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ABSTRACT

In this present study, gene expression programing (GEP) has been used for training a model for the subgrid scale (SGS) scalar dissipation rate
(SDR) for a large range of filter widths, using a database of statistically planar turbulent premixed flames, featuring different turbulence intensities
and heat release parameters. GEP is based on the idea to iteratively improve a population of model candidates using the survival-of-the-fittest
concept. The resulting model is a mathematical expression that can be easily implemented, shared with the community, and analyzed for physical
consistency, as illustrated in this work. Efficient evaluation of the cost function and a smart choice of basis functions have been found to be essential
for a successful optimization process. The GEP based model has been found to outperform an existing algebraic model from the literature.
However, the optimization process was found to be quite intricate, and the SGS SDR closure turned out to be difficult. Some of these problems have
been explained using the model-agnostic interpretation method, which requires the existence of a trained artificial neural network (ANN). ANNs
are known for their ability to represent complex functional relationships and serve as an additional benchmark solution for the GEP based model.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0095886

I. INTRODUCTION

The scalar dissipation rate (SDR) plays a fundamental role in tur-
bulent reacting, non-premixed,1 partially premixed,2 or premixed
flames,3–8 the latter being the focus of this work. The SDR signifies the
local micro-mixing rate, which is influenced by turbulence, chemical,
and molecular diffusion processes that are strongly coupled.9 The
instantaneous SDR of the reaction progress variable (RPV) c is defined
as Nc ¼ Drc:rc; where D is the diffusivity of RPV. The RPV c can
be defined as c ¼ Y0 � Yð Þ= Y0 � Y1ð Þ, where Y denotes the mass
fraction of the species used for the definition of RPV, and the sub-
scripts 0 and1 depict values in the unburned and fully burned gases,
respectively. The present analysis focuses on the prediction of the sub-
grid scale (SGS) SDR e�c ¼ qDrc � rc=q � eDrec � rec, which
appears explicitly in the transport equation of the SGS scalar variance

r2v ¼ ec2 �ec2 transport equation,10,11

@ qr2v
� �
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þ
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 !
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Here, uj denotes the jth component of the velocity vector and D and
_x represent the diffusivity and reaction rate of progress variable
c; respectively. The knowledge of sub-grid scale (SGS) variance of
reaction progress variable r2v is often necessary to construct the sub-
grid probability density function (PDF) of reaction progress variable
of c in the context of flamelet12,13 and Linear Eddy14 based modeling
methodologies, but the correct evaluation of r2v depends on the
accurate closure of e�c . Moreover, it has been demonstrated
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previously8,10,11,15,16 that in the flamelet regime (i.e., in the corrugated
flamelets and thin reaction zones regimes17), the filtered reaction rate
of reaction progress variable _x can be expressed using the Favre-
filtered SDR as8,10,11,15,16

_x ¼ f2qeNc= 2cm � 1ð Þg 1� exp �/D=dthð Þ
� �

þ f1 q;ecð Þexp �/D=dthð Þ; (2)

where eNc ¼ e�c þ eDrec � rec, f1ðq;ecÞ is a function such that
_x ¼ f1ðq; cÞ, and / ¼ 0:56dthSL=aT0 is a model parameter with aT0
being the thermal diffusivity in the unburned gas. Equation (2) sug-
gests that the accuracy of the prediction of the turbulent burning
velocity ST ¼ q0Apð Þ�1

Ð
V _xdV (where q0 is the unburned gas density

and Ap is the projected flame area in the direction of mean flame prop-
agation), and the heat release rate depends on the closure of e�c in the
flamelet regime of combustion. This also serves as a motivation for
considering the modeling of SGS SDR e�c for the flamelet regime of
premixed combustion.18 Several recent analyses concentrated on the
statistical behaviors, modeling, and transport of SDR as well as the
effects of flow topologies on SDR (see Ref. 19 and references therein).
While large eddy simulation (LES) models for the SGS SDR are avail-
able (e.g., Ref. 8), the quantity is challenging to model, and new con-
cepts might be helpful for finding high accuracy LES closures.

