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Abstract 
We introduce the first comprehensive approach to determine the uncertainty in a volumetric 
Particle Tracking Velocimetry (PTV) measurement. Volumetric PTV is a state-of-the-art non-
invasive flow measurement technique, which measures the velocity field by recording successive 
snapshots of the tracer particle motion using a multi-camera set-up. The measurement chain 
involves reconstructing the three-dimensional particle positions by triangulation process using the 
calibrated camera mapping functions. The non-linear combination of the elemental error sources 
during the different steps of the process further enhances the complexity of the task. Here, we first 
estimate the uncertainty in the particle image location, which we model as a combination of the 
particle position estimation uncertainty and the reprojection error uncertainty. The latter is 
obtained by a gaussian fit to the histogram of disparity estimates within a sub-volume. Next, we 
determine the uncertainty in the camera calibration coefficients. As a final step the previous two 
uncertainties are combined using an uncertainty propagation through the volumetric 
reconstruction process. The uncertainty in the velocity vector is directly obtained as a function of 
the reconstructed particle position uncertainty. The framework is tested with synthetic vortex ring 
images. The results show good agreement between the predicted and the expected RMS uncertainty 
values. The prediction is consistent for seeding densities tested in the range of 0.01 to 0.1 particles 
per pixel. Finally, the methodology is also successfully validated for an experimental test case with 
laminar pipe flow velocity profile measurement.  
 

Nomenclature 
𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤: World coordinates or physical coordinates 

𝑋𝑐 , 𝑌𝑐: Camera image coordinates for camera c 

𝐹𝑋𝑐 , 𝐹𝑌𝑐: 𝑋 and 𝑌 calibration mapping function for camera c 

𝑎𝑖: camera mapping function coefficients 

𝑒: Error in any variable 

𝜎: Standard uncertainty in any variable 

Σ: Full covariance matrix for any variable 

𝑑: Disparity vector estimated from ensemble of reprojection error. 

𝑢, 𝑣, 𝑤: Velocity components in 𝑥, 𝑦, 𝑧 directions respectively. 
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1 Introduction 
Volumetric PTV (Baek & Lee 1996; Maas et al. 1993; Ohmi & Li 2000; Pereira et al. 2006) is a fluid 
velocity measurement technique which resolves the three-dimensional (3D) flow structures by 
tracking the motion of tracer particles introduced in the flow. The tracer particle motion is recorded 
with multiple cameras to obtain projected particle images. Each camera is also linked to the physical 
space using a calibration mapping function(Soloff et al. 1997). The particle images are then mapped 
back to the physical space using a triangulation process(Maas et al. 1993; Wieneke 2008). Finally, a 
three-dimensional (3D) tracking of the reconstructed particles estimates the Lagrangian trajectories 
of the particles and subsequently resolves the volumetric velocity field.  PTV easily lends itself to 
calculation of particle acceleration from the tracked trajectories. Also, unlike Tomographic Particle 
Image Velocimetry (Tomo-PIV)(Elsinga et al. 2006), which involves spatial averaging over the 
interrogation window, 3D PTV has higher spatial resolution as it yields a vector for every tracked 
particle position. However, there is a tradeoff in terms of the number of particles as for higher 
seeding density the error in reconstruction as well as particle pairing increases. Hence, the simple 
triangulation based 3D PTV method introduced in 1993 (Maas et al. 1993) had limited applications 
compared to Tomo-PIV for highly seeded flows. Improvements in terms of particle 
identification(Cardwell et al. 2011) and tracking algorithms(Cowen et al. 1997; Fuchs et al. 2016, 
2017; Lei et al. 2012; Riethmuller 2001; Takehara et al. 2000) have been proposed to minimize the 
error in the measurement.  
 
Recent advancements terms of reconstruction algorithms, such as Iterative Particle 
Reconstruction(IPR) (Wieneke 2013) and Shake-the-box(STB) (Schanz et al. 2016) have 
significantly improved the accuracy of 3D PTV. IPR uses an initial triangulation based reconstructed 
field to construct a projected image and then minimizes the intensity residuals in the image plane by 
shaking the particles world coordinate location. This process achieves a better positional accuracy, 
reduced fraction of ghost particles and the accuracy is comparable to MART (Multiplicative 
Algebraic Reconstruction Technique)(Elsinga et al. 2006) up to a seeding density of 0.05 particles 
per pixels (ppp). This concept has been further advanced in STB, which uses the temporal 
information, for a time-resolved measurement, to predict the particle location in the future frames 
and corrects the predicted position iteratively using IPR. Such measurements have successfully 
resolved flow structures for experiments with high particle concentrations (up to 0.125 ppp). With 
such capabilities, 3D PTV measurements have gained renewed attention and applicability in various 
experiments.  
 
