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Abstract

We study turbulent emulsions and the emulsification process in homogeneous

isotropic turbulence (HIT) using direct numerical simulations (DNS) in combina-

tion with the volume of fluid method (VOF). For generating a turbulent flow

field, we employ a linear forcing approach augmented by a proportional-integral-

derivative (PID) controller, which ensures a constant turbulent kinetic energy for

two phase flow scenarios and accelerates the emulsification process. For the sim-

ulations, the density ratio of dispersed and carrier phases is chosen to be similar

to that of oil and water (0.9), representing a typical application. We vary the tur-

bulence intensity and the surface tension coefficient. Thus, we modulate those

parameters that directly affect the Hinze scale, which is expected to be the most

stable maximum droplet diameter in emulsions in HIT. The considered configu-

rations can be characterized with Taylor Reynolds numbers in the range of

100–140 and Weber numbers, evaluated with the velocity fluctuations and the

integral length scale, of 4–70. Using the 3-D simulation results, we study the

emulsification process as well as the emulsions at a statistically stationary state.

For the latter, droplet size distributions are evaluated and compared. We observe

a Hinze scale similarity of the size distributions considering a fixed integral

length scale, that is, similar Hinze scales obtained at different turbulence intensi-

ties or for different fluid properties result in similar distributions.
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1 | INTRODUCTION

Emulsions are suspensions of immiscible liquids, such as oil
and water, where the dispersed liquid is present in the form
of poly-disperse droplets in the carrier liquid. Emulsions play
an essential role in various industrial processes, such as food
processing,[1–3] oil production[4,5] or pharmaceutical pro-
cesses.[6] Recent research is exploring the application of fuel–
water emulsions for more efficient and environmentally
friendly power generation. An example is gasoline–water
direct injection (GWDI) for future gasoline engines,[7,8]

which can be realized by injection of gasoline–water emul-
sions. Other examples are fuel–water emulsions for small gas
turbines[9] or diesel engines.[10] For these applications, a bet-
ter understanding of the emulsification process and emul-
sions is important. One way to gain a deeper insight into the
underlying mechanisms is by conducting numerical flow
simulations using computational fluid dynamics (CFD). To
facilitate simulations of emulsions, we propose an extension
of the linear forcing[11] to generate emulsions within a short
time while ensuring its applicability to two-phase flow prob-
lems. Thus, the presented study could be a central step to
make CFD simulations of emulsions feasible for industrial
applications, potentially easing the design process of future
gasoline engines. Further, we have applied our approach to
numerically investigate emulsions of fluids with a density
ratio resembling that of oil and water.

The formation of an emulsion, that is, the emulsifica-
tion, requires energy input in the form of kinetic energy
that results in the deformation, breakup, and coalescence
of droplets. Higher turbulent kinetic energy (TKE) results
in smaller droplets and vice versa. Hinze[12] proposed that
droplets break up when the droplet Weber number Wed

Wed ¼ ρc⟨ δudð Þ2⟩d
σ

ð1Þ

exceeds a critical value. Wed,crit � ρc, δud, ⟨�⟩, d, and σ
denote the density of the carrier fluid, the velocity differ-
ence across the droplet (spatial averaged), the droplet
diameter, and the surface tension coefficient, respec-
tively. Using Kolmogorov theory for velocity differ-
ences[13] (⟨(δud)

2⟩ ≈ ε2/3d2/3), the most stable droplet
diameter, termed the Hinze scale, is given by

dH ¼ Wed,crit=2ð Þ3=5 ρc=σð Þ�3=5ε�2=5 : ð2Þ

Thus, dH is characterized by the ratio of the density of
the carrier fluid to the surface tension coefficient ρc/σ
and the dissipation rate ε, the latter being associated with
the turbulence intensity. Note that Equation (2) has been
derived for the assumption of homogeneous isotropic

turbulence (HIT) and dilute emulsions since coalescence is
neglected. By fitting with experimental data, Hinze[12] sug-
gested Wed,crit ≈ 1.17. This value has been found valid in
numerical[14] and experimental studies[15] of dilute emul-
sions and has also been used for numerical studies of dense
emulsions.[16,17] In addition to this, the Hinze correlation
(Equation (2)) has been studied for other multiphase con-
figurations such as air bubbles in breaking waves,[18,19]

where Deane and Stokes[19] found Wed,crit = 4.7, or for
droplets produced in atomization processes.[20–22]

