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Abstract

The PIV-based estimation of fluid induced loads is investigated using momentum- and impulse-based control
volume methods, which require additional calculations of pressure and vorticity surrounding the immersed
body, respectively. The methods are evaluated using two flow configurations: a cross-flow over circular
cylinder subjected to constant free-stream velocity, and a cylinder accelerating from rest in quiescent fluid.
The effects of random error, finite spatio-temporal resolution, and vorticity crossing control volume bound-
aries are investigated using synthetic PIV data sets from a numerical solution of flow around a circular
cylinder at Re = 150. In general, the impulse method yields greater errors than the momentum method,
except for estimates of drag at coarse spatial resolution, for which the momentum method generates signifi-
cant bias errors. When applied to experimental PIV data of an accelerating cylinder in quiescent fluid, high
correspondence between the two methods and with reference force balance measurements is observed when
appropriate filtering is employed to eliminate high-frequency fluctuations in the force signal.

1 Introduction

As particle image velocimetry (PIV) data have become widely available, the prospect of using these data
to estimate force has attracted a great deal of research attention, e.g. (Noca et al., 1999; van Oudheusden
et al., 2006; Mohebbian and Rival, 2012; Limacher et al., 2019). Methods of force estimation using PIV
data can be organized into two broad categories: momentum methods and impulse methods (Rival and van
Oudheusden, 2017). Momentum methods require pressure information to be explicitly evaluated, while
impulse methods instead require the evaluation of vorticity. In the present work, one method from each of
these categories are compared in their ability to accurately extract force estimates from two-dimensional
velocity field data, using both numerical data and a PIV dataset.

The conservation of momentum for a stationary, non-deforming CV encompassing a stationary cylinder
leads to the following equation for the fluid force:

F =− d
dt
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where V denotes the fluid volume, S denotes the outer boundary of V , n̂ denotes the outward-facing normal
on S, and τττ is the viscous stress tensor (Rival and van Oudheusden, 2017). F is the instantaneous fluid force
acting on the cylinder, u is the velocity and p is the pressure.

For a stationary body in a stationary, non-deforming CV, the impulse force formulation is given as
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where x is the position vector relative to the centre of the cylinder. The first term on the right-hand side is the
rate of change of vortical impulse within the domain, and the second term is the net flux of impulse out from
the domain, jointly representing the material derivative of impulse in V . The remaining two integrals jointly
account for the material derivative of impulse in the unobserved domain external to V . In two dimensions,
the general force expression given in Kang et al. (2017) is equivalent to equation (2).

In the present study, discretized versions of equations (1) and (2) are applied to two test cases: (i) data from
a numerical simulation of the flow around a two-dimensional circular cylinder (of diameter D) in a steady
freestream (U∞) at a Reynolds number of 150, and (ii) data from a PIV experiment of an accelerating cylinder
in quiescent fluid at a peak Reynolds number of approximately 5100 (Limacher et al., 2019). The first test
case was considered to facilitate a comparative analysis of the sensitivity of the two methods to random
errors and to spatio-temporal resolutions representative of PIV data, while the the second test case provides
an experimental comparison basis using a different flow scenario. The numerical solution was interpolated
onto a square Cartesian grid where synthetically generated random errors are added to the velocity fields to
mimic PIV datasets. Details on the discretization of equations (1) and (2) are given in section 2, while the
numerical and experimental results are presented in section 3 and 4, respectively.

2 Discretization of momentum and impulse equations

For the impulse formulation, second-order central differencing schemes are used for spatial and temporal
derivatives. For both methods, trapezoidal integration along each segment of the contour S is employed, and
midpoint integration is employed for the area integral. In the impulse method, to avoid over-estimating the
contribution of data points adjacent to the contour S, the contour is defined to lie halfway between the grid
points used in the area integral. Data points on the contour are then linearly interpolated from the adjacent
grid points. In the momentum formulations, the contours defining the control volume are chosen to lie on
grid points, and the contribution to the area integral by the boundary points is truncated instead.

