
Vol.:(0123456789)

Flow, Turbulence and Combustion (2022) 109:383–409
https://doi.org/10.1007/s10494-022-00330-0

1 3

A Priori Analysis on Deep Learning of Filtered Reaction Rate

Junsu Shin1   · Maximilian Hansinger2 · Michael Pfitzner2 · Markus Klein1

Received: 29 October 2021 / Accepted: 5 May 2022 / Published online: 4 June 2022 
© The Author(s) 2022

Abstract
A filtered reaction rate model driven by deep learning is proposed and analyzed a priori 
in the context of large eddy simulation (LES). A deep artificial neural network (ANN) is 
trained on the explicitly filtered reaction rate source term extracted from a database com-
prised of turbulent premixed planar flame direct numerical simulations (DNSes) employ-
ing single-step chemistry. The filtered DNS database to be used for the training of the ANN 
covers a wide range of turbulence intensities and LES filter widths. An interpretation tech-
nique of deep learning is employed to search the principal input parameters in the high 
dimensional database to alleviate the model complexity. The deep learning filtered reaction 
rate model is then tested on the unseen filtered planar flames featuring untrained turbulence 
intensities and LES filter widths, in conjunction with another canonical type of flame con-
figuration that it has not been trained on. The deep learning filtered reaction rate model 
achieves good agreement with the filtered DNS results and also provides a quantitatively 
accurate surrogate model when compared to existing algebraic models and other combus-
tion models from the literature.

Keywords  Turbulent premixed combustion · Data-driven modeling · Deep learning · 
Filtered reaction rate modeling · Large eddy simulation

1  Introduction

In large eddy simulation (LES), only the large-scale flow structures are resolved, while 
small-scale fluctuations of momentum, species concentration, and temperature below 
the mesh resolution are unknown. Due to this spatial filtering operation, unclosed terms 
arise that have to be modeled by subgrid scale (SGS) closures. In turbulent premixed 
combustion, the employed filter width (i.e., the cell size) is usually too big to resolve 
the laminar flame structure embedded in the flow field. Hence, the flame wrinkling and 
therewith the filtered reaction rate source term 𝜔̇ has to be represented by adequate 
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combustion SGS models. An alternative to classical algebraic closure models is given 
through data-driven machine learning approaches which try to “learn” a meaningful 
relationship between a system’s state variables without explicit knowledge of the physi-
cal relation between input and output.

In the past years, data-driven models have become very popular due to the rapid evo-
lution in the field of deep learning. The recent increases of computational resources 
at affordable prices, especially in the sector of graphics processing units (GPU), and 
the developments of well-maintained open-source software libraries such as Tensorflow 
(Abadi et  al. 1603) or PyTorch (Paszke et  al. 1912) made deep learning a very suc-
cessful technique to tackle complex scientific and engineering problems from various 
domains, such as speech recognition, image segmentation, and classification, genome 
sequencing, language translation, earth system science and many more (LeCun et  al. 
2015; Reichstein et  al. 2019; Schmidhuber 2015). Artificial neural networks (ANNs) 
are the core algorithms that are the foundation of deep learning, providing a cost-effec-
tive universal function approximation, which is able to represent nonlinear input/output 
relationships. ANNs consist of densely stacked neurons, which are layer-wise intercon-
nected. The free parameters of the network, the individual weights of the neurons, can 
be fitted in a supervised learning process where the network is shown a data set with 
known input and output. The learning process consists of comparing the error between 
the actual output (ground truth) with the prediction from the network and iteratively 
adjusting the weights to minimize this error. Once an ANN is trained it can be used to 
perform inference, i.e., make predictions on an input data set of the same population it 
has been trained on.

In the combustion community, (Blasco et  al. 1998, 1999, 2000; Chen et  al. 2000; 
Christo et al. 1996) made first attempts to make use of ANNs to substitute the direct inte-
gration of simple reaction mechanisms. With more sophisticated data generation strategies 
this approach was later refined and employed by Chatzopoulos and Rigopoulos (2013), 
Ding et al. (2021), Franke et al. (2017), Readshaw et al. (2021) in LES of turbulent non-
premixed flames. Others (Emami and Eshghinejad Fard 2012); Flemming et  al. 2005; 
Hansinger et al. 2020a; Ihme et al. 2006, 2009; Owoyele et al. 2020; Ranade et al. 2019a, 
b) used ANNs to replace the thermo-chemical data tables in their flamelet based simu-
lations. In the field of premixed combustion modeling, (Lapeyre et  al. 2019; Xing et  al. 
2021; Seltz et al. 2019); Shin et al. 2021) have shown that convolutional neural networks 
(CNNs) have the predictive power to model the filtered reaction rate source term 𝜔̇ , which 
appears in LES. CNNs are a type of ANNs that utilize a trainable convolutional filter and 
are designed to learn the spatial hierarchies of the input features.

Machine learning techniques such as CNN or genetic optimization have also been used 
to model the turbulent subgrid-flame surface density (Lapeyre et al. 2019), flame surface 
density (Ren et al. 2021), filtered reaction rate, and subgrid-scale variance of reaction pro-
gress variable (Nikolaou et  al. 2019) or the subgrid-scale stresses in turbulent premixed 
combustion (Schoepplein et al. 2018).

In addition, the residual neural network (ResNet) using fully connected layers has been 
developed along with CNNs and it has shown great accuracy on complex nonlinear data-
sets (Chen et al. 2020; Jiang et al. 2108) and also for combustion and thermochemical data-
sets (Hansinger et  al. 2020; Ge et  al. 2018). It is advantageous as it takes as input fully 
local values, while CNNs employ as input only spatially ordered regular matrices. These 
two types of ANNs are already discussed in Shin et al. (2021), in terms of their applica-
bility to computational fluid dynamics (CFD) codes and it was demonstrated that using 
ResNet yielded good agreement with filtered direct numerical simulation (DNS) results.
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We propose a data-driven modeling of filtered reaction rate source term based on deep 
learning, in particular ResNet in the present study. The turbulent planar flame DNS results 
are explicitly filtered to extract the filtered reaction rate and input parameters to the neural 
network. The filtered DNS database covers a wide range of turbulence levels and LES filter 
widths. For the input to the data-driven modeling, different parameters featuring thermo-
chemical and flow properties of the turbulent premixed flame can be used; 11 parameters 
in total are considered here. In order to reduce the model complexity, we attempt to sift the 
principal input parameters using non-machine learning and machine learning techniques. 
The deep learning LES model is then tested on the unseen datasets including the untrained 
turbulence levels and LES filter widths in conjunction with another type of canonical flame 
configuration. Thus, a quantitative a priori assessment is conducted to verify the perfor-
mance of the deep learning LES model and it is compared with other LES combustion 
models from the literature.