To analyze any experimental results with statistical significance, uncertainty quantification (UQ) is 
crucial, especially, where the measured data are used in a design process or to validate 
computational models. Given the increasing applicability and relevance of PTV/IPR/STB volumetric 
measurements, providing uncertainty estimation for an individual 3D PTV measurement is now 
critical. 
 
Uncertainty estimation in non-invasive PIV measurements has received interest only recently and 
several methods have been proposed for planar PIV uncertainty quantification. Broadly such 
methods can be categorized into direct and indirect methods. Indirect methods rely on a calibration 
function, which maps an estimated measurement metric (e.g. correlation plane signal to noise ratio 
metrics(Charonko & Vlachos 2013; Xue et al. 2014, 2015) or estimates of the fundamental sources 
of error(Timmins et al. 2012)) to the desired uncertainty values. Such a calibration is developed 
from a simulated image database and may not be sensitive to a specific error source for a given 
experiment. Direct methods, on the other hand, rely directly on the measured displacements and 
use the image plane “disparity”(Sciacchitano et al. 2013; Wieneke 2015) information or correlation-
plane PDF (probability density function) of displacement  information (Bhattacharya et al. 2018) to 
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estimate the a-posterior uncertainty values. Comparative assessments(Boomsma et al. 2016; 
Sciacchitano et al. 2015) have shown that the direct methods are more sensitive to the random 
error sources. However, indirect methods can be potentially used to predict any bias uncertainty. An 
uncertainty estimation for stereo-PIV measurement(Bhattacharya et al. 2017) has also been 
proposed recently. A detailed review of such methods can be found in (Sciacchitano 2019). Thus, 
although the foundations have been laid for planar and stereo-PIV uncertainty quantification, 
applicability of such methods to 3D measurements remains untested and these methods train 
strictly to cross-correlation based measurements. As a result, 3D reconstruction and tracking 
process for 3D PTV measurements is not covered under these methods and currently a-posterior 
uncertainty quantification methods for volumetric measurements (PTV/PIV) does not exist and new 
uncertainty model development is needed.  
 
A schematic for the different steps in a 3D PTV measurement chain is shown in Figure 1. The first 

step establishes a mapping function between the camera image coordinates(𝑋, 𝑌) and the world 

coordinates(𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) in the physical space using a multi-camera calibration process. The 

calibration coefficients are then iteratively corrected using the mapping function and the recorded 

particle images to eliminate any misalignment between the assumed world coordinate system 

origin of the calibration plane and the actual origin location for the measurement volume. This 

process is called volumetric self-calibration(Wieneke 2008) and is  essential in minimizing the 

reconstruction error (due to existing offset or disparity between cameras) and improving the 

calibration accuracy. Using the modified calibration, for each particle in a given camera, the 

corresponding match in the second camera is searched along the epipolar line and the particle 

matches in all cameras are triangulated(Maas et al. 1993; Wieneke 2008) to a world position. This 

can be done in an iterative sense for an IPR type algorithm. The reconstruction process solves the 

inverse problem using an underdetermined system of equations and is one of the main sources of 

error in the process. Finally, the reconstructed 3D particle positions are tracked to find the velocity 

vectors using “nearest neighbor” or other advanced algorithms(Fuchs et al. 2017). The tracking and 

reconstruction can be done in conjunction for STB type evaluations. From calibration fitting error, 

particle position estimation error, the disparity vector estimation error to the error in finding the 

3D positions and its pairing, the errors in each step of the process are inter-linked in a complex non-

linear way and affect the overall error propagation. The iterative corrections and the governing non-

linear functions lead to several interdependent error sources making the definition of a data 

reduction equation intractable and the development of an uncertainty quantification model non-

trivial.  

