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Abstract 

This paper introduces the Constrained Cost Minimization (CCM) technique to interpolate 
unstructured sparse particle tracks and get velocity, velocity gradients, material acceleration, and 
hence pressure on Eulerian grids. The technique incorporates known information like the divergence-
free condition of velocity and curl-free condition of material acceleration to improve the reliability of 
reconstruction of the flow, compensating for sparse data. The method is tested for sub-sampled 
simulations of a 2D double-gyre system, artificial tracks from DNS of turbulent channel flow, as well 
as tomographic experiments for a shear layer.  The results show that even with sparse data, lower 
than comparable experimental limits, we achieve interpolation errors of <1%. 

1 Introduction 

Reliable pressure measurements are critical in understanding a variety of flows, for example, 
determining lift and drag forces on bodies, measuring the noise radiated from surfaces or 
understanding cavitation phenomena. Resolving pressure within vortices and pressure-strain 
correlations is significant to turbulence research. Recently introduced methods have been based on 
calculating the pressure from the time-resolved velocity field either by spatially integrating the 
material acceleration or solving the pressure-Poisson Equation (Van Oudheusden 2013). These 
calculations are mostly performed on a regularized grid.  
 
While unstructured trajectories can also yield useful information- finite time Lyapunov exponents to 
get a measure of chaos or to find Lagrangian coherent structures; it is, however, still a challenge to 
get the pressure statistics from the tracks directly. Neeteson et. al 2015 have solved Pressure Poisson 
equations on unstructured grids formed by Delaunay triangulation and Voronoi tessellations but this 
requires dense particle distributions; 𝑁∗ > 1000 where 𝑁∗ is the number of particles in the 
characteristic volume. 
 
There are two approaches for calculating the material acceleration from 3D particle tracks: (i) 
projecting the velocity onto regular grids using e.g. a Singular Value Decomposition (SVD) 
interpolation scheme (Talapatra et al. 2012), and then calculating the acceleration using a pseudo-
Lagrangian (Liu and Katz 2013) or Eulerian approach, (ii) determining the material acceleration first 
and then interpolating it onto a regular grid (Schanz et al. 2016). This can also be implemented using 
the SVD scheme. 
 
In the second order SVD implementation, the contribution of each measurement point in the 
interpolation volume is affected by its 3D location relative to the grid point, as well as the spatial 
gradients and curvature. Thus, the spatial gradients are obtained directly from the interpolation, 
eliminating the need for finite differencing. However, it requires at least 10 measurements within the 
interpolation volume to be feasible and 15-30 particles for high accuracy, restricting the spatial 
resolution in cases with sparse data. 
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There exist varied practical limitations on particle seeding density for Particle Tracking Velocimetry 
(PTV) such as low spatial resolution, 3D reconstruction errors, difficulty matching to nearest 
neighbors. To augment sparse data, Schneiders et al. (2016) introduce an iterative interpolation 
technique based on satisfying the vorticity transport equation. This vortex-in-cell (VIC) method uses 
radial basis functions of prescribed sizes to get the vorticity while ensuring the fitted velocity data 
linearly interpolates to measurements. Gesemann (2015) has proposed the FlowFit technique that 
fits the data using B-splines while penalizing high wave-numbers and the divergence of velocity. The 
resulting function is optimized using conjugate gradients for least squares. 

2 Methods 

We introduce an alternative approach based on Constrained Cost Minimization (CCM) of tapered 
weighted least squares (Wunsch 1996). A cost function 𝐽 is defined as 

                   𝐽 = (𝑦 − 𝑨𝑥𝑖)𝑇𝑾(𝑦 − 𝑨𝑥𝑖) +𝑘(𝑥𝑖 − 𝑥𝑖−1)𝑇𝑺(𝑥𝑖 − 𝑥𝑖−1) +2λ (𝐵𝑇𝑥𝑖)                               (1) 
where 𝑥𝑖  is the velocity or material acceleration vectors and its derivatives on each grid point. It is a 
30×1 vector for second order mapping in 3D. Iteration number is denoted by the subscript 𝑖. 
 
