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Abstract

The proliferation of e-commerce and the progress of communication technology has

led to the emergence and establishment of new business models in last-mile delivery.

In attended home delivery, e.g., the customer and the provider agree on a certain

delivery time window for a certain day, in which the provider promises delivery.

In same-day delivery, e.g., the customer expects to receive the delivery on short

notice, i.e., within a few hours. These new business models have in common that

they come along with very high customer expectations regarding offered services,

delivery speed, and the accuracy of shipping notifications. As a consequence,

managing last-mile delivery has evolved from optimizing fulfillment operations

alone to, additionally, steering demand, i.e., to integrate demand management and

vehicle routing. Therewith, providers are able to steer customer choices toward

efficient delivery options and, at the same time, realize higher prices for some

delivery options such that additional revenue can be generated.

However, despite its high relevance, neither in the scientific literature nor in the

common industrial practice there exists a common understanding of such integrated

demand management and vehicle routing problems (i-DMVRPs) or a respective

modeling framework. Furthermore, there is no integrative and anticipatory solution

approach for an i-DMVRP in a same-day delivery setting.

This dissertation is a comprehensive contribution to the research on i-DVMRPs by

closing those research gaps. In particular, in this dissertation, a detailed but general

definition of i-DMVRPs is derived from literature and practice and a respective

modeling framework is developed and discussed analytically. Further, in this disser-

tation, the first integrative and anticipatory solution approach for an i-DMVRP in a

same-day delivery context is developed, presented, and evaluated comprehensively.





Zusammenfassung

Der Wachstum des elektronischen Handels und die Fortschritte in der Kommunika-

tionstechnologie haben zur Etablierung neuer Geschäftsmodelle in der Zustellung

auf der letzten Meile geführt. Beim Attended Home Delivery z.B. vereinbaren der

Kunde und der Anbieter ein bestimmtes Zeitfenster für einen bestimmten Tag, in dem

die Lieferung garantiert wird. Beim Same-Day Delivery z.B. erwartet der Kunde die

Lieferung innerhalb weniger Stunden am selben Tag. Diesen neuen Geschäftsmod-

ellen ist gemein, dass sie mit sehr hohen Kundenerwartungen hinsichtlich der ange-

botenen Leistungen, der Liefergeschwindigkeit und der Genauigkeit des Lieferavis

einhergehen. Infolgedessen hat sich die Optimierung der letzten Meile von der

rein operativen Betrachtung der Belieferungsprozesse und der Tourenplanung dahin

gehend entwickelt, dass Nachfragemanagement und Tourenplanung integriert betra-

chtet werden. Damit sind Anbieter in der Lage, die Wahl der Kunden in Richtung

kostengünstiger Lieferoptionen zu lenken und gleichzeitig höhere Preise für einige

Lieferoptionen zu erzielen.

Trotz der hohen Relevanz dieses Themas gibt es weder in der wissenschaftlichen

Literatur noch in der Praxis ein einheitliches Verständnis der resultierenden inte-

grierten Demand-Management- und Vehicle-Routing-Probleme (i-DMVRPs) oder

einen entsprechend einheitlichen Modellierungsansatz. Darüber hinaus gibt es keinen

integrativen und antizipativen Lösungsansatz für Same-Day Delivery Probleme.

Diese Forschungslücken werden mit der vorliegenden Dissertation geschlossen.

Es wird eine detaillierte, aber allgemeine Definition von i-DMVRPs aus Literatur

und Praxis abgeleitet und ein entsprechender Modellierungsrahmen entwickelt und

analytisch diskutiert. Darüber hinaus wird der erste integrative und antizipative

Lösungsansatz für ein Same-Day Delivery Problem entwickelt, vorgestellt und

umfassend evaluiert.
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"The last mile is always the hardest."

While originally certainly not intended to describe logistic processes, this old proverb

is indeed literally true for last-mile delivery (LMD), which describes the final step of

a supply chain and, thus, usually defines the delivery of goods to private customers

in urban areas (Boysen et al. 2021).