 

Figure 1: A volumetric PTV measurement chain showing the main steps in the process. 
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In the current framework, a model is developed to quantify the uncertainty in particle image 

position and the mapping function coefficient. These uncertainties are in turn combined with the 

uncertainty propagation through the reconstruction process. Finally, the uncertainty in the velocity 

vector is expressed directly as a combination of the position uncertainty in the matching pair of 

particles. The methodology is described in detail in the next section. 

2  Methodology 
The primary relation between the observed image coordinate(𝑋, 𝑌) and the expected particle world 

coordinate(𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) in physical space is given by the individual camera mapping function 𝐹𝑋𝑐  for 

each camera 𝑐, as given in equation (1).   

 

 𝑋𝑐 = 𝐹𝑋𝑐(𝑥𝑤 ,  𝑦𝑤 ,  𝑧𝑤 ,  𝑎𝑖) = 𝑎1 + 𝑎2𝑥𝑤 + 𝑎3𝑦 + 𝑎4𝑧 + 𝑎5𝑥𝑤
2 + 𝑎6𝑥𝑤𝑦𝑤  + 𝑎7𝑦𝑤

2   
+𝑎8𝑥𝑤𝑧𝑤 + 𝑎9𝑦𝑤𝑧𝑤 + 𝑎10𝑧𝑤

2 + 𝑎11𝑥𝑤
3 + 𝑎12𝑥𝑤

2 𝑦𝑤 + 𝑎13𝑥𝑤𝑦𝑤
2  

+𝑎14𝑦𝑤
3 + 𝑎15𝑥𝑤

2 𝑧𝑤 + 𝑎16𝑥𝑤𝑦𝑤𝑧𝑤 + 𝑎17𝑦𝑤
2 𝑧𝑤 + 𝑎18𝑥𝑤𝑧𝑤

2 + 𝑎19𝑦𝑤𝑧𝑤
2  

 
(1) 

 

Typically, a polynomial mapping function is used following Soloff et al. (Soloff et al. 1997) to have 

higher accuracies in the presence of optical distortion effects. Once a mapping function is 

established and iteratively corrected using self-calibration process, the reconstruction process 

involves finding an inverse of the mapping function for the matching particle image coordinates in 

different projections. Hence an error propagation through the mapping function is the starting point 

of the uncertainty quantification and is described in the next subsection. 

 

Error propagation through the mapping function 
An error propagation for equation (1) can be written as follows: 

 

 
𝑒𝑋𝑐 =

𝜕𝐹𝑋𝑐

𝜕𝑥𝑤
𝑒𝑥𝑤

+
𝜕𝐹𝑋𝑐

𝜕𝑦𝑤
𝑒𝑦𝑤

+
𝜕𝐹𝑋𝑐

𝜕𝑧𝑤
𝑒𝑧𝑤

+
𝜕𝐹𝑋𝑐

𝜕𝑎𝑖
𝑒𝑎𝑖

 

 

(2) 
 

Equation (2) is obtained as a Taylor series expansion of equation (1), neglecting the higher order 

terms.  Thus, the error in image coordinate 𝜖𝑋𝑐  can be related to the error in world coordinate 

positions 𝑒𝑥𝑤
, 𝑒𝑦𝑤

, 𝑒𝑧𝑤
 and the error in calibration function coefficients 𝑒𝑎𝑖

 through the mapping 

function gradients (
𝜕𝐹𝑋𝑐

𝜕𝑥𝑤
,

𝜕𝐹𝑋𝑐

𝜕𝑦𝑤
,

𝜕𝐹𝑋𝑐

𝜕𝑧𝑤
,

𝜕𝐹𝑋𝑐

𝜕𝑎𝑖
 ). A similar propagation equation can be written for the 

error in 𝑌 (𝑒𝑌𝑐) image coordinate for each camera mapping function. It is important to note that the 

quantities of interest are 𝑒𝑥𝑤
, 𝑒𝑦𝑤

, 𝑒𝑧𝑤
 as we seek to estimate the unknown variance in the 

reconstructed world coordinate positions. Rearranging the unknown terms in the left-hand side and 

multiplying each side by its transpose yields the variance propagation equation as follows: 

 