Emulsions feature a poly-disperse droplet distribution;
hence, a fundamental characteristic is the droplet size dis-
tribution. Experimental studies in stirred vessels[23] and a
Taylor-Couette flow[15] reported a log-normal distribution
considering dilute emulsions, which was also observed in
the numerical study by Perlekar et al.[14] On the other
hand, for the size distributions of air bubbles in breaking
waves, power laws have been proposed. For d > dH, turbu-
lent fragmentation dominates and Garrett et al.[18] found
that the distribution follows a d�10/3 power law. Within the
dynamic break-up processes, bubbles break up, and pro-
duce smaller bubbles of different sizes, including bubbles
in the sub-Hinze range.[24] For d < dH, turbulent fragmen-
tation declines and thus a less steep distribution can be
expected. By fitting experimental data, Deane and
Stokes[19] proposed a d�3/2 power law in this region. Recent
numerical studies[16,17,25] adopted these power laws for
emulsions and observed a good agreement for dense emul-
sions, especially for d < dH. Although a lot of studies have
already investigated droplet size distributions, certain
aspects are still not yet clarified.

Due to the relevance of emulsions for process engineer-
ing, several experimental studies have focused on different
aspects. For example, Tcholakova et al.[26,27] and Vankova
et al.[28,29] conducted comprehensive studies of the effect of
various fluid properties on mean droplet sizes. Pacek
et al.[23,30] studied droplet size distributions in stirred vessels
and, more recently, Yi et al.[15] in a Taylor-Couette shear flow
system. However, the limited optical accessibility of experi-
ments in general, as well as the inherent opacity of emulsions
with small droplets, imposes challenges for experimental
studies and requires sophisticated measurement tech-
niques.[31] Another aspect is that anisotropy is usually present
in experimental configurations, which means that theories
derived for isotropic flows often cannot be directly applied.

Numerical simulations of multiphase flows provide
time-resolved, three-dimensional data allowing for
detailed studies of the complex interactions between tur-
bulence and the dynamics of the dispersed phase. Fur-
ther, fluid properties and characteristic quantities can be
specifically tuned in simulations, thus enabling a precise
investigation of relevant setups. For these reasons, simu-
lations have been established to complement experimental
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studies. A comprehensive review of direct numerical simula-
tions (DNS) of droplet and bubble–laden turbulent flows can
be found in Elghobashi.[32] Emulsions, that is, liquid–liquid
suspensions with a poly-disperse droplet distribution, were
traditionally studied using Lattice-Boltzmann methods
(LBM) and spectral forcing. Perlekar et al.[14] investigated the
droplet size distribution in HIT with a pseudo-potential LBM.
Skartlien et al.[25] simulated a surfactant-laden emulsion
under weak turbulence using a free-energy LBM and
Mukherjee et al.[16] studied emulsions in HIT using an
improved pseudo-potential LBM. They evaluated droplet size
distributions for varying volume fractions and turbulence
intensities. Further, they showed that emulsions evolve into a
quasi-equilibrium cycle of coalescence and breakup-
dominated processes. Recently a finite-volume approach has
been employed to study emulsions. Using the volume of fluid
method (VOF), Crialesi-Esposito et al.[17] studied the effect of
variations in the viscosity ratio, the volume fraction, and the
surface tension on size distributions and the energy transport
between different scales. The emulsification process, that is,
the breakup of a liquid structure in HIT, was also the focus of
various numerical investigations, such as, for example, Kom-
rakova et al.[33], Komrakova,[34] Zhong and Komrakova[35]

using a free-energy LBM.
Numerical studies of emulsions usually consider emul-

sions under HIT, and therefore employ spectral forcing
approaches, see for example, works of.[14,16,17,33–35] As an
alternative to spectral forcing, Lundgren[11] proposed a lin-
ear forcing, which has been extended for variable length
scales and non-cubic domains by Klein et al.[36] Compared
to spectral methods, the linear forcing is less computation-
ally expensive but leads to strong oscillations resulting in
longer simulation times to reach a statistically stationary
state. To reduce the oscillatory nature, Carroll and Blan-
quart[37] proposed a slight modification of the forcing term.
Shao et al.[38] successfully employed the originally pro-
posed linear forcing[11] to simulate a droplet breakup.

