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Abstract

Flowfield measurements are nowadays performed with highspeed camera recordings of tracer particles in
an illuminated fluid layer or volume. The following post-processing is key to the quality of the resulting ve-
locity and/or acceleration fields. Dense 3D particle tracking following the Shake-The-Box method (Schanz
et al., 2016) yields accurate but scattered data. Sophisticated interpolation schemes were proposed that can
make use of further physical constraints from the Navier-Stokes equations in order to simultaneously deter-
mine velocity and acceleration fields as solutions to an inverse problem. This allows to resolve structures
beyond the classical Nyquist limit for each single field variable. So far, the full temporal domain has ei-
ther not been considered yet (Gesemann et al., 2016) or the temporal coupling of several time instants via
simulation methods resulted in high computational costs (Schneiders and Scarano, |2018])). This work shows
that the introduction of memory to the reconstruction process (by temporal coupling) results in improved
flow field reconstructions. For this purpose, additional artificial Lagrangian tracers (virtual particles) were
advected between the fields, which is the most natural way to achieve temporal coupling in the framework of
such algorithms. Several contributions like reconstruction error correlations and the flow field regularization
within the inverse problem were revised to explain the improvements.

1 Introduction

From experiments, data is available in the form of particle pictures from which particle tracks can be in-
ferred by tracking techniques such as tomographic PTV (Schroder et al., 2011) or Shake-The-Box (Schanz
et al., 2016). But complete knowledge of the velocity field is sought on the basis of the scattered velocity
and acceleration data. For this purpose different spatial interpolation algorithms were proposed, such as
FlowFit (Gesemann et al., 2016) and VIC+ (Schneiders et al., [2015), which take Lagrangian particle track
data (position, velocity and acceleration) as input and exploit known physical properties such as continuity
and the Navier-Stokes equations for incompressible and uniform-density flows to reconstruct accurate and
high resolution velocity, acceleration and pressure fields. The mentioned algorithms reach higher spatial
resolutions beyond Nyquist than interpolation schemes that make use of the constraint of solenoidality only,
due to the increased amount of data.

These algorithms reconstruct single time instants, i.e. they take particle clouds at a certain time and
try to fill up the missing spatial information by solving an inverse non-linear optimization problem with
physical constraints. However, there is still potential for further increase of precision by combining the
information from subsequent time instants, since the current procedure does not a priori impose temporal
consistency. This might cause unnatural behaviour to occur because the fields of interest are almost always
undersampled, e.g. due to limited particle seeding or high Reynolds numbers. If particles randomly occur
close to a structure, i.e. a region with high velocity gradient tensor, it will be reconstructed with higher
accuracy than in a case with a more anfavourable particle distribution, even if the structure itself is persistent
over time.

More recently Schneiders and Scarano, (2018)) proposed a method called time-segment-assimilation
(TSA) that incorporates multiple time steps into the inverse problem of the flow field reconstruction by
the vortex-in-cell time integration method (Christiansen, [1973)). It performed well in recovering additional
structures. This, however, is computationally very expensive due to the iterative nature of the algorithm.
Instead, we aim to develope a method in which virtual particles from previous reconstructions are advected



into the following interpolation timestep with an individual weight dependend on (i) the Lagrangian correla-
tion functions known from the track data and (ii) the local velocity gradient tensor as estimated. Usually, the
time steps are about the size of the Kolmogorov time scale so the Lagrangian velocities and accelerations
at two subsequent time instants are still significantly correlated. Therefore, a straightforward approach to
combine the information of multiple reconstructions is to involve additional virtual particles into the recon-
struction process that are advected with the estimated velocity and acceleration in order to act as information
carrier between the reconstructed fields, thus enforcing consistency in time.

2 Virtual Experiments

Table 1: Information on the virtual experiments. 7. denotes the decorrelation time of acceleration.

| FIT | CF
subdomain [0,7/8] x [0,/8] x [0,7/8] [—0.5,0.78] x [0.64,0.96] x [0,0.32]
frame spacing At 0.0l ~1,/4~T./8 0.04 =~ T.(y" =40)/4
#particles 1600 6500 13000 26000 | 2000 8400 16400
average particle spacing | 12n  7.52n 5.96n 4.73n | 40.3y" 24.97y" 19.98y™"

