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Abstract

With the increased possibilities to collect and store data (’Big Data’), numerous

popular methods have been presented for their analysis. For instance in the medical

sector, data analysis is used to provide valuable data for health economic evaluations.

However, it was widely overlooked, that most of the newly presented methods are

accompanied by non-explainable results, due to so-called ’black box’ models. This

is not acceptable in medical data analytics, including but not limited to the General

Data Protection Regulation (GDPR) of the European Union introduced in 2018.

Therefore, the importance of explainable analytics in general and in medicine in

particular has been discussed and investigated. While one possibility is trying to

explain the workings of a black box model, another approach is to introduce advanced

analytical methods generating explainable results in the first place.

In this thesis we present a new method for explainable analytics to analyze individual

patient data in order to generate new findings for an improved future patient care.

Furthermore, the new method provides reliable data for health economic evaluations.

The new approach is based on an endpoint-oriented clustering approach, developed

by Brieden and Gritzmann, forming sufficiently large clusters of patients with similar

combinations of their characteristic values. We present a method for the cluster-

based analysis of individual patient data to reliably predict the outcome of a patient

(e.g. efficacy of a medical intervention). Furthermore, we introduce the newly

invented cluster-based survival analysis to predict the ’survival’ of a patient (e.g.

continuance of a treatment). Besides predicting what the outcome of a patient might

be, the method provides a unique explanation for the specific prediction, based

on individual patient characteristics. Finally, we show the success of the newly

introduced explainable method on a real world data set originating from a clinical

trial including patients suffering from schizophrenia.





Zusammenfassung

Mit zunehmenden Möglichkeiten der Datensammlung sowie der Speicherung dieser

Daten („Big Data“) wurden bereits zahlreiche Methoden für deren Analyse vorgestellt.

Mit Hilfe analytischer Methoden werden unter anderem wertvolle Daten für gesund-

heitsökonomische Bewertungen generiert. Allerdings führen viele dieser Methoden

aufgrund sogenannter Black-Box-Modelle zu nicht erklärbaren Ergebnissen. In der

Medizin sind nicht erklärbare Prognosen nicht hinnehmbar, unter anderem aufgrund

der 2018 eingeführten Datenschutzgrundverordnung (DSGVO) der Europäischen

Union. Aus diesem Grund nimmt die Bedeutung der erklärbaren Analytik, ins-

besondere in der Medizin, deutlich zu. Erklärbare Prognosen können dabei sowohl

über das nachträgliche Erläutern eines Black-Box-Modells als auch die Entwicklung

moderner, direkt erklärbarer Methoden generiert werden.

In dieser Arbeit wird eine neue erklärbare Methode für die Analyse patientenindi-

vidueller Daten vorgestellt, um neue Erkenntnisse für die Behandlung zukünftiger

Patienten zu generieren. Des Weiteren wird durch die Methode eine verlässliche

Datengrundlage für gesundheitsökonomische Evaluationen erzeugt. Der Ansatz

basiert auf einem von Brieden und Gritzmann entwickelten endpunkt-orientiertem

Clustering Ansatz, der ausreichend große Patientencluster mit ähnlichen Merk-

malsausprägungen bildet. Neben der cluster-basierten Analyse zur Prognose des

Behandlungserfolgs eines Patienten, wird eine neu entwickelte cluster-basierte Über-

lebenszeitanalyse vorgestellt, um das „Überleben“ eines Patienten (z.B. Fortsetzung

einer Behandlung) vorherzusagen. Dabei sind alle von den Ansätzen erzeugten Prog-

nosen mit individuellen Patientencharakteristika erklärbar. Abschließend werden mit

Hilfe der neuen Methode anhand einer klinischen Studie neue Erkenntnisse für die

Behandlung von Schizophreniepatienten generiert.
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The desire to gain knowledge from data has been around since the beginning of

civilization. For instance, the Roman Empire gathered census of the population and

extensively collected data about the empire’s geographical area and wealth [147]. In

the last decades, the speed with which data is generated increased drastically and

the amount of data therefore burst. This growth is far from reaching a stop. The

International Data Corporations (IDC) Global DataSphere forecast predicts, that the

amount of data created over the next three years will exceed the created data volume

of the past 30 years [77].

Data as a term is broadly formulated. According to the Oxford English Dictio-

nary [133] data are

’facts or information, especially when examined and used to find out

things or to make decisions.’

Discovering new findings is of the utmost importance in the field of medicine, since

besides the pure generation of knowledge, human lifes are at stake. Therefore,

the analysis of large amounts of data provides a tremendous potential for medical

decision-making [117]. New methods to analyze medical data can be used to meet

the information needs of patients as well as clinicians, researchers and health policy

makers [95].

With the increased possibilities to collect, process, and store data, in general and

in medicine, numerous methods have been presented to analyze this data both in

a descriptive and predictive manner. Achieving the most accurate prediction of

an outcome of interest has become a major challenge for predictive analytics or

so-called supervised learning. In the medical sector, many of these methods provide

valuable data for the health economic evaluation of medical interventions in terms of

evidence-based medicine. Health care institutions, like the Institute for Quality and

Efficiency in Health Care (IQWiG), and pharmaceutical companies use this data to

evaluate the benefit as well as economic implications of medical interventions. How-

ever, it was widely overlooked, that many of the newly invented methods, especially

in the field of machine learning, are black box models generating non-explainable

results. Therefore, even though many methods predict what might happen, a lot of

15



them are not able to explain why a certain prediction was made. Non-explainable

methods and results are causing difficulties for high-stakes decision-making, for

instance in banking and criminal justice, but also medicine and health care.

Most importantly, in medical decision-making, patients deserve an ethical right for

explanation. It is not fair-minded to simply tell a patient that a specific treatment will

fail with a high probability, without explaining why. Furthermore, non-explainable

models are highly unlikely to be adopted in clinical practice and they do not allow

for further implications in the form of prescriptive analytics. Additionally, there

are legal concerns arising from the General Data Protection Regulation (GDPR)

of the European Union introduced in 2018 as well as the international standards

for transparency in health economic evaluations. Hence, there is a strong need for

explainable analytics in general and in particular in medicine.

It is one possibility to explain the workings of a black box model. Among other

things, this is motivated by the believe, that only machine learning models can

predict an outcome accurately, which is arguably a myth [121]. Furthermore, if a

black box model can be explained a posteriori, the explanation will most likely be a

complicated decision pattern, not usable in the real world [121].

Another possibility is to generate explainable results in the first place. Unfortunately

an often encountered problem in general and in patient data in particular is under-

lying heterogeneity. Therefore, it is usually impossible to use one ’average’ model

to describe the entire patient data. Hence, the desire for explainable analytics in

medicine is accompanied by the need for advanced analytical methods also address-

ing the problem of underlying heterogeneity inside the patient data.

In this thesis we present explainable methods for the analysis of individual patient

data to generate new findings for improved future patient care. The methods espe-

cially provide reliable data for the analysis of the benefit of medical interventions

during their health economic evaluation. The approaches are able to evaluate and

predict the outcome of a patient (e.g. efficacy of a medical intervention) solely

based on the patient’s baseline characteristics. The methods furthermore address

underlying heterogeneity inside the patient data. By applying an innovative endpoint-
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oriented clustering approach, developed by Brieden and Gritzmann [27], we form

sufficiently large clusters of patients with similar combinations of characteristic

values. The underlying assumption is, that patients inside a cluster show similar

outcome, whereas the outcome varies across clusters.

Based on these homogeneous clusters we present a method for the cluster-based

analysis to reliably predict the outcome of a patient. Furthermore, we introduce the

newly invented cluster-based survival analysis to predict the ’survival’ of a patient.

Besides the actual survival of a patient, the continuance of a treatment is a frequently

explored outcome in a cluster-based survival analysis. Thereby, a separate survival

analysis is performed on each of the derived clusters. Besides providing a prediction

of a patient’s outcome, all presented methods give a unique explanation why the

specific prediction was made, based on individual patient characteristics.

Finally, we generate new findings for a real life data set by applying the newly

invented cluster-based survival analysis. The data set originates from a clinical trial

including patients suffering from schizophrenia. Schizophrenia is a severe mental

illness resulting in major psychological pain for the patient as well as a tremendous

economic burden for society [146] [110]. Therefore, besides showing the excellent

results of the new explainable method, we provide new information for an improved

treatment of patients suffering from this serious mental illness, reducing the patients’,

their families’ and society’s burden.

We begin by motivating our investigation into new methods for explainable analytics

in medicine in Part II. After providing an overview about the field of explainable

analytics in Chapter 1, we highlight the importance of explainable methods in

medicine and discuss the implications of the General Data Protection Regulation

(GDPR) in the European Union. To highlight the relevance of new methods for the

health economic evaluation of medical interventions, we give an overview about

general evaluation methods as well as health economic evaluations in Germany. To

get an understanding of the necessity of finding improved treatment possibilities for

patients suffering from schizophrenia, we will give an overview about the disease,

its assessment, and its burden - both for the individual and for society in Chapter 2.
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In Part III of the thesis, we present and discuss a new method for explainable analytics

in medicine. After an overview about common survival analysis in Chapter 3, we

point out and discuss the often encountered problem of underlying heterogeneity in

survival analysis. Chapter 4 provides an overview of the mathematical background

to generate homogeneous clusters of patients. Besides discussing a transformation

technique, we also present an automated approach to identify the most promising

baseline characteristics for the explainable methods. In Chapter 5 we present the

cluster-based analysis. We begin by discussing the statistical evaluation of the

derived clusters and explain how to justify the division into those. Furthermore, we

will discuss the use of confidence intervals instead of hypothesis testing throughout

the methods. To conclude this part, we will introduce the cluster-based survival

analysis in Chapter 6. Besides the literal ’survival’, various other outcomes of a

patient can be predicted by the cluster-based survival analysis (e.g. continuance of a

treatment). After estimating both cluster-based survival functions and cluster-based

survival models, we will extend the approach to stratified models. Furthermore, we

will discuss how to evaluate differences regarding the outcome of patients, both

across different treatments as well as different clusters.

In Part IV of this thesis, we generate new findings for an improved treatment of

patients suffering from schizophrenia, by applying the cluster-based survival analysis.

In Chapter 7 we investigate the clinical trial CATIE, a randomized clinical trial

assessing the discontinuation of treatment. We provide an overview about the trial

and previous findings, especially about possible predictors for the discontinuation of

treatment. After deriving a research question, we will present the results of a common

survival analysis. The following cluster-based survival analysis both describes the

estimation of the cluster-based survival functions as well as cluster-based survival

models. We will summarize the new findings by justifying different outcomes both

across treatments and clusters. Furthermore, we will highlight the new findings and

compare them with the results of the common survival analysis.

In Part V we will summarize the main results and discuss possible future work on

explainable analytics in medicine.
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Part II

Motivation
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In Part II of this thesis we motivate our investigation into new methods for ex-

plainable analytics in medicine. We begin by motivating the need for methods for

explainable analytics. Afterwards, we motivate the need of investigating optimized

treatment plans for patients suffering from schizophrenia.

Chapter 1 begins with an overview about data analytics and the role of machine

learning. Afterwards we will discuss explainability and interpretability. Besides

generating a common understanding of both terms, we will illustrate the differ-

ence between explainable and non-explainable methods and motivate the use of

explainable methods for data analytics. Based on that, we discuss two possibilities

to generate explainable models and discuss their differences. Furthermore, we high-

light the importance of explainable analytics in medicine. Besides emphasizing its

importance, we examine the implications of the General Data Protection Regulation

(GDPR) in the European Union. To conclude this chapter, we discuss the relevance

of new methods for health economic evaluations.

Chapter 2 provides an overview of schizophrenia, its prevalence, and the associated

burden both for the individual and society. Besides briefly reviewing its history,

we discuss the assessment and treatment options of schizophrenia. Afterwards, we

highlight the importance of improved possibilities to treat every patient in order to

reduce his or her own pain, as well as the pain for his or her family. To conclude,

we examine the economic burden put on society by schizophrenia worldwide and in

particular in Germany.
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1. Explainable analytics

The aim of this thesis is to gain additional knowledge about data by applying new

methods for explainable analytics. The methods will be presented in Part III and

applied to a real world medical data set in Part IV.

In this chapter we give an overview of the field of explainable analytics. Recently,

many terms regarding the analysis of data have become very popular and are widely

used ever since. Especially machine learning has become a major component in data

analysis. After defining the terms analytics and data analytics in general, we will

briefly discuss its relations and distinctions to machine learning and put it into con-

text regarding supervised and unsupervised learning. Afterwards we will define and

discuss explainability and interpretability in analytics and emphasize its importance

especially in the field of medicine. To conclude, we give a brief overview of the

consequences of the General Data Protection Regulation (GDPR) of the European

Union introduced in 2018, especially for automated decision-making in the medical

field. Furthermore, we highlight the relevance of new methods for health economic

evaluations.

Throughout this chapter it will become clear, that there is not always one unique

definition for many of the addressed terms. Many publications have discussed this

phenomenon as well as given extensive overviews about the entire field. As this is

not the aim of this thesis, we will also refrain from giving a universal definition for

the discussed terms. We will however give plenty of references for the interested

reader.
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CHAPTER 1. EXPLAINABLE ANALYTICS

1.1 Analytics

Analytics and especially data analytics are widely used terms not just in the field of

mathematics and statistics, but in many other fields of research as well. According

to the Oxford Dictionary [133] analytics is

’the systematic computational analysis of data or statistics.’

Davenport and Harris define data analytics as follows [47]:

’Data analytics is the extensive use of data, statistical and quantitative

analysis, explanatory and predictive models, and fact-based management

to drive decisions and actions.’

Analytics can be divided into descriptive, predictive, and prescriptive analytics [47]

[130]. [47] furthermore mention autonomous analytics as an additional branch of

analytics. Descriptive analytics (or business intelligence) is mainly concerned with

the reporting or summary of data. An example would be the reporting of the ob-

served death rate of patients in a clinical trial. Predictive analytics uses historical

data combined with quantitative techniques to predict the future. An example would

be a confidence interval in which the death rate of future patients lies with a 95%

chance, based on the data of a clinical trial. Prescriptive analytics additionally spec-

ifies actions and the prospective outcome of these actions. One example could be

administering a certain treatment for future patients in order to reduce the death rate.

Descriptive and predictive analytics directly address the underlying data, whereas

prescriptive analytics specifies actions based on results from descriptive and predic-

tive analytics. Since the main concern of this thesis is the generation of knowledge

from data, we therefore focus on descriptive and especially predictive analytics.

It is important to notice, that predictive analytics can not really predict anything [130].

No form of data analytics has the ability to generate certain results for the future.

Physicist Nils Bohr expressed the following in 1971 [104]:

’It is very difficult to predict - especially the future.’
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However, predictive analytics can predict what might happen in the future with a

certain chance, and is therefore a valuable instrument for decision-making.

Remark 1.1. Lately the terms supervised and unsupervised learning became very

popular and are frequently used instead of predictive and descriptive analytics, espe-

cially for machine learning methods. Supervised learning methods aim to predict a

specific outcome based on available input information, similar to predictive analyt-

ics [81] [6]. Unsupervised learning methods do not aim to predict an outcome, but

rather to describe and find patterns in data, similar to descriptive analytics [81] [6].

In the following we will restrict ourselves to predictive analytics (or supervised

learning), due to our dataset in Part IV including the outcome of the patients, that we

wish to predict.

Machine learning and data analytics

With the increased collection and storage of data (’Big Data’), combined with

the ability to process it in a fast and efficient way, new methods have been devel-

oped in the field of data analytics. Over a short period of time many terms like

machine learning, statistical learning, deep learning, and artificial intelligence be-

came very popular. Especially machine learning, as well as artificial intelligence,

and deep learning have been part of numerous books and other publications with

most of them pointing out the absence of a universal definition for all of those

terms [76] [47] [108] [119] [96] [6].

In 1998 Poole, Mackworth, and Goeble defined artificial intelligence as the study of

the design of intelligent agents. Agents act in an environment and therefore vary from

animals, humans, to airplanes [115]. Machine learning is understood to be a part of

artificial intelligence usually investigating large amounts of data. Simultaneously,

machine learning is a part of data analytics in general. In the following we want

to give a brief understanding of machine learning. It is neither the main part of

this thesis, nor are we using its methods. However, some problems arise from it,

motivating our investigation into explainable analytics.
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CHAPTER 1. EXPLAINABLE ANALYTICS

The principal goal of machine learning is the same as in all data analytics, to gain

knowledge or (in case of supervised learning) make predictions based on data.

Machine learning methods are designed to make the most accurate prediction pos-

sible, without investigating the inference between the relations of the involved

variables. [109] and [14] provide an introduction, [76] discuss the field of machine

learning as well as further implications for so-called ’deep learning’ - a part of

machine learning - and many other books cover multiple aspects as well as methods

from machine learning [39] [96] [108] [119] [129]. Some use the term statistical

learning [65], which is often considered to be a synonym. However, we do not want

to imply the latter. Furthermore, [47] and [38] provide a look into the history of

machine learning for the interested reader.

Besides the investigation of machine learning methods, some people discussed the

distinction to classical statistical methods for data analytics [79] [39] [51]. [38] pro-

vide a thorough but compact overview, with focus on applications in neuroscience.

The main difference to classical statistical methods lies in the focus of the process to

generate the knowledge. Classical statistical methods are concerned with identifying

relations between involved variables, whereas (supervised) machine learning is solely

concerned with the best prediction of the outcome.

An often overlooked disadvantage of machine learning (opposed to classical statisti-

cal methods) is the so-called black box phenomenon. Due to machine learning only

aiming for the most accurate prediction possible, usually there is no information or

explanation available for the made predictions. The model is therefore considered

to be a black box. Despite its popularity, not just in research, but in general, this

disadvantage of machine learning and its implications are often ignored, making the

models and results non-interpretable and non-explainable. Even though this might

not be severe in some scenarios, it is unacceptable in several fields of research with

high-stakes decision-making, e.g. medicine or health care. Moreover, explainability

and interpretability are not only important for machine learning methods, but for

analytics in general. Therefore we want to generate a common understanding of both

terms in the following section, before emphasizing the importance of explainability

and interpretability in the field of medicine.
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1.2 Explainability and interpretability in analytics

According to the Oxford Dictionary the verb to interpret is to ’explain the meaning

of information or actions’ [133]. Building on that the verb to explain is defined

as ’making an idea or situation clear to someone by describing it in more detail or

revealing relevant facts’ [133]. Therefore interpretability builds on explainability,

which is why we will motivate the importance of both for data analytics.

There is no mathematical definition of explainability or interpretability in general

and especially not for machine learning or data analytics as a whole [106] [49].

Even a formal definition is elusive [49]. [49] [100] [52] [106] [46] all provide

their understanding of interpretability and explainability, while giving plenty of

references ranging from psychology to machine learning and artificial intelligence.

Some furthermore discuss the degree of interpretability. We want to note, that many

publications motivate interpretability and explainability from a machine learning

point of view, as machine learning methods hardly ever provide either. However,

the importance can be extended to data analytics in general leading to explainable

analytics. Similar to many other publications, we will use explainable and inter-

pretable synonymously, as we intend to both understand the workings of our model

as well as its results [70]. In the following we will therefore use the terms explainable

and non-explainable. For the interested reader we highly recommend [100] for a

thorough discussion about interpretability and explainability.

Based on [106] and [49], we therefore consider a model explainable, if in addition to

the prediction (’what’) we (as humans) can understand the prediction by looking at

the available input information (’why’).

In data analytics, explainability is often illustrated by a (black) box generating the

data as visualized in Figure 1.1 [24]. The available input information are considered

to go in on one side, and on the other side some outcome leaves the box. Nature

associates the available variables with the respective outcome, but prior to any

analysis of the data this association is unknown.
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Figure 1.1: Box model for analytics (see [24])

Explainable analytics, including but not limited to classical statistical approaches,

estimates the model inside the box based on the available data, which is then used

for predicting the outcome as visualized in Figure 1.2.

Figure 1.2: Box model for explainable analytics (see [24])

Hence, explainable analytics provide a look into the box, which is then no longer

considered to be a black box.

Opposed to explainable analytics, many approaches do not seek to estimate the

model inside the black box and consider it as complex and unknown [24]. The aim

is to find an algorithm operating on the available input, that most accurately predicts

the outcome as visualized in Figure 1.3. Especially machine learning methods fall

into this category.
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Figure 1.3: Box model for non-explainable analytics (see [24])

The focus does not lie on the model generating the data, but on the prediction and

especially its accuracy. Therefore, non-explainable analytics do not provide a look

into the box, which then remains to be a black box. We want to note, that even

though [24] provide a decent introduction into these different kinds of modelling,

they advocate for the algorithmic modelling culture. However Cox, the developer of

the Cox proportional-hazards model, together with other researchers disagrees with

the main statement of [24], which is included as comment in [24]. Furthermore, [24]

only discuss the overall usage of algorithmic modelling and do not investigate differ-

ences for specific domains of applications, like medicine and health care.

Due to the opacity of many analytical approaches, especially in machine learning,

many publications strongly advocate the necessity of explainable models [46] [49]

[52] [100] [10] [106] [124] only to name a few. [5] mention the importance of

explainable results in their white paper about challenges and opportunities of ’Big

Data’ from 2011. [13] also emphasize the importance of explainable models and that

this area needs more attention. [49] constitute, that even the best black box model

needs an explanation, because the used accuracy to develop such models is only a

single metric and therefore an incomplete specification of almost every real world

application.
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There are two possibilities to explain a black box model. Recently the work on ex-

plainable machine learning (and also explainable artificial intelligence) proverbially

exploded [121]. Most methods aim to create a second (post-hoc) model to explain

the first black box model. However, it is already discussed, whether ’easy’ explain-

ability is even possible for all machine learning methods [70]. [111] and [139] show

that marginal changes in an input (in this case an image) can lead to large changes

in the respective prediction. Moreover [121] comprehensively argue against these

approaches and show the excellent performance of an explainable model in [151]

for recidivism prediction. At this point, we want to recite three of the arguments

in [121] and underline some of them with additional references. First of all, there

is not necessarily a trade-off between accuracy and explainability due to the good

performance even of the ’simplest’ models [48] [68] [69] [141]. Second of all, black

box models often lead to complicated decision patterns, which are not usable for

real world applications due to their strong dependency on human errors [122] [148].

Finally, black box models only appear to reveal hidden structures inside the data. If

the structure was there, it could also be detected by a sufficiently flexible explainable

model. Otherwise, the supposedly hidden structure was misleading or maybe just a

random occurrence.

Instead of creating a post-hoc model explaining the black box model, it is possible

to generate models that are explainable by definition, as they already provide their

own explanations [121].

Besides the discussed advantages of explainable methods, their disadvantages have

to be taken into account as well. One difficulty lies within generating explainable

models in the first place, as ’simple’ models like linear regression are often not

appropriate due to underlying heterogeneity inside the data. Therefore, many real

life problems require using and further investigating complex methods from various

parts of mathematics. Furthermore, many explainable methods require inspecting

assumptions about the underlying model before applying the method itself. Op-

posed to that, many non-explainable methods from machine learning can be applied

immediately.
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Nevertheless, explainable analytics are substantial and inevitable for many fields

with high-stakes decision-making, like banking, insurance, criminal justice, and

public policy. Another critical domain for explainable analytics is health care and

medicine, as the made decisions deeply impact human lifes. Many of the previously

mentioned publications already emphasize the importance of explainable models

in the field of medicine. In the following section we want to give a more thorough

understanding by providing additional references as well as an illustrative example.

1.3 Importance of explainable analytics in medicine

We already discussed the importance of explainable analytics in general. In this

section, we want to take a closer look at analytics in medicine and the implication of

non-explainable methods to further motivate our investigation into it. Furthermore,

we will briefly discuss the implications of the General Data Protection Regulation

(GDPR) of the European Union introduced in 2018 for analytics in medicine and

discuss the relevance of new methods for health economic evaluations.

There are numerous publications emphasizing the importance of explainable models

and results in medicine and health care. [54] state, that non-explainable models are

one of the unintended consequences of machine learning in medicine. [144] motivate

the importance of explainable models in medicine and health care. Even though they

advocate explainable machine learning based on the creation of post-hoc models

to explain the black box model, they provide plenty of arguments specifically for

the medical domain and give numerous references to underline their statements.

Furthermore they argue, that integrating medical experts in medical data analysis

is equally important, which we strongly agree with. This is why the practical ap-

plication presented in Part IV involved cooperating with medical experts. Besides

highlighting the importance of explainable models [70] additionally point out the

often encountered problem of heterogeneous data sources in medical data analytics.

Therefore, new methods for explainable analytics in medicine are ideally supposed

to overcome this heterogeneity. [79] provide an overview about machine learning
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in health care and emphasize the challenge of explainability in machine learning

in medical applications, even though the book covers and also recommends many

non-explainable approaches for different domains of medicine. However, we want to

note, that even though [79] recommend using machine learning methods (with its

non-explainable models) in medicine, they never suggest those methods to replace a

doctor but to support him in order to make decisions.

We want to illustrate the implications of explainable and non-explainable models

for clinicians and patients with the following fictive example. Both explainable

and non-explainable methods get the ’patient’ as input. This input can include

every information available about the patient such as age, severity of disease, or

demographics. Since we are investigating predictive (or supervised) analytics, the

outcome, e.g. probability of success of a specific treatment, has to be available as

well. Both explainable and non-explainable methods will give a prediction for every

patient. As illustrated in Figure 1.4, the non-explainable method might conduct, that

one patient has a probability of success of 30%, whereas another patient has a higher

probability of success of 60%. However, there is no explanation why those patients

differ regarding the probability of success.

Opposed to that, explainable methods state, why the respective prediction was made,

as illustrated in Figure 1.5. Hence, in the fictive example, the Body Mass Index

(BMI) was responsible for the different predictions.

There are plenty of arguments for the investigation into explainable analytics in

medicine. We want to put emphasis on the following four reasons.

1. Explainable models will be accepted for clinical decision-making

Predictions made by a non-explainable method will most likely not be accepted

by clinicians, as he or she is unable to explain it to the patient or other medical

experts [70]. Clinicians want to understand the cause for a prediction before

applying it in clinical practice.
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Figure 1.4: Non-explainable analytics in medicine

2. Explainable models might lead to further implications

Medical experts might be able to draw further conclusions about the future

treatment plan of a patient based on the findings of explainable analytics.

Suppose the results show, that besides other characteristics, the Body Mass

Index (BMI) of a patient is highly influential on the outcome of a patient.

Besides prescribing medications, a clinician would recommend to loose (or

gain) weight in order to achieve a better outcome. Recommendations like this

are only possible, if the results are explainable in terms of individual patient

characteristics. Of course there are other baseline characteristics (e.g. age

of a patient), that can not be adjusted. However, explainable models provide

the possibility for those baseline characteristics, that can be adjusted, to be

identified in order to improve the future treatment of a patient.
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Figure 1.5: Explainable analytics in medicine

3. No controlling authority in non-explainable methods

As we have seen in the previous section, even the most accurate analytical ap-

proaches (both explainable and non-explainable) are not faultless [122] [148].

Every method relies on the available data and the applied metric to evaluate

the accuracy. When considering the medical domain, human lifes are at stake.

A wrong decision might lead to non-optimal treatment plans and therefore in

the worst case scenario the death of a patient. Even though wrong decisions

can never be excluded, explainable methods always provide the opportunity

for a last controlling authority. A clinician is able to understand the decision

made by an explainable method. Therefore, before treating a patient, the clini-

cian can adapt the decision if necessary. Decisions made by non-explainable

methods do not provide this possibility for a last control.
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4. Ethical right for explanation

Even if the worst case scenario is not met, we strongly think, that every patient

has a right for explanation. Simply stating, that the black box model generated

the prediction of the patients’ outcome is ethically dubious.

Due to the General Data Protection Regulation (GDPR) of the European Union

introduced in 2018 the lastly mentioned ethical concerns also become legal concerns,

which we will take a closer look at in the following section.

1.3.1 Consequences of the General Data Protection Regulation

With the introduction of the General Data Protection Regulation (GDPR) in the

European Union, the implications for non-explainable analytics in medicine (and

other domains) have been part of research.

According to articles 13(2)(f), 14(2)(g), and 15(1)(h) of the GDPR the controller

is obligated to provide the data subject (i.e. human) with meaningful information

about the logic involved [53]. Furthermore article 22(1) states, that the data subject

has a right to not be subject to a decision based solely on automated processing [53].

As per an official briefing, non-explainable analytics like machine learning are part

of the GDPR and great care must be taken in its development and deployment [55],

raising the much-debated question about granting a ’right to explanation’ to the data

subject [34].

There are several publications discussing the impact both in general [34] and explic-

itly for medical decision-making [60]. It is believed, that non-explainable analytics

will be difficult to use in practice [144] [70]. However, there are also publications

questioning an overall effective ’right to explanation’ [94]. Furthermore [145] con-

stitute, that the GDPR is too vague regarding the transparency and accountability of

automated decision-making and propose legislative steps to improve it.

Due to this thesis not being about the GDPR, we refrain from discussing the legal

consequences ourselves. However, we want to emphasize, that regardless whether the
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GDPR implicates a ’right to explanation’, it all the more motivates the investigation

into explainable analytics, especially for the analysis of medical data.

1.4 Relevance for health economic evaluations

To complete this chapter, we want to highlight the relevance of the newly invented

explainable methods for health economic evaluations. Besides giving an overview

about general evaluation methods, we will briefly discuss health economic evalua-

tions in Germany.

The interdisciplinary field of health economics is concerned with the production, dis-

tribution, and consumption of health goods [143]. The efficiency principle included

in article 12(1) of the Social Code Book V (SGB V) dictates, that all medical services

in Germany have to be sufficient, appropriate, and economical [37]. Therefore a

key task of health economics is balancing medical possibilities with their respective

costs and quality [143]. Health economic evaluations deal with developing new

methods for this task [143]. In order to perform health economic evaluations, clin-

ical, economic, and epidemiological data is applied [127]. It is therefore of vital

importance, that the provided data as well as the methods used to analyze the data are

reliable. In this thesis we will introduce a new explainable method for the analysis of

clinical data, addressing an often encountered problem of underlying heterogeneity.

The introduced method provides reliable data for the health economic evaluation of

medical interventions.

1.4.1 General evaluation methods

While evaluating medical interventions, the costs and the patients’ outcome are

compared. The investigated outcome can for example be the intervention’s influence

on the life expectancy of a patient [127]. There exist different methods to evaluate

medical interventions, depending on the unit of the measured outcome. In this

context, we only want to highlight the cost-efficiency analysis (CEA) and mention

several alternatives. The following descriptions are mainly based on [127] and [88],
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who also provide an extensive overview about the field for the interested reader.