In this paper, we study emulsions that resemble
an oil-in-water emulsion in terms of density ratio
(ρd/ρc = 0.9). Therewith, we extend previous numerical
studies by considering emulsions of fluids with matching
densities.[14,16,17] We vary the turbulence intensity, which
affects the dissipation rate ε, and the surface tension coef-
ficient σ, and thus focus on the parameters altering the
Hinze scale (see Equation 2). We consider a void fraction
of the dispersed phase of 12.5% and the kinematic viscos-
ity of both phases is set to ν = νc = νd = 0.001 m2/s. The
scope of this work is the emulsification process and the
characterization of emulsions at statistically stationary
state. For the latter, we evaluate droplet size distribu-
tions. For our studies, we use DNS with the finite volume
approach and the VOF method. To generate the turbu-
lent flow field, we employ a linear forcing[11] augmented

with a proportional-integral-derivative (PID) controller to
ensure a constant TKE and to accelerate the emulsifica-
tion process. The linear forcing approach has been
derived for single phase flows and therefore does not
account for surface tension contributions that draw or
generate TKE at breakup or coalescence.[39] Hence, here
we also investigate the applicability of the linear forcing
approach to multiphase flows, with a particular focus on
the emulsification process, where breakup dominates
and draws TKE. For comparison with theories derived
for homogeneous isotropy, we follow previous stud-
ies[14,16,17] and consider the general configuration of a
HIT in a periodic box of length L = 2 π.

The paper is structured as follows. In Section 2, we
describe the computational method. Then, Section 3
presents the considered configurations and the numeri-
cal setup. The results part, Section 4, first studies the
emulsification process and then the obtained emulsions
at a statistically stationary state. Section 5 summarizes
the paper.

2 | COMPUTATIONAL METHOD

All simulations for this DNS study have been performed with
the state-of-the-art open source code ‘PArallel Robust Inter-
face Simulator’ (PARIS).[40] PARIS is specifically designed
for simulations of multiphase flows and is widely used for
DNS and LES studies of atomization processes[36,41–45] as
well as other multiphase flow configurations.[46]

The governing equations and numerical methods are
provided in Section 2.1. The implemented turbulence
forcing approach is explained in Section 2.2.

2.1 | Governing equations and
numerical framework

The solver uses the one-fluid formulation[47] of the
incompressible Navier–Stokes equations. The continuity
and momentum equations are given as

∂ui
∂xi

¼ 0: ð3Þ

ρ
∂ui
∂t

þ ∂uiuj
∂xj

� �
¼� ∂p

∂xi
þ ∂

∂xj
μ

∂ui
∂xj

þ ∂uj
∂xi

� �� �
þσniκδs

ð4Þ

with the density ρ, the dynamic viscosity μ, the ith veloc-
ity component ui, and the pressure p. In each cell, the
density and viscosity values are linearly interpolated
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using the local volume fraction α of the dispersed phase,
which is tracked with the geometrical VOF method[48]:

ρ¼ αρdþ 1�αð Þρc, μ¼ αμdþ 1�αð Þμc: ð5Þ

The subscripts d and c denote the dispersed and the
carrier phase, respectively.

The continuous-surface-force (CSF) approach[49]

determines the surface tension force from the surface ten-
sion coefficient σ, the interface normal ni ¼ ∂α

∂xi
= j rα j,

the interface indicator function δS = jrαj, and the inter-
face curvature κ¼ ∂ni

∂xi
. The latter is accurately computed

using a state-of-the-art height function approach.[50] For
details on its implementation in PARIS, the reader is
referred to the work of Aniszewski et al.[40]

The advection of the VOF marker function is per-
formed using a geometrical interface reconstruction algo-
rithm. The respective transport equation is given as

∂α

∂t
þui

∂α

∂xi
¼ 0, α¼ 1, if x is in dispersed phase:

0, if x is in carrier phase:

�
ð6Þ

A red-black Gauss–Seidel solver with overrelaxation
is employed to solve the Poisson equation for pressure in
the framework of the projection method. The simulation
is advanced in time using a second-order predictor–
corrector method. For the spatial discretization, the
finite-volume approach is realized using a cubic grid. The
velocity components are stored on a staggered grid, while
the pressure and the VOF marker function, as well as the
local densities and the viscosities resulting from the lat-
ter, are computed at the cell centres. The third-order
‘quadratic upstream interpolation for convective kine-
matics’ (QUICK) scheme has been chosen to discretize
the convective term of the momentum equation, while its
viscous term is treated using central differences.

