
The Complexity of the

Product Logics K4� S5 and S4� S5
and of the Logic SSL of Subset Spaces

Gisela Krommes

Vollständiger Abdruck der bei der Fakultät für Informatik
der Universität der Bundeswehr München zur Erlangung des

akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Gutachter/Gutachterin:
1. Prof. Dr. Peter Hertling
2. Prof. Dr. Ulrike Sattler

Die Dissertation wurde am 11.09.2019 bei der Universität der
Bundeswehr München eingereicht und durch die Fakultät für

Informatik am 03.01.2020 angenommen.
Die mündliche Prüfung fand am 08.01.2020 statt.

ii

To my mother Ruth and

my cousin Reinhard

iii

iv

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Peter
Hertling for the continuous support of my Ph.D study, for his patience and
motivation. His guidance helped me during all the time of my research and
writing of this thesis.
I would also like to thank the whole team at our institute for the friendly
and always encouraging atmosphere. It was a great pleasure to work and do
research here.

v

vi

Zusammenfassung

Wir zeigen, dass die Erfüllbarkeitsprobleme der bimodalen Produktlogiken
K4� S5 und S4� S5 und der bimodalen Logik von Teilmengenräumen SSL
jeweils EXPSPACE-vollständig sind. Tatsächlich geben wir einerseits für
diese drei Probleme Entscheidungsalgorithmen an, die sogar in der Kom-
plexitätsklasse ESPACE liegen. Der Kern des Beweises, dass diese Prob-
leme andererseits EXPSPACE-hart sind, ist eine in logarithmischem Platz
durchführbare Reduktion des Wortproblems für sogenannte Alternierende
Turingmaschinen, die in Exponentialzeit arbeiten, auf das Erfüllbarkeitsprob-
lem der Logik SSL. Bekanntlich erkennen derartige Maschinen gerade die
Sprachen, die von gewöhnlichen Turingmaschinen in exponentiellem Platz
erkannt werden. Die EXPSPACE-Härte von S4� S5 und K4� S5 zeigen wir
durch ebenfalls in logarithmischem Platz durchführbare Übersetzungen, ein-
erseits von SSL-Formeln in erfüllbarkeitsäquivalente S4� S5-Formeln, und
schließlich von S4� S5-Formeln in erfüllbarkeitsäquivalente K4� S5-Formeln.

Abstract

We show that the satisfiability problems of the bimodal product logics K4�S5
and S4� S5 and of the bimodal logic of subset spaces SSL are EXPSPACE-
complete. In fact, on the one hand we construct for these three problems
decision algorithms working even in ESPACE. The heart of the proof, that
on the other hand these problems are EXPSPACE-hard, is a reduction, com-
putable in logarithmic space, of the word problem for so called Alternating
Turing machines working in exponential time to the satisfiability problem
for the logic SSL. It is known, that these machines accept exactly the lan-
guages accepted by usual Turing machines working in exponential space.
We show EXPSPACE-hardness of S4� S5 and K4� S5 by translating on
the one hand SSL-formulas to equisatisfiable S4� S5-formulas and finally by
translating S4� S5-formulas to equisatisfiable K4� S5-formulas, where both
translations are computable in logarithmic space as well.

vii

viii

Contents

1 Introduction 1

2 A Short Introduction to Modal Logic 5

2.1 What is Modal Logic? . 5

2.1.1 Introduction . 5

2.1.2 Modal logics as formalization of modalities 6

2.1.3 Modal logics as fragments of standard logics 8

2.2 Syntax and Semantics . 10

2.2.1 Syntax of Modal Logics 10

2.2.2 Axiom Systems . 12

2.2.3 Semantics . 14

2.2.4 Definability of classes of frames 15

2.3 Some known Complexity Results 17

3 Combined Modal Logics 19

3.1 Combining modal logics . 19

3.1.1 Fusion of Modal Logics 20

3.1.2 Products of Modal Logics 20

3.2 Combining K4 and S4 with S5 24

3.2.1 Syntax of bimodal formulas 24

3.2.2 Transitive Relations and Equivalence Relations 25

3.3 The logics K4� S5 and S4� S5 26

3.4 The logic of subset spaces SSL 29

3.4.1 Introduction . 29

3.4.2 Subset Spaces . 31

3.4.3 Axiomatizing . 32

3.4.4 Cross Axiom Models 33

3.4.5 Work linked to SSL . 37

ix

x CONTENTS

4 ESPACE Algorithms for K4� S5, S4� S5, and SSL 41
4.1 Definition of Tableaux for K4� S5, S4� S5, and SSL 43
4.2 Tableaux and Models . 47
4.3 The Tableau Algorithms . 52
4.4 The Space Used by the Algorithms 55

4.4.1 Observations about the Maximum Chain Length 56
4.4.2 The Recursion Depth of the Algorithm 60
4.4.3 Proof of the Upper Bound 62

4.5 On the Number of Tableau-sets 64

5 Preparations for the Reduction of Alternating Turing Ma-
chines to SSL and to S4� S5 69
5.1 Shared Variables . 70
5.2 Binary Counters in S4� S5 and in SSL 73
5.3 Alternating Turing Machines 84

6 Reduction of Alternating Turing Machines Working in Ex-
ponential Time to SSL 89
6.1 Construction of the Formula 89
6.2 LOGSPACE Computability of the Reduction 98
6.3 Construction of a Model . 98
6.4 Existence of an Accepting Tree 108

7 Reduction of Alternating Turing Machines Working in Ex-
ponential Time to S4� S5 119
7.1 Construction of the Formula 120
7.2 LOGSPACE Computability of the Reduction 130
7.3 Construction of a Model . 130
7.4 Existence of an Accepting Tree 138

8 Reduction of SSL to S4� S5 149
8.1 The Reduction Function . 149
8.2 Correctness . 151
8.3 LOGSPACE Decidability of Languages of Formulas 157
8.4 LOGSPACE Computability of the Reduction Function 167

9 Reduction of S4� S5 to K4� S5 169

10 Conclusion 173

Chapter 1

Introduction

One of the fundamental complexity-theoretic results about logic is Cook’s
theorem which says that the satisfiability problem for Boolean formulas is
NP-complete [21]. Since then the complexity of many other logics has been
analysed. In this thesis we are concerned with the bimodal product logics
K4� S5 and S4� S5, and with the subset space logic SSL, a bimodal logic
as well. To the best of our knowledge, the complexity of K4� S5, of S4� S5,
and of SSL are open problems, and the goal of this thesis is to fill this gap.
The main results of the thesis can be summarized in the following theorem:

Theorem 1.1. The logics K4� S5, S4� S5, and SSL are EXPSPACE-
complete.

In [67, Question 5.3(i)] Marx posed the question what the complexity of
the bimodal logic S4� S5 is. This question is restated and extended to the
logic K4� S5 in [61, Problem 6.67, Page 334]. There it is also stated that
“M. Marx conjectures that these logics are also EXPSPACE-complete”. Our
result shows that this conjecture is correct. Actually, we are considering
the satisfiability problems of these three logics, and we are going to show
that the satisfiability problems of these logics are EXPSPACE-complete. Of
course, this assertion is equivalent to the theorem above because EXPSPACE
is closed under complements.
For the complexity of the satisfiability problems of the logics K4� S5 and
S4� S5 the best upper bound known was N2EXPTIME [61, Theorem 5.28],
and the best lower bound known was NEXPTIME-hardness [61, Theorem
5.42]; compare also [61, Table 6.3, Page 340]. That it is desirable to know
the complexity of SSL and similar logics is mentioned by Parikh, Moss, and
Steinsvold in [75, page 30] and by Heinemann in [48, Page 153] and in [49,
Page 513]. It is known that for any SSL-satisfiable formula there exists a
model of at most doubly exponential size [22, Section 2.3]. This shows that

1

2 CHAPTER 1. INTRODUCTION

the complexity of the satisfiability problem of SSL is in N2EXPTIME as well.
The best lower bound known for SSL is PSPACE-hardness [58,59].
The thesis consists of nine chapters. The present, short chapter consists of an
introduction, an overview of the thesis, and the definition of some fundamen-
tal notions from complexity theory. The second chapter is a short, general
introduction to modal logic. In Chapter 3 we introduce the bimodal logics
K4� S5, S4� S5, and SSL. First the syntax of bimodal formulas is defined,
then various kinds of models are presented, and some additional notions
are introduced that will be needed later on. In the usual Kripke semantics
for modal logics the modal operators correspond to binary (accessibility)-
relations on the domain of a model. Different logics can describe different
properties of these accessibility relations. The logic K4 describes models with
a transitive accessibility relation, while the accessibility relation in models
of the logic S4 is reflexive and transitive. The accessibility relation in mod-
els of the logic S5 is an equivalence relation. The bimodal logics considered
here combine in a certain way a logic with an at least transitive accessibility
relation (K4, S4) with the logic S5. The logics K4� S5 and S4� S5 are prod-
ucts of their unimodal components. Such products are explained in detail
in Chapter 3. The models of product logics have a grid structure, leading
usually to high complexity or even undecidability. The logic SSL combines
the components S4 and S5 not as a full product. But, as we will see, the
missing parts of the product properties do not lead to lower complexity. SSL
was originally designed to talk about subset spaces and to support elemen-
tary topological reasoning. But describing steps along smaller and smaller
subsets turns out to be an interesting tool for describing knowledge acqui-
sition as well. In Chapter 4 we prove upper bounds for the complexity of
the satisfiability problems of the three bimodal logics K4� S5, S4� S5, and
SSL. We show that all three problems are in ESPACE. In fact, we show
that the satisfiability problem of K4� S5 can be solved in space Opn � 23nq
and that the satisfiability problems of the other two logics, S4� S5 and SSL,
can be solved in space Opn � 22nq. We present recursive decision algorithms
for these problems that are based on certain kinds of tableaux. This method
was introduced by Beth [12]. Such a tableau is a special model where the
domain of the model consists of formula sets satisfying certain consistency
conditions. We will construct tableaux not as usual brick by brick. Instead
we shall use prefabricated parts that we call “tableau-clouds” and that are
somewhat similar to mosaics [72]. Tableau-clouds mirror the S5-component
of the considered logics, while the rules for “gluing them together” mirror
the K4- or S4-component. Our construction will yield tree-like structures
where we allow backwards loops along branches to achieve termination of
the search algorithm. Our recursive algorithms are similar to the recursive

3

algorithm of Ladner [63] for the modal logic S4. We would like to point out
that Section 4.4 starts with some general combinatorial observations on cer-
tain binary relations that may be of interest elsewhere as well. The next five
chapters are devoted to proving that all three problems are EXPSPACE-hard
under logarithmic space reduction. Chapter 5 contains some preparations for
this. For the two logics S4� S5 and SSL we introduce certain formulas that
we call “shared variables” and that play the role of a certain kind of variables.
Then, we show that binary counters can be simulated in both S4� S5 and in
SSL with the aid of these shared variables. Finally, we give a short overview
of Alternating Turing Machines which we use in order to establish the lower
bounds of the satisfiability problem of these two logics. Note that Lange and
Lutz [64] used Alternating Turing Machines in order to establish a sharp lower
bound for the complexity of a certain dynamic logic. In Chapter 6 we show
that any language recognized by an Alternating Turing Machine working in
exponential time can be reduced in logarithmic space to the satisfiability
problem of the logic SSL. As Alternating Turing Machines working in expo-
nential time accept exactly the languages in EXPSPACE [19, Corollary 3.6]
this shows that the satisfiability problem of SSL is EXPSPACE-hard. To-
gether with the ESPACE-algorithm for this problem presented in Chapter 4
this shows that the satisfiability problem of SSL is EXPSPACE-complete.
For the EXPSPACE-hardness of the satisfiability problem of S4� S5 two
proofs are given. On the one hand, similarly to the reduction in Chapter 6,
in Chapter 7 we show that any language recognized by an Alternating Tur-
ing Machine working in exponential time can be reduced in logarithmic space
to the satisfiability problem of the logic S4� S5. This shows that the sat-
isfiability problem of S4� S5 is EXPSPACE-hard. On the other hand, in
Chapter 8 we show that the satisfiability problem of SSL can be reduced in
logarithmic space to the satisfiability problem of S4� S5. As in Chapter 6
we have shown that the satisfiability problem of SSL is EXPSPACE-hard,
this implies that the satisfiability problem of S4� S5 is EXPSPACE-hard
as well. Again, in combination with the ESPACE-algorithm for this prob-
lem presented in Chapter 4 we can conclude that the satisfiability problem
of S4� S5 is EXPSPACE-complete as well. In Chapter 9 we show that
the satisfiability problem of S4� S5 can be reduced in logarithmic space to
the satisfiability problem of K4� S5. This together with the EXPSPACE-
hardness of the satisfiability problem of S4� S5 shows that the satisfiability
problem of K4� S5 is EXPSPACE-hard as well. Once again, in combination
with the ESPACE-algorithm for this problem presented in Chapter 4 we can
conclude that the satisfiability problem of K4� S5 is EXPSPACE-complete
as well. Finally, Chapter 10 contains some concluding remarks.
Let us end this introduction by mentioning some complexity-theoretic notions

4 CHAPTER 1. INTRODUCTION

that will be used. The required notions from logic will be introduced in
Chapter 3. First, as usual N � t0, 1, 2, . . .u is the set of natural numbers,
that is, of non-negative integers. An alphabet is a finite, nonempty set. For
an alphabet Σ let Σ� be the set of all finite strings over Σ. A language is any
subset L � Σ�, where Σ is any alphabet. For a function s : N Ñ N we say
that a language L can be decided in space Opsq if there exists a deterministic
Turing machine that decides L in space Opsq; for the precise definition of
what this means the reader is referred to [74] or to any other textbook on
complexity theory. The following two complexity classes have already been
mentioned.

EXPSPACE is the set of languages that can be decided by a determin-
istic Turing machine in space 2ppnq for some polynomial p.

ESPACE is the set of languages that can be decided by a deterministic
Turing machine in space 2c�n�c, for some constant c P N, that is, the
exponent is linear.

Note that in order to speak about the complexity of a decision problem one
should encode the instances of the decision problem by strings. In this way
one gets a language. Finally, for reducing one language to another one we
use the logarithmic space bounded reduction as in [74].

Chapter 2

A Short Introduction to Modal

Logic

Before we describe some syntactic and semantic aspects of basic modal logic
we start with the question: “What is modal logic?”

2.1 What is Modal Logic?

2.1.1 Introduction

Modal logic is a discipline of many facets.

• The class of modal logics was originally developed by philosophers to
study different ‘modes’ of truth, and for a long time it was known as
the logic of necessity and possibility.

• But the big breakthrough as an applied science happened when it
turned out that modal logic could provide languages for talking about
various relational structures, such as state transition systems for com-
puter programs or semantic networks for knowledge representation.
The invention of graph-based relational semantics (by Jaakko Hintikka,
Stig Kanger, and Saul Kripke) in the late 1950s and early 1960s showed
that standard modal logics could be regarded as fragments of first or
second-order predicate logics.

• The main reason for the so successful spreading of modal propositional
logics is their good balance between reasonable expressive power and
good algorithmic behavior, especially their unusual robust decidability
and in many cases low computational complexity.

5

6 CHAPTER 2. A SHORT INTRODUCTION TO MODAL LOGIC

• Many systems with various kinds of modal operators have been con-
structed in the course of time in order to provide effective formalisms
for many different applications, e.g. talking about time, space, knowl-
edge, beliefs, actions, obligations, etc.: temporal, spatial, epistemic,
dynamic, deontic logic and so forth.
A fact worth to be mentioned here is the close relationship between
modal logics and description logics, a branch of knowledge representa-
tion and reasoning in AI. Nowadays it supplies many of the formalisms
used to fix terminologies in medical and bio-informatics and has been
proposed as the language for annotating web pages to develop a seman-
tic web. It became apparent that many of the description logics were
in fact modal logics in a different notational guise.

• Modern applications often require rather complex formal models and
corresponding languages that are capable of reflecting different features
of the application domain. For instance, to analyze the behavior of a
multi-agent distributed system, we may need a formalism containing
both, epistemic operators for capturing the knowledge of agents and
temporal operators for taking care of the evolution of this knowledge
in time. This motivates the development of combined modal logics, also
called many-dimensional modal logics.

Some of the mentioned aspects in modal logic are explained in more detail
in the following. Syntax and semantics are treated in the next sections,
techniques for combining modal logics, important for the here investigated
logic of subset spaces SSL and S4�S5, are introduced in the next chapter and
computational aspects will be discussed in the then following chapters.
We will consider only propositional modal logics, although there is a lot of
research concerned with modal first-order logic, also called quantified modal
logic.

2.1.2 Modal logics as formalization of modalities

Different ‘modes’ of truth were first discussed in a systematic way by Aristotle
in De Interpretatione. He distinguished between “necessary” and “possible”
truth of statements.
Consider for example the statements A: “Berlin is the capital of Germany”
and B: “all humans are mortal”. Both sentences are true but with different
‘strength’ of truth. Since we cannot imagine that some people live forever,
we consider B as “necessarily true” or, in other words, as “true in all pos-
sible worlds”. On the other hand, Germany could as well have a different
capital, thus the first statement is true in our actual world but other worlds

2.1. WHAT IS MODAL LOGIC? 7

making this sentence false are possible. For this reason, the statement A is
only “possibly true”, that means in at least one possible world.
The notion of “possible worlds” was coined by Gottfried Leibniz who sug-
gested that there are other possible worlds besides the actual one. This opens
the door to the intuitive correspondence with the standard quantifiers “there
exists” and “for all”.
In this way the intentional operators for “necessity” and “possibility” ex-
pand the descriptive scope of ‘standard’ logic and technically modal logics are
obtained from standard logical systems by adding the non-truth-functional
operators l (read “necessarily”) and ♦ (read “possibly”) which form propo-
sitions from propositions. Then ϕ’s being a necessary truth is expressed by
lϕ and ϕ’s being a possible truth is expressed by ♦ϕ.
If a statement is false in at least one possible world and true in at least one
possible world, so that p♦ϕ^ ♦ ϕq holds, it is called contingent.
But necessity and possibility are not the only assertions about the truth of
a statement one may be interested in, and in the course of time a number of
different modalities have been considered. Roughly speaking, a modality is
any phrase that can be applied to a given statement ϕ to create a new state-
ment that makes an assertion about the mode of ϕ’s truth. Some examples
of modalities are given below (see [51]).

lϕ ♦ϕ
ϕ is necessarily true ϕ is possibly true modal logic
ϕ ought to be ϕ is permitted to be deontic logic
ϕ will always be true ϕ will sometimes be true temporal logic
agent A knows ϕ for all agent A knows, epistemic logic

ϕ may be true
agent A believes ϕ ϕ is consistent with A’s beliefs doxastic logic
after any execution of there is an execution of P dynamic logic
program P ϕ holds such that afterwards ϕ holds

In particular, temporal, dynamic and epistemic logics found their way into
computer science, AI, and economic game theory. Temporal logics are now
used in industry for automated verification of hardware and software and
modal logics of active agents with knowledge, beliefs and desires form a the-
oretical backbone of modern accounts to intelligent distributed computing.
Pioneers of modal methods in computer science include Edmund Clarke,
Joe Halpern, Zohar Manna, Robin Milner, Rohit Parikh, Amir Pnueli and
Vaughan Pratt.
A modern approach to modal logic, that is deduction of theorems from a given
set of axioms by means of explicitly stated rules of inference, started with

8 CHAPTER 2. A SHORT INTRODUCTION TO MODAL LOGIC

C. I. Lewis. In the attempt to avoid the ‘paradoxes’ of material implication
(a false proposition implies any proposition and a true proposition is implied
by any proposition) used in the Principia Mathematica by Whitehead and
Russell, he defined in his pioneering book Symbolic Logic, written with C. H.
Langford, five logical systems S1 – S5 to axiomatize ‘strict’ implication. In
modern form, “ϕ strictly implies ψ” is expressed ♦pϕ^ ψq. Two of these
systems, S4 and S5, are still in use today and well known by every modal
logician.

2.1.3 Modal logics as fragments of standard logics

Modal operators are themselves a kind of quantifiers, but special “local”
ones, referring only to objects “accessible” from the current one. Viewed in
this way, modal logics are not extensions, but rather fragments of classical
logic, with restricted forms of quantification.
For ordinary quantifiers @ and D, the domain of quantification depends not
on an assignment to individual variables, or on the variables which are free
in the quantified formula. Thus classical quantifiers have an ”external” view
of the domain, i.e. they always can ”see” all objects which live there. On the
contrary, the “local” modal quantification depends on the view which one
can have from a certain point inside the model: it quantifies over the worlds
which are seen from a given world.
Besides the important fact that relational structures can be unwound into
trees satisfying exactly the same formulas, which is called the tree-model
property of the modal logic, the restricted form of quantification is the main
reason for the “robust decidability” of modal logics: the basic propositional
modal logic is decidable and remains so even if one adds features like number
restrictions, path quantification, least and greatest fixed points and so on,
which are of crucial importance for applications (cf. [36, 91]).
After the disappointing discovery of the undecidability of first-order predicate
logic FO, a vivid research was concerned with the search for decidable frag-
ments of FO. For a detailed exposition see [16]. Many decidable fragments
are based on restriction of the quantifier prefixes. There are two decidable
fragments of FO that can be linked to modal logics in a natural way via the
standard translation of modal formulas into classical logic:

the two-variable fragment FO2 and the

guarded fragment GF , restricting quantification along an “accessibility
relation” R between the objects of a domain.

Before we have a closer look at these fragments we start with the standard
translation ST , developed by van Benthem [87, 88], that translates every

2.1. WHAT IS MODAL LOGIC? 9

modal language into a corresponding fragment of a standard logical lan-
guages, mostly first-order, sometimes higher-order or infinitary, formalizing
modal truth conditions.
For the basic unimodal logic the efficient standard translation ST is de-
fined recursively using a first-order language with one binary predicate letter
R and unary predicate letters PA, PB, � � � matching propositional variables
A,B, � � � .
ST pAq = PAx
ST p ϕq = ST pϕq
ST pϕ^ ψq = ST pϕq ^ ST pψq
ST pϕ_ ψq = ST pϕq _ ST pψq
ST p♦ϕq = DypRxy ^ ST pϕqry{xsq where y is a new variable
ST plϕq = @ypRxy Ñ ST pϕqry{xsq where y is a new variable

Here ϕry{xs is the result of substituting y for all free occurrences of x in ϕ.

Some examples :
ST p♦Aq � DypRxy^PAyq: there exists a successor world of x where A holds,
ST plAq � @ypRxy Ñ PAyq: A holds at all successor worlds of x,
ST pl♦pA_Bqq � @ypRxy Ñ DzpRyz ^ pPAz _ PBzqqq.

Compare the syntactical simplicity of the (variable-free) modal formulas with
their translations.
Note that ST pϕq always contains exactly one free variable. This free variable
is what allows the internal perspective, typical of modal logic.
The translation ST provides embedding of modal logic into the following
fragments of first-order logic:

• The finite-variable fragment restricting the use of variables to a certain
number.
Basic modal logic can be embedded into FO2. By suitable re-use of
variables, the above translation can make do with just two world vari-
ables. (Semantically, this means that evaluation never stores more than
two worlds at a time.)
Three variables become essential with dyadic modalities as in temporal
logic with the until operator U . (Uϕψ says that ψ will be true un-
til a time when ϕ is true.). Since FOk is undecidable for k ¥ 3, the
decidability of all natural temporal logics is not due to finite-variable
restrictions.

• The guarded fragment. The guarded fragment consists of all formulas
generated by the following syntax rule:

10 CHAPTER 2. A SHORT INTRODUCTION TO MODAL LOGIC

ϕ :: atoms PAx with x a tuple of variables
| ϕ | pϕ^ ϕq | DypGpx, yq ^ ϕpx, yqq

where the “guard” Gpx, yq is an atom with variables from the sequences
x, y, occurring in any order and multiplicity.
Guarded logics generalize the characteristic feature of modal quantifi-
cation, that one can only access nodes along basic edge relations, to a
more general setting. In the guarded scenario, this means accessibility
of all tuples that are covered (guarded) by some ground atom G.
The concept of guarded quantification was introduced by Andréka, van
Benthem, and Németi [1].

The set of formulas achieved as translation of modal formulas is called the
modal fragment of first-order logic. But there are also first-order formulas
outside the modal fragment that are logically equivalent to formulas inside.
This raises the question of which first-order formulas have an equivalent
modal counterpart. This is answered by van Benthem’s characterization
theorem, using the notion of bisimulation. Bisimulation is a binary relation
between state transition systems, associating systems with each other that
behave in the same way in the sense that one system simulates the other and
vice-versa. Van Benthem’s Theorem says that modal logic is the fragment of
first-order logic that is closed under bisimulation.
The standard translation allows to transfer immediately some meta-theoretic
results for first-order logic to modal logic:

• Basic modal logic has the compactness property. That is, if every finite
subset of a set of basic modal formulas is satisfiable, then the set itself
is satisfiable.

• Basic modal logic has the Löwenheim-Skolem property. That is, if a
set of basic modal formulas is satisfiable in at least one infinite model,
then it is satisfiable in models of every infinite cardinality.

• The set of valid formulas in basic modal language is recursively enu-
merable.

2.2 Syntax and Semantics

2.2.1 Syntax of Modal Logics

Before we deal with bimodal formulas in the next chapter we consider uni-
modal languages, since the concepts for unimodal logics can in most cases

2.2. SYNTAX AND SEMANTICS 11

be extended to the multimodal case in a natural way.
Many modal logics are constructed from a weak basic logic called K (in honor
of Saul Kripke). The formal language LK of K can be based on the following
alphabet :

a countable infinite set AT of proposition letters whose elements are
often denoted A,B,C, . . .,

the boolean connectives , ^, _, Ñ, Ø,

the unary modal connectives l, ♦,

punctuation symbols p, q.

Then the language LK of K, that is the class of all (well-formed) K-formulas
(wffs), is recursively generated by the following Backus-Naur grammar:

ϕ ::� A | ϕ | lϕ | ♦ϕ | pϕ^ ϕq | pϕ_ ϕq | pϕÑ ϕq | pϕØ ϕq

for A P AT . Brackets may be omitted where convenient, the convention for
reading formulas being that , l and ♦ bind more strongly than ^ and
_, the latter binding more strongly than Ñ and Ø having the least binding
strength.
The elements of AT are called atomic formulas.

Remark 2.1. First, note that by this de�nition every propositional formula
can be viewed as a modal formula.
Second, there is redundancy in the way we have de�ned the basic modal
language, since we don't need all these boolean connectives as primitives,
and in most modal logics the necessity and possibility operators satisfy the
following analogs of DeMorgan's laws from boolean algebra: lϕ is equivalent
to ♦ ϕ and ♦ϕ is equivalent to l ϕ, so l and ♦ are what is known as
dual connectives, just as D and @ are in �rst-order logic.
Finally, note that, using De Morgan's laws and by suppressing double nega-
tions, every modal formula can be transformed into an equivalent formula in
negation normal form pNNF q, where only atomic formulas are allowed to be
negated. But equivalent formulas in conjunctive or disjunctive normal form
obeying the usual de�nition do not exist for every modal formula.

This is the basic modal language LK . But there are modal languages with
several different modal operators and even operators that take more than
one formula as argument.

12 CHAPTER 2. A SHORT INTRODUCTION TO MODAL LOGIC

2.2.2 Axiom Systems

Usually a modal logic Λ based on a language L is defined

‘semantically’ as the set of formulas in the language L valid in all models
of some class of models, or

‘syntactically’ as the set of formulas in the language L derivable in a
given derivation system,

whereas the syntactical way has the longer tradition. Usually, the semantical
and syntactical definitions complement each other: the former explains the
(intended) meaning of the logical constants and connectives, while the latter
provides us with a reasoning machinery.

De�nition 2.2 (Theorems and syntactically de�ned Logics). 1. A deri-
vation system Λ consists of a selected set of formulas, called axioms,
and a �nite set of inference rules. Derivation systems are also called
axiom systems or logical systems.

2. A formula ϕ is called a theorem of Λ, written $Λ ϕ, if there exists in Λ
a proof, also called a derivation, of ϕ, i.e. a �nite sequence of formulas
whose last member is ϕ, and such that each member of the sequence is
either an axiom or derivable from earlier members by one of the rules
of inference in Λ.

3. We call the set of theorems of Λ the logic Λ.

Where no ambiguity is likely to arise, we often omit the subscript ‘Λ’.

Remark 2.3. Each axiom system has a corresponding logic, the converse
however is not true. Not every (semantically de�ned) logic is axiomatisable
� if we don't take the whole logic as an axiomatization of itself.

Usually, the axioms are defined via axiom schemes, that is a set of sentences
all having the same form. For example, we take the schema lϕ Ñ ϕ to be
tlψ Ñ ψ | ψ P Lu, and the instances of this schema are just the members of
this set. Sometimes axioms are instead defined using propositional variables
and a rule of substitution is given that permits to substitute any formula
for them. For convenience we will in most cases not distinguish between
axiom schemes and axioms. Axioms are often used in their dual form, for
example, the dual form of lϕ Ñ ϕ is ϕ Ñ ♦ϕ and ♦♦ϕ Ñ ♦ϕ is dual
to lϕ Ñ llϕ. If the set of axioms or axiom schemes can be chosen as
a recursive (or finite) set, then we say that (the set of theorems of) this

2.2. SYNTAX AND SEMANTICS 13

logic is recursively (finitely) axiomatizable. Reasonable rules of inference are
validity-preserving, i.e. applied to valid formulas the theorems they yield are
always valid too. We introduce some important rules of inference:

Modus ponens : given ϕ and ϕÑ ψ, prove ψ.

Necessitation (introduced by Gödel), also called Generalization: given
ϕ, prove lϕ. This rule says: if ϕ has a proof, then ϕ is necessary.

Uniform Substitution: given ϕ, prove ψ, where ψ is obtained from ϕ
by uniformly replacing proposition letters in ϕ by arbitrary wffs.

Regularity : given ϕÑ ψ prove lϕÑ lψ.

The first formalizations of modal logic were axiomatic. The start of this
tradition is usually attributed to Lewis and Langford [65], but it seems that
the historically correct attribution is MacColl [66]. The axiom of modal dis-
tribution K (see the table below) is the only axiom for the basic modal logic
K. Numerous variations of K, based on additional axioms, with very differ-
ent properties have been proposed. Table 2.1 shows a list of some of the
best known axioms and combination of axioms together with their historical
names, first-order translations and corresponding properties of the accessi-
bility relation R in their relational models.
The axiom K is important because it lets us transform lpϕ Ñ ψq (a boxed
formula) into lϕ Ñ lψ (an implication). This box-over-arrow distribution
enables further purely propositional reasoning to take place. On the other
hand, necessitation ‘modalizes’ provable formulas by stacking boxes in front.
Roughly speaking, while the K axiom lets us apply classical reasoning inside
modal contexts, necessitation creates new modal contexts for us to work with;
modal proofs arise from the interplay of these two mechanisms.
In “An Interpretation of the Intuitionistic Propositional Calculus” [33] Gödel
proposes the here used alternative axiomatization of the Lewis system S4. He
also claims that a formula lϕ_lψ is not provable in S4, unless either lϕ
or lψ is provable. This claim has been proved algebraically by McKinsey
and Tarski [70].
Gödel’s short note is important for starting the fruitful practice of axiomatiz-
ing modal systems by separating the propositional calculus from the strictly
modal part, but also for connecting intuitionistic and modal logic.

Remark 2.4. Note that the axioms de�ning the systems S4 and S5 allow
reduction of the sequence of modalities :
Every S4-formula is equivalent to one of the form

ϕ, lϕ, ♦ϕ, l♦ϕ, ♦lϕ, l♦lϕ, ♦l♦ϕ,

14 CHAPTER 2. A SHORT INTRODUCTION TO MODAL LOGIC

where ϕ is not pre�xed by a modal operator. Every S5-formula is equivalent
to one of the form

ϕ, lϕ, ♦ϕ,

where ϕ is not pre�xed by a modal operator.

Table 2.1: Some well known axiom systems. Note that also di�erent names
for these combinations of axioms are in use.

K lpϕÑ ψq Ñ plϕÑ lψq modal distribution

T K + plϕÑ ϕq re�exive

@wpwRwq

B K + pϕÑ l♦ϕq symmetric

@w, v pwRv Ñ vRwq

D K + plϕÑ ♦ϕq serial

@wDv pwRvq

2 K + p♦lϕÑ l♦ϕq con�uent or

@w,w1, vpwRv ^ wRw1 Ñ Dv1pvRv1 ^ w1Rv1qq weakly directed

4 K + plϕÑ llϕq transitive

@w, v, u pwRv ^ vRuÑ wRuq

5 K + p♦ϕÑ l♦ϕq euclidean

@w, v, u pwRv ^ wRuÑ vRuq

D1 K + plplϕÑ ψq _lplψ Ñ ϕqq linear or

pwRv ^ wRuÑ pvRu_ uRv _ v � uqq weakly connected

S4 T + 4 preorder

S4.2 S4 � 2

S4.3 S4 � D1

S5 S4 � 5

2.2.3 Semantics

The relational semantics is nowadays the dominating kind of model theoretic
semantics, interpreting formulas over graph-like structures. It was developed
by Saul Kripke, Stag Kanger, Jaakko Hintikka and others in the late 1950s
and early 1960s. Since Kripke’s contributions [56,57] are the best known and
regarded as landmarks in the development of modal semantics, relational

2.2. SYNTAX AND SEMANTICS 15

semantics is often called Kripke semantics. What made this approach so
successful is the rich diversity of form supplied by relational structures and
the excellent help in guiding logical intuitions.

The relational structures are called frames (or Kripke frames in honor to
Saul Kripke), and consist of a pair F � pW,Rq such that W , the domain,
is a non-empty set whose elements are usually called points, states or worlds
and R � pW �W q is a relation, called accessibility relation.
A model M based on F is a triple pW,R, σq with a valuation function

σ : AT Ñ PpW q

(where AT is the set of propositional variables and PpW q is the power set of
W) that assigns to each propositional variable A P AT a subset of W .
Informally we think of σpAq as the set of points in our model where A is true.
The above definition can be extended to the multimodal case in a natural
way. In this case we have different accessibility relations Ra, Rb, . . ., that
means the edges of the graph are labeled a, b, . . ., and we have corresponding
labeled modalities xay , ras, xby , rbs, etc.

Remark 2.5. Note the non-truth-functional nature of the modal operators,
in opposite to the Boolean connectives: the truth of lϕ and ♦ϕ is not
determined only by the truth value of ϕ.

With the work of this section at hand we can now ask about the expressive
power of modal logic compared with classical logic at the level of frames.

2.2.4 De�nability of classes of frames

We give ourselves a class of frames and ask whether it is possible to give a
modal formula, or a collection thereof, which exactly characterizes this class.
More precise:

De�nition 2.6 (De�nability). Let F be a class of frames. We say that ϕ
de�nes (or characterizes) F if

F P F ô F |ù ϕ.

Similarly, if Γ is a set of modal formulas, we say that Γ de�nes F if

F P F ô F |ù Γ.

16 CHAPTER 2. A SHORT INTRODUCTION TO MODAL LOGIC

In short, a modal formula ϕ defines a class of frames F if ϕ is valid in all
F P F and can be falsified in all F 1 R F . In most cases, F is determined by
a certain property of the accessibility relation, and it is therefore common to
say that ϕ defines this property.
Note that truth in models is not appropriate to define properties of the
accessibility relation, since special valuations may validate axioms even if
the underlying frame behaves not as desired. For example, the axiom for
transitivity lA Ñ llA is globally true in a model if the valuation value
σpAq � W , with W the domain of the model.
We have already seen some well known modal axioms together with the
corresponding first-order formulas and the according properties of the acces-
sibility relations, like reflexivity, transitivity, symmetry, etc. This raises two
questions:

• If a class of frames (or more informally, a property) can be defined by
a first-order formula, is there always a corresponding modal formula?

• And converse: If a class of frames can be defined by a modal formula,
is there always a corresponding first-order formula?

These questions are what correspondence theory is concerned with, and in
both cases the answer is no.
We list some examples of not modally definable properties:

irreflexivity: @x Rxx
frames having a reflexive point: DxRxx

asymmetric frames: @x@ypRxy Ñ Ryxq
every state has a reflexive successor: @xDypRxy ^Ryyq

Now the second question: although modal logic is weaker than first-order
logic, there are indeed frame properties that are modally but not first-order
definable. Here are two examples:

transitive frames which have no infinite ascending chain x0Rx1Rx2R . . .
Gödel-Löb formula: lplAÑ Aq Ñ lA
(essential for provability logic)

Axiom of cyclic return: p♦A^lpAÑ lAqq Ñ A

Now, what is the reason for the fact that modal logic can express such com-
plex properties of frames? The answer is that validity in frames is essentially
a second-order property, since we quantify over all states of the domain and
all possible valuations, which are functions assigning a subset of the domain
to each proposition letter. Thus we quantify across all subsets of the domain.
In this sense, modal logic is a fragment of monadic second-order logic.

2.3. SOME KNOWN COMPLEXITY RESULTS 17

2.3 Some known Complexity Results

Ladner showed in [63] that satisfiability for K, T and S4 is PSPACE-complete
under logspace reduction. He established the upper bounds with tableau-
like procedures. Although these logics have satisfiable formulas requiring
models of exponential size, the decision procedure can be computed using
only polynomial space. This is due to the fact that satisfiable formulas of
these logics are satisfiable in a tree-like model structure, with each branch of
only polynomial length. Hence the structure can be constructed one branch
at a time.
He also showed that for S5 satisfiability is NP-complete, hence validity is co-
NP-complete. This rather low complexity is due to the fact that S5-satisfiable
formulas have models of size linear in the number of modal connectives.
We briefly recall what is known about the relationship of the most important
complexity classes:

P � NP � PSPACE � EXPTIME � NEXPTIME � EXPSPACE.

We know that pNqP � pNqEXPTIME.

18 CHAPTER 2. A SHORT INTRODUCTION TO MODAL LOGIC

Chapter 3

Combined Modal Logics

First, we introduce general ways to combine unimodal logics. Then we de-
scribe in more detail different combinations of the logics K4 and S4 with
S5, namely the logics K4� S5 and S4� S5 and the logic of subset spaces
SSL. In later chapters we will investigate the complexity of the satisfiability
problems of these three logics.

3.1 Combining modal logics

Combined logics have been attracting much interest. Modern applications are
often concerned with composite domains. One example is the formalization
of the development of an agent’s knowledge in the course of time, leading in
a natural way to the combination of epistemic and temporal logics.
The following is mainly based on the chapter “Combining Modal Logics”
by A. Kurucz in the Handbook of Modal Logic [60] and the book “Many-
dimensional Modal Logics: Theory and Applications” by D. Gabbay, A.
Kurucz, F. Wolter and M. Zakharyaschev [61].
There are many ways to combine modal logics. The first methods were prod-
ucts of logics (introduced by K. Segerberg (1973 [82]) and independently by
V. Sehtman (1978) [83]) and fusion (introduced by R. Thomason (1984) [86]).

The language of combined modal logics is independent from the method of
combination:
For n unimodal languages L1, . . . ,Ln sharing the set of proposition letters
and Boolean connectives and with distinct modal operators l1, . . . ,ln the
n-modal language

L1 b . . .b Ln
is built in the usual way using the given sets of proposition letters and Boolean

19

20 CHAPTER 3. COMBINED MODAL LOGICS

connectives together with the set of modal operators tl1, . . . ,lnu. For bi-
modal logics with modal operators l and K we give a precise definition later
on.

3.1.1 Fusion of Modal Logics

The method of fusion of normal modal logics, also called independent join,
is the simplest and perhaps most frequently used way to combine logics.

For n axiomatisable logics Λ1, . . .Λn models of their fusion

Λ1 b . . .b Λn

can be seen as graph-likes structures where the edges have n different labels
and it can be axiomatised by the union of the axiom sets of the compo-
nents. Especially, no axiom containing modal operators from more than
one component is used. Thus, fusions are useful if the modal operators of
the components are not supposed to interact. Many well-known multimodal
logics like Kn, S4n, S5n are fusions of their unimodal components.

The absence of interaction axioms often enables the transfer of good algo-
rithmic properties from the components to their fusion and the reduction of
reasoning in the fusion to reasoning in the components. But upper complex-
ity bounds do not always transfer to their fusion. In [85] Spaan provides a
criterion for the transfer of coNP-completeness.
The following complexity results are known:
Let n ¡ 1 and Λi P tK, T, S4, S5u, for all 1 ¤ i ¤ n. Then Λ1 b . . . b Λn

is PSPACE-complete. A proof of Halpern and Moses in [38] can easily be
modified to obtain this result.

3.1.2 Products of Modal Logics

In contrast to the situation with fusions, products of modal logics have real
many-dimensional frames in the geometric sense, leading to interaction of the
modal operators. Products of Kripke frames allow us to reflect interactions
between modal operators representing time, space, knowledge, actions, etc.
The product construction for modal logics was introduced in [27,82,83] and
is well established for applications in computer science and artificial intelli-
gence.

Most of the material here is taken from [27,60–62]. We only consider products
of two logics, but the concepts can easily be extended to products of more
logics.

3.1. COMBINING MODAL LOGICS 21

De�nition 3.1 (Product Frames). Given two Kripke frames

F1 � pW1, R1q, F2 � pW2, R2q,

their product F1 � F2 is the frame

pW1 �W2, R1, R2q

where each Ri is the binary relation on W1 �W2 de�ned by

pw1, w2qR1 pw
1
1, w

1
nq i� w1R1w

1
1 and w2 � w1

2,

pw1, w2qR2 pw
1
1, w

1
nq i� w2R2w

1
2 and w1 � w1

1.

That is, the accessibility relations are de�ned coordinate-wise. Such a frame
is called a product frame.

The product of two unimodal logics is semantically defined via product
frames.

De�nition 3.2 (Products of Modal Logics). Let Λ1,Λ2 be two unimodal
logics formulated in the languages L1 and L2, respectively. Let

F :� tF1 � F2 | F1 |ù Λ1 and F2 |ù Λ2u.

Then the product Logic Λ1 � Λ2 is de�ned by

Λ1 � Λ2 :� tϕ P L1 b L2 | F̂ |ù ϕ for all F̂ P Fu.

If the product is built from two unimodal logics, then the geometrical intu-
ition suggests to take in the product frame one accessibility relation as the
‘horizontal’ relation Rh and the other as the ‘vertical’ relation Rv. The idea
for the following picture illustrating such a product is taken from [60].

R
h

w
1

w
2

F
1

F
2

v
2

v
1

R
v

F
1
  F

2

R
h

(w
1
, v

2
) (w

2
, v

2
)

R
h

(w
1
, v

1
) (w

2
, v

1
)

R
v

R
v

22 CHAPTER 3. COMBINED MODAL LOGICS

Axiomatizing product logics:

The definition of product frames implies that every binary product frame of
the form pW,Rh, Rvq satisfies the following three properties:

• left commutativity :
@w@u@u1 pwRvu^ uRhu

1q Ñ Dw1pwRhw
1 ^ w1Rvu

1qq,

• right commutativity :
@w@w1@u1 pwRhw

1 ^ w1Rvu
1 Ñ DupwRvu^ uRhu

1qq,

• Church-Rosser property, also called confluence:
@w@w1@u ppwRhw

1 ^ wRvuq Ñ Du1pw1Rvu
1 ^ uRhu

1qq.

These properties are illustrated in the following picture shown in [61].

w w′

u u′

Rh

Rv Rv

Rh

left commutativity

w w′

u u′

Rh

Rv Rv

Rh

right commutativity

w w′

u u′

Rh

Rv Rv

Rh

Church-Rosser property

4

An important consequence is that the corresponding modal interaction for-
mulas

com � ♦1♦2 ϕØ ♦2♦1 ϕ

chr � ♦1l2 ϕÑ l2♦1 ϕ

belong to every 2-dimensional product logic. The question arises whether we
can axiomatize product logics with these formulas.

De�nition 3.3 (Commutator). Let Λ1,Λ2 be two unimodal logics axioma-
tized by axiom sets Ax1 and Ax2, de�ning frame-classes F1 and F2, respec-
tively (see De�nition 2.6).

1. The commutator

rΛ1,Λ2s

is de�ned as the logic axiomatized by the set of axioms

Ax1 Y Ax2 Y tcom, chru.

3.1. COMBINING MODAL LOGICS 23

2. The pair Λ1,Λ2 is called product-matching if

rΛ1,Λ2s � tϕ | F1 � F2 |ù ϕ for all F1 P F1, F2 P F2u.

In this case we have
rΛ1,Λ2s � Λ1 � Λ2.

It turns out that many pairs of standard modal logics are indeed product-
matching. We are mainly interested in the following results which were
among others obtained by Gabbay and Shehtman [27, Theorem 7.12]:

[K, K] = K�K

[S4, S4] = S4�S4

[S5, S5] = S5�S5

[K4, S5] = K4�S5

[S4, S5] = S4�S5

Transfer results, decidability and complexity:

The transfer of good properties from the components to their combination
is less common with products than with fusions. We briefly list some of the
known results.

• The logics K�K and S5�S5 have the finite product model property [60].

• The logics K4� S5 and S4� S5 both lack the finite product model
property [61, Theorem 5.32], but are decidable. In fact, they are in
coN2EXPTIME [61, Theorem 5.28]. We will come back to this later.

