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Abstract
Accurate pressure estimates are important for various fluid engineering applications. We can now esti-
mate pressure from particle image velocimetry (PIV), but to make these estimates really useful, we need to
identify and quantify error sources. Here we lay the mathematical foundation to decompose the root-mean-
square error of the estimate of pressure from PIV in its spectral constituents and show their application to
experimental estimates against reference signals. The error power spectrum is the result of both amplitude
and phase errors, where the phase errors are correctly captured in the co-spectrum, whereas the modulus
of coherency or the coherence disregard phase errors and therefore overestimate the quality of an estimate.
Dominant contributing frequencies can be the best described frequencies. Frequency specific errors are
defined and their potential application to estimate errors for signals where a reference is unfeasible are
discussed.

1 Introduction
Over the last decade, pressure estimation from particle image velocimetry has risen to become a useful tool
to extract more information out of velocity measurement such as particle image velocimetry (PIV), see eg
Liu and Katz (2006); de Kat and van Oudheusden (2012); van Oudheusden (2013); van Gent et al. (2017).
For these techniques to be useful, one needs to know the accuracy of them. A standard measure for accuracy
is the likely difference one will encounter between an estimate and the reference signal. Typically this is
expressed as a root-mean-square-error (RMSe). Van der Kindere et al. (2019) showed that the RMSe for
pressure fluctuations is related to the standard deviations of the estimated signal and the standard deviation of
the reference signal (akin to amplitude response) and the crosscorrelation between them (temporal variation
match, linked to phase response), see equation 1:
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Van der Kindere et al. (2019) and the studies they used for comparison (ie de Kat and van Oudheusden,
2012; Schneiders et al., 2016), see figure 1 show that the RMSe are significant compared to the standard
deviation of the reference signal, indicating that more work is needed for accurate (instantaneous) pressure
estimates from PIV. RMSe is a blanket statistical measure to indicate the difference between the estimate
and the reference for any one point in a time-series. However, it does not indicate what range of frequencies
contribute to that error nor what range of frequencies can be accurately estimated, an important quality for
a measurement technique (see eg de Kat and van Oudheusden, 2012; McClure and Yarusevych, 2017).

Therefore, to identify what frequencies contribute to the overall error in the signal and to identify the
range of frequencies that can be accurately estimated, we will explore the use of a cross-spectral approach
to decompose the RMSe into the contributions of different frequencies. For each frequency we will look at
how it contributes to the over all error and their individual the amplitude response and the phase match.
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Figure 1: RMSe for pressure from PIV (Van der Kindere et al., 2019). RMSe is a function of the ratio of the
standard deviations and the correlation between an estimate and a reference signal. Application to pressure
from PIV data shows that despite good agreement in the ratio of standard deviations between estimate and
reference, the crosscorrelation needs to significantly improve to reduce the RMSe.

2 Going Spectral
To start off, we will first need to lay the foundation for going spectral. Therefore, we start with some
definitions. As is common in spectral analysis we are only considering fluctuations around a zero mean, ie
we have decomposed a signal into a mean and fluctuating component and removed the mean.

First, we start with the one-dimensional Fourier transform pair of signal f to obtain its spectrum F :

F(ω) =
1√
2π

∫
f (t)e−iωtdt ; f (t) =

1√
2π

∫
F(ω)eiωtdt. (2)

Note that all integrals without bounds in the current study are over all R (ie we work with two-sided spectra).
From the spectrum, F , the power spectrum, Φ f f , of a single signal f can be determined. Likewise, from the
spectra F and G, the cross-power spectrum, Φ f g, of two different signals f and g can be determined:

Φ f f (ω) = F(ω)∗F(ω) ; Φ f g(ω) = F(ω)∗G(ω). (3)

Where F∗ is the complex conjugate of F . Note that the cross-power spectrum, Φ f g, is complex valued,
and can be decomposed in the real-valued co-spectrum C f g and quadrature spectrum Q f g (the latter is also
known as the phase spectrum):

