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ABSTRACT: The crystallisation ability of polymers under high stretches is a challenging phenomenon in
material science. Multiphase approaches help scientists to distinguish between different structures, which evolve
or vanish during experimental studies. Here, the observed phenomenon is the evolution of crystals during a
uniaxial tensile test.
The current paper introduces an approach considering three different phases in one fibre of polymer. The free
energy of the material considers the contribution of the mixing entropy. The derivation of the mixing entropy is
explained in detail, making use of different assumptions and approaches, e.g. consideration of ideal mixtures.
In the end, this multiphase approach for the free energy is implemented in a constitutive model for rubbery
materials stretched to high strains. It is able to depict the strain-induced crystallisation phenomenon observed
via a uniaxial tensile test, prooved by stress-stretch and crystallinity-stretch simulations.

1 INTRODUCTION

The modelling of material behaviour plays an impor-
tant role in industrial applications. Experiments, con-
tinuum mechanics and numerics are necessary to
develop a mathematical model in order to understand
and predict material behaviour. The observed polymer
is an unfilled, vulcanized crystallisable natural rubber
(NR).

The overall objective is to develop constitutive
equations which reproduce its material behaviour.
Focus is the stress-strain response including mechani-
cal hysteresis which occurs for example during a uni-
axial tensile test. The phenomenon of strain induced
crystallisation (SIC) is the main hysteresis source
for unfilled natural rubber during loading-unloading
cycles. For the filled rubber, Mullins and viscous
effects are also to be considered as other hysteresis
sources.

The model uses a multiphase approach, i.e. one
rubber fibre includes three different contributions: a
crystalline phase and an amorphous phase which is
compounded by a crystallisable amorphous part and
a non-crystallisable amorphous part. Thus, different
approaches for hyperelastic material models for each
part are used for the formulation of the stress and the
strain energy equations, which are an essential part of
the first order differential equation of crystallinity.

The model is based on an additive split of the
hybrid free energy into a Gibbs-type contribution

representing the volumetric part and a Helmholtz con-
tribution representing the isochoric part (Lion, Dippel,
& Liebl 2014) and (Guilie, Le, & Le Tallec 2015).
The isochoric free energy includes the free energies
of the single phases and one part derived from a mix-
ing entropy contribution, which is focus of the current
paper.

The constitutive equations are physically and chem-
ically motivated. The constitutive equations ensure
thermodynamic consistency.

2 THE PHENOMENON OF STRAIN-INDUCED
CRYSTALLISATION IN NATURAL RUBBER

In several industrial applications, natural rubber is
essential due to its advantageous tensile properties.
A fundamental characteristic of natural rubber is
its ability to develop directional anisotropies when
highly stretched in one direction �eα. This phenomenon
is called strain-induced crystallisation and was first
discovered by Katz (1925) via x-ray scattering.

2.1 Directional crystallinity in a fibre of polymer

In this framework, the fundamental idea modelling
strain-induced crystallisation in NR, is to divide the
total mass of the fibre mα into two phases. First,
the material has a crystalline phase with its mass
mαc, which evolves at high stretches. Second, the
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Figure 1. Phases in one fibre of elastomer: the crystallisable
amorphous mαa, the non-crystallisable amorphous mαn and
the crystalline phase mαc, (Loos, Johlitz, Lion, Palgen, &
Calipel 2017).

material has an amorphous phase existing during all
stretches, also in the unstretched state. The idea is, that
the amorphous phase is subdivided into a crystallis-
able amorphous fraction mαa and a non-crystallisable
amorphous fraction mαn, i.e. the total mass forms to

The sketch in Figure 1 visualises the idea of three mass
contributions. The directional crystallinity xα in �eα-
direction is defined by its mass fraction

Next, it is assumed, that there exists a linear depen-
dence between the non-crystallisable fraction and the
crystalline phase, i.e. each crystalline part possesses or
is surrounded by a non-crystallisable amorphous part:
mαn= ζmαc⇔ mαn

mαc
= ζ.

The straight forward calculation starting from (1)
and using the above definitions shows that the crys-
tallisable amorphous fraction can be expressed as

Consequently, the maximum value of the crys-
tallisable amorphous phase is physically limited
to 100%, which results to the definition of a
maximum crystallinity x0:

With these abbreviations, each mass fraction simpli-
fies to

The specific1 directional Helmholtz free energies of
the single phases are stated as

which are all considered to be stretch and temperature
dependent.

The total Helmholtz free energy �̂α includes the
free energy of the individual phases

and the entropy of mixing2

where R is the universal gas constant, M is the molar
mass and the function γ(xα) is the mixing ratio. This
leads to the total Helmholtz free energy

The directional Helmholtz free energy per unit mass
follows as

2.2 Mixing entropy

The specific directional Helmholtz free energies of
the single phases; ψ̂αa(λ̂α, θ) for the crystallisable
amorphous phase, ψ̂αc(λ̂α, θ) for the crystalline phase
and ψ̂αn(λ̂α, θ) for the non-crystallisable amorphous
interphase, add to the first term in equation (7),
which is the free energy of the individual phases

1 The directional Helmholtz free energy per unit mass is

defined as ψ̂α= �̂α

mα
.