This paper is structured as follows: we introduce the turbulent premixed planar flame 
DNS database for the training and a turbulent Bunsen flame DNS database for the test 
of the neural network in Sect. 2. The theoretical background of existing LES combustion 
models is presented in Sect. 3. In Sect. 4, the details of the deep learning LES model are 
described in the perspective of its networks architecture and filtered DNS database that 
they will be trained on. The results of an assessment for the deep learning filtered reaction 
rate model based on an a priori analysis are presented in Sect. 5.

2 � DNS Databases

For the current contribution, we employed two different DNS databases/datasets: turbulent 
premixed planar flame DNS and turbulent Bunsen flame DNS. The planar flame DNS is 
used as a training source and also for the testing of the deep learning filtered reaction rate 
model because of its canonical character, representing the simplest flame configuration. 
The Bunsen flame DNS is utilized as a test dataset to check the generalization capability to 
other flame configurations. Hereafter, we introduce the two DNSes briefly.

2.1 � Turbulent Premixed Statistically Planar Flame DNS

The planar flame DNS database used in this study was generated/established by the 
compressible reacting flow solver SENGA code and was firstly presented by Klein and 
Chakraborty (2019). Parts of this database have already been used by Hansinger et  al. 
(2020b) to validate a new analytical combustion model, which will be introduced in Sect. 3. 
This DNS database contains turbulent premixed planar methane-air flames at ambient pres-
sure and temperature, based on assumptions of a single-step Arrhenius type irreversible 
reaction mechanism and unity Lewis number. Table 1 describes the characteristic param-
eters for the planar flame DNS considered in this study, which are denoted as PF–A to 
PF–E, where sL is the unstrained laminar burning velocity, �th the thermal flame thickness 
defined by 

(
Tb − Tu

)
∕max(|∇T|) , u′in the turbulent root-mean-square (RMS) initial veloc-

ity fluctuation, l the integral length scale, Da = lsL∕
(
�thu

�
in

)
 is the Damköhler number and 

Ka =
(
u�in∕sL

)3∕2(
l∕�th

)−1∕2 is the Karlovitz number. The heat release parameter � and the 
Zeldovich number � are taken to be 4.5 and 6.0. Standard values of Prandtl number ( Pr
=0.7) and the ratio of specific heats ( �=1.4) have been used. The turbulent velocity fluc-
tuations have been initialized with a homogeneous isotropic incompressible velocity field 
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in conjunction with a model spectrum suggested by Pope (2000). The flame turbulence 
interaction takes place under decaying turbulence with a simulation time larger than the 
maximum of two eddy turnover times and the chemical time scale (Klein et al. 2017). The 
reacting flow field is initialized by a steady planar unstrained premixed laminar flame solu-
tion. The instantaneous isosurfaces of reaction progress variable c for the cases PF–A to 
PF–E are shown in Fig. 1. For further details regarding the numerical methods employed, 
the reader is referred to (Chakraborty et al. 2011, 2009).

The simulation domain is taken to be a cube of 26.1 �th×26.1 �th×26.1 �th which is dis-
cretized using a uniform Cartesian grid of 512 × 512 × 512 points ensuring 11 grid points 
are kept to resolve the thermal flame thickness. Spatial derivatives for all internal grid 
points are evaluated using a 10th order central difference scheme. The order of discretiza-
tion gradually drops to a one-sided second-order scheme at the non-periodic boundaries. 
Time integration is carried out using an explicit third-order low storage Runge–Kutta 
scheme. The boundary conditions in the direction of the mean flame propagation (x-direc-
tion) are taken to be partially non–reflecting, whereas boundaries in transverse directions 
are specified as periodic (y and z–directions).

2.2 � Turbulent Premixed Bunsen Flame DNS

In order to evaluate the generalizing capabilities of the deep learning filtered reaction rate 
models, the DNS result of a turbulent Bunsen flame is also considered. The database has first 
been presented by Klein et al. (2018). Single-step chemistry is used for the chemical reactions 
with unity Lewis number. Inflow data reproducing the required turbulence properties has been 
generated using a modified version of the method suggested by Klein et al. (2003) where the 
Gaussian filter in axial direction has been replaced by an autoregressive process in order to 
avoid excessive filter length in this direction caused by the small-time step in the compressible 

Table 1   Characteristic initial 
parameters for the planar 
turbulent premixed flame (PF) 
DNS and Bunsen flame (BF) 
DNS

Case Re
t

u�
in
∕s

L
l∕�

th
Da Ka Sc

PF–A 11.67 1.0 4.58 4.58 0.47 0.7
PF–B 58.3 5.0 4.58 0.92 5.23 0.7
PF–C 87.5 7.5 4.58 0.61 9.60 0.7
PF–D 105.0 9.0 4.58 0.51 12.62 0.7
PF–E 175.0 15.0 4.58 0.31 27.16 0.7
BF 13.3 1.0 5.2 5.0 1.94 0.7

(a) PF–A (b) PF–B (c) PF–C (d) PF–D (e) PF–E

Fig. 1   The isosurface of progress variable c = 0.5 from premixed planar flame DNS for a PF–A: 
u
�

in
∕s

L
= 1.0 , b PF–B: u�

in
∕s

L
= 5.0 , c PF–C: u�

in
∕s

L
= 7.5 , d PF–D: u�

in
∕s

L
= 9.0 , e PF–E: u�

in
∕s

L
= 15.0
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flow solver. The reacting flow field is initialized by an unstrained premixed laminar flame 
solution with the geometry of a semi-sphere located at the inflow. The numerical scheme is 
the same as described in Sect. 2.1. In this paper, only one flame configuration at atmospheric 
pressure will be considered, although there exist other Bunsen DNS results in higher pressure 
conditions, to check the generalization capability of the deep learning filtered reaction rate 
model. The characteristic parameters for this Bunsen DNS are also presented at the bottom of 
Table 1. The simulation domain corresponds to a cube of 50 �th×50 �th×50 �th which is discre-
tized using a uniform Cartesian grid of 250 × 250 × 250 points. In this case, only 5 grid points 
are used to resolve the thermal flame thickness. The nozzle diameter corresponds roughly to 
half the domain length.