 
(

𝜕𝐹𝑋𝑐

𝜕𝑥𝑤
𝑒𝑥𝑤

+
𝜕𝐹𝑋𝑐

𝜕𝑦𝑤
𝑒𝑦𝑤

+
𝜕𝐹𝑋𝑐

𝜕𝑧𝑤
𝑒𝑧𝑤

) (
𝜕𝐹𝑋𝑐

𝜕𝑥𝑤
𝑒𝑥𝑤

+
𝜕𝐹𝑋𝑐

𝜕𝑦𝑤
𝑒𝑦𝑤

+
𝜕𝐹𝑋𝑐

𝜕𝑧𝑤
𝑒𝑧𝑤

)

𝑇

= (𝑒𝑋𝑐 −
𝜕𝐹𝑋𝑐

𝜕𝑎𝑖
𝜖𝑎𝑖

) (𝑒𝑋𝑐 −
𝜕𝐹𝑋𝑐

𝜕𝑎𝑖
𝑒𝑎𝑖

)

𝑇

 

 

 
(3) 
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Assuming that 𝑒𝑋𝑐  and 𝑒𝑎𝑖
 are independent, a more simplified version of equation (3) can be written 

as shown in equation (4). 

 𝐶𝑥𝑤
𝛴𝑥⃗𝑤

𝐶𝑥⃗𝑤

𝑇 = 𝛴𝑋⃗⃗ + 𝐶𝑎⃗⃗𝛴𝑎⃗⃗𝐶𝑎⃗⃗
𝑇 

 

(4) 

Here, 𝐶𝑥𝑤
 represents the coefficient matrix containing mapping function gradients with respect to 

𝑥𝑤⃗⃗⃗⃗⃗⃗ = {𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤} and 𝐶𝑎⃗⃗ represents the mapping function gradients with respect to the coefficients 

𝑎𝑖 . This equation can be written as a stack of 8 rows of equations corresponding to 𝑋 and 𝑌 mapping 

functions for each of, for example a four-camera set-up. In this case 𝛴𝑋⃗⃗ would represent a diagonal 

matrix with the diagonal entries containing the uncertainty in particle image position estimation for 

each projection. Equation (4) contains the unknown covariance matrix in world coordinates(𝛴𝑥𝑤
) as 

a function of 𝛴𝑋⃗⃗ and 𝛴𝑎⃗⃗. The following sections focus on estimating the 𝛴𝑋⃗⃗ and 𝛴𝑎⃗⃗ terms.  

The overview of the uncertainty estimation and propagation process is depicted in Figure 2. 

Estimating uncertainty in particle image location 
For a-posteriori uncertainty quantification, we start from a reconstructed 3D particle positions 

obtained either from a triangulation or IPR reconstruction method. For a given 3D particle position, 

 

Figure 2: A schematic showing different steps for estimating elemental uncertainties in particle 

image location 𝑋 and calibration coefficients 𝑎𝑖  and its propagation to the uncertainty in the 

world coordinate 𝑥𝑤. 
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we want to find the corresponding projected particle image locations and its uncertainty for each 

camera. As shown in Figure 2, the projected particle positions are compared with the recorded 

image to find the error in particle image location. This can be expressed as a sum of the estimated 

projection error (𝑋⃗𝑝𝑟𝑜𝑗 − 𝑋⃗𝑒𝑠𝑡) and the 2D particle fit position estimation error (𝑋⃗𝑒𝑠𝑡 − 𝑋⃗𝑡𝑟𝑢𝑒), as 

shown in equation (5). 

 

 𝑒𝑋⃗⃗ = 𝑋⃗𝑝𝑟𝑜𝑗 − 𝑋⃗𝑡𝑟𝑢𝑒 = 𝑋⃗𝑝𝑟𝑜𝑗 − 𝑋⃗𝑒𝑠𝑡 + 𝑋⃗𝑒𝑠𝑡 − 𝑋⃗𝑡𝑟𝑢𝑒 (5) 

 

Thus, the variance in particle image location, 𝛴𝑋⃗⃗, becomes a sum of the variance in the estimated 

projection error, denoted by  𝛴𝑑⃗, and variance of the error in particle image position estimation. 