In the first term, 𝑦 is a vector containing all the velocity/acceleration measurements in the 
interpolation volume, 𝑨 the local tensor fit (mapping 𝑥𝑖  into y) based on the Taylor’s series expansion 
identical to SVD, and 𝑾 is a weight tensor, chosen as the inverse of the variance in the measurements.  
𝑾 can also be ascribed weights based on known measurement errors, especially when less than 3 
particles are present in the interpolation volume and therefore variance is not a good choice. Outliers 
can be assigned minimal weights or eliminated. 𝑨 contains the information of the distance of the 
particle from grid point 𝑟, so has O(1), O(𝑟), O(𝑟2) terms so care has to be taken to scale the physical 
dimensions such that 𝑨 is well-conditioned. A scale factor proportional to the condition number of 𝑨 
is used. This is done for all the sparse SVD results presented here as well. 
 
The second term accounts for deviations from prior estimates, starting from the SVD values (𝑥0). 
Here, 𝑺 is a weight tensor defined as the inverse of the variance in 𝑥0 in the interpolation volume. This 
is the taper or regularization that enables us to invert the problem; without which SVD would just 
yield an 𝑥𝑖  with minimized norm. To ensure convergence of iterations, the allowed deviation from 
𝑥𝑖−1 needs to be controlled, which is done by varying the weight scale 𝑘. The scale is found to be such 
that we allow for larger deviation and the importance of the second term is lower than the first term, 
with  𝑘 = 0.1 − 0.01. Only the order of magnitude of the constant is significant, and it is the same for 
a given experiment irrespective of the seeding density or the noise. Figure 1 illustrates how 𝑘 is 
selected for the case of synthetic tracks from DNS of a turbulent channel flow. 
 

The third term introduces a physical constraint, e.g. 𝛻 ∙ 𝑢 = 0  for the velocity or 𝛻 ×
𝐷𝑢

𝐷𝑡
= 0 for the 

acceleration, using a Lagrange multiplier λ. This multiplier is a measure of sensitivity to the 
constraints. 
 
Imposing 𝜕𝐽 𝜕𝑥𝑖⁄  =0 and 𝐵𝑇𝑥𝑖 = 0, one obtains a closed-form solution for 𝑥𝑖  and λ using the singular 
values (Moore-Penrose inverse) of (𝑨𝑇𝑾𝑨 + 𝑘𝑺). The results converge in 2-4 iterations. This analysis 
is performed over a volume set to contain 4-6 particles while the initial SVD volume is set to contain 
12-15 particles. For a grid size of 50×30×20, the procedure takes 20-30s to run using MATLAB on a 
standard PC. It is can be parallelized since each grid point calculation is independent of others. Once 
the material acceleration is interpolated, we spatially integrate using a GPU-based parallel-line, omni-
directional technique (Wang et. al. 2019). 
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 Figure 1: Mean and rms errors in velocity for synthetic boundary layer simulations with 
iterations 𝑖. 

3 Results 

The CCM interpolation method is validated for sparsely seeded simulation of an oscillating double-
gyre system (Shadden et al. 2005) and DNS of turbulent channel flow (Graham et al. 2016). It is also 
applied to tomographic PTV data for a turbulent shear layer in the region most prone to cavitation 
inception.  
 
3.1 Double gyre system 
 
A double gyre system with the stream function defined as: 𝜓 = 𝐴𝑠𝑖𝑛(𝜋𝑦)sin (𝜋(𝑥2𝜖𝑠𝑖𝑛𝜔𝑡 + 𝑥 −
2𝑥𝜖𝑠𝑖𝑛𝜔𝑡). 𝐴 is chosen as 0.1 to make the peak velocity in each direction as 0.1𝜋, the frequency of 
oscillation is set as 1 by choosing 𝜔 = 2𝜋, the amplitude of the oscillation 𝜖 = 0.25.  Figure 2(a) shows 
the original velocity, Figure 2(b) shows the SVD results based on 45 randomly scattered particles 
(𝑁∗ = 22.5), and Figure 2(c) shows the corresponding CCM results. CCM captures the size and 
location of the core of the vortex. Figure 3 shows the errors in acceleration vectors and the curl of 
acceleration for the two methods. The errors in acceleration for CCM is diminished while the curl 
disappears. Table 1 lists the errors in velocity, vorticity and material acceleration scaled by the peak 
values in the prescribed field for both the SVD and CCM techniques at different seeding densities. 
Consistently CCM reduces errors compared to the SVD method.  

  

 
Figure 2: Velocity vectors and vorticity contours of the 2D gyre: (a) original field, (b) results 

of SVD interpolation based on a total of 45 synthetic particle traces, and (c) results of CCM 

analysis initiated using the SVD data.  
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Figure 3: Acceleration error vectors and vorticity contours of the 2D gyre: (a) results of SVD 

interpolation based on a total of 45 synthetic particle traces, and (b) results of CCM analysis 

initiated using the SVD data. Reference vector of length 0.3 is shown. 