The availability of accurate and complete 3D datasets from direct
numerical simulation (DNS) or experiment combined with the grow-
ing computing power has recently given a significant boost to the
development of turbulence models20,21 and combustion models22–32

using machine learning (ML). Algorithmic innovations and advances
in computer hardware have allowed the use of more complex algo-
rithms that infer not just closure constants but also functional forms.
Broadly speaking, ML studies can be split into two categories: those
that are transparent and those that are not: methods like artificial neu-
ral networks (ANN) can represent very complex functional relation-
ships but have to be treated as a black box by the user.23,24 Diagnosing
problems, ensuring physical constraints, and sharing models with the
community are, thus, not always straightforward. For symbolic regres-
sion, such as gene expression programing (GEP),33,34 the model
inferred is a mathematical expression which has the advantage of pro-
ducing a model as a function of key physical parameters, which can
easily be implemented and ideally provides physical insights into the
phenomenon of interest.34–36

Using a DNS database of statistically planar turbulent premixed
flames, the focus of this work is to use ML methods to train a model
for SGS SDR. While the focus lies on the application of GEP to the
problem under consideration, ANN serves as an additional bench-
mark and provides explanations for the training behavior of GEP.

The rest of this paper is organized as follows. Sec. II introduces
the DNS database and the data processing. Section III provides the
details for the ML methods applied in this work. Results are shown
and discussed in Sec. IV, and some final remarks and conclusions will
close the paper.

II. DNS DATABASE

A subset of a DNS database11,35 of turbulent premixed planar
flames with single step Arrhenius type irreversible chemistry has been
considered for the current analysis. In this context, the reaction rate _x
of reaction progress variable c takes the following form:

_x ¼ B�q 1� cð Þexp � b 1� Tð Þ
1� a 1� Tð Þ

" #
; (3)

where a ¼ s=ð1þ sÞ and s are the heat release parameters, B� is the
normalized pre-exponential factor, and b is the Zel’dovich number.
The transport equation for the reaction progress variable c takes the
following form:

@ qcð Þ
@t

þ
@ quicð Þ
@xi

¼ _x þ @

@xi
qD

@c
@xi

� 	
: (4)

The database consists of six flames with global unity Lewis number Le,
henceforth denoted as cases A-C. A second index L (H) is used for
indicating a lower or (higher) heat release parameter, i.e., s ¼ 3:0
(s ¼ 4:5), where s ¼ ðTad � T0Þ=T0 with the adiabatic and unburned
gas temperatures Tad and T0. The normalized turbulent root mean
square (rms) velocity fluctuation u0=SL; integral length scale to thermal
flame thickness ratio l=dth; Damk€ohler number Da ¼ ðlSLÞ=ðdthu0Þ;
Karlovitz number Ka ¼ u0=SLð Þ3=2 l=dthð Þ�1=2; heat release parameter
s, and the Zel’dovich number b are shown in Table I. Here, SL is the
unstrained laminar burning velocity and dth is the thermal flame thick-
ness. Standard values of Prandtl number (Pr ¼ 0:7Þ and ratio of spe-
cific heats (cg ¼ 1:4) have been used.

This DNS database has proven to be useful before11,35,37–42 for
testing and developing turbulent combustion models. Hence, the
limited scale separation and parameter ranges of the present DNS
database (inherent to all DNS datasets) should not be considered a
limitation of the present study.

The turbulent velocity fluctuations and reacting flow fields are
initialized using a homogeneous, isotropic velocity field in conjunction
with a model spectrum suggested by Pope43 and a steady, planar,
unstrained premixed laminar flame solution, respectively. Flame–
turbulence interaction takes place under decaying turbulence, and the
simulation time is chosen to be larger than the chemical time scale as
well as the eddy turnover time. The simulation domain is taken to be a
cube of side length 45:8 dth and is discretized using a uniform
Cartesian grid of 5123 grid points. The ratio of integral scale to flame
thickness is l=dth ¼ 4:58 (see Table I), which ensures at least ten tur-
bulent eddies within the computational domain, such that their propa-
gation is not affected by the periodic boundaries and such that enough
samples can be obtained for collecting statistics. It can be seen from
Table I that the Karlovitz number values of the cases considered in
this analysis range from 5.23 to 27.16, which essentially means that
these flames represent the thin reaction zones regime combustion
according to Ref. 17. The Karlovitz number Ka can be scaled as
Ka � d2th=g

2;17 which suggests that the flame thickness remains
greater than the Kolmogorov length scale in the thin reaction zones

TABLE I. Characteristic initial parameters for the planar turbulent premixed flames.