 𝛴𝑋⃗⃗ = 𝑒𝑋⃗⃗𝑒
𝑋⃗⃗
𝑇 = 𝛴𝑑⃗ + 𝛴𝑋⃗⃗𝑒𝑠𝑡

 

 

(6) 

In order to estimate 𝛴𝑑⃗ the reconstruction domain is divided into subvolumes and the estimated 

projection error for a group of particles belonging to the same subvolume are stacked up into a 

histogram (this relates to the concept of disparity(𝑑) defined by Wieneke (Wieneke 2008)). The 

subvolume size can be varied or particles from other frames can be included to have a larger 

statistical sample. Such a histogram of disparity(𝑑) estimates is shown in Figure 2, where a mean 

disparity is shown along with a circle denoting the variance in the estimated projection error 𝛴𝑑⃗ . 

For a perfectly converged self-calibration, the mean disparity should be zero. A gaussian fit is 

applied on this histogram and the estimated width is used to estimate the variance of the disparity 

distribution. In this framework, this estimated variance is modeled as the desired 𝛴𝑑⃗ of equation (6). 

For the particles belonging to the same subvolume, the same value of 𝛴𝑑⃗ is used. 

 

 𝛴𝑋⃗⃗𝑒𝑠𝑡
= (𝐽𝑇𝐽)−1𝜎𝑟𝑒𝑠

2 𝐼 (7) 

 

Each particle image within ±0.5 pixels of the projected 3D particle location is fitted with a Gaussian 

shape and thus the uncertainty in the fitted position parameter for the least square fit process is 

considered as 𝛴𝑋⃗⃗𝑒𝑠𝑡
. Equation (7) denotes an expression for the position estimation variance which 

is shown to be a function of the variance in the fit residual error (𝜎𝑟𝑒𝑠
2 ) and the Jacobian(𝐽) of the 

residual at the solution point (I denotes an identity matrix). Hence, once 𝛴𝑑⃗ and 𝛴𝑋⃗⃗𝑒𝑠𝑡
are estimated 

the 𝛴𝑋⃗⃗ is known. 

Estimating the uncertainty in mapping function coefficients 
As seen from the flowchart in Figure 2, once the variance in particle image position(𝛴𝑋⃗⃗) is estimated 

through the progression of steps shown on the right side, the next workflow is focused on 

estimating the variance in the calibration coefficients (𝛴𝑎⃗⃗). This process can be performed in 

conjunction with the volumetric self-calibration process. If we consider the world coordinate 

positions (𝑥𝑐𝑎𝑙 , 𝑦𝑐𝑎𝑙 , 𝑧𝑐𝑎𝑙) where the disparity vectors are evaluated, then those grid points being 

specific locations in space, will have no uncertainty in their location. However, the presence of 

disparity between estimated and projected points leads to a shift in the projected  grid points 
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(𝑋𝑐𝑎𝑙 , 𝑌𝑐𝑎𝑙) in the image domain, this correction leads to a new set of coefficients(𝑎𝑖) in the self-

calibration process. Hence, the uncertainty in 𝑋𝑐𝑎𝑙 , 𝑌𝑐𝑎𝑙 positions, namely 𝛴𝑋𝑐𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , should directly 

affect the 𝛴𝑎⃗⃗. Consequently, the unknowns (𝑒𝑥𝑤
, 𝑒𝑦𝑤

, 𝑒𝑧𝑤
) of equation (3) can be simplified to zero 

and the equation can be simplified to equation (8). 

 

 
𝛴𝑋𝑐𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (

𝜕𝐹𝑋

𝜕𝑎𝑖
𝑒𝑎) (

𝜕𝐹𝑋

𝜕𝑎
𝑒𝑎𝑖

)
𝑇

= 𝐶𝑎⃗⃗𝛴𝑎⃗⃗𝐶𝑎⃗⃗
𝑇 

 

(8) 

In this equation, the 𝐶𝑎⃗⃗ represents the gradients of the mapping function with respect to the 

coefficients 𝑎𝑖 . The variance in the particle image position 𝛴𝑋𝑐𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  can be evaluated in a similar way as 

mentioned in section 0 . Here, the 𝛴𝑋𝑐𝑎𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  can be evaluated for the initially triangulated particle 

positions and is used in equation (8) to solve for 𝛴𝑎⃗⃗ as a least squares problem for all disparity grid 

points. 