2.2 | Linear forcing augmented with a
PID controller

To generate HIT, a modification of the linear Lundgren forc-
ing is employed, where the modification is motivated by the
approach proposed by Carroll and Blanquart.[37] Lundg-
ren[11] suggested a physical space forcing method introducing
a pseudo shear term AFui. Thus, the linearly forced momen-
tum equations (Equation 4) of a single phase flow read as

ρ
∂ui
∂t

þ ∂uiuj
∂xj

� �
¼� ∂p

∂xi
þ ∂

∂xj
μ

∂ui
∂xj

þ ∂uj
∂xi

� �� �
þAFui ,

ð7Þ

where AF denotes the forcing parameter, which controls
the energy injected. Note that in this linear forcing
approach, energy is injected over all scales. Assuming
incompressibility and homogeneity, the TKE equation
derived from Equation (7) reads as[37]

dk
dt

¼�εþ2 AFk, ð8Þ

where k denotes the TKE k¼ ⟨12u
0
iu

0
i⟩ and ε the dissipation

rate ε¼ ⟨ν ∂u0i
∂xj

∂u0i
∂xj
⟩ with the kinematic viscosity ν � ⟨ � ⟩

indicates spatial averaging. At a statistically stationary
state, Equation (8) simplifies to

0¼�ε0þ2 AFk0, ð9Þ

where the subscript 0 refers to statistical stationarity.
Equation (9) gives AF ¼ ε0

2 k0
and thus AF is the inverse of

two eddy-turn over times τ = k/ε. k, and ε are linked to
each other and determine the integral length scale l

l¼ u02ð Þ3=2
ε

ð10Þ

with the velocity fluctuations u’. For isotropic turbulence,
these are given by

k¼ 3
2
u02: ð11Þ

Rosales and Meneveau[51] found that such a linear
forcing approach results in a turbulent flow field charac-
terized by an integral length scale of approximately 20%
of the domain size

l≈ 0:2 L : ð12Þ

Using Equations (9)–(12), the forcing parameter AF

for a desired k0 and a chosen domain size L can be
evaluated.

This linear forcing approach leads to high oscillations
of turbulence metrics, such as k, and long simulation
times to reach the target value k0. For a faster conver-
gence towards k0, Carroll and Blanquart[37] proposed to
modify the magnitude of the forcing parameter AF

depending on the current ratio of k0/k

ACarroll
F ¼ k0

k
AF: ð13Þ

Alternatively to Carroll and Blanquart,[37] we modify
the forcing parameter using a PID controller

BEGEMANN ET AL. 3551
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APID
F ¼ βPIDAF ð14Þ

where the factor βPID is composed of the proportional (P),
integral (I), and differential parts (D)

βPID ¼ βPþβIþβD, ð15Þ

which are determined by the current normalized devia-
tion from k0: δk ¼ k tð Þ�k0

k0
. Consequently, βPID reads as

βPID ¼ cPδkþ cI

Z t

0
δk τð Þdτþ cD

dδk
dt

ð16Þ

with the constants ci for the corresponding parts P, I, and
D. In this work, we used cP = 1, cI = 1/1000, and cD = 1.
In the Appendix A, we compare the temporal evolution
of turbulence metrics of our forcing approach with that
by Carroll and Blanquart.[37] The enhancement of vol-
ume forcing by using controllers is also reported in the
recent literature[41,52] for different applications.

We apply our forcing to multiphase configurations
with the additional surface tension force term in the
momentum equation. Thus, in our case, the forced
momentum equations read

ρ
∂ui
∂t

þ ∂uiuj
∂xj

� �
¼

� ∂p
∂xi

þ ∂

∂xj
μ

∂ui
∂xj

þ ∂uj
∂xi

� �� �
þσniκδsþAFui

ð17Þ

and the TKE equation is[39]

dk
dt

¼�εþ2 AF kþΨσ , ð18Þ

where Ψσ denotes the surface tension contribution
defined as[39]

Ψσ ¼ �σ

Vdρd

∂A
∂t

, ð19Þ

with Vd and ρd denoting the volume and the density of
the dispersed phase respectively, and A the interface
area. At a stationary state of emulsions, it can be
expected that breakup and coalescence processes com-
pensate each other more or less and that, therefore, the
net contribution of the surface tension term in
Equation (18) is approximately zero. However, during
the emulsification, interface deformation, and breakup
dominate, which acts as a sink for TKE. To this end, we
evaluate the magnitude of the surface tension term and

estimate advantages of a forcing approach that con-
siders this term, see Section 4.1.

3 | CONSIDERED
CONFIGURATIONS AND
NUMERICAL SETUP

Our cases are characterized by a variety of parameters,
the first one being the Hinze scale dH (Equation 2). Fol-
lowing Hinze,[12] we assume Wed,crit ≈ 1.17, resulting in

dH ¼ 0:725 ρc=σð Þ�3=5ε�2=5: ð20Þ

Recent numerical studies[16,17] also employed this
value for Wed,crit.