Case u0=SL Da Ka

AL/AH 5.0 0.92 5.23
BL/BH 9.0 0.51 12.62
CL/CH 15.0 0.31 27.16

l=dth ¼ 4:58; s ¼ 3:0 and 4:5; b ¼ 6
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regime, but the reaction zone thickness remains smaller than the
Kolmogorov length scale. In DNS, both flame thickness (at least by ten
grid points) and the Kolmogorov length scale in the unburned gas
(at least by two grid points for the highest turbulence intensity) are
sufficiently resolved, so the flame has a finite thickness. According to
Ref. 44, premixed combustion in most industrial applications takes
place under small and moderate values of the Karlovitz number.
Furthermore, it was demonstrated in previous studies18,19,45 that the
statistical behaviors of the SDR and its evolution in premixed flames
resemble the non-reacting mixing problems for very high Karlovitz
numbers (e.g., Ka > 100). Thus, the SDR closure for very high
Karlovitz numbers (e.g., Ka > 100) can be obtained using a single tur-
bulent timescale associated with turbulent mixing.8 Both facts serve as
the motivation for the analysis of the sub-grid scale (SGS) SDR closure
for moderate values of Ka.

Spatial derivatives for all internal grid points are evaluated
using a tenth-order accurate central difference scheme, and time
integration is carried out using an explicit third-order accurate low
storage Runge-Kutta scheme. The boundary conditions in the
mean flame propagation direction are taken to be partially nonre-
flecting, whereas boundaries in the transverse directions are peri-
odic. More details on the database and numerical procedure can be
found in Refs. 11 and 37. A thorough discussion regarding the sim-
ulation strategy and the validity of the simplifications in terms of
chemistry for flame–turbulence interaction is reported in Refs. 46
and 47. Figure 1 exemplarily shows instantaneous isosurfaces of
RPV for cases A and C.

To evaluate the SGS SDR, given by the expression e�c
¼ qDrc � rc=q � eDrec � rec (where eq ¼ qq=q and q are the
Favre-filtered and LES filtered values of a general quantity q, respec-
tively, and q is the gas density), the DNS data have been explicitly fil-
tered using a Gaussian filter kernel. Results will be presented from
D � 0:4 dth, where the flame is almost resolved, up to D � 5:6 dth;
where the flame becomes fully unresolved, and D is of the order of the
integral length scale l.

The machine learning models introduced in Sec. III will be
trained with cases AL, AH, BL, and BH and the filter widths D=dth
¼ 0.4, 0.8, 1.2, 2.0, 3.6, 4.4, 4.8, and 5.6. Therefore, cases CL
and CH are selected as test cases to examine the extrapolation
capability in terms of the initial turbulence intensity, and the inter-
polation capability for the different filter widths by including
D=dth ¼ 2.4.

III. METHODOLOGY

Sections IIIA–IIIC discuss briefly the strategies to close the SGS
SDR term using a conventional algebraic LES-SDR model for pre-
mixed turbulent combustion,7,8 GEP, and ANN. It is worth mention-
ing here that input parameters for all three methods are given by ec,
D=dth, u0D=SL, and s, and KaD and DaD can be computed from this,
while the single output parameter is the SGS SDR. The involvement of
D=dth and u0D=SL in the input parameter also ensures that both mixing
timescale D=u0D and chemical timescale dth=SL can be incorporated in
the models enabled by GEP and ANN.

A. Algebraic SGS SDR closure

The model for the SGS part of the SDR for turbulent premixed
flames (henceforth referred to as CS model) can be written as7,8

e�CSc ¼ 1� fbð Þec 1�ecð Þ
bc

� 2K�
c
SL
dth

þ A� � sDaDB
�ð Þ 2u

0
D

3D

� 	
: (5.1)

Here, K�
c is a thermo-chemical parameter (¼0:77s for these cases),

fb ¼ exp �0:7 D=dthð Þ1:7
� �

is a function that ensures that eNc

approaches Nc when the flame is fully resolved (i.e., D ! 0), and

DaD ¼ DSL=u0Ddth is the SGS Damk€ohler number with u0D ¼
hgðuiui

�euieuiÞ=3
i1=2

being the SGS velocity fluctuation. In Eq. (5.1), A�, B�,

and bc are the model parameters8 with KaD ¼ u0D=SL
� �3=2 D=dthð Þ�1=2

and cm ¼
Ð 1
0 _wc½ �Lf cð Þdc=

Ð 1
0 _w½ �Lf cð Þdc being the SGS Karlovitz num-

ber and a thermochemical parameter (¼0.84 for these cases), respec-
tively, where f cð Þ is the burning mode probability density function
(PDF). The definitions of K�

c ; A
�, B� and bc are given as

K�
c ¼

dth=SL

ð1
0
qNcr �~u½ �L f cð Þdcð1

0
qNc½ �L f cð Þdc

;

