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Abstract 

Deep convolutional matching is a new type of optical flow algorithm adopting the concept of pattern 
recognition of the deep learning based artificial intelligence. This matching approach enables dense 
correspondences between the reference and target images even in the presence of non-rigid 
deformations and/or repetitive textures. All these strengths of the algorithm seem to match the 
demands required by a higher order PIV image analysis and probably allow to get rid of the 
expensive calculation of deformation compensation additionally introduced in the standard cross 
correlation PIV. In such a perspective, the present study aims to implement this new matching 
algorithm in the displacement analysis of the 2D PIV and test the performance of the new algorithm 
by using synthetic as well as experimental particle images. 
 

1 Introduction 

In the PIV image analysis, the cross correlation method (Willert et al., 1991) is an unquestionably 
standard approach for calculating the frame to frame particle displacement. As is well known, this 
method samples a small interrogation window from the reference as well as from the target particle 
images at same positions and calculates the cross correlation spectra between the two interrogation 
windows according to the classical signal processing theory. The average displacement of particles 
between the two windows is obtained from the position at which the cross correlation spectrum is 
maximized but this averaging process inevitably leads to a certain loss of the local resolution in the 
measured particle displacement or the measured velocity. Another issue of the standard cross-
correlation approach is the conceptual assumption that the particles in the interrogation window 
travel in parallel motion and their distribution pattern is not subject to any kind of rotation or de-
formation. As a matter of fact, this assumption does not hold in the case of highly turbulent flows. In 
order to resolve all these issued in the span of the cross correlation PIV, a more advanced image 
processing scheme based on a multi-pass multi-grid recursive algorithm with image deformation 
compensation strategy has to be introduced, which is computationally very expensive. 

In the present study, a newly developed optical flow algorithm with the name of Deep Flow by 
Weinzaepfel et al. (2013) is introduced to cope with the local resolution and image deformation 
issues. The name of Deep Flow comes from the adoption of a deep learning process in the modern 
artificial intelligence system and mainly refers to the use of the convolutional neural network (CNN) 
and some other relating mathematical operations. This Deep Flow algorithm is implemented in the 
displacement analysis of the classical 2D PIV procedures and the performance is tested by using 
typical synthetic as well as experimental particle images in comparison with the standard cross-
correlation PIV. One more additional objective of the study is the assessment of the HSV chro-
maticity presentation of PIV velocity maps in contrast with the more straightforward and commonly 
used vector plot presentation. As a matter of fact, the former type of velocity map presentation is 
only possible when the PIV algorithm is able to calculate a very dense distribution of velocity. 
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2  Deep Flow algorithm 

The Deep Flow calculates optical flows in time sequence images by using a newly devised matching 

algorithm called Deep Matching. Through this matching algorithm, a dense pixel unit distribution of 

displacement (or velocity) can be obtained thanks to the recursive multi-resolution response maps 

calculated by a SIFT operator displace analysis combined with the dynamic programming strategy, 

followed by a series of deep learning algorithms including convolutional neural network filtering, 

maximum pooling, subsampling, and power-law conversion. The outline of the Deep Flow dis-

placement analysis is provided in Figure 1.  

 

 

 
 

Fig. 1   Flow chart of Deep Flow algorithm (cited from Weinzaepfel et al., 2013) 

 

Deep Flow algorithm is now available online as one of the Contrib extension modules ap-

plicable to the OpenCV image processing library (see the first item in the References). OpenCV itself 

is a widely known open source library suitable for computer vision problems, which includes a wide 

variety of useful image processing codes such as effect filters, mathematical transforms, matrix 

operations, object tracking, etc… The library can be performed on various operating systems with 

multilingual platforms and, in the present study, the Microsoft Visual C++ version on the Windows 

operating system is used for implementing the Deep Flow module. In order to facilitate all the 

compile and build processes of the Deep Flow module in the OpenCV environment, a freeware 

application CMake is employed for the convenience of automatic procedures. 