• rS4,S4s and S4�S4 are both undecidable [28].

• The satisfiability problem for S5�S5 is NEXPTIME-complete, and so
the validity problem for S5�S5 is coNEXPTIME-complete [61].

• Let Λ be a bimodal logic between K�K and S5�S5. Then the satisfia-
bility problem for Λ is NEXPTIME-hard, and so the validity problem
for Λ is coNEXPTIME-hard [67].

In the next sections we investigate some properties of the combination of
K4 and S4 with S5 and then turn to the introduction of the full product
logics K4� S5 and S4� S5 and the logic of subset spaces SSL. Note that
SSL only satisfies the left commutativity property, but there is an additional
restriction on the allowed valuations.

24 CHAPTER 3. COMBINED MODAL LOGICS

3.2 Combining K4 and S4 with S5

3.2.1 Syntax of bimodal formulas

In this section we define the syntax of the bimodal formulas considered in
combinations of K4 and S4 with S5 using the two modal operators l (for the
K4 or S4 part) and K (for the S5 part). We then introduce some additional
notions and investigate some properties of combinations of the logics K4
and S4 with S5 that satisfy at least left commutativity. The logics K4� S5,
S4� S5, and SSL, that are the subject of our complexity investigations, have
the left commutativity property.
For the aimed complexity proofs it is convenient to define the syntax in such
a way that propositional variables are represented as x binary where binary
is some binary number without leading zeros. The set of well-formed bimodal
formulas L is generated by a context-free grammar.

De�nition 3.4 (Syntax of Bimodal Formulas). The set L of well-formed
bimodal formulas is recursively generated using the following Backus-Naur
grammar:

ϕ ::� ϕ | pϕ^ ϕq | Kϕ | lϕ | xvary
xvary ::� x0 | x1 | x1xbinstringy
xbinstringy ::� 0 | 1 | 0xbinstringy | 1xbinstringy

The set of propositional variables in L is defined by

AT :� tw P L | x is prefix of wu.

We also need some formulas of special type. For a modal operator � P tK,lu
we define the set

L� :� tψ P L | pDχ P Lq ψ � �χu
We adopt standard abbreviations for additional propositional connectives
and the dual modal operators: pϕ_ψq :� p ϕ^ ψq, pϕÑ ψq :� p ϕ_ψq,
pϕØ ψq :� pp ϕ_ψq^p ψ_ϕqq, Lϕ :� K ϕ and ♦ϕ :� l ϕ. We will
omit brackets whenever there is no danger that this might lead to confusion.
We introduce some further syntactical concepts and notions.

De�nition 3.5 (Subformula). The set sfpϕq of subformulas of a bimodal
formula ϕ is de�ned as usual by structural induction:

sfpAq :� tAu for A P AT,

sfp ϕq :� t ϕu Y sfpϕq,

sfppϕ^ ψqq :� tpϕ^ ψqu Y sfpϕq Y sfpψq,

sfplϕq :� tlϕu Y sfpϕq,

sfpKϕq :� tKϕu Y sfpϕq.

3.2. COMBINING K4 AND S4 WITH S5 25

3.2.2 Transitive Relations and Equivalence Relations

We now shed some light on the S5-equivalence classes and on an induced
relation on them in models combining K4 or S4 with S5 in such a way that
at least the left commutativity property holds. We start with some prelimi-
naries. In the following let W be a nonempty set, and let � be an equivalence
relation on W . As usual, for any w P W , by

rws� :� tv P W | w � vu

we denote the �-equivalence class of w, and, for any subset A � W , by

A� :� tras� | a P Au

we denote the set of �-equivalence classes of elements of A.

De�nition 3.6 (Induced Relation). For any binary relation R � W �W we
de�ne the relation R� � W� �W� induced on W� by R by

C R�D :ô pDw P CqpDv P Dq wRv,

for C,D P W�.

Lemma 3.7. If R is re�exive then R� is re�exive as well.

Proof. Consider some C P W�. Then C is nonempty, that is, there is some
w P C. Then, as R is re�exive, we have wRw. This implies C R�C. Hence,
R� is re�exive.

Lemma 3.8. If R is transitive and the relations R and � have the left
commutativity property then R� is transitive as well.

Proof. Consider C,D,E P W� with C R�D and DR�E. We wish to show
C R�E. There exist w P C, v, v1 P D and u P E with wRv and v1Ru. Due
to the left commutativity property there exists some w1 P C with w1Rv1. As
R is transitive, we obtain w1Ru. Hence C R�E.

In the following sections we will introduce frames for the logics K4� S5,
S4� S5, and SSL. They will consist of a set W and two relations, a transitive

relation or preorder
♦
Ñ for the modal operator l and an equivalence relation

L
Ñ for the modal operator K. In the case of the logics K4� S5 the relation
♦
Ñ is transitive, and in the case of the logics S4� S5 and SSL the relation

♦
Ñ

is a preorder.

26 CHAPTER 3. COMBINED MODAL LOGICS

Corollary 3.9. Let M � pW,
♦
Ñ,

L
Ñq be a triple consisting of a set W , a

transitive relation
♦
Ñ on W and an equivalence relation

L
Ñ on W such that

♦
Ñ and

L
Ñ have the left commutativity property.

1. Then
♦
Ñ

L
Ñ

is a transitive relation on W L
Ñ
.

2. If the relation
♦
Ñ is even a preorder then

♦
Ñ

L
Ñ

is a preorder as well.

Proof. This follows from Lemmas 3.7 and 3.8.

Often, in a model as described above, we will call the
L
Ñ-equivalence class of

a point w, denoted rws L
Ñ

or shorter rwsL, the cloud of w.

It gives a good intuition to think of commutativity as follows. Let C,D be

two clouds in a model M such that C
♦
Ñ

L
Ñ

D. Then

1. M has the left commutativity property iff for all v P D there is some

w P C with w
♦
Ñ v (all points in D have a father in C).

2. M has the right commutativity property iff for all w P C there is some

v P D with w
♦
Ñ v (all points in C have a son in D).

3.3 The logics K4� S5 and S4� S5

For the syntax definition of bimodal formulas we refer the reader to Definition
3.4.

K4� S5 is defined as the logic of K4� S5-product frames, and S4� S5 is
defined as the logic of S4� S5-product frames, defined as follows.

De�nition 3.10 (The Logics K4� S5 and S4� S5). 1. A K4-frame is a
pair pW,R♦q such that W is a non-empty set and R♦ � W �W is a
transitive relation on W .
An S4-frame is a pair pW,R♦q such that W is a non-empty set and
R♦ � W � W is a preorder on W , that is a re�exive and transitive
relation.
An S5-frame is a pair pW,RLq such that W is a non-empty set and
RL � W � W is an equivalence relation on W , that is a re�exive,
transitive and symmetric relation.

3.3. THE LOGICS K4� S5 AND S4� S5 27

2. Let X P tK4, S4u. Let F1 :� pW1, R♦q be some X-frame, F2 :�
pW2, RLq be some S5-frame. Then the product F1 � F2 is the triple

F :� pW1 �W2,
♦
Ñ,

L
Ñq

where
♦
Ñ and

L
Ñ are the binary relations on W1 �W2 de�ned by

pv1, v2q
♦
Ñ pw1, w2q ðñ v1R♦w1 and v2 � w2,

pv1, v2q
L
Ñ pw1, w2q ðñ v2RLw2 and v1 � w1,

for all pv1, v2q, pw1, w2q P W1 � W2. Any such product is called an
X � S5-product frame.

3. Let X P tK4, S4u. Then an X � S5-product model is a quadruple

pW,
♦
Ñ,

L
Ñ, σq such that the triple pW,

♦
Ñ,

L
Ñq is anX�S5-product frame

and
σ : AT Ñ PpW q

is a function mapping proposition letters to subsets of W .

4. Let X P tK4, S4u. The logic X � S5 is de�ned as the set of formulas
valid in all X � S5-product frames.

Let X P tK4, S4u. Note that the relation
♦
Ñ in an X�S5-product frame is au-

tomatically transitive and in the case of X � S4 even a preorder and that the

relation
L
Ñ in such product frames is automatically an equivalence relation.

Furthermore, recall that product frames satisfy left and right commutativity
as well as the Church-Rosser property. Actually, in X � S5-product frames
the Church-Rosser property is implied by the commutativity rules. To see

this, let w,w1, v be points such that w
L
Ñ w1 ^ w

♦
Ñ v. By the symmetry

of
L
Ñ we get w1 L

Ñ w and with w
♦
Ñ v and right commutativity it follows

that there is some point v1 such that w1 ♦
Ñ v1 and v1

L
Ñ v. Again, by the

symmetry of
L
Ñ we get v

L
Ñ v1. That is, there exists some point v1 such that

w1 ♦
Ñ v1 ^ v

L
Ñ v1 as demanded by the Church-Rosser property.

But since X�S5 � rX, S5s we can equivalently characterize X�S5 as the set
of formulas derivable from the X-axioms for the l-operator, the S5-axioms
for the K-operator and the axioms

comright � L♦ϕÑ ♦Lϕ

comleft � ♦LϕÑ L♦ϕ

for right and left commutativity. We call Kripke-frames satisfying these
axioms X � S5-commutator frames.

28 CHAPTER 3. COMBINED MODAL LOGICS

De�nition 3.11. (K4� S5- and S4� S5-Commutator Frames and Models).

1. A K4� S5-commutator frame is a a triple pW,
♦
Ñ,

L
Ñq such that

♦
Ñ is a

transitive relation on W , such that
L
Ñ is an equivalence relation on W ,

and such that right commutativity and left commutativity hold.

2. An S4� S5-commutator frame is a a triple pW,
♦
Ñ,

L
Ñq such that

♦
Ñ is

a preorder on W , such that
L
Ñ is an equivalence relation on W , and

such that right commutativity and left commutativity hold.

3. Let X P tK4, S4u. An X � S5-commutator model or short X � S5-

model is a quadruple pW,
♦
Ñ,

L
Ñ, σq such that the triple pW,

♦
Ñ,

L
Ñq is an

X � S5-commutator frame and

σ : AT Ñ PpW q

is a function mapping proposition letters to subsets of W .

ForX P tK4, S4u, we define semantics ofX�S5, based onX�S5-commutator
frames, via the satisfaction relation |ù.

De�nition 3.12 (Semantics). Let X P tK4, S4u. Let M � pW,
♦
Ñ,

L
Ñ σq

be some X� S5-commutator model. The satisfaction relation |ù� W � L is
de�ned as follows. Let w P W , let A be an arbitrary propositional variable,
and let ϕ be a bimodal formula. Then

M,w |ù A : ðñ w P σpAq,
M,w |ù ϕ : ðñ not M,w |ù ϕ,
M,w |ù pϕ^ ψq : ðñ M,w |ù ϕ and M,w |ù ψ,

M,w |ù lϕ : ðñ for all v PM with w
♦
Ñ v we have M, v |ù ϕ,

M,w |ù Kϕ : ðñ for all v PM with w
L
Ñ v we have M, v |ù ϕ.

When the model M is clear, then we often write w |ù ϕ instead of M,w |ù ϕ.
The following lemma prepares the definition of satisfiable formulas.

Lemma 3.13. Let X P tK4, S4u. For a formula ϕ in the language L the
following two conditions are equivalent.

1. There exist an X � S5-product model M and some point w in M such
that M,w |ù ϕ.

2. There exist an X � S5-commutator model M and some w in M such
that M,w |ù ϕ.

3.4. THE LOGIC OF SUBSET SPACES SSL 29

Proof. The direction �1 ñ 2� is clear. For the direction �2 ñ 1� see Theorem
7.12 in [27].

De�nition 3.14 (Satis�able K4� S5- and S4� S5-Formulas). Let X P
tK4, S4u. Let ϕ be a formula in the language L. The formula ϕ is X � S5-
satis�able i� one and then both of the two equivalent conditions in Lemma
3.13 are satis�ed.
In this case a pair pM,wq satisfying the �rst condition is called an X � S5-
product model of ϕ, while a pair pM,wq satisfying the second condition in
the previous lemma is called an X � S5-commutator model of ϕ. If the type
of model is clear from the context we simply call pM,wq a model of ϕ.

Let X P tK4, S4u. Actually, it is known that whenever a formula ϕ is X�S5-
satisfiable then there exists even an X�S5-commutator model of size doubly
exponential in the length of ϕ [61, Theorem 5.27]. This is not true for product
models: there exists an X � S5-satisfiable formula ϕ such that any X � S5-
product model pM,wq of ϕ is infinite [61, Theorem 5.32].

3.4 The logic of subset spaces SSL

3.4.1 Introduction

The subset space logic SSL was introduced by Moss and Parikh in the early
90s [71] and in more detail presented in [22]. It is a bimodal logic with the
modal operators l and K, basically designed for elementary reasoning about
points and sets. It combines the systems S4 (for l) and S5 (for K), thus
embedding topological aspects into epistemic logic. Tarski and McKinsey
proved that the topologically valid sentences are exactly those provable in
the logical system S4 [68, 69], and the system S5 is usually taken to reason
about an agent’s knowledge.
As the name already indicates, the most natural interpretation of SSL is
not in usual Kripke structures but in subset spaces pX,O, σq, consisting of
a nonempty set X, a family O of subsets of X and a valuation function σ.
The S5-operator K then quantifies ‘horizontally’ over points in a set U P O,
and the S4-operator l quantifies ‘downwards’ over subsets of U contained
in O. In the context of reasoning about knowledge, X can be seen as a set
of possible worlds and O as the set of all observations about these worlds
available to an agent.
In SSL the knowledge is defined with respect to both a point x P X and a
neighborhood U of x. Such a pair x, U with x P U P O is called a neighborhood
situation. Then in the neighborhood situation x, U the agent knows ϕ if ϕ

30 CHAPTER 3. COMBINED MODAL LOGICS

holds at all points in U . On the other hand, if in the actual situation the
agent does not know whether ϕ holds or not he considers both as possibilities.
But the more the agent knows, the smaller the number of alternatives he
takes into account, thus acquisition of knowledge corresponds to shrinking
the set of possible alternatives or, in the notion of topology, to shrinking the
neighborhood U of x. Since gaining knowledge usually requires some effort,
the l-operator is also called the effort operator.

We want to demonstrate this with an example that is small enough to be
visualized. Imagine we have three dice boxes numbered 1-3, each containing
one coin marked ‘0’ on one side and ‘1’ on the other. Playing with these
dice boxes, there are 8 possible outcomes: 000, 001, ... 111. Let ‘101’ be
the actual result. Before removing one of these dice boxes, the observer
or agent knows nothing about the result and thus considers all alternatives
as possible. After spending some effort to remove the first box, the set of
alternatives shrinks to the set containing the four outcomes beginning with
‘1’, and so on. The picture shows the development of the agent’s knowledge
if the dice boxes are removed one by one, in the order of their number. To

p
111

□

U
1

U
2

U
3

U
4

p
110

p
101

p
100

p
011

p
010

p
001

p
000

p
111

p
110

p
101

p
100

□

p
101

p
100

p
101

□

formalize this example, we choose the propositional variables C1, C2, C3 to
represent the three coins and a subset space pX,O, σq, where

X :� tp000, p001, p010, p011, p100, p101, p110, p111u
is the set of possible outcomes,

O :� tU1, U2, U3, U4u � X, with U1 :� X, U2 :� tp100, p101, p110, p111u,
U3 :� tp100, p101u and U4 :� tp101u,
is a set of equivalence classes for p101, and finally

3.4. THE LOGIC OF SUBSET SPACES SSL 31

σ is a valuation function such that pj P σpCiq iff the binary string j
contains ‘1’ at the i-th position.

As we have seen, reasoning about knowledge and knowledge acquisition leads
in a natural way to the subject of topology where the notion of knowledge
corresponds to closeness in topology and knowledge acquisition corresponds
to approximation.

Remark 3.15. Although O is not necessarily closed under union and �nite
intersection, it gives a good intuition to think about pX,Oq as some kind
of topological space. For this reason, adopting topological terminology, the
elements of O are called opens.

3.4.2 Subset Spaces

For the syntax definition of bimodal formulas we refer the reader again to
Definition 3.4.
The intended semantical domains of SSL are subset spaces and defined as
follows.

De�nition 3.16 (Subset Space). A subset frame is a pair

X � pX,Oq

where X is a non-empty set and O is a collection of subsets of X (not
necessarily a topology) satisfying X P O. The elements of O are called
opens.
A subset space model is a triple

S � pX,O, σq

where pX,Oq is a subset frame, and σ : AT Ñ PpXq is a function mapping
propositional letters to subsets of the domain X.

Although formulas will be evaluated at neighborhood situations U,w, the
valuation σ is defined only with respect to points and this fact gives reason
to the persistence axiom introduced later on.
Semantics for SSL is defined via the satisfaction relation |ù between neigh-
borhood situations in a subset space model and formulas in L.

De�nition 3.17 (Semantics). Let S � pX,O, σq be a subset space model.
The satisfaction relation |ù is de�ned by recursion on the form of the bimodal

32 CHAPTER 3. COMBINED MODAL LOGICS

formula considered. Consider p P U P O, ϕ P L, and A P AT .

p, U |ù A : ðñ p P σpAq,
p, U |ù ϕ : ðñ not p, U |ù ϕ,
p, U |ù ϕ^ ψ : ðñ p, U |ù ϕ and p, U |ù ψ,
p, U |ù Kϕ : ðñ q, U |ù ϕ for all q P U,
p, U |ù lϕ : ðñ p, V |ù ϕ for all V P O such that p P V � U

This is the semantical way to define SSL, but there is also a syntactical way
based on a set of axiom schemes.

3.4.3 Axiomatizing

Together with the Hilbert-style inference rules

ϕÑ ψ, ϕ
modus ponens

ψ

ϕ
K-necessitation

Kϕ
ϕ

l-necessitation
lϕ

the following axiom schemes establish the set of SSL-provable formulas:

(1) all substitution instances of tautologies of classical propositional logic

the S5-axioms for K:

(2) KpϕÑ ψq Ñ pKϕÑ Kψq

(3) KϕÑ ϕ

(4) KϕÑ KKϕ

(5) LϕÑ KLϕ

the S4-axioms for l:

(6) lpϕÑ ψq Ñ plϕÑ lψq

(7) lϕÑ ϕ

(8) lϕÑ llϕ

the persistence axioms :

(9) pAÑ lAq ^ p AÑ l Aq for all propositional variables A

the cross axioms :

(10) KlϕÑ lKϕ

3.4. THE LOGIC OF SUBSET SPACES SSL 33

The cross axiom is the typical one for the logic of subset spaces and a struc-
ture satisfying this axiom has the left commutativity property, for SSL tra-
ditionally called cross property.

The axioms are often used in their dual form, e.g.

KlϕÑ lKϕ � ♦LϕÑ L♦ϕ.

Note that because of the persistence axiom, SSL is not closed under substi-
tution.

Theorem 3.18. Let $SSL denote derivability in the above described deductive
system and let S denote the class of subset models. Then

$SSL ϕ ô S |ù ϕ for all S P S.

The proof of this theorem can be found in [22].

In the next subsection we introduce a second type of models for SSL that
turns out to be very useful.

3.4.4 Cross Axiom Models

Unfortunately, SSL lacks the finite model property w.r.t. the class of sub-
set spaces and hence establishing decidability results based on this class of
models is a hard or even unsolvable task.

The following example, which is a simplification of example B in [22], gives
a kind of infinity axiom for the class of subset spaces.

Example 3.19. Let A and B be two di�erent propositional variables. For
α :� Kp A_ ♦K Bq consider the formula

ϕ :� l♦α ^l♦ α.

We claim that ϕ has no �nite subset space model. For suppose that S were
a �nite subset space model containing p and U such that p, U |ù ϕ. We may
assume that U is a �-minimal open about p with this property. But the
minimality implies that p, U |ù α^ α, and this is absurd. Nevertheless this
formula is satis�able in an in�nite model as shown below.

34 CHAPTER 3. COMBINED MODAL LOGICS

A, B A, B A, B... A, B A, B A, B A, B

This example motivates that we move to a bigger class of models, and this
class will turn out to be behaved better.

De�nition 3.20 (Cross Axiom Model). A cross axiom frame is a tuple

M :� pW,
♦
Ñ,

L
Ñq

such that W is a non-empty set,
♦
Ñ is a preorder on W ,

L
Ñ is an equivalence

relation on W , and the cross property holds: If

w
♦
Ñ v

L
Ñ v1,

then there is some w1 P W such that

w
L
Ñ w1 ♦

Ñ v1.

A cross axiom model or short SSL-model is a cross axiom frame together
with a function

σ : AT Ñ PpW q
mapping proposition letters to subsets of W and satisfying the following
condition for all v, w P W and for all propositional variables A:

w
♦
Ñ v Ñ pw P σpAq Ø v P σpAqq .

De�nition 3.21 (Semantics). Let M � pW,
♦
Ñ,

L
Ñ σq be some cross axiom

model. The satisfaction relation |ù� W � L is de�ned as follows. Consider
some w P W , ϕ P L, and A P AT .

M,w |ù A : ðñ w P σpAq,
M,w |ù ϕ : ðñ not M,w |ù ϕ,
M,w |ù pϕ^ ψq : ðñ M,w |ù ϕ and M,w |ù ψ,

M,w |ù lϕ : ðñ for all v PM with w
♦
Ñ v we have M, v |ù ϕ,

M,w |ù Kϕ : ðñ for all v PM with w
L
Ñ v we have M, v |ù ϕ.

3.4. THE LOGIC OF SUBSET SPACES SSL 35

When the model M is clear, then we often write w |ù ϕ instead of M,w |ù ϕ.
The following summarizes argumentations in [22].

De�nition 3.22 (Cross Axiom Models based on Subset Space Models). Let
S � pX,O, σSq be a subset space model. Then we de�ne a quadruple M :�

pW,
♦
Ñ,

L
Ñ, σMq based on S as follows.

W :� tpp, Uq | p P U P Ou,
that is we take the neighborhood situations of S as the points in W ,

♦
Ñ:� tppp, Uq, pq, V qq P W 2 | p � q and V � Uu,

L
Ñ:� tppp, Uq, pq, V qq P W 2 | U � V u,

σMpAq :� tpp, Uq P W | p P σSpAqu, for all propositional variables A.

Lemma 3.23. Let S � pX,O, σSq be a subset space model and let

M :� pW,
♦
Ñ,

L
Ñ, σMq be the quadruple based on S as de�ned in De�ni-

tion 3.22.

1. M is a cross axiom model.

2. For all ϕ P L and for all neighborhood situation p, U P S

S, p, U |ù ϕ ô M, pp, Uq |ù ϕ.

Proof. 1. Obviously,
♦
Ñ is a preorder,

L
Ñ is an equivalence relation, per-

sistence of propositional variables is satis�ed and left commutativity
holds, that is, M is indeed a cross axiom model.

2. This is an easy induction on the structure of ϕ.

SSL is also sound and complete w.r.t. the class of cross axiom models (not
cross axiom frames because of the restrictions on the interpretation of propo-
sitional letters).

Theorem 3.24. Let ϕ be a formula in L. Then ϕ is SSL-derivable i� ϕ is
valid in every cross axiom model.

Proof. Soundness can be proved by induction on the structure of proofs.
Completeness follows from the completeness of SSL for the class of subset
space models together with Lemma 3.23.

Thus we get the following equivalent definitions of satisfiable SSL-formulas.

36 CHAPTER 3. COMBINED MODAL LOGICS

De�nition 3.25 (Satis�able SSL-Formulas). Let ϕ be a formula in the lan-
guage L. The formula ϕ is SSL-satis�able i� one and then both of the
following two equivalent conditions are satis�ed.

1. There exist a subset space model S and some neighborhood situation
p, U in S such that p, U |ù ϕ.

2. There exist a cross axiom model M and some point w in M such that
M,w |ù ϕ.

Example 3.26. We continue Example 3.19. Let A and B be two di�erent
propositional variables. We have seen that the formula

ϕ � l♦Kp A_ ♦K Bq ^l♦LpA^lLBq

has an in�nite subset space model but no �nite subset space model. By
Lemma 3.23 it has a cross axiom model as well. But we can show more: ϕ
even has a �nite cross axiom model:

A, B

:
:

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B

A, B A, B A, B

A, B A, B A, B

A, B A, B

:
:

:
:

...

...

...

...

...

...

...

A, B

A, B

A, BA, B

A, B

A, B

A, B

A, B

A, B



A, BA, B

A, B A, B

A, B

A, B

L

L

L

 



Infinite subset space model finite cross axiom model

Using cross axiom models and a filtration argument, decidability of the sat-
isfiability problem for SSL is proved in [22] and in a simplified version in [58].
The following lemma follows from considerations in [22, Section 2.3.]

Lemma 3.27. Every satis�able formula ϕ P L has a �nite cross axiom model

M :� pW,
♦
Ñ,

L
Ñ, σq of size doubly exponential in the length |ϕ| of ϕ.

In Chapter 4 we develop a tableau algorithm for SSL, providing alternative
proofs of decidability and completeness for the class of cross axiom models.

3.4. THE LOGIC OF SUBSET SPACES SSL 37

3.4.5 Work linked to SSL

In the course of time several modifications of SSL have been investigated,
offering additional properties for reasoning about space, knowledge or time.
We can only mention some of these systems and some relationship to other
logics.
While SSL was defined for arbitrary subset spaces, several extensions of SSL
with additional axioms consider restricted families of sets, representing dif-
ferent spatial properties. We give some examples.

• Georgatos [29] gave a sound and complete axiomatization for subset
spaces that are complete lattices.

• In [40] Heinemann studies spaces which satisfy finite chain conditions
of various sorts.

• An important extension of SSL is the logic called topologic with the
following additional axioms for ‘real’ topological spaces:

WD: ♦lϕÑ l♦ϕ
sound for weakly directed spaces and

Un:♦ϕ^ L♦ψ Ñ ♦ p♦ϕ^ L♦ψ ^K♦Lpϕ_ ψqq
sound for spaces closed under binary unions.

These axioms are among others presented by Moss and Parikh in [71].
They were first determined by Georgatos in his thesis [30] and proved
to be complete for topological spaces. Georgatos also showed that
topologic has the finite model property. The decidability proof pre-
sented in [22] uses argumentation different from that of Georgatos
and links topologic to early work of Tarski and McKinsey. Heinemann
showed in [45] that topologic is also complete with respect to the Can-
tor space, i.e., the set of all infinite 0 � 1-sequences endowed with the
initial segment topology.
Note that axiom (WD) is not complete for the class of directed spaces.
In [95] it is shown that axiomatizing this class in the language of
topologic requires an infinite set of axiom schemes.
In [42] Heinemann adds an overlap operator © to the language of
topologic, extending the semantics to

x, U |ù©ϕ iff x, V |ù ϕ for all V P O such that x P V.

With this new operator, Heinemann extends topologic to a system
called ET which provides a finite axiomatization of directed spaces.

38 CHAPTER 3. COMBINED MODAL LOGICS

Adding nominals for opens then increases the expressive power to cap-
ture weak connectedness of the space.
Nominals are simply propositional variables whose valuation is always
a singleton set and Heinemann considered a variety of adding nominals
to the language of topologic, see e.g. [43]. Hybrid extensions of SSL
have also been investigated by Wáng [92].
Among the modal logics for spatial reasoning the separate quantifi-
cation over points (K) and set of points (l) is a special feature of
topologic and SSL.

Temporal aspects of the effort operator are investigated by Heinemann and
Georgatos. Georgatos studies tree-like spaces (given two open sets in a tree-
like topological space, they are either disjoint, or one is a subset of the
other) [31]. This system can be seen as generalization of modal branching
time logics. In [41] Heinemann adds a nextstep operator and together with
the l-operator this operator allows to express statements like next time and
always in the future. This is a step towards generalizing linear time.

Subset space semantics has also attracted considerable attention in the epis-
temic context. Again, we list some examples:

• Georgatos presents in [32] a variant of SSL that handles arbitrary
changes of the agent’s epistemic state, that is, changes that do not
necessarily result in knowledge increase. He proves decidability and
completeness of this system for subset spaces.

• Extensions to multi-agent settings have been presented by the following
authors:

� A first approach to multi-agent settings was proposed by Pacuit
and Parikh in [73]. They consider a set of agents connected in
a communication graph, and such that agent i may receive infor-
mation from agent j only if there is an edge from i to j. The
arising logic uses a language very similar to topologic, and it is
shown that for each graph, the logic is decidable, and completely
characterizes the graph. But this approach is based on relational
semantics rather than on subset spaces.

� Other attempts at multi-agent versions of SSL have been made by
Başkent [10] and Wen et al. [96], but both present no meta-logical
results and have problems with the semantics of nested epistemic
formulas, as was pointed out in [93].

3.4. THE LOGIC OF SUBSET SPACES SSL 39

� The first sound and complete axiomatization for multi-agent epis-
temic subset space logic as a conservative extension of the single
agent case in the spirit of [23] was presented by Wáng and Ågotnes
in [93]. Their language, already used in e.g. [10], replaces the K
and l modalities of the single-agent SSL by Ki and li for each
agent i. As an important feature, their agents have S5 knowledge
as in the single-agent case.

� Heinemann investigates various scenarios to reason about the
knowledge of more than one agent, see e.g. [44,46–48]. We cite his
reflections in [49] on new and previous work and his comparison
with the work of Wáng and Ågotnes:

In the paper [44], an attempt was made to obtain an
appropriate multi-agent version of LSS [we use the ab-
breviation SSL]. The key idea behind that approach is
to incorporate the agents in terms of additional modali-
ties. This leads to an essential modification of the logic
(namely to a hybridization in the spirit of [15], Sect. 7.3),
while the original semantics basically remains unchanged.
The ‘right’ generalization of LSS to multiple agents has
then been found by Wáng and Ågotnes; see [93]. Their
partition semantics, however, assigns sets of sets of sub-
sets to the agents, complicating the handling of the sys-
tem considerably. Thus, one might still ask how far-
reaching the ‘naive’ subset space semantics for multiple
agents is. In this paper, we argue that the effect of agents
being exclusively geared to group knowledge can satisfac-
torily be embodied on that basis. In doing so, we follow
a two-faced principle. The neighborhood components of
any subset space are as of now (and here for the first
time) viewed as knowledge states of the given group G
of agents on the one hand, on the other hand, the agents
are represented by the actions they are able to perform
at any state; moreover, these actions are of such a nature
that no decrease of the knowledge of G can result.1 In
other words, only (the improvement in) group knowledge
is of interest to us and the individual knowledge of the
agents is neglected here. In this way, the semantic prob-
lems with the latter can be avoided and a multi-agent

1This is in accordance with the general setting in the context of subset spaces.

40 CHAPTER 3. COMBINED MODAL LOGICS

logic of subset spaces can nevertheless still be brought
about for an interesting special case.

• It is worth to mention that Wáng and Ågotnes show in [93] that (multi-
agent) SSL has a relational aspect in the sense that every subset model
has a one-to-one correspondence to a certain multi-dimensional rela-
tional model.

• Because of the dynamic nature of the effort modality there is also a
natural connection between SSL and dynamic logics. Dynamic logic
(DL) was developed by Vaughan Pratt [78] as an approach to assign-
ing meaning to Hoare logic by expressing the Hoare formula ptauq as
pÑ rasq with the meaning that after an execution of program a q holds
under the condition that p holds before. For details see [39]. Pratt’s
original dynamic logic was a first-order modal logic, since p and q may
contain first-order components such as functions. A propositional vari-
ant PDL (Propositional Dynamic Logic) was derived by Fischer and
Ladner [24].
Dynamic epistemic logic (DEL) (pronounced “dell”) combines dynamic
and epistemic aspects and is a very active area with applications in e.g.
Belief Revision, multi-agent and distributed systems, Artificial Intelli-
gence, Non-monotonic Reasoning, and Epistemic Game Theory. It is a
framework dealing with the change of the knowledge of agents, where
the change depends on an event or announcement of some formula ψ.
Such an announcement can be public available to all agents or private
available only to selected agents. Variants of DEL are e.g. PAL (Public
Announcement Logic), APAL (Arbitrary Public Announcement Logic)
or sPAL (semi-public Announcement Logic), named according to the
type of announcement. More about DEL and announcements can be
found in [5, 8, 9, 77, 89,90].
Although the connection between dynamic logics and SSL is quite in-
tuitive, it is by no means easy to establish. Details about this con-
nection can be found among others in [3, 6, 11, 13, 14, 94]. In [7] Bal-
tag, Özgün, and Sandoval present the system APALM which augments
APAL with memory. They point out that there is a deep connection
between APALM and SSL. Baltag, Fiutek, and Smets [4] show that
full DDL (here agents revise their beliefs about the world and about
their own beliefs) is a generalization of SSL.

Chapter 4

ESPACE Algorithms for K4� S5,
S4� S5, and SSL

In this chapter we prove that the satisfiability problems of the three bimodal
logics K4� S5, S4� S5, and SSL are in ESPACE. Actually, we prove the
following theorem.

Theorem 4.1. 1. The satis�ability problem of the bimodal logic K4� S5
can be decided in space Opn � 23nq.

2. The satis�ability problems of the two bimodal logics S4� S5 and SSL
can be decided in space Opn � 22nq.

For K4� S5 and S4� S5 it was already known that their satisfiability prob-
lems are in N2EXPTIME [61, Theorem 5.28], that is, they can be solved
by a nondeterministic Turing machine working in doubly exponential time.
It is known as well that for any SSL-satisfiable formula there exists a cross
axiom model of at most doubly exponential size [22, Section 2.3]. This shows
that the complexity of the satisfiability problem of SSL is in N2EXPTIME
as well.
We present decision algorithms for these problems that are based on certain
kinds of tableaux. The origins of the tableau method for classical logic can
be found in Beth [12], Hintikka [50] and, further developed, in Smullyan [84],
Kanger [53], Rautenberg [79] and Schütte [81].
In the propositional case the tableau method for a given formula ϕ looks for a
consistent set of subformulas of ϕ that arises by decomposing ϕ according to
the meaning of the Boolean connectives and that cannot be further decom-
posed. For modal formulas things are more complicated, since the tableau
for a satisfiable formula has to mirror the structure of a model for the for-
mula (if one exists). Decomposing formulas with modal operator like lψ or

41

42 CHAPTER 4. ESPACE ALGORITHMS

♦ψ leads to formulas that make assertions about successor worlds. Thus the
tableau construction must in some way refer to the accessibility relations.
Details about tableau methods for modal logics can be found in the following
sources: In the book [25] and the chapter [26] by Melvin Fitting, in [34] by
Rajeev Goré, in [35] by Guido Governatori, and in [2] by Baader and Sattler.
The chapter is organized as follows.

• We start with the definition of what we call partial tableaux, for each
of the three logics.

• We then show that the existence of a partial tableau for a bimodal
formula ϕ is equivalent to its satisfiability in the respective class of
models.

• We present recursive tableau algorithms that decide if there exists a
partial tableau for a given bimodal formula ϕ or not, and we prove
the correctness of these algorithms. They are somewhat similar to the
recursive algorithm of Ladner [63] for the modal logic S4.

• We show that, for X P tK4� S5, S4� S5, SSLu, given a bimodal for-
mula ϕ of length n the space used by the algorithm for the logic X is of
the order Opn�|T Xϕ |3q where T Xϕ is the set of all so-called X-tableau-sets
with respect to ϕ (to be defined in Section 4.1). Note that it is obvious
that |T Xϕ | ¤ 2n. Thus, we establish Opn � 23nq as an upper bound for
the space complexity of the satisfiability problems of all three logics.

• Then we consider the cases X P tS4� S5, SSLu. By an additional
counting argument, we show that |T Xϕ | ¤ 22n{3, for all n ¥ 3, where ϕ
is any bimodal formula and n its length. Thus, the algorithms for X P
tS4� S5, SSLu actually work in space Opn � 22nq. This can certainly be
improved even further. A similar counting argument could be applied
in the case X � K4� S5 as well, but in order to do that one should
slightly change the definition of tableau sets, and even then the gain is
smaller. Therefore, this is not worked out here.

Although it might seem somewhat paradox that we establish ESPACE as
an upper bound and EXPSPACE-hardness as a lower bound this is not a
contradiction. This phenomenon is due to the fact that the complexity class
ESPACE is not closed under reduction, neither reductions running in poly-
nomial time nor those running in logarithmic space.
We would like to point out that Section 4.4 starts with some general com-
binatorial observations on certain binary relations that may be of interest
elsewhere as well.

4.1. DEFINITION OF TABLEAUX FOR K4� S5, S4� S5, AND SSL 43

Due to the similarity of the three logics we can do much work in parallel for
all three logics.

4.1 The De�nition of Tableaux for K4� S5,

S4� S5, and SSL

At the beginning let us have a few thoughts about the construction of a
tableau for ϕ. We took only l and K as primitive modal operators because
it often makes proofs shorter. But it is perhaps more understandable to talk
about how to handle ♦- and L-formulas. These formulas are introduced as
abbreviations of negated l- and K-formulas, respectively, and they are the
ones that require appropriate successor points. So in informal descriptions
we will talk about ♦- and L-formulas while in formal parts we only use the
original operators.
We will construct tableaux not as usual brick by brick, we will instead use
prefabricated parts.

• Instead of expanding a set of formulas step-by-step to a proposi-
tional tableau we work with complete tableau-sets as defined in Def-
inition 4.2.1.

• The next step is to combine tableau-sets to sets of tableau-sets, called
tableau-clouds, under the conditions given in Definition 4.2.3.

Tableau-clouds are somewhat similar to mosaics [72]. They mirror the
L
Ñ-

equivalence classes in corresponding models. The benefit of working with
tableau-clouds is twofold: On the one hand, we only have to take care of
♦-formulas because in tableau-clouds all L-formulas are satisfied within the
tableau-cloud. On the other hand, demanded commutativity properties are
automatically satisfied if we meet the conditions for sequences of tableau-
clouds defined in Definition 4.3. Commutativity is hard to guarantee if one
builds tableaux from single formula sets.
The tableaux we construct are sets of tableau-clouds. We construct them
recursively and pathwise. A ♦-formula may demand that there exists a suit-
able successor to an element in a tableau-cloud. In order to arrive at a finite
tableau we will not immediately try to construct a suitable new successor
tableau-cloud containing a suitable successor element but first check whether
in the already constructed sequence of tableau-clouds there is a suitable one
that would lead to the satisfaction of the currently considered ♦-formula.
Thus, one might say that the algorithm tries to construct backwards loops
whenever possible.

44 CHAPTER 4. ESPACE ALGORITHMS

The backwards loops and the recursive design of the intended algorithms
result in the need for partial tableaux for a sequence of tableau-clouds. Assume
that we have to satisfy a formula ♦χ occurring in some tableau-cloud C at
some component p, that cannot be satisfied by a backwards loop to one of the
predecessors C0, . . . , Cm�1 of C. Then we try all tableau-clouds C 1 that contain
χ in some component q such that C 1 can be a successor of C and p can be
linked to q, until one recursive tableau search for C 1 gives a positive feedback.
Because of backwards loops that might be possible, we hand over to the new
instance of the algorithm not only C 1 but also the sequence C0, . . . Cm�1, C.
Additionally we hand over the formula ϕ that determines the set sfpϕq and
the set of tableau-clouds defined below.
We speak of a partial tableau for the sequence pϕ, C0, . . . Cm�1, Cq because in
the present instance of the algorithm we do not care whether the elements
of the sequence pC0, . . . Cm�1q can be provided with all successors needed to
satisfy their ♦-formulas. This is checked by other instances of the algorithm.
We start with the definition of tableau-sets and tableau-clouds as the building
blocks of the aimed tableaux.

De�nition 4.2 (Tableau-sets and Tableau-clouds). Let ϕ be a bimodal for-
mula and let X P tK4� S5, S4� S5, SSLu.

1. A K4� S5-tableau-set with respect to ϕ is a subset F � sfpϕq such that
the following conditions are satis�ed for all ψ P sfpϕq:

(a) If ψ � χ then pψ P F ðñ χ R F q.

(b) If ψ � pχ1 ^ χ2q then pψ P F ðñ pχ1 P F and χ2 P F qq.

(c) If ψ � Kχ then pψ P F ñ χ P F q.

2. For X P tS4� S5, SSLu an X-tableau-set with respect to ϕ is a subset
F � sfpϕq such that for all ψ P sfpϕq the conditions (a), (b), and (c) of
a K4� S5-tableau-set with respect to ϕ and additionally the following
condition are satis�ed:

(d) If ψ � lχ then pψ P F ñ χ P F q.

3. The set T Xϕ of all X-tableau-sets with respect to ϕ is de�ned by

T Xϕ :� tF � sfpϕq | F is an X-tableau-set with respect to ϕu.

4. An X-tableau-cloud with respect to ϕ is a subset F � T Xϕ such that the
following conditions are satis�ed:

4.1. DEFINITION OF TABLEAUX 45

(a) For all F,G P F ,
F X LK � GX LK

(b) For all χ with Kχ P sfpϕq,
if χ P

�
FPF F then Kχ P

�
FPF F .

5. The set CXϕ of all X-tableau-clouds with respect to ϕ is de�ned by

CXϕ :� tF � T Xϕ | F is an X-tableau-cloud with respect to ϕu.

Before we come to the definition of tableaux we specify the conditions under
which tableau-sets resp. tableau-clouds can be composed into a sequence.

De�nition 4.3 (Sequences of Tableau-sets and of Tableau-clouds). Let X P
tK4� S5, S4� S5, SSLu. Let ϕ be a bimodal formula, let F,G P T Xϕ , and let
F ,G P PpT Xϕ q.

1. We say that G can be an X-successor of F and write shortly F ¤X G
if the following conditions are satis�ed:

(a) in the case X � K4� S5 the conditions

F X Ll � G and

tψ P L | lψ P F u � G.

(b) in the case X � S4� S5 the condition

F X Ll � G.

(c) in the case X � SSL the conditions

F X Ll � G and

F X AT � GX AT.

2. We say that G can be an X-successor of F and write shortly F ¤X G
if the following conditions are satis�ed:

(a) in the case of X P tK4� S5, S4� S5u the two conditions

i. For all G P G there exists some F P F such that F ¤X G.

ii. For all F P F there exists some G P G such that F ¤X G.

(b) in the case of X � SSL the condition

i. For all G P G there exists some F P F such that F ¤SSL G.

46 CHAPTER 4. ESPACE ALGORITHMS

3. We de�ne a binary relation �X on PpT Xϕ q by

F �X G : ðñ pF ¤X G and G ¤X Fq.

4. Finally, we de�ne a binary relation X on PpT Xϕ q by

F X G : ðñ pF ¤X G and not G ¤X Fq.

Lemma 4.4. Let ϕ be a bimodal formula.

1. The relation ¤K4�S5 on T K4�S5
ϕ is transitive.

2. The relation ¤K4�S5 on PpT K4�S5
ϕ q is transitive.

3. The relation �K4�S5 on PpT K4�S5
ϕ q is transitive and symmetric.

Proof. All assertions can be checked straightforwardly.

Lemma 4.5. Let X P tS4� S5, SSLu, and let ϕ be a bimodal formula.

1. The relation ¤X on T Xϕ is a preorder.

2. The relation ¤X on PpT Xϕ q is a preorder.

3. The relation �X on PpT Xϕ q is an equivalence relation.

Proof. All assertions can be checked straightforwardly.

De�nition 4.6 (Partial Tableaux for a Sequence of Tableau-clouds). LetX P
tK4� S5, S4� S5, SSLu, and let ϕ be a bimodal formula. Let pF0, . . . ,Fmq
for some m ¥ 0 be a �nite sequence of pairwise di�erent X-tableau-clouds
(that is, Fi P CXϕ , for i � 0, . . . ,m) with respect to ϕ such that

Fi ¤X Fi�1, for all i m.

A partial X-tableau for pϕ,F0, . . . ,Fmq is a subset T � CXϕ satisfying the
following two conditions:

1. Fi P T, for i � 0, . . . ,m.

2. For all F P TztF0, . . . ,Fm�1u, for all F P F , and for all χ with lχ P
sfpϕq, if lχ R F , then there exists some G P T such that F ¤X G and
such that there exists some G P G with F ¤X G and χ R G.

4.2. TABLEAUX AND MODELS 47

4.2 Tableaux and Models

In this section we show that the satisfiability of a bimodal formula ϕ is
equivalent to the existence of a partial tableau for ϕ. This is true for all
three considered bimodal logics, K4� S5, S4� S5, and SSL. We proceed as
follows.

• Given a model M we define for any point w in M the tableau-cloud
“of the point w”. Then we show that the set of tableau-clouds of M
is a partial tableau for the one-point sequence of tableau-clouds that
consists of the tableau-cloud of some point w.

• Given a partial tableau for a one-point sequence of tableau-clouds, we
construct a model that satisfies the same bimodal formulas, in a certain
sense.

De�nition 4.7 (Tableaux based on Models). Let ϕ be a bimodal formula,

and let X P tK4� S5, S4� S5, SSLu. Let M � pW,
♦
Ñ,

L
Ñ, σq be an X-

model.

1. For all w P W we de�ne

satϕpwq :� tψ P sfpϕq |M,w |ù ψu.

2. For q P W L
Ñ

we de�ne

Fq :� tsatϕpwq | w P qu.

3. Let
TM,ϕ :� tFq | q P W L

Ñ
u.