For the momentum formulations, the pressure field (p) is estimated from the discretized velocity field and
its derivatives by solving the Poisson equation with boundary conditions and source terms computed from
the PIV data (van Oudheusden, 2013). Since different boundary conditions exhibit different sensitivities
to experimental error (Pan et al., 2016), two versions will be compared herein: the Neumann case,where
Neumann boundary conditions are employed on all the cylinder and domain boundaries, and the Dirichlet
case, where Neumann conditions are employed on the cylinder, upstream and downstream boundary condi-
tions, and Dirichlet boundary conditions are employed on the top and bottom domain boundaries. For the
Dirichlet condition, the pressure on the boundary is set using an extended form of the Bernoulli equation,
valid for unsteady, irrotational flow with small mean velocity gradients (de Kat and van Oudheusden, 2012).
The Laplacian of the pressure field is discretized using a 5-point second-order central difference scheme,
which entails the use of “ghost grid points” at the boundaries (McClure and Yarusevych, 2017b).

As will be demonstrated later, errors in the impulse-based force estimates are exacerbated by the presence
of vorticity on the outer control surface. As a result, two versions of the impulse formulation are presented:
one with a static CV, and one with a dynamic CV wherein the downstream plane location, x∗D, is selected
at each instant in time to minimize the integral of enstrophy on S. Since equation (2) is valid only for a
static CV, the force at each instant for the dynamic CV method must be calculated from a series of three
data points to permit the approximation of the time derivative of impulse by central differencing. For the
numerical data, the domain of possible downstream plane locations is x∗D ∈ [5,9]. The downstream extent of
this domain, though likely inconvenient to resolve in PIV investigations, is employed here to demonstrate
the possibility of error reduction. The control volumes employed for the different methodologies are listed
in table 1.



3 Numerical Investigation

3.1 CFD Methodology

The software Fluent 15.0 was used to complete a laminar simulation of the unsteady flow around a two-
dimensional circular cylinder at a Reynolds number of Re = ρU∞D/µ = 150. A finite-volume approach
was used, employing the SIMPLE algorithm (Versteeg and Malalasekera, 2007) to solve the continuity
and Navier-Stokes equations for incompressible flow. The employed spatial discretization schemes are as
follows: least-squares cell-based for gradient, second-order for pressure, and second-order upwind for mo-
mentum. Temporal discretization was achieved using a second-order implicit transient scheme. A constant
velocity boundary condition was specified on the upstream face, and an outflow boundary condition was
specified on the downstream plane. The no-slip and impermeable boundaries were imposed at the cylinder
surface, and the lateral outer domain boundaries were specified as impermeable but with zero shear. The
calculation domain extended 20 diameters upstream, 30 diameters downstream, and 20 diameters to either
side of the cylinder. The resulting computational grid is over 1.7 million nodes. A constant time step of
∆t = 0.005s was used, resulting in a maximum Courant number (Co = u∆t/∆x) of just over 5. The solution
was run until the formation of a stable vortex street was observed and the mean drag and root-mean-square
(RMS) lift coefficients had reached an acceptable level of convergence.

3.2 Synthetic PIV Error and Parameter Space

The numerical solution data were interpolated onto a square Cartesian grid of ∆x/D= h∗= 0.01 and at a time
separation of ∆tD/U∞ = ∆t∗ = 0.075. Spatial and temporal resolutions were then varied by under-sampling
the data (Table 2), spanning 0.01 < h∗ < 0.1 in space and 0.075 < ∆t∗ < 0.3 in time.