Virtual experiments on two testcases of the Johns Hopkins Turbulence Database were performed. Cuboid
subvolumes were chosen in the forced isotropic turbulence (FIT) dataset (L1 et al., [2008) and the channel
flow (CF) dataset (Graham et al., 2016). The latter is comoving in streamwise x-direction with a speed of 0.7
in order to keep track of the same flow structures over a greater range of time. The position and extent of the
subdomains is documented in table (1| Several sets of particle tracks with different seeding densities were
generated by making use of the database functions (Yu et al.,|2012). To achieve homogeneous seeding, the
subvolumes were extended by a buffer volume and, therein, random positions were drawn from a uniform
probability density. All of these particles are integrated forward in time. At each time step, the particles
inside the subvolumes are saved and utilized to generate the track-files, whereas the particles in the buffer
layer get replaced by newly drawn random positions to guarantee a constant particle inflow into the subdo-
main. The velocities and accelerations in the trackfiles were determined from velocity and pressure by the
provided spatio-temporal interpolation schemes (8th- and/or 4th-order Lagrange Polynomials and 4th-order
centered finite differencing in space and Piecewise Cubic Hermite Interpolation Polynomials in time).

The frame spacing At, i.e. the size of the time step between successive reconstructions, was chosen rather
conservative to enable variations in hindsight. The frame spacing in FIT was adjusted to approximately
Ty/4, which corresponds to roughly 1/8 or 1/9 acceleration decorrelation times. The frame spacing in CF
was chosen to be approximately 1/4 of the acceleration decorrelation time in the layer closest to the wall,
i.e. the layer of the subdomain with the smallest dynamic timescale.

2.1 FlowFit Error Quantification

The FIT reconstruction was performed over the whole length of the dataset together with an exhaustive
uncertainty analysis in order to develope criteria for error quantification and to obtain possible rules for an
optimal seeding of virtual particles. For this purpose, the reconstruction error of velocities and accelerations
in dependence of two criteria was evaluated. Therefor, the continuous B-spline interpolator of the recon-
struction is sampled on the DNS grid and compared to the true field values. As a first criterion serves the
distance to the nearest real particle d at which the velocity and acceleration was known. For the second
criterion s, the unit vectors to the three nearest neighboured particles are summed up and the absolute value
is taken. The resulting number will be close to zero if the nearest neighbours are distributed homogeneously
around the gridpoint and greater zero otherwise. The reconstructed flow field might show an increased
quality of spatial derivatives in regions of low s. Both criteria are illustrated in figure[I(a)|

Interestingly, the error does not scale with the s-criterion but solely with nearest neighbour distance d.
Here, a roughly linear dependence of the mean absolute velocity error on d is found for all seeding densities,
see figure[2(b)| The acceleration error behaves similarly. At the same time, the spectral signal-to-noise ratio
(SNR) averaged over spatial components and time shows that a considerable amount of scales beyond the
Nyquist limit is recovered by FlowFit, see figure Eventually, one cannot deduce an optimal seeding
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Figure 1: (a) Criteria for reconstruction error quantification based on particle cloud properties and (b) VP
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strategy for virtual tracers based on these observations. On the one hand, the reconstruction naturally exhibits
the highest errors in the absence of particles. On the other hand, the additional spatial scales are recovered
in these intermediate areas.

3 Seeding of Virtual Tracers

3.1 Algorithm

The motivation for the use of additional virtual particles (VPs) instead of joint methods is the incontestable
simplicity of the approach. At the same time, it can make use of the physically meaningful velocity and
acceleration information that is provided by the reconstruction process and achieves a direct temporal cou-
pling. However, one has to take care of possible noise amplification. A standard approach for this purpose
is Kalman-filtering of the VP trajectories, i.e. a combination of the predicted outcome (advection) with the
measurement (succeeding reconstruction). Nonetheless, this doubled the computational cost because the
succeeding reconstruction would have to be performed twice, once without VPs and with VPs. Instead, VPs
are davected directly forward and their weights are adjusted in the reconstruction process to prevent noise
amplification. An outline of the procedure is to find in figure[I(b)] Positions are drawn randomly from the
subdomains to select the VPs. In the following, these are advected into the next time step by use of the
velocity and acceleration data. Next, they are added to the existing particle cloud with individual weights
for the updated velocity and zero weight for their initial acceleration. Based on the extended particle cloud
and the weights, FlowFit reconstructs the field under the additional constraints. This way, direct temporal
coupling with almost no further computational cost is achieved.