2 The wording ‘entropy of mixing’or ‘mixing entropy’is used
as an abbreviation for the total change in the entropy of a
mixture.
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�̂α0=mαa ψ̂αa + mαc ψ̂αc + mαn ψ̂αn. The total direc-
tional Helmholtz free energy �̂α in equation (7) con-
tains a term including the entropy of the mixing Smix
which will be derived in the following subsection.

As a starting point, one considers ideal gases as
material. The change in the inner energy U of a closed
thermodynamic system is defined by the first law of
thermodynamics

where δQ is the change in heat and δW is the change in
work. In solid mechanics, the change in work is often
split into two contributions, such as a change in pres-
sure p or volume V and an isochoric change in work.
For the ideal gas δW =−pdV holds. The change in
heat is expressed as the change in entropy dS times
temperature θ with the assumption of a reversible
process.

For ideal gases, the thermal equation of state
p V = n R θ and the caloric equation of state U = n cv θ
hold, where n is the amount of substance, R is the uni-
versal gas constant and cv is the specific heat capacity
at constant volume. Inserting these equations of state
into equation (9), the change in heat forms to

Please note, that the change in heat is an inexact
differential ∂

∂θ

(
nRθ
V

) 
= ∂
∂V (ncv), because its effect on

the state of the system can be compensated by the
change in work δW . On the contrary, the change in
entropy, i.e. dS = δQ

θ
, is an exact differential when

reversible conditions are assumed for the exchange,
i.e. ∂

∂θ

(
nR
V

)= ∂
∂V

( ncv
θ

)
. This results to the change in

entropy

and the entropy after integration

for two different volumes V1 and V2 in which the same
amount of ideal gas n is stored at different temperatures
θ1 and θ2, sketched in Figure 2.

In order to find a formulation for the entropy
of mixing, a mixing process under constant pres-
sure and temperature is assumed, cf. (Müller 2013,
p. 248), (Müller 1973, p.179–182). An ideal gas
of volume VA and amount of substance nA is mixed
with an ideal gas of volume VB and amount of
substance nB. The initial state is shown on the left
of Figure 3, where p VA= nA R θ and p VB= nB R θ
hold. The mixture of volume VA + VB and amount
of substance nA + nB is sketched on the right of

Figure 2. Sketch of two volumes V1, V2 with different
temperatures θ1, θ2 and same number of particles n.

Figure 3. Sketch of the mixing process of two initial vol-
umes VA, VB with different number of particles nA, nB of
two ideal gases under constant hydrostatic pressure p and
temperature θ.

Figure 3, where p (VA + VB)= (nA + nB) R θ holds.
The respective changes in the entropies are

The total change in the entropy of the mixture is

Note that the total volume is added up from the ini-
tial volumes V =∑

i Vi, i.e. here VA + VB, only under
consideration of ideal gases. In Müller (2013, p. 248ff)
one can find a more general derivation of the mix-
ing entropy, which is not assuming ideal gases. For
ideal gases, the inner energy of the mixing is zero, i.e.
Umix= 0 and the entropy of mixing is not equal to zero,
i.e. Smix 
= 0, cf. (Müller 2013, p. 250f).

In this work, the possible inner energy of mixing is
not taken into account such that the free energy of the
mixing reads as �mix=Umix − θSmix≈−θSmix.

Now, the ideal gas equation is inserted into the vol-
umes V = n R θ

p , where temperature θ and pressure p
remain constant within the assumption

Considering theAvogadro equation n= N
NAvo

on the one
hand, where NAvo is the Avogadro constant and N is
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the number of constituent particles, and the definition
of the amount of substance n= m

M on the other hand,
where m is the total mass and M is the molar mass of
the substance, the mixing entropy results in

This general example is now applied for the crys-
talline fibre, sketched in Figure 1. First, a crystalline
particle is assumed to consist of the mass of the crys-
talline and that of the surrounding non-crystallisable
amorphous material, i.e. mα cryst=mα c + mα n. In addi-
tion, all phases possess similar mean molar masses,
i.e. M =Ma=Mcryst. With these considerations, the
mixing entropy of a fibre with only two types of par-
ticles (crystalline particles + amorphous particles, i.e.
mα=mα cryst + mα a) reads as

Furthermore, the fractions of constituent particles can
be expressed by fractions of crystallinities;

refer to subsection 2.1 for the mass fractions of the
different parts of one fibre.

The final expression reads as

where

is the mixing ratio of the fibre. Note that the mixing
ratio has a maximum between 0≤ xmax≤ x0, as shown
in Figure 4.