To quantify the sensitivity of the force estimations to random measurement errors, synthetic random errors
were added to the sampled velocity fields representative of those typically encountered in PIV experiments.
Figure 1a shows a single instantaneous realization of the generated streamwise velocity error for a spatial
resolution of h∗ = 0.02, and figure 1b shows the corresponding instantaneous vorticity field with the gener-
ated errors. The standard deviation of the error at a given spatial location and time is prescribed following
McClure and Yarusevych (2017a). A standard deviation of 0.5% of the maximum velocity (≈ 1.4U∞) is pre-
scribed globally to model random errors in correlation peak identification in PIV measurement. To model
PIV errors in highly sheared regions, a standard deviation of up to 7.5% of the maximum velocity is pre-
scribed based on the local magnitude of the velocity gradient tensor; by keeping this value constant for all
cases, it is assumed that the seeding density is constant (Howell, 2018). The prescription of a constant global
error level, rather than a more general relation coupled to the spatial and time scales of the PIV acquisition,
is justified if it is assumed the experimentalist chooses the pulse separation to maintain a constant freestream
particle displacement between pulses. The selected 0.5% error corresponds to a 0.06px peak detection error
when the maximum particle displacement is half of a 24×24px interrogation window. This places a lower
bound on the time separations in which the constant free-stream error assumption is valid, since the time sep-
aration between vector fields cannot be less than the pulse separation. Hence, random-error sensitivity of the
force estimation methods is only studied for cases where ∆t∗/4h∗ > 0.5 (see table 2). To model the spatial
correlation of PIV errors due to an interrogation window overlap of 75% (Sciacchitano and Wieneke, 2016),
the uncorrelated random error field generated at each instant is convolved with a 7× 7 matrix that results
in a positive autocorrelation of the errors, decreasing linearly with spatial separation for spatial separations
less than one interrogation window width.

Methodology CV definition: [x∗min,x
∗
max,y

∗
min,y

∗
max]

momentum, Dirichlet BC: [−1, 1, −1, 1]
momentum, Neumann BC: [−1, 1, −1, 1]

impulse, static CV: [−1, 5, −2.4, 2.4]+0.5h∗[−1, 1, −1, 1]
impulse, dynamic CV: [−1, x∗D, −2.4, 2.4]+0.5h∗[−1, 0, −1, 1]

Table 1: Control volume definitions for various methods. The location of the downstream face, x∗D ∈ [5,9],
varies in the dynamic CV definition so as to minimize the integral of enstrophy on S.
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Table 2: Parameter space of spatial and temporal resolutions investigated using the CFD results.

Figure 1: Example of the synthetic random error applied to the sampled cylinder flow velocity data: (a)
instantaneous magnitude of the streamwise velocity error, (b) instantaneous vorticity field with errors.

3.3 Numerical Results

Force coefficient estimates are reported using the subscripts mom and imp to refer to the momentum and
impulse formulations, with the additional subscripts Neu and Dir to denote the two alternative boundary
conditions used in the momentum method. The additional subscript dyn refers to the variation of the impulse
method in which the CV is varied in time to minimize enstrophy on S. The subscript CFD refers to force
coefficients obtained directly from integration of the stresses on the cylinder. The instantaneous lift and drag
are normalized by 1/2ρDU2

∞ to yield lift and drag coefficients CL and CD, respectively.

Figure 2 plots the results of each of the force estimation methods for the finest spatial and temporal res-
olutions available, that is, h∗ = 0.01 and ∆t∗ = 0.075, without random error added to the velocity fields.
The impulse method with a static CV exhibits periodic errors in both lift and drag relative to the CFD re-
sults. The occurrences of greatest instantaneous error are correlated with vortices crossing the contour S.
When vorticity is avoided by using a dynamic CV definition, in which the downstream face tends to convect
with the wake, instantaneous errors are greatly reduced. The remaining erroneous spikes in CD,imp,dyn and
CL,imp,dyn occur when the downstream face (containing the lowest enstrophy) reaches the limits of the per-
missible domain and then discontinuously jumps to an upstream spatial location. The momentum method
exhibits low error in lift and drag, with a minor bias error in drag estimates. Given the use of a Neumann
boundary condition on the downstream wake plane, the momentum method is not affected by the presence
of vorticity on the outer contour.

Root-mean-square (RMS) errors in the drag and lift coefficients, εRMS
D and εRMS

L , are calculated over two
complete shedding cycles. Figure 3 shows the RMS errors for each method, identified by the earlier defined
subscripts, for the combinations of spatial and temporal resolutions studied. The momentum method yields
lower RMS errors than the impulse method for all cases other than for drag at coarse spatial resolutions, i.e.
h∗ ≥ 0.05 (figure 3a). For the impulse method, the use of a dynamic CV reduces the RMS errors to levels
similar to the momentum method, except for the two coarsest temporal resolutions where more pronounced
deviations are observed in the lift data (figure 3d).