Φ f g(ω) =C f g(ω)+ iQ f g(ω). (4)

where the co-spectrum is symmetric and the quadrature spectrum asymmetric.
Second, we define the auto- and cross-correlation for the signals as the expected value (E[·]) of their

product (the covariance between the signals at a certain shift, s) and their coefficient forms:

R f f (s) = E [ f (t) f (t + s)] ; R f g(s) = E [ f (t)g(t + s)] ; (5)

ρ f f (s) =
R f f (s)

σ2
f

; ρ f g(s) =
R f g(s)
σ f σg

(6)

Comparing these correlations with the power spectra and switching the order of integration results in the
following Fourier transform pairs (see also Bendat and Piersol, 2010):



Φ f f (ω) =
∫

R f f (s)e−iωsds ; R f f (s) =
∫

Φ f f (ω)eiωsdω ; (7)

Φ f g(ω) =
∫

R f g(s)e−iωsds ; R f g(s) =
∫

Φ f g(ω)eiωsdω. (8)

Now we can define the coherency of a signal, which is the cross-power spectrum normalised with the
square-root of the power spectra (see eg Croux et al., 2001):

C f g =
Φ f g(ω)√

Φ f f (ω)Φgg(ω)
=

C f g(ω)+ iQ f g(ω)√
Φ f f (ω)Φgg(ω)

, (9)

which is a complex valued measure with a modulus between zero and one. Coherence, also called squared-
coherency or magnitude-squared coherence (see Croux et al., 2001; Bendat and Piersol, 2010), is defined as
follows:

|C f g|2 =
|Φ f g(ω)|2

Φ f f (ω)Φgg(ω)
=

C2
f g(ω)+Q2

f g(ω)

Φ f f (ω)Φgg(ω)
, (10)

and can be used to quantify how well an input might be used to predict an output (Bendat and Piersol, 2010).
Finally, we will introduce a frequency specific correlation coefficient (also called dynamic correlation

Croux et al., 2001) – the spectral equivalent of the cross-correlation – as the co-spectrum normalised by the
square-root of the product of the signals’ power spectra:

R f g(ω) =
C f g(ω)√

Φ f f (ω)Φgg(ω)
, (11)

3 Spectral Decomposition of the Error
Now that we have the spectral machinery in place we can start decomposition of the RMSe into its frequency
components: E(ω). The variance of the error is its correlation value for a zero shift, which can be split into
the estimate, reference and cross-correlation values for a zero shift:

σ
2
err ≡ Rerr,err(0) = Rest,est(0)−2Rest,re f (0)+Rre f ,re f (0), (12)

Using the power spectra Fourier transform pairs defined before, we obtain:∫
E2(ω)dω =

∫
Φest,est(ω)dω−2

∫
Φest,re f (ω)dω+

∫
Φre f ,re f (ω)dω. (13)

and since only the real part of the cross-power spectrum is symmetric and contributes to the second term in
the RHS, we find that the error power spectrum can be decomposed into the power spectra and co-spectrum
or the estimate and reference signals as follows:

E2(ω) = Φest,est(ω)−2Cest,re f (ω)+Φre f ,re f (ω). (14)

Now there are two ways we can look at the error power spectrum. First, we will identify which frequen-
cies contribute most to the error and second, we will look at the frequency specific quality of the estimate.

Fractional contributions to total error The fractional contributions of a frequency range to the total error
can be determined by dividing the error power spectrum by the variance of the error:
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Or it can be referenced against the reference signal:
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The square-root of the resulting values indicate the percentage of the error that comes from the spectral
band ω±∆ω and the error contribution in relation to the signal standard deviation, for equation 15 and 16
respectively.

Frequency specific quality of an estimate The relative error estimate per frequency can be found by
taking the limit of ∆ω→ 0 of the integral of the error spectrum and reference power spectrum:

lim
∆ω→0

∫
ω+∆ω

ω−∆ω
E2(ω)dω∫

ω+∆ω

ω−∆ω
Φre f ,re f (ω̄)dω̄

≈ 2∆ωE2(ω)

2∆ωΦre f ,re f (ω)
=

E2(ω)

Φre f ,re f (ω)
(17)

inserting equation 11 and 14 into equation 17, taking the square-root and rearranging we get the exact
spectral equivalent of equation 1:

E(ω)√
Φre f ,re f (ω)

=

√√√√1+

√
Φest,est(ω)√
Φre f ,re f (ω)

( √
Φest,est(ω)√
Φre f ,re f (ω)

−2Rest,re f (ω)

)
, (18)

where the frequency specific relative error is a function of the frequency specific amplitude ratio between
the estimate and reference signal and the frequency specific correlation coefficient.