F = sat(w)



≼

≼
 w w'

L



 v v'
L

M



F' = sat(w')

G = sat(v) G' = sat(v')


L

48 CHAPTER 4. ESPACE ALGORITHMS

Lemma 4.8. Let X P tK4� S5, S4� S5, SSLu, and let ϕ be a bimodal for-

mula. Let M � pW,
♦
Ñ,

L
Ñ, σq be an X-model.

1. For all w P W , the set satϕpwq is an X-tableau-set with respect to ϕ.

2. For all u, v P W , if u
♦
Ñ v then satϕpuq ¤X satϕpvq.

3. For all q P W L
Ñ

the set Fq is an X-tableau-cloud with respect to ϕ.

4. For all p, q P W L
Ñ
, if p

♦
Ñ

L
Ñ

q then Fp ¤X Fq.

5. For all w P W , the set TM,ϕ is a partial X-tableau for pϕ,FrwsLq.

Proof. 1. This is straightforward to see. Note that in the cases X P
tS4� S5, SSLu the sets satϕpwq for w P W satisfy Condition (d) in

De�nition 4.2.2 because the relation
♦
Ñ in an X-model is re�exive.

2.-4. All of these assertions are straightforward to check as well in each case
for X.

5. Let us �x some w P W . It is clear that FrwsL P TM,ϕ. Let us �x
some F P TM,ϕ and some F P F . Let us assume that χ is a bimodal
formula with lχ P sfpϕqzF . We have to show that there exists some
G P TM,ϕ such that F ¤X G and such that there exists some G P G
with F ¤X G and χ R G. Indeed, let us �x some point u P W with
F � satϕpuq and F � FrusL . From lχ R F � satϕpuq we conclude
M,u |ù lχ, hence, M,u |ù ♦ χ. As M is an X-model there exists

some point v P W with u
♦
Ñ v and M, v |ù χ. Let G :� satϕpvq

and G :� FrvsL . Then χ P G, hence, χ R G. Furthermore G P G and

G P TM,ϕ. Finally, by the second assertion of this lemma, u
♦
Ñ v implies

F � satϕpuq ¤ satϕpvq � G. And it implies rusL
♦
Ñ

L
Ñ

rvsL, which, by
the fourth assertion of this lemma, implies F � FrusL ¤X GrvsL � G.

De�nition 4.9 (Models based on Tableaux). Let ϕ be a bimodal formula,
and let X P tK4� S5, S4� S5, SSLu. Let F0 be an X-tableau-cloud with
respect to ϕ. Let T � CXϕ be a partial X-tableau for pϕ,F0q. We de�ne a
quadruple

MT � pW,
♦
Ñ,

L
Ñ, σq

4.2. TABLEAUX AND MODELS 49

consisting of a nonempty set W , of two binary relations
♦
Ñ and

L
Ñ on W ,

and of a function σ : AT Ñ PpW q as follows:

W :� tpF , F q P T� Ppsfpϕqq | F P Fu,
pF , F q ♦

Ñ pG, Gq : ðñ pF ¤X G and F ¤X Gq,
for pF , F q, pG, Gq P W,

pF , F q L
Ñ pG, Gq : ðñ F � G,

for pF , F q, pG, Gq P W,
σpAq :� tpF , F q P W | A P F u,

for A P AT.

F F'

G G'



≼

≼
 F F' L



 G G' L



Lemma 4.10. Let X, ϕ, F0 and T be as in the previous de�nition.

1. The quadruple MT is an X-model.

2. (Truth Lemma)

p@ψ P sfpϕqq p@pF , F q P W q pMT, pF , F q |ù ψ ðñ ψ P F q .

Proof. 1. The relations ¤ on T Xϕ and ¤X on CXϕ are transitive. Hence,

the relation
♦
Ñ is transitive as well. Furthermore, in the cases X P

tS4� S5, SSLu the relations ¤ on T Xϕ and ¤X on CXϕ are re�exive.

Hence, in these cases the relation
♦
Ñ is re�exive as well. It is clear that

the relation
L
Ñ is an equivalence relation.

Next, we show that left commutativity holds. Let us consider pairs
pF , F q, pG, Gq, pG 1, G1q P W with

pF , F q ♦
Ñ pG, Gq and pG, Gq L

Ñ pG 1, G1q.

50 CHAPTER 4. ESPACE ALGORITHMS

Then G 1 � G. Furthermore, F ¤X G and F ¤X G. Due to G1 P G 1 � G
and F ¤X G there exists some F 1 P F with F 1 ¤X G1. We conclude

pF , F 1q
♦
Ñ pG, G1q. As pF , F q L

Ñ pF , F 1q is clear, we have shown left
commutativity.

In the cases X P tK4� S5, S4� S5u right commutativity is shown in
the same way.

Finally, let us consider the case X � SSL. We still need to show that in
this case the persistence property holds true. For pF , F q, pG, Gq P W ,

the condition pF , F q ♦
Ñ pG, Gq implies F ¤SSL G which, in turn, implies

F X AT � G X AT . Hence, for any propositional variable A and any

pF , F q, pG, Gq P W with pF , F q ♦
Ñ pG, Gq we have A P F ðñ A P G,

hence, pF , F q P σpAq ðñ pG, Gq P σpAq. Thus, the persistence
property is satis�ed. We have shown that MT is a cross axiom model.

2. Let us consider some ψ P sfpϕq. We wish to show

MT, pF , F q |ù ψ ðñ ψ P F,

for all pF , F q P W . This is shown by structural induction. We distin-
guish the following cases:

• ψ � A P AT .
For pF , F q P W , the condition MT, pF , F q |ù A is equivalent to
pF , F q P σpAq, and by de�nition of σ, this is equivalent to A P F .

• ψ � χ.
In this case, the following four conditions are equivalent (the sec-
ond and the third condition by induction hypothesis) for pF , F q P
W :

(a) MT, pF , F q |ù ψ,

(b) MT, pF , F q * χ,

(c) χ R F ,

(d) ψ P F .

• ψ � ψ1 ^ ψ2.
This case is treated similarly.

• ψ � Kχ.
Let us �rst assume MT, pF , F q |ù Kχ. We wish to show Kχ P F .
By the semantics de�nition MT, pF , Gq |ù χ, for all G P F . By
induction hypothesis, χ P G for all such G. Thus, we have χ P

4.2. TABLEAUX AND MODELS 51

�
GPF G. As F is an X-tableau-cloud, we obtain Kχ P

�
GPF G.

As F P F as well we �nally obtain Kχ P F .

For the other direction let us consider some pF , F q P W , and let
us assume Kχ P F . We wish to show MT, pF , F q |ù Kχ. As
F P F and F is a tableau-cloud, we have F X LK � G X LK ,
for all G P F . This implies Kχ P G, for all G P F . As all
such G are X-tableau-sets, we obtain χ P G, for all G P F . By
induction hypothesis MT, pF , Gq |ù χ, for all G P F . But this
implies MT, pF , F q |ù Kχ.

• ψ � lχ.
Let us �rst assume MT, pF , F q |ù lχ. We wish to show lχ P F .
The assumption implies that MT, pG, Gq |ù χ, for all pG, Gq P W
with pF , F q ♦

Ñ pG, Gq. By induction hypothesis we obtain χ P G,
for all such pG, Gq P W . Hence, χ P G for all pG, Gq P W satisfying
F ¤X G and F ¤X G. The second condition in De�nition 4.6
implies lχ P F .

For the other direction, let us consider some pF , F q P W and
let us assume lχ P F . We wish to show MT, pF , F q |ù lχ.
It is su�cient to show that MT, pG, Gq |ù χ for all pG, Gq P W
with pF , F q ♦

Ñ pG, Gq. By induction hypothesis it is su�cient to

show that χ P G for all pG, Gq P W with pF , F q ♦
Ñ pG, Gq. But

pF , F q ♦
Ñ pG, Gq implies F ¤X G. In the case X � K4� S5 this

condition and the assumption lχ P F immediately imply χ P G.
In the cases X P tS4� S5, SSLu the condition F ¤X G and the
assumption lχ P F imply lχ P G. Using additionally the fact
that G is an X-tableau-set, we obtain χ P G.

We are now ready to state and prove the main result of this section.

Proposition 4.11. Let X P tK4� S5, S4� S5, SSLu, and let ϕ be a bimodal
formula. The following two conditions are equivalent.

1. ϕ is X-satis�able.

2. There exists an X-tableau-cloud F0 such that there exist a set F P F0

with ϕ P F and a partial X-tableau for pϕ,F0q.

Proof. Let us �rst assume that ϕ is X-satis�able. Then there are some X-

model M � pW,
♦
Ñ,

L
Ñ, σq and some point w P W such that M,w |ù ϕ.

According to Lemma 4.8.5 the set TM,ϕ de�ned in De�nition 4.7 is a partial

52 CHAPTER 4. ESPACE ALGORITHMS

X-tableau for pϕ,FrwsLq. Due to M,w |ù ϕ the formula ϕ is an element of
the set F :� satϕpwq and this in turn is an element of FrwsL .
For the other direction let us assume that there exist an X-tableau-cloud F0,
an X-tableau-set F P F0 with ϕ P F and a partial X-tableau T for pϕ,F0q.

According to Lemma 4.10.1 the quadruple MT � pW,
♦
Ñ,

L
Ñ, σq de�ned in

De�nition 4.9 is an X-model. Furthermore, we have F P F0, hence, the pair
pF0, F q is an element of W . Finally, due to ϕ P F and due to Lemma 4.10.2
we obtain MT, pF0, F q |ù ϕ. Hence, ϕ is X-satis�able.

This shows that we can replace the search for a model of ϕ by the search for
a partial tableau for ϕ. We will organize this search by recursive algorithms
that will be described in the following section.

4.3 The Tableau Algorithms

The algorithms use the following recursive procedures algK4�S5, algS4�S5, and
algSSL.

De�nition 4.12 (Procedures algK4�S5, algS4�S5, and algSSL). Assume that
X P tK4� S5, S4� S5, SSLu. Given a bimodal formula ϕ and for some
m ¥ 0 a sequence pF0, . . . ,Fmq of pairwise di�erent tableau-clouds Fi P Cϕ
with Fi ¤X Fi�1, for all i m, the algorithm

algXpϕ,F0, . . . ,Fmq

checks for every pair plχ, F q P sfpϕq � Fm with lχ R F �rst

(I) whether there exists some i P t0, . . . ,mu with Fm ¤X Fi and such that
there exists some G P Fi with F ¤X G and χ R G,

and, if this is not the case,

(II) whether there exists some tableau-cloud Fm�1 P C
X
ϕ ztF0, . . . ,Fmu with

Fm ¤X Fm�1 such that
� there exists some G P Fm�1 with F ¤X G and χ R G and
� algXpϕ,F0, . . . ,Fm,Fm�1q returns �yes�.

If for every pair plχ, F q P sfpϕq�Fm withlχ R F Condition (I) or Condition
(II) is satis�ed then algXpϕ,F0, . . . ,Fmq returns �yes�, otherwise it returns
�no�. This ends the description of the algorithm algXpϕ,F0, . . . ,Fmq.

We show that its works correctly, for each X P tK4� S5, S4� S5, SSLu.

4.3. THE TABLEAU ALGORITHMS 53

Proposition 4.13. Let X P tK4� S5, S4� S5, SSLu. Let ϕ be a bimodal
formula. Let pF0, . . . ,Fmq for some m ¥ 0 be a sequence of pairwise di�erent
tableau-clouds with respect to ϕ satisfying Fi ¤X Fi�1, for i m. Then
algXpϕ,F0, . . . ,Fmq returns �yes� if, and only if, there exists a partial X-
tableau for pϕ,F0, . . . ,Fmq.

Proof. We show each direction of this equivalence by induction over the car-
dinality of the following set

SpF0, . . . ,Fmq :� tG P CXϕ ztF0, . . . ,Fmu | Fm ¤X Gu.

Note that this set is �nite because CXϕ is a �nite set.

Let us �rst assume that there exists a partial X-tableau for pϕ,F0, . . . ,Fmq.
We claim that algXpϕ,F0, . . . ,Fmq will return �yes�. This is clear if there are
no pairs plχ, F q P sfpϕq�Fm with lχ R F , or if for all such pairs Condition
(I) is true. So, let us consider the case when there are such pairs for which
Condition (I) is not true. Let us �x a pair plχ, F q P sfpϕq�Fm with lχ R F
such that (I) is not true for this pair. We claim that (II) is true for this pair.

Consider a partial X-tableau T for pϕ,F0, . . . ,Fmq. Due to lχ P sfpϕqzF
and F P Fm and due to the second condition in De�nition 4.6 there exists an
element G P T with Fm ¤X G such that there exists some G P G with F ¤X G
and χ R G. The set Fm�1 :� G is an X-tableau-cloud with Fm ¤X Fm�1,
with G P Fm�1, with F ¤X G, and with χ R G. Furthermore, as (I) is not
true for the pair plχ, F q, we have Fm�1 R tF0, . . . ,Fmq. This shows that
F0, . . . ,Fm,Fm�1 are pairwise di�erent. Thus, T is a partial X-tableau for
pϕ,F0, . . . ,Fm�1q. Due to Fm�1 R tF0, . . . ,Fmu, the set SpF0, . . . ,Fm,Fm�1q
contains strictly less elements than the set SpF0, . . . ,Fmq. Hence, the algo-
rithm algXpϕ,F0, . . . ,Fm,Fm�1q returns �yes� by induction hypothesis and
hence, (II) is true. This ends our proof by induction of the claim that if
a partial X-tableau for pϕ,F0, . . . ,Fmq exists then algXpϕ,F0, . . . ,Fmq will
return �yes�.

For the other direction, let us assume that algXpϕ,F0, . . . ,Fmq returns �yes�.
In the following we will construct a partial X-tableau T for pϕ,F0, . . . ,Fmq.
Let Pairs be the set of all pairs plχ, F q P sfpϕq � Fm with lχ R F . As by
assumption the algorithm algXpϕ,F0, . . . ,Fmq returns �yes� the set Pairs is
the disjoint union of the sets PairsI,0, . . . ,PairsI,m, PairsII , where

• PairsI,i, for i P t0, . . . ,mu, is the set of all pairs plχ, F q P Pairs such
that (I) is satis�ed and i is the smallest number in t0, . . . ,mu such that
Fm ¤X Fi and such that there exists some G P Fi with F ¤X G and
χ R G,

54 CHAPTER 4. ESPACE ALGORITHMS

• PairsII is the set of all pairs in Pairs such that (I) is not satis�ed but
(II) is.

Let k be the number of pairs in PairsII , and let plχj, Fjq for j � 0, . . . , k�1
be the elements of PairsII . For each j P t0, . . . , k� 1u there exists a tableau-

cloud F pjq
m�1 P CϕztF0, . . . ,Fmu with Fm ¤X F pjq

m�1 such that there exists some

G P F pjq
m�1 with Fj ¤X G and χj R G and such that algXpϕ,F0, . . . ,Fm,F pjq

m�1q

returns �yes�. Furthermore, the set SpF0, . . . ,Fm,F pjq
m�1q contains less ele-

ments than the set SpF0, . . . ,Fmq, due to F pjq
m�1 R tF0, . . . ,Fmu. Hence, by

induction hypothesis, there exists a partial X-tableau Tpjq for the sequence
pϕ,F0, . . . ,Fm,F pjq

m�1q. We de�ne

T :�
k�1¤
j�0

Tpjq.

We claim that T is a partial X-tableau for pϕ,F0, . . . ,Fmq.
Indeed, it is clear that tF0, . . . ,Fmu � T because tF0, . . . ,Fmu � Tpjq even
for every j k. Let us consider some F P TztF0, . . . ,Fm�1u, some F P F ,
and some formula lχ P sfpϕqzF . We wish to show that there exists some
G P T such that F ¤X G and such that there exists some G P G with F ¤X G
and χ R G. We distinguish the following two cases.

1. F � Fm.
Then there exists a j P t0, . . . , k � 1u with F P TpjqztF0, . . . ,Fmu. As
Tpjq is a partial X-tableau for pϕ,F0, . . . ,Fm,F pjq

m�1q there exists an X-
tableau-cloud G P Tpjq such that F ¤X G and such that there exists
some G P G with F ¤X G and χ R G. As Tpjq is a subset of T we are
done.

2. F � Fm.
Then plχ, F q P Pairs. Either there exists a unique i P t0, . . . ,mu with
plχ, F q P PairsI,i or plχ, F q P PairsII .

In the �rst case Fm ¤X Fi and there exists some G P Fi with F ¤X G
and χ R G. In this case we set G :� Fi.
In the second case there exists a number j P t0, . . . , k � 1u with

plχ, F q � plχj, Fjq. Then F � Fm ¤X F pjq
m�1, and there exists an

X-tableau-set G P F pjq
m�1 with F ¤X G and with χ R G. In this case

we set G :� F pjq
m�1.

This shows that the procedure algX is correct.

4.4. THE SPACE USED BY THE ALGORITHMS 55

Now, with the procedures algK4�S5, algS4�S5, and algSSL at hand we can
present tableau algorithms ALGK4�S5, ALGS4�S5, and ALGSSL for the logics
under consideration.

De�nition 4.14 (Tableau Algorithms ALGK4�S5, ALGS4�S5, and ALGSSL).
Let X P tK4� S5, S4� S5, SSLu. Given a bimodal formula ϕ the algorithm
ALGXpϕq lets F0 run through all X-tableau-clouds F0 P C

X
ϕ such that there

exists some F P F0 with ϕ P F and applies algX to pϕ,F0q. It accepts ϕ i�
algXpϕ,F0q returns �yes� for at least one such pair pϕ,F0q.

Proposition 4.15. Let X P tK4� S5, S4� S5, SSLu. The algorithm ALGX

accepts a bimodal formula ϕ if and only if ϕ is X-satis�able.

Proof. Let X P tK4� S5, S4� S5, SSLu. Let ϕ be a bimodal formula. The
algorithm ALGX accepts ϕ by de�nition if, and only if, there exists an X-
tableau-cloud F0 P CXϕ such that ϕ P F for some F P F0 and such that
algXpϕ,F0q returns �yes�. According to Proposition 4.13 algXpϕ,F0q returns
�yes� if, and only if, there exists a partial tableau for pϕ,F0q. According to
Proposition 4.11 there exists a tableau-cloud F0 P CXϕ such that there exist
a set F P F0 with ϕ P F and a partial X-tableau for pϕ,F0q if, and only if,
ϕ is X-satis�able.

Finally let us point out that, whenever the algorithm ALGXpϕq makes a call
algXpϕ,F0, . . . ,Fmq for some bimodal formula ϕ and some finite sequence
F0, . . . ,Fm of X-tableau-sets, then all of these X-tableau-sets are pairwise
different.

4.4 Upper Bounds for the Space Used by the

Algorithms

It is the purpose of this section to prove the following proposition.

Proposition 4.16. Let X P tK4� S5, S4� S5, SSLu. The algorithm ALGX

can be implemented on a multi-tape Turing machine so that it, given a bi-
modal formula ϕ of length n, does not use more than Opn � pn � |T Xϕ |q3q
space.

Before we prove this, let us deduce one of the assertions of Theorem 4.1

Proof of Theorem 4.1 in the case X � K4� S5. We have presented an algo-
rithm ALGK4�S5 that, according to Proposition 4.15, accepts a bimodal for-
mula ϕ if, and only if, ϕ is K4� S5-satis�able. Let n be the length of ϕ.

56 CHAPTER 4. ESPACE ALGORITHMS

There are at most n subformulas of ϕ. Hence, |T Xϕ | ¤ 2n. By Proposi-
tion 4.16 the algorithm ALGK4�S5 can be implemented in such a way that it
works in space Opn � 23�nq.

In Section 4.5, for X P tS4� S5, SSLu we shall give a better upper bound for
|T Xϕ | than 2n.
Let X P tK4� S5, S4� S5, SSLu. The algorithm ALGX calls the recursive
procedure algX . It is clear that the space used by these algorithms is heavily
influenced by the recursion depth of calls algXpϕ,F0, . . . ,Fmq that occur
during the execution of ALGXpϕq. Therefore, first we plan to give upper
bounds for the recursion depth of these algorithms. As a first step for this
we will give upper bounds for the maximum chain length of the transitive
relation ¤X on PpT Xϕ q, for any bimodal formula ϕ.

4.4.1 Observations about the Maximum Chain Length

What is the maximum chain length of a transitive relation on a nonempty
finite set? Let us define this. For any relation ¤ on a set S let the relation
 on S be defined by

s t : ðñ ps ¤ t and not t ¤ sq,

for any s, t P S,

Lemma 4.17. Let ¤ be a relation on a set S.

1. For s, t P S, if s t then s � t.

2. If ¤ is a transitive relation on a set S then the relation on S is
transitive as well.

Proof. Let us consider some elements s, t P S with s t. Then s ¤ t. If
s � t then we would have t ¤ s as well, contradicting s t.
Let us consider some elements r, s, t P S with r s and s t. Then r ¤ s
and s ¤ t. The transitivity of ¤ implies r ¤ t. We claim that t ¤ r is
not true. For the sake of a contradiction, let us assume t ¤ r. Then the
transitivity of ¤ implies s ¤ r in contradiction to r s.

For any transitive relation ¤ on a finite, nonempty set S we define its maxi-
mum chain length mclp¤q to be the largest natural number l such that there
exists a sequence s0, . . . , sl P S with si si�1, for all i l, that is, such that

s0 s1 . . . sl.

We call such a sequence a -chain.

4.4. THE SPACE USED BY THE ALGORITHMS 57

Corollary 4.18. Let S be a �nite nonempty set. If ¤ is a transitive relation
on S then mclp¤q is well-de�ned and satis�es mclp¤q ¤ |S| � 1.

Proof. This follows from the previous lemma.

The maximum chain length of an order (a reflexive, transitive and antisym-
metric relation) on a finite nonempty set is often called its length or its height;
see, e.g., [37, Page 4] or [80, Section 2.1]. In other contexts the maximum
chain length plus one of a preorder on a finite nonempty set S is called the
rank of the finite preordered set pS,¤q (if S is empty then the rank is 0); see,
e.g., [54]. We start with two simple observations.

Lemma 4.19. If ¤ is a transitive relation on a �nite, nonempty set S then
its inverse, the relation p¤q�1 on S de�ned by

sp¤q�1t : ðñ t ¤ s,

for s, t P S, is a transitive relation on S as well, and mclpp¤q�1q � mclp¤q.

We omit the straightforward proof. Often, instead of p¤q�1 we write ¥.

Lemma 4.20. If ¤1 and ¤2 are transitive relations on a �nite, nonempty
set S, then their intersection ¤3:�¤1 X ¤2, that is, the relation ¤3 on S
given by

s ¤3 t : ðñ ps ¤1 t and s ¤2 tq,

for s, t P S, is a transitive relation on S as well, and

mclp¤3q ¤ mclp¤1q �mclp¤2q.

Proof. It is clear that ¤3 is a transitive relation on S. For the other assertion,
we observe that

s 3 t ðñ pps 1 t and s ¤2 tq or ps ¤1 t and s 2 tq,

for all s, t P S. Hence, if s0, . . . , sl is a 3-chain then with

Ij :� tk P t0, . . . , l � 1u : sk j sk�1u,

for j � 1, 2, we have t0, . . . , l � 1u � I1 Y I2. The elements sk for k P I1 Y
tmaxpI1q�1u form a 1-chain and the elements sk for k P I2YtmaxpI2q�1u
form a 2-chain. We obtain mclp¤3q ¤ mclp¤1q �mclp¤2q.

58 CHAPTER 4. ESPACE ALGORITHMS

If ¤ is a transitive relation on a set S then by

s � t : ðñ ps � t or ps ¤ t and t ¤ sqq,

for s, t P S, an equivalence relation � on S is defined. If ¤ is reflexive a well,
that is, if ¤ is a preorder then, for all s, t P S,

s � t ðñ ps ¤ t and t ¤ sq.

Let us assume that ¤ is transitive. Remember that, for any s P S, by

rss� :� tt P S | s � tu

we denote the �-equivalence class of s, and, for any subset A � S, by

A� :� tras� | a P Au

we denote the set of �-equivalence classes of elements of A.

Lemma 4.21. Let ¤ be a transitive relation on a nonempty set S. If an
equivalence class q P S� contains at least two di�erent elements then s ¤ t
is true for all s, t P q.

Proof. Let q P S� be an equivalence class containing at least two di�erent
elements. Let us consider some s, t P q. If s � t then s, t P q implies s ¤ t.
If s � t then, due to the fact that there is at least one element r P q with
r � s, we obtain s ¤ r and r ¤ s and, by transitivity of ¤, s ¤ s as well.

Note that in particular s ¤ s if s is an element of an equivalence class
containing at least two elements. So, the restriction of a transitive relation
to the union of all equivalence classes containing at least two elements is
reflexive.
The following proposition is the key for our upper estimates for mclp¤Xq on
PpT Xϕ q, for any X P tK4� S5, S4� S5, SSLu and any bimodal formula ϕ.

Proposition 4.22. Let ¤ be a transitive relation on a �nite, nonempty set
S. Then the relation ¤1 on PpSq de�ned by

A ¤1 B : ðñ p@b P Bq pDa P Aq a ¤ b,

for A,B � S, is transitive as well, and mclp¤1q ¤ 2 � |S�| ¤ 2 � |S|.

Proof. It is straightforward to see that ¤1 is transitive. And it is clear that
|S�| ¤ |S|. Let us prove mclp¤1q ¤ 2 � |S�|. Let A be a subset of S. Let
us call an element a P A a minimal element of A if there does not exist

4.4. THE SPACE USED BY THE ALGORITHMS 59

any b P A with b a. Let Amin be the set of minimal elements of A. Let
Amin,� :� pAminq� be the set of �-equivalence classes of elements of Amin.
Note that

p@a P Aq pDa1 P Aminq a
1 ¤ a. (4.1)

Indeed, let us consider some element a P A. If a0 :� a is not an element of
Amin then there exists some a1 P A with a1 a0. If a1 R Amin then there
exists some a2 P A with a2 a1. And so on. As S is �nite, by Corollary 4.18
this can be repeated only �nitely often, and �nally we arrive at some a1 P Amin

with a1 ¤ a.
Now let also B be a subset of S. We claim:

if Amin,� � Bmin,� then pA ¤1 B and B ¤1 Aq. (4.2)

Indeed, let us assume Amin,� � Bmin,�. Due to (4.1) applied toB instead of A,
for any b P B there exists some b1 P Bmin with b1 ¤ b. Due to Amin,� � Bmin,�

there exists some a P Amin with a � b1. We obtain a � b1 ¤ b, hence, a ¤ b.
This shows A ¤1 B. By symmetry one obtains B ¤1 A as well.
Next, let also C be a subset of S and let us assume A ¤1 B and B ¤1 C. We
claim that in this case:

if q P Amin,�zBmin,� then q R Cmin,�. (4.3)

Let us consider some q P Amin,�zBmin,�. For the sake of a contradiction, let
us assume q P Cmin,�. Fix some a P q X Amin and some c P q X C. Due
to B ¤1 C, there exists some b P B with b ¤ c. Due to (4.1) applied to B
instead of A, there exists some b1 P Bmin with b1 ¤ b. Due to A ¤1 B, there
exists some a1 P A with a1 ¤ b1. We obtain

a1 ¤ b1 ¤ b ¤ c � a,

hence, a1 ¤ a. Due to a P Amin we conclude a ¤ a1, and this implies
a1 � b1 � b � c � a. Hence q � rb1s� P Bmin,� in contradiction to the
assumption. We have proved (4.3).
Finally, let us consider a sequence pAp0q, . . . , Aplqq of subsets of S with Apiq 1

Api�1q for all i l. The claim (4.2) shows that for every i l the set A
pi�1q
min,�

is di�erent from the set A
piq
min,�. Hence, in each step from i to i�1 some class

q P S� has to enter or to leave the set A
p...q
min,�. The claim (4.3) shows that

once a class q P S� has left the set A
p...q
min,� it can never re-enter it. Hence,

any element q P S� can enter this set at most once and can leave it at most
once. This shows that this set can change at most 2 � |S�| times. This proves
l ¤ 2 � |S�|.

60 CHAPTER 4. ESPACE ALGORITHMS

Corollary 4.23. Let X P tK4� S5, S4� S5, SSLu, and let ϕ be a bimodal
formula.Then for the relation ¤X on PpT Xϕ q the following estimate is true.

1. mclp¤Xq ¤ 4 � |T Xϕ |, if X P tK4� S5, S4� S5u.

2. mclp¤SSLq ¤ 2 � |T SSL
ϕ |.

Proof. For X P tK4� S5, S4� S5u the relation ¤X is equal to the intersec-
tion of the relations ¤1

X and p¥1
Xq

�1 (where with ¥X we mean the relation
p¤Xq

�1). We obtain

mclp¤Xq ¤ mclp¤1
Xq �mclpp¥1

Xq
�1q pby Lemma 4.20q

� mclp¤1
Xq �mclp¥1

Xq pby Lemma 4.19q

¤ 2 � |T Xϕ | � 2 � |T Xϕ | pby Prop. 4.22q

� 4 � |T Xϕ |.

The relation ¤SSL is equal to the relation ¤1
SSL. Similarly as above we obtain

mclp¤SSLq ¤ 2 � |T SSL
ϕ |.

4.4.2 The Recursion Depth of the Algorithm

Let X P tK4� S5, S4� S5, SSLu. The following proposition contains our
estimate for the recursion depth that can occur when ALGXpϕq calls the
recursive procedure algX .

Proposition 4.24. Let X P tK4� S5, S4� S5, SSLu. Let ϕ be a bimodal
formula. Let n be its length. If pF0, . . . ,Flq for some l ¥ 0 is a sequence of X-
tableau-clouds with respect to ϕ such that during the execution of ALGXpϕq
a call algXpϕ,F0, . . . ,Flq occurs then l 5 � n � |T Xϕ |2.

Proof. Let X P tK4� S5, S4� S5, SSLu. Let us assume that during the
execution of ALGXpϕq a call algXpϕ,F0, . . . ,Flq occurs. Then, during the
execution of ALGXpϕq, for all m ¤ l a call algXpϕ,F0, . . . ,Fmq must oc-
cur. For all m l there must exist a pair plχm, Fmq P sfpϕq � Fm with
lχm R Fm which during the execution of algXpϕ,F0, . . . ,Fmq leads to a call
of algXpϕ,F0, . . . ,Fm�1q, hence, such that, on the one hand,

• (I) is not satis�ed, that is, there does not exist an i P t0, . . . ,mu with
Fm ¤X Fi and such that there exists some G P Fi with Fm ¤X G and
χm R G,

and on the other hand,

4.4. THE SPACE USED BY THE ALGORITHMS 61

• at least the �rst part of (II) is satis�ed, that is, Fm�1 P C
X
ϕ ztF0, . . . ,Fmu

and Fm ¤X Fm�1 and there exists some G P Fm�1 with Fm ¤X G and
χm R G.

It is clear that for all m l we have Fm ¤X Fm�1. Let m1, . . . ,mk�1 be in
increasing order the elements of the set

tj P t0, . . . , l � 1u | Fj X Fj�1u,

(this set can be empty), and set m0 :� �1 and mk :� l. Then, for each
i P t0, . . . , k � 1u, all tableau-clouds Fm for m P tmi � 1, . . . ,mi�1u are
pairwise �X-equivalent:

. . . �X Fmi
 X Fmi�1 �X Fmi�2 �X . . . �X Fmi�1

 X Fmi�1�1 �X . . .

Furthermore,

Fm1 X Fm2 X . . . X Fmk�1
 Fmk

.

Hence, k�1 ¤ mclp¤Xq. For a moment, let us �x some i P t0, . . . , k�1u. Can
there be two di�erent numbers m, rm P tmi � 1, . . . ,mi�1u, say with m rm,
such that plχm, Fmq � plχ rm, F rmq? We claim that this cannot be the case.
Otherwise, as at least the �rst part of (II) is satis�ed for m, there is some
G P Fm�1 with Fm ¤X G and χm P G, hence, with F rm ¤X G and χ

rm P G.
Furthermore, as all of the X-tableau-sets F0, . . . ,Fl are pairwise di�erent
(this is due to the assumption that during the execution of ALGXpϕq a call
algXpϕ,F0, . . . ,Flq occurs) the set tFmi�1, . . . ,Fmi�1

u contains at least two
di�erent elements (because the assumption m, rm P tmi � 1, . . . ,mi�1u with
m rm, implies that the set tmi�1, . . . ,mi�1u contains at least two numbers),
and by Lemma 4.21 this implies Fm�1 ¤X F rm (note that Fm�1 ¤X F rm

is clear if m � 1 rm and also if m � 1 � rm and X P tS4� S5, SSLu;
Lemma 4.21 is needed only for the case m� 1 � rm and X � K4� S5). But
these facts together would contradict the fact that (I) is not satis�ed for rm.
We conclude that for pairwise di�erent numbers m, rm P tmi � 1, . . . ,mi�1u
we have plχm, Fmq � plχ rm, F rmq. This implies

mi�1 �mi ¤ |sflpϕq � T Xϕ | ¤ pn� 1q � |T Xϕ |.

As this is true for all i P t0, . . . , k � 1u, we obtain, using Corollary 4.23, in

62 CHAPTER 4. ESPACE ALGORITHMS

all three cases for X P tK4� S5, S4� S5, SSLu,

l � mk

� �1�
k�1̧

i�0

pmi�1 �miq

¤ �1� k � pn� 1q � |T Xϕ |
¤ �1� pmclp¤Xq � 1q � pn� 1q � |T Xϕ |
¤ �1� p4 � |T Xϕ | � 1q � pn� 1q � |T Xϕ |
 5 � n � |T Xϕ |2.

4.4.3 Proof of the Upper Bound

We are now prepared for the proof of the statement formulated at the begin-
ning.

Proof of Proposition 4.16. Let X P tK4� S5, S4� S5, SSLu. Before we can
analyze the space used by the algorithms ALGXpϕq and algXpϕ,F0, . . . ,Flq,
we have to explain how the formulas, the tableau-sets and the tableau-clouds
with which these algorithms deal are stored in a Turing machine.
So, let ϕ be a bimodal formula. Let n be its length (as a string over the
alphabet tp, q, ,^,l, K,X, 0, 1u; compare De�nition 3.4, but see also Re-
mark 4.25).
Let a :� |sfpϕq| be the number of subformulas of ϕ. Then a ¤ n. Let
ψ1, . . . , ψa be the subformulas of ϕ in some order. We can identify any
subset T � sfpϕq � tψ1, . . . , ψau, in particular any X-tableau-set, with a
binary string s1 . . . sa P t0, 1u

a by de�ning

si � 1 : ðñ ψi P T.

Let A :� |T Xϕ | be the number of all X-tableau-sets with respect to ϕ. Then
A ¤ 2a ¤ 2n. In Section 4.5 we shall give a better upper estimate of A
in the cases X P tS4� S5, SSLu. As a preliminary step at the beginning of
ALGXpϕq we can check for all binary strings s1 . . . sa P t0, 1u

a in alphabetical
order whether they describe subsets of sfpϕq that are X-tableau-sets and
write down only those. Then we obtain a list of A binary strings of length
a. This can be considered as an alphabetical list of all X-tableau-sets with
respect to ϕ. We will keep this list stored on a working tape of the Turing
machine during the whole computation. Note that all this can be done in
space Opa � Aq.

4.4. THE SPACE USED BY THE ALGORITHMS 63

Now any set F whose elements are X-tableau-sets with respect to ϕ (so,
in particular any X-tableau-cloud with respect to ϕ) can be described in a
similar manner by a binary string b1 . . . bA of length A where

bi � 1 : ðñ the i-th X-tableau-set with respect to ϕ is an element of F .

In the algorithm we will assume that any X-tableau-cloud is described by
such a binary string of length A.
Note that, given a binary string of length A, it is straightforward to check
whether the set of X-tableau-sets with respect to ϕ described by this string
is an X-tableau-cloud with respect to ϕ or not, and this can also be done
within space Opa � Aq.
Let us consider the for-loop in the algorithm ALGXpϕq as de�ned in De�ni-
tion 4.14:

the algorithm ALGXpϕq lets F0 run through all X-tableau-clouds
F0 P CXϕ such that there exists some F P F0 with ϕ P F and
applies algX to pϕ,F0q.

In a detailed implementation of this for-loop (�through all X-tableau-clouds
F0 P C

X
ϕ such that there exists some F P F0 with ϕ P F �) one can run through

all binary strings of length A and discard all those that do not describe an
X-tableau-cloud with respect to ϕ and all those that do not contain an X-
tableau-set F with ϕ P F . It is clear that the conditions that need to be
checked here can be checked in space Opa � Aq.
We come to the recursive calls algXpϕ,F0, . . . ,Fmq of the algorithm algX
that may occur during the execution of ALGXpϕq. First, remember that
according to Proposition 4.24 we have m 5 � n � A2. We claim that with
each new recursive call of algXpϕ,F0, . . . ,Fmq at most an additional number
of Opn� Aq bits need to be stored.
Indeed, one has to go through all pairs plχ, F q P sfpϕq � Fm with lχ R F .
These pairs can be stored using Oplog a � aq � Opnq bits. Then one checks
condition (I). The number i P t0, . . . ,mu considered in (I) can be stored in
Oplogpmqq � Opnq bits. And the set G considered in (I) can be stored in
a ¤ n bits as well. When checking whether (II) is true or not one has to look
for a certain tableau-cloud Fm�1. Again, this can be stored using not more
than A bits. And the set G considered there can be stored in Opnq space
again. Thus, one does indeed not need to use more than Opn�Aq space with
each new recursive call of algX .
We have seen that some preliminary steps and the initial for-loop in the
algorithm ALGXpϕq can be done in space Opa � Aq. According to Proposi-
tion 4.24 the recursion depth m in the recursive calls of algXpϕ,F0, . . . ,Fmq

64 CHAPTER 4. ESPACE ALGORITHMS

occuring during the computation of ALGXpϕq is at most 5 � n � A2. Finally,
each recursive call requires at most an additional space of Opn � Aq. We
conclude that ALGXpϕq can be implemented in such a way that the space
used is of the order Opn � pn� Aq3q.

Remark 4.25. All arguments in Section 4.4 and Section 4.5 go through as
well if with n one does not denote the length of the bimodal formula ϕ as a
string over the alphabet tp, q, ,^,l, K,X, 0, 1u but instead the �simpli�ed�
length of ϕ as a string over the in�nite alphabet tp, q, ,^,l, KuYAT . This
can also be de�ned as the number of symbols di�erent from 0, 1 in ϕ (again
as a string over the alphabet tp, q, ,^,l, K,X, 0, 1u).

4.5 On the Number of Tableau-sets

In the previous section we have shown that our algorithms for the satis-
fiability problems of the bimodal logics K4� S5, S4� S5, and SSL can
be implemented using not more than Opn � pn � |T Xϕ |q3q space where ϕ
is the given bimodal formula, where n is its length, and where T Xϕ for
X P tK4� S5, S4� S5, SSLu is the set of X-tableau-sets with respect to
ϕ. As there are at most n subformulas of ϕ we obtain |T Xϕ | ¤ 2n. Thus,
we have shown that the algorithms can be implemented in space Opn � 23�nq.
Hence, the satisfiability problems of the bimodal logics K4� S5, S4� S5,
and SSL are in ESPACE.

In this section we wish to slightly improve this result in the cases X P
tS4� S5, SSLu by giving a slightly better upper bound for |T Xϕ |. By making
use of the conditions that an X-tableau-set has to satisfy according to Def-
inition 4.2.2 we are going to show that, for all bimodal formulas of length
n ¥ 3,

|T Xϕ | ¤ 2
2
3
n.

In fact, we are going to show the following result. Let X P tS4� S5, SSLu.
For a bimodal formula ϕ let `pϕq be its “simplified length” as considered in
Remark 4.25, that is, `pϕq is the number of symbols different from 0, 1 in ϕ
(as a string over the alphabet tp, q, ,^,l, K,X, 0, 1u). For n ¥ 1 let

T pnq :� maxt|T Xϕ | : ϕ is a bimodal formula with `pϕq ¤ nu.

Proposition 4.26. T p1q � 2,
T p2q � 3,

for n ¥ 3, T pnq 2p2�n{3q.

4.5. ON THE NUMBER OF TABLEAU-SETS 65

Actually, Proposition 4.26 can certainly still be improved by showing an even
smaller upper bound for T pnq. One can apply similar considerations in the
case X � K4� S5. But in order to gain something in that case one should
use a slightly different definition of K4� S5-tableau-sets, and even then the
gain in considerably smaller than in the cases X P tS4� S5, SSLu. Therefore,
we refrain from treating the case X � K4� S5 here.

Proof of Proposition 4.26. In the whole proof let X P tS4� S5, SSLu. As the
S4� S5-tableau-sets are exactly the SSL-tableau-sets, that is, as T S4�S5

ϕ �
T SSL
ϕ for any bimodal formula ϕ, in the proof we will always suppress X and,

for example, simply speak about tableau-sets instead of X-tableau-sets and
simply write Tϕ instead of T Xϕ .
In addition to T pnq, for n ¥ 5 we de�ne

T^pnq :� maxt|Tϕ| : ϕ is a bimodal formula with `pϕq ¤ n and there

exist bimodal formulas χ and ψ with ϕ�pχ^ ψqu.

Note that any bimodal formula ϕ of the form pχ ^ ψq for bimodal formulas
χ, ψ satis�es `pϕq ¥ 5. In addition to the assertions in the proposition we
claim

for n ¥ 5, T^pnq 2p2�n{3q�1.

This is needed for the proof of the assertions in the proposition. We are going
to show all of these assertions by induction over n.
If ϕ is a bimodal formula with `pϕq � 1 then ϕ � A P AT . There are exactly
two tableau-sets with respect to ϕ: the empty set and the set tAu. This
proves the assertion for n � 1.
Let ϕ be a bimodal formula with `pϕq � 2. There are three cases.

1. ϕ � A where A P AT . Then there are exactly two tableau-sets with
respect to ϕ: the set tAu and the set t Au.

2. ϕ � lA where A P AT . Then there are exactly three tableau-sets with
respect to ϕ: the empty set, the set tAu, and the set tA,lAu.

3. ϕ � KA where A P AT . Then there are exactly three tableau-sets with
respect to ϕ: the empty set, the set tAu, and the set tA,KAu.

This proves the assertion for n � 2. In the second case we made use of the
fact that if for some bimodal formula χ the formula lχ is an element of a
tableau-set then χ is an element of that tableau-set as well. Similarly, in
the third case we made use of the fact that if for some bimodal formula χ
the formula Kχ is an element of a tableau-set then χ is an element of that

66 CHAPTER 4. ESPACE ALGORITHMS

tableau-set as well. We will make use of these facts in the following cases as
well.

Let us consider now a bimodal formula ϕ with n � `pϕq ¥ 3. We distinguish
several cases.

• ϕ � χ for some formula χ.

Then for any tableau-set T P Tϕ with respect to ϕ the set T X sfpχq
is a tableau-set with respect to χ. And whether the formula χ is an
element of a given tableau-set T P Tϕ is determined by the answer to
the question whether χ is an element of T X sfpχq. Hence, |Tϕ| � |Tχ|.
If `pχq � 2 then we get |Tϕ| � |Tχ| ¤ 3 4 � 22�3{3. If `pχq ¥ 3 then
by induction we get |Tϕ| � |Tχ| 22�pn�1q{3 22�n{3.

• ϕ � � χ for some formula χ and � P tl, Ku.

If `pϕq � 3 then χ � A for some A P AT . In that case there are exactly
three tableau-sets with respect to ϕ: the set tAu, the set t Au, and
the set t A, � Au. Note that 3 4 � 22�3{3.

If `pϕq ¥ 4 then we claim that |Tϕ| ¤ 2 � |Tχ|. Indeed, if T is a tableau
set with respect to ϕ then T X sfpχq is a a tableau set with respect
to χ. The only elements in sfpϕqzsfpχq are the two formulas χ and
� χ. The question whether χ is an element of T or not is determined
already by TXsfpχq. We have shown |Tϕ| ¤ 2�|Tχ|. In the case `pϕq � 4
we obtain `pχq � 2, hence, |Tϕ| ¤ 2 � |Tχ| ¤ 2 � 3 � 6 22�4{3. In the
case `pϕq ¥ 5 we obtain `pχq � `pϕq � 2 ¥ 3, hence, by induction
hypothesis, |Tϕ| ¤ 2 � |Tχ| 2 � 22�pn�2q{3 22�n{3.

• ϕ � �1 �2 χ for some formula χ and �1, �2 P tl, Ku.

We claim that |Tϕ| ¤ 3 � |Tχ|. Indeed, if T is a tableau set with respect
to ϕ then T X sfpχq is a a tableau set with respect to χ. The only
elements in sfpϕqzsfpχq are the three formulas χ, �2 χ, and �1 �2 χ.
The question whether χ is an element of T or not is determined
already by T X sfpχq. And for the two formulas �2 χ and �1 �2 χ we
observe that if �1 �2 χ is an element of T then so is �2 χ. We have
shown |Tϕ| ¤ 3 � |Tχ|.