3 � LES Closures for Filtered Reaction Rate

According to Poinsot and Veynante (2005), at constant pressure conditions a reaction progress 
variable can be defined as c =

(
T − Tu

)
∕
(
Tb − Tu

)
 when the fuel and the oxidizer can be 

assumed to be a homogenous mixture where Tu , Tb are the unburnt mixture and fully burnt 
temperatures, respectively. A Favre-filtered transport equation for the progress variable c̃ then 
can be written in the LES context:

where Q denotes spatial filtering, Q̃ and denotes density-weighted Favre filtering of a 
general quantity Q , D the mass diffusivity, and 𝜔̇ the filtered reaction rate source term. 
In Eq.  (1), assumptions of a single step, irreversible chemical reaction with unity Lewis 
number and a thermally adiabatic condition are made. Following Boger et al. (1998), the 
right-hand side term in Eq.  (1) can be expressed in the context of flame surface density 
(FSD) modeling as:

where �u is the unburnt gas density, sL is the laminar flame speed, and Σ is a generalized 
flame surface density. Equation (2) implies that the turbulent flame speed is the result of a 
thin flame surface propagating locally with laminar flame speed, which is folded by the tur-
bulent eddies. The generalized flame surface density Σ in Eq. (2) can be modeled as a func-
tion of the SGS wrinkling factor Ξ and the resolved flame surface density |∇c̃| as Σ = Ξ|∇c̃| 
(Klein and Chakraborty (2019); Allauddin et al. 2017).

In the current contribution, we consider a FSD model originally proposed by Fureby 
(2005) and modified in Ma et al. (2013), selected as a representative of explicitly formulated 
FSD models. It reads:

(1)
𝜕𝜌c̃

𝜕t
+

𝜕𝜌
∼
uk c̃

𝜕xk
+

𝜕

𝜕xk

(
𝜌

∼
ukc −𝜌

∼
uk c̃

)
=

𝜕

𝜕xk

(
𝜌D

𝜕c

𝜕xk

)
+ 𝜔̇

(2)
𝜕

𝜕xk

(
𝜌D

𝜕c

𝜕xk

)
+ 𝜔̇ ≈ 𝜌usLΣ

Ξ =

(
1 +

Δ

�i

)D−2

, �i =
sLΔ

u
�

Δ
Γ
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where �L is the Zeldovich flame thickness and the LES filter width Δ = n × ΔDNS , n is the 
number of DNS cells to be filtered spatially and ΔDNS is the DNS cell length. Since the 
FSD model models the sum of the filtered reaction rate and the filtered diffusion term, the 
filtered laminar diffusion term needs to be subtracted from the model term for comparison 
with models of the filtered reaction term. It can be expressed as follows

A novel analytic model for premixed combustion has been proposed by Pfitzner (2021) 
and analysed in depth in (Hansinger et al. 2020), modelling the filtered reaction rate source 
term 𝜔̇ based on the property that the analytic flame profile c(�) is analytically invertible 
into a �(c) where � = ∫ x

0
�usLcp∕�dx is a canonical coordinate; � is the heat conductivity 

and cp is the specific heat at constant pressure. Following the work by Pfitzner, the filtered 
reaction rate source term 𝜔̇ is given by

where m is a model constant to mimic c(�) for the different Arrhenius parameters � , � , �1 , 
and c+ and c− are the c(�) at the right and left cell boundaries of a 1D filtering interval, 
respectively. The readers are referred to  (Pfitzner 2021) for the details of the formulation. 
The m value used in this study is equivalent to 4.454 corresponding to � = 0.818 , � = 6.0 , 
�1 = 0 (see the Table 1 in  (Pfitzner 2021).

In contrast to FSD type models, the filtered reaction source term in this model is not a 
function of the gradient of the progress variable, but of the progress variable itself, thus 
ensuring the correct DNS limit for small filter width. It must however be emphasized that 
the analytical model as presented in  (Pfitzner 2021) assumes a planar flame nearly parallel 
to one of the surfaces of a cubical filter volume with negligible subgrid wrinkling, which 
is only a good assumption for smaller filter widths. Hence, it cannot be expected to repre-
sent the filtered reaction rate of strongly wrinkled flames very accurately, which can occur 
when large filter widths are employed. A thorough investigation to verify this model has 
been conducted using the explicitly filtered planar flame DNS data with different Karlovitz 
numbers (Hansinger et al. 2020). This model provides a valuable reference, the inclusion of 
wrinkling factors > 1 has been addressed in future work (Pfitzner et al. 2022).

4 � Deep Learning Modeling of Filtered Reaction Rate Term

The summary of this study is illustrated in Fig. 2. As already stated in the previous sec-
tion, we employed the premixed planar flame DNS as a training database that contains a 
wide range of the initial velocity fluctuations and LES filter widths. The explicit spatial 
filtering is applied to the DNS database and we generate the filtered DNS database com-
prising the filtered reaction rate 𝜔̇ as a function of the diverse variables that are accessible 
in the LES simulation and will be discussed in details in Sect. 4.2. Based on this filtered 

(3)Γ = 0.75 ⋅ exp

⎡
⎢⎢⎣
−1.2

�
u
�

Δ

sL

�−0.3⎤
⎥⎥⎦
⋅

�
Δ

�L

� 2

3

,D =
2.05

u
�

Δ

sL
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+
2.35
sL

u
�
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(4)𝜔̇FSD = Ξ|∇c̃| − 𝜕

𝜕xk

(
𝜌D

𝜕c

𝜕xk

)

(5)𝜔̇PDF =
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Fig. 2   Outline of this study. The arrowhead dashed line indicates a flowline with an outcome of a block
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DNS database, we train the ResNet neural networks using the two sets of input parameters, 
which are denoted the ‘full’ set and ‘compact’ set. The neural network architecture will be 
described in Sect. 4.1. These trained neural networks are then tested on the unseen flames 
in terms of untrained filter widths, initial turbulence intensity, and canonical flame configu-
ration. The a priori analysis on this will be presented in Sect. 5.