Further, we consider the turbulent Reynolds number

Re l ¼ lu0

ν
, ð21Þ

here evaluated with the integral length scale
Equation (10) as characteristic length scale. Using Equa-
tions (2), (10), and (21), the following correlation can be
obtained.[15]

dH=l/ Re�6=5
l : ð22Þ

Additionally, we also consider its Taylor micro-scale
counterpart

Re λ ¼ λu0

ν
, ð23Þ

with the Taylor micro-scale being λ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
15ν=ε

p
u0.

The effect of surface tension is taken into account by
the Weber number Wel

Wel ¼ ρcu
02l

σ
, ð24Þ

evaluated with the integral length scale l as characteristic
length scale. Using Equations (2), (10), and (21), the fol-
lowing correlation is obtained

dH=l/We�3=5
l : ð25Þ

As reference time scale, we use the eddy turn-over
time τ = k/ε. In order to have a constant τ, we assume
τ = τ0, evaluated with k0 and ε0 from statistically
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stationary state. The interface area of the dispersed phase
A is numerically approximated with the volume integral
of the gradient of the VOF marker function jrαj. As ref-
erence for the interface area, we take the theoretically
completely segregated state with A∞ ¼L2.

Table 1 lists the considered configurations. In our
study, we vary the two parameters σ and k (directly
related with the turbulence intensity and affecting ε),
which both alter the Hinze scale dH (see Equation 2).
We have defined a baseline case (Baseline) and then
varied the surface tension coefficient for the cases low σ
and high σ. Moreover, we have increased the turbulent
kinetic energy for the case high k. Note that for low σ
and high k, Wel is similar and dH nearly identical. For
all configurations, we consider a carrier fluid (c) and
dispersed fluid (d) with a density ratio of ρd/ρc = 0.9
with ρc = 1 kg/m3. The kinematic viscosities are set to
νd = νc = 0.001 m2/s. Further, for all cases, the volume
fraction of the dispersed phase is set to α = 12.5%. The
domain is a cubic box with a length of L = 2 π and peri-
odic boundary conditions in each direction. The grid
resolution has been chosen to fulfill the criterion
Kmaxη ≥ 1.5, see, for example, Pope.[53] Kmax refers to
the maximum wavenumber Kmax = Nπ/L, where
N denotes the number of cells and L the domain length.

η refers to the Kolmogorov scale η = (ν3/ε)1/4. For the
cases with Reλ = 104, we use N = 384 cells in each
direction (≈57e6 cells in total), and for Reλ = 137, we
use N = 512 (≈134e6 cells in total). A grid study is pro-
vided in Appendix A.

The time step in the simulations is governed by the
Courant–Friedrichs–Lewy number (CFL number), which
is set to CFL = 0.2. The average time step was about
Δt = 8 � 10�4 s for the cases with k = 0.5 m2/s2,and about
Δt = 5 � 10�4 s for the high k case (k = 1.5 m2/s2).

The simulations are conducted as visualized in
Figure 1. First, we perform single phase simulations to
obtain a fully developed single-phase HIT. Therefore, the
initial flow field is obtained from a Taylor-Green
vortex,[54] which is an established generic configuration
for numerical studies.[55,56] It should be noted that this
starting condition is an arbitrary choice and does not
affect the flow field at a statistically stationary state. It is
only prescribed because the forcing requires a non-zero
starting condition. Then, we initialize the dispersed phase
as spherical droplets with d0 ≈ 0.14 L and a smaller drop-
let in the centre to obtain the intended volume fraction,
see Figure 1B. This approach results in a significant
reduction in emulsification time and thus computational
cost. Crialesi-Esposito et al.[17] have recently employed

TABLE 1 Considered configurations, for definitions see text

Case σ (N/m) k0 (m
2/s2) ε0 (m

2/s3) τ0 (s) dH/L (%) Rel Reλ Wel

Baseline 2 � 10�2 0.5 0.153 3.27 2.33 726 104 21

Low σ 6 � 10�3 0.5 0.153 3.27 1.14 726 104 70

High σ 1 � 10�1 0.5 0.153 3.27 6.14 726 104 4

High k 2 � 10�2 1.5 0.265 1.89 1.21 1257 137 63

(A) (B) (C)

FIGURE 1 Simulation setup. (A) Single-phase forcing, flow field visualized by the velocity magnitude, (B) initialization droplets with

diameter d0 ≈ 0.14 L (the droplet in the centre has a smaller diameter to obtain the intended volume fraction), and (C) turbulent emulsion at

a statistically stationary state
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the same approach, and it has been found that the initial
distribution has no effect on the final droplet size
distribution.[16,17]

4 | RESULTS

First, the emulsification process is analyzed in Section 4.1.
In this subsection, also, the suitability of the employed
linear forcing for multiphase flows is demonstrated.
Then, in Section 4.2, the emulsions at a statistically sta-
tionary state are studied by means of visual inspection
and droplet size distributions.

