Up and Selected Test Case

The selected test case is the flow past a cylinder of 5 mm diameter in transient conditions, with varying
free stream velocity. The experiments were carried out in the .10 low-speed wind tunnel of the von Karman
Institute, instrumented with a TR-PIV system from Dantec Dynamics. The tunnel has a cross section of
20cmx20cm and is equipped with a piezo resistive pressure transducer AMS5812 to monitor the pressure
in the honeycomb chamber. A Laskin Nozzle PIVTEC45-M, operating with the mineral oil Ondina Shell
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Figure 1: Fig a) Picture of the experimental set up during an TR-PIV measurement. Fig b) Instantaneous
velocity field and normalized vorticity (that is scaled between [—1,1]). Fig c¢) time evolution of the free
stream velocity U.., taken from a point far from the cylinder surface.

91, is used to produce seeding particles of about 1.5um in diameter, injected in the intake manifold of the
wind tunnel fan.

The flow is studied with a time-resolved PIV system from Dantec Dynamics. The particles are illumi-
nated with a Physics Instruments Nd: YLF laser offering 20 mJ/pulse at 1 kHz. The exposed scene of about
70 x 26 mm is recorded by a SpeedSense 9090 camera offering 7500 fps at a resolution of 1280 x 800 px.
To extend the measurement duration, the sensor is cropped to 1280 x 720 px resulting in about n, = 13500
double frames, thus, covering a sequence of about 4.5 seconds. A picture of the experimental set-up is
shown in Figure [Th).

For acquisition and analysis, DynamicStudio is used. For the initial data processing, standard adaptive
PIV (see[Theunissen| (2010)) is used with an initial interrogation area of 96 x 96 px and final size of 24 x 24
pX, the vectors are calculated every 12 px resulting in an overlap of 50%. Before the mPOD analysis, the only
filter applied is universal outlier detection with a filter kernel of 3x3 vectors, as suggested by
(2005). An example of instantaneous velocity is shown in Figure [Ib, together with the normalized
vorticity field. In the investigated test case, the velocity of the free stream U.. evolves through two steady
state conditions, namely from U, =~ 14 to U., ~ 8 m/s, as shown in Figure[Ik). The transition between these
is a smooth step of approximately 1s. The Reynolds number varies from Re = 4980 to Re = 3070 and the
frequency of the vortex shedding varies from 459Hz to 303Hz, corresponding to a Strouhal number of about
St = fd/U. = 0.16 in both stationary regimes.

4 Results

The convergence error in eq.(2) is shown in Figure 2| for the POD, the mPOD and the DFT. The DFT is
computed taking the columns of the Fourier matrix ¥+ as temporal structures in eq.(I), and is equivalent to
performing the DMD on the mean-shifted dataset.

The convergence of the DFT is much weaker than the optimal POD, because of the spectral leakage due
to the non-periodic extension of the data. The mPOD performs considerably better than the DFT, reaching
negligible convergence errors for r. > 6. This is close to the optimal limit, defined by the POD, which
yields almost no reconstruction error for r. > 3. It is worth noticing that the mPOD convergence becomes
particularly poor for r. > 6 because a broad range of frequencies (f > 500Hz) is removed from the data.

To study the main differences between the POD and the mPOD, it is worth exploring the frequency spec-
tra of the temporal correlation matrix and how the mPOD partitions its content among the various modes.

Fig a) shows the contour of the magnitude of the Fourier transformed correlation matrix K. The dominant
frequencies at ~ 303Hz and ~ 459Hz, corresponding to the vortex shedding in the two steady states, are
evident along the diagonal of this matrix. Because of the finite frequency resolution, the correlation between
these two phenomena, occurring at different frequencies, extends to the off-diagonal regions and creates
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Figure 2: Convergence error from eq.(2)) for the POD, mPOD and the DFT.
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Figure 3: Left: contour map of the magnitude of the Fourier transformed correlation matrix K, showing two
dominant peaks at ~ 303Hz and ~ 459Hz and the boundaries of the identifies mPOD scales (white lines).
The first two POD modes capture both frequencies in the same modes (the second and the third), while the
mPOD assigns different modes to these two dominant harmonics.

secondary peaks linked to their reciprocal correlation.

Following the constraint of energy optimality, the POD assigns both frequencies to the same modes: the
second and the third. The frequency spectra of the temporal structure of these modes are shown in Fig[3|b).
These modes have identical spatial and temporal structures, phase shifted in time and space, to describe the
traveling wave nature of the vortex shedding.

The mPOD used in this work is composed of four scales, defined to separate, respectively, (1) the large
scale evolution of the free stream velocity, the vortex shedding at the high (2) and the low (3) free stream
velocity and (4) the transition between these two. The frequency interval assigned to these four scales are
(1) [0—10]Hz, (2) [10 —350]Hz, (3) [350 —420]Hz and (4) [420 — 500]Hz. Frequencies higher than 500Hz
are filtered out from the decomposition.

As described in Mendez et al.| (2019), the transfer functions isolating these contributions are centered

along the diagonal of K and defines square regions. The boundaries of these regions are shown in Flg‘)
the largest scale #; captures the lowest range (f < 10Hz), the first intermediate scale %, taking the second
range, includes the harmonic contribution of the vortex shedding at the lowest frequency. The highest scale
H; is focused on the frequency of the vortex shedding at the highest velocity, while the intermediate range,
corresponding to the transitory between these two, is taken by #5.