The cost-efficiency analysis (CEA) compares the costs with the efficacy of a medical

intervention by building a ratio out of them. Costs are represented in monetary

units, whereas the patients’ outcome is expressed in one-dimensional non-monetary

units, e.g. life-years saved. Even though the CEA provides a simple way to include

a patients’ outcome in the health economic evaluation, an obvious disadvantage

is the requirement of the same effect measure for the patients’ outcome for all of

the compared medical interventions. Furthermore the CEA can not be applied for

multiple effect measures of a medical intervention.

A more simple alternative to the CEA is the cost-minimization analysis (CMA),

comparing the net costs of the interventions. However, it can only be used, if the

medical interventions show no difference in the patients’ outcome. The cost-utility

analysis (CUA) addresses the disadvantage of the CEA by replacing a single effect

measure with a utility function merging multiple effect measures. If the utility of a

medical intervention can furthermore be expressed in monetary values, a cost-benefit

analysis (CBA) can be carried out. The CBA can especially be used to compare

investments in the health sector with those in other sectors.

Among other things, those methods are used for the evaluation of medical interven-

tions in Germany. We therefore want to give a brief overview about health economic

evaluations in Germany.

1.4.2 Health economic evaluation in Germany

In Germany the responsibility for health economic evaluations falls to the scientific

Institute for Quality and Efficiency in Health Care (IQWiG), which was established

during the German Health Care Reform in 2004 by the Federal Joint Committee

(G-BA). Its legal foundations can be found in the Social Code Book V (SGB V),

which have been extended as consequence of further German Health Care Re-
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forms [78]. IQWiG’s main task is to evaluate medical interventions with their benefit,

and harm, as well as their economic implications [78]. In the following we want

to highlight two elements of the institute’s regulations. The entire regulations with

thorough explanations can be found in [78].

Evidence-based medicine

Evidence-based medicine (EBM) is an important part of IQWiG’s work. It ensures

health care for patients being based on evidence surveyed by scientific methods

instead of personal opinions and conventions [123]. EBM prevents beneficial medi-

cal interventions from not being included in the provision of health care as well as

interventions without use for the patients from being included in the provision of

health care [78]. Furthermore EBM ensures, that only probabilities or predictions for

groups of patients are possible to evaluate the benefit of a medical intervention [78].

The methods introduced in this thesis provide predictions for the outcome of groups

of patients while providing an explanation for the predictions. That is why results

generated from the new methods can be used as part of health economic evaluations.

Transparency in health economic evaluations

According to IQWiG’s regulations, transparency is crucial in every aspect of the

evaluation of medical interventions [78]. For instance, transparency regarding the

conflict of interest and funding is required [82]. Following international standards

for the health economic evaluation of medical interventions, it is also required, that

the development and explanation of the model is transparent and especially compre-

hensive [78]. Especially when it comes to defining specific subgroups of patients,

who might benefit more or less from a medical intervention, they require a unique

definition of those subgroups [78]. Therefore, such subgroups can in particular not

be identified by non-explainable methods.

Hence, explainable analytics are needed for providing valid and reliable data for the

health economic evaluation of medical interventions, all the more motivating our

investigation into new methods for explainable analytics.
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2. Schizophrenia

Schizophrenia is a serious mental illness producing great suffering for patients as

well as their families. It affects the brain and therefore the fundamental identity of a

person. Schizophrenia interferes with a person’s thinking, feeling, and behaviour.

The early onset of schizophrenia between the late teen years and the early thirties

results in the majority of this person’s lifetime living with major psychological pain

and disability, if left untreated [146] [110]. The estimated lifetime prevalence varies,

but it seems to affect from 0.3% to 0.7% worldwide, making it an important public

health problem [7] [146].

In this chapter we want to give an overview of the disease schizophrenia and espe-

cially its assessment. The introduced scales are used in the practical application in

Part IV. Furthermore, we want to emphasize the burden resulting from this underes-

timated disease, both individual and economic. We want to strongly motivate our

investigations into a clincal trial covering patients suffering from schizophrenia, to

find improved possibilities to individually treat every patient to reduce his or her

own pain as well as the pain for his or her family.

For a detailed description about various parts of schizophrenia, please refer to [146]

as well as the information made available by the National Institute of Mental Health

in the United States of America [110].

2.1 History, diagnosis, symptoms, and consequences

Schizophrenia (Greek: schizein = fragmenting, splitting; phren = mind) as a psy-

chotic disorder was only characterised in the last century. However, it was far from

being a ’new disease’. Psychoses like they occur in schizophrenia have been rec-

ognized since at least the first millennium BC [146]. Psychotic conditions were
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even mentioned in the book of Samuel in the Old Testament, where King Saul

becomes paranoid about David planning and even attempting to murder David him-

self (1 Samuel 10–12) [146]. In 1896 Kraeplin conceptualized psychotic disorders

by calling them ’dementia praecox’ (early onset dementia), which was translated

and made broadly available in 1919 [92] [93]. In 1911 and widely available in 1950,

Bleuler introduced the term schizophrenia to replace dementia praecox by stating

that schizophrenia is a group of diseases instead of just one disease [15] [16] [146].

He furthermore introduced basic symptoms of schizophrenia. In 1959 Schneider

proposed his symptoms classification [126], forming the base for standard diagnostic

instruments, such as the Diagnostic and Statistical Manual of Mental Disorders

(DSM).

According to latest edition of the DSM, there are five characteristic symptoms of

schizophrenia [7]:

• delusion

• hallucinations

• disorganized speech (e.g., frequent derailment or incoherence)

• grossly disorganized or catatonic behaviour

• negative symptoms (i.e., diminished emotional expression or avolition)

A diagnosis of schizophrenia (or schizoaffective disorder or schizophreniform disor-

der) requires the presence of at least two of these symptoms for at least a month. The

latest version of the DSM (DSM-V) requires one of the symptoms to be delusion,

hallucinations or disorganized speech. The valid version of the DSM during the

enrollment into the clinical trial of Part IV (DSM-IV) did not have this additional

specification. Another condition for a diagnosis with schizophrenia are continuous

signs of disturbance for at least 6 months [126]. There are several other requirements

for a diagnosis with schizophrenia (or schizoaffective disorder or schizophreniform

disorder), which can be found in [126].

The prevalence of schizophrenia is estimated to be 0.3% to 0.7% worldwide, with

variations across ethnic and geographical backgrounds [7] [146]. Besides the

symptoms directly related to schizophrenia, patients also face severe other con-
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sequences regarding mortality, comorbidities, and social losses. Patients suffering

from schizophrenia have an increased risk of committing suicide. According to [7]

between 5% and 6% of all patients commit suicide and approximately 20% attempt

suicide at least once. Furthermore, the life expectancy of patients suffering from

schizophrenia is reduced due to comorbidities like diabetes or cardiovascular dis-

eases. Those comorbidities are more prevalent under schizophrenics, compared with

the general population [7].

Besides the increased mortality, patients suffering from schizophrenia are faced with

social as well as occupational losses [7]. Additionally, the disease does not only put

pain on the patient, but on the affected families as well [146] [135].

If left untreated, schizophrenia results in persistent symptoms possibly leading to

life-long disability [110]. Hence, schizophrenia results in a high individual burden

on the patient and his family. That is one of the reasons, why we investigate better

treatment options for patients suffering from schizophrenia in Part IV.

2.2 Assessment and treatment of schizophrenia

In this section we give an overview of the assessment of schizophrenia and its

treatments. Many of the mentioned scales are part of our investigation in Part IV and

therefore need to be briefly discussed.

Assessment

There exist several scales to assess the severity of schizophrenia. One of the com-

monly used ones is the Positive and Negative Syndrome Scale (PANSS), which

was also used in the clinical trial in Part IV. PANSS is a 30-item interview to rate

the patient’s positive (e.g. excitement), negative (e.g. emotional withdrawal), and

general (e.g. disorientation) symptoms [85]. Every symptom is rated from 1 (absent)

to 7 (extreme) and it can be divided into a positive, a negative, and a general subscale.

In 1997 Marder proposed a different division into five factors, i.e. negative symp-

toms, positive symptoms, disorganized thought, uncontrolled hostility/excitement,
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and anxiety/depression [102]. During our investigation in Part IV, all subscales and

Marder factors were considered as possible predictors for the outcome of a patient.

Several possibilities exist to measure the outcome of a clinical trial. A typical one is

symptomatic remission. Certain eight items of the PANSS scale (i.e. PANSS-8) have

to be 1 (absent) or 2 (minimal) for a patient to reach symptomatic remission [9] [66].

Another typical outcome is response, which is measured by a certain reduction of

the PANSS score (e.g. 50%).

CATIE, the clinical trial of Part IV, investigated the discontinuation of the treat-

ment [135]. Therefore the primary outcome in CATIE was the amount of days until

discontinuation.

Many other baseline characteristics of a patient are recorded in clinical trials. We

will introduce the scales used in Part IV and give references for the interested reader.

The following two scales are used to rate the severity of illness and depression of a

patient:

• Clinical Global Impression – Severity scale (CGI-S)

7-item scale to rate the severity of the patient’s illness [64]

• Calgary Depression Scale (CLGRY)

9-item interview scale developed to assess depression in schizophrenics [4]

The following three scales rate involuntary movements of patients, a common side

effect observed in patients being treated for schizophrenia:

• Barnes Akathisia Rating Scale (BARS)

4-item rating scale for drug-induced akathisia, a movement disorder charac-

terised by inner restlessness and the inability to stay still [12]

• Abnormal Involuntary Movement Scale (AIMS)

12-item scale to assess the severity of dyskinesia, the involuntary movement

of muscles [64]
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• Simpson-Angus-Scale (SAS)

10-item rating scale for extrapyramidal side effects, i.e. physical symptoms,

that are primarily associated with improper dosing of or unusual reactions to

antipsychotic medications [132]

Finally, the following scale is used to rate the personal and social performance of a

patient:

• Personal and Social Performance (PSP)

4-item scale to assess patients’ social functioning [107]

Other baseline characteristics commonly recorded in clinical trials are social pa-

rameters (e.g. marital status), demographics (e.g. age, sex), physical values (e.g.

blood pressure), and also the abuse of alcohol and drugs. All of them are part of

our investigation in Part IV and serve as potential predictors for the outcome of the

patient.

Treatment

Antipsychotic medications play a major role in the treatment of schizophrenia.

Additional forms of treatment include psychological treatment and other forms of

support. Antipsychotics are prescribed to reduce symptoms and are crucial for the

daily function of patients [110].

The first-generation antipsychotics (FGA), also known as ’typical antipsychotics’,

were developed in the 1950s. In the 1980s, second-generation antipsychotics (SGA),

also known as ’atypical antipsychotics’ emerged [3]. The interested reader is referred

to [146] and [3] for a thorough overview about antipsychotics as treatment for

schizophrenia.

There is an ongoing debate about the similarities and differences between FGAs and

SGAs [146]. In fact, the main conjecture of the CATIE study, which we investigate

in Chapter 7, was earlier discontinuation of the treatment with FGAs compared with

SGAs. We do not intend to discuss the differences ourselves and refer the interested

reader to the mentioned references.
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2.3 Burden of schizophrenia

There are several measures for the burden of disease. Commonly used measures are

years lived with disability (YLDs), years of life lost (YLL), and disability-adjusted

life years (DALYs). YLDs record the prevalence of conditions leading to non-fatal

health loss multiplied by the associated loss of health [58]. On the other hand,

YLLs record the gap between the normative life expectancy and the observed mortal-

ity [58]. DALYs record the number of lost years due to the disease, related disability,

or premature death [58]. DALYS are therefore calculated by the total of YLDs and

YLLs [58].

According to the global burden of disease study in 2015, schizophrenia is in the

top 10 causes for global age-specific YLD for ages 25 to 54, i.e. an enormous

part of a person’s adult life [59]. Simultaneously, it is associated with a high num-

ber of DALYs [58]. Hence, it is a dangerous disease with a relatively high prevalence.

In addition to the burden put on the patient and his or her family, a tremendous

economic burden is related to schizophrenia. To conclude this chapter, we will

therefore discuss the burden put on society and highlight current costs related to

schizophrenia in Germany.

2.3.1 Economic burden of schizophrenia

There exist numerous publications about the economic burden of schizophrenia in

different countries and regions all over the world. To conclude this overview of

schizophrenia, we want to take a closer look at the global economic burden and

specifically the economic burden in the United States of America and Germany.

Global

In their respective systematic reviews [74] and [40] highlight the tremendous eco-

nomic burden of schizophrenia worldwide. Together they reviewed studies from

23 countries from all continents (e.g. Germany, USA, Japan, Australia, Nigeria).
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Even though they found large methodological heterogeneity across the studies, all

emphasize the high economic burden put on society by schizophrenia. In addition to

direct medical and non-medical costs, they especially considered indirect costs due to

morbidity and premature mortality. Productivity loss (e.g. sick leave, unemployment,

early retirement) of the patients and family members or caregivers account for a

large amount of the indirect health care costs. References to the numerous studies

can be found in [74] and [40].

United States of America

The CATIE study investigated in Part IV of this thesis was conducted in the United

States of America. Obviously there exist extensive studies about the economic

burden of schizophrenia in the USA [120] [42] [149]. The most recent one (2013)

called the economic burden significant and pointed out indirect and non-health care

costs as strong contributors to this economic burden [42].

Germany

There are two studies directly investigating the economic burden of schizophrenia

in Germany [91] [56]. Both acknowledge the high costs put on German society.

Furthermore, in 2014 [56] found a considerable difference in the distribution of costs

between younger and older patients. This is strongly confirmed by the most current

data (2015) available from the federal government’s health reporting based on data

from the German Federal Statistical Office [134]. Schizophrenia, schizotypal and

delusional disorders are responsible for 0.92% of all medical expenses for all ages.

The share is much higher in some age groups. From ages 15 to 45 the share is twice

as high, i.e. 2.07% of all medical expenses are due to schizophrenia. We want to

set this share into context by comparing it with two diseases, that are believed to be

rather common, diabetes mellitus and hypertension. Even though the overall share

of medical expenses is higher for both disease, i.e. 2.18% and 2.99%, with 0.86%

and 0.81% their share is considerably lower than the share of schizophrenia in the

age group from 15 to 45. The data is visualized in Figure 2.1.
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Figure 2.1: Medical expenses in Germany (2015) [134]

In conclusion, the importance of further investigations of data sets including patients

suffering from schizophrenia is not only motivated by the immense individual burden

put on patients and their families, but also by the tremendous economic burden

put on society. Therefore, we investigate a data set from a clinical trial including

schizophrenics in Part IV to help finding an improved individual treatment for each

patient to reduce the patient’s, his family’s, and society’s burden.
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Methods
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In Part III of this thesis we present a new method for explainable analytics in

medicine.

We begin with an overview of common survival analysis in Chapter 3 and emphasize

often encountered problems due to underlying heterogeneity. All subsequent meth-

ods are based on an endpoint-oriented clustering approach, developed by Brieden

and Gritzmann.

In Chapter 4 we discuss the mathematical background in order to form sufficiently

large clusters of patients with similar combinations of their characteristic values.

This includes a transformation technique as well as an automated approach to identify

the most promising baseline characteristics for the following methods.

Based on the geometric clustering, we will discuss the cluster-based analysis in

Chapter 5. We will examine how to statistically evaluate the derived clusters and

justify the division into those. To conclude, we will argue for the use of confidence

intervals instead of hypothesis testing throughout the methods.

In the final chapter of this part, we will introduce the newly invented cluster-based

survival analysis of individual patient data. We will present how to estimate cluster-

based survival functions as well as cluster-based survival models and discuss their

analysis. Furthermore, we will extend them to cluster-based stratified models. Fi-

nally, we will discuss how to evaluate differences regarding the outcome of patients,

both across different treatments as well as different clusters.

The presented methods are both explainable and address heterogeneity inside the

patient data, making them adoptable into clinical decision-making. All methods

presented in this part have been developed in close cooperation with Prof. Dr. Andreas

Brieden [26] [32].
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3. Survival analysis

Survival analyses are statistical tools to analyze the time until an event of interest

occurs [87]. Thereby time is usually measured in years, months or days from the be-

ginning of a specific point in time, like the beginning of a treatment or the beginning

of a clinical trial. The event of interest can be the decease of a patient. However,

there are multiple other events, which might be of interest, like the dropout of a

clinical trial or the discontinuation of the administered treatment. The latter is the

case in CATIE, which we will analyze in Chapter 7. Since the discontinuation of a

treatment is a one time event, we will only consider survival analyses with one event

of interest. The interested reader is referred to [87] for further details on survival

analysis with more than one event or recurrent events of interest.

In the following section we give an outline of survival functions - often referred to

as survival curves - and the estimation of those with the Kaplan-Meier estimator

as a representative. Furthermore, we want to give an overview about survival

models using the Cox proportional-hazards model as representative. The following

introduction is mainly based on [87] [71] [86]. Afterwards we will outline current

possibilities to deal with heterogeneity in survival analysis and motivate the newly

invented cluster-based survival analysis introduced in Chapter 6.

3.1 Survival function and its estimation

In survival analysis, the outcome variable is the time until a specific event of interest

occurs, for instance death or discontinuation of treatment. The aim is to reliably

estimate the probability of not reaching the event of interest in a specific time interval

(i.e. the probability of survival or continuation of treatment). Opposed to other
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outcomes, the time to the event is always positive and the underlying distributions

are often skewed. Therefore, many other statistical procedures assuming normality

of distributions do not apply. Furthermore, the true time to the event might not

always be available due to incomplete data or the end of the clinical trial. We will

focus on that in Section 3.1.3.

3.1.1 Survival data and survival function

Survival analyses are based on two kinds of information. Firstly, whether or not

a patient experiences the event and secondly, the time until the event happens.

Therefore, the first information describing the presence of the event of interest can

be expressed as a Bernoulli distributed random variable

D∼ Ber(p)

with unknown parameter p and characteristics

d j =

{
0 event does not occur in observed period

1 event occurs in observed period

for patient j = 1, . . . ,n.

The second information about the time until the event happens can be expressed as a

random variable Y with characteristics y j > 0 for patient j = 1, . . . ,n. Y can both

follow a continuous or a discrete distribution, depending on the unit in which the

time until the event happens is measured. For the sake of clarity and without loss of

generality, the following derivations assume Y to follow a continuous distribution.

Remark 3.1. In survival analysis, the random variable describing the time until

the event happens is usually denoted by T instead of Y . However, as we combine

common survival analyses with cluster-based analyses, we need a more general

notation for the outcome, as it might not always be the time until an event happens.

Definition 3.2 (survival data). The characteristics (y 1,d 1), . . . ,(y n,d n) of the tuple

of random variables (Y,D) are called survival data.
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In summarizing survival data, the most important information is given by the survival

function describing the probability of survival.

Definition 3.3 (survival function). Let Y be a random variable denoting the time

until the event of interest happens. Then

S(y) := P(Y > y)

is called the corresponding survival function for y > 0.

Figure 3.1 shows a theoretical survival function.

Remark 3.4. It holds that S(0) = 1 and lim
y→∞

S(y) = 0.

Figure 3.1: Illustration of a theoretical survival function

Remark 3.5. Survival functions are often used to compare treatments with each

other. In this case it is common to add an index for the treatment t to the respective

survival function S t(y) in order to distinguish between multiple treatments.
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If the survival data is known to follow a specific distribution, it can be used as

survival function. If however the true underlying distribution is unknown, the

survival function has to be estimated.

3.1.2 Estimating the survival function

There are several possibilities to estimate the survival function S(y). Many parametric

methods make assumptions about the distribution of survival times Y . Common

distributions include the exponential, Weibull and log-normal distribution [45]. The

interested reader is referred to [71] [97] for details on parametric methods in survival

analysis.

In contrast to parametric methods, non-parametric methods make no assumptions

about the underlying distribution of the survival times [97]. Non-parametric methods

aim to estimate the survival distribution and hence the survival function. One of

the oldest methods for estimating the survival function is the life-table method [97].

Thereby survival times are organized into equally spaced intervals. Based on that the

probabilities of surviving each of the defined intervals are estimated. Even though

the approach is straight forward, an obvious disadvantage is the dependency on

the prior defined intervals. The Kaplan-Meier estimator addresses this problem

by re-estimating the survival probability each time an event occurs. Hence, the

estimation of the probability of survival takes into account the size of the set at risk.

Obviously the set at risk changes, once an event of interest occurs. However it might

also change due to the loss of information on some patients. This phenomenon is

called censoring. Another advantage of the Kaplan-Meier estimator is its ability

to deal with some kind of censoring [71], which we will discuss in the following

section.

3.1.3 Censoring

There are three different reasons for data being censored [87]:

• A patient does not experience the event of interest before the end of the

observation period.
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• A patient is lost to follow-up during the observation period.

• A patient withdraws from the study (e.g. due to adverse drug reaction).

In these cases the true survival time is unknown. However, it can be estimated based

on the last observed survival time. Thereby the true survival time is assumed to be

equal or greater than the observed survival time. This kind of censoring is called

right censoring, as the information is missing on the right hand side of the observed

time period. For further details on right censoring, censoring in general and examples

for censored data please refer to [87] [71].

3.1.4 Kaplan-Meier estimator

Due to the true survival function S(y) being unknown, it has to be estimated. There-

fore let Ŝ(y) denote the estimator of the true survival function S(y), i.e. Ŝ(y) estimates

the probability of surviving longer than y. Many different estimators have been in-

troduced to estimate the survival function [87] [86] [71]. However, we will always

refer to the most commonly used estimator, the Kaplan-Meier estimator, when using

Ŝ(y). The estimator has originally been published in [84] and, due to its structure is

often referred to as product limit approach.

The Kaplan-Meier method is based on the assumptions, that the survival probabilities

are independent from the time of enrollment in a study, that the censoring times are

independent from the event times, and that the events and censoring happened at the

observed times [89].

The following derivations are based on [87] [86] [71].

Lemma 3.6. Let y 1, . . . ,y n be the survival times, amongst which m ≤ n are times

with an event, and n−m censored values. We denote the rank-ordered survival times

as y (1) < ... < y (m). Then the survival function at the f -th ordered survival time can

be obtained by

Ŝ(y ( f )) =
f

∏
j=1

P̂(Y > y( j)|Y ≥ y ( j))
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Proof. A basic rule from probability is that the probability of a joint event (i.e.

P(A∩B)) is equal to the probability of one event (i.e. P(A)) times the conditional

probability of the other event given the first event (i.e. P(B|A)). By defining the first

event as A = {Y ≥ y ( f )} and the other one as B = {Y > y ( f )} it immediately follows,

that the joint event equals B = {Y > y ( f )}. Therefore:

Ŝ(y ( f )) = P̂(Y > y ( f ))

= P̂(Y > y ( f−1)) · P̂(Y > y ( f )|Y ≥ y ( f ))

= Ŝ(y ( f−1)) · P̂(Y > y ( f )|Y ≥ y ( f ))

By recursively substituting Ŝ(y ( f−1)), Ŝ(y ( f−2)), . . . we get:

Ŝ(y ( f )) = ∏
f
j=1 P̂(Y > y ( j)|Y ≥ y ( j))

Corollary 3.7. For any y> 0 and not only the observed survival times y (1) < ... < y (m)

Lemma 3.6 can be written as:

Ŝ(y) = ∏
y ( f )≤y

P̂(Y > y ( f )|Y ≥ y ( f ))

Remark 3.8. Lemma 3.6 and Corollary 3.7 are formulated for n patients experienc-

ing n different survival times y i. The survival function can also be estimated, if there

are multiple occurrences at a specific survival time. The respective probabilities can

be estimated taking the number of patients at risk and the number of patients with

an event into account. Explicit representations will be derived hereafter.

In order to compute the estimation, we need to estimate the probability of surviving

past y ( f ) for any of the observed survival times. Let

n ( f ) be the number at risk at y ( f ) and

d ( f ) be the number of observed events at y ( f ).
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Furthermore let (y 1,d 1), . . . ,(y n,d n) be a sample of n independent observations (i.e.

patients) from (Y,D). The number of patients at risk at time y ( f ) can be expressed

by

n ( f ) =
n

∑
j=1

1{y j≥y ( f )}

and the number of patients with an event at exactly y ( f ) can be expressed by:

d ( f ) =
n

∑
j=1

1 {y j=y ( f )} ·1 {d j=1}

Given survival until y ( f ), the probability of surviving past y ( f ) can then be estimated

by:

P̂(Y > y ( f )|Y ≥ y ( f )) =
n ( f )−d ( f )

n ( f )

Therefore Lemma 3.6 simplifies to:

Ŝ(y) = ∏
y ( f )≤y

n ( f )−d ( f )

n ( f )

In conclusion, Ŝ(y) measures the fraction of patients surviving at least until y. There-

fore it has to be re-estimated if an event occurs (n ( f ) and d ( f ) change) or the set at

risk changes due to censoring (n ( f ) changes).

The variance σ̂ 2
Ŝ(y)

of the estimate Ŝ(y) can be estimated by Greenwood’s for-

mula [61]:

Lemma 3.9. Let Ŝ(y) be a Kaplan-Meier estimator. The variance can then be

estimated by [61]:

σ̂
2
Ŝ(y)

=
(

Ŝ(y)
) 2
· ∑

y ( f )≤y

d ( f )

n ( f )(n ( f )−d (y))
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3.2 Analysis of the estimated survival function

In this section we discuss how to analyze and compare the estimated survival func-

tions. Besides a confidence interval for the Kaplan-Meier estimator, we take a closer

look at the median survival time with respective confidence interval. In order to com-

pare the estimated survival functions with each other, we will introduce the restricted

mean survival time as a possibility to quantify the estimated survival function.

A popular method to compare two estimated survival functions with each other

is performing a log-rank test, where the observed events are compared with the

expected events. In a common survival analysis this is an appropriate approach.

However, in this thesis we will introduce cluster-based survival analysis, during

which specific subgroups of patients are determined within the method. Due to their

determination being part of the method, we are not able to define the hypothesis for

the log-rank test prior to the method. In Section 5.3.2 we will discuss this problem

in detail and motivate the use of confidence intervals instead of hypothesis testing

throughout this thesis.

3.2.1 Confidence interval for the survival function

The Kaplan-Meier estimator Ŝ(y) is asymptotically normally distributed [97]. Using

Lemma 3.9 we can therefore construct the following (1−α)-confidence interval for

the survival function S(y) for every y > 0,

Iα (S(y)) :=
[
Ŝ(y)− z1−α

2
· σ̂ Ŝ(y), Ŝ(y)+ z1−α

2
· σ̂ Ŝ(y)

]
where z1−α

2
is the (1− α

2 )-percentile of the standard normal distribution.

The entire survival function is estimated, hence for every y > 0 the true probability

of surviving longer than y, i.e. S(y) = P(Y > y) is unknown. However, it holds that

P
(
S(y) ∈ Iα (S(y))

)
= 1−α

and therefore in (1−α) ·100% of all cases, the true probability of surviving longer
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than y lies in Iα (S(y)).

3.2.2 Median survival time

Sometimes the concern is to solely estimate the distribution of survival times in a

single group. More often, the goal is to compare the survival times of two or more

groups with each other. Usually the aim is determining, whether the survival time

in a treatment group is longer than in the placebo group. Therefore, the estimated

survival functions of two or more groups can be compared with each other. To

quantify the difference between specific groups, a commonly used method is to

compare the respective median survival times and their confidence intervals.

Definition 3.10 (median survival time). Let S(y) be a survival function. If

S(M) = 0.5

then M is called the median survival time of S(y).

M represents the time, after which half of all patients discontinued their treatment.

The true median survival time M is unknown and therefore has to be estimated based

on the respective Kaplan-Meier estimations.

Remark 3.11. Ŝ(M) is the estimated survival probability at the true median survival

time. We denote the estimated median survival time by M̂. It can be estimated by the

argument, for which Ŝ(y) falls below 0.5 for the first time.

Lemma 3.12. Let Ŝ(M) be the estimated survival probability at the true median

survival time M. Then according to [35]:

(
Ŝ(M)−0.5

)2

σ̂ 2
Ŝ(M)

∼ χ
2
1

Based on the distributional property from Lemma 3.12 we can construct the following

(1−α)-confidence interval for the median survival time.
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Lemma 3.13.

Iα (M) := [y lower,y upper]

is a (1−α)-confidence interval for the median survival time, with ylower being the

minimum and yupper being the maximum y fulfilling

(
Ŝ(y)−0.5

)2
< cα · σ̂ 2

Ŝ(M)

where cα denotes the (1−α)-percentile of the χ2
1 -distribution.

The median survival time has to be estimated, as M such that S(M) = 0.5 is unknown.

However, it holds that

P
(
M ∈ Iα (M)

)
= 1−α

and therefore in (1−α) · 100% of all cases, the true median survival time lies in

Iα (M).

While comparing several groups with each other, the confidence intervals of their

respective medians can be used as a measure. If their confidence intervals are found

to be disjoint, i.e. non-overlapping, for a reasonable choice of α , the median survival

time of the groups can be found to substantially differ from each other.

3.2.3 Restricted mean survival time

The median survival time is well established to compare estimated survival functions

with each other. However, as the name suggests, only the median and not the entire

estimated survival function is taken into account. To conclude this section we want

to present a possibility to compare the entire estimated survival functions with each

other.

Definition 3.14 (restricted mean survival time). Let Y denote the survival time, S(y)

the corresponding survival function and y∗ the limited time horizon (e.g. end of the

clinical trial). The restricted mean survival time (RMST ) is the mean of the survival
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time limited to y∗, i.e. E (min(Y,y∗)). It equals the area under the survival function

from y = 0 to y = y∗:

R̂MST = E (min(Y,y∗)) =
∫ y∗

0
S(y)dy

Remark 3.15. It holds that

R̂MST ∈ [0,y ∗]

for all survival functions S(y).

The restricted mean survival time describes the average survival time of patients

from baseline to the limited time horizon y∗. It converges towards zero, with the

time interval also converging towards zero. This is the case, if all events occur

immediately after the starting point. The restricted mean survival time equals y∗, if

no event occurs until the end of the time horizon. Both extreme cases are displayed

in Figure 3.2.

Figure 3.2: Extreme cases restricted mean survival time
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The restricted mean survival time therefore takes the entire estimated survival func-

tion into account. Obviously the estimated survival functions may not overlap for

the restricted mean survival time to be interpreted correctly.

In the following section we will discuss the Cox proportional-hazards model. One

main assumption of this model are proportional-hazards between the compared

groups. This assumption also leads to non overlapping survival functions, the above

mentioned restriction.

3.3 Survival models

Based on survival functions, we will now present survival models. In addition to

analyzing the time until the event of interest happens, survival models take additional

covariates into account.