In fact, with a share of 40% to 50% of the overall supply chain cost, LMD is

responsible for the largest share of costs in the supply chain (see Figure 1). This

share is even expected to further increase due to considerably rising fuel cost, mainly

driven by the Russia-Ukraine conflict (Andrew Travis (2022), World Bank (2022).

Thus, efficient LMD execution is absolutely essential in preserving a profitable

business that involves home delivery.

Remaining 
 supply chain cost

10.9%Warehousing

12.9%

Parceling

15.8%

Sorting

19.8%

Last-mile 
 delivery

40.6%

Figure 1: Share of total supply chain costs by type worldwide 2018, Capgemini (2019)

Most recently, in practice, the evolution of LMD has been substantially influenced

by two major factors – the proliferation of e-commerce and the ongoing progress of

communication technology:

Proliferation of e-commerce – From 2014 to 2019, global retail e-commerce sales

nearly tripled, and they are forecast to nearly double over the next few years to reach
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an expected USD 7.4 trillion in sales volume by 2025 (see Figure 2). Therewith, the

importance of LMD increases considerably, as LMD is a crucial part of e-commerce.
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Figure 2: Retail e-commerce sales worldwide from 2014 to 2025, eMarketer (2022)

Progress of communication technology – The progress of communication technology

has led to new possibilities regarding the interaction between providers and customers.

This, in turn, accelerated the emergence and establishment of new business models

such as attended home delivery (AHD) and same-day delivery (SDD) (Agatz et al.

2013). These business models bring opportunities and, at the same time, threats to

existing LMD providers:

In AHD, the customer and the provider agree on a certain delivery time window

for a certain day, in which the provider promises delivery (Koch and Klein (2020),

Vinsensius et al. (2020)). This enables the expansion of e-commerce to goods, which

have to be received in person by the customer, as for example pharmaceutical goods.

Further, it helps reducing re-delivery cost substantially.

In SDD, the customer expects to receive the delivery on short notice, i.e., within a few

hours (Voccia et al. (2019), Ulmer (2020a)). This enables the providers to expand

their customer base to customers who seek instant gratification as with shopping in

16



brick-and-mortar stores.

As a consequence, managing LMD has evolved from optimizing fulfillment opera-

tions alone to, additionally, steering demand towards efficient fulfillment operations,

i.e., to incorporating demand management into LMD (Agatz et al. (2013), Yang and

Strauss (2017), Klein et al. (2019), Fleckenstein et al. (2021)).

This is because, on the one hand, the described recent developments have led to

very high customer expectations regarding offered services, delivery speed, and

the accuracy of shipping notifications. On the other hand, in turn, they have led

to differentiated, and therewith also higher willingness-to-pay from customer side

(McKinsey and Company (2016), PwC (2018)). More precisely, providers are now

able to steer customer choices and, at the same time, realize higher prices for some

delivery options (Archetti and Bertazzi (2021), Agatz et al. (2021)). In summary, the

resulting LMD processes can be planned to be more efficient and, further, additional

revenue can be generated.

Due to the increasing importance of optimizing demand management and fulfillment

operations in LMD practice, also a broad body of research emerged addressing the

respective fields. This research mainly discusses the respective problems on an

operational level (Waßmuth et al. 2022), as it holds high optimization potential, but

with very complex optimization requirements. As shown by Figure 3, optimizing

demand management and vehicle routing on the operational level has to be done in

an integrative manner, i.e., under consideration of the effects each measure has on the

other (Koch and Klein (2020), Fleckenstein et al. (2021)). This leads to the highly

relevant, but exceptionally complex class of integrated demand management and

vehicle routing problems (i-DMVRPs). However, as will be shown in Chapter 5, in the

broad body of research on i-DMVRPs, there is neither a common understanding of

i-DMVRPs, nor a respective, general modeling framework. Instead, existing research

mainly tackles either component individually and existing solution approaches do

not involve anticipation for both components simultaneously.