4.1 | Emulsification

In this subsection, we first analyze the temporal evolu-
tion of the interface area, representing the progress of the
emulsification. Then, we study the temporal evolution of
the parameters characterizing turbulence and evaluate
the magnitude of the surface tension term during the
emulsification. At the end of this subsection, the emulsifi-
cation process of the different configurations is visualized
and compared.

As described above, we initialize droplets of the dis-
persed phase in a fully developed single-phase HIT and,
within several τ, a turbulent emulsion is obtained.
Figure 2A shows the temporal evolution of the normal-
ized interface area A=A∞, which reaches a statistically
stationary state within about 4τ. Comparing the evolution
of high k with the other cases proves that τ is the domi-
nant time scale for the emulsification process. For high k,
τ is about half of that in the other configurations (see
Table 1), and the temporal evolution scaled by τ is nearly
identical. Figure 2B plots the change of the interface area
during the emulsification (A�Ainit) normalized by the
total change upon reaching a stationary state (A0�Ainit),
where Ainit refers to the initial interface area and A0 to
the interface area at statistically stationary state. This
visualization demonstrates that the slope of the normal-
ized change of the interface area is nearly the same for all
configurations. Further, the dH similarity can already be
seen in the similar interface areas obtained for high
k and low σ.

Figure 3 depicts the temporal evolution of the TKE k,
the dissipation rate ε, and the integral length scale
l evaluated for the two phase flow. Due to our forcing
approach with the PID controller, k immediately reaches
the target value, see Figure 3A. The dissipation rate
slightly underestimates the expected value (Figure 3B),
and thus the integral length scale is slightly higher than
the expected value of approximately 20% in linearly

forced turbulence[51] (Figure 3C). The overall good agree-
ment with earlier results in the literature[37,51] proves the
suitability of linear forcing for multiphase flows in gen-
eral and that of the proposed extension with the PID con-
troller in particular.

Figure 4 plots the temporal evolution of the surface
tension term Ψσ ¼ �σ

Vdρd
∂A
∂t , which is not directly consid-

ered by the linear forcing, see also Section 2.2. As
expected, there is only a contribution during the emulsifi-
cation process, where the droplet breakup acts as a sink
for the TKE (Ψσ<0). For decreasing σ, jΨσj increases.
This indicates a significantly higher ∂A

∂t , and thus breakup
rate, which even compensates the effect of the smaller σ
on Ψσ. For configurations with a lower σ, the breakup of
droplets requires less energy and thus occurs more fre-
quently. Consequently, with a lower σ, more TKE is
drawn, resulting in a higher TKE input by the forcing,
which then amplifies further breakup. This process con-
tinues until a statistically stationary state is reached.

(A)

(B)

FIGURE 2 (A) Temporal evolution of the normalized interface

area A=A∞ for the different cases normalized by the eddy turn-over

time τ. (B) (a�Ainit)/(A0�Ainit) over t/τ for the different cases,

Ainit and A0 refer to the initial interface area and the interface area

at stationary state, respectively. Dashed vertical lines indicate the

time instants visualized in Figure 5
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Comparing the evolution of the surface term (Figure 4)
for the cases high/low σ reveals that the low σ case
reaches the statistically stationary state later. This can be
explained by the fact that the surface tension term
requires more energy for low σ. Thus, a forcing method,
where the Ψσ is directly fed back, would lead to a higher
energy input during the emulsification, accelerating this
process. At a statistically stationary state (t>4τ), the
breakup process and coalescence compensate each other,
thus letting the net contribution of Ψσ vanish.

Figure 5 illustrates the emulsification process for
the different configurations at t/τ = 0.5 (i), t/τ = 1 (ii),
t/τ = 2 (iii), and t/τ = 5 (iv). These time steps were cho-
sen because most of the emulsification takes place within
the first two eddy turn-over times. Already at t/τ = 0.5,
the initialized droplets are significantly deformed. Note
that some structures appear truncated by the periodic
boundary condition in each direction, and thus smaller
structures, which are cut-off, are visible at the bound-
aries. As expected, with decreasing σ or higher TKE, the
interfaces become more deformed and wrinkled. With
increasing time, the dispersed structures are increasingly
deformed and break up into smaller structures. Between
t/τ = 2 and t = 4 τ, the visual impression does not change
much. At t = 4 τ (Figure 5A–D,iv), all configurations
have reached a statistically stationary state. The subse-
quent subsection examines this state in detail and com-
pares the droplet size distributions.