The Cox proportional-hazards model (Cox PH model) is a widely used survival

model. Especially in medical research, it is often applied to relate independent

covariates to the time until the event of interest happens. One of the typically

investigated covariates is the administered treatment. Hence, the comparison of

different treatments is one of the possibilities given by the Cox PH model. In

contrast to sole survival functions, survival models like the Cox PH model provide an

effect estimate by quantifying the difference between observed groups. Furthermore,

the possibility of adjusting for covariates is provided. The method was originally

introduced by Cox [44]. It is usually preferred over logistic regression models, which

only include the occurrence of an event but neither the time until this event happens

nor censoring. Both informations are used in Cox PH models. Furthermore, it will

closely approximate the (obviously) unknown true model [87] [86]. If however

the true underlying model is known for certain (i.e. the survival times follow an

exponential distribution), it is preferred to use the respective parametric model [97].

Since this is often not the case, the Cox PH model offers the opportunity to closely

approximate the true model and is therefore widely used, especially in medical

research.
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The following introduction is mainly based on [44] [87] [97] [86] [71], who also

provide a deeper look into the topic for the interested reader. In contrast to survival

functions, the measure of effect in Cox PH models is the hazard rate h(t), which we

will examine in the following section.

3.3.1 Hazard rate and hazard ratio

So far, we only used the survival function S(y) to describe the probability of not

having an event, given the survival up to a specific time point. As counterpart to

S(y) we want to introduce the hazard rate h(y), describing the probability of having

an event at a specific time point, again given the survival up to the specific time

point [87].

Definition 3.16 (hazard rate). Let Y describe survival times for an event of interest.

For any y > 0 the hazard rate h(y) is defined as:

h(y) := lim
∆y→0

P(y≤ Y < y+∆y|Y ≥ y)
∆y

(3.1)

Remark 3.17. Hazard rates are often used to compare treatments with each other.

In this case it is common to add an index for the treatment t to the respective hazard

rate h t(y) in order to distinguish between multiple treatments.

Once either S(y) or h(y) is known, the other one can be derived immediately [87].

Lemma 3.18. Let Y describe survival times for an event of interest and S(y) and

h(y) the related survival function and hazard rate. S(y) and h(y) are connected as

follows.

S(y) = exp
(∫ 1

0
h(u)du

)
and

h(y) =−
[

dS(y)/dy
S(y)

]
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In most situations the aim is to compare two groups with respect to their hazard

rates. Usually the hazard ratio, i.e. the ratio of their respective hazard rates, is used

as measure for the effect of the difference.

Definition 3.19 (hazard ratio). Let Y describe survival times for an event of interest

and h1(y) and h2(y) the hazard rates for two groups of interest. Then the hazard

ratio is defined as the ratio between those hazard rates:

HR =
h 2(y)
h 1(y)

Remark 3.20. The hazard ratio is a measure for the probability of an event occuring

in group 2 compared with the probability of an event occuring in group 1. Group 1

can therefore be referred to as reference group.

HR


> 1 probability of an event is higher in group 2

< 1 probability of an event is lower in group 2

≈ 1 probability of an event is approximately the same in both groups

The true hazard rate and therefore all hazard ratios between any two groups are

unknown. In the following we will show how the hazard rate and hazard ratio can be

estimated by the Cox PH model in order to reliably compare different groups with

each other.

3.3.2 Cox proportional-hazards model

We will begin by formulating the model, before briefly discussing how the coeffi-

cients of the model can be estimated.
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Model formulation

Let X =
(
X 1, . . . ,X p) denote p independent covariates. Then for any y > 0 the Cox

PH model can be written as

h(y,X) = h 0(y) · exp

(
p

∑
i=1

β
iX i

)
(3.2)

where h(y,X) is the expected hazard at time y > 0, given the covariates X , and h 0(y)

is the baseline hazard when all covariates are equal to zero. The Cox PH model

therefore assumes the hazard at time y to be the product of the baseline hazard

h 0(y) and the exponential function of the linear combination of the covariates. The

baseline hazard h 0(y) does not depend on the covariates X , yielding to proportional

hazards over time and thus a constant hazard ratio over time, explaining the name of

the method. Another assumption of the Cox PH model is the independence of the

observed survival times. Due to the mentioned assumptions, the Cox PH model is a

semi-parametric model. However, as no assumption is made about the shape of the

baseline hazard h 0(y), it is only semi-parametric and not fully parametric. [71] pro-

vides an introduction to parametric survival models assuming the survival times to

follow a specific distribution, like the exponential or Weibull distribution.

In the following we will restrict the covariates X to be fixed over time and thus

independent from y, as we will later on use this method to predict a patient individual

outcome by their baseline characteristics. Nevertheless, the Cox PH model can be

extended to time varying covariates if needed [71] [87].

The interest now lies in the connection between each of the covariates X i and the

outcome. This can be quantified by the respective coefficient β i for covariate X i

in (3.2). In the following we will briefly describe the estimation of the coefficients

and present a confidence interval for it. Based on that we will explain how to compare

different groups with each other using the respective estimations.
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Partial likelihood estimation of β ’s

Usually, the maximum likelihood method is used to estimate parameters as in (3.2).

However, this is not possible for the Cox PH model [71], which is thoroughly dis-

cussed in [83]. Cox therefore introduced a so-called partial likelihood function, that

only depends on the parameter of interest. Partial likelihood estimators are proven to

have the same distributional properties as full maximum likelihood estimators [71].

The interested reader is referred to [43] for the construction of the partial likelihood

estimator.

Definition 3.21 (partial likelihood estimator). Let X =
(
X 1, . . . ,X p) denote p inde-

pendent covariates and (3.2) the related Cox PH model. Then

β̂
i

is called the partial likelihood estimator (PLE) of β i for i = 1, . . . , p.

The estimator β̂ i quantifies the influence of covariate X i on the hazard rate, i.e. the

influence on the probability of having an event. The estimator of the variance of β̂ i

can be obtained as in most maximum likelihood estimations. The interested reader is

referred to [71].

Definition 3.22 (variance of partial likelihood estimator). Let β̂ i denote the partial

likelihood estimation of β i for i = 1, . . . , p in (3.2). Then

σ̂
2
β̂ i

is called the estimated variance of β̂ i for i = 1, . . . , p.

Remark 3.23. The actual estimations can be calculated using any common statisti-

cal software.
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3.4 Analysis of survival model

In the following section we want to discuss how a survival model like the Cox PH

model can be analyzed. We will discuss, how two groups can be compared with each

other by using the estimations from the Cox PH model to estimate their hazard ratio

and present a confidence interval for the estimated hazard ratio.

Even though the Cox proportional-hazards model is a regression model and it is

common to individually test the coefficients in such a model, we will refrain from

doing so in this thesis. As mentioned, we will introduce cluster-based survival

analysis during which specific subgroups of patients are determined within the

method. Due to their determination being part of the method, we are not able to define

the hypothesis for the tests of the coefficients prior to the method. In Section 5.3.2

we will discuss this problem in detail and motivate the use of confidence intervals

instead of hypothesis testing throughout this thesis.

3.4.1 Estimated hazard ratio

By using the estimated Cox PH model, we are able to estimate the hazard ratio

between two groups. Therefore let X 1 =
(
x 1

1 , . . . ,x
p
1
)
, X2 =

(
x 1

2 , . . . ,x
p
2
)

denote

the characteristics of the covariates for group 1 and group 2 respectively. Then

ĤR = exp

(
p

∑
i=1

β̂
i (x i

1− x i
2
))

(3.3)

estimates the hazard ratio between group 1 and group 2. Hence, it is a measure for

the probability of an event occuring in group 1 compared with the probability of an

event occuring in group 2. If we want to estimate the effect of a single covariate X i

on the hazard rate, we assume the other covariates to have the same characteristics

and therefore (3.3) simplifies to:

ĤR = exp
(

β̂
i (x i

1− x i
2
))

(3.4)
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The level of scale of the involved covariates has to be taken into account for the

hazard ratio in (3.3) and (3.4) to be interpreted correctly. Calculating the difference(
x i

1− x i
2
)

is reasonable, if the related covariate X i is of cardinal or ordinal scale. X i

may also be of nominal scale, if this differences can be interpreted in a reasonable

way, as we will see in the following derivations.

Often the aim of a survival analysis is to compare two treatments with each other or

a treatment group with a placebo group. In that case one of the covariates in the Cox

PH model, i.e. X t , denotes the administration of a treatment. Thus, there are only

two characteristics for X t , namely x t
1 = 1 for patients receiving the treatment and

x t
2 = 0 for patients receiving placebo. Then the exponential function of the estimated

coefficient

ĤR = exp
(

β̂
t
)

(3.5)

automatically yields the hazard ratio between the treatment and placebo group. It

compares the probability of an event occurring for patients receiving the treatment

with the probability of an event occurring for patients receiving placebo. When

making comparisons like that, the Cox PH model is not restricted to the one covariate

describing the administered treatment. If other covariates are included, the Cox PH

model is said to be adjusted for those.

3.4.2 Confidence intervals for β ’s and hazard rates

In this section, we will show how to construct a confidence interval for the estimated

coefficients β̂ i and therefore the derived estimated hazard ratios. Since the partial

likelihood estimator β i has the same distributional properties as full maximum

likelihood estimators, it is also asymptotically normally distributed [71]. Therefore

we can construct the following (1−α)-confidence interval for β i in (3.2)

Iα
(
β

i) :=
[
β̂

i− z1−α

2
· σ̂

β̂ i, β̂
i + z1−α

2
· σ̂

β̂ i

]
where z1−α

2
is the (1− α

2 )-percentile of the standard normal distribution.
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The coefficients in (3.2) are estimated. However, it holds that

P
(
β

i ∈ Iα
(
β

i))= 1−α

and therefore in (1−α) · 100% of all cases, the true coefficient in (3.2) lies in

Iα
(
β i).

When comparing two groups, i.e. two groups of treatment, with each other, we look

at their hazard ratio and the respective confidence interval. Due to relation (3.5)

Iα
(
HR t) :=

[
exp
(

β̂
t− z1−α

2
· σ̂

β̂ t

)
,exp

(
β̂

t + z1−α

2
· σ̂

β̂ t

)]
is a (1−α)-confidence interval for the hazard ratio between the treatment and

placebo group, if β̂ t denotes the estimated coefficient for the variable describing the

administration of a treatment. Instead of comparing a treatment group with a placebo

group, it is also possible to compare two treatments with each other. If the interval

does not include 1, even for small values of α , we can conclude the probability of an

event in one group being substantially larger than in the other group.

3.5 Extension: The stratified Cox model

The main underlying assumption of the Cox PH model is, as the name suggests,

the proportional behaviour of the hazards (PH assumption). However, some of the

covariates might not satisfy this assumption. The stratified Cox model (SC model)

provides a solution for this problem.

Let X =
(
X 1, . . . ,X p) denote p independent covariates satisfying the PH assumption

and Z a categorical stratification covariate with values 1, . . . ,K not satisfying the PH

assumption. Then for any y > 0 the SC model can be written as

h(y,X ,Z) = h Z0(y) · exp

(
p

∑
i=1

β
iX i

)

69



CHAPTER 3. SURVIVAL ANALYSIS

allowing the baseline hazard h Z0(y) to depend on the stratum, but assuming the

effect of the covariates being the same for each stratum [86]. If more covariates are

violating the PH assumption, a new stratification variable can be defined by forming

combinations of the categories of these covariates and assigning those combinations

as categories to the newly defined variable [87]. The coefficients β i can be estimated

in the same way as in the Cox PH model by partial likelihood estimations.

The main application of the SC model is to include variables for which the PH

assumption is known to be violated. As the stratum-specific baseline hazard is now

an essential part, the SC model can only be reliable if enough events are observed in

each stratum [86]. Typical examples for stratification variables include the site in

clinical trials (see Chapter 7). More details on the SC model can be found in [87].

In the final section of this chapter we will address the problem of underlying hetero-

geneity in survival analyses and briefly discuss current methods to deal with it.

3.6 Recommendation for the consideration of hetero-

geneity

The problem of underlying heterogeneity, both detected and undetected, and its

influence on the estimated outcome has been critically discussed in several pub-

lications [72] [73] [101] [2] [1] [128]. Many of them present different methods

of addressing heterogeneity in parametric survival models, i.e. survival models

where the survival time is assumed to follow a specific distribution. Especially

the mixture of distributions is proposed as one solution to deal with heterogeneity

in parametric survival models [73] [2] [1]. The factors causing heterogeneity can

thereby be modelled as covariates in the respective models. However, sometimes

not all relevant factors are included as covariates due to the belief of them not being

important. Thus, neglecting covariates leads to heterogeneity in survival analysis [73]

and ambiguous results [1].
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So far to the knowledge of the author, no method has been proposed for addressing

heterogeneity in non-parametric models like the Kaplan-Meier method. In [128]

heterogeneity in semi-parametric survival models is addressed by adjusting for other

covariates and stratification, as introduced in Section 3.5. They point out the serious

effect heterogeneity has on survival analyses, especially while comparing treatments

with each other and thus emphasize the importance of considering heterogeneity.

However, they only describe how to include a covariate which is known to cause

heterogeneity. Especially in recent clinical trials there are far too many possible

individual patient characteristics recorded, which might cause heterogeneity. Simply

including all of them as covariates would end in over-fitting the survival model.

Therefore it is of importance to not only find a way to include factors causing hetero-

geneity in survival analysis, but also to detect the covariates with (the most) impact

on the survival time. Furthermore, sometimes not a sole covariate, but the combi-

nation of two or more covariates might be causing the underlying heterogeneity,

motivating the following recommendation for the consideration of heterogeneity in

survival analysis.

As mentioned in the beginning of this chapter, survival analysis is often used in the

analysis of individual patient data. Consequently the analysis is highly influenced

by underlying heterogeneity between patients. As patients certainly differ regarding

their characteristics, it is very likely, that the sole use of averages or an average model

to estimate the outcome of interest for all patients is not expedient. Keeping in mind,

that nowadays many patient characteristics are collected in addition to the outcome,

we recommend using them as possible predictors. In order to use them in the best

possible way, we discuss the endpoint-oriented clustering in the next chapter. The

approach identifies clusters of patients that are as homogeneous as possible. Besides

performing a cluster-based analysis on these as described in Chapter 5, we can extend

it to the newly invented cluster-based survival analysis, as described in Chapter 6,

offering a new possibility to reliably evaluate medical interventions while at the same

time addressing underlying heterogeneity in the patient data. Even though these new

approaches are able to address heterogeneity caused by the individual patient data,
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they are still explainable and therefore include a unique explanation why the specific

prediction was made.
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4. Geometric clustering of individual

patient data

In this chapter we briefly discuss the geometric clustering approach originally intro-

duced by Brieden and Gritzmann [27]. Furthermore, we present the transformation

technique used throughout this thesis and discuss the selection of input variables

for the geometric clustering approach. Thereby we use an automated selection

approach developed by Brieden and Gritzmann [26] and introduce a new alternative

to quantiles while classifying variables of ordinal or cardinal scale.

4.1 Geometric clustering

The geometric clustering approach is supposed to identify sufficiently large and

especially homogeneous clusters of patients. It is based on methods of combinatorial

optimization. For an introduction on basic combinatorial optimization please refer

to [63]. The geometric clustering approach was originally developed by Brieden

and Gritzmann for an agricultural economics application [27]. However, due to it

being a general technique to explore high-dimensional data and especially identify

structures in it, the approach is not limited to this application. In [67] it is used to

reduce heterogeneity in meta-analysis, another widely used statistical method in

medical data analysis. The general approach of using it in medical data analysis is

presented in [26]. It has also been applied to other economic applications, such as

entrepreneurship in Russia [33]. All applications of the approach resulted in generat-

ing new insight into the investigated problem, finding structures, which have been

hidden before. That is why we use the geometric clustering technique to identify

homogeneous clusters of patients in the cluster-based analysis presented in Chapter 5
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as well as the newly invented cluster-based survival analysis introduced in Chapter 6.

In the following section we want to give an overview about the most important parts

of the geometric clustering and its mathematical background. Further information as

well as studies on structure, complexity and efficient approximations of the problem

can be found in [19] [21] [28] [29] [25] [30] [31]. A summary is provided in [22] [20].

4.1.1 Terminology

The approach is based on the available patient data being expressed as geometric

objects. By expressing them as points in a geometric space we enable the possibility

to measure their distance by the Euclidean norm. Obviously some of the patients’

characteristics might be random variables with a non-metric sample space making

it difficult to think of them as geometric objects. We will use a transformation

technique introduced in Section 4.2 to interpret each patient as a point in Rp with p

being the number of available patients’ characteristics.

Definition 4.1 (patient data set of characteristics). Let n ∈ N be the number of

patients and p ∈ N the number of available patients’ characteristics. The patient

data set of characteristics is then defined as

X :=
{

x j
} n

j=1 ⊂ Rp

with x j =
(

x 1
j , . . . ,x

p
j

)
∈ Rp for j = 1, . . . ,n.

Next, we need to define the patients’ outcome, that we aim to predict by the explain-

able methods. Therefore let random variable Y denote the outcome of a patient with

corresponding sampling space Ω. Depending on the outcome, Y follows different

distributions. In medical data analysis the outcome is often Bernoulli distributed

(e.g. remission or response) or it follows some unknown distribution which can be

assumed to be discrete (e.g. survival time).
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Definition 4.2 (patient data). Let X be the patient data set of characteristics and

Y the corresponding outcome with sampling space Ω. Then the patient data set is

defined as

G :=
{(

x j,y j
)} n

j=1 ⊂ Rp×Ω

with x j ∈ X and y j ∈Ω.

The aim is to split the patient data set of characteristics X into k ∈ N homogeneous

clusters. Therefore, we define this kind of partition as the following k-clustering.

Definition 4.3 (k-clustering). Let k ∈ N be the number of clusters. A k-clustering

Cl = (Cl 1, . . . ,Cl k) is a partition of the data set X into k nonempty sets Cl 1, . . . ,Cl k.

The size of cluster Cl i thereby describes the number of patients in it and is denoted

by κ i for i = 1, . . . ,k.

The identified patient data sets need to have a certain amount of patients in them in

order to achieve high statistical power. Otherwise it is not possible to significantly

detect differences amongst the patients’ outcome. Therefore, we extend the upper

definition to a (k, l,u)-clustering, restricting the size of each cluster by an upper and

lower bound.

Definition 4.4 ((k, l,u)-clustering). A k-clustering Cl = (Cl 1, . . . ,Cl k) with l =

(l 1, . . . , l k) ∈ Nk, u = (u 1, . . . ,u k) ∈ Nk fulfilling l i ≤ κ i ≤ u i for i = 1, . . . ,k is

called (k, l,u)-clustering.

The geometric clustering approach aims to find the best clustering amongst all

possible clustering. Therefore we define the set of all feasible (k, l,u)-clusterings.

Definition 4.5 (set of feasible (k, l,u)-clusterings). Let X bet the patient data set of

characteristics of n ∈ N patients and k ∈ N the number of clusters. Then

C (X ,k, l,u) := {Cl : Cl is a (k, l,u)-clustering of X}

is the set of all feasible (k, l,u)-clusterings of X.
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Note, that we have not yet defined how to distinguish between ’good’ and ’bad’

clusterings or as a matter of fact how to identify the ’optimal’ clustering.

In the following we want to define the bounded-shape partition polytope used to

derive feasible clusterings. It is possible to describe the bounded-shape partition

polytope (BSPP) as the convex hull of so-called cluster sum vectors [28] [29].

However, we will immediately define the BSPP by linear constraints, which are

being used in the optimization problem in the following section [75] [11].

Definition 4.6. Let Cl = (Cl 1, . . . ,Cl k) be a k-clustering of the patient data set of

characteristics X =
{

x j
}n

j=1. Then for all i = 1, . . . ,k and j = 1, . . . ,n

ξ i j =

1 if x j ∈Cl i

0 if x j /∈Cl i

denotes the decision variable indicating whether cluster Cl i contains patient x j.

Definition 4.7 (bounded-shape partition polytope (BSPP)). Let k, l i,u i ∈ N for

i = 1, . . . ,k with ∑
k
i=1 l i ≤ n≤ ∑

k
i=1 u i. The polytope defined by

n

∑
j=1

ξ i j ≤ u i ∀i = 1, . . . ,k

n

∑
j=1

ξ i j ≥ l i ∀i = 1, . . . ,k

k

∑
i=1

ξ i j = 1 ∀ j = 1, . . . ,n

ξ i j ≥ 0 ∀i = 1, . . . ,k ∀ j = 1, . . . ,n

is called the bounded-shape partition polytope (BSPP(k, l,u)).
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4.1.2 Clustering as an optimization problem

Our aim is to partition patients into clusters which are as homogeneous as possible.

This corresponds to finding a feasible clustering which maximizes a specific target

function f .

Definition 4.8 (bounded-shape partition problem). The following integer linear

program (ILP) is called bounded-shape partition problem.

max f (ξ )
n

∑
j=1

ξ i j ≤ u i ∀i = 1, . . . ,k

n

∑
j=1

ξ i j ≥ l i ∀i = 1, . . . ,k

k

∑
i=1

ξ i j = 1 ∀ j = 1, . . . ,n

ξ i j ∈ {0,1} ∀i = 1, . . . ,k ∀ j = 1, . . . ,n

(4.1)

The optimal (k, l,u)-clustering can be obtained by the solution ξ ∗i j ∈ {0,1}k×n of the

bounded-shape partition problem [75]. It is also shown, that due to the unimodularity

of the constraints the bounded-shape partition problem can be solved in polynomial

time [75]. Moreover due to every solution of the relaxed problem already being

integral, it suffices to solve the following relaxation of the bounded-shape partition

problem:

max f (ξ )
n

∑
j=1

ξ i j ≤ u i ∀i = 1, . . . ,k

n

∑
j=1

ξ i j ≥ l i ∀i = 1, . . . ,k

k

∑
i=1

ξ i j = 1 ∀ j = 1, . . . ,n

ξ i j ≥ 0 ∀i = 1, . . . ,k ∀ j = 1, . . . ,n
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To derive an optimal clustering, two desirable properties are taken into account, the

so-called strict separability and the homogeneity of clusters.

If a hyperplane separating the related sets in Rp exists, two clusters are called

linearly separable. A clustering Cl = (Cl 1, . . . ,Cl k) allows linear separation, if any

two clusters Cl i and Cl j are linearly separable for i 6= j, i, j = 1, . . . ,k. More details

can be found in [67]. In this thesis we use the following theorem from Barnes,

Hoffmann and Rothblum [11]:

Theorem 4.9. Let v∗ be a vertex of the BSPP. Then the clustering Cl∗ associated

with v∗ allows strict linear separation.

Proof. See [11].

Due to Theorem 4.9 we can automatically identify clusters of patients, that ’strictly’

differ from each other both regarding their baseline characteristics. The strict separa-

tion of the clusters therefore results in unique assignment rules of patients into one

of the clusters, which is crucial for the methods and results to be explainable. This

especially enables the possibility to assign completely new patients into one of the

clusters by looking at their respective patient characteristics.

The second property is the identified clusters being as homogeneous as possible.

Hence, the target function in the bounded-shape partition problem (4.1) should

describe the homogeneity inside the clusters. By maximizing the distance between

the centres of each cluster we achieve exactly the desired property. Therefore the

target function can be formulated as

max
Cl∈C

k−1

∑
i=1

k

∑
j=i+1

∥∥c i− c j
∥∥2

2

with the centre of gravity

c i =
1
κ i

n

∑
j=1

x jξ i j

for each cluster Cl i for i = 1, . . . ,k. The distance between the centres is thereby

measured by the Euclidean norm, denoted by ‖.‖2. However, this target function

leads to the optimization problem being nonlinear and therefore is NP-hard [17].
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Two alternatives exist, the Least-Square Assignment (LSA) and Cluster Sum Assign-

ment (CSA), based on piecewise linear approximation, initially proposed by [29].

We will be using the latter in this thesis. A detailed description of both can be

found in [112]. In [112] it is shown that under some conditions both approaches are

equivalent. By using the linear target function of the Cluster Sum Assignment for

the bounded-shape partition problem, we are able to find an optimal clustering by

solving a linear program [112] [67].

The geometric clustering approach discussed in this and the previous section forms

the basis of the partition of the patient data G into homogeneous cluster of patients.

Based on the introduction and especially the given references, we can assume the

identified cluster of patients to be as homogeneous as possible.

It is crucial for the geometric clustering approach that all available data is represented

as geometric objects. In the following section we will discuss a transformation

technique resulting in all patients being interpreted as points in the geometric space.

4.2 Transformation of data

The applied geometric clustering technique as described above, is conducted in

a geometric space and therefore requires a transformation of all input variables

into quantitative values, regardless the level of scale. In this section we will give

an overview of the transformation technique introduced in [26]. The probabilistic

foundations of the following transformation technique can be found in [90].

The aim is to cluster patients which are similar regarding both their patient charac-

teristics as well as their respective outcome. Therefore the expected value of the

outcome Y given all the patient characteristics is of interest. The main idea is to

replace each characteristic value of a variable X i = x by the estimated conditional

expected value of the outcome E
(
Y |X i = x

)
. Therefore, let X 1, . . . ,X p, p ∈ N, be

the available input variables, i.e. patient characteristics. Each data point, i.e. patient,

can then be formally written as x =
(
x1, . . . ,xp).
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The transformation technique is motivated by the ’Naive Bayes approach’, which

aims to estimate the following probability:

P
(
Y = y|X 1 = x 1, . . . ,X p = x p)

By applying Bayes’ rule for conditional probabilities and the ’naive’ assumption

about independence of the input variables X 1, . . . ,X p it holds:

P
(
X 1 = x 1, . . . ,X p = x p|Y = y

)
=

p

∏
i=1

P
(
X i = x i|Y = y

)
(4.2)

Therefore, the estimation of the upper probability simplifies to the estimation of the

marginal probabilities P
(
X i = x i|Y = y

)
, which are much easier to estimate.

We want to use a similar approach to estimate the following conditional expected

value:

E
(
Y |X 1 = x 1, . . . ,X p = x p)

Due to the definition of the expected value, we can express the upper conditional

expected values as the following:

E
(
Y |X 1 = x 1, . . . ,X p = x p)= ∑

y∈Ω

y ·P
(
Y = y|X 1 = x 1, . . . ,X p = x p)

Using the ’naive’ assumption (4.2) we can substitute the conditional probabilities by

P
(
Y = y|X 1 = x 1, . . . ,X p = x p)= p

∑
i=1

β
iP
(
Y = y|X i = x i)

with

β
i = β̂

i P
(
Y = y|X 1 = x 1, . . . ,X p = x p)

P(Y = y|X i = x i)

and ∑
p
i=1 β̂ i = 1.
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Therefore the desired expected value can be expressed as convex combination of the

marginal one-dimensional expected values:

E
(
Y |X 1 = x 1, . . . ,X p = x p)= p

∑
i=1

β
iE
(
Y = y|X i = x i)

with

β
i = β̂

i E
(
Y |X 1 = x 1, . . . ,X p = x p)

E (Y |X i = x i)

and ∑
p
i=1 β̂ i = 1.

The marginal one-dimensional conditional expected values E
(
Y |X i = x

)
are the

new values replacing the original value X i = x for i = 1, . . . , p. Each data point, i.e.

each patient, x j ∈ X , x j =
(

x 1
j , . . .x

p
j

)
is then represented by the following vector

of their conditional expected values:

(
x 1

j , . . . ,x
p
j

)
→
(

E
(
Y |X 1 = x 1

j
)
, . . . ,E

(
Y |X p = x p

j

))
The transformed vectors are always geometric objects in Rp and therefore the geo-

metric clustering approach described in Section 4.1 can be applied.

In the following we want to describe how these conditional expected values can

be properly estimated and derive special formulations for a Bernoulli distributed

outcome. An introduction into the estimations used in the following can be found

in [8].

Theorem 4.10. Let G=
{(

x j,y j
)}n

j=1⊂Rp×Ω with x j =
(

x 1
j , . . .x

p
j

)
be a sample

of p random variables X 1, . . . ,X p and Y the discrete outcome. Then

θ̂
(
Y |X i = x

)
=

∑
n
j=1 y j ·1{x i

j=x}
∑

n
j=1 1{x i

j=x}

is an unbiased estimator for the conditional expected value E
(
Y |X i = x

)
for i =

1, . . . , p.
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Proof. According to Bayes’ rule the conditional expected value can be written as

E
(
Y |X i = x

)
= ∑

y∈Ω

y
P
(
Y = y,X i = x

)
P(X i = x)

for i = 1, . . . , p. Therefore, the estimators for the joint probability

P̂
(
Y = y,X i = x

)
=

∑
n
j=1 y ·1{x i

j=x}
n

and the probability

P̂
(
X i = x

)
=

∑
n
j=1 1{x i

j=x}
n

only consist of the (conditional) frequencies and lead to a mean estimation of the

upper conditional expected value E
(
Y |X i = x

)
.

Remark 4.11. Let Y ∼ Ber(p) be a Bernoulli distributed random variable with

parameter p. The conditional expected value can then be obtained by the conditional

probability of success:

E (Y |X = x) = P(Y = 1|X = x) =: p x

Due to Remark 4.11 Theorem 4.10 leads to the following corollary.

Corollary 4.12. Let G =
{(

x j,y j
)}n

j=1 ⊂ Rp×{0,1} with x j =
(

x 1
j , . . .x

p
j

)
be a

sample of d random variables X 1, . . . ,X p and Y denote the binary outcome. Then

θ̂
(
Y |X i = x

)
=

∑
n
j=1 1{y j=1}1{x i

j=x}
∑

n
j=1 1{x i

j=x}

is an unbiased estimator for the conditional expected value E
(
Y |X i = x

)
or the

conditional probability P
(
Y = 1|X i = x

)
for i = 1, . . . , p.

Using these estimators we can define the transformed patient data, on which the

geometric clustering approach stated in Section 4.1 can be conducted.
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4.2. TRANSFORMATION OF DATA

Definition 4.13 (transformed patient data). Let X bet the patient data set of charac-

teristics, Y the corresponding outcome with sampling space Ω and G the derived

patient data. The transformed patient data set is defined by

Ĝ :=
{(

x̂ j,y j
)} n

j=1 ⊂ Rp×Ω

with x̂ j =
(

x̂ 1
j , . . . , x̂

p
j

)
and x̂ i

j = θ̂

(
Y |X i = x i

j

)
for i = 1, . . . , p and j = 1, . . . ,n.

Usually not many unique characteristics x i
j exist for each input variable X i, i =

1, . . . , p. Therefore the number of transformed values is relatively small. If however

too many unique values exist, a prior classification might be necessary or reasonable.

For variables of nominal scale, a classification is most likely based on expert knowl-

edge in the respective field. Variables of ordinal or cardinal scale can be summarized

in quantiles in order to eliminate a high number of unique characteristics. Based on

the concept of quantiles, we will present an alternative method in Section 4.3.2 to

find a suitable classification of variables of ordinal and cardinal scale.

Remark 4.14. Often clinical trials face the problem of high dropout rates, even

when this is not the inspected outcome. While regarding a binary outcome (i.e.

response/remission) the outcome of dropout patients is therefore assumed to be zero.