Interestingly, the impulse method exhibits minima in the RMS error for both drag and lift at a spatial res-
olution of h∗ = 0.05 in figures 3a and 3b. The authors speculate that this minimum is explained by the
interaction between the impulse-derivative and impulse-flux terms (the first two terms on the right-hand
side of equation (2)). The combination of these two terms represents the material derivative of impulse in
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Figure 2: Force coefficients for the finest resolution case: h∗ = 0.01, ∆t∗ = 0.075; (a) drag coefficients; (b)
lift coefficients.
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Figure 3: RMS errors for each of the force estimation methods for varied temporal and spatial resolutions.
(a,b) constant temporal resolution ∆t∗ = 0.075, varied spatial resolution; (c,d) constant spatial resolution
h∗ = 0.02, varied temporal resolution. Drag coefficients are on the left, lift coefficients are on the right.

V , which, though relatively small, is evaluated as the difference of two relatively large integral quantities.
Moderate coarsening of the spatial resolution yields an artificial reduction in the evaluated vorticity, which
can reduce the error in the material derivative of impulse. As h∗ continues to increase, truncation errors in
the approximated spatial derivative begin to dominate.

Figure 4 presents the calculated lift and drag coefficients, without random error added to the velocity fields,
at varied spatial resolution at a constant temporal resolution of ∆t∗ = 0.075. The errors for the static-CV
impulse method are of near-zero mean, but are not negligible instantaneously (see figures 4a and 4b). The use
of a dynamic CV significantly reduces the instantaneous errors, leaving minor erroneous spikes where the
CV discontinuously jumps upstream (figures 4c and 4d). A bias in the drag coefficients for the momentum
method, which grows as the spatial resolution coarsens (figure 4e), is found to be the cause of the higher
RMS errors seen in figure 3a; however, the lift estimates are not affected significantly by increasing h∗ (figure
4f). Visibly, these trends are nearly identical for both the Dirchlet and Neumann boundary conditions, so the
latter has been omitted from figure 4 for brevity.

The impulse method is highly sensitive to the coarsening of the temporal resolution (figures 3c and 3d). As
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Figure 4: Effect of spatial resolution on force estimates for the various methods at a fixed temporal reso-
lution of ∆t∗ = 0.075. (a,b) impulse method for a static CV; (c,d)impulse method for a dynamic CV; (e,f)
momentum method with Dirchlet BC.

∆t∗ increases, the vortical structures in the wake travel an increasing fraction of a cylinder diameter between
vector fields, increasing truncation error in the approximated time derivative of impulse. Contrary to the fine
temporal resolution cases, the dynamic CV method fails to bring the errors down to a similar magnitude as
the momentum method for the greater ∆t∗ cases. In comparison, the two momentum method variants both
agree with the CFD forces very well and exhibit only minor variation for the range of temporal resolutions
presented here.

For the case of h∗ = 0.02 and ∆t∗ = 0.075, figure 5 shows the estimated forces for the momentum method
and the static-CV impulse method after correlated random error has been added to the velocity fields. The
instantaneous error for the impulse method is consistently an order of magnitude greater than the momentum
method. The errors are manifested in high-frequency content, suggesting that the time derivative in the first
term of equation (2) has amplified the random error in the impulse integral. Since these errors remain of
near-zero mean, it is plausible that they could be filtered in cases with sufficient temporal resolution.