4 Application to Experimental Pressure from PIV Data
Now that we have laid the foundation for going spectral and defined ways how to spectrally decompose the
error, we will apply the decomposition to pressure from PIV data.

The data of de Kat and van Oudheusden (2012) is ideally suited, since it provides both pressure estimates
from PIV as well as an independently measured reference signal from pressure transducers. The results for
the overall error are included in 1 indicated by the lower two triangles. For the current analysis, we will as-
sume that the reference signal is perfect and, therefore, any deviation from the reference signal is considered
error. Using the power spectra and cross-power spectra we can determine the error power spectrum using
equation 14.

Figure 2 shows the reference, estimated and error power spectra as well as the dynamic correlation
for a pressure signal on the side of a square cylinder using stereo-PIV and the base of the cylinder using
tomographic-PIV, the corresponding overall error σerr/σre f was about 20% and 75% respectively, see figure
1. The power spectrum of the pressure signal for the side of the square cylinder shows a clear peak at 20 Hz
and a harmonic at 40 Hz; the estimated pressure spectrum follows the reference power spectrum closely up
to 80 Hz above which the estimated pressure spectrum has higher values than the reference spectrum. The
dynamic correlation shows values close to unity for low frequencies and drops to zero in the range 50–70
Hz. As one would expect, for the low frequencies, the error power spectrum is an order of magnitude smaller
than the reference power spectrum, and, just like the estimate and reference power spectra, it peaks at 20
Hz. For frequencies above 80 Hz, the error power spectrum closely follows the estimated power spectrum.

The power spectrum of the pressure signal for the base of the square cylinder is much flatter in com-
parison with that of the side. It shows a peak at 40 Hz, with the estimate also having a peak at 20 Hz. The
estimated pressure spectrum follows the reference power spectrum 200–300 Hz above which the estimated
pressure spectrum flattens and remains at a higher value than the reference spectrum. The dynamic corre-
lation shows that there is good correlation between the signals before it drops to zero around 200 Hz. For
frequencies below, the error power is lower than the estimated and reference spectrum, except for 20 Hz. At
20 Hz there is an increase in the error spectrum, because the estimated and reference power spectra differ
significantly and the dynamic correlation also shows a dip. Above 300 Hz, the error power spectrum closely
follows the estimated power spectrum as was the case for the side pressure.

The error power spectrum will now be looked at in the different ways defined in the previous section.
We will express the error power spectrum as contributions to the total error variance as fractions of σ2

err and
as fractions of σ2

re f , and provide the results for the spectral equivalent of equation 1.
Figure 3 shows the fractional contributions of the error power spectrum to the error variance and the

result of applying equation 18. The fractional contributions to the error variance (top) show that for both
cases there is one main contributing frequency, 20 Hz, which accounts for about 50% and 20% of the error
variance for the side and base (left and right) respectively. For the side pressure signal, this is also the
frequency where the signal has its peak power content, see figure 2 left.
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Figure 2: Estimated, reference and error power spectra and dynamic correlation for wall pressure on a square
cylinder indicate how well the frequency content of the pressure signals is captured. Estimate, reference
power spectra and dynamic correlation from de Kat and van Oudheusden (2012), error power spectrum
from equation 14. Top: Estimated, reference and power spectra. Comparing the estimated power spectrum
(blue line) with the reference power spectrum (black line) indicates how well the variance (or amplitude) is
captured at each frequency. However, the error power spectrum (red line) is the result of both amplitude and
phase differences. Bottom: Dynamic correlation is a frequency specific cross-correlation that indicates the
phase match between the estimate and reference signals. Left: Side wall pressure results. Right: Base wall
pressure results.

