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Abstract

An adjoint-based data assimilation is used to adapt the boundary conditions of a numerical simulation to re-
produce a specific experimental flow realization. The result is a full solution of the Navier-Stokes equations,
ready for further analysis. The specific aim of this work is to analyze a subsonic jet flow.

1 Introduction

For a variety of engineering applications it is desirable to determine the pressure field in a flow. The corre-
sponding information can be used, for example, to analyze and optimize the shape of bluff bodies, e.g. with
respect to drag and lift. Several methods for pressure determination exist. Typical experimental techniques,
like pressure transducer are impractical, e.g. there is not enough space for the sensors or the influence of the
instruments lead to a disturbed flow field. This is why many recent methods are based on optical methods
which are often restricted to velocity measurements, in particular particle image velocimetry (PIV). In con-
junction with improved PIV techniques, such as Tomo-PIV (Elsinga et al., 2006) or Shake-The-Box (Schanz
et al., 2013), other methods have been developed to determine the pressure from velocity measurement data,
see (Blinde et al., 2016) for an overview.

This paper presents the application of an adjoint-based data assimilation framework for pressure deter-
mination in compressible flows, using PIV data. The overall idea is to adapt a numerical simulation towards
experimental data. Once the numerical simulation matches the experimental data (e.g. velocities) in an op-
timal sense, unmeasured data, like pressure, can be obtained from the numerical solution. The method was
reported in (Lemke et al., 2016) for compressible flows. A similar approach for incompressible flows is
described in (Gronskis et al., 2013). In comparison with other approaches the method has the benefit to
determine the full state of a flow, e.g. density and temperature.

In this work the method is employed to analyze a two-dimensional compressible jet flow. Planar PIV data
are used as target data for the data assimilation. The boundary conditions of a numerical simulation are
adapted until the numerical velocity field match the experimental data.

2 The Adjoint Approach

Consider the following minimization problem

min
q

J =
1
2

∫
Ω

(
q−C̃−1 (C (qexp))

)2
σ(x, t)dΩ

s. t.
∫

Ω

(N(q, f ))dΩ .

(1)



The aim of the adjoint framework is to minimize the quadratic objective function J under the constraint, that
the compressible Navier-Stokes equation (N(q, f )) are satisfied. By adaptation of a forcing f the system
state q is modified in order to match the experimental state qexp.
The term σ(x, t) is a weight in space and time, C(q) is the observer function (camera function) and C̃−1 its
approximative inverse (the PIV algorithm). We assume in this paper C̃−1(C(·)) = I.

Minimizing the objective function by testing random forcing values, in the sense of a parameter study, leads
to prohibitive computational costs. However, the adjoint allows to significantly reduce the computational
cost to determine an optimal f as it provides an efficient way to compute the required gradient information.
The gradient is used in context of a standard steepest-descent method in order to minimize the objective or
modify the system state respectivly.

For introducing the adjoint method different approaches are present in literature e.g. the Lagrange viewpoint
or the duality formulation. The latter is presented here.

Consider the objective function

J = gT q (2)

defined as the product between a weighting g and the system state q. The system state is the solution of the
governing equation

Aq = f . (3)

Therein, A is the governing operator and f the forcing term on the right-hand side. As mentioned above it is
expensive to compute the governing equation for multiple f to study the impact on the objective function.
To reduce the computational effort the adjoint equation can be used

AT q∗ = g. (4)

The structure is similar to equation (3) where q∗ is the adjoint solution. Based on the adjoint equation a
formulation is found which connect the objective function directly with the forcing term

J = gT q = gT A−1Aq =
(
gT A−1)(Aq) =

(
A−T g

)T
f = q∗

T
f . (5)

This allows to compute the objective function for different f by a cheap scalar product. Therefore, its only
necessary to compute the adjoint solution. If the problem is non-linear the formulation must be linearized
as follows:

δJ = gT
δq = q∗T

δ f . (6)

A small change in the objective function is equivalent to the product between the adjoint solution and a small
change in the forcing.