Figure 6 shows the RMS errors in drag and lift coefficients for the momentum and impulse methods after
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Figure 5: Comparison of momentum and impulse based force estimates with correlated random error added
to the velocity fields; (a) drag coefficients, C̃D,(·); (b) lift coefficients, C̃L,(·).

adding random error to the velocity fields. In these plots, RMS error is defined with respect to the previously
obtained force estimates, indicating how error is increased by the presence of random velocity error rather
than reporting total absolute error relative to the CFD results. RMS errors and force coefficients defined in
this way are denoted by the tilde symbol, e.g. ε̃RMS

D,imp. Both variants of the momentum method are insensitive
to changes in temporal resolution, with only a slight decrease in error with increasing ∆t∗. When h∗ is varied
in figures 6a and 6b, the minima at h∗ = 0.02 suggest that random error propagation through the momentum
force formulation becomes more significant as h∗ decreases. On the other hand, truncation error propagation
through the force formulation is dominant for h∗ ≥ 0.05. The impulse method exhibits a minimum in RMS
error with respect to both spatial and temporal resolutions (figures 6c, 6d, 6e and 6). As noted previously for
the cases without random velocity error, the minima with respect to h∗ in figures 6c and 6d can be explained
in terms of reduced error in the sum of the impulse-derivative and impulse-flux terms. The minima with
respect to ∆t∗ in figures 6g and 6h can be explained by two competing factors; the amplification of random
error through the impulse time derivative decreases as ∆t∗ increases, but the presence of erroneous vorticity
on the outer contour increasingly exacerbates error in the sum of the impulse-derivative and impulse-flux
terms as ∆t∗ increases.

4 Experimental Investigation

4.1 Experimental Methodology

The PIV dataset used in the present investigation is taken from the work of Limacher et al. (2019), which
may be consulted for further experimental details. One trial from the highest acceleration case of that work
is considered. The cylinder was towed through quiescent water with a triangular acceleration profile, with
a peak dimensionless acceleration of a∗p = apD/U2

max = 1, where ap is the peak instantaneous acceleration,
and a Reynolds number of approximately 5100 at the maximum cylinder velocity.

4.2 Experimental Results

Both force estimation methods utilize a control volume that is fixed relative to the cylinder. During the time
interval investigated, no vorticity crosses the domain boundaries, allowing all of the contour integrals in the
impulse formulation to be omitted. The acceleration of the cylinder requires the addition of another term:
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Figure 6: RMS errors in drag coefficients (left) and lift coefficients (right) with correlated random error
added to the velocity fields; (a,b) variable h∗, constant ∆t∗ = 0.225; (c,d) variable ∆t∗, constant h∗ = 0.02.

Figure 7: (a) Vorticity field with impulse formulation CV indicated with a black dashed line at t∗ = 3.5 and
(b) pressure field with momentum formulation CV indicated with a black dashed line at t∗ = 3.5

F =−ρ
d
dt

∫
V

x×ωωωdV +ρVb
duc

dt
, (3)

where duc/dt is the cylinder acceleration, defined here to be positive, and Vb is the body volume (Limacher
et al., 2019). This term is distinct from the classical added-mass force, since it lends a force in the same
direction as the acceleration, not in opposition to it. Figure 7a shows an instantaneous vorticity field derived
from the PIV measurements at t∗ = 3.5, with the black dashed line denoting the boundary of the control
volume used to compute the vorticity impulse terms (−1 < x∗ < 2, −1 < y∗ < 1), while figure 7b shows an
instantaneous pressure field computed from the Poisson equation with all Neumann boundary conditions,
with the black dashed line denoting the boundary of the control volume used to compute the momentum
balance (−1 < x∗ < 1, −1 < y∗ < 1). The Poisson equation is solved on a domain of −2 < x∗ < 2, −2 <
y∗ < 2, and the Neumann boundary condition near the cylinder surface is applied on a larger circle of radius
r/D= 0.55, in order to avoid boundary condition errors associated with computing temporal derivatives near
the moving cylinder surface. Since the contribution of pressure to the momentum balance is only through
integration along the outer contour of the CV (equation 1), the force estimate is insensitive to position of the
inner Poisson equation boundary condition.



Figure 8: Comparison of filtered force estimates for the accelerating cylinder experiment with filtered force
balance data (CD,meas).