It is clear that `pϕq � `p�1 �2 χq ¥ 4. In the case `pϕq � 4 we obtain
`pχq � 1, hence, |Tϕ| ¤ 3 � |Tχ| ¤ 3 � 2 � 6 22�4{3. In the case `pϕq � 5
we obtain `pχq � 2, hence, |Tϕ| ¤ 3 � |Tχ| ¤ 3 � 3 � 9 22�5{3. In
the case `pϕq ¥ 6 we obtain `pχq � `pϕq � 3 ¥ 3, hence, by induction
hypothesis, |Tϕ| ¤ 3 � |Tχ| 3 � 22�pn�3q{3 22�n{3.

4.5. ON THE NUMBER OF TABLEAU-SETS 67

• ϕ � �1 �2 �3χ for some formula χ and �1, �2, �3 P tl, Ku.

Again, we will use the already mentioned fact for any subformula �iχ
of ϕ: if �iχ is an element of a tableau set with respect to ϕ then χ is
an element of the same tableau set.

First, let us consider the cases `pϕq � 4 and `pϕq � 5. If `pϕq � 4 then
χ � A for some A P AT , and one checks that there are exactly �ve
tableau sets with respect to ϕ: the setsH, tAu, tA, �3Au, tA, �3A, �2�3

Au, tA, �3A, �2 �3 A, �1 �2 �3Au. Note that 5 22�4{3. Next, let us
consider the case `pϕq � 5. Then there exists some A P AT such that
either χ � A or χ � �4A for some �4 P tl, Ku. One checks that in
the �rst case there are again exactly �ve tableau sets with respect to ϕ
and in the second case there are exactly six tableau sets with respect
to ϕ. Note that 6 22�5{3.

For the case `pϕq ¥ 6 we claim that |Tϕ| ¤ 4 � |Tχ|. Indeed, if T
is a tableau set with respect to ϕ then T X sfpχq is a a tableau set
with respect to χ. And for the three formulas �3χ and �2 �3 χ and
�1�2�3χ there are only four possibilities: (1) none of them is an element
of T , (2) only �3χ is an element of T (3) only �2χ and �2 �3 χ are
elements of T , (4) all three of them are elements of T . We have shown
|Tϕ| ¤ 4 � |Tχ|. In the case `pϕq ¥ 6 we obtain `pχq � `pϕq � 3 ¥ 3,
hence, |Tϕ| ¤ 4 � |Tχ| 4 � 22�pn�3q{3 � 22�n{3.

• ϕ � �pχ^ ψq for some formulas χ, ψ and � P tl, Ku.

Then `pϕq ¥ 6 and `ppχ^ ψqq � `pϕq � 1 ¥ 5. We obtain

|Tϕ| ¤ 2 � |Tpχ^ψq|
 2 � 2p2�pn�1q{3q�1 pby induction hypothesis for T^pn� 1qq

 22�n{3.

Finally, let us consider the case ϕ � pχ ^ ψq, for some formulas χ, ψ. As
before, let n :� `pϕq. Note that n � 3� `pχq � `pψq. It is su�cient to prove

68 CHAPTER 4. ESPACE ALGORITHMS

|Tϕ| 2p2�n{3q�1. We observe by induction hypothesis:

|Tϕ| ¤ |Tχ| � |Tψ|

¤

$''''''''''''''''&''''''''''''''''%

2 � 2 � 4 2p2�5{3q�1 if `pχq � 1 and `pψq � 1,

2 � 3 � 6 2p2�6{3q�1 if `pχq � 1 and `pψq � 2,

3 � 2 � 6 2p2�6{3q�1 if `pχq � 2 and `pψq � 1,

3 � 3 � 9 2p2�7{3q�1 if `pχq � 2 and `pψq � 2,

2 � 22�`pψq{3 2p2�n{3q�1 if `pχq � 1 and `pψq ¥ 3,

22�`pχq{3 � 2 2p2�n{3q�1 if `pχq ¥ 3 and `pψq � 1,

3 � 22�`pψq{3 2p2�n{3q�1 if `pχq � 2 and `pψq ¥ 3,

22�`pχq{3 � 3 2p2�n{3q�1 if `pχq ¥ 3 and `pψq � 2,

22�`pχq{3 � 22�`pψq{3 2p2�n{3q�1 if `pχq ¥ 3 and `pψq ¥ 3.

Corollary 4.27. Let X P tS4� S5, SSLu. The algorithm ALGX can be
implemented on a multi-tape Turing machine so that it, given a bimodal
formula ϕ of length n, does not use more than Opn � 22�nq space.

Proof. This follows immediately from Propositions 4.16 and 4.26.

Proof of Theorem 4.1 in the cases X P tS4� S5, SSLu. Let us assume that
X P tS4� S5, SSLu. We have presented an algorithm ALGX that, according
to Proposition 4.15, accepts a bimodal formula ϕ if, and only if, ϕ is X-
satis�able. And according to Corollary 4.27 the algorithm ALGX can be
implemented in such a way that it works in space Opn � 22�nq where n is the
length of the input formula ϕ.

Chapter 5

Preparations for the Reduction of

Alternating Turing Machines to

SSL and to S4� S5

We wish to show that the satisfiability problems of the bimodal logics SSL,
K4� S5, and S4� S5 are EXPSPACE-hard under logarithmic space reduc-
tion. In Chapter 8 we show that the satisfiability problem of SSL can be
reduced in logarithmic space to the satisfiability problem of S4� S5, and
in Chapter 9 we show that the satisfiability problem of S4� S5 can be re-
duced in logarithmic space to the satisfiability problem of K4� S5. Thus,
EXPSPACE-hardness is shown for the satisfiability problems of all of these
three logics once we have shown that the satisfiability problem of SSL is
EXPSPACE-hard. In order to show this, we shall use Alternating Turing
Machines [18]. In this respect, we follow the example of Lange and Lutz [64]
who used Alternating Turing Machines in order to establish a sharp lower
bound for the complexity of a certain dynamic logic. As any language in
EXPSPACE is accepted by an Alternating Turing Machine (ATM) working
in exponential time, it is sufficient to show that any language recognized by
an Alternating Turing Machine working in exponential time can be reduced
in logarithmic space to the satisfiability problem of SSL. We will present
such a reduction in Chapter 6. In Chapter 7 we present a similar reduction
of Alternating Turing Machines to the satisfiability problem of S4� S5. For
this purpose we will construct an SSL formula as well as an S4� S5 formula
both of which describe the computation of an exponential time bounded
Alternating Turing Machine.
A string w is an element of the language LpMq recognized by an ATM M iff
there exists a so-called accepting tree of M on input w. In such a tree each
node represents a configuration of M . Our idea is to construct a formula

69

70 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

depending on w such that the models of this formula have the tree structure
of an accepting tree of M on input w, where now the nodes of the tree are
clouds such that the formulas satisfied in some cloud describe a configuration

of M . In this way the induced relation
♦
Ñ

L
Ñ

between the clouds serves as a
simple temporal operator.
In the following section we describe how information is stored and trans-
mitted in a model of such a formula. In particular we introduce certain
formulas that we call shared variables that can transmit information in the
L
Ñ-direction and by which we can overcome the problem in the logic SSL
that all propositional variables are persistent. As a first application of this,
in Section 5.2 we demonstrate how one can implement a binary counter both
in the logic S4� S5 and the logic SSL. In Section 5.3 we recall the definition
of Alternating Turing Machines. In Chapters 6 and 7 we will come to the
reductions that prove EXPSPACE-hardness of SSL and of S4� S5.

5.1 Shared Variables

We have to make sure that various kinds of information are stored in a
suitable way in any model of the fomula. We also need to copy and transmit

various bits of information, both in the
♦
Ñ-direction (we always depict this

as the vertical direction) as well as in the
L
Ñ-direction (we always depict this

as the horizontal direction). This will be done by two kinds of formulas.

• On the one hand, we need formulas that have the same truth value

in the vertical (
♦
Ñ) direction but can change their truth values in the

horizontal (
L
Ñ) direction. In the case of the logic SSL, for this purpose

we can simply use propositional variables as they are persistent anyway.
And in the logic S4� S5 we can force certain propositional variables
to be persistent by a suitable formula.

• On the other hand, we need formulas that have the same truth value in

the horizontal (
L
Ñ) direction but can change their truth values in the

vertical (
♦
Ñ) direction. Such formulas will be called shared variables

and will be defined now.

In the case of the logic S4� S5, for this purpose we can simply use a formula
α of the form

α � LA

where A is a propositional variable. Then α has the same truth value at
all points of a cloud and we can compare the value of a vector of usual

5.1. SHARED VARIABLES 71

propositional variables with the value of a corresponding vector of shared
variables. In this way we can for instance select a point in a cloud where
these values match.
But for the logic SSL this approach does not work. Because of the persistence
of propositional variables in SSL, the construction of shared variables in SSL
is more complicated than in S4� S5. Due to the left commutativity, the
formula LA � K A is also persistent. The following picture illustrates
why an attempt to use K A in a non-persistent way must fail.

KA,
A

LA,
A



KA,
A

A



L

L

A suitable construction for shared variables α and α in SSL must be more
complicated and can be realized as defined below.

De�nition 5.1 (Shared Variables). For i P N let Ai be special propositional
variables. Then

1. In S4� S5 the shared variables αi are de�ned as follows:

αi :� LAi.

2. In SSL we �x another special propositional variable B, di�erent from
all Ai, and de�ne the shared variables αi as follows:

αi :� LpAi ^lLBq.

Note that

in S4� S5 αi � K Ai

and in SSL αi � Kp Ai _ ♦K Bq.

See Figure 5.1 for a model of a single shared variable αi (in the figure we have
omitted the index i) in SSL changing its value from 1 to 0 and back from 0 to
1. In this model the information is stored at the white points which we call
information points. The gray points are auxiliary points that ensure that we
obtain a model for the shared variables. Note that the information points
differ from the auxiliary points in the value of the propositional variable B,

72 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

Figure 5.1: Cross axiom model of α ^ ♦p α ^ ♦αq.

L(ALB),
A, B



K(AKB),
A, B

A LB,
A, B

L(ALB),
A, B A LB,

A, B

KB,
A, B



 a

a

 a

A, B



K(AKB),
A, B

A, B









5.2. BINARY COUNTERS IN S4� S5 AND IN SSL 73

which is true at all information points, independent of the value of α stored
there, and false at all auxiliary points. Thus, the value of the propositional
variable B allows us to distinguish between the information points and the
auxiliary points.
Although the shared variables αi are formulas we are going to use them as if
they were variables. The propositional variables Ai (and, in the case of SSL,
the propositional variable B) that are used in their definition will not be used
in any other way. As a first example of the application of shared variables,
in the following section we demonstrate how, using shared variables, one can
implement n-bit binary counters, first in S4� S5 and then in SSL. Binary
counters are going to play a key role in the simulation of Alternating Turing
Machines in S4� S5 as well as in SSL.

5.2 Binary Counters in S4� S5 and in SSL

Fix some natural number n ¥ 1. We wish to implement both in S4� S5 and
in SSL a binary n-bit counter that counts from 0 to 2n � 1. That means,
for each of the two bimodal logics S4� S5 and SSL, we wish to construct a
satisfiable formula with the property that any model of it contains a sequence
of pairwise distinct points p0, . . . , p2n�1 such that, for each i P t0, . . . , 2n�1u,
at the point pi the number i is stored in binary form in a certain way. To
describe the implementation of the counter we first introduce some notation.

• For a natural number i, we define the finite set Onespiq � N by¸
kPOnespiq

2k � i,

that is, Onespiq is the set of the positions of ones in the binary repre-
sentation of i (where the positions are counted from the right starting
with 0).

• We will also need the bits bkpiq P t0, 1u of the binary representation of
i, for i, k P N. They are defined by

bkpiq :�

#
1 if k P Onespiq,

0 if k R Onespiq.

• For natural numbers i, n with n ¡ 0 and i ¤ 2n � 1 the binary repre-
sentation of length n of i is the string

binnpiq :� bn�1piq, . . . , b0piq.

74 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

For the following is an abbreviation
expression of the following formula

l ¥ 1, k ¥ �1 persistentpF ,¡ kq
�l�1

h�k�1KplFh _l Fhq

l ¥ 1 persistentpF q persistentpF ,¡ �1q

l ¥ 1, k ¥ �1 pF � G,¡ kq
�l�1

h�k�1pFh Ø Ghq

l ¥ 1 pF � Gq pF � G,¡ �1q

l ¥ 1, 0 ¤ i 2l pF � binlpiqq
�

kPOnespiqFk^�
kPt0,...,l�1uzOnespiq Fk

l ¥ 1, 0 ¤ k l rightmost_zeropF , kq Fk ^
�k�1

h�0 Fh

l ¥ 1, 0 ¤ k l rightmost_onepF , kq Fk ^
�k�1

h�0 Fh

Table 5.1: Some (partially numerical) abbreviations for logical formulas,
where F � pFl�1, . . . , F0q and G � pGl�1, . . . , G0q are vectors of formu-
las. As usual, an empty conjunction like

��1
h�0 Fh can be replaced by any

propositional formula that is true always.

Table 5.1 lists expressions that we use as abbreviations of formulas.
The idea of the construction is as follows.

• We store the counter values in a vector α :� αn�1, . . . , α0 of shared
variables. To this end we embed the sequence p0, . . . , p2n�1 of points in
a sequence of clouds C0, . . . ,C2n�1 such that the cloud Ci contains the
point pi and such that the vector α of shared variables satisfied at pi
(and hence at all points in Ci) encodes the number i.

• Let i ¤ 2n � 1 be the number encoded by α. If α contains no 0 then
i has reached its highest posible value, the number 2n � 1. Otherwise
let k be the position of the rightmost 0. We determine the position k
with the aid of the formula rightmost zeropα, kq. In order to increment
the counter we have to keep all αj at positions j ¡ k unchanged and
to switch all αj at positions j ¤ k. We do this in two steps:

1. First me make an
L
Ñ-step from the point pi to a point p1i where

we store the number i� 1 in a vector X :� Xn�1, . . . , X0 of usual
propositional variables by demanding that

p1i |ù pX � α,¡ kq ^ rightmost onepX, kq.

5.2. BINARY COUNTERS IN S4� S5 AND IN SSL 75

2. Then we make a
♦
Ñ-step from the point p1i to a point pi�1 in the

cloud Ci�1 and demand that

pi�1 |ù pX � αq.

Note that in SSL the value ofX is copied from p1i to its
♦
Ñ-successor

pi�1 since in SSL propositional variables are persistent. We achieve
the same for S4� S5 by demanding

p0 |ù persistentpXq.

Altogether we demand that for the number k

pi |ù L
�
pX � α,¡ kq ^ rightmost onepX, kq ^ ♦pX � αq

�
.

• Additionally we need a formula to ensure that the starting value is 0,
that is we demand

p0 |ù pα � binnp0qq.

We now define the complete counter formulas, for n ¡ 0. Remember that in
both formulas α is a vector pαn�1, . . . , α0q of formulas αi where in the case
of the formula counterSSL,n the formula αi is defined by αi :� LpAi ^lLBq
while in the case of the formula counterS4�S5,n the formula αi is defined by
αi :� LAi; compare Definition 5.1.

counterSSL,n :�

B ^ pα � binnp0qq

^Kl

��n�1
k�0

�
pB ^ rightmost zeropα, kqq Ñ

L

�
B ^ pX � α,¡ kq ^ rightmost onepX, kq ^ ♦pX � αq

��
,

counterS4�S5,n :�

persistentpXq ^ pα � binnp0qq

^K l

��n�1
k�0

�
rightmost zeropα, kq Ñ

L

�
pX � α,¡ kq ^ rightmost onepX, kq ^ ♦pX � αq

��
.

76 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

Proposition 5.2. 1. For all n P Nzt0u, the formula counterS4�S5,n is
S4� S5-satis�able.

2. For all n P Nzt0u, the formula counterSSL,n is SSL-satis�able.

3. For all n P Nzt0u, for every cross axiom model of counterSSL,n and
for every point p0 in this model with p0 |ù counterSSL,n there exist a
sequence of 2n � 1 points p1, p2, . . . , p2n�1 and a sequence of 2n � 1
points p10, p

1
1, . . . , p

1
2n�2 such that

for 0 ¤ i ¤ 2n � 1, pi |ù pα � binnpiqq,

for 0 ¤ i ¤ 2n � 2, pi
L
Ñ p1i and p1i

♦
Ñ pi�1 and

p1i |ù pX � binnpi� 1qq.

4. The same holds for every S4� S5-commutator model of counterS4�S5,n

and for every point p0 in this model with p0 |ù counterS4�S5,n.

Proof. For the following let us �x some n ¡ 0.

1. We construct an S4� S5-product model M with a point p0, 0q in M
such that M, p0, 0q |ù counterS4�S5,n as follows; see Figure 5.2. We
de�ne an S4-frame pW1, R♦q by

W1 :� t0, . . . , 2n � 1u and, for i, i1 P W1, iR♦i
1 : ðñ i ¤ i1.

We de�ne an S5-frame pW2, RLq by

W2 :� t0, . . . , 2n � 1u and RL :� W2 �W2.

Then the product frame pW,
♦
Ñ,

L
Ñq with W :� W1 �W2 and with

♦
Ñ

and
L
Ñ de�ned as in De�nition 3.10.2 is an S4� S5-frame. We de�ne

the valuation σ by

σpAkq :� tpi, jq : i, j P t0, . . . , 2n � 1u and k P Onespiqu,

σpXkq :� tpi, jq : i, j P t0, . . . , 2n � 1u and k P Onespjqu,

for k P t0, . . . , n� 1u. This implies for all i, j P t0, . . . , 2n � 1u

pi, jq |ù pα � binnpiqq and pi, jq |ù pX � binnpjqq.

We claim
p0, 0q |ù counterS4�S5,n.

5.2. BINARY COUNTERS IN S4� S5 AND IN SSL 77

Binary Counter in S4 S5

Xn-1

   ,
X1,

X0

Xn-1

   ,
X1,

 X0

Xn-1

   ,
 X1,

 X0

 Xn-1

   ,
 X1,

 X0

t
r
u
e

(0, 0) (0, 1) (0, 2n-1). . . true An-1, . . ., A1, A0(0, 2)

(1, 0) (1, 1) (1, 2n-1). . . An-1, . . ., A1, A0(1, 2)

(2n -1, 0) (2n -1, 1) (2n-1, 2n-1). . . An-1 , . . ., A1, A0(2n -1, 2)

t
r
u
e

t
r
u
e

t
r
u
e

true

true

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.2: An S4� S5-product model of the formula counterS4�S5,n.

Indeed, it is clear that the propositional variables Xk are persistent,
hence, we have

p0, 0q |ù persistentpXq.

It is also clear that
p0, 0q |ù pα � binnp0qq.

Let us assume that for some pi, jq P W and some k P t0, . . . , n� 1u we
have

pi, jq |ù rightmost_zeropα, kq.

It is su�cient to show that

pi, jq |ù L

�
pX � α,¡ kq ^ rightmost_onepX, kq ^ ♦pX � αq

.

Indeed, pi, jq |ù rightmost_zeropα, kq implies t0, . . . , n� 1uzOnespiq �
H and k � minpt0, . . . , n � 1uzOnespiqq. Note that this implies i
2n � 1, hence, pi, i � 1q P W and pi � 1, i � 1q P W . In view of

pi, jq
L
Ñ pi, i� 1q

♦
Ñ pi� 1, i� 1q it is su�cient to show

pi, i� 1q |ù pX � α,¡ kq ^ rightmost_onepX, kq

78 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

Binary Counter in SSL

p0, 0 p0, 1 p0, 2n-1
. . .p0, 2

p1, 1 p1, 2n-1
. . .p1, 2

p2n-1, 2n-1

Cloud0

Cloud1

Cloud2

Cloud2n-1

p0, 3

p1, 3

 u0, n-1

u2n-1, n -1

. . . u0, 1 u0, 0

 u1, n-1
. . . u1, 1 u1, 0

 s1, 0

p2, 2n-1
. . .p2, 2 p2, 3 u2, n-1

. . . u2, 1 u2, 0

 s2, 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . u2n-1, 1 u2n-1, 0

s2n-1, n -1 s2n-1, 1 s2n-1, 0

u2n, n -1 . . . u2n, 1 u2n, 0Cloud2n

Figure 5.3: A cross axiom model of the formula counterSSL,n.

and

pi� 1, i� 1q |ù pX � αq.

Both claims follow from the facts that k � minpt0, . . . , n� 1uzOnespiqq
and that every point px, yq P W satis�es the formulas pα � binnpxqq
and pX � binnpyqq.

2. We construct a cross axiom model M � pW,
L
Ñ,

♦
Ñ, σq with a point p0,0

satisfying M, p0,0 |ù counterSSL,n as follows; see Figure 5.3. We de�ne

W :� P Y U Y S

where

P :� tpi,j : i, j P t0, . . . , 2n � 1u and i ¤ ju,

U :� tui,k : i P t0, . . . , 2nu and k P t0, . . . , n� 1uu,

S :� tsi,k : i P t0, . . . , 2n � 1u and k P Onespiqu.

As the relation
L
Ñ is supposed to be an equivalence relation we can

5.2. BINARY COUNTERS IN S4� S5 AND IN SSL 79

de�ne it by de�ning the
L
Ñ-equivalence classes. These are the sets

Ci :� tpi,j : i ¤ j 2nu Y tui,k : k P t0, . . . , n� 1uu

Y tsi,k : k P Onespiqu,

for all i P t0, . . . , 2n � 1u, and

C2n :� tu2n,k : k P t0, . . . , n� 1uu.

We de�ne the relation
♦
Ñ by:

♦
Ñ :� tppi,j, pi1,j1q P P � P : i ¤ i1 and j � j1u

Ytpui,k, ui1,k1q P U � U : i ¤ i1 and k � k1u

Ytpui,k, si1,k1q P U � S : i ¤ i1 and k � k1u

Ytpsi,k, si1,k1q P S � S : i � i1 and k � k1u.

It is straightforward to check that
♦
Ñ is re�exive and transitive. The

cross property is satis�ed as well. Thus, pW,
L
Ñ,

♦
Ñq is a cross axiom

frame. We de�ne the valuation σ by

σpAkq :� tui,k : i P t0, . . . , 2nuu Y

tsi,k : i P t0, . . . , 2n � 1u and k P Onespiqu,

σpBq :� P,

σpXkq :� tpi,j : i, j P t0, . . . , 2n � 1u and k P Onespjqu,

for k P t0, . . . , n� 1u.
It is obvious that all of the propositional variables A0, . . . , An�1, B

and X0, . . . , Xn�1 are persistent. Thus, pW,
L
Ñ,

♦
Ñ, σq is a cross ax-

iom model. We claim p0,0 |ù counterSSL,n. Before we show this we show
the following claim, for all i P t0, . . . , 2n � 1u and for all p P Ci,

p |ù pα � binnpiqq. (5.1)

In order to show this it is su�cient to show for all i P t0, . . . , 2n � 1u,
for all p P Ci, and for all k P t0, . . . , n� 1u

p |ù αk ðñ k P Onespiq.

Let us �x some k P t0, . . . , n � 1u. Note that, for all p1 P P , we have
p1 |ù Ak, hence

p@p1 P P q p1 |ù p Ak _ ♦K Bq.

80 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

Furthermore, u2n,h |ù K B for all h P t0, . . . , n � 1u. Since for all

i P t0, . . . , 2nu and h P t0, . . . , n � 1u we have ui,h
♦
Ñ u2n,h we obtain

ui,h |ù ♦K B for all i P t0, . . . , 2nu and h P t0, . . . , n� 1u. Hence,

p@u1 P Uq u1 |ù p Ak _ ♦K Bq.

This shows that, for any i P t0, . . . , 2n � 1u, the shared variable αk �
LpAk ^lLBq is true in the cloud Ci if, and only if, there exists some
s1 P Ci X V with s1 |ù pAk ^ lLBq. As p

1 |ù B for all p1 P P and any

s1 P S is
L
Ñ-equivalent to some p1 P P , we have s1 |ù LB, for all s1 P S.

Actually, for s1 P S we even have s1 |ù lLB as s1 does not have any
♦
Ñ-successors besides itself. Thus, the shared variable αk is true in the
cloud Ci if, and only if, there exists some s1 P Ci X S with s1 |ù Ak. As
the only elements s1 P Ci X S are the elements si,h with h P Onespiq
and as si,h |ù Ak ðñ h � k, we obtain for i P t0, . . . , 2n � 1u and for
p P Ci,

p |ù αk ðñ k P Onespiq.

We have shown the claim (5.1).

We claim that p0,0 |ù counterSSL,n. Indeed, it is obvious that

p0,0 |ù B.

Due to p0,0 P C0 and (5.1) we obtain

p0,0 |ù pα � binnp0qq.

Let us assume that for some p P W and some k P t0, . . . , n � 1u we
have p |ù pB ^ rightmost_zeropα, kqq. It is su�cient to show that

p |ù L
�
B ^ pX � α,¡ kq ^ rightmost_onepX, kq ^ ♦pX � αq

�
.

From p |ù B we conclude p P P , hence, there exist i, j P t0, . . . , 2n� 1u
with i ¤ j and with p � pi,j. Thus, p P Ci. Then we have p |ù
pα � binnpiqq. Now, p |ù rightmost_zeropα, kq implies t0, . . . , n �
1uzOnespiq � H and k � minpt0, . . . , n � 1uzOnespiqq. Note that this

implies i 2n�1. We have pi,j
L
Ñ pi,i�1

♦
Ñ pi�1,i�1, and since pi,i�1 P P

we have
pi,i�1 |ù B.

It is su�cient to show

pi,i�1 |ù pX � α,¡ kq ^ rightmost_onepX, kq

5.2. BINARY COUNTERS IN S4� S5 AND IN SSL 81

s
0

s'
0

s
1

s'
1

s
2

...

L

L

L





Figure 5.4: staircase of points

and
pi�1,i�1 |ù pX � αq.

By de�nition of σ we have for all j P t0, . . . , n� 1u

pi,i�1 |ù Xj ô j P Onespi� 1q

and hence on the one hand pi,i�1 |ù pX � binnpi � 1qq. Due to (5.1),
we have on the other hand pi,i�1 |ù pα � binnpiqq. This proves the �rst
claim. For the second claim we observe that by de�nition of σ also
pi�1,i�1 |ù pX � binnpi � 1qq. Since pi�1,i�1 P Ci�1 we also have by
(5.1) that pi�1,i�1 |ù pα � binnpi� 1qq and hence pi�1,i�1 |ù pX � αq.
Thus, we have constructed a cross axiom model for counterSSL,n.

3. Suppose there are a cross axiom model M of the formula counterSSL,n

and some point p0 PM with M, p0 |ù counterSSL,n. We show by induc-
tion that the claimed sequences of points p1, . . . p2n�1 and p10, . . . p

1
2n�2

with the claimed properties and additionally with pi |ù B, for 0 ¤
i ¤ 2n � 1, and with p1i |ù B, for 0 ¤ i ¤ 2n � 2, exist. In addi-

tion, we show that there exist points ti with p0
L
Ñ ti and ti

♦
Ñ pi, for

1 ¤ i ¤ 2n � 1. Note that the sequences p0, . . . p2n�1 and p10, . . . p
1
2n�2

are supposed to form a �staircase� as in Figure 5.4. By de�nition,
p0 |ù B ^ pα � binnp0qq. By induction hypothesis, let us assume that
for some m with 0 ¤ m 2n�1 there exist p1, . . . , pm and p10, . . . , p

1
m�1

with
p0

L
Ñ p10

♦
Ñ p1

L
Ñ . . .

L
Ñ p1m�1

♦
Ñ pm,

with
pi |ù pB ^ pα � binnpiqqq,

for 0 ¤ i ¤ m, and with

p1i |ù pB ^ pX � binnpi� 1qqq,

82 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

for 0 ¤ i m, and that there are ti with p0
L
Ñ ti and ti

♦
Ñ pi, for

1 ¤ i ¤ m. Since m 2n � 1, the set t0, . . . , n � 1uzOnespmq is
nonempty. With k :� minpt0, . . . , n� 1uzOnespmqq we have

pm |ù rightmost_zeropα, kq.

Due to p0 |ù counterSSL,n as well as p0
L
Ñ tm

♦
Ñ pm this implies

pm |ù L
�
B ^ pX � α,¡ kq ^ rightmost_onepX, kq

^♦pX � αq
�
.

Thus, there must exist points p1m and pm�1 satisfying p1m |ù B as well

as pm
L
Ñ p1m

♦
Ñ pm�1,

p1m |ù pX � α,¡ kq ^ rightmost_onepX, kq

and
pm�1 |ù pX � αq.

We have to show
p1m |ù pX � binnpm� 1qq

and
pm�1 |ù B ^ pα � binnpm� 1qq.

Due to the fact that p1m is an element of the same cloud as pm, and α
has the same value in all points in a cloud we obtain

p1m |ù pα � binnpmqq.

Together with

p1m |ù pX � α,¡ kq ^ rightmost_onepX, kq

this implies
p1m |ù pX � binnpm� 1qq

(the values of the leading bits αn�1, . . . , αk�1 of α are copied to the
leading bits Xn�1, . . . , Xk�1 and the other bits are de�ned explicitly by
p1m |ù rightmost_onepX, kq so that the binary value of X is m � 1).

From p1m
♦
Ñ pm�1 and the fact that in SSL propositional variables

are persistent we obtain pm�1 |ù pB ^ pX � binnpm � 1qqq. Using
pm�1 |ù pX � αq we obtain pm�1 |ù pα � binnpm � 1qq. Finally, the

cross property applied to tm
♦
Ñ pm and pm

L
Ñ p1m implies that there

exists a point tm�1 with tm
L
Ñ tm�1 and tm�1

♦
Ñ p1m. Using additionally

p0
L
Ñ tm and p1m

♦
Ñ pm�1 we obtain p0

L
Ñ tm�1 and tm�1

♦
Ñ pm�1. This

ends the proof of the third assertion.

5.2. BINARY COUNTERS IN S4� S5 AND IN SSL 83

4. The proof for S4� S5-commutator models of the formula counterS4�S5,n

is very similar to the proof for cross axiom models of the formula
counterSSL,n. For completeness sake we explicate it in detail. Sup-
pose there are an S4� S5-commutator model M of the formula
counterS4�S5,n and some point p0 P M with M, p0 |ù counterS4�S5,n.
We show by induction that the claimed sequences of points p1, . . . p2n�1

and p10, . . . p
1
2n�2 with the claimed properties exist. In addition, we

show that there exist points ti with p0
L
Ñ ti and ti

♦
Ñ pi, for

1 ¤ i ¤ 2n � 1. Note that the sequences p0, . . . p2n�1 and p10, . . . p
1
2n�2

are supposed to form a �staircase� as in Figure 5.4. By de�nition,
p0 |ù persistentpXq ^ pα � binnp0qq. By induction hypothesis, let us
assume that for some m with 0 ¤ m 2n � 1 there exist p1, . . . , pm
and p10, . . . , p

1
m�1 with

p0
L
Ñ p10

♦
Ñ p1

L
Ñ . . .

L
Ñ p1m�1

♦
Ñ pm,

with
pi |ù pα � binnpiqq,

for 0 ¤ i ¤ m, and with

p1i |ù pX � binnpi� 1qq,

for 0 ¤ i m, and that there are ti with p0
L
Ñ ti and ti

♦
Ñ pi, for

1 ¤ i ¤ m. Since m 2n � 1, the set t0, . . . , n � 1uzOnespmq is
nonempty. With k :� minpt0, . . . , n� 1uzOnespmqq we have

pm |ù rightmost_zeropα, kq.

Due to p0 |ù counterS4�S5,n as well as p0
L
Ñ tm

♦
Ñ pm this implies

pm |ù L
�
pX � α,¡ kq ^ rightmost_onepX, kq ^ ♦pX � αq

�
.

Thus, there must exist points p1m and pm�1 satisfying pm
L
Ñ p1m

♦
Ñ pm�1

as well as

p1m |ù pX � α,¡ kq ^ rightmost_onepX, kq

and
pm�1 |ù pX � αq.

We have to show
p1m |ù pX � binnpm� 1qq

84 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

and
pm�1 |ù B ^ pα � binnpm� 1qq.

Due to the fact that p1m is an element of the same cloud as pm, and α
has the same value in all points in a cloud we obtain

p1m |ù pα � binnpmqq.

Together with

p1m |ù pX � α,¡ kq ^ rightmost_onepX, kq

this implies
p1m |ù pX � binnpm� 1qq

(the values of the leading bits αn�1, . . . , αk�1 of α are copied to the
leading bits Xn�1, . . . , Xk�1 and the other bits are de�ned explicitly by
p1m |ù rightmost_onepX, kq so that the binary value of X is m � 1).

From p0 |ù persistentpXq as well as p0
L
Ñ tm

♦
Ñ p1m

♦
Ñ pm�1 we obtain

pm�1 |ù pX � binnpm � 1qq. Using pm�1 |ù pX � αq we obtain
pm�1 |ù pα � binnpm � 1qq. Finally, the left commutativity property

applied to tm
♦
Ñ pm and pm

L
Ñ p1m implies that there exists a point

tm�1 with tm
L
Ñ tm�1 and tm�1

♦
Ñ p1m. Using additionally p0

L
Ñ tm and

p1m
♦
Ñ pm�1 we obtain p0

L
Ñ tm�1 and tm�1

♦
Ñ pm�1. This ends the

proof of the fourth assertion.

5.3 Alternating Turing Machines

The concept of an Alternating Turing Machine (ATM) was set forth by Chan-
dra and Stockmeyer [19] and independently by Kozen [55] in 1976, with a
joint journal publication in 1981 [18]. We are going to use a variant of ATMs
with a single tape as in [64]. This is justified by the fact that one-tape
ATMs can efficiently simulate multi-tape ATMs; see [19, Proposition 3.4].
For an even more efficient simulation of multi-tape ATMs by one-tape ATMs
see [76].
An ATM is a nondeterministic Turing machine where some configurations
are “or” configurations that accept if at least one of their successors does,
while other configurations are “and” configurations that accept if all of their
successors accept. The mode of each configuration (“and” vs. “or”) is deter-
mined by the state of the configuration. There are two special states called
qaccept and qreject. All other states are either universal states or existential
states.
For a relation δ � X�Y and any x P X we write δpxq :� ty P Y | px, yq P δu.

5.3. ALTERNATING TURING MACHINES 85

De�nition 5.3. An alternating Turing Machine M is a quintuple

M � pQ,Σ,Γ, q0, δq,

where

• Q, the set of states of M , is the disjoint union of the following four
sets:

� QD, a �nite set, its elements are called existential states,

� Q@, a �nite set, its elements are called universal states,

� tqacceptu, a one-element set, its element is called accepting state,

� tqrejectu, a one-element set, its element is called rejecting state,

• Σ is a nonempty �nite set, called the input alphabet,

• Γ � Σ is a �nite set containing a blank symbol # R Σ, we call Γ the
tape alphabet,

• q0 P Q is the initial state,

• δ � pQ� Γq � pQ� Γ� tleft , rightuq is the transition relation,

and where δ satis�es the condition

δpq, aq

#
� H for q P tqaccept, qrejectu and a P Γ,

� H for q P QD YQ@ and a P Γ.

A configuration of an alternating Turing machine M is an element pq, z, γq of

CM � Q� Z� ΓZ

where q P Q is the current state of the finite control, z P Z is the current
position of the tape head (that is, the number of the cell on which the tape
head is positioned), and the function γ : Z Ñ Γ represents the current tape
content and satisfies the condition γpzq � # for all but finitely many z P Z.
A configuration represents an instantaneous description of M at some point
in a computation. The initial configuration of M on input w � w1 . . . wn P Σ�

with wi P Γ for i � 1 . . . , |w| is

σMpwq :� pq0, 0, γwq

where γw : ZÑ Γ is defined by

γwpzq :�

#
if z ¤ 0 or z ¡ |w|,

wz if z P t1, . . . , |w|u.

86 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

That means that at the start of the computation the tape head is positioned
on cell no. 0, and the input string w is contained in the cells with the numbers
1 to |w| while all other cells contain the blank #.
For two configurations c and c1 we write c $ c1 and say c1 is a successor of c,
if, according to the transition relation δ, the configuration c1 can be reached
from the configuration c in one step (this is defined in the usual way). The
reflexive-transitive closure of $ is denoted $�. A computation or computation
path of M on input w is a sequence c0 $. . . $ cm, where c0 � σMpwq. In the
following we will only consider ATMs M such that there exists a function
t : N Ñ N such that for any n P N and any possible input string w P Σn,
any computation path of M on input w has length at most tpnq, that is, if
c0, . . . , cm is a computation path of M on input w then m ¤ tpnq. In this
case we say that M works in time t. For such machines M we can define the
language LpMq � Σ� recognized by M as follows: for w P Σ�

w P LpMq : ðñ there exists an “accepting tree of M on input w”.

An accepting tree of M on input w is a finite rooted and labeled tree each
of whose nodes is labeled with a configuration of M such that the following
five properties hold true:

I. The root of the tree is labeled with the initial configuration σMpwq of
M on input w.

II. If c is the label of an internal node of the tree then the labels of its
successors are configurations c1 satisfying c $ c1 (note that this implies
that the state q of c is an element of QD YQ@).

III If c is the label of an internal node of the tree then the labels of its
successors are pairwise different configurations.

IV. If c is the label of an internal node of the tree and the state q of c is an
element of Q@ then for every configuration c1 with c $ c1 there exists a
successor node labeled with c1.

V. If c is the label of a leaf of the tree then the state of c is equal to qaccept.

Note that these conditions imply that, if c is the label of a node of the tree
and the state q of c is an element of QD, then this node is an internal node,
hence, it has a successor. Let the height of a rooted tree be the length of the
longest path in the tree. It is clear that if there is an accepting tree of M on
input w then its height is at most tp|w|q.
The time complexity class AEXPTIME is the class of all languages L such
that there exist an alternating Turing machine M with L � LpMq and a

5.3. ALTERNATING TURING MACHINES 87

polynomial p such that M works in time 2ppnq. We will make use of the
fundamental fact AEXPTIME � EXPSPACE [19, Corollary 3.6].
For technical purposes we will also need the following notion. A partial tree
of M on input w is a finite rooted and labeled tree each of whose nodes is
labeled with a configuration of M that satisfies the same four properties I, II,
III, and IV as an accepting tree of M on input w and instead of the property
V the following weaker property:

V1. If c is the label of a leaf of the tree then the state of c is different from
qreject.

It is clear that any accepting tree of M on input w is a partial tree of M
on input w. Usually we will write a partial tree of M on input w as a triple
T � pV,E, cq where V is the set of nodes of the tree T , where E � V � V is
the set of edges of the tree T (note that the root root of the tree is uniquely
determined by V and E: it is the only node that does not have an incoming
edge), and where c : V Ñ Q � Z � ΓZ is the labeling of the tree. Let E� be
the reflexive-transitive closure of E. We will often need the following data
associated with any computation node v P V :

• The time timepvq of v. This is the number of edges of the unique path
in T from root to v. Note that timeprootq � 0.

• The configuration cpvq of v. This is the configuration with which the
node v is labeled.

• The state statepvq of the configuration cpvq.

• The position pospvq of the tape head in the configuration cpvq.

• The symbol readpvq in the cell pospvq in the configuration cpvq.

• The predecessor predpvq of v in the tree T , for v � root .

• The symbol writtenpvq that has been written in the computation step
that lead to this node v, for v � root . Note that this is the symbol
now contained in the cell posppredpvqq on which the tape head was
positioned in the previous configuration.

88 CHAPTER 5. PREPARATIONS FOR THE REDUCTION

Chapter 6

Reduction of Alternating Turing

Machines Working in Exponential

Time to SSL

In this chapter we prove the following theorem.

Theorem 6.1. The satis�ability problem of SSL is EXPSPACE-hard under
logarithmic space reduction.

As explained at the beginning of the previous chapter, we are going to show
this by reducing any language L recognized by an Alternating Turing Machine
working in exponential time to the satisfiability problem of SSL.
In the following section we will first describe the idea of the reduction and
then define the reduction function fSSL in detail. In Section 6.2 we will show
that it can be computed in logarithmic space. In the final two sections we
are going to show that it is corrrect. First we show that in case w P L the
formula fSSLpwq is SSL-satisfiable by explicitly constructing an SSL cross
axiom model for fSSLpwq. In the last section we show that if fSSLpwq is
SSL-satisfiable then w is an element of L.

6.1 Construction of the Formula

Let L P EXPSPACE be an arbitrary language over some alphabet Σ, that is,
L � Σ�. We are going to show that there is a logspace computable function
fSSL mapping strings to strings such that, for any w P Σ�,

• fSSLpwq is a bimodal formula and

• fSSLpwq is SSL-satisfiable if, and only if, w P L.

89

90 CHAPTER 6. REDUCTION OF ATMS TO SSL

Once we have shown this, we have shown the result. In order to define this
desired reduction function fSSL, we are going to make use of an Alternating
Turing Machine for L. Since EXPSPACE � AEXPTIME, there exist an
Alternating Turing Machine M � pQ,Σ,Γ, q0, δq and a univariate polynomial
p such that M accepts L, that is, LpMq � L, and such that the time used
by M on arbitrary input of length n is bounded by 2ppnq� 1. We can assume
without loss of generality Q � t0, . . . , |Q| � 1u, Γ � t0, . . . , |Γ| � 1u, that the
coefficients of the polynomial p are natural numbers and that, for all n P N,
we have ppnq ¥ n and ppnq ¥ 1. In the following, whenever we have fixed
some n P N, we set

N :� ppnq.

Let us consider an input word w P Σn of length n, for some n P N, and
let us sketch the main idea of the construction of the formula fSSLpwq. The
formula fSSLpwq will describe the possible computations of M on input w in
the following sense: any cross axiom model of fSSLpwq will essentially contain
an accepting tree of M on input w, and if w P LpMq then there exists an
accepting tree of M on input w and one can turn this into a cross axiom
model of fSSLpwq. In such a model, any node in an accepting tree of M

on input w will be modeled by a cloud (that is, by an
L
Ñ-equivalence class)

in which certain shared variables (we use the notion “shared variables” in
the same sense as in Section 5.1) will have values that describe the data of
the computation node that are important in this computation step. Which
data are these? First of all, we need the time of the computation node. We
assume that the computation starts with the initial configuration of M on
input w at time 0. Since the ATM M needs at most 2N � 1 time steps, we
can store the time of each computation node in a binary counter counting
from 0 to 2N � 1. Since during each time step at most one additional cell
either to the right or to the left of the previous cell can be visited, we can
describe any configuration reachable during a computation of M on input w
by the following data:

• the current content of the tape, which is a string in Γ2�p2N�1q�1 �
Γ2N�1�1,

• the current tape head position, which is a number in t0, . . . , 2N�1 � 2u.

We assume that in the initial configuration on input w the tape content is
#2Nw#2N�1�n (remember that we use # for the blank symbol) and that the
tape head scans the blank # to the left of the first symbol of w, that is, the
position of the tape head is 2N � 1. If a cloud in a cross axiom model of
fSSLpwq describes a computation node of M on input w then in this cloud
the following shared variables will have the following values:

6.1. CONSTRUCTION OF THE FORMULA 91

• a vector αtime � pαtime
N�1, . . . , α

time
0 q giving in binary the current time of

the computation,

• a vector αpos � pαpos
N , . . . , αpos

0 q giving in binary the current position of
the tape head,

• a vector αstate � pαstate
0 , . . . , αstate

|Q|�1q giving in unary the current state

of the computation (here “unary” means: exactly one of the shared
variables αstate

i will be true, namely the one with i being the current
state),

• a vector αwritten � pαwritten
0 , . . . , αwritten

|Γ|�1 q giving in unary the symbol that
has just been written into the cell that has just been left, unless the
cloud corresponds to the first node in the computation tree — in that
case the value of this vector is irrelevant (here “unary” means: exactly
one of the variables αwritten

i will be true, namely the one with i being
the symbol that has just been written),

• a vector αread � pαread
0 , . . . , αread

|Γ|�1q giving in unary the symbol in the

current cell (here “unary” means: exactly one of the shared variables
αread
i will be true, namely the one with i being the symbol in the current

cell).

The formula fSSLpwq has to ensure that for any possible computation step in
an accepting tree starting from such a computation node there exists a cloud
describing the corresponding successor node in the accepting tree. In this
new cloud, the value of the counter for the time αtime has to be incremented.
This can be done by the technique described in Section 5.2 for implementing
a binary counter. In parallel, we have to make sure that in this new cloud
also the vectors αpos, αstate, αwritten, and αread are set to the right values. For
the vectors αpos, αstate, and αwritten these values can be computed using the
corresponding element of the transition relation δ of the ATM. For example,
αpos has to be decremented by one if the tape head moves to the left, and
it has to be incremented by one if the tape head moves to the right. Also
the new state (to be stored in αstate) and the symbol written into the cell
that has just been left (to be stored in αwritten) are determined by the data
of the previous computation node and by the corresponding element of the
transition relation δ.
But the vector αread is supposed to describe the symbol in the current cell.
This symbol is not determined by the current computation step but has
either been written the last time when this cell has been visited during this
computation or, when this cell has never been visited before, the symbol in

92 CHAPTER 6. REDUCTION OF ATMS TO SSL

this cell is still the one that was contained in this cell before the computation
started. How can one ensure that αread is set to the right value? If the
current cell has never been visited before, we have to make sure that the
value is set to the correct value describing the inital content of this cell.
Otherwise, we make use of the cross property. The point in the new cloud
whose existence is enforced by the formula must have a cross point in any
cloud corresponding to any previous computation node. The idea is that one
of these cross points picks up the right value in the right cloud. We are going
to make sure that the cloud is identified that corresponds to the configuration
after the previous visit of the same cell during the computation. Then in the
cloud corresponding to this configuration the value of αwritten will tell us the
symbol that has been written into the current cell during the previous visit.
In order to identify the correct cloud of the step after the previous visit of
the current cell and to copy the value of the symbol, the formula fSSLpwq will
ensure that any cloud describing a computation node will contain a point in
which the following (persistent!) propositional variables have the following
values:

• a vector Xtime � pXtime
N�1, . . . , X

time
0 q giving in binary the current time

of the computation,

• a vector Xpos � pXpos
N , . . . , Xpos

0 q giving in binary the current position
of the tape head, that is the position of the current cell,

• a vector Xread � pXread
0 , . . . , Xread

|Γ|�1q giving in unary the symbol in the

current cell, (here “unary” means: exactly one of the variables Xread
i

will be true, namely the one with i being the symbol in the current
cell).