A� ¼ 2:0
ffiffiffiffiffiffiffiffi
KaD

p
= 1:0þ

ffiffiffiffiffiffiffiffi
KaD

p� �
;

B� ¼ 1:2 1�ecð Þ0:2= 1þ KaDð Þ0:4;

bc ¼ max
2

2cm � 1ð Þ ;
1:05s
sþ 1

þ 0:51

� 	4:6( )
:

(5.2)

B. Gene expression programing

The central aspect of GEP, being a particular evolutionary algo-
rithm (EA), is to follow the Darwinian principle of natural selection
called survival of the fittest.48,49 GEP tries to find a functional represen-
tation of the SGS SDR using a set of variable operators and random
numbers. Since introduced by Ferreira,33 GEP has been used to solve all
kinds of engineering problems and has been proven to work especially
well for regression problems and, therefore, was chosen for this work.

The steps that are performed during the evolutionary progress
are illustrated in Fig. 2, where steps 2 to 7b are repeated in every gener-
ation and steps 1 and 8 are only performed once. The GEP algorithm
starts to create a (quasi) random initial population (1) of a predefined
size. Afterward, the fitness values of all individuals are calculated (2)
using the mean squared error between an individual’s and the DNS

FIG. 1. Instantaneous isosurfaces of RPV (c ¼ 0.3, red and c ¼ 0.7, orange) for
cases AH (a) and CH (b).
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function values. Then, it is checked if the one out of two convergence
criteria is reached: (i) a squared error smaller than a predefined thresh-
old e or (ii) a given number of generations is reached. If one of these
criteria is reached the best, overall individual will be presented (8).
Otherwise, the individuals that are allowed to reproduce are defined
(4) using a tournament selection with elitism. Consequently, the popu-
lation is split into a predefined number of tournaments (100 for the
run that found the presented model) with the same number (i.e., 100)
of individuals being sampled randomly for each tournament. The indi-
vidual with the best (smallest) fitness in a tournament wins and is
allowed to reproduce, while the losers with the worst (biggest) fitness
of these tournaments are replaced by the offspring. Reproduction is
performed via one- or two-point-crossover (5), and each new individ-
ual has a certain probability (60% for the run that found the presented
model) for each of its parts, which is selected randomly, to mutate (6)
afterward. The mutation was setup in a way that every new individual
has a 30% chance that any of its parts mutates. This translates into a
mutation probability for any symbol of a chromosome of 30%/
75¼ 0.4%. The part that mutates is chosen randomly. The probability
that two mates perform a one-point crossover was 50%, and that they
perform a two-point crossover was 30%. For a detailed description
on how crossover and mutation is performed for GEP-
chromosomes, the reader is referred to Ref. 33. While the size of
the population is fixed, some individuals must be removed (7a) to
create space for the new individuals that are added to the popula-
tion (7b) and get their fitness calculated (2). It is important to
understand that the whole process (1)–(8) is repeated multiple
times with different (about 200) random initial populations result-
ing in several “species,” each with a best individual. Out of these
winners, the most promising model candidates are finally selected.
The present work makes use of a recent improvement of GEP,
where the population is split into females and males in order to
increase diversity.50 Details are omitted here for the sake of brevity.

In GEP, the chromosome’s string for each gene is divided into
two parts:33 a head with symbol length h and a tail with length t,

subject to the relation t ¼ h na � 1ð Þ þ 1, where na is the maximal
number of arguments of all functions in the function set (here na ¼ 2).
In the present work, these parameters have been set to h ¼ 7 and t ¼ 8:
Each individual is represented by five genes, resulting in a total length
of 75. Due to the nature of GEP, not all these 75 symbols necessarily
impact the encoded chromosome, which allows for variable length of
the function expressions. As an example, consider the function set
F ¼ fþ;�;�;Qg; where Q indicates the square root, and the termi-
nal set T ¼ fa; b; c; 1g. For a gene with h ¼ 6 and t ¼ 7, the function
with the highest arity has an arity of two, hence na ¼ 2. The head may
contain any symbol of both the function set F and the terminal set T ,
which includes the numerical constants, while the tail must only con-
sist of symbols from the terminal set. Note that ephemeral random
constants with an associated separate chromosome part, as described
in Ref. 33, were not used in this work. The parsing tree in Fig. 3(a) enc-
odes to the Pythagorean theorem

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. The structure shown in

Fig. 3(b) is commonly referred to as a gene. The chromosome of each
individual can consist of several genes, which can be combined by any
function with an arity of two. The relation between a GEP gene and its
parsing tree is presented in Fig. 3, while in Fig. 3(b), the head and tail of
the presented GEP gene are divided by a vertical line, which is only used
for illustration. Note that the terminals after position 7 in Fig. 3(b) are
not used to create the parsing tree and to encode the gene. For details on
how a GEP gene is encoded into the parsing tree and how the parsing
tree is translated into a function, the reader is referred to Ref. 33.