4.1 � The Neural Networks Architecture

An ANN in its most simple form consists of a single neuron, which maps the input vec-
tor x through a number of linear transformations onto the output vector ŷ . The mapping 
is achieved through the activation function �

(
�,�, b0

)
, where � is the node weight vector 

and b0 the offset bias. Both are adjustable parameters and have to be optimized during the 
supervised learning process. Stacking more neurons in parallel between input and output, 
a densely connected network can be obtained. Densely means that every neuron is directly 
connected to every neuron in the previous and subsequent layer. In case of a large number 
of layers between input and output, the network is commonly called a deep neural network 
(DNN) (LeCun et  al. 2015) where the output of each layer is fed as input into the next 
layer. By superimposing the multiple linear transformations of each neuron, a DNN is able 
to map complex non–linear relationships between input and output. Simonyan and Zisser-
man (1409) showed that increasing the depth is beneficial for the prediction accuracy of 
the network when they added more hidden layers. However, adding more layers and thus 
increasing the accuracy has limitations, too. As shown by He  et al. (2016) adding more 
and more layers to a suitably accurate DNN eventually may lead to saturation and degrada-
tion of the network accuracy. They found that degradation of networks with the increasing 
number of deep layers can be prevented through skip connections where the input to a layer 
is bypassed and directly mapped onto the output. Let H(�) be the underlying mapping to be 
fitted by two stacked layers, with � denoting the inputs to the first of these layers. Instead of 
learning H(�) directly, the stacked layers approximate a residual function F(�) = H(�) − � . 
The original mapping has been recast into F(�) − � . This formulation is realized by a feed-
forward neural network with “identity mapping” which skips one or more layers. The idea 
is that the F(�) needs to approximate non–linear mappings only, whereas the linear map-
pings between input and output are bypassed and do not have to be learned. Typically, a 
skip connection bypasses one layer, so at least two hidden layers are needed. Two layers 
with one skip connection are denoted as residual blocks, or simply ResNet blocks. Figure 3 
shows how one ResNet block, consisting of two hidden layers, is arranged between the 
input and output layer and how the individual neurons are interconnected. Figure 4 illus-
trates how the information is fed through the individual layers and which layers are skipped 
for the case of three sequential ResNet blocks.

The ResNet architecture allows reducing the network’s complexity while increasing the 
prediction accuracy, compared to a fully connected DNN. A similar ResNet approach has 
led to promising results in the regression of real-gas thermodynamic states or was suc-
cessfully applied to replace the thermo-chemical database in flamelet simulations (Ge et al. 
2018). Our previous work (Shin et al. 2021) also has shown that the ResNet architecture 
increased accuracy of the deep neural networks due to its ability to prevent overfitting.

Prior to using the network for predictions in the so-called inference step, the free param-
eters, i.e., the weight vector � and offset biases b0 of the nodes have to be optimized during 
the network training procedure. The current state-of-the-art activation function is the recti-
fied linear unit (ReLU) (Nair and Hinton 2010). For the loss function, the mean squared 
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error (MSE) is employed. An elastic net kernel regularizer (a blending between L1 and L2) 
has been applied between the last ResNet block and the output layer to enforce the gener-
alization of the network. We used a fixed batch size of 128 samples and an exponentially 
decaying learning rate starting with 1 × 10

−4 . We have used 200 neurons for all the fully 
connected layers and 10 residual blocks, yielding that the number of the trainable param-
eters is approximately 816,000.

All models were implemented using the Python programming language; the Tensor-
Flow open-source software library, which allows to generate large-scale artificial neural 
networks with many layers with GPU acceleration capability, has been used to apply the 
deep learning method used in this study. A workstation equipped with Nvidia Titan X GPU 
has been utilized for the training of the neural network. The training has taken approxi-
mately 18 h to complete.

4.2 � Training and Test Databases

Certainly, DL is a computer algorithm that endeavors to imitate the behavior inherent 
in the data. In order to achieve successful modeling driven by DL, securing a sufficient 
amount of high-quality data is crucial and essential. Hence, we attempt to create a database 
for training the neural network that covers an extensive range of the initial turbulence levels 
and the LES filter widths. It is designed such that the training database includes the influ-
ence of Ret , which varies from ∼ 10 to ∼ 200, upon the filtered reaction rate source term. In 
addition, we encompass a wide range of the LES filter widths, as described earlier, with the 

Fig. 3   Interconnection of dense 
neurons and structure of a single 
ResNet block between the input 
and output layer. Direct connec-
tions are illustrated with a black 
arrow, skip connections with a 
red dashed arrow

Fig. 4   Information flow and skip connections for the case of three sequential ResNet blocks
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intention of facilitating it with the practical LES calculations that occur often on inhomo-
geneous meshes.

The DNS dataset has been spatially (top-hat) filtered for a range of cubi-
cal filter volumes with side lengths containing the following number of DNS 
grid points n = {4, 8, 12, 16, 24, 32, 64} which corresponds to a 1-D filter size of 
Δ∕�th ≈ {0.36, 0.72, 1.07, 1.43, 2.15, 2.87, 5.73} . In Fig. 5, the result of the filtering opera-
tion used in this study is shown by contours of unfiltered and filtered progress variables for 
u
�

in
∕sL = 15.0 , which is the case that exhibits the most extreme initial turbulence intensity 

in this study.
A summary of the training and test databases is provided in Table 2. We designed 

the training and test databases to verify the three points: generalization capabili-
ties for the unseen LES filter widths, for unseen initial velocity fluctuations, and the 
configuration of the flame. For the cases in Table  2, T&V case includes the training 
and validation datasets, UP case includes the test dataset for different initial veloc-
ity fluctuations, and FW case includes the test dataset for different LES filter widths. 
The training dataset PF − T&V involves the LES filter widths characterized by 
Δ∕�th ≈ {0.36, 0.72, 1.43, 2.87, 5.73} and u�

in
∕sL = {1.0, 5.0, 9.0, 15.0} . The test data-

set PF − UP involves the unseen initial velocity fluctuations u�

in
∕sL = {7.5} with 

Δ∕�th ≈ {0.36, 0.72, 1.43, 2.87, 5.73} , test dataset PF − FW designed for testing the unseen 
LES filter widths encompasses Δ∕�th ≈ {1.07, 2.15} and u�

in
∕sL = {1.0, 5.0, 9.0, 15.0} . 