• a vector Xtime-apv � pXtime-apv
N�1 , . . . , Xtime-apv

0 q giving in binary the time
one step after the previous visit of the cell, if it has been visited be-
fore (“time-apv” stands for “time after previous visit”); otherwise this
vector will have the binary value 0.

Now we come to the formal definition of the formula fSSLpwq. The formula
fSSLpwq will have the following structure:

fSSLpwq :� Kluniqueness

^start

^Kltime after previous visit

^Klget the right symbol

^Klcomputation

^Klno reject .

6.1. CONSTRUCTION OF THE FORMULA 93

The formula fSSLpwq will contain the following propositional variables:

B,

Atime
N�1, . . . , A

time
0 ,

Apos
N , . . . , Apos

0 ,

Astate
0 , . . . , Astate

|Q|�1,

Awritten
0 , . . . , Awritten

|Γ|�1 ,

Aread
0 , . . . , Aread

|Γ|�1,

Xtime
N�1, . . . , X

time
0 ,

Xtime-apv
N�1 , . . . , Xtime-apv

0 ,

Xpos
N , . . . , Xpos

0 ,

Xread
0 , . . . , Xread

|Γ|�1.

For string P ttime, pos, state,written, readu and natural numbers k we define

αstring
k :� LpAstring

k ^lLBq.

These formulas αstring
k are the shared variables we talked about above. We are

now going to define the subformulas of fSSLpwq. We will use the abbreviations
introduced above, in Table 5.1, and in Table 6.1.
The models of the formula fSSLpwq will contain certain “information” points
that will realize an accepting tree of M on input w if, and only if, w P L.
Besides these information points there will also be other, “auxiliary”, points

(and an
L
Ñ-equivalence class not containing any information points) whose

sole purpose is to make the mechanism of shared variables work. In several
formulas we need to distinguish between the information points and the other,
auxiliary, points. It turns out that this can be done simply by the truth value
of the propositional variable B.
The following formula makes sure that in each of the vectors of shared vari-
ables that describe in a unary way the current state respectively the written
symbol respectively the current symbol, exactly one shared variable is true:

uniqueness :� B Ñ
�
uniquepαstateq ^ uniquepαwrittenq ^ uniquepαreadq

�
.

The vector Xread will satisfy the same uniqueness condition automatically.
The following formula ensures that the variables in the cloud corresponding to
the first node in a computation tree get the correct values. The computation
starts at time 0 with the tape head at position 2N � 1 and in the state q0

and with the blank symbol # in the current cell.

start :� B ^ pαtime � binNp0qq ^ pα
pos � binN�1p2

N � 1qq ^ αstate
q0

^ αread
.

94 CHAPTER 6. REDUCTION OF ATMS TO SSL

For the following is an abbreviation

expression of the following formula

l ¥ 1 uniquepF q
�l�1

k�0 Fk ^
�l�1

k�0

�l�1
m�k�1 pFk ^ Fmq

l ¥ 1 pF � Gq pF � Gq

l ¥ 1 pF Gq
�l�1

k�0 ppF � G,¡ kq ^ Fk ^Gkq

l ¥ 1 pF ¤ Gq pF Gq _ pF � Gq

l ¥ 1 pF � G� 1q
�l�1

k�0

�
pF � G,¡ kq

^rightmost_onepF , kq

^rightmost_zeropG, kq
�

l ¥ 1 pF � G� 1q pF � G� 1q

l ¥ 1, 0 ¤ i 2l pF binlpiqq
�

kPOnespiq

�
 Fk

^
�

hPtk�1,...,l�1uzOnespiq Fh
�

l ¥ 1, 0 ¤ i 2l pF ¤ binlpiqq pF binlpiqq _ pF � binlpiqq

l ¥ 1, 0 ¤ i 2l pF ¡ binlpiqq pF ¤ binlpiqq

Table 6.1: Some (partially numerical) abbreviations for logical formulas,
where F � pFl�1, . . . , F0q and G � pGl�1, . . . , G0q are vectors of formulas.
An empty conjunction like

��1
h�0 Fh can be replaced by any propositional for-

mula that is true always. An empty disjunction like
��1

h�0 Fh can be replaced
by any propositional formula that is false always.

6.1. CONSTRUCTION OF THE FORMULA 95

The following formula ensures that the vector Xtime-apv stores the time after
the previous visit of the same cell, if it has been visited before. If it has never
been visited before, this vector gets the binary value 0.

time after previous visit

:� B Ñ

��
Xtime-apv ¤ Xtime

	
^
�
pαtime Xtime ^ αpos � Xposq Ñ pXtime-apv � αtime � 1q

	
^
�
pαtime Xtime ^ αpos � Xposq Ñ pαtime Xtime-apvq

	�
.

We explain this formula. The time Xtime-apv after the previous visit of the
current cell Xpos is certainly at most as large as the current time Xtime.
When during the computation at an earlier time a cell has been visited that is
different from the current one then one plus the time of that visit is certainly
not the time after the previous visit of the current cell. When during the
computation at an earlier time the current cell has been visited then the time
of that visit is a strict lower bound for the time after the previous visit of the
current cell. Together these conditions ensure that Xtime-apv gets the correct
value.
The following formula ensures that the vector Xread stores (in unary form)
the symbol in the current cell.

get the right symbol :���
B ^ pXtime-apv � binNp0qq

�
Ñ��n

i�1ppX
pos � binN�1p2

N � 1� iqq Ñ Xread
wi
q

^ppXpos ¤ binN�1p2
N�1qq _ pXpos ¡ binN�1p2

N�1� nqqq Ñ Xread
#

	�

^

��
B ^ pXtime-apv¡binNp0qq ^ pα

time � Xtime-apvq
�
Ñ pXread�αwrittenq

�
.

We explain this formula. If the current cell has never before been visited (this
is the case iff the vector Xtime-apv has the binary value 0) then the vector Xread

is forced to store in unary format the initial symbol in the current cell. This
is either a symbol wi of the input string or the blank #. If the current cell has

96 CHAPTER 6. REDUCTION OF ATMS TO SSL

been visited before (this is the case iff the vector Xtime-apv has a binary value
strictly greater than 0) then in the cloud corresponding to the time stored in
Xtime-apv the vector αwritten describes the symbol that has been written into
the current cell during the previous visit. Therefore, this value is copied into
the vector Xread.
Next, we wish to define the formula computation that describes the compu-
tation steps. We have to distinguish between the two cases whether the tape
head is going to move to the left or to the right. If in a computation step the
symbol θ P Γ is written into the current cell, if the tape head moves to the
right, and if the new state after this step is the state r P Q, then the following
formula guarantees the existence of a point and its cloud with suitable values
in the shared variables and in the persistent propositional variables.

compsteprightpr, θq

:�
N�1©
k�0

N©
l�0

��
B ^ rightmost zeropαtime, kq ^ rightmost zeropαpos, lq

�
Ñ L

�
B ^ pXtime � αtime,¡ kq ^ rightmost onepXtime, kq

^ pXpos � αpos,¡ lq ^ rightmost onepXpos, lq

^ ♦
�
pαtime � Xtimeq ^ pαpos � Xposq ^ αstate

r ^ αwritten
θ

^ pαread � Xreadq
�
�

.

We explain this formula. The procedure is quite similar to the one of the
formula counterSSL,n in Section 5.2 for a binary counter. The first three lines
of the formula make sure that there is a point in the same cloud as the current
point such that in this new point the binary value of the persistent variable
vector Xtime is larger by one than the binary value of the shared variable
vector αtime and that in this new point the binary value of the persistent
variable vector Xpos is larger by one than the binary value of the shared

variable vector αpos. The last two lines ensure the existence of a
♦
Ñ-successor

of this new point in which the shared variable vectors αtime, αpos, αstate,
αwritten, and αread get the correct new values.
If in a computation step the symbol θ P Γ is written into the current cell, if
the tape head moves to the left, and if the new state after this step is the
state r P Q, then the following formula guarantees the existence of a point
and its cloud with suitable values in the shared variables and in the persistent

6.1. CONSTRUCTION OF THE FORMULA 97

propositional variables.

compstep leftpr, θq

:�
N�1©
k�0

N©
l�0

��
B ^ rightmost zeropαtime, kq ^ rightmost onepαpos, lq

�
Ñ L

�
B ^ pXtime � αtime,¡ kq ^ rightmost onepXtime, kq

^ pXpos � αpos,¡ lq ^ rightmost zeropXpos, lq

^ ♦
�
pαtime � Xtimeq ^ pαpos � Xposq ^ αstate

r ^ αwritten
θ

^ pαread � Xreadq
�
�

.

This formula is very similar to the previous one with the exception that here
the binary counter for the position of the tape head is decremented.
The computation is modeled by the following subformula. Remember that
Q is the disjoint union of the sets tqacceptu, tqrejectu, Q@, QD.

computation

:�
©
qPQ@

©
ηPΓ

�
pαstate

q ^ αread
η q Ñ

� ©
pr,θ,leftqPδpq,ηq

compstep leftpr, θq ^
©

pr,θ,rightqPδpq,ηq

compsteprightpr, θq

�

^
©
qPQD

©
ηPΓ

�
pαstate

q ^ αread
η q Ñ

� ª
pr,θ,leftqPδpq,ηq

compstep leftpr, θq _
ª

pr,θ,rightqPδpq,ηq

compsteprightpr, θq

��
.

Finally, the subformula no reject is defined as follows.

no reject :� αstate
qreject

.

We have completed the description of the formula fSSLpwq for w P Σ�. It is
clear that fSSLpwq is a bimodal formula, for any w P Σ�. We still have to
show two claims:

1. The function fSSL can be computed in logarithmic space.

98 CHAPTER 6. REDUCTION OF ATMS TO SSL

2. For any w P Σ�,

w P L ðñ the bimodal formula fSSLpwq is SSL-satisfiable.

The first claim will be shown in the following section. The two directions of
the second claim will be shown separately in Sections 6.3 and 6.4.

6.2 LOGSPACE Computability of the Reduc-

tion

For the first claim, we observe that there are three kinds of subformulas of
fSSLpwq:

1. subformulas that do not depend on the input string w at all,

2. subformulas that depend only on the length n of the input string w but
not on its symbols w1, . . . , wn,

3. subformulas that depend on the particular symbols w1, . . . , wn of the
input string w.

The subformula Kluniqueness is of the first type. Therefore, it can be
written using only a constant amount of workspace. And there is only one
subformula of the third type, the subformula Klget the right symbol . All
other subformulas are of the second type. All of them contain vectors of
propositional variables of length at most N�1 or conjunctions or disjunctions
of length at most N � 1, where N � ppnq. And all of these vectors and lists
of conjunctions or disjunctions have a very regular structure. This applies
also to the only subformula of the third type. This regular structure makes it
possible to write down these formulas using a fixed (that means: independent
of the input string w) number of counters that can count up to N . But such
counters can be implemented in binary using not more than OplogNq �
Oplog nq space. Hence, given a string w, the whole formula fSSLpwq can be
computed using not more than logarithmic space.

6.3 Construction of a Model

We come to the second claim. First, we show the direction from left to right.

Let us assume w P L. We will construct a cross axiom model pW,
L
Ñ,

♦
Ñ, σq

with a point proot ,root P W such that proot ,root |ù fSSLpwq. There exists an

6.3. CONSTRUCTION OF A MODEL 99

accepting tree T � pV,E, cq of M on input w, where V is the set of nodes of
T , where E � V �V is the set of edges, and where the function c : V Ñ Q�
t0, . . . , 2N�1� 2u�Γ2N�1�1 labels each node with a configuration (remember
the discussion about the description of configurations at the beginning of
Section 6.1). Let root P V be the root of T . The set W is defined to be the
(disjoint) union of the following three sets P , U , and S. We define

P :� tpv,x : v, x P V and vE�xu.

For the definition of U we use the following set as an index set:

I :� pttimeu � t0, . . . , N � 1uq

Yptposu � t0, . . . , Nuq

Yptstateu �Qq

Yptwrittenu � Γq

Yptreadu � Γq.

We define
U :� tuv,string,z : v P V Y tJu, pstring , zq P Iu

where J is a special element not contained in V . We extend the binary
relation E� on V to a binary relation rE on V Y tJu by

rE :� tpu, vq P pVYtJuq�pVYtJuq : either pu, v P V and uE�vq or v � Ju.

We define the set S by

S :� tsv,time,k : v P V, k P Onesptimepvqqu

Ytsv,pos,k : v P V, k P Onesppospvqqu

Ytsv,state,q : v P V, q � statepvqu

Ytsv,written,γ : v P V ztrootu, γ � writtenpvqu Y tsroot,written,#u

Ytsv,read,γ : v P V, γ � readpvqu.

As the relation
L
Ñ is supposed to be an equivalence relation we can define it

by defining the
L
Ñ-equivalence classes. These are the sets

Cloud v :� tpv,x P P : x P V u Y tuv,i P U : i P Iu Y tsv,i P S : i P Iu

for all v P V , and the set

CloudJ :� tuJ,i P U : i P Iu.

100 CHAPTER 6. REDUCTION OF ATMS TO SSL

We define the relation
♦
Ñ by:

♦
Ñ :� tppv,x, pv1,x1q P P � P : v, v1, x, x1 P V and vE�v1 and x � x1u

Ytpuv,i, uv1,i1q P U � U : v, v1 P V Y tJu, i, i1 P I and v rEv1
and i � i1u

Ytpuv,i, sv1,i1q P U � S : v, v1 P V, i, i1 P I and vE�v1 and i � i1u

Ytpsv,i, sv1,i1q P S � S : v, v1 P V, i, i1 P I and v � v1 and i � i1u.

It is straightforward to check that
♦
Ñ is reflexive and transitive. The cross

property is satisfied as well. Thus, pW,
L
Ñ,

♦
Ñq is an cross axiom frame. Fi-

nally, we define the valuation σ as follows.

σpBq :� P,

and

σpAtime
k q :� tuv,time,k P U : v P V Y tJuu Y tsv,time,k P S : v P V u,

σpXtime
k q :� tpv,x P P : v, x P V and k P Onesptimepxqqu,

σpXtime-apv
k q :� tpv,x P P : v, x P V and k P Onespjqu

where j :�

$''''''''&''''''''%

0 if on the path from root to x the

cell pospxq has not been visited

before the cell x is reached,

1� timepv1q otherwise, where v1 is the last

node on the path from root to

predpxq with pospv1q � pospxq,

for k P t0, . . . , N � 1u,

σpApos
k q :� tuv,pos,k P U : v P V Y tJuu Y tsv,pos,k P S : v P V u,

σpXpos
k q :� tpv,x P P : v, x P V and k P Onesppospxqqu,

for k P t0, . . . , Nu,

σpAstate
q q :� tuv,state,q P U : v P V Y tJuu Y tsv,state,q P S : v P V u,

for q P Q,

σpAwritten
γ q :� tuv,written,γ P U : v P V Y tJuu Y tsv,written,γ P S : v P V u,

σpAread
γ q :� tuv,read,γ P U : v P V Y tJuu Y tsv,read,γ P S : v P V u,

σpXread
γ q :� tpv,x P P : v, x P V and γ � readpxqqu,

6.3. CONSTRUCTION OF A MODEL 101

for γ P Γ. It is obvious that all propositional variables are persistent.

Thus, we have defined a cross axiom model pW,
L
Ñ,

♦
Ñ, σq. We claim that

proot ,root |ù fSSLpwq. For an illustration of an important detail of the struc-
ture see Figure 6.1.
We start with some preliminary observations. First, for any cloud, any shared
variable has the same truth values in all points in the cloud. Secondly,

y |ù B ðñ y P P,

for all y P W . So, the points in P are the “information” points. On the
other hand, as the cloud CloudJ does not contain any elements from P , for
all points y P CloudJ we have y |ù K B, hence,

p@y P CloudJq y |ù α
string
k ,

for all string P ttimes, pos, state,written, readu and all k. That means, the
truth value of any shared variable in the cloud CloudJ is false. We claim
that in the other clouds all shared variables have the values indicated by
their names, namely,

y |ù pαtime � binNptimepvqq,

y |ù pαpos � binN�1ppospvqq,

py |ù αstate
q q ðñ q � statepvq, for q P Q,

py |ù αread
γ q ðñ γ � readpvq, for γ P Γ,

for v P V and y P Cloud v,

py |ù αwritten
γ q ðñ γ � writtenpvq,

for γ P Γ, v P V ztrootu and y P Cloud v, and

py |ù αwritten
γ q ðñ γ � #,

for γ P Γ and y P Cloud root . This can be checked similarly as the correspond-
ing claim (5.1) in the proof of Proposition 5.2. We prove the assertions about
αwritten
γ and leave the proofs of the other assertions to the reader. Let us fix

some γ P Γ. Note that, for all p1 P P , we have p1 |ù Awritten
γ , hence

p@p1 P P q p1 |ù p Awritten
γ _ ♦K Bq.

Furthermore, uJ,i |ù K B for all i P I. Since for all v P V Y tJu and i P I

we have uv,i
♦
Ñ uJ,i we obtain uv,i |ù ♦K B for all v P V Y tJu and i P I.

Hence,
p@u1 P Uq u1 |ù p Awritten

γ _ ♦K Bq.

102 CHAPTER 6. REDUCTION OF ATMS TO SSL

X time-apv=0 X time-apv=1+t
1

X time-apv=1+t
2

p
v

1,v1

. . .

. . .

. . .

. . .

v
1 t

1

1+t
1

. . .

. . .

. . .

v
2 t

2

1+t
2

. . .

. . .

v
3 t

3

1+t
3

. . .

. . .

... p
v

1,v2

p
v

1,v3

... ...

...

p
v

2,v2

p
v

2,v3

... ...

... ...

p
v

3,v3

...

...

Figure 6.1: A possible detail of a cross axiom model of the formula fSSLpwq.
Consider a certain cell and let us assume that v1, v2, v3 are the �rst three
computation nodes on some computation path in which this cell is visited.
Let ti :� timepviq. The diagram on the left shows a part of the computation
path. The diagram on the right shows the corresponding part of the cross
axiom model.

6.3. CONSTRUCTION OF A MODEL 103

This shows that, for any v P V , the shared variable αwritten
γ � LpAwritten

γ ^
lLBq is true in the cloud Cloud v if, and only if, there exists some s1 P
Cloud vXS with s1 |ù Awritten

γ ^lLB. As p1 |ù B for all p1 P P and any s1 P S

is
L
Ñ-equivalent to some p1 P P , we have s1 |ù LB, for all s1 P S. Actually, for

s1 P S we even have s1 |ù lLB as s1 does not have any
♦
Ñ-successor besides

itself. Thus, for any v P V , the shared variable αwritten
γ � LpAwritten

γ ^lLBq
is true in the cloud Cloud v if, and only if, there exists some s1 P Cloud v X S
with s1 |ù Awritten

γ . The elements s1 P Cloud v X S have the form s1 � sv,i
for some i P I. On the one hand, we observe that, for v P V and i P I,
sv,i |ù Awritten

γ ðñ i � pwritten, γq. On the other hand, for v P V we have

sv,written,γ P Cloud v ðñ

#
γ � writtenpvq if v P V ztrootu,

γ � # if v � root .

Thus, we have shown the desired claims:

py |ù αwritten
γ q ðñ γ � writtenpvq,

for γ P Γ, v P V ztrootu and y P Cloud v, and

py |ù αwritten
γ q ðñ γ � #,

for γ P Γ and y P Cloud root .
It is clear from the definition of the valuation σ that in the points in P the
variable vectors Xtime, Xpos, Xread, and Xtime-apv have the values indicated
by their names:

pv,x |ù pXtime � binNptimepxqq,

pv,x |ù pXpos � binN�1ppospxqq,

ppv,x |ù Xread
γ q ðñ γ � readpxq, for γ P Γ,

pv,x |ù pXtime-apv � binNpjqq,

where j :�

$'''''''''''''&'''''''''''''%

0 if on the path from root to x

the cell pospxq has not been

visited before the cell x is

reached,

1� timepv1q otherwise, where v1 is the

last node on the path from

root to predpxq with

pospv1q � pospxq,

104 CHAPTER 6. REDUCTION OF ATMS TO SSL

for v, x P V satisfying vE�x.
Now we are prepared to show proot ,root |ù fSSLpwq. Our observations about
the values of the shared variable vectors αstate, αread, and αwritten show

proot ,root |ù Kluniqueness

(remember that B is false in all points of the cloud CloudJ). Similarly, our
observations about the values of the shared variable vectors αtime, αpos, αstate,
and αread imply

proot ,root |ù start .

As the state of any node in the accepting tree T of M on input w is different
from qreject, our observations about the value of the vector αstate (in any cloud
Cloud v for v P V the shared variable αstate

q is true if, and only if, q � statepvq,
and in the cloud CloudJ all shared variables are false) shows

proot ,root |ù Klno reject .

Next, we show

proot ,root |ù Kltime after previous visit .

As the variable B is true only in the elements of P , it is sufficient to show
for all v, x P V with vE�x

pv,x |ù
�
Xtime-apv ¤ Xtime

	
^
��
pαtime Xtimeq ^ pαpos � Xposq

�
Ñ pXtime-apv � αtime � 1q

	
^
��
pαtime Xtimeq ^ pαpos � Xposq

�
Ñ pαtime Xtime-apvq

	
.

We distinguish between the two cases whether the cell pospxq under the tape
head in the configuration cpxq has been visited on the path from root to x
before x is reached or not.
First let us assume that the cell pospxq has not been visited before. Then
pv,x |ù pXtime-apv � binNp0qq, hence pv,x |ù pXtime-apv ¤ Xtimeq and pv,x |ù
pXtime-apv � αtime � 1q, that is, the formulas in the first two lines are true in
pv,x. And if we have pv,x |ù pα

time Xtimeq then, due to vE�x, the point v is a
point on the path from root to predpxq. Our assumption (that the cell pospxq
has not been visited before x is reached) implies pv,x |ù pαpos � Xposq.
Hence the formula in the third line is true in pv,x as well.
Now, let us assume that the cell pospxq has been visited on the path from
root to x before x is reached. Let x1 be the last node on the path from root

6.3. CONSTRUCTION OF A MODEL 105

to predpxq with pospx1q � pospxq. Let i :� timepx1q and j :� 1 � i. Then
i timepxq and j ¤ timepxq. As pv,x |ù pX

time-apv � binNpjqq, the formula in
the first line above is true, that is, pv,x |ù pX

time-apv ¤ Xtimeq. For the formula
in the second line, let us assume pv,x |ù pαtime Xtimeq ^ pαpos � Xposq.
Then v is a node on the path from root to predpxq with pospvq � pospxq.
Hence, v � x1, hence, timepvq � timepx1q, hence, j � timepvq � 1, hence,
pv,x |ù pX

time-apv � αtime�1q. For the formula in the third line, let us assume
pv,x |ù pα

time Xtimeq ^ pαpos � Xposq. Then v is a node on the path from
root to predpxq with pospvq � pospxq, that is, with the property that in this
node the same cell is visited as in the node x. As x1 is the last node on the
path from root to predpxq with this property, we have timepvq ¤ timepx1q,
hence, j � 1� i � 1� timepx1q ¡ timepvq, hence pv,x |ù pα

time Xtime-apvq.
Next, we show

proot ,root |ù Klget the right symbol .

It is sufficient to show for all y P W , y |ù get the right symbol . There are
two cases to be considered. In each of them, due to the presence of the
variable B, we need to consider only points y P P . Let us consider elements
v, x P V with vE�x. It is sufficient to show pv,x |ù get the right symbol . We
distinguish between the two cases considered in this formula. First, let us
assume pv,x |ù pX

time-apv � binNp0qq. We have to show that in this case

pv,x |ù
n©
i�1

�
pXpos � binN�1p2

N � 1� iqq Ñ Xread
wi

	
^
��
pXpos ¤ binN�1p2

N � 1qq _ pXpos ¡ binN�1p2
N � 1� nqq

�
Ñ Xread

#

	
.

According to our observations about the value of Xtime-apv, the cell pospxq
under the tape head in the configuration cpxq has not been visited on the
path from root to predpxq. Thus, the symbol readpxq is still the initial symbol
in the cell pospxq. Let us call this symbol γ. Then pv,x |ù Xread

γ , and

γ �

#
wi if pospxq � 2N � 1� i, for some i P t1, . . . , nu,

if pospxq ¤ 2N � 1 or pospxq ¡ 2N � 1� n.

On the other hand, pv,x |ù pXpos � binN�1ppospxqqq. We have shown the
assertion.
Now, let us assume

pv,x |ù ppX
time-apv ¡ binNp0qq ^ pα

time � Xtime-apvqq.

106 CHAPTER 6. REDUCTION OF ATMS TO SSL

We have to show that in this case

pv,x |ù pX
read � αwrittenq.

The assumption pv,x |ù pXtime-apv ¡ binNp0qq implies that the cell pospxq
has already been visited on the path from root to predpxq and that pv,x |ù
pXtime-apv � binN�1p1� iqq where i � timepx1q and x1 is the last node on the
path from root to predpxq with pospx1q � pospxq. The assumption pv,x |ù
pαtime � Xtime-apvq implies x1 � predpvq. But then in the point v the vector
αwritten encodes in unary the symbol that was written into the cell pospxq
in the computation step from x1 to v. If we call this symbol γ, this means
pv,x |ù αwritten

γ . This is still the symbol in the cell pospxq when x is reached,
hence, pv,x |ù Xread

γ . So, we have indeed shown

pv,x |ù pX
read � αwrittenq.

Finally, we show
proot ,root |ù Klcomputation.

It is sufficient to show
y |ù computation,

for all y P W . We will separately treat the conjunctions over the set pq, ηq P
QD � Γ and over the set Q@ � Γ. Let us fix a pair pq, ηq P QD � Γ and let
us assume that y P W is a point with y |ù pαstate

q ^ αread
η q. We have to show

that there is an element pr, θ, leftq P δpq, ηq such that y |ù compstep leftpr, θq or
that there is an element pr, θ, rightq P δpq, ηq such that y |ù compsteprightpr, θq.
As in the cloud CloudJ the truth value of any shared variable is false, the
assumption y |ù pαstate

q ^ αread
η q implies that there exists some v P V with

y P Cloud v. Furthermore, q � statepvq and η � readpvq. As T is an accepting
tree and the state q of cpvq is an element of QD, the node v is an inner node
of T , hence, it has a successor v1. Let us assume that ppq, ηq, pr, θ, leftqq P δ
is the element of the transition relation δ that leads from v to v1 (the case
that this element is of the form ppq, ηq, pr, θ, rightqq is treated analogously).
We claim that then

y |ù compstep leftpr, θq.

Let us check this. Let us assume that, for some k P t0, . . . , N � 1u and for
some l P t0, . . . , Nu,

y |ù
�
B ^ rightmost zeropαtime, kq ^ rightmost onepαpos, lq

�
.

The number i :� timepvq is an element of t0, . . . , 2N � 2u because v is an
inner point of the tree T and the length of any computation path is at most

6.3. CONSTRUCTION OF A MODEL 107

2N�1, and the number j :� pospvq is an element of t1, . . . , 2N�1�3u because
the computation starts in cell 2N � 1 and because during each computation
step the tape head can move at most one step to the left or to the right. We
obtain k � minpt0, . . . , N �1uzOnespiqq and l � min Onespjq. We claim that
the two points pv,v1 and pv1,v1 have the properties formulated in the formula

compstep leftpr, θq. Indeed, we observe y
L
Ñ pv,v1 and pv,v1

♦
Ñ pv1,v1 as well as

pv,v1 |ù B. The facts

timepvq � i, pospvq � j,

timepv1q � i� 1, pospv1q � j � 1,

imply

pv,v1 |ù pαtime � binNpiqq ^ pα
pos � binN�1pjqq ^

pXtime � binNpi� 1qq ^ pXpos � binN�1pj � 1qq and

pv1,v1 |ù pαtime � binNpi� 1qq ^ pαpos � binN�1pj � 1qq ^

pXtime � binNpi� 1qq ^ pXpos � binN�1pj � 1qq.

We obtain
pv1,v1 |ù pα

time � Xtimeq ^ pαpos � Xposq,

and with

k � minpt0, . . . , N � 1uzOnespiqq and l � minpOnespjqq

we obtain as well

pv,v1 |ù pXtime � αtime,¡ kq ^ rightmost onepXtime, kq

^pXpos � αpos,¡ lq ^ rightmost zeropXpos, lq.

Finally, our observations about the values of the shared variable vectors αstate,
αwritten, αread and about the vector Xread imply that also

pv1,v1 |ù αstate
r ^ αwritten

θ ^ pαread � Xreadq.

(remember that ppq, ηq, pr, θ, leftqq P δ is the element of the transition relation
δ that leads from the node v to the node v1). This ends the treatment of
the conjunctions over the set pq, ηq P QD � Γ in the formula computation.
Let us now consider a pair pq, ηq P Q@ � Γ. Let us assume that y P W is
a point such that y |ù pαstate

q ^ αread
η q. We have to show that for all ele-

ments pr, θ, leftq P δpq, ηq we have y |ù compstep leftpr, θq and for all elements
pr, θ, rightq P δpq, ηq we have y |ù compsteprightpr, θq. Let us consider an arbi-
trary element pr, θ, leftq P δpq, ηq (the case of an element pr, θ, rightq P δpq, ηq

108 CHAPTER 6. REDUCTION OF ATMS TO SSL

is treated analogously). As in the cloud CloudJ the truth value of any shared
variable is false, the assumption y |ù pαstate

q ^αread
η q implies that there exists

some v P V with y P Cloud v. Furthermore, q � statepvq and η � readpvq. As
q P Q@ and T is an accepting tree, in T there is a successor v1 of v such that
the element ppq, ηq, pr, θ, leftqq leads from v to v1. Above, we have already
seen that this implies

y |ù compstep leftpr, θq.

Thus, we have shown y |ù computation for all y P W . This ends the proof of
the claim proot ,root |ù fSSLpwq.

6.4 Existence of an Accepting Tree

We come to the other direction. Let w P Σ�. We wish to show that if
fSSLpwq is SSL-satisfiable then w P L. We will show that any cross axiom
model of fSSLpwq essentially contains an accepting tree of the Alternating
Turing Machine M on input w. Of course, this implies w P L.
Let us sketch the main idea. We will consider a cross axiom model of fSSLpwq.
And we will consider partial trees of M on input w as considered in Sec-
tion 5.3, for any w P Σ�. First, we will show that a certain very simple
partial tree of M on input w “can be mapped to” the model (later we will
give a precise meaning to “can be mapped to”). Then we will show that any
partial tree of M on input w that can be mapped to the model and that is
not an accepting tree of M on input w can be properly extended to a strictly
larger partial tree of M on input w that can be mapped to the model as well.
If there would not exist an accepting tree of M on input w then we would
obtain an infinite strictly increasing sequence of partial trees of M on input
w. But we show that this cannot happen by giving a finite upper bound on
the size of partial trees of M on input w.
Let w P Σ� be a string such that the formula fSSLpwq is SSL-satisfiable. We

set n :� |w|. Let pW,
♦
Ñ,

L
Ñ, σq be a cross axiom model and r0 P W a point

such that r0 |ù fSSLpwq. The quintuple

Model :� pW,
♦
Ñ,

L
Ñ, σ, r0q

will be important in the following. Points in W that cannot be reached from

r0 by finitely many
♦
Ñ and

L
Ñ-steps (in any order) can be deleted from W

with no harm: the resulting smaller quintuple will still be a model of fSSLpwq.
Hence, we will assume without loss of generality that every point x P W can

be reached from r0 by finitely many
♦
Ñ and

L
Ñ-steps (in any order). Note

that now the cross property implies that for any x P W there exists some

6.4. EXISTENCE OF AN ACCEPTING TREE 109

x1 P W with r0
L
Ñ x1 and x1

♦
Ñ x. Hence, if ϕ is a formula with r0 |ù Klϕ

then, for all x P W , we have x |ù ϕ. For every x P W , let Cloudx be the
L
Ñ-equivalence class of x. Remember that for every

L
Ñ-equivalence class and

every shared variable αstring
i for string P ttime, pos, state,written, readu and

a natural number i, the truth value of this shared variable is the same in all

elements of the
L
Ñ-equivalence class.

Partial trees of M on input w as introduced in Section 5.3 will play an
important role in the following. We will write a partial tree of M on input
w similarly as in Section 5.3 as a triple T � pV,E, cq, but with the difference
that we will describe configurations as at the beginning of this section: the
labeling function c will be a function of the form c : V Ñ Q�t0, . . . , 2N�1�
2u � Γ2N�1�1. If T � pV,E, cq is a partial tree of M on input w with root
root then a function π : V Ñ W is called a morphism from T to Model if it
satisfies the following four conditions:

1. πprootq � r0,

2. p@v, v1 P V q p if vEv1 then Cloudπpvq
♦
Ñ

L
Ñ

Cloudπpv1qq,

3. p@v P V ztrootuq πpvq |ù αwritten
writtenpvq,

4. p@v P V q πpvq |ù
�
B ^ pαtime � binNptimepvqqq

^pαpos � binN�1ppospvqqq ^ αstate
statepvq ^ α

read
readpvq

�
.

We say that T can be mapped to Model if there exists a morphism from T to
Model . Below we shall prove the following lemma.

Lemma 6.2. If a partial tree T � pV,E, cq of M on input w can be mapped
to Model and is not an accepting tree of M on input w then there exists a
partial tree T � prV , rE,rcq of M on input w that can be mapped to Model and

that satis�es V � rV .

Before we prove this lemma, we deduce the desired assertion from it. Let

D :� maxpt|δpq, ηq| : q P Q, η P Γuq.

Then, due to Condition III in the definition of a “partial tree of M on input
w”, any node in any partial tree of M on input w has at most D successors.
As any computation of M on w stops after at most 2N � 1 steps, any partial
tree of M on input w has at most

rD :� pD2N � 1q{pD � 1q

110 CHAPTER 6. REDUCTION OF ATMS TO SSL

nodes. We claim that the rooted and labeled tree

T0 :� ptrootu,H, cq where cprootq :� pq0, 2
N � 1,#2Nw#2N�1�nq

is a partial tree of M on input w and can be mapped to Model . Indeed,
Condition I in the definition of a “partial tree of M on input w” is satisfied
because the node root is labeled with the initial configuration of M on input
w. Conditions II, III, and IV are satisfied because T0 does not have any inner
nodes. Condition V 1 is satisfied because q0 � qreject, and this follows from
r0 |ù αstate

q0
(this is a part of r0 |ù start) and r0 |ù α

state
qreject

(this follows from
r0 |ù Klno reject). Thus, T0 is indeed a partial tree of M on input w. Now
we show that T0 can be mapped Model . Of course, we define π : trootu Ñ W
by πprootq :� r0. We claim that π is a morphism from T to Model . We check
the four conditions one by one.

1. The condition πprootq � r0 is true by definition.

2. The second condition is satisfied trivially because the tree T0 does not
have any edges.

3. The third condition in the definition of a “morphism from T to Model”
is satisfied trivially because T0 has only one node, its root.

4. On the one hand, we have timeprootq � 0, posprootq � 2N � 1,
stateprootq � q0, and readprootq � #.
On the other hand, the condition r0 |ù start implies

r0 |ù B ^ pαtime � binNp0qq ^ pα
pos � binN�1p2

N � 1qq ^ αstate
q0

^ αread
.

Thus, we have shown that T0 is a partial tree of M on input w and that T0

can be mapped to Model .
If there would not exist an accepting tree of M on input w then, starting with
T0 and using Lemma 6.2 we could construct an infinite sequence of partial
trees T0, T1, T2, . . . of M on input w that can be mapped to Model such that
the number of nodes in these trees is strictly increasing. But we have seen
that any partial tree of M on input w can have at most rD nodes. Thus,
there exists an accepting tree of M on input w. We have shown w P L.

In order to complete the proof of Theorem 6.1 it remains to prove Lemma 6.2.

Proof of Lemma 6.2. Let T � pV,E, cq be a partial tree of M on input w
that is not an accepting tree of M on input w and that can be mapped to
Model . Let π : V Ñ W be a morphism from T to Model . Then T has a

6.4. EXISTENCE OF AN ACCEPTING TREE 111

leaf pv such that the state q :� stateppvq is either an element of QD or of Q@.
First we treat the case that it is an element of QD, then the case that it is an
element of Q@.
So, let us assume that q P QD. We de�ne η :� readppvq. Then, because π is a
morphism from T to Model , we have

πppvq |ù pαstate
q ^ αread

η q,

hence, due to πppvq |ù computation,

πppvq |ù ª
pr,θ,leftqPδpq,ηq

compstep leftpr, θq _
ª

pr,θ,rightqPδpq,ηq

compsteprightpr, θq.

Let us assume that there is an element pr, θ, leftq P δpq, ηq such that πppvq |ù
compstep leftpr, θq (the other case, when there is an element pr, θ, rightq P
δpq, ηq such that πppvq |ù compsteprightpr, θq, is treated analogously). We

claim that we can de�ne the new tree rT � prV , rE,rcq as follows:
• rV :� V Y trvu where rv is a new element (not in V),

• rE :� E Y tppv, rvqu,

• rcpxq :�

$''''''&''''''%

cpxq for all x P V,

c1 for x � rv,
where c1 is the con�guration that is reached from

cppvq in the computation step given by

ppq, ηq, pr, θ, leftqq P δ.

Before we show that rT is a partial tree ofM on input w, we de�ne a functionrπ : rV Ñ W that we will show to be a morphism from rT to Model .
As pv is an element of a partial tree of M on input w with stateppvq P QD, at
least one more computation step can be done. As any computation of M
on input w stops after at most 2N � 1 steps, we observe that the number
i :� timeppvq satis�es 0 ¤ i 2N � 1. Then t0, . . . , N � 1uzOnespiq � H. We
set k :� minpt0, . . . , N � 1uzOnespiqq. The assumption that π is a morphism
from T to Model implies πppvq |ù pαtime � binNpiqq. We conclude πppvq |ù
rightmost_zeropαtime, kq. As during each computation step, the tape head
can move at most one step to the left or to the right and as the computation
started in position 2N � 1 the number j :� posppvq satis�es 0 j ¤ 2N�1� 3.
Then Onespjq � H. We set l :� min Onespjq. The assumption that π is a
morphism from T to Model implies πppvq |ù pαpos � binN�1pjqq. We conclude

112 CHAPTER 6. REDUCTION OF ATMS TO SSL

πppvq |ù rightmost_onepαpos, lq. Furthermore, as π is a morphism from T to
Model we have πppvq |ù B. Summarizing this, we have

πppvq |ù �B ^ rightmost_zeropαtime, kq ^ rightmost_onepαpos, lq
�
.

Due to πppvq |ù compstep leftpr, θq there exist an element x P Cloudπppvq and an

element y P W such that x
♦
Ñ y as well as

x |ù B ^ pXtime � αtime,¡ kq ^ rightmost_onepXtime, kq

^pXpos � αpos,¡ lq ^ rightmost_zeropXpos, lq

and

y |ù pαtime � Xtimeq ^ pαpos � Xposq ^ αstate
r ^ αwritten

θ ^ pαread � Xreadq.

We claim that we can de�ne the desired function rπ : rV Ñ W by

rπpvq :�

#
πpvq if v P V,

y if v � rv.
We have to show that rT is a partial tree of M on input w and that rπ is a
morphism from rT to Model . Condition I in the de�nition of a �partial tree of
M on input w� is satis�ed because rT has the same root as T , and the label
of the root does not change. A node in rT is an internal node of rT if, and
only if, it is either an internal node of T or equal to pv. For internal nodes
of T Conditions II, III, and IV are satis�ed by assumption (and due to the
fact that the labels of nodes in V do not change). The new internal node pv
satis�es Condition II by our de�nition of rcprvq. Condition III is satis�ed for pv
because pv has exactly one successor. And Condition IV does not apply to pv
because pv P QD. A node in rT is a leaf if, and only if, it is either equal to rv or
a leaf in T di�erent from pv. For the leaves in T di�erent from pv Condition V1

is satis�ed by assumption (and due to the fact that the labels of nodes in V

do not change). For the new leaf rv in rT Condition V1 says stateprvq � qreject.
This is true because on the one hand stateprvq � r and on the other hand
y |ù αstate

r and y |ù αstate
qreject

(this follows from r |ù Klno_reject). We have

shown that rT is a partial tree of M on input w.
Now we show that rπ is a morphism from rT to Model . The �rst condition in
the de�nition of a �morphism from rT to Model � is satis�ed because rπprootq �
πprootq � r0. Let us look at the second condition and let us assume that

v, v1 P rV satisfy v rEv1. We distinguish between two di�erent cases for v and
v1.

6.4. EXISTENCE OF AN ACCEPTING TREE 113

1. Case: v1 P V . Then our assumption v rEv1 implies v P V and vEv1.
In this case the facts rπpvq � πpvq and rπpv1q � πpv1q as well as the
assumption that π : V Ñ W is a morphism from T to Model imply the
desired assertion:

Cloud
rπpvq � Cloudπpvq

♦
Ñ

L
Ñ

Cloudπpv1qq � Cloud
rπpv1q.

2. Case: v1 � rv. Then our assumption v rEv1 implies v � pv. On the one
hand, we have x P Cloudπppvq � Cloud

rπppvq, on the other hand y � rπprvq,
hence, y P Cloud

rπprvq. With x
♦
Ñ y we obtain the desired assertion

Cloud
rπppvq

♦
Ñ

L
Ñ

Cloud
rπprvq.

The third condition in the de�nition of a �morphism from rT to Model � is
satis�ed for v P V ztrootu by assumption (and by rπpvq � πpvq and rcpvq �
cpvq). It is satis�ed for rv because writtenprvq � θ, because rπprvq � y, and
because y |ù αwritten

θ . We come to the fourth condition. It is satis�ed for
v P V ztrootu by assumption (and due to rπpvq � πpvq and rcpvq � cpvq). We
still need to show that it is satis�ed for rv. Remember rπprvq � y. We need to
show

y |ù
�
B ^ pαtime � binNptimeprvqqq ^ pαpos � binN�1pposprvqqq
^αstate

stateprvq ^ α
read
readprvq

�
.

This assertion consists really of �ve assertions. We treat them one by one.

• The condition y |ù B is satis�ed because x |ù B and x
♦
Ñ y and because

B is persistent.

• In the trees T and rT we have timeppvq � i, and in the tree rT we
have timeprvq � i � 1. We wish to show y |ù pαtime � binNpi �
1qq. We have already seen πppvq |ù pαtime � binNpiqq and πppvq |ù
rightmost_zeropαtime, kq. As x P Cloudπppvq, we obtain

x |ù ppαtime � binNpiqq ^ rightmost_zeropαtime, kqq.

The conditions x
♦
Ñ y as well as

x |ù pXtime � αtime,¡ kq ^ rightmost_onepXtime, kq and

y |ù pαtime � Xtimeq

imply y |ù pαtime � binNpi� 1qq.

114 CHAPTER 6. REDUCTION OF ATMS TO SSL

• In the trees T and rT we have posppvq � j, and in the tree rT we
have posprvq � j � 1. We wish to show y |ù pαpos � binN�1pj �
1qq. We have already seen πppvq |ù pαpos � binN�1pjqq and πppvq |ù
rightmost_onepαpos, lq. As x P Cloudπppvq, we obtain

x |ù ppαpos � binN�1pjqq ^ rightmost_onepαpos, lqq.

The conditions x
♦
Ñ y as well as

x |ù pXpos � αpos,¡ lq ^ rightmost_zeropXpos, lq and

y |ù pαpos � Xposq

imply y |ù pαpos � binN�1pj � 1qq.

• We have stateprvq � r. And we have y |ù αstate
r .

• Let γ :� readprvq in rT . We wish to show y |ù αread
γ . As we know

y |ù pαread � Xreadq it is su�cient to show y |ù Xread
γ . We have already

seen y |ù pαtime � binNpi � 1qq and y |ù pαpos � binN�1pj � 1qq.
As we know y |ù pαtime � Xtimeq ^ pαpos � Xposq we conclude y |ù
ppXtime � binNpi � 1qq ^ pXpos � binN�1pj � 1qqq. We have seen
y |ù B as well. Furthermore, we have y |ù time_after_previous_visit .
The �rst line in the formula time_after_previous_visit implies y |ù
pXtime-apv ¤ Xtimeq, hence, y |ù pXtime-apv ¤ binNpi � 1qq. Let vm P V
for m � 0, . . . , i� 1 be the uniquely determined node on the path from
root to rv with timepvmq � m (hence v0 � root , vi � pv, and vi�1 � rv).
Then

v0
rEv1
rE . . . rEvi rEvi�1.