4.2 | Characterization of turbulent
emulsions at stationary state

In this subsection, we first analyze and compare the
emulsions obtained for the different configurations.
Then, the droplet size distributions are compared and
discussed.

Figure 5A–D,iv (last column) visualizes the turbulent
emulsion obtained at statistically stationary state (t = 4 τ).
As expected, with increasing Wel (decreasing dH), the dis-
persed phase is present in smaller droplets. For high σ (see
Figure 5A,iv), larger structures are present and the distri-
bution of the structures is more inhomogeneous than in
the other cases. Further, there is good optical accessibility,
which is no longer present in the other cases. In the

FIGURE 3 Temporal evolution of (A) turbulent kinetic energy

k/k0, (B) dissipation rate ε/ε0, and (C) integral length scale l/L for

the baseline case. Dashed vertical lines indicate the time instants

visualized in Figure 5

FIGURE 4 Temporal evolution of the surface tension term Ψσ

for varying surface tension coefficients σ. Dashed vertical lines

indicate the time instants visualized in Figure 5
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Baseline case (see Figure 5B,iv), the formed droplets are
already considerably smaller. This trend is resumed for the
other cases (Figure 5C,D), where the droplet size decreases
further with increasing Wel. The visual impression con-
firms a dH/Wel similarity, compare Figure 5C,D,iv. Fur-
ther, the employed Weber number Wel, evaluated with the
integral length scale, appears to be a representative dimen-
sionless number to characterize emulsions.

Figure 6 compares the probability density function
(PDF) of the droplet size distributions for the different
cases. The data has been sampled every eddy turn-over

time τ and is averaged for six time instants each. Droplets
with an equivalent spherical diameter smaller than four
cells are neglected. We chose this cut-off scale based on a
variety of publications in the VOF context, for exam-
ple.[20,44,45,57] Droplets smaller than this tend to be unreli-
able due to numerical errors in the two-phase algorithms,
for example, reconstruction and curvature computation.
The observation from the time instants taken at a statisti-
cally stationary state (Figure 5A–D,iv) is reflected in the
PDFs P(di). For larger dH and smaller Wel, the distribu-
tion is more shifted towards larger droplet sizes. For

(A)
High σ
Wel = 4

t/τ = 0 .5

(i)

t/τ = 1 .0

(ii)

t/τ = 2 .0

(iii)

t/τ = 4 .0

(iv)

(B)
Baseline
Wel = 21

(i) (ii) (iii) (iv)

(C)
High k

Wel = 63

(i) (ii) (iii) (iv)

(D)
Low σ

Wel = 70

(i) (ii) (iii) (iv)

FIGURE 5 Emulsification process visualized for the different configurations. Columns correspond to different time instants and rows to

different configurations. For the initialization of the dispersed phase, see Figure 1. Iso-surface α = 0.5
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similar dH, for example, similar Wel, the droplet size
distributions are very similar, as can be seen for the
cases of low σ and high k. For the case of high k, the
Hinze scale is somewhat larger and thus the PDF is
slightly shifted to the right, especially at larger droplet
sizes. For air bubbles in breaking waves, Deane and
Stokes[19] observed a � 3/2 exponential scaling of bub-
bles smaller than the Hinze scale (d < dH) and Garrett
et al.[18] found that the distribution of bubbles larger
than Hinze (dH < d) follows a � 10/3 exponential scal-
ing. Recent numerical studies[16,17,25] successfully
adopted these power laws for emulsions. The two scal-
ing laws are indicated in Figure 6 and a good agree-
ment with these scaling laws can be observed for the
cases with high Wel (low σ, high k). However, for
small Wel, the distributions are not as smooth and the
agreement with the known scaling laws decreases.
Results recently shown by Crialesi-Esposito et al.[17]

exhibit a similar trend for small Wel. A smaller Wel
correlates with a larger dH and thus a higher dH/L
ratio. If the dH/L ratio is too high, the domain size
may no longer be representative and biases the droplet
size distribution. Based on our results, we conjuncture
that the dH/L ratio should be dH/L ≤ 0.02. However,
further research on this topic, also considering differ-
ent sampling rates, is necessary to reach a final con-
clusion. Another important aspect of the size
distributions and their alignment with these scaling
laws is the volume fraction of the dispersed phase. For
example, Crialesi-Esposito et al.[17] reported that the
�10/3 scaling law for larger droplets fits best when the
volume fraction is below 10%, with a small loss of
accuracy for values above this volume fraction.