The dataset from the Bunsen flame configuration denoted as BF is comprised of the 
datasets including a range of 1-D filter size of Δ∕�th ≈ {1.6, 6.4} , which corresponds to 

Fig. 5   The sliced contour of reaction progress variable for u�

in
∕s

L
= 15.0 from DNS (left), and the filter 

widths of Δ∕�
th

=0.36 (middle) and 5.73 (right); the figure on the left side shows the unfiltered reaction pro-
gress variable c , and the rests depict the Favre filtered reaction progress variable c̃

Table 2   Description of training & validation, and test database based on filtered DNS where u′

in
 is the initial 

velocity fluctuation, s
L
 the laminar flame speed, and n the number of DNS cells being filtered

Case ID Type Purpose u
�

in
∕s

L
Δ∕�

th

PF − T&V Planar flame training and 
validation

1.0, 5.0, 9.0, 15.0 0.36, 0.72, 1.43, 2.87, 5.73

PF − UP Test 7.5 0.36, 0.72, 1.43, 2.87, 5.73
PF − FW Test 1.0, 5.0, 9.0, 15.0 1.07, 2.15
BF − FW1.6 Bunsen flame Test 1.0 1.6
BF − FW6.4 Bunsen flame Test 1.0 6.4
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the DNS grid points to be filtered n = {8, 32} and u�

in
∕sL = {1.0} to test the validity of 

the modeling approach also for the different flame configurations as well as for different 
filter widths. The training dataset includes a number of 18 million sample points and 
4.5 million sample points are reserved as validation dataset, corresponding to the Pareto 
rule.

In order to obtain an accurate surrogate model of the filtered reaction rate source 
term, we have considered 11 parameters in total for the input to the neural network. The 
definitions of the parameters are presented in Table 3. Figure 6 illustrates the filtered 
reaction rate source term 𝜔̇ as a function of the input parameters considered in this 
study, showing as an example the case u�

in
∕sL = 15.0 . It can be noted that the magni-

tude of the filtered reaction rate source term decreases significantly as the filter width 
increases as expected. In the current study, the reaction rate source term is spatially 
filtered using the top-hat filter to compute the filtered reaction rate source term as the 
final outcome.

The following parameters, that are all accessible in an LES, are calculated from the 
DNS data: Favre averaged progress variable c̃ , the magnitude of the gradient of Favre 
filtered progress variable |∇c̃|, the magnitude of the Laplacian of Favre filtered progress 
variable ||∇2c̃|| , the magnitude of SGS velocity fluctuation u�

Δ
 , the magnitude of the fil-

tered velocity ||ũi|| , the magnitude of the gradient of the filtered velocity ||∇ũi|| , the magni-
tude of the filtered strain rate tensor |||Sij

||| , the magnitude of the filtered vorticity rate ten-
sor from the velocity fields |||�ij

||| , the resolved curvature 
∼
� , the resolved tangential strain 

rate ãT , and the LES filter width Δ . The filtered reaction rate source term has tradition-
ally been modeled as a function of f (c̃ , |∇c̃| u�

in
∕sL , Δ∕�th ). The effects of curvature and 

tangential strain rate with respect to the hydrodynamic instability have been investigated 
in (Klein et  al. 2018; Echekki and Chen 1996). The data-driven modeling using deep 
learning based on the input parameters c , ||∇c|| , and ||∇2c|| is also discussed in Shin et al. 

Table 3   The variables considered as the input parameters to the neural networks, where �
ij
 is the Kronecker 

delta and Einstein summation convection is used

Variables Notation Definition Normalization

Filtered progress variable c̃ c̃ =
𝜌c

𝜌
–

The magnitude of gradient of 
∼
c

|∇c̃| – 1∕�th

The magnitude of Laplacian of 
∼
c

||∇2c̃|| – 1∕�th
2

SGS velocity fluctuation u
�

Δ u
�

Δ
=
√

1

3

�ii
�

,
�ii = �uiui −

(
�ui×�ui

�

) sL

The magnitude of Favre filtered velocity ||ũi|| – sL

The magnitude of gradient of Favre filtered velocity ||∇ũi|| – sL∕�th

The magnitude of the strain rate tensor |||Sij
||| |||Sij

||| =
||||
1

2

(
𝜕ũi
𝜕xj

+
𝜕ũj

𝜕xi

)||||
sL∕�th

The magnitude of the vorticity rate tensor |||�ij
|||

|||�ij
||| =

|||Ωx + Ωy + Ωz
|||,

Ωij =
1

2

(
𝜕ũi
𝜕xj

−
𝜕ũj

𝜕xi

) sL∕�th

Resolved curvature of 
∼
c

∼
�

∼
𝜅=

𝜕Ni

𝜕xi
,Ni = −

𝜕c̃

𝜕xi
∕|∇c̃| 1∕�th

Resolved tangential strain rate ãT ãT =
(
𝛿ij − NiNj

) 𝜕ũi
𝜕xj

sL∕�th

LES filter width Δ – �th
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(2021) although it is tested on a single LES filter width equivalent to Δ∕�th ∼ 2.4. In the 
current study, all the input parameters are made dimensionless by �th and sL for the sake 
of the generalization of the modeling. These are presented at the rightmost column in 
Table 3.

A log-transformation and normalization has been applied to the training dataset to 
improve the training process and increase the accuracy as follows:

where � denotes the arbitrary quantity to be normalized, � is its mean, � is its standard 
deviation (Bishop 2007). �′ denotes the log-transformed quantity and �′ ′ is the final data 
vector after normalization, which is eventually used to train the neural network.

5 � Results

5.1 � Complexity Reduction of the Deep Learning Combustion LES Model

In the current study, the maximal information coefficient (MIC) (Reshef et al. 2011) and 
the Shapley value Lundberg and Lee, S.-I.: A unified approach to interpreting model pre-
dictions, 31st Conference on Neural Information Processing Systems (NIPS 2017) are 
applied to sift the principal parameters that can represent the objective parameter with the 
best accuracy. Constructing an ANN with a small number of input parameters is important 
to alleviate the complexity of ANN and to reduce memory footprint and the inference time. 
In addition, the sensitivity to input parameters is essential to understand the physical phe-
nomena at work. The most commonly used measure to sift the principal parameters in the 
system is the correlation coefficient. Pearson and Spearman correlation coefficients have 

(6)�
� �

=
�

�

− �
(
�

�)

�
(
��
) ,�

�

= log(�)

Fig. 6   Filtered reaction rate source term 𝜔̇ versus different input parameters for varying LES filter size and 
u
�

in
∕s

L
= 15.0
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been most commonly used for this perspective. However, these coefficients evaluate sim-
ply the linear relationships, so they are not appropriate for the combustion parameters that 
behave nonlinearly.