Uncertainty propagation in reconstructed positions 
The uncertainty in the reconstructed world coordinate position is finally obtained by solving for the 

world coordinate location covariance matrix 𝛴𝑥𝑤
from equation (4). This equation is evaluated for 

each world coordinate position for mapping functions in 𝑋 and 𝑌 for all four cameras.  The term 

𝐶𝑎⃗⃗𝛴𝑎⃗⃗𝐶𝑎⃗⃗
𝑇 is evaluated using the estimated covariance 𝛴𝑎⃗⃗. The 𝛴𝑋⃗⃗ has already been calculated using 

equation (6). Hence, we solve for 𝛴𝑥𝑤
by inverting the 𝐶𝑥𝑤

matrix as shown in equation (9). 

 𝛴𝑥𝑤
= 𝐵 (𝛴𝑋⃗⃗ + 𝐶𝑎⃗⃗𝛴𝑎⃗⃗𝐶𝑎⃗⃗

𝑇) 𝐵−1 

 

(9) 

Where,𝐵 is given by  𝐵 = (𝐶𝑥𝑤

𝑇 𝐶𝑥𝑤
)

−1
𝐶𝑥𝑤

𝑇 . It can be noted that assuming no covariance between 𝑋 

and 𝑌 particle image position uncertainty, the term (𝛴𝑋⃗⃗ + 𝐶𝑎⃗⃗𝛴𝑎⃗⃗𝐶𝑎⃗⃗
𝑇) is essentially an 8x8 diagonal 

matrix for 8 mapping function equations. From the covariance matrix 𝛴𝑥𝑤
, the standard uncertainty 

in reconstructed positions(𝜎𝑥𝑤
, 𝜎𝑦𝑤

, 𝜎𝑧𝑤
) are obtained by taking the square root of the diagonal 

terms(√(𝛴𝑥𝑤
)

𝑖𝑖
). 

Uncertainty in estimated velocity field           
The uncertainty in each tracked 3D velocity measurement is evaluated as a direct combination of 

the estimated 3D position uncertainties of each paired particle. Thus, if a particle in frame 1 

(𝜎𝑥𝑤1
, 𝜎𝑦𝑤1

, 𝜎𝑧𝑤1
) is paired with a particle in frame 2, then the uncertainty in the tracked 

displacement 𝜎𝑢 is given by 

 

 𝜎𝑢
2 = 𝜎𝑥𝑤1

2 + 𝜎𝑥𝑤2
2  

 

(10) 

The uncertainty in 𝑣 and 𝑤 components (𝜎𝑣 , 𝜎𝑤) can be obtained in a similar way following equation 

(10). It is to be noted, that the uncertainty due to false matching may need further analysis. 

However, for a valid measurement we expect equation (10) to account for the uncertainty in the 

tracked velocity measurement.                                                                                                                               
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3  Results 
The framework to estimate the uncertainty in the reconstructed particle positions is tested using 

synthetic vortex ring images. The particle field was generated and advected using incompressible 

axisymmetric vortex ring equations mentioned in (Wu et al. 2006). The camera calibration and 

particle images (256x256 pixels) were generated using in-house code. The camera angles were 

selected as 35° and were positioned in a plus(+) configuration. The volume of interest was set to 

42mmx42mmx24mm and the seeding density was varied from 0.01ppp to 0.1ppp. The processing 

was also done using in-house calibration and IPR code. The initial estimate of the calibration was 

modified by the volumetric self-calibration to eliminate any mean disparity. An allowable 

triangulation error of 1 pixel was used for initial triangulation with dynamic particle segmentation 

method (Cardwell et al. 2011) to better resolve overlapping particle images. The particle image 

positions were estimated using least square Gaussian fit. The optical transfer function (OTF) 

(Schanz et al. 2013) was evaluated and used in IPR iterations. The number of inner loop and outer 

loop iterations for each frame was set to 4 and particle “shaking” of ±0.1 pixels was used. The 3D 

particle tracking was done using “nearest neighbor” algorithm. The uncertainty for each 

measurement was computed using the set of equations described in section 2.  