By the second condition in the de�nition of a �morphism from rT to
Model �

Cloud
rπpv0q

♦
Ñ

L
Ñ

Cloud
rπpv1q

♦
Ñ

L
Ñ

. . .
♦
Ñ

L
Ñ

Cloud
rπpviq

♦
Ñ

L
Ñ

Cloud
rπpvi�1q.

By repeated application of the cross property and by starting with
zi�1 :� y we conclude that for m � i � 1, i, . . . , 1, 0 there exists some

zm P Cloud
rπpvmq with zm

♦
Ñ y. Let us consider m P t0, 1, . . . , i� 1u. As

y |ù B we also have zm |ù B (remember that variables are persistent in
SSL). Due to rπpvmq |ù ppαtime � binNpmqq^pα

pos � binN�1ppospvmqqqq
we obtain zm |ù ppαtime � binNpmqq ^ pα

pos � binN�1ppospvmqqqq as
well. Due to y |ù ppXtime � binNpi � 1qq ^ pXpos � binN�1pj � 1qqq
and the persistence of variables we obtain zm |ù ppXtime � binNpi �

6.4. EXISTENCE OF AN ACCEPTING TREE 115

1qq ^ pXpos � binN�1pj � 1qqq as well. Furthermore, we have zm |ù
time_after_previous_visit . We distinguish between the two cases
whether the cell j � 1 has been visited on the path from root to pv
or not.

Let us �rst consider the case when the cell j�1 has not been visited on
the path from root to pv. Then, on the one hand, the symbol γ � readprvq
is still the initial symbol in the cell j � 1. On the other hand, for all
m P t0, . . . , iu we have pospvmq � j � 1 and

zm |ù pα
time Xtime ^ αpos � Xposq Ñ Xtime-apv � αtime � 1q.

Together with zm |ù ppXtime � binNpi � 1qq ^ pXpos � binN�1pj �
1qqq and zm |ù ppαtime � binNpmqq ^ pα

pos � binN�1ppospvmqqqq we
conclude that zm |ù pX

time-apv � binNpm � 1qq for m P t0, . . . , iu. The
persistence of Xtime-apv implies that y |ù pXtime-apv � binNpm� 1qq for
m P t0, . . . , iu. Together with y |ù pXtime-apv ¤ Xtimeq we conclude
that the binary value of Xtime-apv in y must be 0. Now the fact y |ù
get_the_right_symbol implies y |ù Xread

γ .

Let us consider the second case, the case when the cell j � 1 has been
visited on the path from root to pv. Let vm1 be the last node on this path
with pospvm1q � j � 1. Then 0 ¤ m1 ¤ i. On the one hand, then the
symbol γ � readprvq is the symbol that was written into the cell j � 1
in the computation step from node vm1 to node vm1�1, and by the third
condition in the de�nition of a �morphism from rT to Model � we haverπpvm1�1q |ù αwritten

γ , hence, zm1�1 |ù αwritten
γ . On the other hand, from

y |ù time_after_previous_visit we get y |ù pXtime-apv ¤ Xtimeq, hence,
y |ù pXtime-apv ¤ binNpi�1qq. From zm1 |ù time_after_previous_visit
we get

zm1 |ù
�
pαtime Xtimeq ^ pαpos � Xposq

�
Ñ pαtime Xtime-apvq.

Together with zm1 |ù pαtime � binNpm
1qq we obtain zm1 |ù pbinNpm

1q
Xtime-apvq. And similarly as in the �rst case, from

zm |ù
�
pαtime Xtimeq ^ pαpos � Xposq

�
Ñ pXtime-apv � αtime � 1q,

for m � m1 � 1, . . . , i we obtain

zm |ù pX
time-apv � binNpm� 1qq.

All this implies y |ù pXtime-apv � binNp1�m
1qq and zm1�1 |ù pX

time-apv �
binNp1 �m1qq. Then zm1�1 |ù get_the_right_symbol implies zm1�1 |ù
pXread � αwrittenq. With zm1�1 |ù αwritten

γ we conclude zm1�1 |ù Xread
γ ,

hence, y |ù Xread
γ . That was to be shown.

116 CHAPTER 6. REDUCTION OF ATMS TO SSL

Thus, rT is not only a partial tree of M on input w but can also be mapped
to Model . This ends the treatment of the case q P QD.
Now we consider the other case, the case q P Q@. We de�ne η :� readppvq.
Let

pr1, θ1, dir 1q, . . . , prd, θd, dirdq

be the elements of δpq, ηq where d ¥ 1 and dirm P tleft , rightu, for m �

1, . . . , d. We claim that we can de�ne the new tree rT � prV , rE,rcq as follows:
• rV :� V Y trv1, . . . , rvdu where rv1, . . . , rvd are new (not in V) pairwise
di�erent elements,

• rE :� E Y tppv, rv1q, . . . , ppv, rvdqu,

• rcpxq :�

$''''''&''''''%

cpxq for all x P V,

c1m for x � rvm,
where c1m is the con�guration that is reached from

cppvq in the computation step given by

ppq, ηq, prm, θm, dirmqq P δ.

Before we show that rT is a partial tree ofM on input w, we de�ne a functionrπ : rV Ñ W that we will show to be a morphism from rT to Model . Since π
is a morphism from T to Model), we have

πppvq |ù �
B ^ pαtime � binNptimeppvqqq ^ pαpos � binN�1pposppvqqq
^αstate

stateppvq ^ α
read
readppvq

�
,

hence, due to πppvq |ù computation,

πppvq |ù ©
pr,θ,leftqPδpq,ηq

compstep leftpr, θq ^
©

pr,θ,rightqPδpq,ηq

compsteprightpr, θq.

As in the case q P QD one shows that the numbers i :� timeppvq and j :�
posppvq satisfy 0 ¤ i 2N � 1 and 0 j ¤ 2N�1 � 3, and one de�nes

k :� minpt0, . . . , N � 1uzOnespiqq,

lleft :� minpOnespjqq, and

lright :� minpt0, . . . , NuzOnespjqq.

As in the case q P QD one obtains

πppvq |ù
�
B ^ rightmost_zeropαtime, kq

^rightmost_onepαpos, lleftq ^ rightmost_zeropαpos, lrightq
�
.

6.4. EXISTENCE OF AN ACCEPTING TREE 117

Let us now consider some m P t1 . . . , du. If dirm � left then, due to πppvq |ù
compstep leftpr, θq, there exist an element xm P Cloudπppvq and an element

ym P W such that xm
♦
Ñ ym as well as

xm |ù B ^ pXtime � αtime,¡ kq ^ rightmost_onepXtime, kq

^pXpos � αpos,¡ lleftq ^ rightmost_zeropXpos, lleftq

and

ym |ù pα
time � Xtimeq ^ pαpos � Xposq ^ αstate

r ^ αwritten
θ ^ pαread � Xreadq.

Similarly, if dirm � right then, due to πppvq |ù compsteprightpr, θq, there exist

an element xm P Cloudπppvq and an element ym P W such that xm
♦
Ñ ym as

well as

xm |ù B ^ pXtime � αtime,¡ kq ^ rightmost_onepXtime, kq

^pXpos � αpos,¡ lrightq ^ rightmost_onepXpos, lrightq

and

ym |ù pα
time � Xtimeq ^ pαpos � Xposq ^ αstate

r ^ αwritten
θ ^ pαread � Xreadq.

We claim that we can de�ne the desired function rπ : rV Ñ W by

rπpvq :�

#
πpvq if v P V,

ym if v � rvm, for some m P t1, . . . , du.

Similarly as in the case q P QD one shows that rT is a partial tree of M on
input w. Note that also Condition IV is satis�ed for pv. Finally, similarly as
in the case q P QD one shows that rπ is a morphism from rT to Model . This
ends the treatment of the case q P Q@. We have proved Lemma 6.2.

118 CHAPTER 6. REDUCTION OF ATMS TO SSL

Chapter 7

Reduction of Alternating Turing

Machines Working in Exponential

Time to S4� S5

In this chapter we prove the following theorem.

Theorem 7.1. The satis�ability problem of S4� S5 is EXPSPACE-hard
under logarithmic space reduction.

As explained at the beginning of Chapter 5, we are going to show this by
reducing any language L recognized by an Alternating Turing Machine work-
ing in exponential time to the satisfiability problem of S4� S5. The proof
is quite similar to the reduction of Alternating Turing Machines working in
exponential time to the satisfiability problem of SSL presented in the previ-
ous chapter. But, there are also some important differences between the two
reductions. On the one hand, we are going to use certain “shared variables”
as well, but the mechanism of shared variables in S4� S5 is much easier than
in SSL. On the other hand, the fact that in S4� S5 the right commutativity
property and the left commutativity property hold true (while in SSL only
the left commutativity property has to hold true) causes problems that were
not present in our treatment of SSL in Chapter 6. Similarly as in that section,
for S4� S5 we will model nodes in an accepting tree of an Alternating Tur-
ing Machine by clouds in an S4� S5-product model. But the commutativity
properties have the consequence that for every point in every cloud there
exists a copy in every other cloud. The result is that in a cloud modeling
a certain node on some path in an accepting tree there are also points that
come from other nodes on other computation paths, perhaps even with the
same time stamp. This makes the isolation of the correct points carrying the
required information (in particular the information about the symbol to be

119

120 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

read at a certain time on some computation path) more difficult. For details
see Section 7.1 where the reduction function is defined and explained.
In the first of the following four sections we first give an outline of the defini-
tion of the reduction function and then define the reduction function fS4�S5

formally. In the second section we show that the reduction function fS4�S5

can be computed in logarithmic space. The final two sections are devoted
to the correctness proof of the reduction. First we show that in the case
w P L the formula fS4�S5pwq is S4� S5-satisfiable by explicitly constructing
an S4� S5-product model for fS4�S5pwq. In the last section we show that if
fS4�S5pwq is S4� S5-satisfiable then w is an element of L.
In Chapter 8 we are going to show that the satisfiability problem of SSL
can be reduced in logarithmic space to the satisfiability problem of S4� S5.
Together with the EXPSPACE-hardness of the satisfiability problem of SSL
(Theorem 6.1) this gives another proof of the EXPSPACE-hardness of the
satisfiability problem of S4� S5.

7.1 Construction of the Formula

Let L P EXPSPACE be an arbitrary language over some alphabet Σ, that is,
L � Σ�. We are going to show that there is a logspace computable function
fS4�S5 mapping strings to strings such that, for any w P Σ�,

• fS4�S5pwq is a bimodal formula and

• fS4�S5pwq is S4� S5-satisfiable if, and only if, w P L.

Once we have shown this, we have shown the result.
In order to define this desired reduction function fS4�S5, we are going to
make use of an Alternating Turing Machine for L. Since EXPSPACE �
AEXPTIME, there exist an Alternating Turing Machine M � pQ,Σ,Γ, q0, δq
and a univariate polynomial p such that M accepts L, that is, LpMq � L,
and such that the time used by M on arbitrary input of length n is bounded
by 2ppnq � 1. We can assume without loss of generality Q � t0, . . . , |Q| � 1u,
Γ � t0, . . . , |Γ| � 1u, that the coefficients of the polynomial p are natural
numbers and that, for all n P N, we have ppnq ¥ n and ppnq ¥ 1. In the
following, whenever we have fixed some n P N, we set

N :� ppnq.

Let us consider an input string w P Σn of length n, for some n P N, and let
us sketch the main idea of the construction of the formula fS4�S5pwq. The
formula fS4�S5pwq will describe the possible computations of M on input w in

7.1. CONSTRUCTION OF THE FORMULA 121

the following sense: any S4� S5-product model of fS4�S5pwq will essentially
contain an accepting tree of M on input w, and if there exists an accepting
tree of M on input w then one can turn this into an S4� S5-product model
of fS4�S5pwq. In such a model, any node in an accepting tree of M on

input w will be modeled by a cloud (that is, by an
L
Ñ-equivalence class) in

which certain shared variables (we use the notion “shared variables” in the
same sense as in Section 5.1) will have values that describe the data of the
computation node that are important in this computation step. Which data
are these? First of all, we need the time of the computation node. We assume
that the computation starts with the initial configuration of M on input w
at time 0. Since the ATM M needs at most 2N � 1 time steps, we can store
the time of each computation node in a binary counter counting from 0 to
2N � 1. Since during each time step at most one additional cell either to
the right or to the left of the previous cell can be visited, we can describe
any configuration reachable during a computation of M on input w by the
following data:

• the state q P Q of the configuration,

• the current content of the tape, given by a string in Γ2�p2N�1q�1 � Γ2N�1�1,

• the current position of the tape head, given by a number in t0, . . . , 2N�1�
2u.

We assume that in the initial configuration on input w the tape content is
#2Nw#2N�1�n (remember that we use # for the blank symbol) and that the
tape head scans the blank # to the left of the first symbol of w, that is, the
position of the tape head is 2N�1. If a cloud in an S4� S5-product model of
fS4�S5pwq describes a computation node of M on input w then in this cloud
the following shared variables will have the following values:

• a vector αtime � pαtime
N�1, . . . , α

time
0 q giving in binary the current time of

the computation,

• a vector αpos � pαpos
N , . . . , αpos

0 q giving in binary the current position of
the tape head,

• a vector αstate � pαstate
0 , . . . , αstate

|Q|�1q giving in unary the current state

of the computation (here “unary” means: exactly one of the shared
variables αstate

i will be true, namely the one with i being the current
state),

122 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

• a vector αread � pαread
0 , . . . , αread

|Γ|�1q giving in unary the symbol in the

current cell (here “unary” means: exactly one of the shared variables
αread
i will be true, namely the one with i being the symbol in the current

cell),

• a vector αwritten � pαwritten
0 , . . . , αwritten

|Γ|�1 q giving in unary the symbol that
has just been written into the cell that has just been left, unless the
cloud corresponds to the first node in the computation tree — in that
case the value of this vector is irrelevant (here “unary” means: exactly
one of the variables αwritten

i will be true, namely the one with i being
the symbol that has just been written),

• a vector αprevpos � pαprevpos
N , . . . , αprevpos

0 q giving in binary the previous
position of the tape head, that is, the position of the cell that has
just been left, unless the cloud corresponds to the first node in the
computation tree — in that case the value of this vector is irrelevant.

The formula fS4�S5pwq has to ensure that for any possible computation step
starting from such a computation node in an accepting tree there exists
a cloud describing the corresponding successor node in the accepting tree.
In this new cloud, the value of the counter for the time αtime has to be
incremented. This can be done by the technique for implementing a binary
counter in S4� S5 that was described in Section 5.2. In parallel, we have to
make sure that in this new cloud also the vectors αpos, αstate, αread, αwritten,
and αprevpos are set to the right values. The vector αprevpos is a copy of the
vector αpos in the previous cloud (we will see below how one can copy it). For
the vectors αpos, αstate, and αwritten these values can be computed using the
corresponding element of the transition relation δ of the ATM. For example,
αpos has to be decremented by one if the tape head moves to the left, and
it has to be incremented by one if the tape head moves to the right. Also
the new state (to be stored in αstate) and the symbol written into the cell
that has just been left (to be stored in αwritten) are determined by the data
of the previous computation node and by the corresponding element of the
transition relation δ.
But the vector αread is supposed to describe the symbol in the current cell.
This symbol is not determined by the current computation step but has
either been written the last time when this cell has been visited during this
computation or, when this cell has never been visited before, the symbol in
this cell is still the one that was contained in this cell before the computation
started. How can one ensure that αread is set to the right value? We will do
this by using persistent variables and a variable Bactive that is neither shared
nor persistent. We will ensure that any cloud corresponding to a node in the

7.1. CONSTRUCTION OF THE FORMULA 123

computation tree in which the cell i is being visited contains a point with a
persistent position vector Xpos � binN�1piq and with a persistent time vector
Xtime-apv that will be forced to contain in binary form the time one step after
the previous visit of the cell i or, if the cell i has not been visited before,
to contain the value 0. Furthermore, there will be a third persistent vector
Xread. If the cell i has not been visited before then we will make sure that
the vector Xread encodes the initial symbol contained in cell i. If the cell i
has been visited before then we will make sure that the vector Xread encodes
the symbol that has been written into the cell during the previous visit of
the cell. In order to do that we need to determine the time of the previous
visit. For that the Boolean variable Bactive is used and the fact that due to
the left commutativity property the point has

♦
Ñ-predecessors in all clouds

corresponding to any node on the path in the accepting tree from the root
to the current cloud. Then, when one knows this time, one can look at the
shared variable vector αwritten in the cloud corresponding to the step after the
previous visit of this cell (this shared variable vector encodes the symbol that
has just been written into the cell) and can copy its value to the persistent
variable vector Xread. In order to implement all this we use the following
persistent variables:

• a vector Xtime-apv � pXtime-apv
N�1 , . . . , Xtime-apv

0 q containing in binary the
time one step after the previous visit of the current cell (the exponent
of Xtime-apv

i stands for “time after previous visit”) or, if the current cell
has not been visited before, containing in binary the number 0,

• a vector Xpos � pXpos
N , . . . , Xpos

0 q containing in binary the current po-
sition of the tape head, that is, the position of the current cell,

• a vector Xread � pXread
0 , . . . , Xread

|Γ|�1q giving in unary the symbol in the

cell described by Xpos (here “unary” means: exactly one of the shared
variables αread

i will be true, namely the one with i being the symbol in
the cell described by Xpos),

In fact, the current cell may have been visited several times already. Of

course only the
♦
Ñ-successor of the point corresponding to the previous visit

(that is, corresponding to the very last visit of the cell before the current
visit, not earlier visits) should be allowed to copy the value of its vector
αwritten to Xread. In order to determine the right point, we are going to use
an additional Boolean

• variable Bactive (which is neither persistent nor shared) saying whether
the current point is active or not.

124 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

We shall explain later how all this works. Finally, there are two more vectors
of persistent variables that are needed for changing the values of the shared
variable vectors αtime and αpos:

• a vector Xprevtime � pXprevtime
N�1 , . . . , Xprevtime

0 q containing in binary the
current time of the computation minus one, unless the cloud corre-
sponds to the first node in the computation tree — in that case the
value of this vector is irrelevant,

• a vector Xprevpos � pXprevpos
N , . . . , Xprevpos

0 q containing in binary the
previous position of the tape head, that is, the position of the cell that
has just been left, unless the cloud corresponds to the first node in the
computation tree — in that case the value of this vector is irrelevant.

Now we come to the formal definition of the formula fS4�S5pwq. The formula
fS4�S5pwq will have the following structure:

fS4�S5pwq :� persistence

^Kluniqueness

^start

^Klinitial symbols

^Klwritten symbols

^Klread a symbol

^Klcomputation

^Klno reject .

The formula fS4�S5pwq will contain the following propositional variables:

Atime
N�1, . . . , A

time
0 ,

Apos
N , . . . , Apos

0 ,

Astate
0 , . . . , Astate

|Q|�1,

Awritten
0 , . . . , Awritten

|Γ|�1 ,

Aread
0 , . . . , Aread

|Γ|�1,

Aprevpos
N , . . . , Aprevpos

0 ,

Xprevtime
N�1 , . . . , Xprevtime

0 ,

Xprevpos
N , . . . , Xprevpos

0 ,

Xpos
N , . . . , Xpos

0 ,

Xtime-apv
N�1 , . . . , Xtime-apv

0 ,

Xread
0 , . . . , Xread

|Γ|�1,

Bactive.

7.1. CONSTRUCTION OF THE FORMULA 125

For string P ttime, pos, state, read, prevpos,writtenu and natural numbers i
we use αstring

i as an abbreviation for LAstring
i . These formulas αstring

i are the
shared variables we talked about above.
We are now going to define the subformulas of fS4�S5pwq. We will use the
abbreviations introduced above, in Table 5.1, and in Table 6.1.
The following formula makes sure that certain propositional variables are
persistent:

persistence

:� persistentpXprevtimeq ^ persistentpXprevposq

^persistentpXposq ^ persistentpXtime-apvq ^ persistentpXreadq.

The following formula makes sure that in each of the vectors of shared or
persistent variables that describe in a unary way the current state respectively
the written symbol exactly one variable is true:

uniqueness :� uniquepαstateq ^ uniquepαwrittenq ^ uniquepXreadq.

The vector αread will satisfy the same uniqueness condition automatically due
to another formula (due to the formula read a symbol).
The following formula ensures that the shared variables in the cloud corre-
sponding to the first node in a computation tree have the correct values. The
computation starts at time 0 with the tape head at position 2N � 1 and in
the state q0. The vector αread will automatically get the correct value # due
to the formulas read a symbol and initial symbols , that will be introduced
next. For the vectors αprevpos and αwritten we do not need to fix any values.

start :� pαtime � binNp0qq ^ pα
pos � binN�1p2

N � 1qq ^ αstate
q0

.

The following formula ensures that whenever an initial symbol on the tape
is requested (by a point with persistent time Xtime-apv equal to 0) it is stored
in a persistent vector Xread of this point.

initial symbols

:� pXtime-apv � binNp0qq

Ñ

�
n©
i�1

�
pXpos � binN�1p2

N � 1� iqq Ñ Xread
wi

�
^
��
pXpos ¤ binN�1p2

N � 1qq _ pXpos ¡ binN�1p2
N � 1� nqq

�
Ñ Xread

#

��
.

126 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

We explain this formula. By another formula we will ensure that whenever
a cell is visited for the first time there will be an “active” point storing the
position of this cell in a persistent vector Xpos and such that its persistent
time vector Xtime-apv has the binary value 0. The formula above ensures that
the persistent vector Xread in this point stores the correct initial symbol in
this cell. This is either a symbol wi of the input string w � w1 . . . wn or the
blank #.
The following formula ensures that whenever a symbol that has just been
written on the tape is requested (by an active point with the correct persistent
time Xtime-apv) then it is copied into a persistent vector Xread of this point.

written symbols

:�
�
pXtime-apv ¡ binNp0qq ^ pX

time-apv � αtimeq ^Bactive
�

Ñ pXread � αwrittenq.

The following formula ensures that the shared variable vector αread describes
the symbol in the current cell.

read a symbol

:� existence of a reading point

^time of previous visit

^becoming inactive

^staying inactive

^storing the read symbol ,

where

existence of a reading point

:� L
�
pXpos � αposq ^ pXtime-apv ¤ αtimeq ^Bactive

�
,

time of previous visit

:�
��
pXtime-apv ¡ binNp0qq ^ pX

time-apv � αtimeq ^Bactive
�

Ñ pXpos � αprevposq
	
,

becoming inactive

:�
��
pXpos � αprevposq ^ pXtime-apv αtimeq

�
Ñ Bactive

	
,

staying inactive

:�
�
 Bactive Ñ l Bactive

	
,

storing the read symbol

:�
��
pXpos � αposq ^ pXtime-apv ¤ αtimeq ^Bactive

�
Ñ pαread � Xreadq

	
.

7.1. CONSTRUCTION OF THE FORMULA 127

We explain these formulas. The formula existence of a reading point en-
forces the existence of an “active” point in the current cloud that contains in
the persistent vector Xpos the number of the current cell and that we wish to
force to contain in the persistent vector Xtime-apv the time one step after the
previous visit of this cell, if this cell has been visited before, or the value 0,
otherwise. How can we enforce that? We make essential use of the left com-
mutativity property. The point whose existence is ensured by the formula

existence of a reading point has
♦
Ñ-predecessors in all clouds corresponding

to the nodes on the path in the accepting tree from the root to the node
corresponding to the current cloud. Since we demand Xtime-apv ¤ αtime the
time stored in binary in the persistent variable Xtime-apv must be identical
with the time of one of the clouds corresponding to a node on this path.
The formula time of previous visit ensures that if it is positive then it can
be equal to the time αtime of a cloud corresponding to a node on this path
only when Xpos � αprevpos, that is, only when in the step leading to this node
something has been written into the current cell. So, if the current cell has
not been visited before, the binary value of Xtime-apv must be 0. Then the
formula initial symbols will ensure that the persistent variable Xread gets the
correct value. Otherwise, when the cell has been visited before, in fact, it
may have been visited several times already. In this case, we have to make
sure that the number stored in Xtime-apv is the time after the very last visit to
this cell immediately before the current visit. This is ensured by the formu-
las becoming inactive and staying inactive. If the number stored in Xtime-apv

were strictly smaller than the the time after the very last visit to this cell
immediately before the current visit then, due to becoming inactive the corre-
sponding point would be set to “inactive”, and, due to staying inactive, also

its
♦
Ñ-successor would stay inactive. But this would apply also to the point

in the current cloud which is supposed to be active and to contain the correct
value in Xtime-apv according to formula existence of a reading point . Thus,
the first four subformulas of read a symbol ensure that the current cloud con-
tains an active point that contains in the persistent vector Xpos the number
of the current cell and that contains in the persistent vector Xtime-apv the time
one step after the previous visit of this cell, if this cell has been visited be-
fore, or the value 0, otherwise. Finally, the formula storing the read symbol
makes sure that the value of Xread (which contains the symbol written into
the current cell during the previous visit of this cell, or, if the current cell
has not been visited before, the initial symbol in this cell) is copied into the
shared variable vector αread.

Next, we wish to define the formula computation that describes the com-
putation steps. We have to distinguish between the two cases whether the

128 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

tape head is going to move to the left or to the right. If in a computa-
tion step the symbol θ P Γ is written into the current cell, if the tape
head moves to the right, and if the new state after this step is the state
r P Q, then the following formula compsteprightpr, θq guarantees the existence
of a point and its cloud with suitable values in the shared variable vectors
αtime, αpos, αprevpos, αstate, αwritten.

We explain this formula. The first four lines of this formula take care that the
two binary counters αtime and αpos for the current time and for the current
position of the tape head are incremented at the same time. This is similar
to the formula counterS4�S5,n in Section 5.2. Furthermore, also the persistent
vectors Xprevtime (that we will not need otherwise) and Xprevpos (that we use
again in the fifth line of this formula) get the correct values. The fifth line
ensures that the shared variable vectors αprevpos, αstate and αwritten of the
current point get the correct values. The shared variable vector αread will get
the correct value due to the formulas initial symbols , written symbols , and
read a symbol .

compsteprightpr, θq

:�
N�1©
k�0

N©
l�0

��
rightmost zeropαtime, kq ^ rightmost zeropαpos, lq

�
Ñ L

�
pXprevtime � αtimeq ^ pXprevpos � αposq

^ ♦
�
pαtime � Xprevtime,¡ kq ^ rightmost onepαtime, kq

^ pαpos � Xprevpos ¡ lq ^ rightmost onepαpos, lq

^ pαprevpos � Xprevposq ^ αstate
r ^ αwritten

θ

	
�
.

If in a computation step the symbol θ P Γ is written into the current cell, if
the tape head moves to the left, and if the new state after this step is the
state r P Q, then the following formula guarantees the existence of a point

7.1. CONSTRUCTION OF THE FORMULA 129

and its cloud with suitable values in the shared variables.

compstep leftpr, θq

:�
N�1©
k�0

N©
l�0

��
rightmost zeropαtime, kq ^ rightmost onepαpos, lq

�
Ñ L

�
pXprevtime � αtimeq ^ pXprevpos � αposq

^ ♦
�
pαtime � Xprevtime,¡ kq ^ rightmost onepαtime, kq

^ pαpos � Xprevpos,¡ lq ^ rightmost zeropαpos, lq

^ pαprevpos � Xprevposq ^ αstate
r ^ αwritten

θ

	
�
.

This formula is very similar to the previous one with the exception that here
the binary counter for the position of the tape head is decremented.
The computation is modeled by the following subformula. Remember that
Q is the disjoint union of the sets tqacceptu, tqrejectu, Q@, QD.

computation

:�
©
qPQ@

©
ηPΓ

�
pαstate

q ^ αread
η q Ñ

� ©
pr,θ,leftqPδpq,ηq

compstep leftpr, θq ^
©

pr,θ,rightqPδpq,ηq

compsteprightpr, θq

�

^
©
qPQD

©
ηPΓ

�
pαstate

q ^ αread
η q Ñ

� ª
pr,θ,leftqPδpq,ηq

compstep leftpr, θq _
ª

pr,θ,rightqPδpq,ηq

compsteprightpr, θq

��
.

Finally, the subformula no reject is defined as follows.

no reject :� αstate
qreject

.

We have completed the description of the formula fS4�S5pwq for w P Σ�. It
is clear that fS4�S5pwq is a bimodal formula, for any w P Σ�. We still have
to show two claims:

1. The function fS4�S5 can be computed in logarithmic space.

130 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

2. For any w P Σ�,

w P L ðñ the bimodal formula fS4�S5pwq is S4� S5-satisfiable.

The first claim is shown in the following section. The two directions of the
equivalence in the second claim are shown afterwards in separate sections.

7.2 LOGSPACE Computability of the Reduc-

tion

We wish to show that the function fS4�S5 can be computed in logarithmic
space. This is shown by the same argument as the corresponding claim for
the function fSSL in Section 6.2.

7.3 Construction of a Model

In this section we show for any w P Σ�, if w P L then the bimodal formula
fS4�S5pwq is S4� S5-satisfiable. Let us assume w P L. We are going to
explicitly define an S4� S5-product model of fS4�S5pwq.

There exists an accepting tree T � pV,E, cq of M on input w, where V is
the set of nodes of T , where E � V � V is the set of edges, and where the
function c : V Ñ Q�t0, . . . , 2N�1�2u�Γ2N�1�1 labels each node with a con-
figuration (remember the discussion about the description of configurations
at the beginning of Section 7.1). Let root P V be the root of T . We will now
construct an S4� S5-product model of fS4�S5pwq. We define an S4-frame
pW1, R♦q by

W1 :� V and R♦ :� the reflexive-transitive closure of E.

That means, for any v, v1 P W1 we have vR♦v
1 iff in the tree T there is a path

from v to v1. We define an S5-frame pW2, RLq by

W2 :� V and RL :� W2 �W2.

Then the product frame pW,
♦
Ñ,

L
Ñq with W :� W1�W2 and with

♦
Ñ and

L
Ñ

defined as in Definition 3.10.2 is an S4� S5-product frame. We still need to

7.3. CONSTRUCTION OF A MODEL 131

define a suitable valuation σ. We define the valuation σ as follows.

σpAtime
k q :� tpv, xq : v, x P V and k P Onesptimepvqqu,

σpXprevtime
k q :� tpv, xq : v P V, x P V ztrootu and k P Onesptimepxq�1qu,

σpXtime-apv
k q :� tpv, xq : v P V, x P V ztrootu and there exists a node

y � root on the path from root to x such that

posppredpyqq � pospxq and k P Onesptimepyqq and, for all

nodes z on thepath from y to x with z � y,

posppredpzqq � pospxqu,

for k P t0, . . . , N � 1u,

σpApos
k q :� tpv, xq : v P V, x P V and k P Onesppospvqqu,

σpXpos
k q :� tpv, xq : v P V, x P V and k P Onesppospxqqu,

σpAprevpos
k q :� tpv, xq : v P V ztrootu, x P V and k P Onespposppredpvqqqu

σpXprevpos
k q :� tpv, xq : v P V, x P V ztrootu and k P Onespposppredpxqqqu,

for k P t0, . . . , Nu,

σpAstate
q q :� tpv, xq : v P V, x P V and q � statepvqqu

for q P Q,

σpAread
η q :� tpv, xq : v, x P V and η � readpvqu,

σpAwritten
η q :� tpv, xq : pv P V ztrootu, x P V and η � writtenpvqq

or pv � root and x P V and η � #qu,

σpXread
η q :� tpv, xq : v, x P V and η � readpxqqu,

for η P Γ,

σpBactiveq :� tpv, xq : v, x P V and v is an element of the path

from root to xu.

We have defined an S4� S5-product model pW1�W2,
♦
Ñ,

L
Ñq. We claim that

in this model proot , rootq |ù fS4�S5pwq. For an illustration of an important
detail of the model see Figure 7.1.
First, we observe that for string P tprevtime, prevpos, pos, time-apv,writtenu
and natural numbers i as well as for pv, xq P V � V the truth value of the
variable Xstring

i in the point pv, xq does not depend on v. Hence, all these
variables are persistent. So,

proot , rootq |ù persistence.

132 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

X time-apv=0 X time-apv=1+t
1

X time-apv=1+t
2

(v
1
,v

1
) (v

1
,v

2
)B (v

1
,v

3
)B B

. . .

. . .

. . .

. . .

v
1 t

1

 B B B1+t
1

. . .

. . .

. . .

. . .

(v
2
,v

1
) (v

2
,v

2
) (v

2
,v

3
)B Bv

2 t
2

 B

 B B1+t
2

 B

. . .

. . .

. . .

. . .

(v
3
,v

1
) (v

3
,v

2
) (v

3
,v

3
)Bv

3 t
3

 B

 B1+t
3

 B

. . .

. . .

. . .

. . .

 B

 B

Figure 7.1: A possible detail of an S4� S5-product model of the formula
fS4�S5pwq. Consider a certain cell and let us assume that v1, v2, v3 are the
�rst three computation nodes on some computation path in which this cell
is visited. Let ti :� timepviq. The diagram on the left shows a part of the
computation path. The diagram on the right shows the corresponding part
of the S4� S5-product model. Here B stands for Bactive.

7.3. CONSTRUCTION OF A MODEL 133

Similarly, for string P ttime, pos, state, read, prevpos,writtenu and natural
numbers i as well as for pv, xq P V � V the truth value of the variable Astring

i

in the point pv, xq does not depend on x. Note that for v P V the set

Cloudpvq :� tpv, xq : v P V, x P V u

is the
L
Ñ-equivalence class of pv, vq. All of the vectors of shared variables

have the expected values: for v P V and s P Cloudpvq. We see

s |ù pαtime � binNptimepvqqq,

s |ù pαpos � binN�1ppospvqqq,

ps |ù αstate
q q ðñ q � statepvq, for q P Q,

ps |ù αread
η q ðñ η � readpvq, for η P Γ,

and for v P V ztrootu and s P Cloudpvq we see

s |ù pαprevpos � binN�1pposppredpvqqqq,

ps |ù αwritten
η q ðñ η � writtenpvq, for η P Γ.

Similarly, for the vectors of persistent variables we see, for v, x P V :

pv, xq |ù pXprevtime � binNptqq, where

t �

#
0, if x � root

timeppredpxqq, otherwise,

pv, xq |ù pXprevpos � binN�1ppqq, where

p �

#
0, if x � root

posppredpxqq, otherwise,

pv, xq |ù pXpos � binN�1ppospxqqq,

pv, xq |ù pXtime-apv � binNptqq, where

t �

$''''''&''''''%

0, if the cell pospxq has not been visited before

on the computation path from root to x

(this is in particular true in the case x � root),

1� the time of the previous visit of the cell pospxq,

otherwise.

ppv, xq |ù Xread
η q ðñ η � readpxq, for η P Γ,

It is straightforward to check that for all pv, xq P W

pv, xq |ù uniqueness

134 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

(in fact, in order to achieve proot , xq |ù uniquepαwrittenq we made a somewhat
arbitrary choice for the value of Awritten

η in proot , xq, for x P V and η P Γ).
Hence, we have

proot , rootq |ù Kluniqueness .

It is clear as well that
proot , rootq |ù start .

As none of the nodes in the accepting tree T is labeled with a configuration
with the state qreject we have pv, xq |ù no reject , for all pv, xq P W , hence

proot , rootq |ù Klno reject .

We still need to show that

proot , rootq |ù Klinitial symbols ^Klwritten symbols

^Klread a symbol ^Klcomputation.

It is sufficient to show that, for all pv, xq P W ,

pv, xq |ù initial symbols ^ written symbols ^ read a symbol ^ computation.

First, let us consider the formula initial symbols . We wish to show that

pv, xq |ù initial symbols ,

for all pv, xq P W . Nothing needs to be shown if pv, xq |ù pXtime-apv �
binNp0qq is not true. So, let us assume that pv, xq |ù pXtime-apv � binNp0qq.
We noted above that the assumption pv, xq |ù pXtime-apv � binNp0qq implies
that the cell pospxq has not been visited before on the computation path from
root to x. Hence, readpxq � η, where η is the initial symbol in the cell x.
We obtain pv, xq |ù Xread

η . So, if the number i :� pospxq � p2N � 1q satisfies
1 ¤ i ¤ n then pv, xq |ù Xread

wi
, otherwise pv, xq |ù Xread

. Remember that
pv, xq |ù pXpos � binN�1ppospxqq. We have shown pv, xq |ù initial symbols .
Next, we consider the formula written symbols and show that

pv, xq |ù written symbols

for all pv, xq P W . Let us assume

pv, xq |ù ppXtime-apv ¡ binNp0qq ^ pX
time-apv � αtimeq ^Bactiveq

(otherwise, nothing needs to be shown). The condition pv, xq |ù pXtime-apv ¡
binNp0qq implies x P V ztrootu and that the binary value t of the vector
Xtime-apv in the point pv, xq is equal to 1� the time of the previous visit of the

7.3. CONSTRUCTION OF A MODEL 135

cell pospxq on the computation path from root to x. Note that t ¤ timepxq.
The condition pv, xq |ù pXtime-apv � αtimeq means t � timepvq. Now the
condition pv, xq |ù Bactive implies that v is an element of the path from root
to x. Actually, due to t � timepvq the node v is exactly the computation
node on the computation path from root to x after the previous visit of
the cell pospxq. Thus, the symbol written during this visit and described
by the value of αwritten at the point pv, xq is just the symbol still contained
in the same cell when the computation node x is reached. Hence, we have
pv, xq |ù pXread � αwrittenq. For later purposes we note that for the same
reason we have pv, xq |ù pXpos � αprevposq as well. We have shown pv, xq |ù
written symbols .
Next, we consider the formula read a symbol . We wish to show that

pv, xq |ù read a symbol ,

for all pv, xq P W . We show this separately for the five subformulas of
read a symbol . First, we show

pv, xq |ù existence of a reading point ,

that is,

pv, xq |ù L
�
pXpos � αposq ^ pXtime-apv ¤ αtimeq ^Bactive

�
.

Indeed, it is clear that pv, xq
L
Ñ pv, vq and that pv, vq |ù pXpos � αposq and

pv, vq |ù Bactive. Furthermore, the binary value of Xtime-apv in the point pv, vq
is either 1� the time of the previous visit of the cell pospvq on the path from
root to v, if this cell has been visited before v on this path, or 0, otherwise.
In any case we obtain pv, vq |ù pXtime-apv ¤ αtimeq. Next, we show

pv, xq |ù time of previous visit ,

that is,

pv, xq |ù
��
pXtime-apv ¡ binNp0qq ^ pX

time-apv � αtimeq ^Bactive
�

Ñ pXpos � αprevposq
	
.

Actually, we have seen this already in the proof of pv, xq |ù written symbols
above. Next, we show

pv, xq |ù becoming inactive,

136 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

that is,

pv, xq |ù
��
pXpos � αprevposq ^ pXtime-apv αtimeq

�
Ñ Bactive

	
For the sake of a contradiction, let us assume pv, xq |ù ppXpos � αprevposq ^
pXtime-apv αtimeqq and pv, xq |ù Bactive. Then v is a node on the path
from root to x. Due to pv, xq |ù pXtime-apv αtimeq we have timepvq ¡ 0.
And due to pv, xq |ù pXpos � αprevposq the node v must have the prop-
erty posppredpvqq � pospxq. That means that the cell pospxq has been
visited before x on the path from root to x. But under these circum-
stances, the binary value t of Xtime-apv at the point pv, xq is equal to timepuq
where u is the last node on the path from root to x with the property
posppredpuqq � pospxq. Note that v is a node on the path from root to
x with the property posppredpuqq � pospxq. On the other hand, the condi-
tion pv, xq |ù pXtime-apv αtimeq implies t timepvq. That is a contradiction.
We have shown pv, xq |ù becoming inactive. Next,we show

pv, xq |ù staying inactive,

that is,

pv, xq |ù
�
 Bactive Ñ l Bactive

	
.

This is clear from the definition of σpBactiveq.
We come to the last subformula of read a symbol and show

pv, xq |ù storing the read symbol ,

that is,

pv, xq |ù
��
pXpos � αposq ^ pXtime-apv ¤ αtimeq ^Bactive

�
Ñ pαread � Xreadq

	
.

The condition pv, xq |ù Bactive implies that v is a node on the path from root
to x. The condition pv, xq |ù pXpos � αposq says that pospxq � pospvq. We
claim that v � x. Once we have shown this, of course, we obtain pv, xq |ù
pαread � Xreadq. For the sake of a contradiction, let us assume v � x. Then
the cell pospxq has been visited before x on the path from root to x. Let u
be the last node before x on the path from root to x with pospuq � pospxq.
We obtain timepvq ¤ timepuq. For the binary value t of Xtime-apv in pv, xq we
obtain t � 1 � timepuq. Finally, the condition pv, xq |ù pXtime-apv ¤ αtimeq
implies t ¤ timepvq. By putting all this together we arrive at the following
contradiction:

timepvq ¤ timepuq 1� timepuq � t ¤ timepvq.

7.3. CONSTRUCTION OF A MODEL 137

We have shown pv, xq |ù storing the read symbol .
Finally, we have to show that

pv, xq |ù computation,

for all pv, xq P W . We will separately treat the conjunctions over the set
pq, ηq P QD�Γ and over the set Q@�Γ. Let us first fix a pair pq, ηq P QD�Γ
and let us assume that pv, xq P W is a point with pv, xq |ù pαstate

q ^ αread
η q.

We have to show that there is an element pr, θ, leftq P δpq, ηq such that
pv, xq |ù compstep leftpr, θq or that there is an element pr, θ, rightq P δpq, ηq
such that pv, xq |ù compsteprightpr, θq. As T is an accepting tree and the
state q of cpvq is an element of QD, the node v is an inner node of T , hence, it
has a successor v1. Let us assume that ppq, ηq, pr, θ, leftqq P δ is the element of
the transition relation δ that leads from v to v1 (the case that this element is
of the form ppq, ηq, pr, θ, rightqq is treated analogously). We claim that then

pv, xq |ù compstep leftpr, θq.

In fact, we observe pv, xq
L
Ñ pv, v1q and pv, v1q

♦
Ñ pv1, v1q. We claim that the

two points pv, v1q and pv1, v1q have the properties formulated in the formula
compstep leftpr, θq. Let us check this. Let us assume that, for some k P
t0, . . . , N � 1u and for some l P t0, . . . , Nu,

pv, xq |ù
�
rightmost zeropαtime, kq ^ rightmost onepαpos, lq

�
.

The number i :� timepvq is an element of t0, . . . , 2N � 2u because v is an
inner point of the tree T and the length of any computation path is at most
2N � 1. The number j :� pospvq is an element of t1, . . . , 2N�1 � 3u because
the computation starts in cell 2N � 1 and during each computation step the
tape head can move at most one step to the left or to the right. We obtain
k � minpt0, . . . , N � 1uzOnespiqq and l � min Onespjq. As v � predpv1q we
obtain

pv, v1q |ù pXprevtime � αtimeq

and
pv, v1q |ù pXprevpos � αposq.

And as timepv1q � timepvq � 1 � i � 1 and pospv1q � pospvq � 1 � j � 1 we
conclude that

pv1, v1q |ù
�
pαtime � Xprevtime,¡ kq ^ rightmost onepαtime, kq

^ pαpos � Xprevpos,¡ lq ^ rightmost zeropαpos, lq
	
.

138 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

Finally, the condition

pv1, v1q |ù pαprevpos � Xprevposq

is obviously satisfied and the condition

pv1, v1q |ù αstate
r ^ αwritten

θ

follows from the fact that ppq, ηq, pr, θ, leftqq P δ is the element of the tran-
sition relation δ that leads from v to v1. This ends the treatment of the
conjunctions over the set pq, ηq P QD � Γ in the formula computation. Let
us now consider a pair pq, ηq P Q@ � Γ. Let us assume that pv, xq P W is
a point such that pv, xq |ù pαstate

q ^ αread
η q. We have to show that for all

elements pr, θ, leftq P δpq, ηq we have pv, xq |ù compstep leftpr, θq and for all
elements pr, θ, rightq P δpq, ηq we have pv, xq |ù compsteprightpr, θq. Let us
consider an arbitrary element pr, θ, leftq P δpq, ηq (the case of an element
pr, θ, rightq P δpq, ηq is treated analogously). As q P Q@ and T is an accepting
tree, in T there is a successor v1 of v such that the element ppq, ηq, pr, θ, leftqq
leads from v to v1. Above, we have already seen that this implies

pv, xq |ù compstep leftpr, θq.

Thus, we have shown pv, xq |ù computation for all pv, xq P W . This ends the

proof of the claim that in the S4� S5-product model pW1 � W2,
♦
Ñ,

L
Ñ, σq

that we constructed for w P L we have proot , rootq |ù fS4�S5pwq.