 

Table 1. Scaled errors (mean±rms) for the two interpolation methods for various seeding 

densities 

Particle 
seeding  

Error in velocity Error in vorticity 
 

Error in acceleration 
 

𝑁∗ SVD CCM SVD CCM SVD CCM 

10 0.07±0.32 0.06±0.23 0.014±0.25 0.015±0.22 0.051±0.33 0.047±0.29 

22.5 0.015±0.092 0.014±0.068 0.02±0.13 0.006±0.11 0.032±0.17 0.025±0.15 

50 0.005±0.036 0.002±0.031 0.003±0.081 0.002±0.077 0.009±0.075 0.004±0.046 

100 0.003±0.026 0.002±0.018 0.005±0.051 0.005±0.048 0.001±0.04 0.001±0.05 

500 0.00±0.002 0.00±0.0014 0.00±0.009 0.00±0.008 0±0.0034 0.00±0.0023 

 

3.2 Turbulent boundary layer  

 

For the turbulent boundary layer, synthetic tracks are obtained using DNS data for channel flow with 
𝑅𝑒𝜏 = 1000. The volume, 125×75×47.5 in wall units, contains 2500 randomly distributed particles. 
The grid size is 2.5 wall units and based on DNS grid size 𝑁∗= 0.004. The rms of errors in velocity are 
plotted in Figure 4 and material acceleration in Figure 5. Results before and after adding 1% and 5% 
noise are shown. While the added noise increases the error, CCM systematically reduces these errors. 
The errors are comparable to dense data interpolation presented in Wang et. al. 2018. 

 
Figure 4: Comparison of errors in velocity interpolation from 2500 particles in a turbulent 

channel flow. All the SVD results are in red and CCM results in blue. 
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Figure 5: Comparison of errors in material acceleration interpolation from 2500 particles in 

a turbulent channel flow. All the SVD results are in red and CCM results in blue. 

 

3.2 Turbulent shear layer 

 

For a shear layer, cavitation incepts in secondary vortices. Experiments using backward facing step 

was performed to study this phenomenon. More details of the setup can be found in Agarwal et. al. 

2018. To relate the pressure field to the behavior of the cavities, time-resolved volumetric PTV is 

performed. The “Shake-the-Box” method is used for processing Tomographic PIV data to get the 

unstructured velocity and material acceleration in the 12.5×7.5×4 mm volume. The vector spacing 

needed to well-resolve the secondary vortices which are 1-2 mm in diameter and 5-7 mm in length 

is 250 µm, corresponding to 12-18 voxels. A total of 3000-4000 tracks are resolved, giving us 𝑁∗ =

150 − 200. 

 

 

Figure 6: Samples of instantaneous: (a) image showing cavitation in a quasi-streamwise vortex; (b) 
iso-surfaces of 2 obtained using tomographic PIV (STB), and interpolated using CCM.  
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Figure 7. Instantaneous coefficients of pressure along with the velocity vectors in the central 
(a) yz plane and (b) xy plane.  

A sample visualization of the cavitation in streamwise vortices and an instance of dominant 

coherent structures (λ2 = -350000 1/s2) showing quasi-streamwise vortices is presented in Figure 6. 

These structures appear intermittently, and persist for periods of 2-5 ms, consistent with the 

observed duration of cavitation events. Figure 7 shows 𝐶𝑝 = (𝑃 − 𝑃𝑟𝑒𝑓) 0.5𝜌𝑈2⁄  where 𝑃 is the 

pressure obtained by integration of the interpolated material acceleration, 𝑃𝑟𝑒𝑓  is the reference 

pressure, 𝜌 the density of water and 𝑈 is the freestream velocity of 1.45 m/s. High pressure regions 

are associated with saddle-points of the velocity distribution and low-pressure associated with the 

vorticity.  

4    Conclusions 

The CCM technique for interpolation of velocity and material acceleration from sparse particle 

tracks is introduced. It is a tapered weighted least squares formulation constrained using Lagrange 

multipliers that leverages the mass and momentum conservation laws to reduce the interpolation 

errors. We tested for synthetic data for an oscillating gyre system as well as DNS of channel flow. 

The errors diminish with particle density and lesser experimental noise but CCM is able to more 

effectively suppress noise. This technique is now being implemented to understand the scaling of 

pressure in the secondary vortices where cavitation incepts in a shear layer.  
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