This dissertation is a comprehensive contribution to the research on i-DMVRPs

with regard to problem definition, modeling, analytical discussion, and solution
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Figure 3: Classification of i-DMVRPs into the different levels of decision making

approaches. In particular, in this dissertation, a detailed but general definition

of i-DMVRPs is derived from literature and practice, which provides an overall

taxonomy. This taxonomy forms building blocks to classify and analyze i-DMVRPs

and their solution approaches, which is done within a complete literature discussion.

Thereby, multiple research gaps are uncovered. The first two concern a unified

modeling framework and an analytical discussion of the same. To fill these gaps,

in this dissertation such unified modeling framework for i-DMVRPs is developed.

Moreover, it is discussed analytically with a special focus on opportunity cost

properties, which are essential for developing efficient solution approaches. Another

major research gap identified is the non-existence of an integrative and anticipatory

solution approach for i-DMVRPs in an SDD context. This research gap is also closed

in this dissertation by the development of a respective solution approach. It includes a
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novel, specifically tailored anticipatory demand-management decomposition and an

online tour-planning heuristic. In a comprehensive computational study it is shown,

that this approach dominates benchmark approaches from the literature with regard

to the overall contribution margin generated. Additionally, it is shown that, compared

to a myopic benchmark approach, the contribution margin can be increased by up to

50%. Further, managerial insights are elaborated and summarized.

The remainder of the dissertation is structured as follows: After introducing the

basic theory of related research fields, i.e., of demand management, vehicle routing

problems (VRPs), and stochastic dynamic problems, in Part II, i-DMVRPs are

comprehensively introduced in Part III. This includes the analysis of i-DMVRPs

literature and the resulting identification of research gaps as well as the introduction

of the unified modeling framework for i-DMVRPs. Afterwards, in Part IV the

respective modeling framework is analyzed analytically and essential opportunity

cost properties are derived and proven. Then, Part V is the heart of this dissertation. In

this part, the newly developed approach for solving an i-DMVRP in an SDD problem

setting is introduced.1 Finally, Part VI concludes this dissertation by summarizing

the most important findings from Part III to Part V.

1It has to be noted, that key insights from Parts III to V have already been made available as
working papers named "On the concept of opportunity cost in integrated demand management and
vehicle routing" and "Demand management and online routing for same-day delivery".
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Part II

Theoretical foundations
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As described in the Introduction, the widespread adoption of digital distribution

channels enables logistical service providers to not only optimize and execute deliv-

ery fulfillment operations, but to intervene earlier in the overall process by actively

managing the booking processes.

Incorporating demand management in addition to fulfillment optimization enables

different optimization levers. Those can be classified according to their decision-

making levels, depending on the long-term nature of the respective measures (Agatz

et al. 2008). Figure 3 in the Introduction exemplarily shows which challenges can

be addressed on which decision-making level. Decisions which are taken with low

frequency and long-term effects are classified as decisions on the strategic level.

Decisions which are taken with a medium frequency and a medium long-term effect

are classified as decisions on the tactical level. Decisions which are taken with a high

frequency and short-term effects are classified as decisions on the operational level

(Boysen et al. 2021). Further, the decision-making level influences the required extent

of the mutual integration of both components, demand management and fulfillment

operations, within an optimization. Thereby, optimization on the operational level

is the most complex, as it requires both components to be highly integrated, as the

following discussion shows:

On the operational level, the demand side can be optimized, e.g., by dynamically

deciding which customer requests to accept or reject, or which fulfillment options

and/or prices to offer when a specific customer request arrives (see for example

Bruck et al. (2018), Mackert (2019), Koch and Klein (2020)). Optimization potential

on the fulfillment operations side can be leveraged by implementing sophisticated

and anticipatory vehicle routing algorithms. Those can be applied to dynamically

revise tour-plans according to the set of already confirmed customer orders and

under consideration of expected incoming customer requests (see for example Voccia

et al. (2019), Ulmer (2020a), Soeffker et al. (2021)). Thereby, predictions regard-

ing incoming customer requests as well as the customer orders already confirmed

strongly depend on the demand-management measures applied. At the same time,

incorporating demand-management measures requires knowledge about the effect a
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potential demand-management decision has on the fulfillment operations in order to

evaluate its efficiency.