7.4 Existence of an Accepting Tree

We come to the other direction. Let w P Σ�. We wish to show that if
fS4�S5pwq is S4� S5-satisfiable then w P L. We will show that any S4� S5-
product model essentially contains an accepting tree of the Alternating Tur-
ing Machine M on input w. Of course, this implies w P L.
Let us sketch the main idea. We will consider an S4� S5-product model of
fS4�S5pwq. And we will consider partial trees of M on input w as considered
in Section 5.3, for any w P Σ�. First, we will show that a certain very simple
partial tree of M on input w “can be mapped to” the model (later we will
give a precise meaning to “can be mapped to”). Then we will show that any
partial tree of M on input w that can be mapped to the model and that is
not an accepting tree of M on input w can be properly extended to a strictly
larger partial tree of M on input w that can be mapped to the model as well.
If there would not exist an accepting tree of M on input w then we would

7.4. EXISTENCE OF AN ACCEPTING TREE 139

obtain an infinite strictly increasing sequence of partial trees of M on input
w. But we show that this cannot happen by giving a finite upper bound on
the size of partial trees of M on input w.
Let w P Σ� be a string such that the formula fS4�S5pwq is S4� S5-satisfiable.
We set n :� |w|. Let pW1, R♦q be an S4-frame, let pW2, RLq be an S5-frame,

let σ : AT Ñ PpW1�W2q be a function such that the quadruple pW1�W2,
♦
Ñ

,
L
Ñ, σq where

♦
Ñ and

L
Ñ are defined as in Definition 3.10 is an S4� S5-product

model, and let pr1, r2q P W1 �W2 be a point with pr1, r2q |ù fS4�S5pwq. The
quintuple

Model :� pW1 �W2,
♦
Ñ,

L
Ñ, σ, pr1, r2qq

will be important in the following. We claim that we can assume without

loss of generality that r1
♦
Ñ x for all x P W1 and RL � W2 �W2. Otherwise,

instead of W1 we could consider the set W 1
1 :� tv P W1 | r1

♦
Ñ vu and instead

of W2 we could consider the set W 1
2 :� the RL-equivalence class of r2 and

the restrictions
L
Ñ

1
resp.

♦
Ñ

1

resp. σ1 of
L
Ñ resp.

♦
Ñ resp. σ to W 1

1 �W
1
2. By

structural induction one shows that for any bimodal formula ϕ and for any
pv, xq P W 1

1 �W
1
2,

pW1 �W2,
♦
Ñ,

L
Ñ, σq, pv, xq |ù ϕ ðñ pW 1

1 �W
1
2,

♦
Ñ

1

,
L
Ñ

1
, σ1q, pv, xq |ù ϕ.

So, we shall assume that r1
♦
Ñ x, for all v P W1, and RL � W2 �W2. Note

that this implies that if ϕ is a formula with pr1, r2q |ù Klϕ then, for all
pv, xq P W1 �W2, we have pv, xq |ù ϕ.
For every v P W1, the set

Cloudpvq :� tpv, xq : v P W1, x P W2u

is the
L
Ñ-equivalence class (short: cloud) of any element y P W1 �W2 whose

first component is v. Remember that for every
L
Ñ-equivalence class and every

shared variable αstring
i for string P ttime, pos, state, read, prevpos,writtenu

and natural numbers i, the truth value of this shared variable is the same in

all elements of the
L
Ñ-equivalence class.

Partial trees of M on input w as introduced in Section 5.3 will play an
important role in the following. We will write a partial tree of M on input
w similarly as in Section 5.3 as a triple T � pV,E, cq, but with the difference
that we will describe configurations as at the beginning of Section 7.1: the
labeling function c will be a function of the form c : V Ñ Q�t0, . . . , 2N�1�
2u � Γ2N�1�1. If T � pV,E, cq is a partial tree of M on input w with root
root then a function π : V Ñ W1 is called a morphism from T to Model if it
satisfies the following four conditions:

140 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

1. πprootq � r1.

2. tpπpvq, πpv1qq : v, v1 P V and vEv1u � R♦.

3. p@v P V ztrootuq pDx P W2q

pπpvq, xq |ù
�
pαprevpos � binN�1pposppredpvqqqq ^ αwritten

writtenpvq

� .

4. p@v P V q pDx P W2q

pπpvq, xq |ù
�
pαtime � binNptimepvqqq ^ pαpos � binN�1ppospvqqq

^αstate
statepvq ^ α

read
readpvq

�
.

We say that T can be mapped to Model if there exists a morphism from T to
Model . Below we shall prove the following lemma.

Lemma 7.2. If a partial tree T � pV,E, cq of M on input w can be mapped
to Model and is not an accepting tree of M on input w then there exists a
partial tree T � prV , rE,rcq of M on input w that can be mapped to Model and

that satis�es V � rV .

Before we prove this lemma, we deduce the desired assertion from it. Let

D :� maxpt|δpq, ηq| : q P Q, η P Γuq.

Then, due to Condition III in the definition of a “partial tree of M on input
w”, any node in any partial tree of M on input w has at most D successors.
As any computation of M on input w stops after at most 2N � 1 steps, any
partial tree of M on input w has at most

rD :� pD2N � 1q{pD � 1q

nodes.
We claim that the rooted and labeled tree

T0 :� ptrootu,H, cq where cprootq :� pq0, 2
N � 1,#2Nw#2N�1�nq

is a partial tree of M on input w and that it can be mapped to Model .
Indeed, Condition I in the definition of a “partial tree of M on input w” is
satisfied because the node root is labeled with the initial configuration of M
on input w. Conditions II, III, and IV are satisfied because T0 does not have
any inner nodes. Condition V1 is satisfied because stateprootq � q0 and, due
to pr1, r2q |ù αstate

q0
(this is a part of pr1, r2q |ù start) and pr1, r2q |ù α

state
qreject

(this follows from pr1, r2q |ù Klno reject) we obtain q0 � qreject. Thus, T0

7.4. EXISTENCE OF AN ACCEPTING TREE 141

is indeed a partial tree of M on input w. Now we show that T0 can be
mapped to Model . Of course, we define the function π : trootu Ñ W1 by
πprootq :� r1.

1. The condition πprootq � r1 is true by definition.

2. The tree T0 does not have any edges, that is, its set E of edges is empty.
So, the second condition is satisfied.

3. The third condition does not apply to the tree T0 because T0 has only
one node, its root.

4. On the one hand, we have

timeprootq � 0, posprootq � 2N � 1,

stateprootq � q0, and readprootq � #.

On the other hand, the condition pr1, r2q |ù start says

pr1, r2q |ù
�
pαtime � binNp0qq ^ pα

pos � binN�1p2
N � 1qq ^ αstate

q0
.

We still wish to show pr1,r2q |ù αread
. We have pr1,r2q |ù read a symbol .

This implies pr1, r2q |ù existence of a reading point , and this implies
that there exists some y P W2 with

pr1, yq |ù
�
pXpos � αposq ^ pXtime-apv ¤ αtimeq ^Bactive

�
,

hence, with

pr1, yq |ù
�
pXpos � binN�1p2

N � 1qq ^ pXtime-apv � binp0qq ^Bactive
�
.

Now pr1, yq |ù initial symbols implies pr1, yq |ù Xread
. Finally, the

condition pr1, yq |ù storing the read symbol implies pr1, yq |ù αread
, and

this implies pr1, r2q |ù αread
.

If there would not exist an accepting tree of M on input w then, starting with
T0 and using Lemma 7.2, we could construct an infinite sequence of partial
trees T0, T1, T2, . . . of M on input w that can be mapped to Model such that
the number of nodes in these trees is strictly increasing. But we have seen
that any partial tree of M input w can have at most rD nodes. Thus, there
exists an accepting tree of M on input w. We have shown w P L.

In order to complete the proof of Theorem 7.1 it remains to prove Lemma 7.2.

142 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

Proof of Lemma 7.2. Let T � pV,E, cq be a partial tree of M on input w
that is not an accepting tree of M on input w and that can be mapped to
Model . Then T has a leaf pv such that the state q :� stateppvq is either an
element of QD or of Q@. First we treat the case that it is an element of QD,
then the case that it is an element of Q@. Let π : V Ñ W1 be a morphism
from T to Model .
So, let us assume that q P QD. We de�ne η :� readppvq. As π : V Ñ W1 is a
morphism from T to Model there exists an x1 P W2 with

pπppvq, x1q |ù pαtime�binNptimeppvqqq^pαpos�binN�1pposppvqqq^αstate
q ^αread

η .

Hence, due to pπppvq, x1q |ù computation,

pπppvq, x1q |ù ª
pr,θ,leftqPδpq,ηq

compstep leftpr, θq _
ª

pr,θ,rightqPδpq,ηq

compsteprightpr, θq.

Let us assume that there is an element pr, θ, leftq P δpq, ηq such that
pπppvq, x1q |ù compstep leftpr, θq (the other case, when there is an element
pr, θ, rightq P δpq, ηq such that pπppvq, x1q |ù compsteprightpr, θq, is treated

analogously). We claim that we can de�ne the new tree rT � prV , rE,rcq as
follows:

• rV :� V Y trvu where rv is a new element (not in V),

• rE :� E Y tppv, rvqu,
• rcpxq :�

$'''&'''%
cpxq for all x P V,

c1 for x � rv,
where c1 is the con�guration that is reached from cppvq
in the computation step given by ppq, ηq, pr, θ, leftqq P δ.

We have to show that rT is a partial tree of M on input w. Condition I
in the de�nition of �a partial tree of M on input w� is satis�ed because rT
has the same root as T , and the label of the root does not change. A node
in rT is an internal node of rT if, and only if, it is either an internal node
of T or equal to pv. For internal nodes of T Conditions II, III, and IV are
satis�ed by assumption (and due to the fact that the labels of nodes in V

do not change when moving from T to rT). The new internal node pv satis�es
Condition II by our de�nition of rcprvq. Condition III is satis�ed for pv becausepv has exactly one successor. And Condition IV does not apply to pv becausepv P QD. A node in rT is a leaf if, and only if, it is either equal to rv or a leaf
in T di�erent from pv. For the leaves in T di�erent from pv Condition V1 is

7.4. EXISTENCE OF AN ACCEPTING TREE 143

satis�ed by assumption (and due to the fact that the labels of nodes in V
do not change). Finally, we have to show that Condition V1 is satis�ed for

the new leaf rv in rT as well. We postpone this until after the de�nition of a
morphism from rT to Model .
We also have to show that rT can be mapped to Model . Let us de�ne a
function rπ : rV Ñ W1 that we will show to be a morphism from rT to Model .
As pv is an element of a partial tree of M on input w with stateppvq P QD, at
least one more computation step can be done. As any computation of M
on input w stops after at most 2N � 1 steps, we observe that the number
i :� timeppvq satis�es 0 ¤ i 2N � 1. Then t0, . . . , N � 1uzOnespiq � H. We
set k :� minpt0, . . . , N � 1uzOnespiqq. Together with pπppvq, x1q |ù pαtime �
binNpiqq we conclude pπppvq, x1q |ù rightmost_zeropαtime, kq. As during each
computation step, the tape head can move at most one step to the left or
to the right and as the computation started in position 2N � 1 the number
j :� posppvq satis�es 0 j ¤ 2N�1 � 3. Then Onespjq � H. We set
l :� min Onespjq. Together with pπppvq, x1q |ù pαpos � binN�1pjqq we conclude
pπppvq, x1q |ù rightmost_onepαpos, lq. Thus, we have

pπppvq, x1q |ù �rightmost_zeropαtime, kq ^ rightmost_onepαpos, lq
�
.

Due to pπppvq, x1q |ù compstep leftpr, θq there exist an element y P W2 and an
element x P W1 such that πppvqR♦x as well as

pπppvq, yq |ù �pXprevtime � αtimeq ^ pXprevpos � αposq
�

and

px, yq |ù
�
pαtime � Xprevtime,¡ kq ^ rightmost_onepαtime, kq

^pαpos � Xprevpos,¡ lq ^ rightmost_zeropαpos, lq

^pαprevpos � Xprevposq ^ αstate
r ^ αwritten

θ

	
We claim that we can de�ne the desired function rπ : rV Ñ W1 by

rπpvq :�

#
πpvq if v P V,

x if v � rv.
Before we show that rπ is a morphism from rT to Model , let us complete the
proof that rT is a partial tree of M on input w. We still need to show that
Condition V1 is satis�ed for the new leaf rv in rT as well. It is su�cient to
show that the state r of the con�guration c1 is not the rejecting state qreject.
But this follows from px, yq |ù αstate

r and px, yq |ù αstate
qreject

(this follows from

144 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

pr1, r2q |ù Klno_reject). We have shown that rT is a partial tree of M on
input w.

Now we show that rπ is a morphism from rT to Model . The �rst condition in
the de�nition of a �morphism from rT to Model � is satis�ed because rπprootq �

πprootq � r1. For the second condition let us consider v, v1 P rV with v rEv1.
We have to show πpvqR♦πpv

1q. There are two possible cases.

• In the case v, v1 P V we have vEv1 and, hence, πpvqR♦πpv
1q. As rπpvq �

πpvq and rπpv1q � πpv1q we obtain rπpvqR♦rπpv1q.
• The other possible case is v � pv and v1 � rv. But we know rπppvq � πppvq,rπprvq � x, and πppvqR♦x.

Next, we verify that the third condition in the de�nition of a �morphism fromrT to Model � is satis�ed. For v P V ztrootu it is satis�ed by assumption (and
by rπpvq � πpvq and rcpvq � cpvq). For rv it is su�cient to show that

px, yq |ù
�
pαprevpos � binN�1pposppredprvqqqq ^ αwritten

writtenprvq

�
(remember that rπprvq � x). These are really two conditions. We prove them
separately.

• In the tree rT we have posppredprvqq � posppvq � j, and in T we have
posppvq � j as well. The assumption pπppvq, x1q |ù pαpos � binN�1pjqq, for
some x1 P W2, implies pπppvq, yq |ù pαpos � binN�1pjqq, and the condi-
tions pπppvq, yq |ù pXprevpos � αposq and px, yq |ù pαprevpos � Xprevposq as
well as the persistence ofXprevpos imply px, yq |ù pαprevpos � binN�1pjqq.

• In rT we have writtenprvq � θ. And we have px, yq |ù αwritten
θ , hence,

px, yq |ù αwritten
writtenprvq.

We come to the fourth condition in the de�nition of a �morphism from rT to
Model �. It is satis�ed for v P V by assumption (and due to rπpvq � πpvq andrcpvq � cpvq). We still need to show that it is satis�ed for v � rv. Rememberrπprvq � x. It is su�cient to show

px, yq |ù pαtime � binNptimeprvqqq ^ pαpos � binN�1pposprvqqq
^αstate

stateprvq ^ α
read
readprvq.

This assertion consists really of four assertions. We treat them one by one.

7.4. EXISTENCE OF AN ACCEPTING TREE 145

• In the trees T and rT we have timeppvq � i, and in the tree rT we have
timeprvq � i � 1. We have already seen pπppvq, x1q |ù pαtime � binNpiqq
and pπppvq, x1q |ù rightmost_zeropαtime, kq. Of course, we get

pπppvq, yq |ù ppαtime � binNpiqq ^ rightmost_zeropαtime, kqq.

The conditions

pπppvq, yq |ù pXprevtime � αtimeq,

px, yq |ù pαtime � Xprevtime,¡ kq ^ rightmost_onepαtime, kq

and the persistence of Xprevtime imply px, yq |ù pαtime � binNpi� 1qq.

• In the trees T and rT we have posppvq � j, and in the tree rT we have
posprvq � j � 1. We have already seen pπppvq, x1q |ù pαpos � binN�1pjqq,
and pπppvq, x1q |ù rightmost_onepαpos, lq. Of course, we get

pπppvq, yq |ù ppαpos � binN�1pjqq ^ rightmost_onepαpos, lqq.

The conditions

pπppvq, yq |ù pXprevpos � αposq,

px, yq |ù pαpos � Xprevpos,¡ lq ^ rightmost_zeropαpos, lq

and the persistence of Xprevpos imply px, yq |ù pαpos � binN�1pj � 1qq.

• We have stateprvq � r. And we have px, yq |ù αstate
r .

• Let γ :� readprvq in rT . We wish to show px, yq |ù αread
γ . We remark

that the proof is a formal version of the informal explanation after the
de�nition of the formula read_a_symbol . It is su�cient to show that
there is some z P W2 with px, zq |ù αread

γ . The condition px, yq |ù
existence_of _a_reading_point implies that there exists some z P W2

such that

px, zq |ù
�
pXpos � αposq ^ pXtime-apv ¤ αtimeq ^Bactive

�
.

Remember that the binary value of αtime in px, yq and, hence, also in
px, zq, is equal to i� 1 and that the binary value of αpos in px, yq and,
hence, also in px, zq, is equal to j � 1. Hence, the binary value of Xpos

in px, zq is equal to j � 1. Let t be the unique number in t0, . . . , i� 1u
with px, zq |ù pXtime-apv � binNptqq. Let vt be the unique node in the

computation path in rT from root to rv with timepvtq � t.

146 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

First, we claim that prπpuq, zq |ù Bactive for all nodes u on the path
from root to rv. Any such u satis�es uE�rv. We obtain rπpuqR♦rπprvq,
hence, rπpuqR♦x. If prπpuq, zq |ù Bactive then due to prπpuq, zq |ù
staying_inactive, we would obtain px, zq |ù Bactive. But this is a con-
tradiction to the condition px, zq |ù Bactive with which we started. Thus,
for all nodes on the path from root to rv we have prπpuq, zq |ù Bactive.

Can there be a node u � vt in the path from vt to rv with posppredpuqq �
j � 1 � posprvq? We claim that this is not the case. Indeed, if there
were such a u then for this node u we would have prπpuq, zq |ù pXpos �
αprevposq^pXtime-apv αtimeq. But then prπpuq, zq |ù becoming_inactive
would imply prπpuq, zq |ù Bactive in contradiction to what we have just
shown. Hence, we have shown that there is no node u � vt in the path
from vt to rv with posppredpuqq � j�1 � posprvq. Let us now distinguish
the two cases t � 0 and t ¡ 0.

First we treat the case t � 0. Then vt � root . We have just seen that
the cell j � 1 has not been visited before rv on the path from root torv. Hence, the initial symbol in the cell j � 1 is still the symbol in this
cell when the node rv is reached. Thus γ is the initial symbol in this
cell. Due to px, zq |ù initial_symbols we obtain px, zq |ù Xread

γ . Due to
px, zq |ù storing_the_read_symbol we obtain px, zq |ù αread

γ .

Finally, we treat the case t ¡ 0. Then vt � root . And we have just
seen that the cell j � 1 has not been visited before rv on the path from
vt to rv. But we claim that it has been visited in the predecessor of
vt. Indeed, we have prπpvtq, zq |ù �pXtime-apv ¡ binNp0qq ^ pX

time-apv �
αtimeq ^ Bactive

�
. Hence, due to prπpvtq, zq |ù time_of _previous_visit ,

we obtain prπpvtq, zq |ù pXpos � αprevposq. Above we have seen that
the binary value of Xpos in px, zq is j � 1. As Xpos is persistent,
the binary value of Xpos in prπpvtq, zq is j � 1 as well. Hence, the
binary value of αprevpos in prπpvtq, zq is j � 1 as well. That implies
posppredpvtqq � j�1. We have shown that the predecessor of the node
vt is the last node before rv in which the cell j � 1 � posprvq has been
visited. Hence, the symbol γ that is read when the node rv is reached,
has been written in the computation step from predpvtq to vt. Hence,
we have prπpvtq, zq |ù αwritten

γ . Due to prπpvtq, zq |ù written_symbols
we obtain prπpvtq, zq |ù Xwritten

γ . As above in the other case, due to
px, zq |ù storing_the_read_symbol , we �nally obtain px, zq |ù αread

γ .

Thus, rT is not only a partial tree of M on input w but can also be mapped
to Model . This ends the treatment of the case q P QD.
Now we consider the other case, the case q P Q@. We de�ne η :� readppvq.

7.4. EXISTENCE OF AN ACCEPTING TREE 147

Let
pr1, θ1, dir 1q, . . . , prd, θd, dirdq

be the elements of δpq, ηq where d ¥ 1 and dirm P tleft , rightu, for m �

1, . . . , d. We claim that we can de�ne the new tree rT � prV , rE,rcq as follows:
• rV :� V Y trv1, . . . , rvdu where rv1, . . . , rvd are new (not in V) pairwise
di�erent elements,

• rE :� E Y tppv, rv1q, . . . , ppv, rvdqu,

• rcpxq :�

$''''''&''''''%

cpxq for all x P V,

c1m for x � rvm,
where c1m is the con�guration that is reached from

cppvq in the computation step given by

ppq, ηq, prm, θm, dirmqq P δ.

Before we show that rT is a partial tree ofM on input w, we de�ne a functionrπ : rV Ñ W1 that we will show to be a morphism from rT to Model . Since T
can be mapped to Model , we have

pπppvq, x1q |ù pαtime � binNptimeppvqqq^pαpos � binN�1pposppvqqq^αstate
q ^αread

η .

for some x1 P W2, hence, due to pπppvq, x1q |ù computation,

pπppvq, x1q |ù ©
pr,θ,leftqPδpq,ηq

compstep leftpr, θq ^
©

pr,θ,rightqPδpq,ηq

compsteprightpr, θq.

As in the case q P QD one shows that the numbers i :� timeppvq and j :�
posppvq satisfy 0 ¤ i 2N � 1 and 0 j ¤ 2N�1 � 3, and one de�nes

k :� minpt0, . . . , N � 1uzOnespiqq,

lleft :� min Onespjq,

lright :� minpt0, . . . , NuzOnespjqq.

As in the case q P QD one obtains

pπppvq, x1q |ù
�
rightmost_zeropαtime, kq

^rightmost_onepαpos, lleftq ^ rightmost_zeropαpos, lrightq
�
.

Let us now consider some m P t1 . . . , du. If dirm � left then, due to
pπppvq, x1q |ù compstep leftpr, θq, there exist an element ym P W2 and an el-
ement xm P W1 such that πppvqR♦xm as well as

pπppvq, ymq |ù ppXprevtime � αtimeq ^ pXprevpos � αposqq

148 CHAPTER 7. REDUCTION OF ATMS TO S4� S5

and

pxm, ymq |ù
�
pαtime � Xprevtime,¡ kq ^ rightmost_onepαtime, kq

^pαpos � Xprevpos,¡ lleftq ^ rightmost_zeropαpos, lleftq

^pαprevpos � Xprevposq ^ αstate
r ^ αwritten

θ

	
.

Similarly, if dirm � right then, due to pπppvq, x1q |ù compsteprightpr, θq, there
exist an element ym P W2 and an element xm P W1 such that πppvqR♦xm as
well as

pπppvq, ymq |ù ppXprevtime � αtimeq ^ pXprevpos � αposqq

and

pxm, ymq |ù
�
pαtime � Xprevtime,¡ kq ^ rightmost_onepαtime, kq

^pαpos � Xprevpos,¡ lrightq ^ rightmost_onepαpos, lrightq

^pαprevpos � Xprevposq ^ αstate
r ^ αwritten

θ

	
.

We claim that we can de�ne the desired function rπ : rV Ñ W1 by

rπpvq :�

#
πpvq if v P V,

xm if v � rvm, for some m P t1, . . . , du.

Similarly as in the case q P QD one shows that rT is a partial tree of M on
input w. Note that also Condition IV is satis�ed for pv. Finally, similarly as
in the case q P QD one shows that rπ is a morphism from rT to Model . This
ends the treatment of the case q P Q@. We have proved Lemma 7.2.

Chapter 8

Reduction of SSL to S4� S5

We now present an alternative proof of the EXPSPACE-hardness of S4� S5
by showing the following result. Remember that according to Theorem 6.1
the satisfiability problem of SSL is EXPSPACE-hard.

Theorem 8.1. The satis�ability problem of the bimodal logic SSL can be
reduced in logarithmic space to the satis�ability problem of the bimodal logic
S4� S5.

To prove this theorem we proceed in four steps:

1. We start with the definition of the reduction function.

2. The main work is the proof of its correctness.

3. We prepare the estimate of the space needed to compute this function
by investigating the space needed to decide languages of formulas.

4. Finally, we show that the reduction function can be computed using
not more than logarithmic space.

8.1 The Reduction Function

We show that the satisfiability problem of SSL can be reduced to the satisfi-
ability problem of S4� S5. To this end we define a translation pT of bimodal
formulas in the language L to bimodal formulas in L such that for all ϕ P L

ϕ is SSL-satisfiable ðñ pT pϕq is S4� S5-satisfiable.

For the reduction we face two main problems.

149

150 CHAPTER 8. REDUCTION OF SSL TO S4� S5

1. The first problem is that in cross axiom models literals are persistent.
To handle this we make sure that the translation pT pϕq contains a sub-
formula postulating the persistence of literals.

2. The second problem is that in general cross axiom models do not satisfy
right commutativity. To handle this we add to each cloud in a cross-
axiom model a special “new point” serving as successor point for all
points in a predecessor cloud that fail to have in the original model a
successor point in this cloud. In order to distinguish the new points
from the original ones we use a special propositional variable main
which is false exactly at the new points.

We define the desired function pT : LÑ L in four steps:

De�nition 8.2 (Translation pT). 1. For every ϕ P L let main P AT by
the alphabetically �rst propositional variable that is not a subformula
of ϕ.

2. Recursively, we de�ne a function T : LÑ L as follows:

T pAq :� A

T p ψq :� T pψq

T ppψ1 ^ ψ2qq :� pT pψ1q ^ T pψ2qq

T pKψq :� K pmain^ T pψqq

T plψq :� l pmain^ T pψqq

for all A P AT and for all ψ, ψ1, ψ2 P L. (Note that K pmain^ T pψqq
is equivalent to Kpmain Ñ T pψqq and that l pmain ^ T pψqq is
equivalent to lpmain Ñ T pψqq.)

3. For ϕ P L we de�ne

persistentmain :�
©

APATXsfpϕq

Kplpmain Ñ Aq _lpmain Ñ Aqq.

4. For ϕ P L we de�ne a function pT : LÑ L bypT pϕq :� main^Klp main Ñ l mainq ^ persistentmain ^ T pϕq.

We claim that the function pT is indeed a reduction function from the satis-
fiability problem of SSL to the satisfiability problem of S4� S5.

8.2. CORRECTNESS 151

Proposition 8.3. The function pT : LÑ L satis�es, for all ϕ P L,

ϕ is SSL-satis�able ðñ pT pϕq is S4� S5-satis�able.

The next section is dedicated to the proof of Proposition 8.3. We treat both
directions of the claimed equivalence separately.

8.2 Correctness

Lemma 8.4. Let ϕ P L. Then

ϕ is SSL-satis�able ñ pT pϕq is S4� S5-satis�able.

Proof. Let ϕ P L be SSL�satis�able. Then there are a cross axiom model

M � pW,
♦
Ñ,

L
Ñ, σq and a point w P W such that M,w |ù ϕ. Let Ci, for

i P I, where I is a suitable index set, be the
L
Ñ-equivalence classes in W .

We construct an S4� S5-commutator model M 1 � pW 1,
♦1
Ñ,

L1
Ñ, σ1q for pT pϕq

as follows. Let newpointi for i P I be pairwise di�erent �new� points that are
not elements of W . We de�ne

W 1 :� W Y tnewpointi | i P Iu.

We de�ne the equivalence relation
L1
Ñ onW 1 by demanding that the following

sets C 1
i for i P I are the

L1
Ñ-equivalence classes of W 1:

C 1
i :� Ci Y tnewpointiu,

for i P I. Let
♦
Ñ

L
Ñ

be the relation on the set of clouds in M induced by
♦
Ñ;

compare De�nition 3.6. We de�ne

♦1
Ñ :�

♦
Ñ Ytpp, newpointjq | j P I and Di with p P C 1

i and Ci
♦
Ñ

L
Ñ

Cju.

152 CHAPTER 8. REDUCTION OF SSL TO S4� S5

newpoint
0

new-
point

1

newpoint
2

SSL- part

Finally we de�ne

σ1pmainq :� W,

σ1pAq :� σpAq, for A P AT ztmainu.

We wish to show the following:

1. M 1 is an S4� S5-commutator model,

2. M 1, w |ù pT pϕq.
We prove the �rst claim.

Clearly,
L1
Ñ is an equivalence relation.

The relations
♦
Ñ and

♦
Ñ

L
Ñ

are preorders (by assumption respectively by Corol-
lary 3.9), hence, both of them are re�exive and transitive. It is clear that this

implies that the relation
♦1
Ñ is re�exive as well. For transitivity of

♦1
Ñ, assume

that p
♦1
Ñ q and q

♦1
Ñ r. If r P W then the de�nition of

♦1
Ñ implies that also

q P W and p P W and p
♦
Ñ q as well as q

♦
Ñ r, hence, p

♦
Ñ r by transitivity

of
♦
Ñ. This implies p

♦1
Ñ r. If r R W then we let i, j, k P I be the indices

with p P C 1
i, q P C

1
j, and r P C

1
k. Note that in this case r � newpointk. We

observe that p
♦1
Ñ q and q

♦1
Ñ r imply Ci

♦
Ñ

L
Ñ

Cj and Cj
♦
Ñ

L
Ñ

Ck. Transitivity

of
♦
Ñ

L
Ñ

implies Ci
♦
Ñ

L
Ñ

Ck, hence, p
♦1
Ñ newpointk � r. Thus,

♦1
Ñ is transitive

as well. We have shown that
♦1
Ñ is a preorder.

Next, we wish to show left commutativity. Let us consider some p, q, r P W 1

with p
♦1
Ñ q and q

L1
Ñ r. Let i, j be the indices with p P C 1

i and q, r P C
1
j. It is

8.2. CORRECTNESS 153

su�cient to show that there exists some s P C 1
i with s

♦1
Ñ r. The condition

p
♦1
Ñ q implies Ci

♦
Ñ

L
Ñ

Cj. If r P W then the left commutativity of M gives

us an s P Ci with s
♦
Ñ r, hence, with s

♦1
Ñ r. If r R W then r � newpointj,

and s :� p does the job.
In order to prove right commutativity let us consider some p, q, r P W 1 with

p
L1
Ñ q and q

♦1
Ñ r. Let i, j be the indices with p, q P C 1

i and r P C 1
j. It is

su�cient to show that there exists some s P C 1
j with p

♦1
Ñ s. The condition

q
♦1
Ñ r implies Ci

♦
Ñ

L
Ñ

Cj. Hence, we obtain p
♦1
Ñ newpointj. This proves the

�rst claim, that M 1 is an S4� S5-commutator model.

We come to the second claim, M 1, w |ù pT pϕq.
From the de�nition of σ1pmainq we obtain

M 1, w |ù main.

Exactly at the points in tnewpointi | i P Iu the propositional variable main

is false. From the fact that all
♦1
Ñ-successors of points in this set are elements

of this set as well, we conclude

M 1, w |ù Klp main Ñ l mainq.

Next, we observe that for all v P W and for all propositional variables A P
sfpϕq we have by de�nition of σ1

M, v |ù A ðñ M 1, v |ù A.

Since all literals are persistent in M and main is true exactly at the points
in W � W 1 we obtain

M 1, w |ù persistentmain.

Finally, we have to show M 1, w |ù T pϕq. By induction on the structure of ψ
we show the stronger assertion:

M, v |ù ψ ðñ M 1, v |ù T pψq,

for all v P W and for all ψ P sfpϕq. We distinguish the following cases:

• Case ψ P AT . We already mentioned that for all v P W and for all
A P AT X sfpϕq we have M, v |ù A ðñ M 1, v |ù A.

154 CHAPTER 8. REDUCTION OF SSL TO S4� S5

• Case ψ � χ. Then the following four assertions are equivalent, the
second and the third by induction hypothesis:

1. M, v |ù ψ,

2. M, v * χ,

3. M 1, v * T pχq,

4. M 1, v |ù T pψq.

• Case ψ � pχ1 ^ χ2q. This case is treated in the same way.

• Case ψ � Kχ. We wish to show

M, v |ù Kχ ðñ M 1, v |ù Kpmain Ñ T pχqq.

First, let us assume M, v |ù Kχ. Let us consider an arbitrary v1 P W 1

such that v
L1
Ñ v1. It is su�cient to show that

M 1, v1 |ù pmain Ñ T pχqq.

If v1 P W then we obtain v
L
Ñ v1 andM, v1 |ù χ. By induction hypothe-

sis we obtain M 1, v1 |ù T pχq, hence M 1, v1 |ù pmain Ñ T pχqq. If v1 R W
thenM 1, v1 * main, hence in this caseM 1, v1 |ù pmain Ñ T pχqq as well.

Now, for the other direction, let us assume M 1, v |ù Kpmain Ñ T pχqq.

Consider some u P W with v
L
Ñ u (remember that this implies v

L1
Ñ u).

It is su�cient to show that

M,u |ù χ.

But for u P W we have M 1, u |ù main. The condition M 1, v |ù
Kpmain Ñ T pχqq implies M 1, u |ù pmain Ñ T pχqq. We obtain M 1, u |ù
T pχq. Finally, by induction hypothesis we obtain M,u |ù χ.

• Case ψ � lχ. This case can be treated in the same way as the previous
case. In fact, it is su�cient to copy the argument for the case ψ � Kχ

and to replace K by l,
L
Ñ by

♦
Ñ, and

L1
Ñ by

♦1
Ñ.

Now we turn to the other direction of Proposition 8.3.

Lemma 8.5. Let ϕ P L. Then

pT pϕq is S4� S5-satis�able ñ ϕ is SSL-satis�able.

8.2. CORRECTNESS 155

Proof. Let pT pϕq be S4� S5�satis�able. This implies that there exist an

S4� S5�commutator model M 1 � pW 1,
♦1
Ñ,

L1
Ñ, σ1q and a point w P W 1 such

that M 1, w |ù pT pϕq, that is
M 1, w |ù main^Klp main Ñ l mainq ^ persistentmain ^ T pϕq.

We construct a cross axiom model M :� pW,
♦
Ñ,

L
Ñ, σq for ϕ as follows. We

constructM as a rooted model, where all points are reachable from the point
w:

W :� tv P W 1 |M 1, v |ù main and pDw1q pw
L1
Ñ w1 and w1 ♦1

Ñ vqu.

We de�ne the relations
L
Ñ and

♦
Ñ on W simply by

L
Ñ :�

L1
Ñ XpW �W q,

♦
Ñ :�

♦1
Ñ XpW �W q.

Finally,

σpAq :�

#
σ1pAq XW if A P sfpϕq Y tmainu,

H if A R sfpϕq Y tmainu,

for all A P AT .
First, we observe that M 1, w |ù main and the re�exivity of

L1
Ñ and

♦1
Ñ imply

w P W . We wish to show the following:

1. M is a cross axiom model,

2. M,w |ù ϕ.

We prove the �rst claim.

It is obvious that the relation
L
Ñ inherits re�exivity, symmetry and transitiv-

ity from
L1
Ñ and that the relation

♦
Ñ inherits re�exivity and transitivity from

L1
Ñ. Thus, the relation

L
Ñ is an equivalence relation, and the relation

♦
Ñ is a

preorder.
Next we wish to show that M has the left commutativity property. So let

us consider points p, q, r P W with p
♦
Ñ q and q

L
Ñ r. By de�nition of the

relations
♦
Ñ and

L
Ñ we obtain that also p

♦1
Ñ q and q

L1
Ñ r. Since M 1 has

the left commutativity property there is some point p1 P W 1 with p
L1
Ñ p1

and p1
♦1
Ñ r. The de�nition of W and p P W imply that there exists some

w1 P W 1 with w
L1
Ñ w1 and w1 ♦1

Ñ p. The left commutativity ofM 1 and w1 ♦1
Ñ p

156 CHAPTER 8. REDUCTION OF SSL TO S4� S5

as well as p
L1
Ñ p1 imply that there exists some w2 P W 1 with w1 L1

Ñ w2 and

w2 ♦1
Ñ p1. So, we have w

L1
Ñ w2 and w2 ♦1

Ñ p1. In addition to that, M 1, w |ù
Klp main Ñ l mainq implies M 1, w2 |ù lp main Ñ l mainq, hence,

M 1, p1 |ù main Ñ l main. This, together with p1
♦1
Ñ r and M, r |ù main,

implies M 1, p1 |ù main. Hence p1 P W and p
L
Ñ p1 as well as p1

♦
Ñ r. This

shows that M has the left commutativity property.
Finally, we claim that propositional variables are persistent inM . For all A P
AT zptmainuYsfpϕqq we have σpAq � H. Hence, all A P AT zptmainuYsfpϕqq
are persistent in M . Furthermore, we have σpmainq � W . Hence, main is

persistent in M as well. Let us consider u, v P W with u
♦
Ñ v. Due to the

de�nition of W there exists some w1 P W 1 with w
L1
Ñ w1 and w1 ♦1

Ñ u. Then,
M 1, w |ù persistentmain implies, for all A P AT X sfpϕq, M 1, w1 |ù lpmain Ñ
Aq _ lpmain Ñ Aq. Note that M 1, u |ù main and M 1, v |ù main. So,
M 1, u |ù A if, and only if, M 1, v |ù A. Due to σpAq � σ1pAq XW the same
holds true with M 1 replaced by M . This shows that all A P AT X sfpϕq are
persistent in M . We have shown that M is a cross axiom model.
We come to the second claim,M,w |ù ϕ. Due toM 1, w |ù T pϕq it is su�cient
to prove for all v P W and for all ψ P sfpϕq:

M 1, v |ù T pψq ðñ M, v |ù ψ.

We show this by induction on the structure of ψ. We distinguish the following
cases:

• Case ψ � A P AT . In this case the claim is true due to the de�nition
of σ.

• Case ψ � χ. Then the following four assertions are equivalent, the
second and the third by induction hypothesis:

1. M, v |ù ψ,

2. M, v * χ,

3. M 1, v * T pχq,

4. M 1, v |ù T pψq.

• Case ψ � pχ1 ^ χ2q. This case is treated in the same way.

• Case ψ � Kχ.
Let us �rst assume M 1, v |ù T pKχq, that is M 1, v |ù Kpmain Ñ T pχqq.
We wish to show M, v |ù Kχ. Consider an arbitrary v1 P W with

v
L
Ñ v1. It is su�cient to showM, v1 |ù χ. Note that the de�nition of

L
Ñ

8.3. LOGSPACE DECIDABILITY OF FORMULA LANGUAGES 157

implies v
L1
Ñ v1. Hence, we haveM 1, v1 |ù pmain Ñ T pχqq. Furthermore,

due to v1 P W we have M 1, v1 |ù main. We obtain M 1, v1 |ù T pχq. By
induction hypothesis we obtain M, v1 |ù χ.

For the other direction let us assume thatM, v |ù Kχ. We wish to show

M 1, v |ù Kpmain Ñ T pχqq. Consider an arbitrary v1 P W 1 with v
L1
Ñ v1.

It is su�cient to show M 1, v1 |ù pmain Ñ T pχqq. If v1 P W then v
L1
Ñ v1

implies v
L
Ñ v1, and M, v |ù Kχ implies M, v1 |ù χ. By induction

hypothesis we obtain M 1, v1 |ù T pχq, hence, M 1, v1 |ù pmain Ñ T pχqq.
If v1 R W then we claim that M 1, v1 * main, hence, M 1, v1 |ù pmain Ñ
T pχqq. Indeed, the assumption v P W implies that there exists some

w1 P W 1 with w
L1
Ñ w1 and w1 ♦1

Ñ v. Together with v
L1
Ñ v1 and left

commutativity of M 1 and transitivity of
L1
Ñ we can conclude that there

exists some w2 P W 1 with w
L1
Ñ w2 and w2 ♦1

Ñ v1. Hence, v1 is reachable
from w. By de�nition of W the assumption v1 R W indeed implies
M 1, v1 * main.

• Case ψ � lχ. This case can be treated similarly as the previous
case. In fact, for the �rst part (the proof that M 1, v (T plχq implies
M, v (lχ) one can copy the argument for the corresponding part in

the case ψ � Kχ and replace K by l,
L
Ñ by

♦
Ñ, and

L1
Ñ by

♦1
Ñ.

For the other direction let us assume that M, v |ù lχ. We wish to
show M 1, v |ù lpmain Ñ T pχqq. Consider an arbitrary v1 P W 1 with

v
♦1
Ñ v1. It is su�cient to showM 1, v1 |ù pmain Ñ T pχqq. If v1 P W then

v
♦1
Ñ v1 implies v

♦
Ñ v1, andM, v |ù lχ impliesM, v1 |ù χ. By induction

hypothesis we obtain M 1, v1 |ù T pχq, hence, M 1, v1 |ù pmain Ñ T pχqq.
If v1 R W then we claim that M 1, v1 * main, hence, M 1, v1 |ù pmain Ñ
T pχqq. Indeed, the assumption v P W implies that there exists some

w1 P W 1 with w
L1
Ñ w1 and w1 ♦1

Ñ v. Together with v
♦1
Ñ v1 we conclude

w1 ♦1
Ñ v1. Hence, v1 R W indeed implies M 1, v1 * main.

8.3 LOGSPACE Decidability of Languages of

Formulas

We wish to show that the language L of bimodal formulas can be decided
in logarithmic space. We are going to show the slightly stronger result that
L is even in ALOGTIME, where ALOGTIME is the set of all languages
that can be decided in logarithmic time by an alternating Turing machine

158 CHAPTER 8. REDUCTION OF SSL TO S4� S5

with “random access” to the input; compare Buss [17, Page 124], Ibarra,
Jiang, and Rivakumar [52], Clote [20, Def. 2.3]. What “alternating” means
has already been explained in Section 5.3. An alternating Turing machines
with random access to the input string may be described as follows. Such a
machine has a special work tape called index query tape, a special state called
input query state qquery and for every symbol a P Σ Y t\u (where Σ is the
input alphabet and \ is a special symbol not contained in the input alphabet)
an answer state qanswer,a. The index query tape should contain at any time
a binary string binpkq, for some natural number k. Let us assume that the
input string is a string a0, . . . , an�1 with ai P Σ, for all i P t0, . . . , n� 1u and
for some n P N. When the machine is in the input query state then in the
next step it enters the state

• qanswer,ak if k P t0, . . . , n� 1u,

• qanswer,\ if k ¥ n.

The set ALOGTIME is the set of all languages that are accepted in the sense
of Section 5.3 by alternating Turing machines that work in time logarithmic
in the input length and that have random access to the input.
We are going to show the following fact.

Proposition 8.6. The language L of bimodal formulas is an element of
ALOGTIME.

Corollary 8.7. The language L of bimodal formulas can be decided in loga-
rithmic space.

Proof. It is well-known that ALOGTIME is a subset of LOGSPACE; see [20,
P. 601].

We still need to prove Prop. 8.6. Concerning this, we remark that Buss [17,
Pages 124, 125] has shown that a certain language of Boolean formulas is in
ALOGTIME. But our syntax of formulas is slightly different from the one
used by Buss. Therefore, we cannot directly use his result. But we are going
to proceed in a similar manner.
Remember that we represent formulas by strings over a finite alphabet. In
order to do this we represent propositional variables by strings of the form
xbinpiq where x is a fixed symbol and binpiq is defined by

binpiq :�

#
0 if i � 0,

the binary representation of i without leading zeros if i ¡ 0,

for i P N. Let ε denote the empty string over any alphabet.

8.3. LOGSPACE DECIDABILITY OF FORMULA LANGUAGES 159

A context free grammar is a quadruple G � pV,Σ,Ñ, Sq where V , the set of
nonterminal symbols, is a nonempty set, where Σ, the set of terminal symbols,
is a nonempty set with V XΣ � H, where Ñ is a subset of V �pV YΣq�, and
where S P V is the start symbol. The elements of Ñ are called productions
or rules. Usually an element pD, uq of Ñ is written in the form D Ñ u. If we
wish to list several elements of Ñ, say two elements D Ñ u1 and D Ñ u2,
we may write this as D Ñ u1 | u2. Let

Γ :� V Y Σ.

As usual we extend the relation Ñ to a relation Ñ between strings in Γ� by

w Ñ w1 : ðñ there are u, v, v1 P Γ� and D P V with

pw � uDv and w1 � uv1v and D Ñ v1q,

for w,w1 P Γ�. Furthermore, let Ñ� be the reflexive-transitive closure of the
relation Ñ on Γ�, and define

SpGq :� tw P Γ� | S Ñ� wu,

LpGq :� SpGq X Σ�.

The language L of bimodal formulas was defined in Definition 3.4. Actu-
ally, first we will show that a similarly defined set of Boolean formulas is in
ALOGTIME. Let G � pV,Σ,Ñ, Sq be the following context free grammar:

• V :� tS,Bu,

• Σ :� tp, q, ,^, x, 0, 1u,

• Ñ is the following set of context free production rules:

S Ñ S | pS ^ Sq | x0 | x1 | x1B

B Ñ 0 | 1 | 0B | 1B

Then LpGq is the set of Boolean formulas. Let Γ :� ΣY V .

Proposition 8.8. The language LpGq, the language of Boolean formulas, is
in ALOGTIME.

Before we prove this, let us deduce Proposition 8.6 from it.

Proof of Proposition 8.6. Let h be the function mapping strings over Σ Y
tl, Ku to strings over Σ that replaces every occurrence of l or K by .
It is clear that L � h�1pLpGqq. It is also clear that h can be computed by

160 CHAPTER 8. REDUCTION OF SSL TO S4� S5

a Turing machine (one does not even need alternation) with random access
to the input in logarithmic time. Thus, the assertion follows directly from
Proposition 8.8 and [17, Theorem 4], which says that if B is a language
in ALOGTIME and h is an ALOGTIME-reduction of a language A to the
language B then A is in ALOGTIME as well.