For the evolution equation of crystallinity,
equation (25), one needs the first derivative of the
mixing ratio with respect to crystallinity:

Figure 4. Mixing ratio versus directional crystallinity with
an exemplary maximum crystallinity of x0= 0.6.

Based on these considerations, the total specific direc-
tional Helmholtz free energy is defined as

where n, m and k are empirical exponents which
emphasize the coupling between crystallinity and
stress, explained in the next subsection. In equation (8),
these exponents do not occur, but here they have been
introduced to formulate a model with more flexibility
to represent experimental data.

2.3 The evolution equation of the directional
crystallinity

The expression of the mixing entropy is then used
for the derivation of the evolution equation for the
directional crystallinity which is directly achieved
after the evaluation of the Clausius-Duhem inequality.
The Clausius-Duhem inequality ensures the thermo-
dynamical consistency of constitutive equations such
that the second law of thermodynamics is satisfied:

where the state variables ρR, θ, ψ, s denote the
density, the thermodynamic temperature, the spe-
cific Helmholtz free energy and the entropy per unit
mass related to the reference configuration. E is the
Green-Lagrange strain tensor, T̃ is the second Piola-
Kirchhoff stress, and T̃ : Ė is consequently the stress
power. Through the evaluation of the Clausius-Duhem
inequality, the one dimensional evolution equation of
the directional crystallinity is derived as
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Figure 5. Multistep experiment at room temperature until
stretch λmax = 3.5 with equilibrium stresses marked with
crosses and fitted extended tube hyperelastic model.

where β(θ, . . . ) considers the temperature dependence
of the material among other optional dependences
on internal state variables. Temperature dependence
is here represented by the approach by Williams,
Landel, & Ferry (1955). Here holds, the higher the
temperature, the less the evolution of the crystals.

Furthermore, a simplifying assumption considers,
that the Gibbs-type energy contribution g, which rep-
resents the volumetric part of the material behaviour,
does not depend on the total crystallinity x, there-
fore ∂g

∂x = 0. The evolution equation of the directional
crystallinity follows with the simplifying assumptions
ψ̂αa= ψ̂αn; n= k to

The stress response of the single phases is derived
through differentiation of the strain energy function
with respect to stretch, i.e. σ(λ)= ∂ψ(λ)

∂λ
. With the

above mentioned assumption, ψ̂αa= ψ̂αn, the total
stress response is composed of the single stresses of
the amorphous and the crystalline phase

Figure 6. Stress response of single phases up to high stretch,
using the neo-Hookean material model for the crystalline
phase and the extended tube model for the amorphous phase.

Figure 7. Strain energies of single phases up to high stretch,
using the neo-Hookean material model for the crystalline
phase and the extended tube model for the amorphous phase.

After evaluation of the main hyperelastic material
models, the strain energy of the amorphous phase is
modelled by the extended tube model proposed by
Kaliske & Heinrich (1999) and the strain energy of
the crystalline phase is modelled by the neo-Hookean
material model as discussed in Treloar (1943). All
model parameters (four for the extended tube and
one for the neo-Hookean model) were found by fit-
ting experimental data achieved through a multistep
experiment, shown in Figure 5, in which unfilled nat-
ural rubber was stretched up to a low stretch of λ= 3
in order to avoid crystallisation, which occurs for the
studied material at stretches above λ= 4.

The identified stresses of the single phases are
shown in Figure 6 and the strain energies of the sin-
gle phases are shown in Figure 7. The increasing gap
between both phases implies the driving force for
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Figure 8. Stress over stretch of unfilled natural rubber, sim-
ulation vs. experiment at low strainrate, experimental data
from Candau (2014).

Figure 9. Crystallinity over stretch of unfilled natural rub-
ber, simulation vs. experiment at low strainrate, experimental
data from Candau (2014).

Table 1. Selected parameters used for the simulation shown
in the Figures 8 & 9.

parameter value unit

crystallinity evolution
x0 0.4 –
M 0.0074 kg/mol
β 1.5838 · 10−10 –
empirical exponents
m 2.05 –
n 1.28 –

crystallisation which depends on the difference of both
strain energies rather than stresses, see equation (25).

With this evolution equation of crystallinity, the
modelling of the stress-stretch response after uniaxial

stretching shows promising results, shown in Figure 8
and Figure 9. Selected parameters of the model are
listed in Table 1.

3 CONCLUSION

A thermomechanical approach to model strain induced
crystallisation was presented, which distinguishes
between three different phases in the specimen: crys-
tallisable amorphous phase, the non-crystallisable
amorphous phase and the crystalline phase. The total
free energy contains free energies of the individual
phases as well as a term of mixing entropy which
is derived in detail. The concept was used to model
crystallinity evolution at high stretched of rubbery
elastomers. Please note further publications of the cur-
rent author for more information on the presented
study, 2017, 2019 and 2019.
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