While, in this paper, only the best found individual of multiple
runs with multiple random initial populations is presented together
with its GEP parameters, several different configurations and combi-
nations of crossover probabilities, etc., were tested during the course of
this exercise. In general, diversity competes with selection pressure.
Therefore, different selection pressure and diversity settings were
tested by changing the optimization configuration. While a too high
selection pressure (too low diversity) can lead to the optimization
being stuck in a local optimum, a selection pressure too low (diversity
too high) can lead to no convergence at all. Note that for the presented

FIG. 2. Basic steps of a GEP algorithm.
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results, the tournament size, the mating size, and the mutation proba-
bility have the highest impact on selection pressure and diversity.
With increasing the tournament size, the selection pressure increases
while the diversity decreases since, the probability that an individual
competes with the best individual (and loses again) increases.

The run where the presented GEP result was found had a popula-
tion size of 1500 and was optimized for 15 000 generations. The pre-
sented model was found after about 8500 generations, and no better
solution was found afterward.

C. Deep artificial neural networks

Deep ANNs have shown their capability to provide a successful
surrogate model for predicting SGS terms for turbulent combustion

problems.23–25,51,52 Most of the previous studies have utilized convolu-
tional neural networks which use learnable convolutional kernels that
aim to seek the hierarchical topological features in the structured
dataset.

In this current study, we employed the residual neural network
(ResNet), that is, designed to perform complex and nonlinear regres-
sion tasks. The use of ResNet has allowed to achieve great accuracy on
complicated datasets in the combustion community25 and also diverse
interdisciplinary areas.53 It is also advantageous that it is applicable to
unstructured meshes that are used by commercial CFD codes.

Figure 4 shows the schematic of the ResNet used in this study.
The ResNet takes an input block to feed the input parameters to the
neural network, and it ends with an output block to predict the output
parameters. A ResNet block consists of three fully connected layers,

FIG. 4. Schematic of the deep neural network used in this study.

FIG. 3. GEP parsing tree (a) and corresponding GEP gene (b).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 085113 (2022); doi: 10.1063/5.0095886 34, 085113-5

VC Author(s) 2022

https://scitation.org/journal/phf


and each layer contains the ReLU activation function. To realize the
residual skip connection, which is the key element of the ResNet, the
skip-layer connection is concatenated from the start of the block to
the end of the block, and then the linear activation function is added
at the end of the neural network to satisfy the regression operability.
The number of ResNet blocks N and the number of nodes at each hid-
den layer n are taken to 5 and 100, respectively. The total number of
trainable parameters is approximately 170 000.

In the current contribution, feature importance analysis is con-
sidered to reveal the importance of the respective input parameter
with respect to the output parameter, e�c; in this study. Two methods
are employed for this analysis: Shapley additive explanations (SHAP)
and maximal information coefficient (MIC). The SHAP method offers
model-agnostic interpretability of trained ANNs, based on the cooper-
ative game theory.54 The MIC method measures the relationship of
two arbitrary parameters (i.e., how closely they are associated), by sat-
isfying two statistical characteristics: generality and equitability.55

These two methods are exploited to demonstrate the importance of
the input parameters to be used for the GEP method. Details will be
discussed in Sec. IV.

For the ResNet, the number of trainable parameters is 170 000,
whereas for GEP, it is 75. Hence, it can be speculated that the current
ResNet is more suitable for interpolating the data, while GEP provides
the potential to reveal aspects of the underlying physics, in particular
because of its transparency.

IV. RESULTS

Section IVA explains the chronology of steps taken for deriving
a GEP model followed by a detailed discussion of the results and com-
parison with the ResNet model.