The MIC can deliver a quantitative measure if two variables are closely associated or 
not, satisfying two statistical characteristics which are generality and equitability. A cor-
relation of the two parameters even with a nonlinear relationship can be explored using this 
method. In the original paper (Reshef et al. 2011), it has been shown that the MIC provides 
a more stable and reliable measure of association compared to Pearson and Spearman cor-
relation coefficients, mutual information, principal curve based chain-of-rotator group 
contribution (CorGC), and maximal correlation with various types of relationship such as 
linear, cubic, exponential, parabolic, and sinusoidal functions, and it was also tested on 
realistic databases.

Unlike the MIC, which only requires two parameters to be collated, Shapley additive 
explanations (SHAP) requires the existence of an already trained neural network. Origi-
nally, SHAP is proposed for interpretable machine learning, as machine learning has often 
been regarded as a black-box in the past years. The SHAP method can investigate the par-
tial contribution of the input parameters with respect to the objective parameter of the neu-
ral network, in this study the filtered reaction rate source term 𝜔̇ . Thus, the SHAP value 
has the same unit as the objective parameter and the sum of the SHAP values distributed 
to the respective input parameters is equivalent to the exact objective parameter. The inter-
pretation ability of the SHAP is demonstrated in Shin et al. (2021) and it attempted to show 
how the deep ANN recognizes the flame regions which are inherent in the filtered DNS 
database.

The correlations investigated using the MIC method are shown in Fig. 7, illustrating the 
correlation coefficients for varying LES filter widths. It should be noted that the value of 
MIC lies in a range between 0 and 1, which represents perfect non-correlation or correla-
tion, respectively. The MIC values shown in Fig.  7 show that c̃ is the most important 
parameter and |∇c̃| and ||∇2c̃|| have similar magnitudes of importance. The next highest cor-
relation is obtained for the parameter u�

Δ
 and then |||∇

∼
ui
||| . It also shows that u�

Δ
 is the most 

influential variable among the parameters computed from the velocity fields. It should be 
noted that u�

Δ
 has been commonly employed as an important factor to model the filtered 

Fig. 7   Importance map for the different LES filter widths using MIC
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reaction rate in the context of LES. However, u�

Δ
 is being modeled in the general LES simu-

lation whereas u�

Δ
 in the present dataset has been calculated exactly from the DNS velocity 

data. It is to be expected that a modeled u�

Δ
 will have a similar or even smaller influence 

than the exactly calculated u�

Δ
 . We refer to the Appendix for consideration of u�

Δ
  as an 

alternative to |∇c̃| in the compact parameter set.
The SHAP values of the respective input parameter are illustrated in Fig.  8. Higher 

SHAP values imply that the objective parameter changes more strongly as the correspond-
ing input parameter varies. It is interesting that |∇c̃| has the highest impact, except for c̃ , 
on the filtered reaction rate, which could have been expected since in conventional FSD 
modeling, the filtered reaction rate is proportional to |∇c̃| (Klein and Chakraborty 2019). 
Figure 8 also shows that the next important parameter is u�

Δ
 in contrast with the MIC that 

estimated ||∇2c̃|| as the next influential parameter. Overall, the analysis using SHAP however 
suggests similar results as MIC except for ||∇2c̃|| . Considering that SHAP is able to esti-
mate the partial contribution of the input parameters taking into account all the other input 
parameters concurrently, SHAP produces more rigorous results than MIC that searches for 
correlations between two parameters only. In spite of this, MIC provides a precise estima-
tion that is comparable to SHAP at a remarkably small computational effort.

From both analyses, it can be observed that the importance of c̃ decreases with increas-
ing the LES filter width. As depicted in Fig. 6, the gradient of filtered reaction rate 𝜔̇ with 
respect to c̃ is quite large at the small filter widths, Δ∕�th=0.36 and 0.72, for instance, and 
c̃ and its gradient are very well correlated here. At larger filter widths, e.g., Δ∕�th=2.87 and 
5.73, however, the c̃ gradient decouples from c̃ due to subgrid flame wrinkling effects.

Fig. 8   Importance map for the different LES filter widths using SHAP

Table 4   The variables sets 
considered in this study

Case names Variables

‘full’ set c̃, |∇c̃|, ||∇2c̃||, u�

Δ
, ||ũi||

, ||∇ũi||, |||Sij
|||, 
|||�ij

|||, 
∼
�

, ãT,Δ
‘compact’ set c̃, |∇c̃|,Δ
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On the basis of the results from both analyses, we define two sets of input parameters to 
the neural network as shown in Table  4. The ‘full’ parameters set incorporates all the 
parameters considered in this study: c̃, |∇c̃|, ||∇2c̃||, u�

Δ
, ||ũi||, ||∇ũi||, |||Sij

|||,
|||𝜔ij

|||,
∼
𝜅, ãT and Δ , 11 

parameters in total. The ‘compact’ set simply includes c̃, |∇c̃| , and Δ , 3 parameters in total. 
These two sets of parameters are employed to train the two respective neural networks, and 
we compare the prediction performance of the neural networks using different sets of input 
parameters in the next section.

5.2 � Performance Evaluation of the Deep Learning Model

Table 5 summarizes the error metrics defined by the difference between filtered reaction 
rate source term from DNS 𝜔̇DNS and the ones predicted 𝜔̇pred by the Fureby FSD model 
(Ma et al. 2013), the analytic flamelet probability density function (PDF) model by Pfitzner 
(Pfitzner 2021), and the neural networks using ‘full’ and ‘compact’ sets. For the metric, the 
error is defined as follows

to show the accuracy of the models in a quantitative manner. At the bottommost row 
of Table 5, the relative elapsed time of the inference are indicated. The calculation time 
of the Fureby FSD model which showed the quickest computing time is selected for the 
normalization. It can be noticed that the calculation time required for the inference by the 
neural network models is approximately 20 times of the conventional algebraic model. Fig-
ure 9 shows the correlation plots of the filtered reaction rate predicted by the models and 
neural networks, plotted against the filtered reaction rate from DNS 𝜔̇DNS for PF − FW and 
PF − UP test cases. The same investigation is applied to the test cases BF − FW1.6 and 
BF − FW6.4 and is shown in Fig. 10. The gray scale mapping in the hexbin plots shows the 
density of the discrete points. The sliced contours of the filtered reaction rate from DNS 
𝜔̇DNS , neural networks, and models are shown in Fig. 11 for PF − UP test case when Δ∕�th
=0.72 and 2.87. In Fig. 12, the identical sliced contours are shown but for BF − FW1.6 and 
BF − FW6.4 test cases.