3.2 Weighting of the Virtual Particles

The advection is typically subject to relatively large errors, so it is worthwhile to deduce equations for their
temporal evolution. Note, that a physically motivated estimate for the acceleration exists in the current
case, so the advection incorporates a higher temporal derivative and is less errorneous than in the case of
known initial velocity alone. However, this acceleration is uncertain (FlowFit error) and undergoes unknown
continuous changes over time owing to the dynamics (dynamic error), which leads to additional errors in
the estimation of the new position and velocity. Consequently, we aim to incorporate both effects into
the equations by consideration of the Lagrangian statistics and the reconstruction errors. In the following,
the deviation of true velocities and the reconstructed velocities (FlowFit velocity error) is denoted as Vv,
which reads V = Ureconstructed — #true OF V = Ureconstructed — Uirue TOT VECtors or a single component, respectively.
Analogously, for the acceleration @ or & is used. Because the reconstructions represent a lowpass-filtered
version of the true field, the assumption of vanishing mean values of the errors v and « is justified.
The Taylor series for a position and velocity component along a trajectory read

12
x(t) = xo+ uot +aos +0,(1) , u(t)=uo+aot+0,(1). (1)
with error terms ©(¢). In fact, the true values for uy and ay are unknown so the estimation becomes
2

x(1) = xo+ (o + V)1 + (ao+oc)%+®x(r) »u(t) = (uo+V) + (a0 + )t +Ou(1) 2)

where the ®’s now contain the errors owing to deviations from the constant acceleration model and errors
due to the reconstruction. The mean square errors (MSEs) of position and velocity become

1
(@%) = Z<a§ + o2+ 2ap0)t* + (ugag +vag + w0+ Vo)t + (—Axag — Axou+ ud 4+ v + 2ugv) e

—2(Axug +Axv)t + (AP, (3)
(0%) = (a2 + o 4+ 2apo) > + 2(vag + Vo — Auay — Auci)t + (Au® —2Auv +V?).  (4)
Herein, the time dependent shifts Ax(¢) = x(z) —xo and Au(r) = u(t) — uy appear. Terms like (Ax(¢)u(0))

or (Ax(t)a(0)) implicitly contain the Lagrangian velocity and acceleration autocovariances and crosscovari-
ances which can be evaluated on the basis of the available particle tracks. In general, the MSEs show quite



complex dependencies but there is less reason to assume that the FlowFit errors are correlated to any of the
other properties so crossterms containing v or o are neglected. This way, equations (3)) and () yield

(©%) = %(aé + 02Vt + (ugag)t® + (ud +v* — Axap)t* — 2(Axug)t + (Ax?) (5)
(©%) = (a? + o®)t* — 2(Auap)t + (Au* +V?), (6)

All of the terms can be evaluated and binned spatially by use of (i) the particle track data and (ii) benchmark-
ing in order to estimate the reconstruction errors. In the testcases the reconstruction error could be accessed
directly. This way, spatial variations of the dynamic time scales and the reconstruction errors are covered.
To apply the results for a weighting of virtual particles, the considerations have to be generalized to three
dimensions. Because FlowFit does not consider a positional error, the MSE in position must be added to the
velocity error by consideration of the estimated velocity gradients, so

(%)22 (@?)
65 = <®5> ~ <®5> +Cgradient (%) : <®$> ’ (7)
@7) &

and analogously for the velocity components v and w. Cgradient 15 @ constant greater than 1, which accounts
for the smoothening of gradients in the reconstruction. With these errors at hand, a weighting function for
the virtual particles can be introduced like

rmse of tracked velocities rmse of tracked velocities Cyeight

rmse of virtual particle velocities n \/ (62 +02+02)/3 ~ Coveight + \/( 2t o2 tol) 3
®)

which takes values smaller 1 to account for the lower reliablity of the virtual particles. Here, another constant
Cyeight Was introduced, because the tracked velocities in the testcases have no quantifiable error.