It is essential to observe that these spectral constraints only impose that a mode having frequency content
in one scale does not have frequency content in others. Each scale is equipped with its POD, and the final
mPOD basis is constructed by sorting these POD from various scales by energy contribution (associated
eigenvalue). The spectra of two representative mPOD modes, namely the second and the fourth, are shown
in Fig[3[c). Being mPOD modes real and associated with traveling structures, both of these modes have
their phase-shifted counterpart (the third and the fifth mode respectively) with equal frequency.

Figure ] shows the spatial and the temporal structures of the first mode for the POD (left) and the mPOD
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Figure 4: Spatial and temporal structures of the dominant POD (left) and mPOD (right) modes. Both modes
capture the large scale evolution of the free stream flow. However, while the POD mode is influenced by
noise and higher frequency contribution, the mPOD mode is more focused on the large scale variations in
the flow.

(right). Both decompositions identify as dominant mode the large scale variations of the velocity field, with
temporal structure essentially reproducing the velocity in the far field conditions as shown in Fig[Tk). In
the case of the POD, however, random and higher frequency contributions are also captured by this mode:
as extensively described in Mendez et al.| (2017), random noise is equally distributed among all the POD
modes. The frequency constrained mPOD mode is, on the other hand, more focused on the large scale
variations and almost entirely free of random noise.

Figure[5|shows the spatial structure of three representative modes, together with the Continuous Wavelet
Transform (CWT) of their corresponding temporal structure. The second POD mode, along with its phase-
shifted counterpart (third mode) and the first mode, describes the entire dataset with negligible error (see
also Fig[2). Therefore, this mode captures the whole evolution of the vortex shedding, and the CWT of its
temporal structure display the footprint of the evolution of the free stream velocity (see also Fig{lc).

It is therefore not possible to understand how much the spatial structure of this mode is linked to the
vortex shedding at the highest or the lowest frequency, or to the transitory between the two: to capture as
much energy as possible with the minimum number of modes, the POD describe all these features with only
two phase-shifted modes. The spatial structure is, therefore, a linear combination of the spatial structures
that one could associate to each of these independently. The fourth and the fifth modes, having negligible
energy contribution (see Fig[2), have a temporal structure with a broad range of frequencies, spread over the
entire duration of the experiment.

On the contrary, the mPOD modes have a precise localization in the frequency and in the time domain.
In particular, the second/third modes are linked to the vortex shedding in the first 1.5s of the experiment,
namely at the highest velocity (see Fig[Ik), while the fourth/fifth modes are related to the vortex shedding
at t > 2s, namely at the lowest frequency. These mPOD modes are POD modes of the scales isolated by
H; and #H, respectively. The sixth mode is linked to the transitory between the two and originates from the
scale isolated by #5.

To analyze how well these modes describe the vortex shedding occurring in the initial and the final part
of the experiment, Figure [6] compares the error produced by low-rank approximations using only mPOD
modes with the error produced by low-rank approximation using POD modes. In particular, E, 3 refers to
the normalized L, error that the mPOD modes 2 and 3 produce with respect to the POD modes 2 and 3. It
is clear that these two mPOD modes are aligned to the POD only in the first part of the dataset, in which
the high-frequency shedding is produced. Similarly, E; 5 refers to the normalized L, error that the mPOD
modes 4 and 5 produce with respect to the POD modes 2 and 3, and show that these are well aligned with
the POD modes in the second part of the dataset, in which the low frequency is produced. To conclude,
the POD modes capture multiple features, and it is not possible to distinguish how its spatial structures are
linked to one or the other. The mPOD separates the various mechanisms and assigns a different mode to
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Figure 5: Decomposition of the TR-PIV acquisition of the accelerating flow past a cylinder: spatial (¢) and
temporal (y) structures of the three dominant POD (top) and mPOD modes (bottom). For the first mode,
the temporal structures are shown in the time domain; for the others, these are shown in the time-frequency
domain using a CWT.

each of them, without significantly losing in decomposition convergence as it occurs to the harmonic DFT
or, worse, to the DMD.

5 Conclusions

The Multiscale Proper Orthogonal Decomposition (mPOD) has been tested on the Time-Resolved PIV
measurements of a canonical flow past a cylinder in transitory conditions. This transitory is obtained by
decreasing the velocity profile of the free stream and thus varying the frequency of the vortex shedding
between two well-defined values.

The performances of the mPOD are compared to those of a Proper Orthogonal Decomposition (POD)
and the Discrete Fourier Transform (DFT), while two classical algorithms for the Dynamic Mode Decompo-
sition (DMD), namely the Companion based and the SVD based formulations proved unsuccessful. Specif-
ically, due to the nonlinear nature of the test case, all the complex exponential vanishes within a few time
steps and leads to a severely ill-conditioned projection problem. The standard DFT, which can be seen as a
DMD on mean-substracted data, yields poor decomposition because of the non-harmonic extension of the
data.
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Figure 6: Difference in the reconstruction error produced by the mPOD modes 2 and 3 (E; 3) and the mPOD
modes 4 and 5 (E; 5), with respect to the POD modes 2 and 3. Clearly, the first mPOD modes are aligned to
the POD (E; 3 ~ 0) in the first 1.6s while the reverse is true afterwards.

The optimal convergence of the POD results in the opposite problem, with only three modes describing
the entire dataset. This is achieved at the cost of assigning to a single mode (and its phase-shifted counter-
part) the whole evolution of the vortex shedding. The corresponding spatial structures are consequently a
mix of features from these different phases of the flow evolution, which becomes therefore indistinguishable.

The spectral constraints of the mPOD allow for distinguishing the various steps in the evolution of the
dataset both in the time and the frequency domains, assigning different modes accordingly. Thanks to the
MRA architecture, this is achieved with a minor loss in the decomposition convergence with respect to the
optimal POD.
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