It can be noted that the result from the neural network using the ‘full’ set shows the 
best accuracy for all the test cases. It is also observed that the next accurate model is the 
neural network using ‘compact’ set. The prediction from the analytic flamelet PDF model 

(7)𝜖 =

∑�
𝜔̇pred − 𝜔̇DNS

�2

∑�
𝜔̇DNS − 𝜇

�
𝜔̇DNS

��2

Table 5   Normalized error metric � for all the test cases considered in this study along with relative infer-
ence time of the models

Test cases ResNet with 
‘full’ parameters

ResNet with ‘com-
pact’ parameters

FSD model (Ma 
et al. 2013)

Analytic flamelet PDF 
model (Pfitzner 2021)

PF−FW 0.0085 0.0179 0.289 0.009
PF−UP 0.0047 0.0082 0.359 0.010
BF−FW1.6 0.0037 0.0110 0.260 0.016
BF−FW6.4 0.0146 0.0374 0.685 0.541
Inference time 24.2 23.5 1.0 15.2
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shows comparable performance with the one from the ‘compact’ neural network, except for 
the BF − FW6.4 test case. In contrast, Fureby’s FSD model, shows much higher departures 
from the DNS filtered values. In general, the performance of the neural network model on 
test data of the planar flame, which is used for the training, is marginally better than when 
using test data from the Bunsen flame case. It can be also noted that the errors increase for 
high filter widths when comparing BF − FW1.6 and BF − FW6.4.

Both neural networks yield excellent performance showing low biases and variances 
for PF − FW and PF − UP. However, the correlation predicted by the ‘compact’ neural net-
work somewhat deteriorates for the untrained Bunsen flame configuration, as can be seen 
in Fig. 10 and Table 5. Figure 11 compares contours of filtered reaction rate in a slice from 
DNS with the different model predictions. The results from the ‘full’ and ‘compact’ neural 
networks match the filtered DNS with high precision for the unseen planar flame test case 
for low and high filter widths, as indicated in Fig. 11, while the ‘compact’ neural network 
overestimates the filtered reaction rate for the Bunsen flame, as depicted in Fig. 12c. It is 
also noted that the slope of the ‘compact’ neural network is larger than unity in the plot 
of model vs. DNS filtered reaction rates shown in Fig. 10d. The performance decline also 
occurs for the test cases of the Bunsen flame when using the FSD and analytic models, as 
indicated in Table 5 and Fig. 10.

The fact that the ‘compact’ neural network shows lower performance compared with the 
‘full’ neural network, demonstrates the importance of the choice of suitable sets of input 
parameters on the learning capability of the neural networks. While using all the param-
eters available can yield the best prediction accuracy, it requires additional computational 
costs during training and network evaluation. Thus, a trade-off analysis is necessary for this 
issue.

At the same time, the fact that the ‘full’ neural network performs better than both the 
‘compact’ one and analytic model proves the predictive power of the deep residual neural 
networks which is attributed to the use of skip connections and extensive depth of the net-
work, searching the latent features within high dimensionality. It is also interesting that the 
‘full’ neural network achieves better performance compared with the ‘compact’ neural net-
work even for the Bunsen flame configuration, as shown in Table 5 and Fig. 10. Clearly, 
there will be changes when comparing between the cases of different flame configurations, 
such as planar flame and Bunsen flame in this study, in terms of flow dynamics, flame top-
ological features, and so forth. Those effects are inherited to the parameters u�

Δ
 , ||ũi|| , ||∇ũi|| , |||Sij

||| , 
|||�ij

||| , 
∼
� , ãT , which are absent in the ‘compact’ parameter set. It is evident that the deep 

residual neural network could find an optimal correlation intrinsic in the high dimensional 
space of ‘full’ parameters.

For the models considered in this study, the analytic flamelet-based model shows good 
agreement with the filtered DNS data for smaller filter widths while the Fureby’s FSD 
model constantly overestimates the filtered reaction rate both for small and large filter 
widths, as can be seen in Figs. 11 and 12.

Figure  13 shows the spatial distribution of the error � profiles that are averaged over 
transverse planes in the axial direction for the Bunsen flame test cases. It illustrates that 
the neural networks are able to predict the filtered DNS accurately for both small and large 

Fig. 9   Hexbin plots for the predicted filtered reaction rate source term 𝜔̇ from the various models versus 
source terms extracted from DNS 𝜔̇

DNS
 for the test cases of PF − FW (left column) and PF − UP (right col-

umn). The plots (a–d) present the correlations using the neural networks with ‘full’ and ‘compact’ sets, 
respectively. The plots e–h show the correlations using the FSD and analytic flamelet PDF models, respec-
tively

▸
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filter widths, though, there is a marginal discrepancy when using the ‘compact’ neural net-
work for large filter width. It can be noted that the error made by the analytic flamelet PDF 
model is considerably higher for larger filter width due the fact that no subgrid flame wrin-
kling is considered in the model (Hansinger et al. 2020).

Figure 14 depicts the R2 score plots for different initial velocity fluctuation (left-hand 
side) and LES filter widths (right-hand side) based on the PF − FW and PF − UP test cases, 
predicted by the ‘compact’ neural network. The R2 score is defined as 1.0 − � . It shows that 
the errors increase steadily with increasing the velocity fluctuation and LES filter width. 
The higher velocity fluctuation and larger filter width contribute to the high variance of the 
data scattering, as partly can be seen in Fig. 6. This makes it more difficult to optimize the 
neural networks and increases the irreducible error. It is found that the ‘compact’ neural 
network shows a perfect correlation for the small LES filter widths e.g., Δ∕�th=0.36 and 
0.72.