velocity weight =

4 Results

4.1 Influence of Virtual Particles

In this section, the effect of additional VPs on the reconstruction quality is analysed. One aims to minimize
the error over time and so the total MSEs, i.e. MSEs averaged over the subdomains, serve as comparison
criterion. The temporal evolution of the total MSEs under influence of VPs are presented in figures[3(a)]and
for the FIT und CF testcase, respectively. The graphs show that the velocity MSE decreases rapidly
within the first 10 time steps and the very first step even causes a great drop in the FIT testcase. Thereafter,
the velocity MSE ratio levels at values between 0.9 and 0.7 corresponding to an mean square error reduction
of 10% to 30%. Only velocity data is given at the VP positions, but still the acceleration MSE decreases
and levels accordingly. The gain in acceleration reaches from 0% to 15%. Note, that the graphs display
the temporal evolution of the total MSEs of single realisations in rather small subdomains. Therefore, the
graphs appear rather noisy and show some abrupt changes whenever badly resolved structures leave or enter
the domain. Moreover, the MSE values to which the graphs are normalized differ greatly due to the higher
accuracy in the case of high seeding densities. For this reason, the noisy appearance of the acceleration a,
in the highly seeded channel flow testcase should be interpreted with care.

In summary, simultaneous MSE reductions of up to 30% for velocity and 15% for acceleration were
achieved by the seeding of VPs. Anyhow, the instant MSE drop of 15% to 17% clearly is contradictive
because two timesteps are only seperated by T, /4 and the initial particle cloud is not expected to show high
relative shifts. Thus, two successive timesteps contain basically the same information and there is simply no
physical reason for an instant error drop of this size. This drop could theoretically depend on the transport of
good information into the boundary where the reconstruction is known to yield significantly higher errors.
However, this effect was already accounted for by excluding the boundary from the MSE calculation itself,
so it cannot be the cause of this considerable gain.



Regardless of cause, the effect is present. So one could try to exploit it further and cumulate the effect by
successive forward and backward propagation of VPs between two timesteps. This is rendered reasonable
because the dissipation is practically neglectable on Kolmogorov time scales and the Euler equations are
time reversible. Interestingly, it is not possible to reach a higher gain. Quite the opposite is the case, the
MSEs grow during a backward step and decrease again during a forward step. Several trials yield the very
same qualitative results. This observation enforces that the erroneous boundary is not the cause for the
enhancement. Additionally, one can deduce that at least a part of the effect is not directly physical but rather
a product of the reconstruction process. In order to rule out the mechanisms behind the instant enhancement,
it is necessary to reconsider equation (4)). It is already known, that during the advection process the velocity
MSE changes according to equation (4)). Therein, the shift Au can be approximately expressed by agt. This
yields the neat and compact equation

(@) = (V*) + (0)1* 4+ 2(vau)t. 9)

Therein, all but the last term have positive sign by definition. If the last term is non-vanishing and negative,
the velocity MSE will initially decrease for small positive timesteps until the quadratic term takes over. For
negative time shifts, all terms will be positive and no such effect can occur. Indeed, when the reconstructions

are checked for the a priori neglected term, the average correlation coefficients Cyo, = (Vo) ((v2)(0?))~1/? in
tables 2]and 3are found. They take absolute values between circa 0.07 and 0.45 and grow with the number of
seeded particles. Equation @y]) suggests that the possible gain will depend on the strength of this correlation
and the time shift. The maximum MSE reduction is to find at the minimum of the parabola (9). It occurs at
t* and causes a relative gain of C2, because

P ) @) e
= Cu\ltgy & Ty~ LG € [0,1] (10)

By pure chance, the initially chosen frame spacings in table |1| coincide almost perfectly with the optimal
timesteps ¢* for both testcases. Thus, the effect predicts maximum enhancements between 0.6% and 20%
dependent on the seeding density. Consequently, it explains the instant error reduction in the highly seeded
FIT cases and the error amplification during backwards advection. But the error-correlation model fails to
capture the total gain in the other cases, which suggests that the temporal coupling performs like intended.

A before and after comparison of a flow field is presented in figure |4l The vortical structures remain
mostly unchanged but some are elongated and/or reconnected so they appear less "blobby’. A visualization
of the gain reveals that it partly coincides with the presence of prominent vortical structures in this example
and enforces the hypothesis, that spatial scales - once resolved - persist longer under influence of virtual
tracers.

Table 2: Velocity and acceleration error correlation coefficients for several particle densities in FIT.

#particles Cya
X-component y-component z-component
1600 -0.156 -0.183 -0.135
6500 -0.238 -0.260 -0.218
13000 -0.321 -0.352 -0.308
26000 -0.432 -0.458 -0.419

Table 3: Velocity and acceleration error correlation coefficients for several particle densities in CF.