5 | CONCLUSIONS

In this work, we numerically studied turbulent emulsions
subjected to different turbulence intensities and surface
tension coefficients. For this purpose, we performed DNS
in a generic configuration of HIT in a periodic box. For
the turbulence forcing, we employed a linear approach,
where we adjusted the forcing parameter with a PID con-
troller to ensure constant TKE.

The first part focused on the verification of the forcing
method, whose applicability to multiphase flows we suc-
cessfully demonstrated. To this end, we examined the
surface tension term, which is not considered by the forc-
ing. As expected, the surface tension term only plays a
role during emulsification and consideration of this term
in the forcing is expected to accelerate the emulsification.
At a stationary state, the simultaneous breakup and coa-
lescence processes let the net contribution of this term
vanish. Regarding emulsification, the results have shown
that the emulsification process scales with the eddy turn-
over time.

The second part was devoted to turbulent emulsions
at a statistically stationary state. We found that emulsions
can be characterized by the Weber number evaluated
with the integral length scale Wel. For the different cases
investigated, we observed a dH/Wel similarity for the
visual impression of emulsions and the droplet size distri-
bution, that is, for similar dH/Wel, we obtain similar
droplet size distributions and emulsions. We compared
the droplet size distributions with previously proposed
distribution laws and found good agreement with these
laws for high Wel.

In future studies, we plan to investigate the effects
of different density ratios of carrier and dispersed phase
on the emulsification process and droplet size distribu-
tion. Of particular interest are also configurations
where the density of the dispersed phase is higher than
that of the carrier phase, similar to a water-in-gasoline
emulsion relevant to GWDI. In addition, we plan to
study emulsions in a more realistic configuration, such
as in a channel flow.

The stability of emulsions in decaying turbulence,
that is, without further energy input, also represents a
central aspect and is of particular relevance for the real-
ization of GWDI. When there is no further energy
input, from a thermodynamic point of view, only
energy-releasing processes, such as minimization of the
surface area and reduction of the potential height of the
heavier phase, are possible. Thus, emulsions segregate
in decaying turbulence due to coalescence and sinking
of the heavier phase. The numerical investigation of
such segregation processes is the subject of our current
research.

FIGURE 6 Droplet size distribution for the different cases. The

data have been sampled every eddy turn-over time τ and are

averaged for six time instants each after reaching the statistically

stationary state. The dashed vertical lines indicated the Hinze scale

dH, where the colour corresponds to the respective case
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APPENDIX A: VALIDATION FORCING

To validate our forcing approach, we simulated the
Reλ = 110 case of Carroll and Blanquart[37] employing
our forcing augmented with a PID controller.
Figure A1 compares the temporal evolution of the

TKE k and the dissipation rate ε with the results by
Carroll and Blanquart.[37] As expected, the target TKE
k0 is reached faster with the PID augmented forcing
and k remains at k0. Regarding the evolution of the
dissipation rate ε, it can be seen that with the PID
augmented forcing, there is no high overshot at the
beginning.

FIGURE A1 Comparison of the PID augmented forcing with the Carroll-forcing.[37] Single phase case with Reλ = 110. (A) Temporal

evolution of normalized turbulent kinetic energy k/k0 and (B) of normalized dissipation rate ε/ε0. PID, proportional-integral-derivative

3560 BEGEMANN ET AL.

 1939019x, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjce.24515 by U

niversitat der B
undesw

ehr M
unchen, W

iley O
nline Library on [30/10/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



APPENDIX B: GRID STUDY

To verify that the employed grid resolution is sufficient,
we conducted a grid study considering the resolutions
3843 and 5123 for the Low σ case (Reλ = 104). Figure B1
compares the temporal evolution of the normalized
interface area A=A∞, the normalized dissipation rate

ε/ε0, and the PDF of the droplet size distribution on the
two different grid resolutions. At 3843 and at 5123, the
interface area and the dissipation rate at a statistically
stationary state are in good agreement, indicating grid
convergence. The comparison of the PDFs (Figure B1C)
shows a qualitatively good agreement, especially with
regard to the slopes in the ranges d< dH (sub-Hinze)
and d> dH.

FIGURE B1 (A) Temporal evolution of the normalized interface area A=A∞, (B) the normalized dissipation rate ε/ε0, and (C) the PDF

of the droplet size distribution of the low σ case (Reλ = 104) on the grid resolutions 3843 and 5123. PDF, probability density function
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