The prediction and generalization capability of the ‘compact’ neural network is demon-
strated in Fig. 15, showing the contours of the predicted filtered reaction rate in the c̃ and 
|∇c̃| × 𝛿th domain for the normalized LES filter width Δ∕�th = 0.5, 1.0, 5.0, 10.0 . Note that 
the number of DNS cells along the side of the box-filtered LES cell n = {4, 16, 64} for the 
planar flame corresponds to the normalized LES filter widths of Δ∕�th ≈ {0.36, 1.43, 5.73} . 
It is shown that the ‘compact’ neural network can provide a good prediction of filtered 
reaction rate for arbitrary values of LES filter width, filling all the gaps which the filtered 
DNS dataset did not provide.

6 � Conclusions

We present a filtered reaction rate modeling approach using deep learning which is trained 
on filtered data from planar premixed flame DNS. The training database covers a wide 
range of initial turbulence intensities and LES filter widths. For the input to the neural net-
work, two sets of parameters are considered, which include information of thermochemical 
properties and the dynamics of the flow available in LES. We also demonstrate an approach 
to search and sift the principal parameters in the system using non-machine learning and 
machine learning methods, which helps to reduce 11 parameters to three essential param-
eters. Two other combustion LES models that are proposed by Fureby and Pfitzner have 
been chosen for the comparison with the data-driven deep learning modeling.

A priori analysis on the unseen data, comprised of different initial turbulence intensi-
ties, LES filter widths, and canonical flame configuration, indicates that the neural network 
using the whole set of input parameters provides the best predictive power. The neural net-
work using fewer input parameters shows slightly lower accuracy compared with the neural 
network using the whole input parameters, however it outperforms the other two models, 
showing stable and continuous prediction for arbitrary LES filter widths, which is one of 
the necessary characteristics for actual LES simulations.

In the future, we plan to further test the proposed deep learning filtered reac-
tion rate modeling approach using DNS databases of various flame conditions and 

Fig. 10   Hexbin plots for the predicted filtered reaction rate source term 𝜔̇ from the various models versus 
source terms extracted from DNS 𝜔̇

DNS
 for the test cases of BF when the LES filter width, Δ∕�

th
=1.6 (left 

column) and Δ∕�
th

=6.4 (right column). The plots (a–d) present the correlations using the neural networks 
with ‘full’ and ‘compact’ sets, respectively. The plots (e–h) show the correlations using the FSD and ana-
lytic flamelet PDF models, respectively

▸
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Fig. 11   Sliced contours of the filtered reaction rate source term 𝜔̇ from a filtered DNS, b predicted one 
from ‘full’ neural network, c predicted one from ‘compact’ neural network, d computed one using FSD 
model, and e computed one using the analytic flamelet PDF model. The upper row shows the PF − UP test 
case for Δ∕�

th
=0.72 and the lower row is for Δ∕�

th
=2.87

Fig. 12   Sliced contours of the filtered reaction rate source term 𝜔̇ from a filtered DNS, b predicted one 
from ‘full’ neural network, c predicted one from ‘compact’ neural network, d computed one using FSD 
model, and e computed one using the analytic flamelet PDF model. The upper row shows the BF − FW1.6 
test case and the lower row represents the BF − FW6.4 test case
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configurations. In order to validate and verify this deep learning modeling strategy 
a posteriori, actual LES simulations will be conducted. A wide range of LES filter 
widths and turbulence intensities will be sought as well as non-unity Lewis number 
configurations.

Fig. 13   RMS error profiles defined as the averaged filtered reaction rate between DNS and predicted by the 
models considered in this study for the test cases of BF − FW1.6 and BF − FW6.4. The errors are averaged 
at axial location x in the y − z plane. The models include ‘full’ neural network (solid), ‘compact’ neural net-
work (dash dot), FSD model (dotted), and analytic flamlet PDF model (dashed)

Fig. 14   R2 score plots comparing the different conditions of u�

in
∕s

L
 and a range of LES filter widths n for the 

test cases of PF − FW (left) and PF − UP (right), predicted by the ‘compact’ neural network
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Appendix: Consideration of u′

1
 as Alternative to |∇c̃| in the Compact 

Parameter set

The subgrid-scale velocity fluctuation u�

Δ
 has been considered as a paramount parameter 

for modeling of turbulent combustion. However, as reported in Sect. 5.1 the analyses using 
MIC and SHAP show that u�

Δ
 is less significant in the representation of flame wrinkling 

than |∇c̃| for the dataset we employed. The reason for this might be that increased subgrid-
scale flame wrinkling, resulting in smaller gradients of the resolved field, is more strongly 
correlated to |∇c̃| than to u�

Δ
.

In order to analyse the direct influence of u�

Δ
 on the filtered reaction rate, a neural 

network with the input parameters c̃ , u�

Δ
 , and Δ is trained and it is called ‘compact+’. 

Figure 16 and Table 6 depict the comparison of compact + predictions with those from 

Fig. 15   Predicted contours of filtered reaction rate source term 𝜔̇ by the neural network using ‘compact’ 
parameter set for a Δ∕�

th
=0.5, b 1.0, c 5.0, and d 10.0. The results are mapped onto the domain of c̃ versus 

|∇c̃| × 𝛿
th

 where �
th

 is the laminar flame thickness
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Fig. 16   Hexbin plots for the predicted filtered reaction rate source term 𝜔̇ from the various models ver-
sus source terms extracted from DNS 𝜔̇

DNS
 for the test cases of PF − FW (left column) and PF − UP (right 

column). The plots (a–d) are the same plots in Fig. 9. The plots e, f show the correlations using the ‘com-
pact+’ parameter set

Table 6   Normalized error metric 
� for all the neural network 
results including ‘compact+’ set

Test cases ResNet with 
‘full’ param-
eters

ResNet with 
‘compact’ param-
eters

ResNet with 
‘compact+’ 
parameters

PF−FW 0.0085 0.0179 0.0231
PF−UP 0.0047 0.0082 0.0098
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‘full’ and ‘compact’ neural networks. It can be noticed that results from the ‘compact+’ 
set show larger deviations from the filtered DNS values qualitatively. Also, the quanti-
tative error metric suggests that the ‘compact+’ parameter set provides a comparable 
magnitude of accuracy with the original ‘compact’ case, being however somewhat infe-
rior (about 20% worse).
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