 

Comparing error and uncertainty histogram for reconstructed particle positions 
First, the uncertainty in reconstructed particle positions are analyzed. The reconstructed particle 

positions are compared with the true particle positions in space and if a particle is found within 1 

voxel radius of the true particle, then it is considered as a valid reconstruction. The error in 

reconstructed 𝑥𝑤 position is denoted by  𝑒𝑥𝑤
 and defined as: 

 𝑒𝑥𝑤
= 𝑥𝑤

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑥𝑤
𝑡𝑟𝑢𝑒 

 

(11) 

Similarly, 𝑒𝑦𝑤
 and 𝑒𝑧𝑤

 are defined. Figure 3 shows the histogram of error and uncertainty 

distributions 𝑥𝑤 , 𝑦𝑤 and 𝑧𝑤 coordinates. Figure 3a and Figure 3b shows the distributions for 

0.01ppp and 0.075ppp respectively. The x- axis is divided into 60 equally spaced bins and the y-axis 

denotes the number of measurements falling within each bin as a fraction of total number of points. 

The root mean squared (RMS) error is defined as: 

 

𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 = √
1

𝑁
∑ 𝑒𝑖𝑤

2

𝑁

𝑖=1

 

 
(12) 

The error distribution for the lower seeding density is sharper with RMS error of about 0.1 pixels 

compared to RMS error of 0.29 pixels for the higher seeding density case. The predicted uncertainty 

distributions have significantly less spread and have a tight distribution around the RMS error. For a 

successful prediction, it is expected that the RMS value of the error distribution should match the 

RMS value of the estimated uncertainty distribution (Sciacchitano et al. 2015). The RMS value for 

each distribution is indicated by the dashed vertical line. For Figure 3, the RMS uncertainty values 

are within 0.06 pixels of the RMS error values and are in close agreement, indicating a successful 

prediction for position reconstruction uncertainty. 
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Reconstructed position uncertainty for varying particle concentration 

The increase in particle concentration leads to a 

higher percentage of “ghost” particles and eventually 

increases the error in reconstruction. To test the 

sensitivity of the uncertainty predictions in such 

scenarios, the seeding density is varied from 0.01ppp 

to 0.1ppp and the RMS error and uncertainty values 

are compared in each case, as shown in Figure 4.  

The results show a high sensitivity of the predicted 

uncertainty to the trend of the RMS error. For a 

seeding density of 0.01ppp and 0.1ppp, the predicted 

uncertainty best matches the expected RMS error 

value. However, it overpredicts for other seeding 

densities, with a maximum overprediction of 0.05 

pixels for 0.05ppp case. Overall trend agreement, 

between the predicted and the expected uncertainty 

validates the current framework for prediction of 

uncertainty in reconstructed 3D particle positions. 

 

Figure 3: Histogram of error (𝑒) and uncertainty (𝜎) distributions for reconstructed particle 

positions(𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) for the synthetic vortex ring case with seeding densities a) 0.01ppp and 

b) 0.075ppp. The vertical lines indicate the RMS value for each distribution. 

 

 

Figure 4: Comparison RMS error and RMS of 

predicted uncertainties for seeding densities 

in the range of 0.01ppp to 0.1ppp for the 

synthetic vortex ring case. 
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Uncertainty prediction for tracked velocity vectors 
As a final step, the uncertainty prediction in the tracked velocity field is assessed. The reconstructed 

3D particle positions are tracked for a pair of frames for 10 pairs using nearest-neighbor tracking. 

The true particle positions in 1 voxel vicinity of the reconstructed particle positions is found for the 

first frame and the corresponding true displacement is subtracted from the estimated displacement 

to compute the error(𝑒) in 𝑢, 𝑣 and 𝑤 velocity components. A measurement is considered valid if 

the computed error magnitude is within 1 voxel. The uncertainty(𝜎𝑢, 𝜎𝑣 , 𝜎𝑤) in the velocity 

components are computed using equation (10). 

 
Figure 5: Error and uncertainty histogram comparison for tracked velocity vectors in the synthetic 

vortex ring case with seeding densities a)0.01ppp and b)0.025ppp. 