In this case the introduced transformation technique is biased by those dropout

patients. In order to avoid that, dropout patients can be left out while determining

the transformed values. Before performing the geometric clustering approach the

dropout patients are assigned the transformed values based on their respective

characteristic values.

At this point respective algorithms can be defined to divide the patient data set G into

homogeneous clusters, combining the transformation technique and the geometric

clustering. In [112] and [67] the particular algorithms are stated and explained. For

this thesis we conclude, that once we transform the patient data G into Ĝ we can

obtain homogeneous clusters of patients fulfilling the desired properties discussed in

this section.
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The success of the geometric clustering approach with the described transformation

technique highly relies on the used input variables. In the next section we discuss an

automatic approach to select the input variables promising the highest impact on the

outcome. Additionally, we introduce a new approach to classify variables of ordinal

and cardinal scale before using them for the geometric clustering.

4.3 Selection of variables for geometric clustering

Due to the collection of large amounts of data, especially in medical research, there

are usually too many baseline characteristics available for the desired data analysis.

Some small clinical trials collect nearly as many possible baseline characteristics

as there are patients enrolled. Any analysis performed on all available baseline

characteristics will be extremely over-fitted. Therefore, we use a method introduced

by Brieden and Gritzmann to automatically select those baseline characteristics with

the highest potential for being a predictor for the desired outcome [26].

For characteristics of ordinal or cardinal scale it is a common to classify those

into quantiles before the actual data analysis. Based on the geometric clustering

described in Section 4.1 we introduce a new method to more appropriately classify

characteristics of ordinal or cardinal scale.

4.3.1 Automated selection approach

To determine the baseline characteristics with the highest impact on the outcome, we

need to define how we intend to measure this impact. Therefore, let X 1, . . . ,X p be

the available baseline characteristics and Y the outcome. Each baseline characteristic

X i has m i unique values. Therefore, let a i
1, . . . ,a

i
m i

denote those unique values for

baseline characteristic X i. Furthermore, let

â i
j := θ̂

(
Y |X i = a i

j
)

denote the respective estimation of the conditional expected value for j = 1, . . . ,m i.
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We measure the impact on the outcome by the following outcome-variance.

Definition 4.15 (outcome-variance). With the upper notation and ā i := 1
m i ∑

m i

j=1 â i
j

we call

OVar
(
X i) :=

1
m i

m i

∑
j=1

(
â i

j− ā i)2

the outcome-variance of baseline characteristic X i for i = 1, . . . , p.

Remark 4.16. The outcome-variance describes the empirical variance of the unique

transformed values of a baseline characteristic.

Let M ∈ N be the number of baseline characteristics supposed to perform the ge-

ometric clustering approach on. Those M characteristics can be determined by

the following procedure. First of all, the outcome-variance OVar
(
X i) has to be

calculated for each available patient characteristic X i. Afterwards the patient char-

acteristics X 1, . . . ,X p are ranked according to their outcome-variance OVar
(
X i).

Finally those M characteristics with the highest outcome-variance are selected for

the geometric clustering. The method is summarized in Procedure 4.1.

input : all available patient characteristics X 1, . . . ,X p

output : M patient characteristics for the geometric clustering

begin
1. for i = 1, . . . , p do

calculate OVar
(
X i)

end
2. rank X i according to OVar

(
X i)

3. select M patient characteristics with the highest
outcome-variance

end

Procedure 4.1: Selection of patient characteristics for geometric clustering

The resulting M baseline characteristics provide the input for the geometric clustering

approach.
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Remark 4.17. The choice of M depends on the amount of patients and is usually

influenced by the application.

A classification of characteristics of ordinal and cardinal into quantiles might be

necessary or reasonable. Otherwise the number of possible values is too high

and every value rarely occurs. Thereby x i(q) denotes the qth quantile of a patient

characteristic X i, if at least 100 · q% of all observations are less or equal to x i(q)

and simultaneously at least 100 · (1−q)% of all observations are greater or equal

to x i(q).

Remark 4.18. We call a variable is classified into quantiles, if the borders of the

classes represent the respective quantiles.

The remaining question is, into how many quantiles the characteristic should be

classified. In order to determine the most appropriate amount of quantiles we can

use an adaption of Procedure 4.1.

Therefore, let X i be a characteristic of ordinal or cardinal scale. For j = 2, . . . ,n quantiles

with n quantiles denoting the maximum amount of quantiles, let X i j represent char-

acteristic X i grouped into j quantiles. Then the number of quantiles can be deter-

mined by the following procedure. First of all, the outcome-variance OVar
(
X i j)

has to be calculated for patient characteristic X i grouped into j quantiles. After-

wards the grouped patient characteristics X i1, . . . ,X in quantiles are ranked according

to their outcome-variance OVar
(
X i j). Finally, patient characteristic X i is grouped

into j ∗ quantiles, with j ∗ being the argument j maximizing the outcome-variance

OVar
(
X i j):

j ∗ = argmax
j∈[2,n quantiles]

OVar
(
X i j)

The method is summarized in Procedure 4.2.
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input : cardinal or ordinal input variable X i; maximum number of
quantiles nquantiles

output : number of quantiles for variable X i

1. for j = 2, . . . ,n quantiles do
calculate OVar

(
X i j)

end
2. rank X i j according to OVar

(
X i j)

3. use argmax
j∈[2,n quantiles]

OVar
(
X i j) quantiles for X i

Procedure 4.2: Determine number of quantiles for characteristic X i

With Procedure 4.2, every patient characteristic of ordinal or cardinal scale can be

classified into the most auspicious amount of quantiles.

Remark 4.19. The choice of n quantiles depends highly on the amount of data points,

i.e. patients. It might also be set by the application.

In the final section of this chapter, we present an alternative to quantiles.

4.3.2 Optimized classes instead of quantiles

In order to apply the transformation technique it is usually reasonable to classify

patient characteristics of ordinal and cardinal scale. Even though quantiles are appro-

priate in many situations and easily applicable, another classification might be more

suitable for the regarded patient characteristic. In the following we introduce a new

method to classify patient characteristics of ordinal or cardinal scale in an optimal

manner. The approach is closely related to the geometric clustering technique dis-

cussed in the beginning of this chapter. Opposed to the general clustering approach,

we only look at one baseline characteristic and the outcome. We want to classify the

patients, i.e. data points, such that the resulting classes are homogeneous regarding
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both the characteristic and the outcome. On the other hand, the classes should be as

heterogeneous as possible to each other. In other words, we want to minimize the

variance of the outcome inside the classes and maximize it between them. Thereby

we want to make sure, that every patient is assigned to exactly one class and that the

allocation is cohesive and ascending, as it is the case for a classification based on

quantiles.

To illustrate the advantage of optimized classes, we take a look at the following

small examples including ten patients, where the baseline characteristic age has to be

categorized and the response of every patient to an administered treatment is given.

Grouping the patients into two quantiles results in a response rate of 0.2 in the first

group and a response rate of 1 in the second group. However, if we were to group

patients from the ages of 30 to 33 and 34 to 39 the first class shows a response rate

of 0 and the second class shows a response rate of 1. The example is displayed

in Table 4.1.

patient 1 2 3 4 5 6 7 8 9 10
age 30 31 32 33 34 35 36 37 38 39

response 0 0 0 0 1 1 1 1 1 1

2 quantiles 0.20 1.00

optimized classes 0.00 1.00

Table 4.1: Quantiles and optimized classes for a patient characteristic (1)

The advantage of optimized classes becomes even more significant, if the response to

a treatment is further spread as in the following example with ten patients. Grouping

the patients into optimized classes results in more homogeneous classes, that are

additionally heterogeneous to each other, compared with a classification into two,

three, or four quantiles. The example is displayed in Table 4.2.
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patient 1 2 3 4 5 6 7 8 9 10
age 30 31 32 33 34 35 36 37 38 39

response 0 0 1 1 1 0 0 0 0 1

2 quantiles 0.60 0.20

3 quantiles 0.50 0.33 0.33

4 quantiles 0.33 1.00 0.00 0.33

optimized classes 0.00 1.00 0.00 1.00

Table 4.2: Quantiles and optimized classes for a patient characteristic (2)

This classification can be determined for any patient characteristic by the following

adaption of the bounded-shape partition problem (4.1).

Let X be the patient characteristic, which has to be categorized into k ∈ N classes.

Without loss of generality we assume the patient data set to be sorted according to

the values of patient characteristic X .

C = (C1, . . . ,Ck)

is a partition of the patient data set into k classes. C has the same properties as a

clustering Cl, as it describes the special case with only one baseline characteristic.

We give it a special notation in order to distinguish it from the original clustering

approach. However, due to similar properties, the number of patients κ i in every

class C i can also be bounded by lower and upper bounds l i and u i. In addition to

the decision variables ξ i j indicating, whether class C i contains patient j, we need to

introduce the following variables indicating the number of the class, to which patient

j is assigned to.

c j = i

indicates, that patient j is assigned to class C i. Using these variables we can make

sure, that the allocation is cohesive and ascending by adding the respective constraints

to (4.1). Finally, we adapt the target function f (ξ ), such that it minimizes the
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variance inside each class and maximizes the variance between all classes. Therefore,

patient characteristic X can be categorized into k optimized classes by solving the

following integer linear program:

max f (ξ )
n

∑
j=1

ξ i j ≤ u i ∀i = 1, . . . ,k

n

∑
j=1

ξ i j ≥ l i ∀i = 1, . . . ,k

k

∑
i=1

ξ i j = 1 ∀ j = 1, . . . ,n

c j ≤ c j+1 ∀ j = 1, . . . ,n−1

ξ i j ∈ {0,1} ∀i = 1, . . . ,k ∀ j = 1, . . . ,n

c j ∈ {1, . . . ,k} ∀ j = 1, . . . ,n

(4.3)

In Part IV we will classify patient characteristics of ordinal or cardinal into optimized

classes instead of regular quantiles.
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5. Cluster-based analysis of individual

patient data

The geometric clustering approach discussed in the previous chapter identifies clus-

ters of patients, that are as homogeneous as possible. The clusters are not only

homogeneous inside, but also to differ from each other. Otherwise the division into

clusters and especially different outcomes across those clusters cannot be justified.

Furthermore, they are uniquely defined by baseline characteristics.

In this chapter we will discuss an explainable method to reliably predict a patient’s

outcome based on the clusters resulting from the geometric clustering approach. Be-

sides serving as method itself, it is used in the newly invented cluster-based survival

analysis introduced in Chapter 6 to form homogeneous clusters of patients. Due to

the clusters being uniquely defined by baseline characteristics, the method does not

only predict the outcome, but provides an explanation for it. We begin by defining

how to determine the value of a cluster for an arbitrary outcome. We will also derive

special formulations for a binary outcome. Based on the cluster value we will present

confidence intervals for its prediction. Thereby we present both approximate and

exact intervals. Furthermore we will discuss the usage of exact intervals as well as

the usage of confidence intervals opposed to hypothesis testing in Section 5.3.2. We

will also argue, why we refrain from using hypothesis tests.

Most of the derivations in this chapter are based on the work of Brieden and Gritz-

mann [26]. Furthermore, we will make use of several estimations, which can be

found in [8].

91



CHAPTER 5. CLUSTER-BASED ANALYSIS OF INDIVIDUAL PATIENT DATA

5.1 Clustering

In order to perform a cluster-based analysis, we begin by deriving the clustering.

After transforming the patient data G into Ĝ, as described in Section 4.2, selecting the

input variables with possible classification into quantiles as described in Section 4.3,

deciding on the number of clusters k, and applying the geometric clustering algorithm

as referred to in Section 4.1 we get a (k, l,u)-clustering

Cl = (Cl 1, . . . ,Cl k)

as partition of the transformed patient data Ĝ. Thereby each cluster represents a

collective of patients with similar combinations of their patient characteristic values.

5.2 Cluster-based statistical evaluation

We begin by describing the determination of the cluster value before presenting

confidence intervals for it.

5.2.1 Determination of cluster value

The main assumption is that patients belonging to different clusters differ regarding

their outcome. In the following we will define the cluster value in order to justify

this assumption. We will use the unbiased estimator for the expected value of the

outcome of patients as cluster value. First, we define the patient data set of cluster Cli.

Definition 5.1 (patient data set of cluster Cl i). Let Cl = (Cl 1, . . . ,Cl k) be a (k, l,u)-

clustering of the transformed patient data Ĝ =
{(

x̂ j,y j
)} n

j=1 and ξ =
(
ξ i j
)
∈

{0,1} k×n the corresponding cluster assignment of Cl. Then

Ĝ i :=
{(

x̂ j,y j
)
|ξ i j = 1

} n
j=1 ⊆ Ĝ

is the patient data set of cluster Cl i with size κ i. The corresponding patient data

with the non-transformed data is denoted by G i, for i = 1, . . . ,k.
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Arbitrary outcome

The aim is to use the realization of the unbiased estimator for the expected value

of the patients’ outcome as cluster value. Thus we assume there is a true outcome

denoted by random variable Y i in cluster Cl i following some distribution. Note, that

the distribution does not necessarily have to be known. The true (unknown) expected

value of Y i is denoted by y i with variance σ 2
i , i.e.

E (Y i) = y i V (Y i) = σ
2
i

for i = 1, . . . ,k. Therefore the outcome of each patient j in cluster Cl i can be

described as random variable Y i j following the very same distribution with realization

y i j, for j = 1, . . . ,κi, with the Y i j’s being independent from each other. The (true)

expected value of Y i j is also y i and the corresponding variance σ 2
i . With the upper

notation the unknown expected outcome of patients in cluster Cl i can be estimated

via the following theorem.

Theorem 5.2. Let Cl = (Cl 1, . . . ,Cl k) be a (k, l,u)-clustering of the transformed

patient data Ĝ and let Ĝ i :=
{(

x̂ j,y j
)} κi

j=1 be the transformed patient data set of

cluster Cl i, for i = 1, . . . ,k. Then

Ŷ i :=
1
κ i

κ i

∑
j=1

Y i j

is an unbiased estimator for the expected value of the patients’ outcome with corre-

sponding estimation

ŷ i :=
1
κ i

κ i

∑
j=1

y i j

in cluster Cl i for i = 1, . . . ,k. The estimation is used as cluster value, so

f (Cl i) = ŷ i

for cluster Cli, i = 1, . . . ,k.
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Furthermore, the unknown variance σ2
i of the patients’ outcome in cluster Cl i can

be estimated via the following theorem.

Theorem 5.3. Let Cl = (Cl 1, . . . ,Cl k) be a (k, l,u)-clustering of the transformed

patient data Ĝ and let Ĝ i :=
{(

x̂ j,y j
)} κi

j=1 be the transformed patient data set of

cluster Cl i, for i = 1, . . . ,k. Then

Σ̂
2
i :=

1
κ i−1

κ i

∑
j=1

(
Y i j− Ŷ i

)2

is an unbiased estimator for the variance of the patients’ outcome with corresponding

estimation

σ̂
2
i :=

1
κ i−1

κ i

∑
j=1

(
y i j− ŷ i

)2

in cluster Cli, for i = 1, . . . ,k.

The confidence intervals presented in Section 5.2.2 use both the estimator for the

expected value and the estimator for the standard deviation, offering a possibility to

assess the homogeneity within each cluster. Before constructing these confidence

intervals, we will derive implications for a binary outcome.

Binary outcome

In many applications the investigated patients’ outcome is binary. For example

reaching an event of interest can directly be modelled as binary outcome, as the

event can either be reached or not. Typical examples for events of interest include

the response to a medication or the continuance of a treatment. Due to the estimators

with corresponding estimations simplifying for a binary outcome, we will therefore

present the respective representations.

We assume there is a true binary outcome in cluster Cl i denoted by random variable

Y i ∼ Ber(p i) with p i = P(Y i = 1). The true (unknown) expected value of Y i is
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denoted by y i with variance σ 2
i , i.e.

E (Y i) = y i V (Y i) = σ
2
i

for i = 1, . . . ,k. Therefore the outcome of each patient j in cluster Cl i can be

described as random variable Y i j ∼ Ber(p i) with realization y i j, for j = 1, . . . ,κ i,

with the Y i j’s being independent from each other. The (true) expected value of Yi j is

also yi and the corresponding variance σ 2
i .

For a Bernoulli distributed random variable Y i it holds:

E (Y i) = p i and V (Y i) = p i · (1− p i)

Therefore by estimating the probability of success of patients in cluster Cl i, we

estimate the expected value of the outcome of a patient in cluster Cl i. The estimator

and corresponding estimation are provided by the following corollary.

Corollary 5.4. Let Cl = (Cl 1, . . . ,Cl k) be a (k, l,u)-clustering of the transformed

patient data Ĝ and let Ĝ i :=
{(

x̂ j,y j
)} κi

j=1 be the transformed patient data set of

cluster Cl i with binary outcome, for i = 1, . . . ,k. Then

P̂i :=
1
κ i

κ i

∑
j=1

1 {Y i j=1}

is an unbiased estimator for the probability of success of the patients’ outcome with

corresponding estimation

p̂ i :=
1
κ i

κ i

∑
j=1

1 {y i j=1}

in cluster Cli for i = 1, . . . ,k. The estimation is used as cluster value, so

f (Cl i) = p̂ i

for cluster Cl i for i = 1, . . . ,k.

The unknown variance can be estimated by the following corollary.
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Corollary 5.5. Let Cl = (Cl 1, . . . ,Cl k) be a (k, l,u)-clustering of the transformed

patient data Ĝ and let Ĝ i :=
{(

x̂ j,y j
)} κi

j=1 be the transformed patient data set of

cluster Cl i with binary outcome for i = 1, . . . ,k. Then

Σ̂
2
i := P̂i ·

(
1− P̂i

)
is an unbiased estimator for the variance of the patients’ outcome with corresponding

estimation

σ̂
2
i := p̂ i · (1− p̂ i)

in cluster Cli, for i = 1, . . . ,k.

5.2.2 Confidence intervals for the cluster value

Using these estimations we can construct (1−α)-confidence intervals Iα (ŷ i) for

the expected outcome y i of patients in cluster Cl i, i = 1, . . . ,k. The intervals provide

a prediction for the expected outcome of patients with those baseline characteristics

defined by the respective cluster. Furthermore, they provide a measure for the homo-

geneity within each cluster. Narrow confidence intervals point to a homogeneous

cluster, whereas wide confidence intervals point to a rather heterogeneous cluster.

However, as we can see in the following, the size of the underlying patient data set

influences the range of the confidence interval. Therefore the intervals sometimes do

not seem to be narrow in particular due to small data sets. They still provide valuable

information about the expected outcome of a patient, especially while comparing

different clusters of patients with each other leading to the third application of them,

which we will discuss in Section 5.3.

We will begin by describing a confidence interval for an arbitrary outcome, before

deriving special formulations for a binary outcome. Furthermore we will discuss the

use and advantage of exact confidence intervals.
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Arbitrary outcome

Due to the central limit theorem, for κ i > 30 the estimator Ŷ i is approximately

normally distributed with expected value

E
(

Ŷ i

)
= y i

and standard deviation

σ Ŷ i
=

σ̂ i√
κ i

for cluster Cl i, i = 1, . . . ,k. Therefore

Ŷ i− y i

σ Ŷ i

approx∼ N (0,1)

and thus

Iα
approx (y i) :=

[
ŷ i− z1−α

2
·σ Ŷ i

, ŷ i + z1−α

2
·σ Ŷ i

]
is an approximate (1−α)-confidence interval for the expected outcome of patients

in cluster Cl i, for i = 1, . . . ,k, where z1−α

2
denotes the

(
1− α

2

)
-percentile of the

standard normal distribution. It holds that

P
(
y i ∈ Iα

approx (y i)
)
= 1−α

and therefore in (1−α) ·100% of all cases the true expected value of the patients’

outcome y i lies in Iα
approx (y i) for cluster Cl i, i = 1, . . . ,k.

The confidence interval Iα
approx (y i) is suitable for an arbitrary outcome, as long as

the cardinality in the respective cluster is high enough (κ i > 30). However, if the

cardinality is too low, we can use the following confidence interval.
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Remark 5.6. For an arbitrary outcome Y i with expected mean value y i and variance

σ 2
i it holds that

Ŷ i− y i

σŶ i

approx∼ t κ i−1

with σŶ i
= σ i√

κ i
and thus

Iα
approx (y i) :=

[
ŷ i− tκ i−1

(
1− α

2

)
·σ Ŷ i

, ŷ i + tκ i−1

(
1− α

2

)
·σ Ŷ i

]
is an approximate (1−α)-confidence interval, even for small κ i for the expected

outcome of patients in cluster Cl i i = 1, . . . ,k, where tκ i−1
(
1− α

2

)
denotes the(

1− α

2

)
-percentile of the Student’s t-distribution with κ i−1 degrees of freedom.

In the following we will state the normal approximation confidence interval for a

binary outcome, before discussing an exact confidence interval. Afterwards we will

discuss the benefit of using this exact interval, even if it is a rather conservative one.

Binary outcome

Based on the confidence interval for an arbitrary outcome we present a similar normal

approximation confidence interval for a binary outcome. The binary estimator P̂i has

the expected value

E
(

P̂i

)
= p i

with standard deviation

σ P̂i
=

σ̂ i√
κ i

=
p̂ i · (1− p̂ i)√

κ i

for cluster Cl i, i = 1, . . . ,k. Therefore,

Iα
approx (p i) =

[
p̂ i− z1−α

2
·σ P̂i

, p̂ i + z1−α

2
·σ P̂i

]
is an approximate (1−α)-confidence interval for the expected outcome of patients in

cluster Cl i for i = 1, . . . ,k, where z1−α

2
denotes the

(
1− α

2

)
-quantile of the standard
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normal distribution. It holds that

P
(

p i ∈ Iα
approx (p i)

)
= 1−α

and therefore in (1−α) ·100% of all cases the true expected value of the patients’

outcome p i lies in Iα
approx (p i) for cluster Cl i, i = 1, . . . ,k.

In the following we want to examine an exact confidence interval, namely the

Clopper-Pearson confidence interval. The true coverage of this interval does not

fall below (1−α) [140]. Therefore the interval is usually wider than it has to be,

making it a conservative choice. After introducing the interval, we will discuss why

a conservative choice like this is appropriate, especially while evaluating medical

interventions.

Let Z i be a random variable describing the number of positive events in cluster Cl i:

Z i =
κi

∑
i=1

Y i j

The outcome of every patient Y i j is binary and therefore Bernoulli distributed. Hence,

Z i follows a binomial distribution:

Z i ∼ Bin(κ i, p)

Furthermore, let z i be the number of positive events observed in cluster Cl i:

z i =
κ i

∑
i=1

y i j

Finally, let p i,lower be the solution in p to Pp (Z i ≥ z i) =
α

2 and p i,upper be the

solution in p to Pp (Z i ≤ z i) =
α

2 . The Clopper-Pearson confidence interval for the

expected outcome of patients in cluster Cl i for i = 1, . . . ,k is defined as:
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Iα
CP (p i) =

[
p i,lower, p i,upper

]
Due to the connection between the binomial distribution and beta distribution p i,lower

and p i,upper can also be obtained via the percentiles of the latter [140].

Remark 5.7. Let β (α, p,q) describe the α-percentile of a beta distribution with

parameters p and q. Then the Clopper-Pearson confidence interval Iα
CP (p i) can be

obtained by

p i,lower = β

(
α

2
,z i,κ i− z i +1

)
and

p i,upper = β

(
1− α

2
,z i +1,κ i− z i

)
for cluster Cl i, i = 1, . . . ,k.

Remark 5.8. There is no closed-form expression for p i,lower and p i,upper for most

choices of z i. However, it can be suitably approximated using statistical software

solutions.

It holds that

P
(

p i ∈ Iα
CP (p i)

)
= 1−α

and therefore in (1−α) ·100% of all cases the true expected value of the patients’

outcome p i lies in Iα
CP (p i) for cluster Cl i, i = 1, . . . ,k. Furthermore, the true cover-

age does not fall below (1−α).

This concludes the cluster-based analysis of individual patient data. The method

helps generating new insight especially into heterogeneous patient data. It addresses

the heterogeneity by dividing the patient data into homogeneous clusters. Based on

them, it gives a prediction for the outcome of a patient. In addition to the prediction,

it also provides a unique explanation based on baseline characteristics. Therefore,

this method for explainable analytics can be used for well-founded clinical decision-

making. Before introducing cluster-based survival analysis in the following chapter,

we discuss how the division into clusters can be justified.
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5.3 Justification of different outcome across clusters

5.3.1 Comparison of clusters

Confidence intervals as discussed in the previous section provide a prediction for the

expected outcome of patients. By constructing a confidence interval for each cluster

of patients, we get a prediction for patients with those baseline characteristics defined

by the respective cluster. This is of vital importance, when comparing clusters with

each other.

The division of the patient data into clusters is only justified, if the outcome differs

across the clusters. Therefore all confidence intervals have to be considered simulta-

neously. If the confidence intervals of the clusters do not overlap for a reasonable

choice of level of confidence α as illustrated in Figure 5.1, we can conclude that the

collectives differ regarding their outcome.

Figure 5.1: Two non-overlapping confidence intervals for a binary outcome

Every cluster is uniquely identified by a specific choice of patient characteristics (i.e.

age, severity of illness) leading to a unique explanation for the respective prediction.

This implies, that (new) patients can be uniquely assigned to one of the clusters

yielding to a prediction of the patients’ outcome. Thus, based on the patient’s charac-

teristics it is possible to evaluate whether a specific medical intervention is beneficial

for the individual patient or not and there exists a unique explanation for it.

Remark 5.9. While looking at real data sets, the intervals might not always be

completely disjoint from each other. However, as in every statistical evaluation, the

results have to be interpreted and set into context.

101



CHAPTER 5. CLUSTER-BASED ANALYSIS OF INDIVIDUAL PATIENT DATA

Before introducing the newly invented cluster-based survival analysis, another ex-

plainable method for the analysis of patient individual data, we want to motivate the

use of exact confidence intervals opposed to approximate intervals and the usage of

confidence intervals opposed to hypothesis testing throughout this thesis.

5.3.2 Use of confidence intervals

Motivation behind the use of exact intervals

Confidence intervals always describe a range in which the parameter of interest (e.g.

response rate) lies with a certain degree of confidence. However, the true coverage

of those intervals might differ from the chosen level of confidence α , i.e. it might be

smaller or greater than (1−α)100%. While using approximations as intervals, like

the normal approximation interval, the true coverage might both lie above or under

(1−α)100%. When using an exact interval, like the Clopper-Pearson interval, the

true coverage is (1−α)100% or even more. Hence, exact intervals might be too

wide but never too narrow, whereas approximation intervals can be too narrow.

As mentioned, the exact intervals might be too wide. As a matter of fact they usually

are [36]. However, even if a narrow confidence interval might seem tempting, it

can strongly mislead in those cases, where their true coverage was overestimated.

Taking it even further, wrong conclusions might be drawn on non reliable confidence

intervals. Therefore, we decided to use exact confidence intervals whenever there is

a possiblity for that. By using exact intervals, we can make sure of the results being

reliable, which can then be used for further well-founded decision-making. Even

more, if we can observe differences between clusters of patients while considering

conservative exact intervals, the true difference might be even greater.

Many people have studied intervals for this so called binomial proportion. An

overview is provided in [113]. The Clopper-Pearson interval was one of the earlier

introduced exact intervals, but there exist other suggestions [36]. Even though other

exact intervals exist, some possibly being more narrow, Clopper-Pearson intervals

are an appropriate choice both because of their exactness and their simplicity in

interpreting the results.
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Before moving on to the next chapter, we want to motivate the use of confidence

intervals opposed to often encountered hypothesis testing.

Motivation behind using confidence intervals instead of hypothesis testing

At this point of a statistical evaluation it is very common to test some hypotheses. In

this thesis we will refrain from doing so, due to two reasons:

1. While testing hypotheses it is crucial, that those hypotheses are formulated a

priori and not within the method itself. If we were to pose hypotheses, they

would concern the difference in the outcome (e.g. response rates) between at

least two clusters of patients. Since the specific patient characteristics defining

those clusters are part of the results of our method, we can obviously not

formulate the hypotheses a priori but only after conducting the clustering.

2. It has been widely discussed that the appropriate use of confidence intervals

offers the same information as the testing of some hypotheses without com-

mitting any methodological mistakes as mentioned above [18] [23] [150].

Especially while keeping in mind, that parametric test statistics include the

very same components as the respective confidence intervals. Moreover, the

(parametric) testing of a hypothesis results in either accepting or declining the

hypothesis. So the outcome of the test is (loosely speaking) a binary one. The

hypothesis itself is stated for a specific parameter of interest, e.g. whether the

true response rate of a cluster is greater or less than the observed response rate

in the data. Compared to this, confidence intervals do not aim to estimate just

the parameter itself, but offer a range in which the parameter lies with a certain

confidence. Having a range for the parameter of interest (i.e. response rate),

instead of just a specific estimate is much more realistic and reliable especially

while drawing further conclusions from it, e.g. for the further treatment of

patients.

The comparison of different clusters of patients is still possible while using con-

fidence intervals, as described above. That is why we use confidence intervals
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throughout this thesis to evaluate the outcome and especially the difference in the

outcome across clusters of patients.

For further details on the usage of confidence intervals instead of hypothesis testing,

please refer to [50] [62] [57] [131] [114].
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6. Cluster-based survival analysis of

individual patient data

In this chapter we introduce a new method for explainable analytics in medicine, the

cluster-based survival analysis. It provides explainable predictions for the survival

of a patient while simultaneously addressing underlying heterogeneity inside the

patient data. Moreover it generates new findings by detecting subgroups, i.e. clusters,

of patients, for whom a treatment or medical intervention is more beneficial both

compared with other clusters of patients and other treatments. The method can be

carried out in an automated way, enabling the opportunity to apply it to other data

sets as well as other applications.

We will begin by describing how to derive the clusters of patients, on which the

survival analysis will be performed. Afterwards we will move on to the specific

cluster-based survival function and its estimation. We will present several possibili-

ties to analyze it. Furthermore, we will introduce cluster-based survival models, with

the cluster-based Cox proportional-hazards model as representative. We will discuss

different alternatives to analyze it and extend it to the cluster-based stratified Cox

model. Finally we will discuss how to justify the assumption of different survival

times and hazard rates across clusters and treatments, before moving on to the practi-

cal application in the next part of this thesis.

In this thesis we will use the cluster-based survival analysis to compare different

kinds of treatment or medication with each other. The main assumption is, that the

time to discontinuation of a treatment is not only influenced by the treatment, but

also by patient characteristics. Naturally, the method can be applied to compare other
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groups with each other, as long as there is a unique assignment of patients or data

points in general into one of the groups. For the sake of clarity and without loss of

generality we will from now on speak of treatments, which we want to compare with

each other.