The force estimations from the impulse and momentum formulations are compared to experimental force-
balance data in figure 8. The compared data are low-pass filtered to remove frequencies associated with res-
onance vibrations of the model, which contaminate the transient measurements. The results of all methods
produce signals that, once filtered, have high correspondence to the reference force balance measurements.
The force estimates resolve the large initial peak in the force history during the cylinder’s acceleration phase.
Both methodologies underpredict the drag force slightly, but their fluctuations exhibit high temporal corre-
lation. This underprediction is more pronounced for the momentum formulation at t∗ ≥ 2; this is attributed
to the effect of finite spatial resolution on the Poisson pressure solution, resulting in an under prediction of
pressure extremes in the stagnation region and low pressure wake vortices (de Kat and van Oudheusden,
2012). For the impulse formulation, the finite resolution of the PIV data may lead to an under prediction
of the viscous drag component associated with computing the vorticity near the cylinder surface Limacher
et al. (2019), although this requires further quantification.

5 Conclusions
A comparative analysis of two methods of estimating force from two-dimensional velocity data – one based
on momentum, one based on impulse – was carried out in the present work. The comparison considered the
effects of spatial resolution, temporal resolution and random velocity error.

The impulse method was found to be highly sensitive to changes in temporal resolution. It is clear that
∆t∗ must be kept below some characteristic time scale to limit the convection of vortical structures between
time steps, so as to limit truncation error in the approximated time derivative of impulse. By contrast, the
momentum method, using either Neumann or Dirchlet boundary conditions for the Poisson pressure solver,
exhibited low RMS errors for all tested temporal resolutions at a fixed spatial resolution of h∗ = 0.02 for
both drag and lift.

The greatest instantaneous errors in the impulse formulation occur when vorticity is crossing the control
surface. This source of this error is related to the attempt to calculate a small difference between two large
quantities: the rate of change of impulse in the domain and the flux of impulse crossing the control surface.
The use of a moving wake plane location to minimize instantaneous total enstrophy on the outer contour
leads to a substantial reduction in error. However, even for the finest temporal resolutions, this dynamic-CV
variant of the impulse method yields slightly higher RMS errors than the corresponding estimates from the
momentum method.

Changes in spatial resolution had a less significant effect on the impulse formulation than temporal reso-
lution, with RMS error actually decreasing for the impulse method as spatial resolution was changed from
h∗ = 0.01 to 0.05. This is attributed to the artificial reduction in the calculated values of vorticity, which mit-
igates the errors associated with vorticity crossing the domain boundary. Lift estimates for the momentum
method are insensitive to changes in spatial resolution resolution. However, coarsening of spatial resolution
leads to increasingly large underestimates of drag for the momentum method. This bias error is attributed
to the underestimation of the pressure extremes in the wake vortices and stagnation region near the lead-
ing edge of the cylinder, caused by the spatial filtering of the Poisson equation solution related to the grid
resolution. Investigation of this drag-bias issue is a key area of future work for the momentum method.



The impulse formulation showed an order of magnitude greater sensitivity to random velocity error than the
momentum formulation. This is attributed to the additional spatial derivative of the velocity field required
to calculate vorticity. While the momentum method involves spatial derivatives of the velocity field when
solving for pressure, the solution of the Poisson equation itself is equivalent to a spatial integration, thus
mitigating error propagation. However, the errors for each method are concentrated at frequencies in the
neighbourhood of the sampling frequency, and temporal filtering is recommended for practical use of either
methodology. When applied to experimental PIV data with typical levels of random velocity error, low-pass
filtering successfully eliminates these high-frequency fluctuations. The filtered results show high correspon-
dence with each other and with reference force balance measurements, although a slight underprediction of
drag exists for both methods.

The presented results allow for a recommendation. If one is interested mainly in accurate force estimates,
and interest in a specific mode of physical interpretation is secondary, then the presented momentum method
is a more robust choice than the impulse method, at least when vorticity is expected to cross the domain
boundaries. A key motivation for the continued study of impulse methods is the appealing possibility of
attributing force components to the evolution of specific vortical structures. Fortunately, the present work
suggests that efforts to identify CVs that enclose such structures are also likely to reduce error by avoiding
vorticity on the boundary.
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