A. Deriving a model using GEP

GEP as described in Sec. III B was used to find amodel expression
for the SGS SDR using different basis functions and variables. The vari-
able set consisted of ec; DaD; KaD, D=dth; and s; which was motivated
by the existingmodel given in Eq. (5). It is worth noting that more vari-
ables could be included, like, for example, jrecj. As the number of pos-
sible variables is infinite and for the sake of an efficient training process,
the aforementioned variables have been selected. The used function set
is given by ½þ;�; �; =; e�; �x; ffiffi�p � with the exponent in the range
x 2 ½2; 10�. The fitness function fi of individual i is given as

fi ¼
X
cases

X
D

X
data

D e� ic �e�DNSc

� �2
: (6)

The fitness function fi has been weighted with the actual filter width,
which was used during a priori analysis of the DNS data, to increase
the importance of larger filter widths, which are more relevant in
terms of practical applications. Here,e� ic ande�DNSc denote the SGS SDR
values of an individual’s decoded chromosome (representing model
candidate i) and the DNS values, respectively.

The first attempt for finding a model consisted of optimizing in
physical space (i.e., 5123 data points) by running simultaneously over
different turbulence intensities, heat release parameters, and filter
width combinations. It is remarked here that while filtering the DNS
data does not reduce the dimension of the dataset, the optimization
could be done on an arbitrary subset of the 5123 cube at the price of

losing samples. Such an approach has been discussed by Sch€opplein
et al.56 but has not been tested in the context of this work. This made
the fitness evaluation quite expensive, and, as a result, optimization for
large population sizes and a large number of generations turned out to
be economically unfeasible. The best models found using this
approach were worse, in terms of the fitness value than the model
given in Eq. (5). This was not only disappointing but also surprising,
given the past success of GEP in approximating CFD closure
terms34–36 by using an integrity basis.

The second attempt involved finding a model expression for con-
ditionally averaged e�c in the space of reaction progress variable ec,
which has been discretized in 100 equally sized bins in the interval
0; 1½ �. Therefore, the inner sum in Eq. (6) had to be evaluated for only
100 data points instead of 5123; which facilitated the use of larger pop-
ulation sizes and larger number of generations. The results became sig-
nificantly better and comparable to the model presented in Eq. (5)
since only the mean values in ec space had to be learned. Nevertheless,
GEP frequently got stuck in local optima.

These unsatisfactory results lead us to introduce a change of
variables/basis functions, and GEP offers the possibility to use prior
knowledge. Therefore, two polynomials p ecð Þ and qðecÞ were introduced
that roughly represent e�c for small (p) and large (q) filter with accord-
ing to the DNS data presented later (see Fig. 8),

p ¼ �64:24 �ec � ec � 0:6ð Þ � ec � 0:8ð Þ � ec � 1:0ð Þ
� ec2 � 0:1256 �ec þ 0:015ð Þ

q ¼ 0:77 �ec � 1:0�ecð Þ:
(7)

The DNS results (see Fig. 8) indicate that e�c has four roots for
small filter width ec ¼ 0:0; 1:0 and approximately ec ¼ 0:6; 0:8, which
is reflected in the first part of p [i.e., ec � ec � 0:6ð Þ � ec � 0:8ð Þ
� ec � 1:0ð Þ�, while the second part [i.e., ec2 � 0:1256 �ec þ 0:015ð Þ] is a
polynomial with two imaginary roots that improves the shape of p
without affecting the zeros. The large filter width contribution q repre-
sents the well-known expression proportional to ec � 1�ecð Þ from Eq.
(5). The constant prefactors of p; q as well as the imaginary part of p
have been found by linear regression. While the need for a priori
knowledge can be considered a disadvantage, it enables a better train-
ing process. Furthermore, the ability to inform the machine learning
algorithm with physical boundaries for large and small filter width can
also be considered an advantage.

The feature importance map with respect to e�c for the input
parametersec, DaD, KaD, D=dth, and s as well as p and q is depicted in
Fig. 5. MIC can deliver a quantitative measure if two variables, even

FIG. 5. Result of the feature importance analysis using MIC and SHAP. The values
of MIC vary from 0.0 to 1.0, while the SHAP values add up to 1.0. A value of 1.0
(0.0) means perfectly associated (not associated).
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with a nonlinear relationship, are closely related. As p and q are func-
tions of ec, all three parameters result in the same MIC value. By con-
trast, the SHAP method (which requires a trained ANN) can
investigate the partial contribution of the input parameters with
respect to the objective parameter of the neural network, here e�c.
Interestingly, the SHAP method shows that p and q and KaD are the
most influential parameters for predicting e�c among all parameters
considered here. Consistent with this analysis, we found that, indeed,
introducing p and q allowed us to spot better representations of SGS
SDRe�c.