6.1 Clustering

Survival analyses are conducted on two kinds of information about the outcome of a

patient. The time until the event of interest occurs Y j with characteristics y j > 0 are

recorded together with the information, whether patient j discontinued the treatment

D j with characteristics

d j =

{
0 event does not occur in observed period

1 event occurs in observed period

for j = 1, . . . ,n. Patients with no event in the observed period (d j = 0) do obviously

not have a time until the event of interest occurs (see censoring in Chapter 3).

Therefore we need a transformed outcome Z j for the clustering. Z j denotes the

amount of incomplete time in the observed period. Patients who did not experience

the event in the observed time period have no incomplete time. Patients who did

experience the event missed out on y∗− y j of further time (e.g. days) with y∗ being

the time horizon of the observed period. Therefore the transformed outcome of

incomplete time Z j with characteristics

z j = d j ·
(
y∗− y j

)
=

{
0 if d j = 0

y∗− y j if d j = 1

for patient j = 1, . . . ,n is used for the following clustering.

Yj and therefore also Z j can both follow a continuous or a discrete distribution,

depending on the unit in which the time until the event happens is measured. For the

sake of clarity and without loss of generality, the following derivations assume Yj

and Z j to follow a continuous distribution.
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Remark 6.1. Even though we need to transform the outcome for deriving the clus-

tering, the original information about the outcome is used in the subsequent survival

analyses on each cluster.

In many survival analyses the primary investigation is the difference between the

administered treatments. One possibility is to include the covariate describing the

treatment as input variable for the clustering. However, as we explicitly want to be

able to distinguish between patients receiving different treatments, we will refrain

from doing so. Instead, we split the patient data according to the administered

treatment prior to the subsequent analyses. Thereby we aim to identify clusters of

patients, for whom a specific treatment is more beneficial than for other patients

receiving the same treatment. Afterwards we will then analyze the outcome of

patients with similar baseline characteristics, who received another treatment. The

procedure is described in the following.

Let T be the set of treatments we want to compare with each other. Furthermore, let

one of the patient characteristics included in the patient data X denote the adminis-

tered treatment. In the following we assume, that the patient characteristic describing

the treatment is available and unique for every patient.

Definition 6.2 (treatment patient data). Let X be the patient data set of characteristics

and Z the corresponding transformed outcome with sampling space Ω. Then the

treatment patient data set of treatment t ∈ T is defined by

G t :=
{
(x j,z j)|x treatment

j = t
} n

j=1 ⊂ Rp×Ω

with x j ∈ X and z j ∈Ω.

In the following we will only use one of the treatments in T to derive the clustering

and especially the cluster-defining baseline characteristics. Based on that, we will

assign patients from the other treatments into clusters in a similar way. In order

to distinguish, which treatment was used for deriving the clustering, we need the

following definition.
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Definition 6.3 (cluster-treatment). We call treatment t∗ ∈ T , which is used for the

clustering, the cluster-treatment.

Next, we need to define a (k, l,u, t)-clustering.

Definition 6.4 ((k, l,u, t)-clustering). A (k, l,u)-clustering on patients receiving treat-

ment t ∈ T is called (k, l,u, t)-clustering and denoted by

Cl t =
(
Cl t

1, . . . ,Cl t
k
)

Let t∗ ∈ T be the cluster-treatment and G t∗ the corresponding treatment patient data.

G t∗ is transformed into Ĝ t∗ as described in Section 4.2. Based on that, the patient

characteristics are selected as described in Section 4.3. A prior classification into

quantiles might be necessary. By applying the geometric clustering algorithm as

referred to in Section 4.1, we then get a (k, l,u, t∗)-clustering:

Cl t∗ =
(

Cl t∗
1 , . . . ,Cl t∗

k

)
Cl t∗ provides a unique assignment of patients receiving cluster-treatment t∗ into

one of the clusters solely based on their patient characteristics, formalized in the

following definition. This step is crucial for the entire method being explainable.

Definition 6.5 (cluster defining characteristics). Let t∗ ∈ T be the cluster-treatment

and Cl t∗ =
(
Cl t∗

1 , . . . ,Cl t∗
k

)
the corresponding (k, l,u, t∗)-clustering. Then the map-

ping

Φ t∗i :
(
X 1, . . . ,X p)→ (x 1, . . . ,x p)

denotes the unique assignment based on the patients’ characteristics X 1, . . . ,X p into

cluster Cl t∗
t∗i for i = 1, . . . ,k, with x j ⊆ R denoting the respective range of values for

patient characteristic X j in cluster Cl t∗
i .

Those patient characteristics X 1, . . . ,X p are also available for patients receiving

a different treatment. Therefore all other patients can be assigned into clusters

by the very same assignment rules. For any treatment t ∈ T , not necessarily the
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cluster-treatment, we can determine the corresponding (k, l,u, t)-clustering:

Cl t
t∗ =

(
Cl t

t∗1, . . . ,Cl t
t∗k
)

with

Cl t
t∗i =

{
x j ∈ X |x treatment

j = t,x j fulfils Φ t∗i
}

We still want to indicate, that the clustering itself has not necessarily been derived on

treatment t. Therefore we add another index for the cluster-treatment t∗, on which

the clustering has been derived on.

By adding cluster-treatment t∗ as additional index, the notations might seem over-

loaded. However, we still want to be able to tell, which of the treatments was used

as cluster-treatment. Furthermore, once the actual names or abbreviations are used

instead of t∗ and t, the notation gets more clear, as we will see in Part IV.

Remark 6.6. Let t∗ ∈ T be the cluster-treatment and Cl t
t∗ be a (k, l,u, t)-clustering

for every t ∈ T . Then

Cl t∗ = (Cl t∗1, . . . ,Cl t∗k)

with

Cl t∗i =
⋃
t∈T

Cl t
t∗i

is a (k, l,u)-clustering.

Procedure 6.1 summarizes the division of the patient data into homogeneous clusters,

based on the cluster-treatment and the assignment of all other patients into clusters.

The remaining question is, which of the available treatments to use as cluster-

treatment. We will discuss three different possibilities for that, the manual choosing,

the automatic choosing, and the repeated choosing:
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input : all input variables X 1, . . . ,X p, cluster-treatment t∗

output : (k, l,u, t)-clustering for every treatment t ∈ T

1. transform G t∗ into Ĝ t∗

2. select input variables for clustering using Procedure 4.1
3. derive (k, l,u, t∗)-clustering to get unique assignment rules Φ t∗i

for every cluster Cl t
t∗i i = 1, . . . ,k

4. for t ∈ T do
derive (k, l,u, t)-clustering

Cl t
t∗ =

(
Cl t

t∗1, . . . ,Cl t
t∗k
)

with

Cl t
t∗i =

{
x j ∈ X |x treatment

j = t,x j fulfils Φ t∗i
}

end

Procedure 6.1: Clustering for cluster-based survival analysis

1. Manual choosing

The cluster-treatment might be clear from the application, e.g. the trial from

which the data originates. There might also be some other specifications

implying the cluster-treatment, e.g. choosing a ’reference’ treatment. In this

case, the cluster-treatment is chosen manually.

2. Automatic choosing

In this case no treatment can be defined manually. One option is to derive a

clustering (separately) for each treatment. Afterwards the difference between

the derived clusters regarding the desired outcome (e.g. survival time) is

evaluated, for example by looking at the variance of cluster values. The

treatment providing the clustering with the largest variance is then used as

cluster-treatment in the cluster-based survival analysis.

3. Repeated choosing

Another option is to perform repeated cluster-based survival analyses, once

using every treatment as cluster-treatment.
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Since repeating the cluster-based survival analysis with each treatment as cluster-

treatment does not differ methodologically from choosing the cluster-treatment, we

will assume the cluster-treatment to be fixed in the following. It does not matter if

the decision was made automatically or set by the application.

Next, we want to define the cluster-based survival function and introduce an estima-

tion for it, related to the Kaplan-Meier estimate in a common survival analysis.

6.2 Cluster-based survival function

In order to perform a cluster-based survival analysis, we need to define the cluster-

based survival function.

Definition 6.7 (cluster-based survival function). Let Y be a random variable denoting

the time until the event of interest happens, t∗ ∈ T the cluster-treatment and t ∈ T

an arbitrary treatment. Furthermore, let Cl t
t∗ =

(
Cl t

t∗1, . . . ,Cl t
t∗k

)
be a (k, l,u, t)-

clustering. Then

S t
t∗i(y) := P

(
Y > y |patient belongs to cluster Cl t

t∗i
)

is called the cluster-based survival function for patients in cluster Cl t
t∗i.

Note, that in the definition above it does not matter whether treatment t ∈ T was the

chosen cluster-treatment t∗.

The true cluster-based survival function is unknown for every treatment. Therefore

we will use the Kaplan-Meier method to estimate the cluster-based survival function.

Let Ŝ t
t∗i(y) denote the estimation of the true (unknown) cluster-based survival func-

tion S t
t∗i(y), i.e. Ŝ t

t∗i(y) estimates the probability of patients in cluster Cl t
t∗i surviving

longer than y.
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Lemma 6.8. The cluster-based survival function can be estimated by

Ŝ t
t∗i(y) = ∏

y( f )≤y

n ( f )t∗i−d ( f )t∗i

n ( f )t∗i

with n ( f )t∗i being the number at risk at y ( f ) in cluster Cl t
t∗i and d ( f )t∗i being the

number of observed events at y ( f ) in cluster Cl t
t∗i. The number of patients at risk at

time y ( f ) in cluster Cl t
t∗i can be expressed by

n ( f )t∗i =
n

∑
j=1

1{y j≥y ( f )} ·1{patient j in cluster Cl t
t∗i}

and the number of of patients with an event at exactly y ( f ) in cluster Cl t
t∗i can be

expressed by

d ( f )t∗i =
n

∑
j=1

1{y j=y ( f )} ·1{d j=1} ·1{patient j in cluster Cl t
t∗i}

Proof. The estimation corresponds to a Kaplan-Meier estimation restricted to pa-

tients in cluster Cl t
t∗i.

Therefore, Ŝ t
t∗i(y) measures the fraction of patients in cluster Cl t

t∗i surviving at least

until y. According to Lemma 6.8 it has to be re-estimated if an event occurs (n ( f )t∗i

and d ( f )t∗i change) or the set at risk changes due to censoring (n ( f )t∗i changes).

The variance σ̂ 2
Ŝ t

t∗i(y)
of the estimate Ŝ t

t∗i(y) can be estimated by Greenwood’s for-

mula [61]:

Lemma 6.9. Let Ŝ t
t∗i(y) be the estimator for the cluster-based survival function of

cluster Cl t
t∗i, i = 1, . . . ,k, t ∈ T . The variance is given by Greenwood’s formula [61]:

σ̂
2
Ŝ t

t∗i(y)
=
(

Ŝ t
t ∗(y)

)2
· ∑

y ( f )≤y

d ( f )t∗i

n ( f )t∗i
(
n ( f )t∗i−d ( f )t∗i

)
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6.3 Cluster-based analysis of survival function

In this section we want to discuss how to analyze and especially compare the

estimated cluster-based survival functions. Besides a confidence interval for the

estimator, we will take a closer look at the cluster-based median survival time and the

respective confidence interval. Finally, we will introduce the cluster-based restricted

mean survival time, as a possibility to quantify the entire estimated cluster-based

survival function to compare it with others.

As mentioned in Chapter 3 and discussed in Section 5.3.2, we will not be using

log-rank tests, due to us not being able to pose the hypotheses prior to the method.

6.3.1 Confidence interval for the cluster-based survival function

The Kaplan-Meier estimator Ŝ t
t∗i(y) is asymptotically normally distributed [97].

Using Lemma 6.9 we can therefore construct the following (1−α)-confidence

interval for the cluster-based survival function of cluster Cl t
t∗i

Iα
(
S(y) t

t∗i
)

:=
[
Ŝ t

t∗i(y)− z1−α

2
· σ̂ Ŝ t

t∗i(y)
, Ŝ t

t∗i(y)+ z1−α

2
· σ̂ Ŝ t

t∗i(y)

]
where z1−α

2
is the

(
1− α

2

)
-percentile of the standard normal distribution.

The entire cluster-based survival function is estimated, hence for every y > 0 the true

probability of patients in cluster Cl t
t∗i surviving longer than y is unknown. However,

it holds that

P
(
S t

t∗i(y) ∈ I
α
(
S(y) t

t∗i
))

= 1−α

and therefore in (1−α) ·100% of all cases, the true probability of patients in cluster

Cl t
t∗i surviving longer than y lies in Iα (S(y) t

t∗i).

6.3.2 Cluster-based median survival time

Similar to a common survival analysis, we will use the median survival time to

compare clusters and treatments with each other. Therefore we need the following

definition.
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Definition 6.10 (cluster-based median survival time). Let S t
t∗i(y) be the survival

function of treatment t ∈ T for cluster Cl t
t∗i i = 1, . . . ,k. If S t

t∗i (M
t
t∗i) = 0.5, then

M t
t∗i is called the cluster-based median survival time of S t

t∗i(y).

M t
t∗i represents the time, after which half of all patients in cluster Cl t

t∗i discontinued

their treatment. The true cluster-based median survival time is unknown, but it can

be estimated in the following way:

Remark 6.11. Let Ŝ t
t∗i (M

t
t∗i) be the estimated cluster-based survival probability

at the true cluster-based median survival time. We denote the estimated median

survival time by M̂ t
t∗i. It can be estimated by the argument, for which Ŝ t

t∗i(y) falls

below 0.5 for the first time.

Using the distributional property from Lemma 3.12 from the common survival

analysis we can construct the following (1−α)-confidence interval for the cluster-

based median survival time:

Lemma 6.12. Let (
Ŝ t

t∗i(y)−0.5
)2

< cα · σ̂ 2
Ŝ t

t∗i(M t
t∗i)

(6.1)

where cα denotes the (1−α)-percentile of the χ 2
1 -distribution. Then

Iα
(
M t

t∗i
)

:=
[
y t

t∗i,lower,y
t
t∗i,upper

]
is a (1−α)-confidence interval for the median survival time, with y t

t∗i,lower being

the minimum and y t
t∗i,upper being the maximum y fulfilling (6.1).

The cluster-based median survival time of cluster Cl t
t∗i has to be estimated, hence

M t
t∗i such that S t

t∗i (M
t
t∗i) = 0.5 is unknown. However, it holds that

P
(
M t

t∗i ∈ I
α
(
M t

t∗i
))

= 1−α

and therefore in (1−α) ·100% of all cases, the true median survival time of cluster

Cl t
t∗i lies in Iα (M t

t∗i).
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6.3.3 Cluster-based restricted mean survival time

In the following, we want to introduce the cluster-based restricted mean survival

time. It offers the possibility to compare the entire estimated cluster-based survival

functions with each other.

Definition 6.13 (cluster-based restricted mean survival time). Let S t
t∗i(y) be the

survival function of treatment t ∈ T and let Y denote the survival time with limited

time horizon y∗ (e.g. end of the clinical trial). The cluster-based restricted mean

survival time (RMST ) is the mean of the survival time limited to y∗ in cluster Cl t
t∗i,

i.e. E (min(Y,y∗)). It equals the area under the cluster-based survival function from

y = 0 to y = y∗, i.e.

R̂MST
t
t∗i = E (min(Y,y∗)) =

∫ y∗

0
S t

t∗i(y)dy

for cluster Cl t
t∗i i = 1, . . . ,k.

Remark 6.14. It holds that

R̂MST
t
t∗i ∈ [0,y ∗]

for cluster Cl t
t∗i i = 1, . . . ,k.

The cluster-based restricted mean survival time describes the average survival time

of patients in cluster Cl t
t∗i from baseline to the limited time horizon y∗. It equals y∗,

if no event occurs in this cluster until the end of the time horizon. The restricted

mean survival time of a cluster converges towards zero, with the time interval also

converging towards zero. This is the case, if all events in this cluster occur immedi-

ately after the starting point. Both extreme cases are visualized in Figure 3.2.

The cluster-based restricted mean survival time takes the entire estimated cluster-

based survival function into account. Obviously the estimated cluster-based survival

functions may not overlap for the cluster-based restricted mean survival time to be

interpreted correctly.
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In the following section we will introduce the cluster-based Cox proportional-hazards

model. One main assumption of this model are proportional-hazards between the

compared groups. This assumptions also leads to non overlapping survival functions,

the above mentioned restriction.

6.4 Cluster-based survival models

Based on cluster-based survival functions, we will now introduce the newly invented

cluster-based survival models enabling the possibility to take additional covariates

into account. Cluster-based survival models can be used with any kind of survival

model. In this thesis, we will use the Cox proportional-hazards model as represen-

tative, but the approach is not limited to it. If the true underlying model is known

for certain (i.e. the survival times follow an exponential distribution), the respective

parametric model can be used instead of estimating it. However, since this is often

not the case, the cluster-based Cox PH model offers the opportunity to closely ap-

proximate the true model.

We will put special interest into the covariate describing the administered treatment,

as we will use cluster-based survival models to compare different treatments with

each other.

6.4.1 Cluster-based hazard rate

The cluster-based survival function S t
t ∗i(y) describes the probability of not having

the event of interest, given the survival up to y. In cluster-based Cox PH models, the

measure of effect is the cluster-based hazard rate h t
t ∗i(y), describing the probability

for patients in the respective cluster of having an event at y > 0, given the survival up

to y. We will use cluster-based survival models to compare two treatments t, t̃ ∈ T

with each other. Therefore we need the following definition of a cluster-based hazard

rate for two treatments.
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Definition 6.15 (cluster-based hazard rate). Let Y describe survival times for an

event of interest and t∗ ∈ T the cluster-treatment. Furthermore let t, t̃ ∈ T be any

two treatments, not necessarily the cluster-treatment with respective clusterings

Cl t
t∗ =

(
Cl t

t∗1, . . . ,Cl t
t∗k

)
and Cl t̃

t∗ =
(
Cl t̃

t∗1, . . . ,Cl t̃
t∗k

)
. For any y > 0 the cluster-

based hazard rate for t and t̃ is defined as

h t t̃
t∗i(y) := lim

∆y→0

P
(
y≤ Y < y+∆y|Y ≥ y, patient in Cl t

t∗i∪Cl t̃
t∗i
)

∆y
(6.2)

for cluster Cl t∗i, i = 1, . . . ,k.

Usually the goal is to compare two groups with respect to their cluster-based haz-

ard rates. Thereby the cluster-based hazard ratio, i.e. the ratio of their respective

cluster-based hazard rates, is used as measure for the effect of the difference. For the

evaluation of different values acquired by the hazard ratio please refer to Chapter 3.

The true cluster-based hazard rate for two treatments and therefore all cluster-based

hazard ratios between any two groups are unknown. In the following we will

show, how the cluster-based hazard rate and cluster-based hazard ratio between two

treatments can be estimated by the Cox PH model.

6.4.2 Cluster-based Cox proportional-hazards model

Model formulation

Let X =
(
X 1, . . . ,X p) denote p independent covariates. Furthermore let X t t̃ be a

covariate describing the administered treatment with characteristics

x t t̃
j =

{
1 patient j receives treatment t

0 patient j receives treatment t̃

for patient j = 1, . . . ,n.
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Then for any y > 0 the cluster-based Cox PH model for treatments t and t̃ is defined

as

h t t̃
t∗i

(
y,X t t̃ ,X

)
= h t t̃

0 t∗i(y) · exp

(
β

t t̃
t∗i ·X t t̃ +

p

∑
l=1

β
l

t∗iX
l

)
(6.3)

for cluster Cl t∗i, i = 1, . . . ,k. h t t̃
t∗i
(
y,X t t̃ ,X

)
is the expected hazard of patients in

cluster Clt ∗i receiving treatment t or t̃ at time y given the covariates X t t̃ ,X 1, . . . ,X p,

and h t t̃
0 t∗i(y) is the baseline hazard when all covariates are equal to zero. The cluster-

based Cox PH model therefore assumes the hazard for patients receiving treatment

t or t̃ in cluster Clt ∗i to be the product of the baseline hazard and the exponential

function of the linear combination of the covariates. The baseline hazard does not

depend on the covariates yielding to proportional hazards over time.

The observed survival times Y are assumed to be independent from each other.

However, no assumption is made about the cluster-based baseline hazard h t t̃
0 t∗i(y).

Therefore the cluster-based Cox PH model is a semi-parametric model.

In Chapter 7, as well as many other survival analyses, the administered treatment

is investigated. Hence, besides comparing different clusters with each other, we

will furthermore distinguish between the administered treatments. The covariate

describing the treatment is therefore discussed in the following remark.

Remark 6.16 (treatment covariate). The covariate describing the administered

treatment receives a special notation in (6.3), as the primary investigation of the

CATIE data in Chapter 7 is the difference between the administered treatments.

Obviously, we could just consider it as one of the other covariates X 1, . . . ,X p.

However, as we will especially be analyzing the hazard ratio between two treatments,

we already want to introduce this special notation, in order to be able to refer to it

at any time. As mentioned above, groups defined by something besides treatments

can be compared with each other as well using the cluster-based survival models.

As a matter of fact, a cluster-based survival model can also be formulated without

prior specification of groups wished to be compared with each other. In this case,
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the covariate describing the treatment - or other kind of group specification - X t t̃

will just be left out.

During a cluster-based survival analysis covariates can be used for the clustering as

well as in the subsequent survival model, which we will discuss in the following

remark.

Remark 6.17 (use of covariate). Usually, while fitting a cluster-based survival model,

the covariates already used for the clustering part are not included as covariates in

the survival model part. However, this is not a necessity. Without loss of generality,

we still speak of p covariates X 1, . . . ,X p in the cluster-based survival model. It

depends on the origin of the data, whether to use a specific covariate in the survival

model. Usually covariates of cardinal scale should be prioritized, as they can only

be part of the prior clustering after transformation into quantiles.

In the analysis of CATIE in Chapter 7, we will only consider those covariates

originally included in the first publication to guarantee comparability.

The cluster-based survival model can be extended to time-varying covariates. How-

ever, our aim is to find a set of patient characteristics to reliably predict the time to

the event of interest. These patient characteristics have to be available at baseline in

order to make a prediction for new patients. That is why from now on, we restrict

the covariates to be fixed over time.

Partial-likelihood estimation of β ’s

The cluster-based survival model (6.3) is estimated on the data representing patients

receiving treatment t or t̃ in cluster Clt ∗i. The coefficients β l ,β t t̃ are estimated via a

partial-likelihood function as introduced for the common Cox PH model in [43].
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Definition 6.18 (cluster-based partial likelihood estimator). Let X =
(
X 1, . . . ,X p)

and X t t̃ denote p+1 independent covariates and (6.3) the related cluster-based Cox

PH model. Then

β̂
l

t∗i

is called the partial-likelihood estimator (PLE) of β l
t∗i, l = 1, . . . , p and

β̂
t t̃

t∗i

the partial-likelihood estimator (PLE) of β t t̃
t∗i.

The estimator β̂ l
t∗i quantifies the influence of covariate X l on the hazard rate for

patients in cluster Clt ∗i receiving treatment t or t̃, i.e. the influence on the probability

of having an event for patients in cluster Clt ∗i receiving treatment t or t̃. Similarly,

β̂ t t̃
t∗i quantifies the influence of the covariate describing the treatment on the hazard

rate for patients in cluster Clt ∗i receiving treatment t or t̃. Therefore β̂ t t̃
t∗i can be used

to measure the impact of the administered treatment on the probability of having an

event, as we will see in the following section.

The estimated variances of the coefficients can be obtained as in most maximum-

likelihood estimations. The interested reader is referred to [71].

Definition 6.19 (cluster-based variance of partial likelihood estimator). Let β̂ l
t∗i

denote the partial-likelihood estimation of β l
t∗i for l = 1, . . . , p and β t t̃

t∗i for X t t̃ in

(6.3). Then

σ̂
2
β̂ l

t∗i

is called the estimated cluster-based variance of β̂ l
t∗i for l = 1, . . . , p and

σ̂
2
β̂ t t̃

t∗i

the estimated cluster-based variance of β̂ t t̃
t∗i .
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Remark 6.20. The actual estimations can be calculated using any common statisti-

cal software.

6.5 Cluster-based analysis of survival model

In the following we will discuss how to analyze the cluster-based survival model. We

will discuss, how two groups can be compared with each other using the estimations

of the cluster-based Cox PH model, to estimate their hazard ratio and present a

confidence interval for the estimated hazard ratio. As mentioned before, we will not

be testing the coefficients of the cluster-based Cox PH model. During a cluster-based

survival analysis, specific clusters of patients on which the Cox PH model will

be applied, are determined within the method. Hence, we are not able to define

hypotheses for testing the coefficients prior to the method.

6.5.1 Estimated hazard ratio

By using the estimated coefficients of the cluster-based Cox PH model (6.3), we

are able to estimate the hazard ratio between any two groups. Therefore let X1 =

(x 1
1 , . . . ,x

p
1 ,x

t t̃
1 ), X2 = (x 1

2 , . . . ,x
p
2 ,x

t t̃
2 ) denote the characteristics of the covariates

for group 1 and group 2 respectively. Then

ĤR t∗i = exp

(
β̂

t t̃
t∗i

(
x t t̃

1 − x t t̃
2

)
+

p

∑
l=1

β̂
l

t∗i

(
x l

1− x l
2

))
(6.4)

estimates the hazard ratio between those groups for cluster Cl t∗i, for i = 1, . . . ,k.

Hence, it is a measure for the probability of an event occuring in group 1 compared

with the probability of an event occuring in group 2.

If we want to estimate the effect of a single covariate X i on the hazard rate, we

assume the other covariates to have the same characteristic.
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Therefore (6.4) simplifies to

ĤR
l
t∗i = exp

(
β̂

l
t∗i

(
x l

1− x l
2

))
(6.5)

for covariate X l , l = 1, . . . , p and

ĤR
t t̃
t∗i = exp

(
β̂

t t̃
t∗i

(
x t t̃

1 − x t t̃
2

))
(6.6)

for covariate X t t̃ .

The level of scale of the involved covariates has to be taken into account for the

hazard ratio in (6.4), (6.5), and (6.6) to be interpreted correctly. Calculating the

difference
(
x l

1− x l
2
)

is reasonable, if the covariate X l is of cardinal or ordinal scale.

It may also be of nominal scale, if this differences can be interpreted in a reasonable

way. That is the case for covariate X t t̃ , as we will see in the following derivations.

We will use cluster-based survival models to compare different treatments with each

other. Therefore, we can use the following corollary to estimate the hazard ratio

between two treatments.

Corollary 6.21. Let β̂ t t̃
t∗i denote the partial-likelihood estimation of β t t̃

t∗i in (6.3).

Then

ĤR
t t̃
t∗i = exp

(
β̂

t t̃
t∗i

)
is the estimated cluster-based hazard ratio between t and t̃ in cluster Cl t∗i, i =

1, . . . ,k.

Proof. Due to the definition of X t t̃ there are only two possible characteristic values,

i.e. 0 and 1. Since t is associated with 1 and t̃ with 0 it holds:

exp
(

β̂
t t̃

t∗i

(
x t t̃

1 − x t t̃
2

))
= exp

(
β̂

t t̃
t∗i (1−0)

)
= exp

(
β̂

t t̃
t∗i

)

The hazard ratio ĤR
t t̃
t∗i compares the probability of an event occurring for patients

receiving treatment t with the probability of an event occurring for patients receiving
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treatment t̃ in cluster Cl t∗i. Treatment t̃ can therefore be referred to as reference

group.

In the following we derive a confidence interval for the coefficients in the cluster-

based Cox PH model and the respective hazard ratio between treatments in a cluster.

6.5.2 Confidence interval for β ’s and hazard rates

The partial likelihood estimators β̂ l
t∗i and β̂ t t̃

t∗i have the same distributional properties

as full maximum likelihood estimators [71]. Therefore they are also asymptotically

normally distributed and we can construct the following confidence interval for

coefficient β l
t∗i in (6.3)

Iα
(

β
l

t∗i

)
:=
[
β̂

l
t∗i− z1−α

2
· σ̂

β̂ l
t∗i
, β̂ l

t∗i + z1−α

2
· σ̂

β̂ l
t∗i

]
where z1−α

2
is the

(
1− α

2

)
-percentile of the standard normal distribution for l =

1, . . . , p and

Iα
(

β
t t̃

t∗i

)
:=
[
β̂

t t̃
t∗i− z1−α

2
· σ̂

β̂ t t̃
t∗i
, β̂ t t̃

t∗i + z1−α

2
· σ̂

β̂ t t̃
t∗i

]
for β̂ t t̃

t∗i.

Due to Corollary 6.21 we get the following cluster-based (1−α)-confidence interval

for the hazard ratio between two treatments t and t̃ in cluster Cl t∗i

Iα
(

HR t t̃
t∗i

)
:=
[
exp
(

β̂
t t̃

t∗i− z1−α

2
· σ̂

β̂ t t̃
t∗i

)
,exp

(
β̂

t t̃
t∗i + z1−α

2
· σ̂

β̂ t t̃
t∗i

)]
where z1−α

2
is the

(
1− α

2

)
-percentile of the standard normal distribution.
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The cluster-based hazard ratio between t and t̃ in cluster Cl t t̃
t∗i has to be estimated,

hence HR t t̃
t∗i is unknown. However, it holds that

P
(

HR t t̃
t∗i ∈ I

α
(

HR t t̃
t∗i

))
= 1−α

and therefore in (1−α) ·100% of all cases, the true hazard ratio between t and t̃ in

cluster Cl t t̃
t∗i lies in Iα

(
HR t t̃

t∗i
)
. Thus, Iα

(
HR t t̃

t∗i
)

is a (1−α)-confidence interval

for the probability of an event occuring for patients receiving treatment t compared

with the probability of an event occuring for patients receiving treatment t̃ in cluster

Cl t∗i.

6.6 Extension: The cluster-based stratified Cox model

One of the underlying assumptions of the cluster-based Cox proportional-hazards

model, is - as the name suggests - the proportional behaviour of the hazards (PH

assumption). However, some of the covariates might not satisfy this assumption.

Inspired by the stratified Cox model (SC model) we introduce the following cluster-

based stratified Cox Model (cluster-based SC model) in order to include covariates

violating the assumption of proportional hazards. During the analysis of the survival

data in Chapter 7 one of the covariates is known to violate the PH assumption.

Therefore, cluster-based SC models will be used throughout the entire analysis.

Let X =
(
X 1, . . . ,X p) and X t t̃ denote p+1 independent covariates satisfying the

PH assumption and Z a categorical stratification covariate with values 1, . . . ,K not

satisfying the PH assumption. Then for any y > 0, the cluster-based SC model for

patients receiving treatments t, t̃ in cluster Clt∗i can be written as

h t t̃
t∗i

(
y,X ,X t t̃ ,Z

)
= h t t̃

Z0 t∗i(y) · exp

(
β

t t̃
t∗i ·X t t̃ +

p

∑
l=1

β
l

t∗iX
l

)

for cluster Cl t∗i, i = 1, . . . ,k, allowing the cluster-based baseline hazard h t t̃
Z0 t∗i(y) to

depend on the stratum, but assuming the effect of the covariates being the same for
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each stratum. If more covariates are violating the PH assumption, a new stratification

variable can be defined by forming combinations of the categories of these covariates

and assigning those combinations as categories to the newly defined variable [87].