2.1 The adjoint Navier-Stokes equation

To introduce the adjoint method for partial differential equations, in particular compressible flows, the fric-
tion terms are neglected for brevity and only the Euler equations are considered

∂t

(
ρ

ρui
p

γ−1

)
+∂xi

 ρui
ρuiu j + pδi j

ui pγ

γ−1

−ui∂xi

(
0
0
p

)
= f . (7)

Therein the density is denoted as ρ, the velocity as ui and p as pressure, as expression for the inner energy.
The adiabatic coefficient is denoted by γ. The summation convention for indices i and j applies. On the



right-hand side f describe the forcing term to be adapted. The equation can be abbreviated in vector form
as

∂ta+∂xib
i +Ci

∂xic = f . (8)

As discussed above, the equation must be linearized with respect to the actual system state q=(ρ,ui, p)T .

∂t
∂aα

∂qβ

δqβ +∂xi

∂bα

∂qβ

δqβ +Ci
∂xiδqβ +δCi

∂xicβ = δ f (9)

The state δq = (δρ,δui,δp)T corresponds to the solution of the linearized equations. Inspired by the La-
grangian approach a multiplier q∗ is added to the integral objective also linearized. Per definition the implicit
formulation of the linearized governing equation is equal to zero. Based on this, the adjoint solution can be
derived. Here, dΩ means the space-time measure.

∫∫
δJ dΩ =

∫∫
gT

δqdΩ−
∫∫

q∗
T (

∂tAδq+∂xiB
i
δq+Ci

∂xiδq+δCi
∂xi −δ f

)
dΩ︸ ︷︷ ︸

=0

. (10)

Resorting and partial integration leads to a formulation for the objective function δJ which is independent
of δq ∫∫

δJdΩ =
∫∫

q∗
T
δ f dΩ+

∫∫
δqT

(
g+AT

∂tq∗+BiT
∂xiq

∗+∂xiC
iT q∗−C̃i

∂xic
)

︸ ︷︷ ︸
I

dΩ

−
[∫

δqT AT q∗dxi

]t=tend

t=t0︸ ︷︷ ︸
II

−
[∫

δqT BiT q∗dt
]xi=Li

xi=xi,0

−
[∫

δqTCiT q∗dt
]xi=Li

xi=xi,0︸ ︷︷ ︸
III

. (11)

Part (I) represents the adjoint equation. Part (II) and (III) contain information about the adjoint initial- and
boundary conditions and also have to vanish.
In summary, the solution q∗ of the adjoint equation

∂tq∗+AT−1
BiT

∂xiq
∗+AT−1

CiT
∂xiq

∗−AT−1
C̃i

∂xiq
∗+AT−1

g = 0 (12)

leads to an efficient method to compute the change of the objective function.∫∫
δJdΩ =

∫∫
q∗T

δ f dΩ. (13)

Thus, the multiplier q∗ can be interpreted as a gradient or sensitivity.

2.2 The adjoint algorithm

Starting with an initial guess f 0 the governing Navier-Stokes equations are solved. The computed system
state is compared to the experimental data. Afterwards, the adjoint equations are solved backwards in
time. The adjoint solution is used to compute the gradient ∇ f J which is used to update the actual forcing
f n+1 = f n +∇ f J. Starting with a new solution of the governing equations the whole loop is repeated until
the direct solution and the measurement values match in an optimal sense.



Figure 1: Illustration of the iterative data assimilation procedure using the adjoint approach.

3 Experimental setup

To demonstrate the applicability of the adjoint-based framework a suitable test setup created. Therefore, the
windtunnel in Fig. 2 is used. A compressor with a tank of 3 m3 at 10 bar is connected to control the flow.
The flow direction in the sketch is from right to left. The windtunnel is constructed in a modular manner
and consist of

1. the convergent nozzle

2. several distance modules

3. a shock-less diffusor

4. a grid module for homogenizing the flow by breaking up large flow pattern

5. a sintered module for smooth flow transition from a circular to the rectangular cross section.