With these basis functions, p and q, the optimization process
could escape local optima more easily, and it became much easier for
GEP to find individuals that represent e�c reasonably well for a wide
range of filter widths. In fact, introducing these variables decreased the
fitness values of the best-found individuals tremendously. Note that
different GEP runs do not necessarily evolve to the same mathematical
expression, while their functional output can still be similar. In general,
the functional form and the performance of models from different
runs differ, and one can either calculate an ensemble averaged model
from all the trained models (or a subset of it) or, as in this work, sim-
ply select the best model according to the fitness function. Finally, a
postprocessing step was added to ensure that the model fulfills physical
constraints, namely, e� ic ! 0 for ec ! 0; 1, or e� ic ! 0 for D ! 0.
Moreover, division by zero should be avoided. The symbolic equation

obtained from GEP for the normalized SGS SDR e�GEPc � dth=SL is
given as

e�GEPc �dth=SL¼p �eC1 � f Dð Þþq
ffiffiffiffiffiffiffiffi
KaD

p
�C3

� �
þ

ffiffiffiffiffiffiffiffi
KaD

p
�C2;

where C1¼�ec0:25 s= D=dthþ0:25ð Þð Þ�2:5 ;

C2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:8 �10�5 �Da4D �q

q
; C3¼

0:019 �e
�

pþq

0:0512 � DaDþeð Þ
�0:25

D=dthþe
f Dð Þ;

f Dð Þ¼1�e�3:5 D
dth ; e¼10�3:

(8)

For Eq. (8), the physical constraints were fulfilled by introducing
f ðDÞ and by adding � to avoid singularities. This possibility to analyze
the model and to ensure physical and mathematical consistency of the
model is a big advantage of GEP, which produces human readable
results. In fact, this last step has even decreased the error further.

Figure 6 shows the mean squared error (top row) and the correla-
tion coefficient (bottom row) between the model and DNS values,
based on the parameters from physical space x (left column) and as
well in the space ofec (right column). It is especially worth noting that
the GEP based model was only optimized using the conditional mean
SDR values but still works reasonably well in physical space, which
means that it can still predict local values.

FIG. 6. Mean squared error [(a) and (b)] and correlation coefficient [(c) and (d)] between the model and DNS values, based on the parameters from physical space x [(a) and
(c)] and in the space of ec (b and d). In each subfigure, results for the GEP based model (left) are compared to the existing CS model (right) shown in Eq. (5). All values are pre-
sented in the following manner: [min, max], mean, calculated as minimum, maximum, and mean over all filter width from 0:4 dth to 5:6 dth for that particular case.
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B. Comparison of models from GEP and ANN

In order to demonstrate the predictive power of the GEP and
ResNet models derived, the correlation plots of SGS SDRe�c computed
by the models vs the one from DNS are depicted in Fig. 7, especially
when D=dth ¼ 2.4, which is the case the models were not trained on.
Figure 7 shows that the results from the ResNet are in the best agree-
ment with the DNS, showing a correlation coefficient of 0.999.

The results computed from the GEP model also provide high correla-
tions with the DNS, while the correlation strength deteriorates to some
extent for the CS algebraic model [i.e., Eq. (5)].

Figure 8 shows the plots of SGS SDR e�c conditional onec for two
cases AL and AH and the filter widths D=dth ¼ 0.8 and 5.6 for the
model was trained for, and together with the two cases CH and CL
and the filter width D=dth ¼ 2.4 for the model was not trained for.

FIG. 7. Hexbin correlation plots for e�c � dth=SL from DNS vs e�c � dth=SL from ResNet (a), vs the prediction of the CS model [i.e., Eq. (5)] (b), vs the one from GEP (c) when
D=dth ¼ 2.4. Results consider all cases shown in Table I. The Hexbin plot shows the color of the frequency distribution of the points discretized onto the domain by 100� 100.

FIG. 8. Model prediction for normalized SGS SDR results (i.e., e�c � dth=SLÞ for cases (a) AL, (b) AH, (c) CL, and (d) CH, and the filter widths 0:8dth (left), 2:4dth (middle),
and 5:6dth (right).
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It is important to note here that the quantitye�c can become nega-
tive for small filter width, which can be seen as follows: if one defines
c ¼ ec þ c00 and assumes qD ¼ const:; the SGS SDRe�c ¼ qDrc � rc=
q � eDrec � rec can be written ase�c ¼ qD=q f �recrec �recrecð Þ
þ2�recrc00 þ rc00rc00 g. For small filter width D (i.e., D < dth), the
second and third terms are negligible, while the first term in parenthe-
ses, indeed, can become negative, and negative values of SGS SDR
were obtained only for small filter widths in Fig. 8. For large
filter widths (i.e., D > dth), the third term on the right-hand side

(i.e., qD=q frc00rc00 g) becomes the leading order contribution, and,
thus, the SGS SDR assumes positive values.