We still need to show Proposition 8.8. We are going to make use of the fact
that all productions with one exception in the grammar G are right-linear.
The exception is, of course, the production S Ñ pS ^ Sq. This leads to
the following description of the strings in SpGq. Let us call a string in Σ�

balanced if it contains exactly as many opening brackets as closing brackets
as occurrences of the symbol ^.

Lemma 8.9. Let w � a0 . . . , an�1 P Γ� be a string with ai P Γ, for i P
t0, . . . , n � 1u. Then w P SpGq if, and only if, all of the following seven
conditions are satis�ed:

1. w is not the empty string,

2. w is balanced,

3. a0 P tS, , p, xu,

4. an�1 P tS, q, B, 0, 1u,

5. for all i P t0, . . . , n� 2u, aiai�1 R P where the set P of forbidden pairs
of symbols is de�ned by

P :� tp, ,^u tB,^, q, 0, 1u

Y tS,B, qu tS,B, p, , x, 0, 1u

Y txu tS,B, p, q, ,^, xu

Y t0, 1u tS, , p, xu,

6. for all i P t0, . . . , n� 3u, aiai�1ai�2 R tx00, x01, x0Bu,

7. for all i P t0, . . . , n � 1u, if ai � p then there exist j, k P N with the
following properties:

(a) i� 1 j k � 1 n� 1,

(b) aj � ^ and ak �q,

(c) the string ai�1 . . . aj�1 is balanced,

8.3. LOGSPACE DECIDABILITY OF FORMULA LANGUAGES 161

(d) the string aj�1 . . . ak�1 is balanced.

Proof. Both directions of the claimed equivalence can be shown by lengthy
but straightforward inductions, the direction �ñ� by induction over the
length of a shortest derivation of a string w in SpGq, and the direction �ð�
by induction over the length of a string w satisfying the seven conditions,
where a modi�ed length function is used. For completeness sake we give the
full proofs.
�ñ�: That any w P SpGq satis�es all of the listed conditions follows by a
straightforward induction over the length of a shortest derivation of w in the
grammar G. For completeness sake we give the full proof.
If the length of the derivation is zero then w � S, and S obviously satis�es
the �rst four conditions, and the remaining three conditions do not apply.
Let us now consider a shortest derivation of w in the grammar G and let
us assume that the length of the derivation is positive. Let us assume that
the last rule applied in the derivation led from a string w1 P SpGq to w. By
induction hypothesis w1 satis�es all seven conditions.
First, w1 is not the empty string. As none of the rules in G decreases the
length of a string, w is not the empty string either.
Secondly, w1 is balanced. There is only one rule that adds the symbol ^
or any brackets at all, the rule S Ñ pS ^ Sq, and this rule adds exactly
one opening bracket, one symbol ^, and one closing bracket. Hence, w is
balanced as well.
Thirdly, the �rst symbol of w1 is one of the symbols S, , p, x. In particular,
it is not the symbol B. Hence, the �rst symbol of w1 is either not changed,
or it is changed from S to or p or x. Thus, the �rst symbol of w is one of
the symbols S, , p, x as well.
The last symbol of w1 is one of the symbols S, q, B, 0, 1. As the last symbol
in the right hand side of any of the rules in G is one of these symbols as well,
so is the last symbol of w.
We come to the �fth condition. Let us �rst assume that w1 � uSv, for some
u, v P Γ�, and that w � uyv for some string y P t S, pS ^ Sq, x0, x1, x1Bu.
Let aiai�1 be a substring of w of length two. If aiai�1 is a substring of u or
of v then aiai�1 R P by induction hypothesis. It is also clear that none of
the substrings of y of length two is an element of P . If ai is the last symbol
in u then in w1 it is followed by S. As w1 satis�es the �fth condition by
induction hypothesis we conclude ai P tp, ,^u. As the �rst symbol of y
is either or p or x, we conclude that aiai�1 P tp, ,^u t , p, xu, hence,
aiai�1 R P . Finally, if ai�1 is the �rst symbol of v then in w1 it is preceded
by S. As w1 satis�es the �fth condition by induction hypothesis we conclude
ai�1 P t^, qu. As the last symbol of y is either S or B or q or 0 or 1, we

162 CHAPTER 8. REDUCTION OF SSL TO S4� S5

conclude that aiai�1 P tS,B, q, 0, 1u t^, qu, hence, aiai�1 R P .
Now let us assume that w1 � uBv, for some u, v P Γ�, and that w � uyv for
some string y P t0, 1, 0B, 1Bu. Let aiai�1 be a substring of length two of w.
If aiai�1 is a substring of u or of v then aiai�1 R P by induction hypothesis. It
is also clear that none of the substrings of y of length two is an element of P .
If ai is the last symbol in u then in w1 it is followed by B. As w1 satis�es the
�fth condition by induction hypothesis we conclude ai P t0, 1u. As the �rst
symbol of y is either 0 or 1, we conclude that aiai�1 P t0, 1u t0, 1u, hence,
aiai�1 R P . Finally, if ai�1 is the �rst symbol of v then in w1 it is preceded
by B. As w1 satis�es the �fth condition by induction hypothesis we conclude
ai�1 P t^, qu. As the last symbol of y is either 0 or 1 or B, we conclude
that aiai�1 P t0, 1, Bu t^, qu, hence, aiai�1 R P . Thus, w satis�es the �fth
condition.
We come to the sixth condition. Let us assume that w1 � uUv, for some
u, v P Γ� and U P tS,Bu and that w � uyv for some string y P t S, pS ^
Sq, x0, x1, x1B, 0, 1, 0B, 1Bu. Let z be an element of the set

T :� tx00, x01, x0Bu

of forbidden triplets of symbols. By induction hypothesis, z is not a substring
of w1, and we wish to show that z is not a substring of w. Indeed, by
induction hypothesis z is not a substring of u or of v. It is clear that z is not
a substring of y. The symbol x cannot be the last symbol of u because then
in w1 is would be followed by U , hence, by S or by B, which is impossible
by induction hypothesis. Furthermore x0 cannot be the last pair of symbols
in u because then w1 would contain 0S or x0B as a substring, which is not
true by induction hypothesis. Neither 0 nor 1 nor B can be the �rst symbol
in v because then in w1 it would be preceded by S or by B, which is not the
case by induction hypothesis. Thus, z is not a substring of w.
Finally, it is clear that w satis�es the seventh condition as well because all
right hand sides of productions in G are balanced.
�ð�: We shall use the following modi�ed length function ` : Γ� Ñ N de�ned
by

`pwq :� #V pwq � 2 �#Σpwq � |w| �#Σpwq,

for w P Γ�. The de�nition of ` guarantees that replacing a nonterminal
symbol by a terminal symbol strictly increases the value of `. Hence, all
productions in G are strictly length increasing with respect to `, that is, if
w1 Ñ w then `pw1q `pwq.
We assume that some string w P Γ� satis�es all seven conditions, and we
wish to show that w is an element of SpGq. We are going to show this by
induction over `pwq. By the �rst condition w is not the empty string. We
distinguish a series of cases.

8.3. LOGSPACE DECIDABILITY OF FORMULA LANGUAGES 163

1. w contains a pair b1b2 P t00, 01, 10, 11u that is not followed by 0 or 1
or B.

Then w has the form ub1b2v with u, v P Γ� such that v is either the
empty string or its �rst symbol is di�erent from 0, 1, B. Then the string
w1 :� ub1Bv satis�es on the one hand w1 Ñ w and on the other hand
`pw1q `pwq. Furthermore, the assumption that w satis�es all of the
seven conditions implies that w1 satis�es all of the seven conditions as
well. Indeed, w1 is not the empty string, and w1 is balanced. The �rst
symbol of w1 is identical with the �rst symbol of w. The last symbol of
w1 is identical with the last symbol of w or equal to B. The string w1

does not contain any of the pairs in P as a substring because w does
not contain any of the pairs in P as a substring and because either v
is empty or its �rst symbol is di�erent from 0 and from 1 and from B.
The string w1 does not contain any of the triplets in T as a substring
because w does not contain any of the triplets in T . Finally, it is clear
that w1 satis�es the seventh condition because w satis�es the seventh
condition. By induction hypothesis w1 is an element of SpGq. But then
w1 Ñ w implies that w is an element of SpGq as well.

2. w does not satisfy the condition in the previous case, but it contains a
triplet b1b2B with b1b2 P t00, 01, 10, 11u.

Then w has the form ub1b2Bv with u, v P Γ�. Then the string w1 :�
ub1Bv satis�es on the one hand w1 Ñ w and on the other hand `pw1q
`pwq. Furthermore, the assumption that w satis�es all of the seven
conditions implies that w1 satis�es all of the seven conditions as well.
By induction hypothesis w1 is an element of SpGq. But then w1 Ñ w
implies that w is an element of SpGq as well.

From now on we can assume that w does not satisfy the conditions of the
previous two cases. Note that this implies that w does not contain any pair
b1b2 P t00, 01, 10, 11u of bits.

3. w does not satisfy the conditions of the previous two cases, and w
contains a symbol B.

Let us �x an occurrence of B in w. Then B cannot be the �rst symbol
of w. It must come after some 0 or some 1. The bit before B must be
preceded by some 0 or some 1 or some x. As w does not contain any
consecutive pair of bits, the bit before B must be preceded by some x.
Finally, the triplet x0B is not allowed. So, w has the form ux1Bv with
u, v P Γ�. Then the string w1 :� uSv satis�es on the one hand w1 Ñ w
and on the other hand `pw1q `pwq. Furthermore, the assumption that

164 CHAPTER 8. REDUCTION OF SSL TO S4� S5

w satis�es all of the seven conditions implies that w1 satis�es all of the
seven conditions as well. By induction hypothesis w1 is an element of
SpGq. But then w1 Ñ w implies that w is an element of SpGq as well.

4. w does not satisfy the conditions of the previous three cases, and w
contains a bit c P t0, 1u.

This bit c must be preceded by the symbol x. Hence, w has the form
w � uxcv with u, v P Γ�. Then the string w1 :� uSv satis�es on the
one hand w1 Ñ w and on the other hand `pw1q `pwq. Furthermore,
w1 satis�es all of the seven conditions as well. This follows from the
assumption that w satis�es all of the seven conditions and from the
assumption that w does not satisfy the conditions of the previous three
cases, hence, either v is empty or its �rst symbol is di�erent from 0, 1, B.
By induction hypothesis w1 is an element of SpGq. But then w1 Ñ w
implies that w is an element of SpGq as well.

From now on we can assume that w does not satisfy the conditions of the
previous four cases. Then w does not contain any of the symbols 0, 1, B.
Hence, it cannot contain x either as x cannot be the last symbol of w and
any occurrence of x can only be followed by 0 or 1.

5. w does not contain any of the symbols 0, 1, B, x, but it contains a pair
 S. Then w has the form w � u Sv with u, v P Γ�. In this case the
string w1 :� uSv satis�es on the one hand w1 Ñ w and on the other
hand `pw1q `pwq. Furthermore, w1 satis�es all of the seven conditions
as well. This follows from the assumption that w satis�es all of the
seven conditions and from the assumption that w does not contain any
of the symbols 0, 1, B, x. By induction hypothesis w1 is an element of
SpGq. But then w1 Ñ w implies that w is an element of SpGq as well.

6. w does not contain any of the symbols 0, 1, B, x, but it contains a
substring of the form pS^Sq. Then w has the form w � upS^Sqv with
u, v P Γ�. In this case the string w1 :� uSv satis�es on the one hand
w1 Ñ w and on the other hand `pw1q `pwq. Furthermore, w1 satis�es
all of the seven conditions as well. This follows from the assumption
that w satis�es all of the seven conditions and from the assumption
that w does not contain any of the symbols 0, 1, B, x. By induction
hypothesis w1 is an element of SpGq. But then w1 Ñ w implies that w
is an element of SpGq as well.

7. w does not satisfy any of the previous six cases. Then, in particular, w
does not contain any of the symbols 0, 1, B, x. We claim that w � S.

8.3. LOGSPACE DECIDABILITY OF FORMULA LANGUAGES 165

First, let us show that w does not contain any opening bracket p. For
the sake of a contradiction let us assume that w contains an opening
bracket. Let us consider the rightmost occurrence of an opening bracket
in w. Then, by the seventh condition, w has the form w � upv ^ v1qz,
for some u, v, v1, z P Γ� where v and v1 are balanced and nonempty.
As the bracket before u is assumed to be the rightmost bracket in w,
the strings v and v1 do not contain any opening bracket. As they are
balanced they contain neither any bracket at all nor the symbol ^. The
rightmost symbol of v and of v1 must be an S. If v or v1 would contain
some further symbol, then the symbol before this S would have to be p
or or ^. But neither v nor v1 contain any of the two symbols p and ^,
and we assume that w does not satisfy the �fth case, hence, w does not
contain a pair S. We conclude that v � v1 � S. But then w contains
the string pS ^ Sq as a substring in contradiction to our assumption
that w does not satisfy the sixth condition. We conclude that w does
not contain any opening bracket. As w is balanced it contains neither
any bracket at all nor the symbol ^. But then it cannot contain the
symbol either. Indeed, cannot be the last symbol of w. So, the
last occurrence of in w could only be followed by some S, but, again,
that would contradict our assumption that w does not satisfy the �fth
case. Thus, the only symbol that may appear in w is the symbol S.
We conclude w � S. Finally, indeed, S is an element of SpGq.

Corollary 8.10. Let w � a0 . . . , an�1 P Σ� be a string with ai P Σ, for
i P t0, . . . , n � 1u. Then w P LpGq if, and only if, all of the following seven
conditions are satis�ed:

1. w is not the empty string,

2. w is balanced,

3. a0 P t , p, xu,

4. an�1 P tq, 0, 1u,

5. for all i P t0, . . . , n� 2u, aiai�1 R Q where the set Q of forbidden pairs
of symbols is de�ned by

P :� tp, ,^u t^, q, 0, 1u

Y tqu tS,B, p, , x, 0, 1u

Y txu tp, q, ,^, xu

Y t0, 1u t , p, xu,

166 CHAPTER 8. REDUCTION OF SSL TO S4� S5

6. for all i P t0, . . . , n� 3u, aiai�1ai�2 R tx00, x01, x0Bu,

7. for all i P t0, . . . , n � 1u, if ai � p then there exist j, k P N with the
following properties:

(a) i� 1 j k � 1 n� 1,

(b) aj � ^ and ak �q,

(c) the string ai�1 . . . aj�1 is balanced,

(d) the string aj�1 . . . ak�1 is balanced.

Proof. This follows from LpGq � SpGq X Σ�.

Proof of Proposition 8.8. It is fundamental and well-known that one can
count the number of occurrences of a speci�c symbol in a given string by
an alternating Turing machine with random access to the input string in log-
arithmic time; see [52] or [17] for a precise statement. In particular, for any
two di�erent symbols a and b, the problem to check whether an input string
w contains the same number of a's as b's is in ALOGTIME (see also [52, Page
113]). We claim that, using this, one can check all of the seven conditions
formulated in the previous corollary by an alternating Turing machine with
random access to the input string in logarithmic time. By using universal
states, one ensures that for the acceptance of the input string w all seven
conditions must be satis�ed. Let us go through the conditions one by one. It
is clear that one can check even in constant time whether the input string w
is empty or not. By counting the number of occurrences of opening brackets,
of closing brackets and of the symbol ^, one can check wether the input
string is balanced or not. The condition concerning the leftmost symbol in
the input string can also be checked in constant time. For the condition con-
cerning the rightmost symbol one should �rst compute the length n of the
input string (using again a counting subroutine). Then, using the computed
binary representation of the number n�1 one can check whether the symbol
an�1 of the input string w � a0 . . . an�1 is an element of the set tq, 0, 1u or
not. For the �fth condition one �rst guesses (using universal states) a bi-
nary string of length approximately logpnq. If it is equal to binpiq for some
i with 0 ¤ i n � 2 then one checks the �fth condition for the pair aiai�1.
Similarly the sixth condition is treated. Finally, for the seventh condition,
one �rst guesses (using universal states) a binary string of length approxi-
mately logpnq. If it is equal to binpiq for some i with 0 ¤ i n � 1 then
one guesses (using existential states) two binary strings of length approxi-
mately logpnq. If they are equal to binpjq and binpk), respectively, satisfying
i � 1 j k � 1 n � 1 then one checks whether aj � ^ and ak �q

8.4. LOGSPACE COMPUTABILITY OF THE REDUCTION 167

and (using a counting subroutine again) whether the strings ai�1 . . . aj�1 and
aj�1 . . . ak�1 are balanced. Note such an alternating Turing machine accepts
exactly the strings in LpGq, and it works in logarithmic time.

8.4 LOGSPACE Computability of the Reduc-

tion Function

In this section we show that the satisfiability problem of the logic SSL can
be reduced in logarithmic space to the satisfiability problem of S4� S5.
Let Σ :� tp, q, ,l, K,^, x, 0, 1u be the alphabet over which bimodal formu-
las are defined. In order to prove the assertion we have to show that there is
a logspace computable function rT : Σ� Ñ Σ� such that, for all ϕ P Σ�,

pϕ P L and ϕ is SSL-satisfiableq

ðñ prT pϕq P L and rT pϕq is S4� S5-satisfiableq.

We define such a function rT by formulating an algorithm for computing it
that works in logarithmic space.
So, let ϕ P Σ� be the input string. According to Corollary 8.7 we can first
check in logarithmic space whether ϕ is a bimodal formula or not, that is,
whether ϕ is an element of L or not. If not then the algorithm outputsrT pϕq :� ^ (which is certainly not a bimodal formula). If, on the other hand,

ϕ is a bimodal formula then we wish to compute and print pT pϕq as defined
in Section 8.1.
First, we compute the smallest natural number i such that xbinpiq is not a
subformula of ϕ. We do this by starting with j � 0, increasing j step by step,
and checking in each step whether xbinpjq is a subformula of ϕ. Note that a
string xbinpjq for some j P N is a subformula of ϕ if, and only if, there exists
an occurrence of the string xbinpjq as a substring of ϕ that is not followed by
a 0 or a 1. This algorithm works in logarithmic space because ϕ can contain
only less than |ϕ| many subformulas of the form xbinpjq. Thus, we need to
check whether xbinpjq is a subformula of ϕ only for j |ϕ|. For all these j
the binary representation binpjq can be stored in logarithmic space. Finally,
we can also store the string main :� xbinpiq in logarithmic space.

Now we wish to compute and output pT pϕq. It is straightforward to print
main ^Klp main Ñ l mainq. Next we wish to print persistentmain. In
order to do this we must identify all j P N such that xbinpjq is a subformula
of ϕ, and for each such j we must print

Kplpmain Ñ xbinpjqq _lpmain Ñ xbinpjqqq.

168 CHAPTER 8. REDUCTION OF SSL TO S4� S5

This can be done as follows. We read the string ϕ from left to right. When-
ever we read an x we use two binary counters in order to mark the begin-
ning and the end of the subformula xbinpjq that begins with this occurrence
of x. Then we check, again using binary counters, whether the same sub-
formula xbinpjq has appeared already further to the left in ϕ. If it has
then we just move on. If it has not appeared before, then we print out
Kplpmain Ñ xbinpjqq _lpmain Ñ xbinpjqqq, and then we move on. It is
clear that all this can be done in logarithmic space.
Finally, we wish to output T pϕq. In order to compute T pϕq one has to replace
every occurrence of “K” by “K pmain ^ ”, and every occurrence of “l”
by “l pmain ^ ”, and one has to add an additional closing bracket after
each subformula Kψ and each subformula lψ of ϕ. Besides that, all other
symbols from ϕ can simply be copied. The only nontrivial part here is the
addition of a closing bracket after each occurrence of a subformula of the
form Kψ or lψ of ϕ. In order to do this, for each position in the string ϕ
one has to count how many subformulas of the form Kψ or lψ of ϕ end in
this position and then one has to print so many additional closing brackets.
So, how can one count how many subformulas of the form Kψ or lψ of ϕ
end in the current position in the string ϕ? If the symbol in this position
is an element of tp, ,l, K,^, xu then no subformula ends in this position.
The same is true if the symbol in this position is either 0 or 1 and this is
followed by a bit 0 or 1 as well. There are only the following possible cases
for the last symbol of a subformula.

• If the symbol in the current position is a bit, so 0 or 1, and this is not
followed by a bit, then a subformula of the form xbinpjq for some j
ends in this position. Then we move to the left of the corresponding
occurrence of x and count the number of occurrences of K and l until
we read a symbol not in tK,l, u.

• If the symbol in the current position is a closing bracket q then we go
to the left step by step until we have found the corresponding open-
ing bracket p. This can be done by using a binary counter that is
increased by 1 for each closing bracket and decreased by 1 for each
opening bracket. One stops when this counter is back to its initial
value 0. Once we have found the corresponding opening bracket we
move to the left of it and count the number of occurrences of K and l
until we read a symbol not in tK,l, u.

By using binary counters all this can be done in logarithmic space. This
ends the description of the computation in logarithmic space of the described
reduction function rT .

Chapter 9

Reduction of S4� S5 to K4� S5

The EXPSPACE-hardness of K4� S5 follows from the EXPSPACE-hardness
of S4� S5 and from the following result.

Theorem 9.1. The satis�ability problem of the bimodal logic S4� S5 can be
reduced in logarithmic space to the satis�ability problem of the bimodal logic
K4� S5.

We start with the definition of the reduction function pT translating bimodal
formulas in the language L to bimodal formulas in L such that for all ϕ P L:

ϕ is S4� S5-satisfiable ðñ pT pϕq is K4� S5-satisfiable.

The problem that we face is that in general K4� S5-models are not reflexive.
To handle this we add to the original formula ϕ a formula that implies that
all those instances of the reflexivity axiom scheme lψ Ñ ψ where lψ is a
subformula of ϕ must hold true in all reachable points.

De�nition 9.2 (Translation pT). For ϕ P L we de�ne a function pT : LÑ L
by pT pϕq :� ϕ^

©
lψ P sfpϕq

Kpplψ Ñ ψq ^lplψ Ñ ψqq.

We claim that the function pT is indeed a reduction function from the satis-
fiability problem of S4� S5 to the satisfiability problem of K4� S5.

Proposition 9.3. The function pT : LÑ L satis�es, for all ϕ P L,

ϕ is S4� S5-satis�able ðñ pT pϕq is K4� S5-satis�able.

Proof. Let ϕ be S4� S5�satis�able. Then there are an S4� S5-commutator

model M � pW,
♦
Ñ,

L
Ñ, σq and a point w P W such that M,w |ù ϕ. Since

169

170 CHAPTER 9. REDUCTION OF S4� S5 TO K4� S5

the relation
♦
Ñ in M is re�exive we have for all w1 P W that M,w1 |ù�

lψ P sfpϕqplψ Ñ ψq. Hence, M,w |ù
�
lψ P sfpϕqKpplψ Ñ ψq ^ lplψ Ñ

ψqq, in other words, M,w |ù pT pϕq. Furthermore, M satis�es the conditions

for K4� S5-commutator models because the relation
♦
Ñ in M is transitive

as well. Hence, pT pϕq is K4� S5-satis�able.

For the other direction of the equivalence let us assume that pT pϕq is K4� S5-
satis�able. This implies that there exist a K4� S5�commutator modelM 1 �

pW 1,
♦1
Ñ,

L1
Ñ, σ1q and a point w P W 1 such that M 1, w |ù pT pϕq, that is

M 1, w |ù ϕ^
©

lψ P sfpϕq

Kpplψ Ñ ψq ^lplψ Ñ ψqq.

We construct an S4� S5�commutator model M :� pW,
♦
Ñ,

L
Ñ, σq for ϕ as

follows. We construct M as a rooted model, where all points are reachable
from the point w:

W :� tv P W 1 | w
L1
Ñ v or pDw1q pw

L1
Ñ w1 and w1 ♦1

Ñ vqu.

We de�ne the relations
L
Ñ and

♦
Ñ on W simply by

L
Ñ :�

L1
Ñ XpW �W q,

♦
Ñ :� p

♦1
Ñ XpW �W qq Y tpv, vq | v P W u.

Finally,

σpAq :� σ1pAq XW,

for all A P AT .
It is clear that w P W , and it is straightforward to see that M is an S4� S5-
commutator model. We claim thatM,w |ù ϕ. By induction on the structure
of ψ we show the stronger assertion:

M, v |ù ψ ðñ M 1, v |ù ψ,

for all v P W and for all ψ P sfpϕq. We distinguish the following cases:

• Case ψ � A P AT . In this case the claim follows directly from the
de�nition of σ.

• Case ψ � χ or ψ � pχ1^χ2q. In both cases the claim follows directly
from the induction hypothesis.

171

• Case ψ � Kχ. Let us �rst assume M 1, v |ù Kχ. We wish to show

M, v |ù Kχ. Consider an arbitrary v1 P W with v
L
Ñ v1. It is su�cient

to show M, v1 |ù χ. Note that the de�nition of
L
Ñ implies v

L1
Ñ v1.

Hence, we haveM 1, v1 |ù χ. By induction hypothesis we obtainM, v1 |ù
χ.

For the other direction let us assume that M, v |ù Kχ. We wish to

show M 1, v |ù Kχ. Consider an arbitrary v1 P W 1 with v
L1
Ñ v1. It is

su�cient to show M 1, v1 |ù χ. Using left commutativity of M 1, from

v P W and v
L1
Ñ v1 we conclude v1 P W and v

L
Ñ v1. Hence, M, v |ù Kχ

implies M, v1 |ù χ. By induction hypothesis we obtain M 1, v1 |ù χ.

• Case ψ � lχ. Let us �rst assume M 1, v |ù lχ. We wish to show

M, v |ù lχ. Consider an arbitrary v1 P W with v
♦
Ñ v1. It is su�cient

to showM, v1 |ù χ. Note that the de�nition of
♦
Ñ implies that v

♦1
Ñ v1 or

v � v1. In the �rst case, v
♦1
Ñ v1, the assumption M 1, v |ù lχ directly

implies M 1, v1 |ù χ. By induction hypothesis we obtain M, v1 |ù χ.
In the second case, v � v1, we use the fact that M 1, w |ù Kpplχ Ñ
χq ^lplχÑ χqq and v P W imply M 1, v |ù plχÑ χq. Together with
M 1, v |ù lχ this implies M 1, v |ù χ, hence, M 1, v1 |ù χ. By induction
hypothesis we obtain M, v1 |ù χ as well.

For the other direction let us assume thatM, v |ù lχ. We wish to show

M 1, v |ù lχ. Consider an arbitrary v1 P W 1 with v
♦1
Ñ v1. It is su�cient

to show M 1, v1 |ù χ. But from v P W and v
♦1
Ñ v1 we conclude v1 P W

and v
♦
Ñ v1. Hence, M, v |ù lχ implies M, v1 |ù χ. By induction

hypothesis we obtain M 1, v1 |ù χ.

Proof of Theorem 9.1. Let Σ �: tp, q, ,l, K,^, x, 0, 1u be the alphabet over
which bimodal formulas are de�ned. In order to prove the assertion we have
to show that there is a logspace computable function rT : Σ� Ñ Σ� such that,
for all ϕ P Σ�,

pϕ P L and ϕ is S4� S5-satis�ableq

ðñ prT pϕq P L and rT pϕq is K4� S5-satis�ableq.

We de�ne such a function rT by formulating an algorithm for computing it
that works in logarithmic space.
So, let ϕ P Σ� be the input string. According to Corollary 8.7 we can �rst
check in logarithmic space whether ϕ is a bimodal formula or not, that is,

172 CHAPTER 9. REDUCTION OF S4� S5 TO K4� S5

whether ϕ is an element of L or not. If not then the algorithm outputsrT pϕq :� ^ (which is certainly not a bimodal formula). If, on the other hand,

ϕ is a bimodal formula then we wish to compute and print rT pϕq :� pT pϕq as
de�ned in De�nition 9.2. The algorithm that prints pT pϕq works as follows.

1. It prints ϕ.

2. For each lψ P sfpϕq it prints the string

^Kpplψ Ñ ψq ^lplψ Ñ ψqq.

Of course, for the second part, for every occurrence of the symbol l in ϕ
one has to determine the uniquely determined formula ψ beginning in ϕ
immediately to the right of this occurrence of l. Then one has to print
the string above. All this can be done using several binary counters. First
one sets a binary counter called StartOfPsi to the value of the position to
the right of the current occurrence of l. In order to compute the correct
value of a binary counter EndOfPsi that is supposed to be the position of the
rightmost symbol in ψ one proceeds as follows. Starting from the position
StartOfPsi one reads the given string from left to right. As long as the read
symbol is or l or K one continues reading. At some stage one will either
read an x or an opening bracket p. If one reads an x then EndOfPsi is set
to the position of the rightmost bit, that is, the rightmost 0 or 1, such that
between this symbol and the just read occurrence of x there are only bits.
If one reads an opening bracket then EndOfPsi is set to the position of the
�rst closing bracket to the right of this opening bracket such that the string
between these two brackets contains as many closing as opening brackets.
Note that all this can be done in logarithmic space.
Finally, using the two binary counters StartOfPsi and EndOfPsi containing
the positions of the �rst and the last symbol of ψ it is clear that one can print
the string �^Kpplψ Ñ ψq ^ lplψ Ñ ψqq�, again using additional binary
counters that use only logarithmic space. This ends the description of the
computation in logarithmic space of the described reduction function rT .

Chapter 10

Conclusion

We have investigated the complexity of three combined logics with similar
properties.

• One component of the regarded combinations is the logic S5 with ex-
cellent algorithmic behavior. This is due to the fact that in models of
S5 the accessibility relation is an equivalence relation.

• The second component is in all of the considered cases a logic such that
the models have a transitive accessibility relation.

• These components are combined in such a way that their models have
at least the left commutativity property.

We used recursive tableau algorithms to show that the satisfiability problems
of the considered logics are in ESPACE. To show that these satisfiability
problems are EXPSPACE-hard we proved that any language recognized by
an Alternating Turing Machines working in exponential time can be reduced
in logarithmic space to the satisfiability problem of SSL (and also to the
satisfiability problem of S4� S5). Then we proved that the satisfiability
problem of SSL can be reduced in logarithmic space to the satisfiability
problem of S4� S5 and that this problem can be reduced in logarithmic
space to the satisfiability problem of K4� S5.

As further work one could investigate whether the techniques used here and
the achieved results can help to determine the complexity of the satisfiability
problem of other logics that combine S5 with a transitive logic in such a way
that at least left commutativity holds true. We think especially of extensions
of SSL with additional axioms as suggested by Dabrowski, Moss and Parikh
[22]:

173

174 CHAPTER 10. CONCLUSION

WD ♦lϕÑ l♦ϕ
sound for weakly directed spaces

Un ♦ϕ^ L♦ψ Ñ ♦r♦ϕ^ L♦ψ ^K♦Lpϕ_ ψqs
sound for spaces closed under binary unions

topologic SSL + (WD) + (Un)
sound for lattice spaces, complete for topological spaces –
even for complete lattice spaces

And there are also many extensions of SSL developed by Heinemann for
which the problem of their computational complexity is still open.

Bibliography

[1] H. Andréka, J. van Benthem, and I. Németi. Modal languages and
bounded fragments of predicate logic. Journal of Philosophical Logic,
27, pages 217–274., 1998.

[2] F. Baader and U. Sattler. An overview of tableau algorithms for de-
scription logics. Studia Logica, 69:5–40, 2001.

[3] P. Balbiani, H. van Ditmarsch, and A. Kudinov. Subset space logic
with arbitrary announcements. In Indian Conference on Logic and Its
Applications, pages 233–244. Springer, 2013.

[4] A. Baltag, V. Fiutek, and S. Smets. DDL as an “internalization” of
dynamic belief revision. In Krister Segerberg on Logic of Actions, pages
253–280. Springer, 2014.

[5] A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements,
common knowledge, and private suspicions. In Readings in Formal Epis-
temology, pages 773–812. Springer, 2016.

[6] A. Baltag, A. Özgün, and A. L. V. Sandoval. Topo-logic as a dynamic-
epistemic logic. In International Workshop on Logic, Rationality and
Interaction, pages 330–346. Springer, 2017.

[7] A. Baltag, A. Özgün, and A. L. V. Sandoval. APAL with memory is
better. In International Workshop on Logic, Language, Information,
and Computation, pages 106–129. Springer, 2018.

[8] A. Baltag and B. Renne. Dynamic epistemic logic. Stanford Encyclope-
dia of Philosophy, 2016(Fall), 2016.

[9] A. Baltag, H. van Ditmarsch, and L. S. Moss. Epistemic logic and in-
formation update. In Handbook of the Philosophy of Information, pages
361–456. Elsevier, Amsterdam, 2008.

175

176 BIBLIOGRAPHY

[10] C. Başkent. Topics in Subset Space Logic An Introduction to the Geom-
etry of Dynamic Epistemology. VDM Verlag Dr. Müller, Saarbrücken,
2010.

[11] C. Başkent. Public announcement logic in geometric frameworks. Fun-
damenta Informaticae, 118(3):207–223, 2012.

[12] E. W. Beth. Semantic Entailment and Formal Derivability. North-
Holland, Amsterdam, 1955.

[13] A. Bjorndahl. Subset space public announcement logic revisited. arXiv
preprint arXiv:1302.4009, 2013.

[14] A. Bjorndahl. Topological subset space models for public announce-
ments. In Jaakko Hintikka on Knowledge and Game-Theoretical Se-
mantics, pages 165–186. Springer, 2018.

[15] P. Blackburn, M. De Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[16] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer, Berlin, 1997.

[17] S. R. Buss. The Boolean formula value problem is in ALOGTIME. In
A. V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, New York, pages 123–131. ACM, 1987.

[18] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. ACM,
28(1):114–133, Jan. 1981.

[19] A. K. Chandra and L. J. Stockmeyer. Alternation. In 17th Annual
Symposium on Foundations of Computer Science, 1976, pages 98–108.
IEEE, 1976.

[20] P. Clote. Computation models and function algebras. In Handbook of
Computability Theory, volume 140 of Stud. Logic Found. Math., pages
589–681. North-Holland, Amsterdam, 1999.

[21] S. A. Cook. The complexity of theorem-proving procedures. In M. A.
Harrison, R. B. Banerji, and J. D. Ullman, editors, Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971,
Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[22] A. Dabrowski, L. S. Moss, and R. Parikh. Topological reasoning and
the logic of knowledge. Ann. Pure Appl. Logic, 78:73–110, 1996.

BIBLIOGRAPHY 177

[23] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning about
Knowledge. MIT press, 1995.

[24] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18:194–211, 1979.

[25] M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume
169. Springer Science & Business Media, 1983.

[26] M. Fitting. Modal proof theory. In Handbook of Modal Logic, volume 3
of Stud. Log. Pract. Reason., pages 85–138. Elsevier B. V., Amsterdam,
2007.

[27] D. M. Gabbay and V. B. Shehtman. Products of modal logics, part 1.
Logic Journal of IGPL, 6(1):73–146, 1998.

[28] D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Products of
transitive modal logics. The Journal of Symbolic Logic, 70(03):993–1021,
2005.

[29] K. Georgatos. Knowledge theoretic properties of topological spaces.
In International Conference Logic at Work on Knowledge Representa-
tion and Reasoning Under Uncertainty, pages 147–159. Springer-Verlag,
1992.

[30] K. Georgatos. Modal Logics for Topological Spaces. PhD thesis, The
City University of New York, 1993.

[31] K. Georgatos. Knowledge on treelike spaces. Studia Logica, 59(2):271–
301, 1997.

[32] K. Georgatos. Updating knowledge using subsets. Journal of Applied
Non-Classical Logics, 21(3-4):427–441, 2011.

[33] K. Gödel. Eine Interpretation des intuitionistischen Aussagenkalküls,
Ergebnisse eines mathematischen Kolloquiums 4 (1933) 39-40. reprinted
and translated in: S. Feferman et al.(eds.), Kurt Gödel. Collected Works.
Vol. 1, 1986.

[34] R. Goré. Tableau methods for modal and temporal logics. In Handbook
of Tableau Methods, pages 297–396. Kluwer Acad. Publ., Dordrecht,
1999.

[35] G. Governatori. Labelled modal tableaux. In Advances in Modal Logic,,
volume 7, pages 87–110, 2008.

178 BIBLIOGRAPHY

[36] E. Grädel. Why are modal logics so robustly decidable? In G. Paun,
G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical
Computer Science. Entering the 21st Century, pages 393–408. World
Scientific, 2001.

[37] G. Grätzer. Lattice Theory: Foundation. Birkhäuser/Springer Basel
AG, Basel, 2011.

[38] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54(3):319–
379, 1992.

[39] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In Handbook of
Philosophical Logic, pages 99–217. Springer, 2001.

[40] B. Heinemann. Topological modal logics satisfying finite chain condi-
tions. Notre Dame Journal of Formal Logic, 39(3):406–421, 1998.

[41] B. Heinemann. Temporal aspects of the modal logic of subset spaces.
Theoretical Computer Science, 224(1-2):135–155, 1999.

[42] B. Heinemann. Regarding overlaps in ’topologic’. Advances in Modal
Logic, 6:259–277, 2006.

[43] B. Heinemann. A hybrid logic for reasoning about knowledge and topol-
ogy. Journal of Logic, Language and Information, 17(1):19–41, 2008.

[44] B. Heinemann. Topology and knowledge of multiple agents. In Ibero-
American Conference on Artificial Intelligence, pages 1–10. Springer,
2008.

[45] B. Heinemann. The Cantor space as a generic model of topologically
presented knowledge. In International Computer Science Symposium in
Russia, pages 169–180. Springer, 2010.

[46] B. Heinemann. Logics for multi-subset spaces. Journal of Applied Non-
Classical Logics, 20(3):219–240, 2010.

[47] B. Heinemann. Subset spaces modeling knowledge-competitive agents.
In International Conference on Knowledge Science, Engineering and
Management, pages 3–14. Springer, 2015.

[48] B. Heinemann. Augmenting subset spaces to cope with multi-agent
knowledge. In International Symposium on Logical Foundations of Com-
puter Science, pages 130–145. Springer, 2016.

BIBLIOGRAPHY 179

[49] B. Heinemann. A subset space perspective on agents cooperating for
knowledge. In International Conference on Knowledge Science, Engi-
neering and Management, pages 503–514. Springer, 2016.

[50] J. Hintikka. Form and content in quantification theory. Acta Philosoph-
ica Fennica, 8(7):55, 1955.

[51] M. Huth and M. D. Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems (2. ed.). Cambridge University Press, 2004.

[52] O. H. Ibarra, T. Jiang, and B. Ravikumar. Some subclasses of context-
free languages in NC1. Information Processing Letters, 29(3):111–117,
1988.

[53] S. Kanger. Provability in Logic. Stockholm Studies in Philosophy 1.
Almqvist and Wiksell, Stockholm, 1957.

[54] A. S. Kechris. Classical Descriptive Set Theory. Graduate Texts in
Mathematics. 156. Berlin: Springer-Verlag, 1995.

[55] D. Kozen. On parallelism in Turing machines. In 17th Annual Sympo-
sium on Foundations of Computer Science, pages 89–97. IEEE, 1976.

[56] S. A. Kripke. A completeness theorem in modal logic. The Journal of
Symbolic Logic, 24:1–14, 1959.

[57] S. A. Kripke. Semantical analysis of modal logic I, normal modal propo-
sitional calculi. Zeitschrift für mathemathische Logik und Grundlagen
der Mathematik, 9(5-6):67–96, 1963.

[58] G. Krommes. A new proof of decidability for the modal logic of subset
spaces. In Eighth ESSLLI Student Session, pages 137–148. Citeseer,
2003.

[59] G. Krommes. Untersuchungen zur modalen Logik von Mengenräumen:
Vollständigkeit, Entscheidbarkeit, Komplexität. Master’s thesis, Fern-
Universität Hagen, 2003.

[60] A. Kurucz. Combining modal logics. In Handbook of Modal Logic, vol-
ume 3 of Stud. Log. Pract. Reason., pages 869–924. Elsevier B. V., Am-
sterdam, 2007.

[61] A. Kurucz, F. Wolter, M. Zakharyaschev, and D. M. Gabbay. Many-
Dimensional Modal Logics: Theory and Applications, Volume 148 (Stud-
ies in Logic and the Foundations of Mathematics). North Holland, 2003.

180 BIBLIOGRAPHY

[62] A. Kurucz and M. Zakharyaschev. A note on relativised products of
modal logics. Advances in Modal Logic, 4:221–242, 2002.

[63] R. E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on Computing, 6(3):467–480,
1977.

[64] M. Lange and C. Lutz. 2-EXPTIME lower bounds for propositional
dynamic logics with intersection. The Journal of Symbolic Logic,
70(4):1072–1086, 2005.

[65] C. I. Lewis and C. H. Langford. Symbolic Logic. Dover publications New
York, 1959.

[66] H. MacColl. Symbolic reasoning. Mind, 5:54, 1880.

[67] M. Marx. Complexity of products of modal logics. Journal of Logic and
Computation, 9(2):197–214, 1999.

[68] J. C. C. McKinsey. A solution of the decision problem for the lewis
systems s2 and s4, with an application to topology. The Journal of
Symbolic Logic, 6(4):pp. 117–134, 1941.

[69] J. C. C. McKinsey and A. Tarski. The algebra of topology. Annals of
Mathematics, pages 141–191, 1944.

[70] J. C. C. McKinsey and A. Tarski. Some theorems about the sentential
calculi of Lewis and Heyting. The Journal of Symbolic Logic, 13(1):1–15,
1948.

[71] L. S. Moss and R. Parikh. Topological reasoning and the logic of knowl-
edge. In Proceedings of the Fourth Conference on Theoretical Aspects of
Reasoning about Knowledge, pages 95–105. Morgan Kaufmann Publish-
ers Inc., 1992.

[72] I. Németi. Decidable versions of first order logic and cylindric-relativized
set algebras. In D. G. L. Csirmaz and M. de Rijke, editors, Logic Col-
loquium, volume 92, pages 171–241. CSLI Publications, 1995.

[73] E. Pacuit and R. Parikh. The logic of communication graphs. In Inter-
national Workshop on Declarative Agent Languages and Technologies,
pages 256–269. Springer, 2004.

[74] C. H. Papadimitriou. Computational Complexity. Amsterdam: Addison-
Wesley Publishing Company, 1994.

BIBLIOGRAPHY 181

[75] R. Parikh, L. S. Moss, and C. Steinsvold. Topology and epistemic logic.
In Handbook of Spatial Logics, pages 299–341. Springer, 2007.

[76] W. J. Paul, E. J. Prauß, and R. Reischuk. On alternation. Acta Infor-
matica, 14(3):243–255, 1980.

[77] J. Plaza. Logics of public communications. Synthese, 158(2):165–179,
2007.

[78] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th
Annual Symposium on Foundations of Computer Science, pages 109–
121. IEEE, 1976.

[79] W. Rautenberg. Modal tableau calculi and interpolation. Journal of
Philosophical Logic, 12(4):403–423, 1983.

[80] B. Schröder. Ordered sets. Birkhäuser/Springer, second edition, 2016.
An introduction with connections from combinatorics to topology.

[81] K. Schütte. Ein System des verknüpfenden Schliessens. Archiv für math-
ematische Logik und Grundlagenforschung, 2(2-4):55–67, 1956.

[82] K. Segerberg. Two-dimensional modal logic. Journal of Philosophical
logic, 2(1):77–96, 1973.

[83] V. B. Shehtman. Two-dimensional modal logic. Matematicheskie Za-
metki, 23(5):759–772, 1978.

[84] R. R. Smullyan. First-Order Logic, volume 43. Springer Science &
Business Media, 2012.

[85] E. Spaan. Complexity of Modal Logics. PhD thesis, Universiteit van
Amsterdam, 1993.

[86] R. H. Thomason. Combinations of tense and modality. In Handbook of
Philosophical Logic, pages 135–165. Springer, 1984.

[87] J. van Benthem. Modal Correspondence Theory. PhD thesis, Mathe-
matical Institute, University of Amsterdam, 1976.

[88] J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic. Reidel, Dordrecht, 1984.

[89] J. van Benthem. Logical Dynamics of Information and Interaction. Cam-
bridge University Press, 2011.

182 BIBLIOGRAPHY

[90] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic, volume 337. Springer Science & Business Media, 2007.

[91] M. Y. Vardi. Why is modal logic so robustly decidable? Descriptive
Complexity and Finite Models, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 31, AMS:149–184, 1997.

[92] Y. N. Wáng. A two-dimensional hybrid logic of subset spaces. In Indian
Conference on Logic and Its Applications, pages 196–209. Springer, 2009.

[93] Y. N. Wáng and T. Ågotnes. Multi-agent subset space logic. In IJCAI,
pages 1155–1161, 2013.

[94] Y. N. Wáng and T. Ågotnes. Subset space public announcement logic.
In Indian Conference on Logic and Its Applications, pages 245–257.
Springer, 2013.

[95] M. A. Weiss and R. Parikh. Completeness of certain bimodal logics for
subset spaces. Studia Logica, 71(1):1–30, 2002.

[96] X. Wen, H. Liu, and F. Huang. An alternative logic for knowability.
In International Workshop on Logic, Rationality and Interaction, pages
342–355. Springer, 2011.