The coefficients β l
t∗i and β t t̃

t∗i can be estimated in the same way as in the cluster-based

Cox PH model by partial likelihood estimations.

The main application of the cluster-based SC model is to include variables for which

the PH assumption is known to be violated. However, as the stratum-specific baseline

hazard is now an essential part, the cluster-based SC model can only be reliable if

enough events are observed in each stratum for each cluster. Typical examples for

stratification variables include the site in clinical trials, as it is the case in CATIE.

In Chapter 7 we will use this covariate as stratum, as it is known to violate the PH

assumption.

To conclude this chapter, we will describe how to evaluate and justify different

outcomes across clusters and treatments in survival analysis.

6.7 Justification of different outcome

One objective of the new explainable method of cluster-based survival analysis is

to identify clusters of patients, which differ regarding the outcome. Confidence

intervals as introduced previously provide a range in which the outcome of patients

lies with a certain confidence. Additionally, they offer a prediction for the outcome

of new patients, which is explainable due to the clusters being uniquely defined

by baseline characteristics. Therefore they can be used to evaluate, whether the

identified clusters of patients differ regarding the outcome.

Another objective is to compare the administered treatments on the identified clusters

with each other.

We begin by discussing the evaluation of the difference between treatments of patients

in a specific cluster. We will be comparing both the estimated survival functions and
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hazard rates. Afterwards, we describe how to compare the outcome across clusters

while considering one treatment individually and interpret the estimated survival

functions. Additionally we discuss how to compare patients from one cluster with

all patients receiving a treatment.

In the following we will assume the cluster-treatment t∗ to be fixed, and the patient

data to be divided into a clustering

Cl t
t∗ =

(
Cl t

t∗1, . . . ,Cl t
t∗k
)

for every treatment t ∈ T .

6.7.1 Justification of different outcome across treatments

By the following procedure, we want to evaluate, whether the survival time of

patients in a specific cluster differs between the administered treatments. Therefore

let cluster Cl t∗i and the level of confidence α be fixed. For every treatment t ∈ T , the

survival function Ŝ t
t∗i(y) and median survival time M̂ t

t∗i with respective confidence

intervals are estimated. Additionally the restricted mean survival time RMST t
t∗i is

calculated.

Patients receiving treatment t ∈ T have a higher survival time than patients receiving

another treatment if

M̂ t
t∗i > M̂ t̃

t∗i

and the respective confidence intervals Iα (M t
t∗i) and Iα

(
M t̃

t∗i
)

are disjoint from

each other for all t̃ ∈ T with t̃ 6= t. Additionally, the restricted mean survival time for

treatment t has to be higher than for the other treatments

R̂MST
t

t∗i > R̂MST
t̃

t∗i

for all t̃ ∈ T with t̃ 6= t.

In this case, patients in cluster Cl t∗i receiving treatment t have a higher survival time

than patients receiving any other treatment in this cluster. Therefore patients with the
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baseline characteristics uniquely defined by cluster Cl t∗i are less likely to discontinue

their treatment when receiving treatment t compared with any other treatment.

Analogously, patients receiving a treatment might have a lower survival time, than

patients receiving any other treatment. In this case, both median and restricted mean

survival time have to be lower compared with all other treatments.

The procedure is summarized in Procedure 6.2.

Set cluster Cl t∗i

Set level of confidence α

For every treatment t ∈ T estimate

Ŝ t
t∗i(y) with Iα

(
S t

t∗i(y)
)

M̂ t
t∗i with Iα

(
M t

t∗i
)

R̂MST
t
t∗i

Patients receiving t ∈ T in cluster
Cl t∗i have a higher survival time if

M̂ t
t∗i > M̂ t̃

t∗i

Iα
(
M t

t∗i
)
∩Iα

(
M t̃

t∗i

)
= /0

R̂MST
t
t∗i > R̂MST

t̃
t∗i

for all t̃ ∈ T , t̃ 6= t

Procedure 6.2: Evaluation of estimated survival times for patients receiving
different treatments in cluster Cl t∗i
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In a similar way we evaluate, whether the hazard rate of patients in a specific cluster

differs between the administered treatments. Therefore let cluster Cl t∗i and the level

of confidence α be fixed. For every pair of treatments t, t̃ ∈ T , the cluster-based Cox

PH model is estimated. Based on that, the hazard ratio between t and t̃ is estimated

with respective confidence interval Iα
(
HR t t̃

t∗i
)
.

Patients receiving treatment t ∈ T have a lower hazard rate than patients receiving

another treatment if

ĤR
t t̃
t∗i < 1

and 1 is not included in the respective confidence interval, i.e. 1 /∈ Iα
(
HR t t̃

t∗i
)

for

all t̃ ∈ T with t̃ 6= t.

In this case, patients in cluster Cl t∗i receiving treatment t have a lower hazard rate

than patients receiving any other treatment in this cluster. Therefore patients with the

baseline characteristics uniquely defined by cluster Cl t∗i are less likely to discontinue

their treatment when receiving treatment t compared with any other treatment.

Analogously, patients receiving a treatment might have a higher hazard rate, than

patients receiving any other treatment. In this case, the estimated hazard rate has to

be greater than 1 for all other treatments.

The procedure is summarized in Procedure 6.3.

Remark 6.22. While looking at real data sets, the intervals might not always be

completely disjoint from each other. Eventually there are two treatments with higher

survival time than the other treatments, but between those two treatments there is

no difference. However, as in every statistical evaluation, the results have to be

interpreted and set into context, as we will see in Part IV.

6.7.2 Justification of different outcome across clusters

Besides comparing different treatments on one particular cluster, we also want to

compare clusters with each other, while only looking at one treatment independently.

We will both use it to compare two (or more) clusters with each other, as well as

patients from one cluster with all patients receiving a treatment. By doing so, we can
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Set cluster Cl t∗i

Set level of confidence α

For every pair of treatments
t, t̃ ∈ T fit the survival model

h t t̃
t∗i(y)

and determine

ĤR
t t̃
t∗i with Iα

(
HR t t̃

t∗i

)

Patients receiving t ∈ T in clus-
ter Cl t∗i have a lower hazard rate if

ĤR
t t̃
t∗i < 1

1 /∈ Iα
(

HR t t̃
t∗i

)
for all t̃ ∈ T , t̃ 6= t

Procedure 6.3: Evaluation of estimated hazard rates for patients receiving dif-
ferent treatments in cluster Cl t∗i

129



CHAPTER 6. CLUSTER-BASED SURVIVAL ANALYSIS OF INDIVIDUAL PATIENT DATA

no longer assume the survival times to be independent from each other. Therefore,

we will not be using cluster-based Cox proportional-hazard models. However, we

can compare their estimated survival functions with each other.

Therefore let treatment t ∈ T and the level of confidence α be fixed. For every

cluster Cl t
t∗i, i = 1, . . . ,k, the survival function Ŝ t

t∗i(y) and median survival time M̂ t
t∗i

with respective confidence intervals are estimated. Additionally the restricted mean

survival time RMST t
t∗i is calculated. Equally, the survival function without division

into clusters, i.e. Ŝ t(y) and median survival time M̂ t with respective confidence

intervals are estimated as well as the restricted mean survival time RMST t .

Patients in cluster Cl t
t∗i, i = 1, . . . ,k have a higher survival time than patients of the

other clusters, if

M̂ t
t∗i > M̂ t

t∗ j

and the respective confidence intervals Iα (M t
t∗i) and Iα

(
M t

t∗ j

)
are disjoint from

each other for all clusters Cl t
t∗ j, j = 1, . . . ,k with j 6= i. Additionally, the restricted

mean survival time for patients in cluster Cl t
t∗i has to be higher compared with the

other clusters, i.e.

R̂MST
t
t∗i > R̂MST

t
t∗ j

for all clusters Cl t
t∗ j, j = 1, . . . ,k with j 6= i.

In this case, patients receiving treatment t in cluster Cl t∗i have a higher survival time

than patients in any other cluster. Therefore patients with the baseline characteristics

uniquely defined by cluster Cl t∗i are less likely to discontinue their treatment com-

pared with patients with any other baseline characteristics.

Analogously, patients receiving treatment t in cluster Cl t∗i might have a lower sur-

vival time than patients in any other cluster. In this case, both median and restricted

mean survival time have to be less compared with all other clusters.

The procedure is summarized in Procedure 6.4.
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Set treatment t ∈ T

Set level of confidence α

For every Cl t
t∗i, i = 1, . . . ,k estimate

Ŝ t
t∗i(y) with Iα

(
S t

t∗i(y)
)

M̂ t
t∗i with Iα

(
M t

t∗i
)

R̂MST
t
t∗i

Patients receiving t ∈ T in cluster
Cl t

t∗i have a higher survival time if

M̂ t
t∗i > M̂ t

t∗ j

Iα
(
M t

t∗i
)
∩Iα

(
M t

t∗ j
)
= /0

R̂MST
t
t∗i > R̂MST

t
t∗ j

for all Cl t
t∗ j, j 6= i

Procedure 6.4: Evaluation of estimated survival times for patients receiving
treatment t in different clusters
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In a similar way, patients receiving treatment t in cluster Cl t
t∗i, i = 1, . . . ,k have a

higher survival time than patients receiving treatment t in general if

M̂ t
t∗i > M̂ t

and the respective confidence intervals Iα (M t
t∗i) and Iα (M t) are disjoint from each

other. Additionally, the restricted mean survival time for patients in cluster Clt
t∗i has

to be higher than the restricted mean survival time of patients receiving treatment t

in general:

R̂MST
t
t∗i > R̂MST

t

In this case, patients receiving treatment t in cluster Cl t∗i have a higher survival time

than patients receiving treatment t in general. Therefore patients with the baseline

characteristics uniquely defined by cluster Cl t∗i are less likely to discontinue their

treatment when receiving treatment t compared with all patients receiving treat-

ment t.

Analogously, patients receiving treatment t in cluster Cl t∗i might have a lower sur-

vival time, than patients receiving treatment t in general. In this case, both median

and restricted mean survival time have to be less compared with the median and

restricted mean survival time in general.

The procedure is summarized in Procedure 6.5.

This concludes Part III of this thesis. With the cluster-based survival analysis, we

introduced a new method to detect differences regarding the outcome of patients

between treatments as well as clusters. The method does not only detect differences,

but explains them based on the respective patient characteristics, making the approach

adoptable into clinical decision-making.
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Set treatment t ∈ T

Set level of confidence α

For every Cl t
t∗i, i = 1, . . . ,k estimate

Ŝ t
t∗i(y) with Iα

(
S t

t∗i(y)
)

M̂ t
t∗i with Iα

(
M t

t∗i
)

R̂MST
t
t∗i

and estimate

Ŝ t(y) with Iα
(
S t(y)

)
M̂ t with Iα

(
M t)

R̂MST
t

Patients receiving t ∈ T with baseline charac-
teristics defined by Cl t

t∗i have a higher survival
time than patients receiving t in general if

M̂ t
t∗i > M̂ t

Iα
(
M t

t∗i
)
∩Iα

(
M t)= /0

R̂MST
t
t∗i > R̂MST

t

Procedure 6.5: Evaluation of estimated survival times for patients receiving
treatment t

133





Part IV

Practical application
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In Part IV of this thesis we apply the newly invented method for explainable analytics

to a real life medical data set. The data set investigated in Chapter 7 originates from

a clinical trial including patients suffering from schizophrenia. By applying the

new method, we aim to gain additional knowledge for an improved treatment of

patients. It is crucial, that all derived results are explainable in order to adopt them

into clinical practice.

We investigate the clinical trial CATIE, a randomized clinical trial assessing the

discontinuation of treatment. It begins with an overview about the clinical trial

CATIE and its previous findings, on which we base our research question. Afterwards

we show the results of a common survival analysis before conducting a cluster-based

survival analysis. After presenting the clusters and a cluster-based analysis, we will

estimate the cluster-based survival functions as well as cluster-based survival models.

Finally, we will summarize the new findings by justifying different outcomes both

between treatments and clusters and especially the comparison to the findings of a

common survival analysis.
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7. Cluster-based survival analysis:

CATIE

As practical application of the cluster-based survival analysis introduced in Chapter 6,

we analyze the data originating from the first phase of the U.S. Clinical Antipsy-

chotic Trials of Intervention Effectiveness (CATIE) study. Our aim is to generate new

insight into the data by applying the newly invented method for explainable analytics

presented in the previous part of this thesis. We present results of a common survival

analysis in comparison to the results of a cluster-based survival analysis. The results

of the following analyses are summarized in the joint working paper of Brieden,

Heres, Leucht, and Schiele [125].

We will begin by describing the motivation behind the clinical trial CATIE, its design,

data and previous findings. Based on the original motivation behind the clinical trial,

we will pose a research question we aim to answer by the cluster-based survival

analysis. We will describe and interpret the derived clusters and justify the division

into those, as well as compare the results of the common survival analysis with the

cluster-based survival analysis.

Throughout this chapter we will be using medical terms and different scales used in

the assessment of schizophrenia. A brief introduction as well as further references

for the interested reader are given in Chapter 2.

The data was provided by the National Institute of Mental Health and downloaded

from the NIMH Data Archive (NDA) on February 2nd 2019.
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7.1 Overview

The U.S. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study

was one of the largest independent investigations into schizophrenia treatments ever

conducted [135]. Almost 1500 patients were enrolled and five antipsychotics, both

first- and second-generation antipsychotics were included in the first two phases of

the study. The focus of the investigation was the discontinuation of the treatment,

a very common phenomenon while administering antipsychotics. Reasons for the

discontinuation of treatment include inadequate therapeutic effects, unacceptable

side effects as well as the patients’ refusal to take the assigned antipsychotic. The

study was especially designed to investigate the discrepancy between the efficacy of

antipsychotics under ideal circumstances (i.e. under clinical supervision) and their

effectiveness in realistic and less-than-ideal circumstances (i.e. in daily life). The

main conjecture was, that second-generation antipsychotics show later discontinua-

tion of the treatment in comparison to the older first-generation antipsychotics. A

detailed overview about the history of the CATIE study is given in [135].

7.1.1 Design of CATIE

The CATIE schizophrenia trial was a multi-site, multi-phase randomized controlled

trial with patients chronically suffering from schizophrenia in need of a new medi-

cation [135]. Patients were followed for at least 18 months and data was collected

from 2001 to 2004.

Phase 1/1A was a randomized, controlled, double-blind comparison of five different

treatments. The administered treatments were Olanzapine, Quetiapine, Risperi-

done, and Ziprasidone as second-generation antipsychotics and Perphenazine as

first-generation antipsychotic. Ziprasidone was added to the trial after its approval in

2002. The distribution of the 1432 patients to the treatments is displayed in Table 7.1.

Patients suffering from tardive dyskinesia (TD) were excluded from randomization

to Perphenazine. Therefore this part of the study is referred to as phase 1A. The

study design of phase 1/1A is visualized in Figure 7.1
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treatment no. of patients included in analysis

O Olanzapine 330
P Perphenazine 257
Q Quetiapine 329
R Risperidone 333
Z Ziprasidone 183

total 1432

Table 7.1: Distribution of patients to treatments in CATIE phase 1/1A

Figure 7.1: Flow chart CATIE [138]; R = randomization

Phase 2 included choosing one of two randomization pathways and phase 3 was open-

label. Patients only moved on to the next phase, if they discontinued their treatment

in the previous phase. Therefore patients doing well on the first prescribed treatment

stayed on that treatment for the duration of the 18 month treatment period [135]. A

detailed overview about the design and study protocol of the CATIE study is given

in [135].
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7.1.2 Data description

A total of 1460 patients were enrolled in the study. 1432 of those patients received

at least one dose of the prescribed treatment. The following baseline characteristics

were available at a patient individual level.

• Characteristics at nominal level of scale

adjunctive or concomitant medication, gender, employment status, family in-

terview, hospitalization in the past three months, insight & treatment attitudes

questionnaire (ITAQ), living situation, marital status, other medical diagnoses

(hypertension, diabetes, heart disease, pulmonary disease, HIV, hepatitis),

primal diagnosis, psychiatric history (schizophrenia, major depression, ob-

sessive–compulsive disorder, alcohol use or abuse, drug use or abuse, mental

illness in family), race, tardive dyskinesia, veteran

• Characteristics at ordinal level of scale

Abnormal Involuntary Movement Scale (AIMS), Barnes Akathisia Rating

Scale (BARS), Calgary Depression Scale for Schizophrenia (CLGRY), Clinical

Global Impression Scale (CGI-S), MacArthur Competency Assessment, Neu-

rocognitive battery results, Positive and Negative Syndrome Scale (PANSS),

PANSS subscales, PANSS Marder factors, Quality of life questionnaire,

Simpson-Angus-Scale (SAS)

• Characteristics at cardinal level of scale

age, age first treated for behavioural problems, age first antipsychotic was

prescribed, number of previous hospitalizations (last year and lifetime), Short

Form Health Survey

In phase 1/1A, the primary outcome was measured by days until discontinuation of

the treatment as displayed in Table 7.2. We can assume the outcome to follow an

unknown discrete distribution.

In medical data analyses it is common to assume one month to equal 28 days.

Therefore we use this transformation in the following tables and figures.
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phase outcome definition values

1/1A day of discontinuation day of discontinuation phase 1/1A 1−646

Table 7.2: Outcome phase 1/1A in CATIE

A detailed overview about the data collected in the CATIE study is given in [135].

7.1.3 Previous findings

The first analysis of the CATIE data was published in [99]. Contrary to first con-

jectures, the main result was that all of the treatments were related to high and

early discontinuation of the treatment. Only Olanzapine was found to be associated

with significantly later discontinuation of the treatment in comparison to Quetiapine,

but not to one of the other treatments. However a benefit of Olanzapine compared

with all other treatments was detected, even if not all comparisons were significant

according to the choice of level of significance in [99].

Other findings about the CATIE data have been published ever since for phase 1/1A

as well as the other phases regarding different aspects of the study. Many of them

analyzed predictors for the response to a treatment measured by the PANSS scale

instead of discontinuation of treatment. [118] analyzed genetic predictors for the

response of a patient. [142] analyzed predictors for the PANSS score on multiple

points in time. However, they only included those characteristics available at the

measured time point and they did not aim to predict response by the end of the study

based on available baseline characteristics. Other publications furthermore analyzed

predictors for other outcomes of the CATIE trial. [105] investigated metabolic syn-

drome (MS) as predictor for physical health and other outcomes. [116] analyzed

negative symptoms as predictor for the general functioning of a patient. There also

exist publications analyzing predictors for the outcome in other phases of the CATIE

trial. [103] [137] [136] analyzed switching the medication as possible predictor for

the outcome in other phases.

There are two publications forming different groups of responders. [98] formed three

trajectories of treatment response measured by the PANSS scale. They provide an
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overview about the average baseline characteristics in every trajectory, but the trajec-

tories are not uniquely defined by those baseline characteristics. However, they did

point out substantial heterogeneity in schizophrenia. [41] divided all patients into up

to four groups of different responders (optimal, global, average, and non-responders).

They assessed response to a treatment by seven different scales instead of just one

measure. Even though they identify different response groups, they do not indicate,

how the response groups can be uniquely defined based on baseline characteristics.

Inversely they conclude, that demographics and clinical variables do not predict drug

response well. Furthermore, they only considered differences regarding the response

on the used scales. They did not consider different response groups on a single scale

(e.g. PANSS). However, they demonstrate potential for personalized medicine.

Only [80] directly investigated predictors for the primary outcome of phase 1/1A,

discontinuation of the treatment, by logistic regression. They identified low scores on

neurocognitive tests, previous reported side effects, negative attitude to medication,

comorbid depression and psychosocial factors (unemployment, homelessness, living

alone) as the most consistent predictors. However, they only considered discontinua-

tion at given time points instead of time to discontinuation and furthermore did not

differentiate between treatments.

7.1.4 Research question

The main focus of the CATIE study was the discontinuation of the administered

treatment with careful investigation of the difference between the involved treatments.

However, the main analysis did not involve any further specification of subgroups

who might discontinue the treatment later than other subgroups.

Our main conjecture is, that individual patient characteristics, such as the psychiatric

history of the patient, influence the time to discontinuation of the treatment. By

applying the new approach of cluster-based survival analysis, we aim to find clusters

of patients, who discontinued the treatment later than other patients. Thereby we

also aim to identify clusters of patients with substantial benefit from one of the

investigated treatments opposed to the other treatments. Furthermore, we do not
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only want to detect differences regarding the patient’s outcome, but uniquely explain

them in terms of their baseline characteristics.

7.2 Survival analysis

In the following we will present the results from a common survival analysis using

notations introduced in Chapter 3. Let

T = {O,Q,R,P,Z}

denote the set of treatments. All 1432 patients receiving at least one dose of the

treatment were included in the following analysis. We will begin by estimating and

analysing the survival function for every treatment. Afterwards we will estimate and

analyze the hazard ratio between pairs of treatment by estimating the respective Cox

proportional-hazards model.

7.2.1 Survival function

The true survival function S t(y) of patients receiving treatment t ∈ T is unknown.

Therefore we determine the respective Kaplan-Meier estimator Ŝ t(y) for every

treatment t ∈ T . The estimated survival functions are displayed in Figure 7.2. The

separate estimated survival functions with 90%-confidence intervals I0.1 (S t(y)) are

included in Appendix A.

The estimated survival function of patients receiving Olanzapine Ŝ O(y) lies above all

other estimated survival functions of patients receiving any other treatment. However,

there is no difference between the other treatments, as their respective estimated

survival functions lie fairly close to each other.

The estimated median survival times M̂ t with respective confidence intervals I0.1 (M t)

are presented in Table 7.3.
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Figure 7.2: Estimated survival functions for every treatment in the common
survival analysis

treatment estimated median survival time 90%-confidence interval
t M̂ t I0.1 (M t)

Olanzapine (O) 9.1 [7.0,12.0]
Perphenazine (P) 6.2 [4.6,6.2]

Quetiapine (Q) 4.9 [4.1,5.5]
Risperidone (R) 5.3 [4.2,6.2]
Ziprasidone (Z) 3.9 [3.2,5.0]

Table 7.3: Estimated median survival times with 90%-confidence intervals for every
treatment in the common survival analysis

The estimated median survival time of patients receiving Olanzapine M̂ O is 9.1

months and therefore higher than the estimated median survival time of patients

receiving one other of the other four treatments. The 90%-confidence interval is

I0.1
(

M O
)
= [7.0,12.0]
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and not overlapping with the 90%-confidence intervals of any of the other treatments,

as displayed in Figure 7.3.

Figure 7.3: Estimated median survival times with 90%-confidence intervals
common survival analysis

Therefore Olanzapine seems to be related to later and less discontinuation of the treat-

ment. However, the gap between I0.1 (M O) and I0.1 (M Q), I0.1 (M R),I0.1 (M P),
I0.1 (M Z) is not very large indicating the presence of heterogeneity especially be-

tween patients receiving Olanzapine.

The estimated restricted mean survival times underline this observation, as displayed

in Table 7.4. With 10.0 months, the estimated restricted mean survival time of

patients receiving Olanzapine is higher than the estimated restricted mean survival

time of patients receiving any of the other treatments. However, the difference is not

very extensive, again implying hidden heterogeneity inside the patient data.
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treatment estimated restricted mean survival time

t R̂MST
t

Olanzapine (O) 10.0
Perphenazine (P) 8.1

Quetiapine (Q) 7.3
Risperidone (R) 8.2
Ziprasidone (Z) 7.1

Table 7.4: Estimated restricted mean survival times for every treatment in the
common survival analysis

The estimated survival functions with estimated median and restricted mean survival

times indicate, that patients receiving Olanzapine discontinue the treatment later

than patients receiving any of the other treatments. However, the difference is not

tremendous, pointing towards the presence of heterogeneity inside the patient data.

In the following section we will therefore estimate the respective pairwise hazard

ratios in order to confirm the observation.

7.2.2 Survival model

In the following we will estimate the hazard ratio between two treatments by Cox

proportional-hazard models. In order to guarantee comparability we will use the same

covariates as in the first analysis of the CATIE data. Therefore let X = (X 1,X 2,X t t̃)

be three independent covariates, with X 1 denoting the tardive dyskinesia status and

X 2 whether the patient had an exacerbation of schizophrenia in the preceding three

months. Furthermore let X t t̃ be the covariate describing the administered treatment

with characteristics

x t t̃
j =

{
1 patient j receives treatment t

0 patient j receives treatment t̃

for patient j = 1, . . . ,n, similar to the notation used in Chapter 6. Let Z denote the

covariate describing the site, which is known to violate the proportional-hazards

assumption [99].
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The stratified Cox model

h t t̃(y,X ,Z) = h Z0(y) · exp
(

β
1X 1 +β

2X 2 +β
t t̃X t t̃

)
(7.1)

describes the hazard rate for patients receiving treatments t, t̃ ∈ T . Using the esti-

mated coefficient β̂ t t̃ in (7.1), we are able to estimate the hazard ratio

ĤR
t t̃
= exp

(
β̂

t t̃
)

between any two treatments t, t̃ ∈ T .

The models involving patients receiving Perphenazine were limited to patients

without tardive dyskinesia, as those patients were excluded from randomization to

Perphenazine. Furthermore, the models involving Ziprasidone were limited to the

patients, who enrolled after the inclusion of Ziprasidone into the trial.

The estimated hazard ratios with respective 90%-confidence intervals are presented

in Table 7.5.

comparison estimated hazard ratio 90%-confidence interval

t t̃ ĤR
t t̃

I0.1 (HR t t̃)
Olanzapine - Perphenazine (O-P) 0.75 [0.64,0.89]
Olanzapine - Quetiapine (O-Q) 0.60 [0.52,0.70]
Olanzapine - Risperidone (O-R) 0.75 [0.65,0.88]
Olanzapine - Ziprasidone (O-Z) 0.74 [0.61,0.89]

Table 7.5: Estimated hazard ratios between treatments with 90%-confidence
intervals in the common survival analysis

The estimated hazard ratio between Olanzapine and Quetiapine

ĤR
O Q

= 0.60

entails that patients receiving Olanzapine only have a risk of 60% of discontinuing
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their treatment compared with patients receiving Quetiapine. Vice versa patients

receiving Quetiapine are 1
0.6 ≈ 1.67 times more likely to discontinue their treatment

than patients receiving Olanzapine. The corresponding 90%-confidence interval is

I0.1
(

HR O Q
)
= [0.52,0.70]

and does not include 1.

Analogously patients receiving Perphenazine or Risperidone are 1
0.75 ≈ 1.33 and

patients receiving Ziprasidone are 1
0.74 ≈ 1.35 times more likely to discontinue their

treatment compared with patients receiving Olanzapine.

The estimated hazard ratios with respective 90%-confidence intervals are visualized

in Figure 7.4.

Figure 7.4: Estimated hazard ratios in common survival model with
90%-confidence intervals between Olanzapine and every other treatment

Even though all hazard ratios between Olanzapine and any other treatment are below

1, those between Olanzapine and Perphenazine, Risperidone, and Ziprasidone are

not small in particular, supporting the conjecture of underlying heterogeneity.
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The estimated hazard ratios between all other pairs of treatments do not indicate

earlier or later discontinuation associated with any of the other treatments, as all of

their confidence intervals include 1. In particular the estimated hazard ratio between

Perphenazine and Risperidone is

ĤR
P R

= 0.95

with corresponding 90%-confidence interval

I0.1 (HR P R)= [0.80,1.11]

obviously including 1. The same results appear for any other pair of treatments.

The estimated hazard ratios between pairs of treatments not listed in Table 7.5 are

included in Appendix A.

Due to the conjecture of underlying heterogeneity in the patient data and the absence

of further results about the discontinuation of treatment associated with medications

besides Olanzapine, we perform a cluster-based survival analysis in the following

section.

7.3 Cluster-based survival analysis

Based on the newly invented theory described in Chapter 6 we present the results

of a cluster-based survival analysis of the CATIE data. On the following pages we

will show many results. For reasons of clarity, we will therefore outline the order in

which we will present the results.

To begin with, in Section 7.3.1 we will derive a clustering on one of the treatments,

namely Olanzapine. Besides describing the clusters’ typologies, we will discuss the

clusters from a clinical point of view. At the end of Section 7.3.1 we will assign

patients from all other treatments into clusters as preparation for the subsequent

analyses. In Section 7.3.2 we will estimate a separate survival function for every
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treatment in every cluster and present key figures to analyze the survival functions

(e.g. median survival times). In Section 7.3.3 we will estimate the hazard ratio

between any two pairs of treatments separately for each cluster. In both sections

the results will be presented in the ordering based on the numbering of the clusters.

Furthermore, there will not yet be any comparisons in both sections, as they only

intend to present the results separately both for clusters and treatments. The compar-

ison between treatments and clusters is included in Section 7.4.1 and Section 7.4.2

respectively. In Section 7.4.1 we begin with comparing treatments with each other,

while only considering one of the clusters separately. The first part is concerned

with comparing Olanzapine with all of the other treatments and the second part deals

with comparing Perphenazine and Risperidone. Besides comparing the treatments

with each other, we will also compare the cluster-based results to the results of the

previously presented common survival analysis. Finally, Section 7.4.2 includes a

direct comparison of the clusters. Thereby the survival functions of both clusters will

be compared with each other as well as with the survival function of the common

survival analysis.

Before deriving the clustering, we have to transform the outcome as described in

Section 6.1. Let Y j be the time until the event of interest occurs with characteristics

y j > 0 and D j the information, whether patient j discontinued the treatment with

characteristics

d j =

{
0 patient does not discontinue treatment in phase 1/1A

1 patient discontinues treatment in phase 1/1A

for j = 1, . . . ,n. Patients not discontinuing their treatment (d j = 0) do obviously not

have a recorded time until discontinuation of the treatment. Therefore we need the

following transformation to apply the clustering approach.

The transformed outcome Z j represents the amount of incomplete days in phase 1/1A.

The observed time period was 18 months, therefore we use y∗ = 548 days as the

time horizon of phase 1/1A. Patients who did not discontinue their treatment have
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no incomplete days in phase 1/1A. Patients who did discontinue their treatment

missed out on 548− y j days of additional treatment in phase 1/1A. The respective

characteristics are obtained by

z j =

{
0 if d j = 0

548− y j if d j = 1

for patient j = 1, . . . ,n as displayed in Table 7.6.

outcome definition values

Y j day of discontinuation day of discontinuation of phase 1/1A 1−646
Z j incomplete days incomplete days in phase 1/1A 0−548

Table 7.6: Original and transformed outcome in CATIE

All n = 1432 patients were included in the following cluster-based analysis. The

treatment patient data sets are

G O =
{(

x j,z j
)} 330

j=1

G P =
{(

x j,z j
)} 257

j=1

G Q =
{(

x j,z j
)} 329

j=1

G R =
{(

x j,z j
)} 333

j=1

G Z =
{(

x j,z j
)} 183

j=1

where x j describe the available baseline characteristics and z j the incomplete days

in phase 1/1A. The aim is to investigate, which baseline characteristics indicate a

high amount of incomplete days or respectively early discontinuation of treatment.
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Following up on the conjecture about heterogeneity between patients receiving

Olanzapine, we will manually choose Olanzapine as cluster-treatment, i.e.

t∗ = O

for all further analyses.