Since the default outputs of the Deep Flow analysis results are presented by HSV chromaticity 

velocity maps (in which the velocity orientation is indicated by color hue and the magnitude by 

chroma), the PIV results of the present study are firstly presented by this type of velocity maps. For 

the sake of comparison, some of the PIV results are also presented in a more conventional vector 

plot form. The HSV chromaticity maps are resolved up to a single pixel resolution, while the vector 

plot maps are at best up to a several pixel resolution because of the physical dimension of vector 

lines or arrows. 

 

3  Experimental results 

3-1 Deep Flow PIV results of the PIV standard images 
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In the first place, the Deep Flow algorithm is applied to a classical set of synthetic particle images, 

namely the PIV standard image (Okamoto et al., 2000). From a number of image sets of this 

synthetic particle image library, two sets #01 and #301 are selected for this first test of the novel 

PIV method. The results of the Deep Flow PIV are respectively shown in Figures 2 and 3. Note that 

Figure 2 (b) and Figure 3(b) are both a chromaticity diagram showing the velocity magnitude and 

direction, which should be referred to as a legend for the analyzed velocity distributions. The first 

set of PIV results in Figure 2 depicts nicely the globally horizontal but locally wavy jet flow with a 

strong velocity gradient in the upper middle of the captured images. Likewise, the second PIV 

results set in Figure 3 represents the globally vertical but locally wavy jet flow with a rather reduced 

velocity gradient in the curved vertical direction. 

 

 

       

   (a) Frame 1     (b) HSV chromaticity legend      (a) Frame 1     (b) HSV chromaticity legend 

       

(c) Frame 2 (d) PIV between 1 and 2            (c) Frame 2        (d) PIV between 1 and 2 

       

(e) Frame 3 (f) PIV between 2 and 3            (e) Frame 3        (f) PIV between 2 and 3 

Fig. 2  PIV results of PIV Standard Image #01   Fig. 3  PIV results of PIV Standard Image #301 

 

 

3-2  Deep Flow PIV results of experimental vortex flow in a circular cylinder wake 

 

Figure 4 shows the time-series Deep Flow PIV results of a von Karman vortex wake of two tandem 

circular cylinders. Two cylinders are indicated by blue circles and the flow goes from left to right. As 
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regards the velocity magnitude and direction, the same chromaticity diagram in Figures 2 and 3 can 

be applied to this set of PIV results. It is interesting to note that the concentric wave front shed from 

the downstream cylinder in response to the oncoming periodic vortex flow from the upstream 

cylinder are clearly observed in this type of velocity map presentation. 

  

   

Fig. 4  Time series PIV results showing the wake of two tandem circular cylinders 

 

 

3-3  Deep Flow PIV results of an experimental stirring flow in a rectangular water tank 

 

Figure 5 shows the time-series Deep Flow PIV results of a stirring flow in a rectangular water tank 

with 170×100×190 mm3 capacity. The inclusion of a chromaticity diagram is omitted again because 

it is the same as in Figures 2 and 3. It is recognized from this set of PIV results that the stirring flow 

in this experiment forms globally an anti-clockwise swirling flow centered around the quasi-whitely 

mapped area in the center with a certain degree of turbulence in the peripheral part. 

 

   

Fig. 5  Time series PIV results showing a stirring flow in a rectangular water tank 

 

 

3-4  Deep Flow PIV versus standard cross correlation PIV 

 

Figure 6 shows two sets of comparative results between the standard cross correlation PIV and the 

Deep Flow PIV, using the two synthetic image sets in Figures 2 and 3, namely the PIV standard 

images #01 and #301 respectively. The cross correlation PIV uses a basic single pass interrogation 

scheme with 32x32 pixel window size and 50% overlapping, while the Deep Flow PIV is a rather 

parameter free process if the maximum particle displacement does not exceed a certain limit. In 

these PIV results, the velocity maps are presented in the conventional vector plot form because if 

express by this type of velocity maps, the local velocity magnitude can be more precisely estimated 

for human eyes.  Comparing the cross correlation PIV and the Deep Flow PIV results, both velocity 
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maps are free of spurious vectors and qualitatively similar in terms of velocity magnitude especially, 

though the former results look a bit excessively local mean filtered in terms of velocity direction in 

some of the low speed regions. This effect is probably due to a larger set value of windows size (for 

suppressing spurious vectors) and will be improved by using a multi-pass multi-grid scheme.   