#particles Cvo,
X-component y-component z-component
2000 -0.233 -0.078 -0.147
8400 -0.335 -0.166 -0.226

16400 -0.37 -0.22 -0.287
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Figure 3: Ratio of the velocity and acceleration MSEs of reconstructions including and not including virtual
particles dependent on time. The black line displays the normalized MSE of the initial reconstruction con-
taining only #P true particles so a value smaller than 1 indicates an enhancement. The procedure resulted in
a considerable decrease of the total MSEs for all seeding densities in both testcases. The relative weight of
the VP velocities in FlowFits costfunction was set to approximately 0.7 by adjusting the parameters Cradient

and Cweight'

(b) Channel flow testcase



velocity gain

Figure 4: Top row: Q-isosurface of the FIT flow field at timestep 34 for reconstructions without VPs, with
VPs and the DNS. #particles = 1600. The vortical structures appear clearly elongated and/or reconnected
after the seeding of virtual particles. Surfaces are color coded by y-coordinate. Bottom row: Isosurfaces of
spatially smoothened velocity and acceleration gain. Surfaces are color coded by y-coordinate. The gain is
found near the prominent vortical structures. Statistics reveal that the mean gain is highest in regions with
high Q-absolute, including both, foci and nodes.
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Figure 5: Regarding the potential gain of anisotropic curvature penalization.

4.2 Anisotropic Curvature Penalization for Vortex Elongation

FlowFit relies on a regularization (curvature penalization) to make the underdetermined inverse problem
uniquely solvable. So the regularization is not physically motivated but a pure necessity. In the previous
section, a flow field that shows unconnected vortex blobs owing to missing particle data in the intermediate
zones was presented. These gaps are reduced partly by use of virtual particles. Basically, it would be
desirable to make the regularization itself favour vortex tubes instead because these are more common
structures: The teardrop shape of the joint PDF of velocity gradient tensor invariants Q and R reveals that
vortical motion is more likely to appear in the form of stable foci together with a stretching motion. Vorticity
itself is accordingly distributed in a prolate fashion owing to the self-stretching term. So, the vortex dynamics
induce local anisotropy such that, e.g., spatial derivatives like the curvature of the velocity fields are smaller
in the direction of vorticity.

To base the idea on solid ground, the Hessian H of the velocity fields in the FIT testcase is evaluated
by use of the provided analysis tools. The curvature of a velocity field along the direction of vorticity
n| = @|®| ' is expressed by ¢, = \nﬁHnH |, which will be called parallel curvature in the following. Anal-

ogously, the orthogonal curvature reads ¢, = |[n]Hn, | with n; -n = 0. Indeed, the mean values of both
curvature absolutes are comparable in the absence of swirling motion, compare figure but their ratio
increases rapidly with vorticity. Consequently, an initial estimate of the vorticity field can be translated into
an advantageous regularization.

Figure @ illustrates the difference of isotropic and anisotropic curvature penalization on a toy model.
If the sinusoidal boundary condition is interpreted as a cut through a vortex profile, one observes that the
profile will be less dampened inside the square domain under anisotropic curvature penalization. A similar
effect can potentially lengthen vortical structures within FlowFits reconstruction process and lessen the gaps
between single vortex blobs - yet it needs to be implemented.




5 Conclusion

The very simple but successful approach of virtual tracers resulted in total mean square velocity error re-
ductions between 10% and 30% in two independent virtual experiments. This was achieved with almost
no further computational cost, although the temporal distance between the reconstructions was set rather
conservative in the present cases. The acceleration behaved accordingly, but the total gain was smaller. In
parts, the velocity enhancement was overshadowed by spurious correlations between velocity and accel-
eration errors which acted advantageously on the total mean square error. The question for the origin of
these correlations remains open, although they can either be caused by the reconstruction process itself or
be a result of the local interpolation schemes in the Johns Hopkins Turbulence Database that do not satisfy
solenoidality. However, the influence of these correlations did not suffice to capture the full size of the error
reductions. This way, the advantageous influence of virtual particles can be traced back to the fulfillment
of the additional temporal coupling. Eventually, the hypothesis that virtual particles can enforce temporal
consistency and conserve the structures beyond Nyquist is confirmed to some extent. Noise amplification
was no problem in the present cases owing to mild densities of virtual tracers and their reduced weighting
inside FlowFits cost function.
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