7.3.1 Clustering

In this section we will derive the clustering on patients receiving Olanzapine. After-

wards we will describe the clusters’ typologies and interpret them clinically.

The clustering was derived on all n O = 330 patients receiving Olanzapine. Before

deriving the clustering on G O, we categorized some characteristics of nominal and

ordinal scale into pre-defined categories. All other characteristics of ordinal scale

and characteristics of cardinal scale were automatically assigned into quantiles and

optimized classes as described in Section 4.3.1. All characteristics were transformed

as described in Section 4.2. Afterwards we selected the variables for the geometric

clustering approach as described in Section 4.3.

The selected characteristics with respective classes are displayed in Table 7.7. A

complete list of all available characteristics, with respective values and classes can

be found in Appendix A.

characteristic values class number class

no. of previous 0,1,2,3,> 4 1 0
hospitalizations (HOSP) 2 ≥ 1

anxiety disorder in the yes, no
past month (ANX)

drug abuse in the yes, no
past 5 years (DRUG)

Table 7.7: Selected characteristics for clustering Olanzapine in CATIE
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We applied the geometric clustering approach without specifying lower and upper

bounds for each cluster using the selected variables and the described transformation

to identify k = 3 clusters. The choice of k = 3 was set empirically. The transformed

patients’ outcome Ẑ i in the patient data set Ĝ O
i of cluster Cl O−i follows some un-

known discrete distribution with possible occurrences between 0 (’no incomplete

days’, i.e. finished phase 1/1A without discontinuing the treatment) and 548 (’maxi-

mum incomplete days’, i.e. discontinued the treatment immediately).

The estimated amount of incomplete days ẑ O−i is used as cluster value, i.e.

f (Cl O−i) = ẑ O−i :=
1

κ O−i

κ O−i

∑
j=1

z O−i j

where κ O−i is the number of patients in cluster Cl O−i for i = 1, . . . ,3. Based on

Theorem 5.3 the variance is given by

σ̂
2
O−i :=

1
κ O−i−1

κ O−i

∑
j=1

(
z O−i j− ẑ O−i

)2

for cluster Cl O−i for i = 1, . . . ,3. The division of the 330 patients receiving Olanza-

pine into three clusters is shown in Table 7.8. ’Incomplete days’ is referred to the

average amount of incomplete days in phase 1/1A in the respective cluster. Therefore

patients assigned to cluster Cl O−1 due to their individual combination of characteris-

tic values have 199.2 days of incomplete treatment in phase 1/1A. In addition, the

estimated day of discontinuation ŷ i of patients in the respective cluster is provided.

cluster Cl O−i 1 2 3 total

patients κ i 154 88 88 330
incomplete days ẑ i 199.2 270.9 320.0 250.5
day of discontinuation ŷ i 334.5 268.6 221.7 286.9

Table 7.8: Clustering patients receiving Olanzapine in CATIE
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The focus of the approach is the prediction of the outcome. Therefore, it is reliable

to combine clusters with similar cluster values. Due to clusters Cl O−2 and Cl O−3

being similar in regards of the estimated incomplete days, we merged them into 2

resulting clusters presented in Table 7.9.

cluster Cl O−i 1 2 total

patients κ i 154 176 330
incomplete days ẑ i 199.2 295.5 250.5
day of discontinuation ŷ i 334.5 245.2 286.9

Table 7.9: Clustering patients receiving Olanzapine in CATIE with merged clusters

We allowed this automatic merging of clusters, as long as the difference from the

original cluster value does not differ more than 30 days from the cluster value of the

merged cluster, i.e. ∣∣∣ f (Cl original
)
− f

(
Cl merged

)∣∣∣≤ 30

for all Cl original combined to Cl merged .

Cluster Cl O−1 consists of κ O−1 = 154 patients with estimated incomplete days of

199.2, whereas cluster Cl O−2 consists of κ O−2 = 176 with estimated incomplete

days of 295.5.

Cluster Cl O−1

The cluster is uniquely defined by three baseline characteristics. Patients who did

not have an anxiety disorder in the past month (no ANX), who did not abuse drugs

in the past five years (no DRUG) and have not been hospitalized in the past year

(HOSP = 0) are assigned to Cl O−1. The division is visualized in Table 7.10.

All characteristics reflect the overall situation of the patient. No anxiety disorder

combined no with drug abuse and no hospitalization indicate stable conditions for

the patient. Especially the finding, that non-anxious patients tend to stay on their

medication was unknown before, even though the CATIE data is available to nu-

merous researchers [125]. Patients experiencing these stable conditions only have
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cluster Cl O−1 cluster Cl O−2
incomplete no. of incomplete no. of

days patients days patients
ANX DRUG HOSP ẑ 1 κ 1 ẑ 2 κ 1

no no 0 199.2 154
≥ 1 270.9 88

no yes 0,≥ 1 311.2 52
yes no, yes 0,≥ 1 332.6 36

total 199.2 154 295.5 176

Table 7.10: Cluster typology for patients receiving Olanzapine in CATIE

estimated 199.2 days of incomplete treatment in phase 1/1A. The estimated (non

transformed) day of discontinuation is 334.5. Therefore patients in Cl O−1 discon-

tinue their treatment late and are overall less likely to discontinue their treatment.

Cluster Cl O−2

The cluster is uniquely defined by the same three baseline characteristics. Patients

who did have an anxiety disorder in the past month (ANX) and/or abused drugs in the

past five years (DRUG) and/or have been hospitalized in the past year (HOSP≥ 1)

are assigned to Cl O−2. The division is visualized in Table 7.10.

If one component reflecting the overall situation becomes adverse, the overall situa-

tion of the patient is less stable. Especially the finding, that anxious patients tend to

discontinue their medication early was unknown before, revealing the importance of

further addressing these patients [125]. All in all, patients not experiencing these

stable conditions have estimated 295.5 days of incomplete treatment. The estimated

(non transformed) day of discontinuation is 245.5. Therefore patients in Cl O−2

discontinue their treatment early and are overall more likely to discontinue their

treatment.

In the following, we will assign patients receiving any other treatments into clusters

based on the typology derived on Olanzapine, preparing the subsequent analyses.
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Using the unique baseline characteristics defining clusters Cl O−1 and Cl O−2, we are

able to assign all patients receiving any other treatment into clusters as described

in Section 6.1. The division of all n = 1432 patients into two clusters is shown in

Table 7.11.

cluster Cl O−1 cluster Cl O−2
incomplete no. of incomplete no. of

days patients days patients
treatment t ẑ t

O−1 κ t
O−1 ẑ t

O−2 κ t
O−2

Olanzapine (O) 199.2 154 295.5 176
Perphenazine (P) 275.0 114 336.5 143

Quetiapine (Q) 315.2 143 352.1 186
Risperidone (R) 293.5 133 314.8 200
Ziprasidone (Z) 312.0 82 362.9 101

274.4 626 329.0 806

Table 7.11: Clustering CATIE for all treatments

Patients in cluster Cl Q
O−1, i.e. patients with those baseline characteristics defined by

Cl O−1 receiving Quetiapine have estimated 315.2 of incomplete treatment in phase

1/1A, whereas patients in cluster Cl Q
O−2 have estimated 352.1 days of incomplete

treatment in phase 1/1A. The estimated day of discontinuation ŷ t
O−1 and ŷ t

O−2 for

every treatment t ∈ T is shown in Table 7.12.

cluster Cl O−1 cluster Cl O−2
day of no. of day of no. of

discontinuation patients discontinuation patients
treatment t ŷ t

O−1 κ t
O−1 ŷ t

O−2 κ t
O−2

Olanzapine (O) 334.5 154 245.5 176
Perphenazine (P) 261.5 114 206.2 143

Quetiapine (Q) 225.6 143 190.5 186
Risperidone (R) 244.9 133 223.7 200
Ziprasidone (Z) 228.7 82 181.2 101

263.4 626 212.3 806

Table 7.12: Clustering CATIE for all treatments with original outcome
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Patients in cluster Cl Q
O−1 discontinue their treatment with Quetiapine after estimated

225.6 days of treatment, whereas patients in cluster Cl Q
O−2 discontinue their treat-

ment with Quetiapine already after estimated 190.5 days of treatment.

The results shown in Table 7.12 already indicate, that patients in cluster Cl O−1

discontinue the treatment with Olanzapine later than patients receiving any other

treatment, i.e.

ŷ O
O−1 >> max

t=P,Q,R,Z
ŷ t

O−1

whereas the difference does not seem to be as substantial for patients in cluster Cl O−2.

Especially the estimated day of discontinuation of patients receiving Risperidone

is approximately the same estimated day of discontinuation as patients receiving

Olanzapine:

ŷ O
O−2 ≈ ŷ R

O−2

Therefore, we estimate cluster-based survival functions for both clusters Cl O−1 and

Cl O−1 in the following section.

7.3.2 Cluster-based survival function

In this section we will separately estimate a survival function in every cluster for

every treatment. We begin by presenting the estimated cluster-based survival func-

tion, cluster-based median survival time and cluster-based restricted mean survival

time for patients in cluster Cl O−1. Afterwards we will show the respective results

for patients in cluster Cl O−2. The comparison of treatments and clusters is included

in Section 7.4 for both clusters and all treatments. However, we will already point

out some main observations while presenting the results.

The true survival functions S t
O−1 and S t

O−2 of patients receiving treatment t ∈ T in

cluster Cl O−1 and Cl O−2 are unknown. Using the approach introduced in Chapter 6

we will therefore estimate the survival functions in every cluster for every treatment.
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Cluster Cl O−1

Figure 7.5 shows the estimated survival functions Ŝ t
O−1 for patients in cluster Cl O−1

receiving treatment t ∈ T . The separate estimated cluster-based survival functions

with 90%-confidence intervals I0.1 (S t
O−1(y)

)
are included in Appendix A.

Figure 7.5: Estimated cluster-based survival functions for patients in cluster Cl O−1

The estimated cluster-based survival function of patients receiving Olanzapine in

cluster Cl O−1 lies above all other estimated survival functions, indicating that pa-

tients with baseline characteristics defined by Cl O−1 discontinue the treatment with

Olanzapine later compared with all other treatments. Furthermore, the estimated

cluster-based survival function of Perphenazine Ŝ P
O−1 lies above the estimated cluster-

based survival functions of Quetiapine Ŝ Q
O−1, Risperidone Ŝ R

O−1 , and Ziprasidone

Ŝ Z
O−1. Hence, patients in cluster Cl O−1 discontinue the treatment with Perphenazine

later than the treatment with Quetiapine, Risperidone, and Ziprasidone.

Based on the estimated cluster-based survival functions we estimate the cluster-based

median survival times, displayed in Table 7.13 with respective 90%-confidence

intervals.
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treatment estimated median survival time 90%-confidence interval
t M̂ t

O−1 I0.1 (M t
O−1
)

Olanzapine (O) 15.3 [12.1,∞[
Perphenazine (P) 6.2 [5.4,9.3]

Quetiapine (Q) 5.6 [4.7,7.4]
Risperidone (R) 5.5 [4.1,7.3]
Ziprasidone (Z) 5.0 [3.2,7.3]

Table 7.13: Estimated cluster-based median survival times with 90%-confidence
intervals for patients in cluster Cl O−1

After 15.3 months, just half of all patients in cluster Cl O−1 receiving Olanzapine have

discontinued their treatment. On the other hand, after 6.2, 5.6, 5.5, and 5.0 months

already half of all patients in cluster Cl O−1 receiving Perphenazine, Quetiapine,

Risperidone, and Ziprasidone respectively discontinued their treatment.

We already want to note, that the estimated cluster-based median survival time of

patients receiving Olanzapine is much higher than any other estimated cluster-based

median survival time. Due to the upper bound of I0.1 (S O
O−1(y)

)
never falling below

0.5, the upper bound of the 90%-confidence interval of the cluster-based median

survival time of patients receiving Olanzapine I0.1 (M O
O−1
)

can not be determined

and is therefore assumed to be higher than the time horizon of 18 months.

The estimated cluster-based restricted mean survival times underline the previous

observations as shown in Table 7.14.

treatment estimated restricted mean survival time

t R̂MST
t
O−1

Olanzapine (O) 11.7
Perphenazine (P) 9.2

Quetiapine (Q) 8.0
Risperidone (R) 8.6
Ziprasidone (Z) 8.0

Table 7.14: Estimated cluster-based restricted mean survival times for patients in
cluster Cl O−1
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The estimated cluster-based restricted mean survival time of patients receiving

Olanzapine in cluster Cl O−1 is 11.7 months and therefore higher than any other

estimated cluster-based restricted mean survival time of patients receiving any other

treatment in cluster Cl O−1.

Cluster Cl O−2

Figure 7.6 shows the estimated cluster-based survival functions Ŝ t
O−2 for patients

in cluster Cl O−2 receiving treatment t ∈ T . The separate estimated cluster-based

survival functions with 90%-confidence intervals I0.1 (S t
O−2(y)

)
are included in

Appendix A.

Figure 7.6: Estimated cluster-based survival functions for patients in cluster Cl O−2

Opposed to the previous cluster, the estimated cluster-based survival functions of

patients in cluster Cl O−2 lie very close together. Therefore, patients with the baseline

characteristics defined by cluster Cl O−2 discontinue their treatment early, no matter

which treatment was administered.
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Based on the estimated cluster-based survival functions we estimate the cluster-

based median survival times, shown in Table 7.15 with respective 90%-confidence

intervals.

treatment estimated median survival time 90%-confidence interval
t M̂ t

O−2 I0.1 (M t
O−2
)

Olanzapine (O) 6.1 [4.8,7.3]
Perphenazine (P) 4.7 [3.7,6.1]

Quetiapine (Q) 4.2 [3.5,5.1]
Risperidone (R) 5.0 [3.8,6.1]
Ziprasidone (Z) 3.3 [3.0,4.1]

Table 7.15: Estimated cluster-based median survival times with 90%-confidence
intervals for patients in cluster Cl O−2

Half of all patients in cluster Cl O−2 receiving Olanzapine, Perphenazine, Quetiapine,

Risperidone, and Ziprasidone have discontinued their treatment after 6.1, 4.7, 4.2,

5.0, and 3.3 months respectively. There is no substantial difference between the

treatments.

The cluster-based restricted mean survival times shown in Table 7.16 underline the

previous observations, as they are very similar between the administered treatments.

treatment estimated restricted mean survival time

t R̂MST
t
O−2

Olanzapine (O) 8.6
Perphenazine (P) 7.2

Quetiapine (Q) 6.8
Risperidone (R) 8.0
Ziprasidone (Z) 6.4

Table 7.16: Estimated cluster-based restricted mean survival times for patients in
cluster Cl O−2
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Based on the estimated cluster-based survival functions we will estimate cluster-

based survival models in the following section.

7.3.3 Cluster-based survival model

In this section we will estimate the hazard ratio between any two pairs of treatments

separately for both clusters. We begin by presenting the estimated cluster-based

hazard ratios for patients in cluster Cl O−1. Afterwards we will show the respective

results for patients in cluster Cl O−2. The comparison of treatments and clusters is

included in Section 7.4 for both clusters and all treatments. However, we will already

point out some main observations while presenting the results.

The true cluster-based hazard ratio between any two pairs of treatment t, t̃ ∈ T is

unknown. We estimate the cluster-based hazard ratio between two treatments by

cluster-based Cox proportional hazard models, as introduced in Chapter 6. Therefore,

let X t t̃ be the covariate describing the administered treatment with characteristics

x t t̃
j =

{
1 patient j receives treatment t

0 patient j receives treatment t̃

for patient j = 1, . . . ,n, similar to the notation used in Chapter 6.

Let Z denote the covariate describing the site, which is known to violate the

proportional-hazards assumption [99]. The cluster-based stratified Cox model

h t t̃
O−i(y,X

t t̃ ,Z) = h t t̃
Z0 O−i(y) · exp

(
β

t t̃
O−iX

t t̃
O−i

)
(7.2)

describes the hazard rate for patients in cluster Cl O−i receiving treatments t, t̃ ∈ T ,

i = 1,2. Using the estimated coefficient β̂ t t̃
O−i in (7.2), we are able to estimate the

hazard ratio

ĤR
t t̃
O−i = exp

(
β̂

t t̃
O−i

)
between any two treatments t, t̃ ∈ T in cluster Cl O−i .
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In order to guarantee comparability to the common survival model we also analyzed

cluster-based survival models with the same covariates as in the first analysis of the

CATIE data. Therefore let X = (X 1,X 2) be two independent covariates, with X 1

denoting the tardive dyskinesia status and X 2 whether the patient had an exacerbation

of schizophrenia in the preceding three months. The cluster-based stratified Cox

model with additional covariates is then denoted by:

h t t̃
O−i(y,X ,X t t̃ ,Z) = h t t̃

Z0 O−i(y) ·exp
(

β
1
O−iX

1
O−i +β

2
O−iX

2
O−i +β

t t̃
O−iX

t t̃
O−i

)
(7.3)

The estimated cluster-based hazard rates from (7.3) only differ marginally from

the estimated cluster-based hazard rates from (7.2). The results are included in

Appendix A. Due to the estimated cluster-based hazard rates being similar to each

other, we refrain from overloading the model and use (7.2) for all further analyses.

All cluster-based Cox PH models involving patients receiving Perphenazine were

limited to patients without tardive dyskinesia, as those patients were excluded from

randomization to Perphenazine. Furthermore, the models involving Ziprasidone

were limited to the patients who enrolled after the inclusion of Ziprasidone into the

trial.

We will begin by presenting the estimated cluster-based hazard ratios between two

treatments in cluster ClO−1 and afterwards present the results for cluster ClO−2. The

comparison of treatments and clusters is included in Section 7.4 for both clusters

and all treatments. However, we will already point out the main observations while

presenting the results.

Cluster ClO−1

Table 7.17 shows the estimated cluster-based hazard ratios between Olanzapine and

all other treatments for patients in cluster ClO−1 with respective 90%-confidence

intervals.
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comparison estimated hazard ratio 90%-confidence interval

t t̃ ĤR
t t̃
O−1 I0.1 (HR t t̃

O−1
)

Olanzapine - Perphenazine (OP) 0.76 [0.58,1.01]
Olanzapine - Quetiapine (OQ) 0.48 [0.37,0.61]
Olanzapine - Risperidone (OR) 0.59 [0.45,0.75]
Olanzapine - Ziprasidone (OZ) 0.65 [0.47,0.89]

Table 7.17: Estimated cluster-based hazard ratios between Olanzapine and all other
treatments with 90%-confidence intervals for patients in cluster Cl O−1

The estimated hazard ratio between Olanzapine and Quetiapine

ĤR
O Q
O−1 = 0.48

entails that patients in cluster ClO−1 receiving Olanzapine only have a chance of 48%

of discontinuing their treatment compared with patients receiving Quetiapine. Vice

versa patients receiving Quetiapine are 1
0.48 ≈ 2.08 times more likely to discontinue

their treatment than patients receiving Olanzapine in cluster ClO−1.

The corresponding 90%-confidence interval is

I0.1
(

HR O Q
O−1

)
= [0.37,0.61]

and does not include 1. Furthermore, patients in cluster Cl O−1 receiving Per-

phenazine are 1
0.76 ≈ 1.32, patients receiving Risperidone are 1

0.59 ≈ 1.69 and patients

receiving Ziprasidone are 1
0.65 ≈ 1.54 times more likely to discontinue their treatment

than patients receiving Olanzapine. Only the 90%-confidence interval for the esti-

mated cluster-based hazard ratio between Olanzapine and Perphenazine just includes

1, as the upper bound is 1.01. All other 90%-confidence intervals do not include 1,

as visualized in Figure 7.7.

166



7.3. CLUSTER-BASED SURVIVAL ANALYSIS

Figure 7.7: Estimated cluster-based hazard ratios between Olanzapine and all other
treatments with 90%-confidence intervals for patients in cluster Cl O−1

Furthermore the estimated cluster-based hazard ratio between Risperidone and

Perphenazine is

ĤR
P R
O−1 = 0.71

with corresponding 90%-confidence interval

I0.1 (HR P R
O−1
)
= [0.55,0.94]

not including 1. Therefore patients receiving Risperidone in cluster Cl O−1 are
1

0.71 ≈ 1.4 times more likely to discontinue their treatment than patients receiving

Perphenazine. We will discuss this observation in Section 7.4.
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The estimated cluster-based hazard ratios between any other pairs of treatment do not

indicate earlier or later discontinuation associated with any of the other treatments,

as all of their 90%-confidence intervals include 1. The results are included in

Appendix A.

Cluster ClO−2

Table 7.17 shows the estimated cluster-based hazard ratios between Olanzapine and

all other treatments for patients in cluster ClO−2 with respective 90%-confidence

intervals.

comparison estimated hazard ratio 90%-confidence interval

t t̃ ĤR
t t̃
O−2 I0.1 (HR t t̃

O−2
)

Olanzapine - Perphenazine (OP) 0.85 [0.69,1.06]
Olanzapine - Quetiapine (OQ) 0.69 [0.57,0.84]
Olanzapine - Risperidone (OR) 0.96 [0.79,1.16]
Olanzapine - Ziprasidone (OZ) 0.92 [0.71,1.19]

Table 7.18: Estimated cluster-based hazard ratios between Olanzapine and all other
treatments with 90%-confidence intervals for patients in cluster Cl O−2

The estimated hazard ratio between Olanzapine and Quetiapine

ĤR
O Q
O−2 = 0.69

entails that patients receiving Olanzapine only have a chance of 69% of discontinuing

their treatment compared with patients receiving Quetiapine. Vice versa patients

receiving Quetiapine are 1
0.69 ≈ 1.45 times more likely to discontinue their treatment

than patients receiving Olanzapine. The corresponding 90%-confidence interval is

I0.1
(

HR O Q
O−2

)
= [0.57,0.84]

and does not include 1. All other pairwise hazard ratios do not show similar results.

Patients in cluster Cl O−2 receiving Risperidone are only 1
0.96 ≈ 1.04 and patients
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receiving Ziprasidone are only 1
0.92 ≈ 1.09 times more likely to discontinue their

treatment than patients receiving Olanzapine. Both hazard ratios are very close

to one. Therefore patients in cluster Cl O−2 do not discontinue the treatment with

Olanzapine later than the treatment with Risperidone or Ziprasidone. Additionally,

patients receiving Perphenazine are just 1
0.85 ≈ 1.18 times more likely to discontinue

their treatment than patients receiving Olanzapine and the respective 90%-confidence

interval for the estimated cluster-based hazard ratio between Olanzapine and Per-

phenazine includes 1, as visualized in Figure 7.8.

Figure 7.8: Estimated cluster-based hazard ratios between Olanzapine and all other
treatments with 90%-confidence intervals for patients in cluster Cl O−2

The estimated cluster-based hazard ratios between any other pairs of treatment do not

indicate earlier or later discontinuation associated with any of the other treatments,

as all of their 90%-confidence intervals include 1. The results are included in

Appendix A.
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7.4 Justification of different time to discontinuation

Up to this point, the results were presented separately regarding clusters and treat-

ments. The comparisons are included in this section. We will begin by comparing

treatments with each other while regarding one of the clusters separately, thus jus-

tifying the assumption about different outcomes across treatments. Thereby we

will especially be comparing the results of the common survival analysis with the

cluster-based survival analysis. Afterwards we will directly compare the clusters to

each other, to justify the division into clusters by looking at the difference between

the clusters regarding the outcome.

7.4.1 Justification across treatments

In this section we will compare treatments with each other while regarding both

clusters separately. We begin by comparing Olanzapine with all other treatments.

The results will be presented in the ordering based on the numbering of the clusters.

Thereby we will both compare the survival functions, as well as the hazard ratios

resulting from the respective survival models. Besides comparing the treatments with

each other, we will highlight the difference to the results of the common survival

analysis, emphasizing the importance of the cluster-based consideration. Afterwards

we will compare Perphenazine with Risperidone and highlight different behaviours

on both clusters, especially in comparison with the common survival analysis.

Olanzapine versus other treatments

In the common survival analysis Olanzapine was found to be associated with later

discontinuation of the treatment compared with all other treatments (see Section 7.2).

We will begin with the comparison of treatments for patients in cluster Cl O−1.

Afterwards respective comparisons will be made for patients in cluster Cl O−2.
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The cluster-based survival analysis presented in Section 7.3 indicates, that patients

in cluster Cl O−1 discontinue the treatment with Olanzapine later compared with the

treatment with Perphenazine, Quetiapine, Risperidone, and Ziprasidone.

Applying Procedure 6.2 on cluster Cl O−1 with level of confidence α = 0.1 we can

observe

M̂ O
O−1 = 15.3 > 6.2 = M̂ P

O−1

M̂ O
O−1 = 15.3 > 5.6 = M̂ Q

O−1

M̂ O
O−1 = 15.3 > 5.5 = M̂ R

O−1

M̂ O
O−1 = 15.3 > 5.0 = M̂ Z

O−1

with disjoint 90%-confidence intervals

I0.1
(

M O
O−1

)
∩ I0.1 (M P

O−1
)
= [12.1,∞[ ∩ [5.4,9.3] = /0

I0.1
(

M O
O−1

)
∩ I0.1

(
M Q

O−1

)
= [12.1,∞[ ∩ [4.7,7.4] = /0

I0.1
(

M O
O−1

)
∩ I0.1 (M R

O−1
)
= [12.1,∞[ ∩ [4.1,7.3] = /0

I0.1
(

M O
O−1

)
∩ I0.1 (M Z

O−1
)
= [12.1,∞[ ∩ [3.2,7.3] = /0

for all estimated cluster-based median survival times in cluster Cl O−1 as displayed

in Figure 7.9.

The 90%-confidence interval of the estimated cluster-based median survival time

of patients receiving Olanzapine in cluster Cl O−1 is not just disjoint from all other

90%-confidence intervals, but there is a substantial gap, which was not observed in

the common survival analysis (see Figure 7.3).
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Figure 7.9: Estimated cluster-based median survival times for patients in cluster
Cl O−1

Furthermore, the estimated cluster-based restricted mean survival time of Olanzapine

is higher than the estimated cluster-based restricted mean survival time of any other

treatment:

R̂MST
O
O−1 = 11.7 > 9.2 = R̂MST

P
O−1

R̂MST
O
O−1 = 11.7 > 8.0 = R̂MST

Q
O−1

R̂MST
O
O−1 = 11.7 > 8.6 = R̂MST

R
O−1

R̂MST
O
O−1 = 11.7 > 8.0 = R̂MST

Z
O−1

Therefore patients in cluster Cl O−1 discontinue the treatment with Olanzapine sub-

stantially later compared with all other treatments.

The observations are strengthened by the analysis of the respective cluster-based

survival models. Applying Procedure 6.3 on cluster Cl O−1 with level of confidence

α = 0.1 we can observe the hazard ratios between Olanzapine and all other treatments
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to be less than one with all but one of the 90%-confidence intervals not including 1:

ĤR
O P
O−1 = 0.76 with I0.1

(
HR O P

O−1

)
= [0.58,1.01]

ĤR
O Q
O−1 = 0.48 with I0.1

(
HR O Q

O−1

)
= [0.37,0.61]

ĤR
O R
O−1 = 0.59 with I0.1

(
HR O R

O−1

)
= [0.45,0.75]

ĤR
O Z
O−1 = 0.65 with I0.1

(
HR O Z

O−1

)
= [0.47,0.89]

Even though Iα
(
HR O P

O−1
)

does include 1, its upper bound is just 1.01. Therefore

we can still assume patients receiving Olanzapine to have a substantially lower risk

of discontinuing the treatment with Olanzapine compared with Perphenazine, and

obviously also Risperidone and Ziprasidone.

Furthermore, the cluster-based hazard ratios were lower for three out of four treat-

ments compared with the common survival analysis:

ĤR
O Q
O−1 = 0.48 < 0.60 = ĤR

O Q

ĤR
O R
O−1 = 0.59 < 0.75 = ĤR

O R

ĤR
O Z
O−1 = 0.65 < 0.74 = ĤR

O Z

Therefore patients in cluster Cl O−1 show an even lower risk than initially suggested

by the common survival analysis of discontinuing the treatment with Olanzapine

compared with Quetiapine, Risperidone, and Ziprasidone. The risk of discontinuing

the treatment with Olanzapine compared with Perphenazine is approximately similar

to the suggestion by the common survival analysis:

ĤR
O P
O−1 = 0.76≈ 0.75 = ĤR

O P

The estimated cluster-based hazard ratios of cluster Cl O−1 in comparison to the esti-

mated hazard ratios from the common survival analysis are displayed in Figure 7.10.
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Figure 7.10: Estimated cluster-based hazard ratios between Olanzapine and all
other treatments for patients in cluster Cl O−1 and Cl O−2 in comparison to the
hazard ratios from the common survival models with 90%-confidence intervals

Thus, the benefit of Olanzapine compared with the other treatments was strongly

underestimated for patients in cluster Cl O−1.

On the other hand the results presented in Section 7.3 indicate, that there is no such

difference between the treatments regarding the discontinuation of treatment for

patients in cluster Cl O−2. Applying Procedure 6.2 on cluster Cl O−2 with level of

confidence α = 0.1 we can not observe the same results. The estimated cluster-based

median survival time of patients receiving Olanzapine is just marginally higher than
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those of the other treatments

M̂ O
O−2 = 6.1 > 4.7 = M̂ P

O−2

M̂ O
O−2 = 6.1 > 4.2 = M̂ Q

O−2

M̂ O
O−2 = 6.1 > 5.0 = M̂ R

O−2

M̂ O
O−2 = 6.1 > 3.3 = M̂ Z

O−2

with all but one of the respective 90%-confidence intervals overlapping

I0.1
(

M O
O−1

)
∩ I0.1 (M P

O−1
)
= [4.8,7.3] ∩ [3.7,6.1] 6= /0

I0.1
(

M O
O−1

)
∩ I0.1

(
M Q

O−1

)
= [4.8,7.3] ∩ [3.5,5.1] 6= /0

I0.1
(

M O
O−1

)
∩ I0.1 (M R

O−1
)
= [4.8,7.3] ∩ [3.8,6.1] 6= /0

I0.1
(

M O
O−1

)
∩ I0.1 (M Z

O−1
)
= [4.8,7.3] ∩ [3.0,4.1] = /0

as displayed in Figure 7.11.