       By contrast, Figure 7 shows another set of comparative results between the two PIV approaches, 

using the experimental PIV image set in Figure 5, namely the stirring flow in a rectangular water 

tank. Here, the cross correlation PIV uses a basic single pass interrogation scheme with 32x32 pixel 

window size without overlapping. Comparing the two types of PIV results, the cross correlation PIV 

is clearly prone to spurious vectors in strong shear flow regions, while the Deep Flow PIV is dis-

cernibly more robust against such a strong shear flow. In the cross correlation PIV, even if the 

presence of spurious vectors is not visibly clear as in the vertically spread large velocity gradient 

region in the left bottom part of the velocity map, the description of velocity variation in x direction 

in this region is much less detailed and refined if compared to the Deep Flow PIV. The spurious 

vectors in the cross correlation PIV result will be reduced by employing a larger windows size but 

with a cost of further local-mean filtering effect.  

 

           
(a) Cross correlation PIV   (b) Deep Flow PIV 

      
(c) Cross correlation PIV   (d) Deep Flow PIV 

Fig. 6  Comparison of cross correlation and Deep Flow PIV results with the PIV standard images 

 

#01 

#301 
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(a) Cross correlation PIV     (b) Deep Flow PIV 

Fig. 7  Comparison of cross correlation and Deep Flow PIV results with the stirring flow in a 

rectangular water tank 

 

 

3 5  Comparison of PIV results between the vector plot and HSV chromaticity presentations 

 

Finally, Figure 8 shows a comparison of the PIV velocity map results between the vector plot and the 

HSV chromaticity presentations. The source velocity data are derived from the stirring water flow 

experiment in Figure 5 with the Deep Flow PIV algorithm. It is recognized in general that the vector 

plot presentation is more advantageous for the recognition of vortex flows as well as for the 

understanding of distribution of velocity magnitude, whereas the HSV chromaticity presentation is 

favorable for grasping the distribution of velocity direction and for detecting the periodic flow 

phenomena. One more advantage of the HSV chromaticity presentation is the enhanced resolution 

of local velocity up to a pixel scale of the recorded images. 

 

        
(a) Vector map presentation   (b) HSV chromaticity presentation 

Fig. 8  Comparison of PIV velocity map results between the vector plot and the HSV chromaticity 

presentations 
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4  Conclusion 

Deep Flow algorithm was successfully implemented in the optical flow analysis process of the 

classical 2D PIV. The preliminary test results using some typical synthetic and experimental particle 

images showed that the Deep Flow PIV algorithm was able to perform dense correspondences of the 

sub-image patches between 2 time-sequential recorded images even in the presence of rotation 

and/or shear deformations. Nevertheless, the computation time of the Deep Flow PIV was more or 

less comparable with the standard cross correlation PIV without recursive multi-pass multi-grid 

interrogation or deformation compensation strategy. The quality of recovered velocity distribution 

was also highly estimated and no visible deterioration of sensitivity in spatial velocity variation was 

observed even in strongly shear flow regions. As regards the visual presentation of PIV velocity 

maps, the new concept HSV chromaticity presentation of velocity presentation revealed some 

important advantages for the understanding of flow behaviors, in particular in the sensing of local 

flow directions and in the detection of periodic flow phenomena. 

 

Acknowledgments 

The present author is grateful to an undergraduate student, Yuya Kodai, of Osaka Sangyo University 

for his technical support in the implementation of the Deep Flow module in the current PIV analysis 

system. 

 

References 

DeepFlow : https://thoth.inrialpes.fr/src/deepflow/ 

Okamoto K. Nishio S. Kobayashi T. Saga T. Takehara K. (2000) Evaluation of the 3D-PIV standard 

images (PIV-STD project). Journal of Visualization, Vol.3, No.2, 115–123,  

Weinzaepfel, P, Revaud, J, Harchaoui, Z, Schmid, C (2013) DeepFlow: Large displacement optical 

flow with deep matching. ICCV - IEEE International Conference on Computer Vision, 1385-1392. 

Willert, CE, Gharib, M (1991) Digital particle image velocimetry. Experiments in Fluids, Vol 10, No.4, 

181-193. 

https://thoth.inrialpes.fr/src/deepflow/