Interestingly, the results of applying equation 18 indicate that the frequency that contributes most to
the error variance is actually the frequency that is best described, ie has the lowest frequency specific error
(figure 3 bottom–left). This can be explained by the fact that 20 Hz has the highest power content for the side
wall pressure signal and therefore, even if we only make a small error (compared to the other frequencies) of
that power content, it can still be the largest contribution to the total error. The results for the base pressure
signal shows that the frequency that contributes most to the total error is also poorly described, as one could
also see from the power spectra and the dynamic correlation.

5 Discussion
Now that we have tools to decompose the error into its spectral contributions and have shown their applica-
tion to experimental data, we will discuss briefly how they can be used.

Previous studies have used power spectra in combination with dynamic correlation (de Kat and van
Oudheusden, 2012) or the modulus of the coherency (Ghaemi et al., 2012; Schneiders et al., 2016, who
call it ‘coherence’ in their work) to show the quality of pressure from PIV compared with reference wall
pressure measurement by pressure transducer or microphone, respectively. From the current work it follows
that the dynamic correlation in combination with the power spectra allows one to determine the error power
spectrum (with its integral being the error variance). In fact, the dynamic correlation can be seen as a
per frequency cross-correlation and therefore is a measure for whether two signals match in phase. The
modulus of coherency (or the coherence) does not distinguish in phase and therefore is a measure for how
well signals could match is phase were perfectly corrected and will therefore over-predict the quality of an
estimate. Therefore, we would propose that for quantifying the performance of a signal one should use the
power spectra in combination with the dynamic correlation and ideally also include the error power spectrum
(which can be easily obtained from them).
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Figure 3: Spectral decomposition of RMSe shows how each frequency contributes to the error variance
and how well each frequency is captured individually. Top: Fractional contributions to the error variance.
Bottom: Frequency specific error. Left: Side wall pressure results. Right: Base wall pressure results.

The error power spectrum can be normalised with the error variance (or the signal variance) to show
the fractional contribution to the error to identify dominant frequencies. When the main contributors are
different from the frequencies of interest, temporal/spectral filtering could improve the estimate and reduce
the error in the signal. When the main contributing frequency is the frequency of interest, little improvement
is (likely) possible. For single point probes, one could determine a transfer function to correct the spectral
content, but since the pressure from PIV estimate / PIV estimates depend on a field measurement, a cor-
rection is ill-posed and one would need to resort to ways to assimilate the correction for one point in the
complete domain.

The final measure introduced in this work is the frequency specific error estimate. This estimate is of
particular interest in its potential for estimating errors (uncertainty) for difficult cases, where reference mea-
surements are unfeasible. For these cases, one could set up their pressure from PIV system, test the system
on a reference case which includes are reference measurement and determine the frequency specific error.
Then replacing the reference model with the model that need to be tested, one can use the frequency specific
error and the estimated power spectrum by multiplying the two (after squaring the frequency specific error)
to obtain an estimate of the error power spectrum – and hence the error on the pressure fluctuations. For
this approach to work, one would need to do careful tests to identify whether the error is caused by sys-
tematic offsets (eg gain errors) or random deviations (system random noise). This would require spectrally
full signals of various strengths. Ideally, such an investigation would allow us to find the driving parameters
that result in errors and create a detailed model to predict the accuracy of the pressure from PIV estimates,
without performing extensive reference measurements. The theoretical underpinnings for such models are
currently under consideration.

6 Conclusion
In this work, we have laid the mathematical foundation to decompose the root-mean-square error of the
estimate of pressure from PIV in its spectral constituents and shown their application to experimental es-
timates against reference signals. The error power spectrum was found to be the result of both amplitude
and phase errors, where the phase errors correctly captured in the co-spectrum. The modulus of coherency
or the coherence (as used in different studies) disregard phase errors and therefore overestimate the quality
of an estimate and are more suited to indicate how good the estimate could predict the reference, iff phase



were to be perfectly corrected. Dominant contributing frequencies can be the best described frequencies,
in which case little reduction of the error is likely possible. Frequency specific errors were defined and,
for cases where obtaining a reference signal is unfeasible, their potential application to estimate errors were
discussed.
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