It can be observed from Fig. 8 that ResNet and GEP models rep-
resent the SGS SDR well and very well, respectively, for different filter
widths including cases and filter widths for which they were not
trained for. Furthermore, it can be seen that the GEP model performs
considerably better than the conventional algebraic model (i.e., CS
model) for both large and small filter widths. Note that a moderate
overprediction occurs for the GEP model for the smallest filter width,
in particular for s ¼ 4:5, close to the reaction zone (i.e., ec � 0:7),
while the qualitative behavior is still captured well, especially com-
pared to Eq. (5).

It should be emphasized that the ResNet model consists of several
hundreds of thousand parameters. The GEP model, on the other
hand, utilizes only a few parameters and mathematical operators, thus
featuring a computational effort comparable to the CS algebraic model
[i.e., Eq. (5)]. Figure 9 shows distributions of e�c computed from the
DNS, GEP, and ResNet for filter widths 0:8dth, 2:4dth, and 5:6dth. It
must be noted that a narrower field of view, showing only the flame
front, has been selected. It can be clearly seen from Fig. 9 that GEP

and ResNet models qualitatively and quantitatively show very good
agreement with the DNS data for a large range of filter widths, includ-
ing the validation data.

Finally, we would like to comment on the training and infer-
ence times for GEP and ResNet. The order of magnitude for the
optimization time is about 3–4 days on 128 Cores for the present
GEP model and about one day on a Titan X GPU for the ResNet. A
direct comparison has to be done with care due to the entirely differ-
ent hardware used. The inference times for the algebraic (CS), the
GEP, and ResNet models are (normalized to the CS inference time)
1.0, 0.76, and 952.7, respectively. In fact, the GEP model is even
slightly faster than the algebraic model, and both are three orders of
magnitude faster than ResNet (it can be reduced to two orders of
magnitude for inference using a GPU). As a general trend, the train-
ing time is faster for ResNet, but the inference time is larger com-
pared to GEP.

V. CONCLUSIONS

The machine learning based modeling of SGS SDR of the reac-
tion progress variable has been addressed in this work using an exist-
ing database of freely propagating statistically planar turbulent
premixed flames with different turbulence intensities and heat release
parameters. GEP has been used to infer a mathematical expression
from the DNS dataset using the following chronology of steps. First,
the model training has been conducted in physical space using local
SGS SDR values, but the resulting model was found to be insufficient.
In the second step, the model training has been performed in the space
of the Favre-filtered reaction progress variableec by trying to represent
the mean values of sub-grid scale SDR conditioned upon ec: This
allowed for a more economic optimization process using a larger num-
ber of generations and resulted in better, but still not satisfactory

FIG. 9. Instantaneous distributions of e�c � dth=SL computed from DNS, GEP, and ResNet shown in the x� y midplane for the filter widths 0:8dth (top), 2:4dth (middle), and
5:6dth (bottom) for case AL.
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model performance. Finally, a change of basis function was found to
improve the results substantially, and the resulting model clearly out-
performs the CS algebraic model from literature. The feature impor-
tance analysis using the SHAP method based on a trained ANN also
has proven that the change of the basis function was the enabling step
for finding more accurate GEP models.

The prediction results from the models delivered by GEP and
ANN show very good agreement with the DNS and outperform the
algebraic model from literature. While ANN features an even better
quantitative agreement than GEP, the GEP model represents a mathe-
matical expression which is easy to evaluate and ensures physical con-
sistency forec ! 0; 1 or D ! 0.

To the author’s best knowledge, this is one of the first applica-
tions of GEP related to modeling SGS SDR, or more generally terms
which are directly or indirectly important for closing the filtered reac-
tion rate. It is also one of the few studies in the area of CFD where dif-
ferent machine learning methods are compared to each other, and this
should be considered as the main achievement of the present research.
It was not the scope of this work to find an expression for SGS SDR
that works well in the most general scenarios of turbulent premixed
combustion, and therefore, the limited scale separation and parameter
ranges of the present DNS database (inherent to all DNS datasets)
should not be considered a limitation of this present study.
Nevertheless, further analysis with larger scale separation and higher
Reynolds numbers, if possible, complemented by high fidelity 3D
experimental data, will be needed for validation and refinement of the
present models, which will form the basis of future investigations.
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