Figure 5a and Figure 5b shows the comparison between the estimated velocity error and 

uncertainty histogram for 0.01ppp and 0.025ppp seeding density cases respectively. It is noticed 

that the 𝑤 component has higher error compared to 𝑢 and 𝑣 components. For the lower seeding 

density case, the uncertainty distributions are sharply distributed within 0.05 pixels of the expected 

uncertainty value for 𝑢 and 𝑣 component, and underpredicts the RMS error by 0.17 pixels for the 𝑤 

component of the displacement. In Figure 5b, the 𝑢 and 𝑣 component uncertainty is overestimated 

by 0.13 pixels, while the predicted uncertainty for the 𝑤 component exactly matches RMS error 

value. Further analysis for higher seeding densities with STB processing is required to validate the 

displacement uncertainty model proposed by equation (10), however, preliminary results show 

reasonable agreements between predicted and expected uncertainty values for the estimated 

velocity components. 

Experimental Validation: Uncertainty prediction for laminar pipe flow  
The current framework is also validated for a canonical laminar pipe flow experiment for a 

Reynolds number of 600. Four phantom Miro341 cameras set up was used to observe the flow 

through a 0.25” PTFE tube immersed in a water tank with refractive index matching. The flow was 

driven in a loop using a gear pump and the flow rate downstream of the test section was measured 

using an ultrasonic flowmeter with 1% standard deviation. Time-resolved particle images were 
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captured at 6000Hz framerate(640x624 pixels resolution) for a working volume of 

9mmx6.5mmx6.5mm with an average magnification of 17.8 microns/pixel. The expected true 

velocity profile 𝑈𝑡𝑟𝑢𝑒with a standard uncertainty (±𝜎) due to flow rate measurement is shown in 

Figure 6. 100 frames were processed with in-house codes using a triangulation reconstruction and 

3D nearest neighbor tracking and the current uncertainty propagation model was used to evaluate 

the uncertainty in the final tracked velocity estimates. A thin horizontal slice of volume 

(6mmx6mmx1mm) along the center of the pipe is considered and is subdivided along the depth 

(direction normal to the camera) into 20 bins. The average velocity of the measurements falling in 

each of those bins is plotted as 𝑈̅ in Figure 6a. The corresponding standard deviation of 

measurements within each bin is also shown as the gray shaded region. The estimated velocity 

profile has a maximum deviation of 0.12 voxels/frame compared to the true velocity. Also, this 

specific experimental case had higher uncertainty on the mean velocity near the pipe wall at 𝑧 =

−6𝑚𝑚. Overall, the mean velocity profile agreed with the expected parabolic profile of a laminar 

pipe flow. 

 

 
Figure 6: The mean velocity profile for a 3D PTV measurement of a laminar pipe flow is compared 

with the true solution in a). The corresponding U velocity error and estimated uncertainty 

distributions are compared in b). 

The measured 𝑈 component of velocity for the points measured in the thin horizontal volume is 

compared to the true expected velocity and the distribution of error 𝑒𝑈 is shown in Figure 6b. The 

error distribution is skewed with the RMS of error at 0.23 voxels, as depicted by the vertical dashed 

black line in Figure 6b. The predicted uncertainty 𝜎𝑈 distribution has a shallow spread and has an 

RMS value of 0.37 voxels. Thus, the predicted uncertainty using current framework shows 0.14 

pixels overprediction. However, a better processing using STB method can reduce the error 

distribution as well as processing higher number of frames, which can improve the statistical 

convergence.  

4  Conclusion 
We proposed a comprehensive framework to predict the uncertainty in the reconstructed 3D 

particle positions in a volumetric PTV measurement and subsequently propagate the uncertainty in 

the tracked velocity estimates. The variance estimated from the histogram of the reprojection error 
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provides the uncertainty bound on the particle image position and contributes to the uncertainty in 

the mapping function coefficients. The uncertainty in the reconstructed particle position directly 

affects the uncertainty in the displacement estimate. Analysis with the synthetic vortex ring images 

showed good agreement between the RMS of the predicted uncertainties in 𝑥, 𝑦, 𝑧 positions and the 

RMS error. However, for the uncertainty in the displacement estimates, the prediction was about 

0.15 voxels higher for both the vortex ring case and the experimental pipe flow case. Overall, the 

predicted uncertainties are sharply distributed close to the RMS error values and showed strong 

sensitivity to the variation in RMS error, even for different seeding densities. Hence, the preliminary 

results establish the current methodology as a successful predictor for uncertainty in a 3D PTV 

measurement. 
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