Figure 2: Sketch of the modular experimental setup.



The total length of the convergent nozzle is 60.2 mm. The initial nozzle cross section is 168.5 mm×50.8 mm
while the flow leaves the nozzle at the exit with a cross section of 168.5 mm×11 mm and a velocity up to
125 m/s, a corresponding Mach number of 0.29 Ma and a Reynolds number of 65,000 Re. Therefore, the
flow can be assumed slightly compressible. The aim is to generate a two-dimensional flow. The complete
experimental set-up is shown in Fig. 3. To reduce secondary flow effects a wooden plate is mounted at the
nozzle exit.

Figure 3: The experimental setup.

For observing the flow a standard planar two component (2D-2C) PIV system is used (PCO.2000 camera).
The laser sheet is generated with a Evergreen 145 Laser from Quantel SA which is placed in the center of
the nozzle exit. The region of interest is about 160 mm×137 mm resolved with 2.048 Px×1.750 Px. The
system is synchronized with a repetition rate of 7.5 Hz. The pulse distance for the double images is 7 µs.
DEHS was used as seeding.

The velocity calculation was done with the Matlab tool PIVLAB (Thielicke and Stamhuis, 2014) based on
the recorded PIV images.

4 Results

As explained before, the aim is to solve the minimization problem (2.1). For this purpose the adjoint frame-
work computes and modifies the solution of the direct numerical simulation until it matches with the mea-
sured velocity fields. The simulation parameters are described in Tab. 1. On all sides of the computational
domain sponges are added (Mani, 2012) which serves as forcing f . The solution is only evaluated at σx the
inner region surrounded by the black line in Fig. 4.

In Fig. 4 the measured flow field from PIV and the calculated velocity field from the simulation are com-
pared. The area inside the black line represent the assimilated field. Outside, the algorithm has the freedom
to choose appropriate, unphysical values. It can be seen that the adjoint framework results in a solution
which corresponds to the experimental values. The main properties of the flow are reconstructed. The
calculated velocities are of the same order of magnitude as the input values.



Table 1: Simulation parameter

Parameter Value description

Lx1 35 mm Domain size in x1
Lx2 40 mm Domain size in x2
Nx1 256 Resolution in x1
Nx2 256 Resolution in x2
hx1 0.14 mm Step size in x1
hx2 0.16 mm Step size in x2
dt 4.17×10−7 s Step size in time
nt 1500 Number of Timesteps

ρ∞ 1.2040 Kg/m3 Initial density
P∞ 1×105 Pa Initial pressure
T∞ 300 K Initial temperatur

Figure 4: Comparison between the measurement velocity field (left) and the simulation results (right).

The graph in Fig. 5 shows the progress of the objective function within 180 iterations. The objective at the
end is reduced by nearly one order of magnitude



Figure 5: Progress of the the objective function.

5 Conclusion and Outlook

Previous works of the authors (Lemke and Sesterhenn, 2013), (Lemke, 2015), (Lemke et al., 2016) have
shown the general possibility to determine pressure or even full state information from PIV images by using
an adjoint data assimilation method.

The immediate next steps include the assimilation of a full, laminar Jet at low Reynolds number. Therefore,
a vacuum chamber, see Fig. 6, was build, which allows to control the Reynolds number by changing the
pressure in the facility. The inflow conditions can be changed by the outer channel 6a by means of different
orifices. With different nozzles inside the chamber the jet structure can be influenced. In Fig 6c the actually
installed 2D nozzle can be seen.

(a) The frontview with the outer channel. (b) Sideview of the open chamber.

(c) The inner chamber with the discribed noozle. (d) Sideview with the observation windows on the left, top,
and bottom of the chamber.

Figure 6: The vaccum chamber for generating and observing flows at low Reynolds numbers.
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