Figure 7.11: Estimated cluster-based median survival times with 90%-confidence
intervals for patients in cluster Cl O−2
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Furthermore, the cluster-based restricted mean survival time of Olanzapine is only

marginally higher compared with the other treatments:

R̂MST
O
O−2 = 8.6 > 7.2 = R̂MST

P
O−2

R̂MST
O
O−2 = 8.6 > 6.8 = R̂MST

Q
O−2

R̂MST
O
O−2 = 8.6 > 8.0 = R̂MST

R
O−2

R̂MST
O
O−2 = 8.6 > 6.4 = R̂MST

Z
O−2

Therefore patients in cluster Cl O−2 do not discontinue their treatment with Olanzap-

ine substantially later compared with all other treatments.

The observations are strengthened by the analysis of the respective cluster-based

survival models. Applying Procedure 6.3 on cluster Cl O−2 with level of confidence

α = 0.1 we can only observe the hazard ratio between Olanzapine and Quetiapine to

be less than one with the respective 90%-confidence interval not including 1. Even

though all other cluster-based hazard ratios are also less than one, the difference is

marginal and especially all 90%-confidence intervals include 1:

ĤR
O P
O−2 = 0.85 with I0.1

(
HR O P

O−2

)
= [0.69,1.06]

ĤR
O Q
O−2 = 0.69 with I0.1

(
HR O Q

O−2

)
= [0.57,0.84]

ĤR
O R
O−2 = 0.96 with I0.1

(
HR O R

O−2

)
= [0.79,1.16]

ĤR
O Z
O−2 = 0.92 with I0.1

(
HR O Z

O−2

)
= [0.71,1.19]

Consequently in cluster Cl O−2 Olanzapine can not be associated with a lower haz-

ard rate compared with all other treatments - the opposite of the observation in

cluster Cl O−1. Furthermore the cluster-based hazard ratios were higher for all four

treatments compared with the common survival analysis:

ĤR
O P
O−2 = 0.85 > 0.75 = ĤR

O P
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ĤR
O Q
O−2 = 0.69 > 0.60 = ĤR

O Q

ĤR
O R
O−2 = 0.96 > 0.75 = ĤR

O R

ĤR
O Z
O−2 = 0.92 > 0.74 = ĤR

O Z

Therefore, patients in cluster Cl O−2 show a much higher risk than initially suggested

by the common survival analysis of discontinuing the treatment with Olanzapine.

The risk of discontinuing Olanzapine is similar to the risk of discontinuing any of

the other treatments.

The estimated cluster-based hazard ratios of cluster Cl O−2 in comparison to the

estimated hazard ratios from the common survival analysis as well as the estimated

cluster-based hazard ratios of cluster Cl O−1 are displayed in Figure 7.10.

To summarize, the results from the common survival analysis were strongly mis-

leading due to undetected underlying heterogeneity inside the patient data. The

discontinuation of treatment with Olanzapine was simultaneously over- and underes-

timated. Patients with those baseline characteristics defined by Cl O−1 have a much

lower risk of discontinuing their treatment with Olanzapine compared with any of

the other treatments. Olanzapine is associated with much later discontinuation of

the treatment for patients living in stable conditions due to no hospitalizations in the

past year, no anxiety disorder in the past month, and no drug abuse in the past five

years. The risk of discontinuing the treatment is much lower than initially proposed

by the common survival analysis.

On the other hand patients with those baseline characteristics defined by Cl O−2 do

not have a lower risk of discontinuing their treatment with Olanzapine compared with

any of the other treatments. Therefore, Olanzapine is not associated with later discon-

tinuation of the treatment, if the patient does not experience stable conditions. Thus

the initially proposed suggestion, that Olanzapine is related to later discontinuation

of the treatment for all patients, does not hold for patients in cluster Cl O−2.
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Perphenazine versus Risperidone

Up to now the observed differences all included the treatment, on which the clus-

tering was derived on (i.e. Olanzapine). Besides a thorough analysis of the results

including Olanzapine, it is also important to take a look at the other medications and

especially possible consequences in comparison to the common survival analysis.

In the following we will therefore describe observed differences between two other

treatments, namely Perphenazine and Risperidone, while maintaining the clustering

derived on Olanzapine.

The common survival analysis in Section 7.2 did suggest, that Perphenazine and

Risperidone are both associated with equally early discontinuation of the treatment.

Their estimated survival functions and the estimated median survival times were

nearly identical and the estimated hazard ratio was close to 1. We will compare

Perphenazine and Risperidone with each other separately for patients in cluster

Cl O−1 and cluster Cl O−2. Besides highlighting differences, we will also compare

the results to the common survival analysis.

The cluster-based survival analysis revealed, that patients with those baseline charac-

teristics defined by cluster Cl O−1 discontinue the treatment with Perphenazine later

compared with Risperidone. On the other hand patients with the baseline character-

istics defined by cluster Cl O−2 tend to discontinue the treatment with Risperidone

later compared with Perphenazine. The estimated survival functions for patients in

cluster Cl O−1 and cluster Cl O−2 are shown in Figure 7.12 together with the estimated

survival functions of the common survival analysis representing all patients without

division into clusters. The estimated cluster-based survival function of patients

receiving Perphenazine in cluster Cl O−1 lies above the estimated survival function of

patients receiving Risperidone in cluster Cl O−1. The estimated cluster-based survival

functions of patients receiving Perphenazine and Risperidone in cluster Cl O−2 lie

very close together in the beginning. However after 6 months of treatment, the

estimated cluster-based survival function of patients receiving Risperidone lies above

the estimated cluster-based survival function of patients receiving Perphenazine.

178



7.4. JUSTIFICATION OF DIFFERENT TIME TO DISCONTINUATION

Figure 7.12: Estimated cluster-based survival functions for Risperidone and
Perphenazine for patients in cluster Cl O−1, cluster Cl O−2, and in the common
survival analysis
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The cluster-based median survival times of patients receiving Perphenazine and

Risperidone in cluster Cl O−1 and Cl O−2 are quite similar to each other

M̂ P
O−1 = 6.2

M̂ R
O−1 = 5.5

and

M̂ P
O−2 = 4.7

M̂ R
O−2 = 5.0

with their respective 90%-confidence intervals overlapping:

I0.1 (M P
O−1
)
∩I0.1 (M R

O−1
)
= [5.4,9.3]∩ [4.1,7.3] 6= /0

and

I0.1 (M P
O−2
)
∩I0.1 (M R

O−2
)
= [3.7,6.1]∩ [3.8,6.1] 6= /0

However, the estimated cluster-based hazard ratios reveal substantial differences

between Perphenazine and Risperidone. The estimated hazard ratio between Risperi-

done and Perphenazine from the common survival analysis was very close to 1,

i.e.

ĤR
P R

= 0.95

with the respective 90%-confidence interval

I0.1 (HR P R)= [0.80,1.11]

clearly including 1.
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The estimated cluster-based hazard ratio exposes later discontinuation of treatment

with Perphenazine in cluster Cl O−1 compared with the treatment with Risperidone

ĤR
P R
O−1 = 0.71

with the respective 90%-confidence interval

I0.1 (HR P R
O−1
)
= [0.55,0.94]

not including 1.

On the other hand, the estimated cluster-based hazard ratio discloses later discontin-

uation of treatment with Risperidone in cluster Cl O−2 compared with the treatment

with Perphenazine

ĤR
P R
O−2 = 1.15

with respective 90%-confidence interval

I0.1 (HR P R
O−2
)
= [0.93,1.43]

including 1. Even though I0.1 (HR P R
O−2
)

does include one, we can still observe

different behaviours in both clusters.

The estimated cluster-based hazard ratios are shown in Figure 7.13 together with the

estimated hazard ratio from the common survival analysis.

To summarize, the common survival analysis failed to detect any difference between

Perphenazine and Risperidone due to underlying heterogeneity inside the patient

data. However, patients with those baseline characteristics defined by cluster Cl O−1

discontinue the treatment with Perphenazine later than the treatment with Risperi-

done. Therefore, the second-generation antipsychotic Perphenazine is associated

with later discontinuation of the treatment for patients living in stable conditions due

to no hospitalizations in the past year, no anxiety disorder in the past month, and no

drug abuse in the past five years. On the other hand, patients with those baseline char-

acteristics defined by cluster Cl O−2 discontinue the treatment with Risperidone later.
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Figure 7.13: Estimated hazard ratio and cluster-based hazard ratios between
Risperidone and Perphenazine for patients in cluster Cl O−1 and Cl O−2

Therefore, the first-generation antipsychotic Risperidone is associated with later

discontinuation of the treatment, if the patient does not experience stable conditions.

7.4.2 Justification across clusters

To conclude the analysis of the CATIE data, we want to justify the initial division into

clusters of the patient data originating from patients receiving Olanzapine. There-

fore we will directly compare cluster Cl O−1 and Cl O−2 with each other for patients

receiving Olanzapine. The previous analysis already indicates differences between

the two clusters. However, we want to emphasize the results by directly comparing

them with each other as well as the cluster-based results with the results suggested

by the common survival analysis.

The common survival analysis found Olanzapine to be associated with late discontin-

uation of the treatment. The cluster-based survival analysis in Section 7.3 indicates,

that patients in cluster Cl O−1 discontinue their treatment with Olanzapine even later
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than originally suggested. The estimated survival function and cluster-based survival

functions are displayed in Figure 7.14.

Figure 7.14: Estimated cluster-based survival functions for patients receiving
Olanzapine in cluster Cl O−1, Cl O−2, and patients receiving Olanzapine in general

The estimated cluster-based survival function of patients receiving Olanzapine in

cluster Cl O−1 clearly lies above the estimated cluster-based survival function of

patients receiving Olanzapine in cluster Cl O−2 and the estimated survival function

of patients receiving Olanzapine of the common survival analysis. By applying

Procedure 6.4 and Procedure 6.5 on treatment Olanzapine with level of confidence

α = 0.1 we can observe the estimated cluster-based median survival time of cluster

Cl O−1 to be larger than the cluster-based median survival time of cluster Cl O−1 and

the estimated median survival time proposed by the common survival analysis

M̂ O
O−1 = 15.3 > 6.1 = M̂ O

O−2

M̂ O
O−1 = 15.3 > 9.1 = M̂ O
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with non-overlapping 90%-confidence intervals

I0.1
(

M O
O−1

)
∩ I0.1

(
M O

O−2

)
= [12.1,∞[ ∩ [4.8,7.3] = /0

I0.1
(

M O
O−1

)
∩ I0.1

(
M O
)

= [12.1,∞[ ∩ [7.0,12.0] = /0

as displayed in Figure 7.15.

Figure 7.15: Estimated cluster-based median survival times with 90%-confidence
intervals for patients receiving Olanzapine in cluster Cl O−1, Cl O−2, and patients
receiving Olanzapine general

The cluster-based survival analysis in Section 7.3 also indicates, that patients in

cluster Cl O−2 discontinue their treatment with Olanzapine much earlier than origi-

nally suggested. We can observe the estimated cluster-based median survival time

of cluster Cl O−2 to be less than the estimated cluster-based median survival time

of cluster Cl O−1 and the estimated median survival time proposed by the common
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survival analysis

M̂ O
O−2 = 6.1 < 15.3 = M̂ O

O−1

M̂ O
O−2 = 6.1 < 9.1 = M̂ O

with non-overlapping 90%-confidence interval between clusters Cl O−1 and Cl O−2

I0.1
(

M O
O−2

)
∩ I0.1

(
M O

O−1

)
= [4.8,7.3] ∩ [12.1,∞[= /0

and hardly overlapping confidence interval between cluster Cl O−2 and the common

survival analysis

I0.1
(

M O
O−2

)
∩ I0.1

(
M O
)
= [4.8,7.3] ∩ [7.0,12.0] 6= /0

as displayed in Figure 7.15.

To summarize, the division of the patient data originating from patients receiving

Olanzapine was justified. Patients with those baseline characteristics defined by

cluster Cl O−1 discontinue their treatment substantially later than patients receiving

Olanzapine in general and patients with those baseline characteristics defined by

cluster Cl O−2. The cluster-based survival function of Cl O−1 clearly lies above both

the estimated cluster-based survival function of Cl O−2 and the estimated survival

function of Olanzapine proposed by the common survival analysis. The confidence

intervals of the estimated median survival times even show a large gap. Therefore

Olanzapine is only associated with late discontinuation of the treatment for patients

living in stable conditions due to no hospitalizations in the past year, no anxiety

disorder in the past month and no drug abuse in the past five years. Opposed to that,

patients in cluster Cl O−2 can be found to be associated with substantially earlier

discontinuation of the treatment. Therefore Olanzapine can not be associated with

late discontinuation of the treatment for patients not experiencing stable conditions.

Heterogeneity inside the patient data prevented revealing these associations during a

common survival analysis. The cluster-based survival analysis therefore contradicts
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the initial results of the common survival analysis suggesting Olanzapine to always

be related to late discontinuation of the treatment. On the other hand heterogeneity

inside the patient data also prevented identifying a cluster, i.e. subgroup, of patients,

who do indeed discontinue their treatment with Olanzapine much later than initially

suggested.

7.5 Conclusion CATIE

By applying the new method for explainable analytics presented in Part III we were

able to identify hidden structures inside the individual patient data in order to answer

the posed research question. The explainable method allowed to generate new insight

into the CATIE data, in order to improve the treatment for future patients suffering

from schizophrenia. Furthermore, heterogeneity inside the patient data was not only

detected, but overcome by the division into clusters.

According to the common survival analysis presented in Section 7.2, Olanzapine

seemed to be associated with later discontinuation of the treatment compared with all

other treatments. The cluster-based survival analysis detected that Olanzapine was

simultaneously over- and underestimated due to underlying heterogeneity inside the

patient data. Olanzapine is only associated with late discontinuation of the treatment

for patients experiencing stable conditions due to no hospitalizations in the past

year, no anxiety disorder in the past month, and no drug abuse in the past five years.

Once these stable conditions are not met, Olanzapine is associated with equally early

discontinuation of the treatment as any of the other treatments. Considering that

further decisions about the care of patients are made based on clinical trials like

CATIE, it is very dangerous to disregard heterogeneity inside the patient data. The

sole use of average models like in the common survival can be strongly misleading.

Physicians might refrain from prescribing Olanzapine, even though the patient does

live in stable conditions. On the other hand patients not living in stable conditions

might not expect that they have to discontinue the treatment, e.g. due to adverse

events, even though there is still a high risk, even while administering Olanzapine.
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Furthermore, it is crucial to explain and understand the detected differences between

different groups of patients regarding the discontinuation of the treatment. By ap-

plying the new method for explainable analytics we were not only able to reveal

those differences, but to explain why those predictions were made in regards of

the respective patient characteristics. A non-explainable method could only detect

this subgroup, but would not be able to explain the difference based on baseline

characteristic of the patients.

The common survival analysis also failed to detect any difference between Per-

phenazine and Risperidone. Due to reduced heterogeneity during the cluster-based

survival analysis, we were able to identify, that patients living in stable conditions

discontinue the treatment with Perphenazine later compared with Risperidone. On

the other hand, patients discontinue the treatment with Risperidone later than the

treatment with Perphenazine, if those stable conditions are not met.

To conclude, while regarding large data sets from clinical trials, there is usually

undetected heterogeneity distorting the results from common methods, like the

common survival analysis. Patients enrolled in clinical trials (intentionally) differ

regarding their characteristics. Hence, generating average results for all patients is

often not reasonable. By applying the new explainable method for the analysis of

individual patient data, we were able to address this heterogeneity. Furthermore, all

detected differences were explainable regarding the respective patient characteristics

providing the possibility to adopt them in clinical practice.
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Part V

Conclusion
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In this thesis we introduced a new explainable method for the analysis of individual

patient data to generate new findings for an improved future patient care. Further-

more, we presented and discussed another explainable method for medical data

analytics. In particular, the methods provide reliable data for the health economic

evaluation of medical interventions and evidence-based medicine in general. The

approaches are able to evaluate and especially predict the outcome of a patient solely

based on the patient’s baseline characteristics. In addition to the prediction itself, the

methods provide a unique explanation for every prediction, providing the possibility

of adopting them into clinical practice. Moreover, the introduced approaches address

underlying heterogeneity inside the patient data by forming homogeneous clusters

of patients with similar combinations of their characteristic values. The underlying

assumption is, that patients inside a cluster show similar outcomes, whereas the

outcome varies across clusters. Hence, besides providing explainable predictions,

the methods furthermore address an often encountered problem while analyzing

patient data.

The approaches are based on an endpoint-oriented clustering approach, developed

by Brieden and Gritzmann. In Chapter 4, besides the mathematical background to

form clusters of patients with similar combinations of their characteristic values,

we discussed a transformation technique to include all baseline characteristics re-

gardless the level of scale. Based on the transformation technique, we presented a

new automated approach to select the baseline characteristics promising the most

impact on the outcome of a patient. Furthermore, we introduced a new possibility to

classify variables of ordinal and cardinal scale in an optimal way as alternative to a

common quantile classification. The transformation technique, the automated selec-

tion of variables, and the optimized classification were used in the following methods.

First, we presented and discussed the cluster-based analysis of individual patient

data. The cluster-based analysis was then used as foundation in the newly developed

method of cluster-based survival analysis. We applied the new method to generate

new findings for a clinical trial including patients suffering from schizophrenia.
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Cluster-based analysis

In Chapter 5 we presented the cluster-based analysis of individual patient data. We

discussed how to predict the outcome of a patient in the clusters identified by the

endpoint-oriented clustering approach. To evaluate the reliability of the predictions,

we presented confidence intervals for the outcome of patients in a cluster. We

furthermore discussed, how the assumption about different outcomes across clusters

can be justified by the presented confidence intervals.

The approach serves as method itself, as well as foundation for the following newly

developed cluster-based survival analysis

Cluster-based survival analysis

In Chapter 6 we introduced the cluster-based survival analysis of individual patient

data to estimate the time until an event of interest happens, e.g. time until discontinu-

ation of a treatment. The main assumption is, that the time to discontinuation of a

treatment is not only influenced by the treatment, but also by patient characteristics.

We suggested, that patients inside a cluster derived by the endpoint-oriented cluster-

ing show similar time to discontinuation, whereas the time to discontinuation varies

across clusters. Therefore we adjusted the common survival analysis presented in

Chapter 3. We introduced cluster-based survival functions and the estimation for

them. To evaluate their reliability, we presented confidence intervals as well as the

cluster-based median and restricted mean survival time. Furthermore, we introduced

cluster-based survival models in order to estimate the cluster-based hazard ratio be-

tween two treatments with respective confidence intervals. Moreover, we discussed,

how the assumption about different outcomes across treatments and clusters can be

justified by the presented confidence intervals.

As practical application, we analyzed the data originating from the clinical trial

CATIE. The results were compared with those of the common survival analysis

presented in the beginning of the respective chapter. We were able to identify hidden

structures inside the patient data in order to answer the posed research question.
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According to the common survival analysis, Olanzapine seemed to be associated

with later discontinuation of the treatment compared with all other treatments. We

were able to detect, that Olanzapine was simultaneously over- and underestimated

due to underlying heterogeneity inside the patient data. The cluster-based survival

analysis only found Olanzapine to be related to late discontinuation for patients

experiencing stable conditions due to no recent hospitalizations, no anxiety disorder,

and no drug abuse. Once these stable conditions are not met, Olanzapine is related

to equally early discontinuation as the other treatments.

The common survival analysis failed to detect any differences between other pairs

of treatments. By applying the cluster-based survival analysis, we were able to

identify, that patients experiencing stable conditions discontinue the treatment with

Perphenazine later compared with Risperidone. Once those stable conditions are not

met, the effect is reversed.

Therefore, the new explainable method allowed to generate new insight into the

CATIE data in order to improve the treatment for future patients suffering from

schizophrenia. Thereby, heterogeneity inside the patient data was not only detected,

but overcome by the division into clusters. Moreover, these new predictors were new

for the CATIE data, even though it was made available for numerous researchers,

as well as the treatment of patients suffering from schizophrenia in general. Espe-

cially the caution regarding anxious patients was undetected up to now and will

hopefully improve future patient care.

Outlook

By applying the new explainable method for the analysis of individual patient data,

we were able to generate new findings for a data set from a clinical trial. Furthermore,

the method provides the possibility to generate reliable data for the health economic

evaluation of medical interventions. We hope that future work regarding explainable

analytics in general and in particular in medicine will result in more findings, further

improving the future care of patients suffering from schizophrenia as well as other

diseases. Therefore, we want to give some suggestions for possible future work.
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All approaches are based on the endpoint-oriented clustering approach, consisting

of the transformation of the data, the selection of variables, and the clustering it-

self. Regarding the transformation of the data and the related selection of variables,

the concept of crossed variables shows potential for further investigations. Some

variables might only show potential for predicting the outcome while regarded si-

multaneously. Due to the high amount of baseline characteristics available in many

medical data sets, they might not be selected while regarding the one-dimensional

expected values.

Furthermore, there are numerous adjustable parameters in the clustering itself, like

the lower and upper bounds and the amount of clusters, allowing for further investi-

gations.

The cluster-based analysis used exact confidence intervals to evaluate the predictions

of the outcome. In particular, we used Clopper-Pearson intervals for the binomial

proportion, as they presented an appropriate choice for this thesis. There are however

other suggestions to be exploited, especially regarding the trade off between accuracy

and reliability.

Furthermore, the effect of placebo patients in a cluster-based analysis poses an inter-

esting topic for future work. We suggest investigating the possibility of clustering

placebo patients and treatment patients separately and performing the cluster-based

analysis on subsequently derived crossed treatment-placebo clusters.

We used the semi-parametric Cox proportional-hazards model as cluster-based sur-

vival model to estimate the hazard rates and hazard ratios. The examination of other

models, both parametric and semi-parametric, provides potential for future investiga-

tions, especially if additional knowledge about the distribution of the survival times

is available.

Last but not least, we strongly want to motivate future work into explainable analytics

in general and especially in medicine. There are numerous advanced statistical

methods showing potential, that have been overlooked due to the popularity of
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machine learning approaches. Further investigations into those methods can lead to

new findings for decision-making in general and in particular in medicine.
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A. CATIE

Additional material from the analysis of the CATIE data presented in chapter 7.

characteristic values class number class

diagnosis schizophrenia,
schizophreniform
disorder,
schizoaffective
disorder,
bipolar disorder.
major depression,
psychosis NOS

hospitalized in past 3 months yes, no

mental illness in family yes, no

no. of hospitalizations past year 0,1,2,3 > 4 1 0
2 ≥ 1

no. of hospitalizations lifetime 0,1,2,3 > 4 1 [0,1,2]
2 3
3 ≥ 4

pre-medication all treatments

schizophrenia present in past month yes, no

Table A.1: Diagnostic and hospital-related characteristics in CATIE with respective
values for patients receiving Olanzapine
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characteristic values class number class

PANSS 34−132 1 [34,68]
2 [69,83]
3 [84,132]

PANSS-P 7−35 1 [7,16]
positive subscale 2 [17,21]

3 [22,35]

PANSS-N 7−41 1 [7,17]
negative subscale 2 [18,23]

3 [24,41]

PANSS-G 17−68 1 [17,32]
general subscale 2 [33,41]

3 [42,68]

PANSS Marder 9−46 1 [9,21]
positive symptoms 2 [22,28]

3 [29,46]

PANSS Marder 7−40 1 [7,16]
negative symptoms 2 [17,22]

3 [23,40]

PANSS Marder 10−34 1 [10,14]
disorganized thought 2 [15,19]

3 [20,34]

PANSS Marder 4−16 1 [4,5]
uncontrolled hostility/excitement 2 [6,8]

3 [9,16]

PANSS Marder 4−21 1 [4,9]
anxiety/depression 2 [10,12]

3 [13,21]

Table A.2: PANSS characteristics in CATIE with respective values for patients
receiving Olanzapine
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characteristic values

chronic obstructive pulmonary disease yes, no

diabetes (type I or II) yes, no

hyperlipidemia yes, no

hypertension yes, no

osteoarthritis yes, no

tardive dyskinesia yes, no

major depression past month yes, no

major depression in past 5 years yes, no

alcohol dependence in past month yes, no

alcohol dependence in past 5 years yes, no

alcohol abuse in past month yes, no

alcohol abuse in past 5 years yes, no

drug dependence in past month yes, no

drug dependence in past 5 years yes, no

OCD in past month yes, no

OCD in past 5 years yes, no

anxiety disorder in past month yes, no

anxiety disorder in past 5 years yes, no

drugs in hair (cocaine, opiates, meth, THC) yes, no

Table A.3: Characteristics related to other diseases in CATIE with respective values
for patients receiving Olanzapine
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characteristic values class number class

Abnormal Involuntary Movement Scale 0−5 1 0
AIMS, item 8 2 ≥ 1

Barnes Akathisia Rating Scale 0−6 1 0
BARS global 2 1

3 ≥ 2

Calgary Depression Scale for Schizophrenia 0−22 1 [0,2]
CLGRY 2 [3,6]

3 [7,22]

Insight & Treatment Attitudes Questionnaire 1−22 1 [1,18]
ITAQ 2 [19,21]

3 22

quality of life global score 1−7

Simpson-Angus-Scale 0−14 1 0
SAS 2 ≥ 1

Table A.4: Characteristics from other scales in CATIE with respective values for
patients receiving Olanzapine
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characteristic values class number class

age 18−65 1 [18,36]
2 [37,46]
3 [47,65]

employment status unemployed,
full-time,
part-time,
retired

gender female, male

living with significant other yes, no

married yes, no

race American Indian/ 1 not white
Alaska Native, 2 white
Asian,
Black or African
American,
Hawaiian or
Pacific Islander
White

Table A.5: Characteristics from demographics in CATIE with respective values for
patients receiving Olanzapine
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characteristic values class number class

BMI 16.68−52.64 1 [16.68,25.82]
2 [25.83,31.52]
3 [31.53,52.64]

heart rate 50−132 1 [50,72]
2 [73,82]
3 [83,132]

vital diastolic 50−118 1 [50,80]
2 [81,118]

vital systolic 81−188 1 [82,118]
2 [119,130]
3 [131,188]

Table A.6: Characteristics from vital signs in CATIE with respective values for
patients receiving Olanzapine

204



Figure A.1: Separate estimated survival functions for every treatment in the
common survival analysis with 90%-confidence intervals
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Figure A.2: Separate estimated cluster-based survival functions for patients in
cluster Cl O−1 with 90%-confidence intervals
206



Figure A.3: Separate estimated cluster-based survival functions for patients in
cluster Cl O−2 with 90%-confidence intervals
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comparison estimated hazard ratio 90%-confidence interval

t t̃ ĤR
t t̃

I0.1
(

ĤR
t t̃)

Olanzapine - Perphenazine 0.75 [0.64,0.89]
Olanzapine - Quetiapine 0.60 [0.52,0.70]
Olanzapine - Risperidone 0.75 [0.65,0.88]
Olanzapine - Ziprasidone 0.74 [0.61,0.89]

Perphenazine - Quetiapine 0.89 [0.76,1.05]
Perphenazine - Risperidone 0.95 [0.80,1,11]
Perphenazine - Ziprasidone 0.87 [0.70.1.07]

Quetiapine - Risperidone 1.2 [1.04,1.38]
Quetiapine - Ziprasidone 0.98 [0.81,1.17]

Risperidone - Ziprasidone 0.84 [0.69,1.02]

Table A.7: Estimated hazard ratios between all pairs of treatments in the common
survival analysis

208



comparison estimated hazard ratio 90%-confidence interval

t t̃ ĤR
t t̃
O−1 I0.1

(
ĤR

t t̃
O−1

)
Olanzapine - Perphenazine 0.76 [0.58,1.01]
Olanzapine - Quetiapine 0.48 [0.37,0.61]
Olanzapine - Risperidone 0.59 [0.45,0.75]
Olanzapine - Ziprasidone 0.65 [0.47,0.89]

Perphenazine - Quetiapine 0.84 [0.64,1.09]
Perphenazine - Risperidone 0.71 [0.55,0.94]
Perphenazine - Ziprasidone 0.84 [0.60,1.20]

Quetiapine - Risperidone 1.14 [0.91,1.43]
Quetiapine - Ziprasidone 0.99 [0.73,1.35]

Risperidone - Ziprasidone 0.85 [0.60,1.22]

Table A.8: Estimated hazard ratios between all pairs of treatments in cluster Cl O−1

comparison estimated hazard ratio 90%-confidence interval

t t̃ ĤR
t t̃
O−2 I0.1

(
ĤR

t t̃
O−2

)
Olanzapine - Perphenazine 0.85 [0.69,1.06]
Olanzapine - Quetiapine 0.69 [0.57,0.84]
Olanzapine - Risperidone 0.96 [0.79,1.16]
Olanzapine - Ziprasidone 0.92 [0.71,1.19]

Perphenazine - Quetiapine 0.88 [0.71,1.09]
Perphenazine - Risperidone 1.15 [0.93,1.43]
Perphenazine - Ziprasidone 0.78 [0.59,1.04]

Quetiapine - Risperidone 1.27 [1.05,1.54]
Quetiapine - Ziprasidone 0.87 [0.67,1.13]

Risperidone - Ziprasidone 0.83 [0.63,1.07]

Table A.9: Estimated hazard ratios between all pairs of treatments in cluster Cl O−2
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comparison estimated hazard ratio estimated hazard ratio
in model (7.2) in model (7.3)

t t̃ ĤR
t t̃
O−1 ĤR

t t̃
O−1

Olanzapine - Perphenazine 0.76 0.78
Olanzapine - Quetiapine 0.48 0.48
Olanzapine - Risperidone 0.59 0.59
Olanzapine - Ziprasidone 0.65 0.65

Perphenazine - Quetiapine 0.84 0.83
Perphenazine - Risperidone 0.71 0.72
Perphenazine - Ziprasidone 0.84 0.85

Quetiapine - Risperidone 1.14 1.14
Quetiapine - Ziprasidone 0.99 1.00

Risperidone - Ziprasidone 0.85 0.88

Table A.10: Estimated hazard ratios in cluster-based survival model with (7.3) and
without (7.2) additional covariates in cluster Cl O−1

comparison estimated hazard ratio estimated hazard ratio
in model (7.2) in model (7.3)

t t̃ ĤR
t t̃
O−2 ĤR

t t̃
O−2

Olanzapine - Perphenazine 0.85 0.85
Olanzapine - Quetiapine 0.69 0.69
Olanzapine - Risperidone 0.96 0.95
Olanzapine - Ziprasidone 0.92 0.93

Perphenazine - Quetiapine 0.88 0.88
Perphenazine - Risperidone 1.15 1.15
Perphenazine - Ziprasidone 0.78 0.79

Quetiapine - Risperidone 1.27 1.26
Quetiapine - Ziprasidone 0.87 0.87

Risperidone - Ziprasidone 0.83 0.83

Table A.11: Estimated hazard ratios in cluster-based survival model with (7.3) and
without (7.2) additional covariates in cluster Cl O−2
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