Consequently, the i-DMVRPs considered in this dissertation share a common struc-

ture: A logistical service provider offers logistical services characterized by origin

and destination in combination with other parameters, e.g., fees and time com-

mitments. These services are offered throughout a booking horizon during which

customer requests arrive dynamically. For every incoming customer request, the

provider specifies

- the availability of fulfillment options,

- the prices of fulfillment options,

- or makes accept/reject decisions.

Subsequently, the customer makes a purchase choice, i.e., places an order, based on

their stochastic individual preferences and the offered options. Fulfilling all customer

orders takes place throughout the service horizon by means of a fixed number of

vehicles. Capacities of other resources, as for example driver working hours, may

also be limited. The booking and service horizons can be disjoint or overlapping.

Given the capacity restrictions as well as other operational constraints, such as

potentially guaranteed service levels, the provider’s objective is maximize profit

by means of demand management and fulfillment optimization, i.e., routing opti-

mization (Agatz et al. 2013). Hence, the operational planning of respective LMD

applications is no longer limited to solving VRPs. Instead, providers integrate de-

mand management. Thereby, generally, the demand-management component is a

stochastic dynamic problem since customer requests arrive dynamically from random

locations and, additionally, their choice behavior is unknown to the provider.

Therefore, in this part of the dissertation, brief introductions to the theory of demand

management, VRPs, and stochastic dynamic problems is given. The goal is to

provide a general foundation and mutual understanding of the taxonomies used in

this dissertation. Further, it is the target to give the reader an idea of the considered

fields of research and provide them with references to the relevant introductory

literature.
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Part II is structured as follows. In Chapters 1 and 2, the general foundation to

demand management and VRPs is set. In Chapter 3, stochastic dynamic problems

are introduced.
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1. Demand management

1.1 Definition, history, and conceptual delimitation

The term demand management emerged from the broad body of literature that deals

with revenue management. There is no consensus regarding the scope of the measures

that are summarized under this term and how it relates to revenue management.

Anderson and Carroll (2007) provide a very broad definition: "Demand management

involves dynamically managing overall demand by optimising the use of distribution

channels to reach target customer segments, leveraging and enhancing existing

customer relationships, and taking effective RM [revenue management] actions."

In their understanding, demand management expands "the tactical tools of RM to

a more strategic level". Thus, they summarize every demand influencing measure

from strategic marketing measures to operational price setting or availability control

under the umbrella of demand management.

In contrast, other researchers understand demand management to be part of rev-

enue management or even equate the two terms. Talluri and Van Ryzin (2006),

Chapter 1, state: "RM [revenue management] is concerned with [...] demand man-

agement decisions and the methodology and systems required to make them." More

recently, Agatz et al. (2013) conclude that "In fact, revenue management is demand

management.".

Historically, revenue management originates from the airline industry in the 1970s.

After the deregulation of the North American airline market, American Airlines

introduced initial demand management measures. First, they introduced capacity

controlled fares and shortly after, they implemented a comprehensive revenue man-

agement system in order to compete with new low-cost carriers (Gallego et al. (2019),
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CHAPTER 1. DEMAND MANAGEMENT

Preface). Inspired by American Airlines’ success story, revenue management found

its way into related business models such as car rental, hotel industry, and cruise

ships (Yeoman and McMahon-Beattie (2010), Chapter 1). Those traditional areas of

revenue management application share the following characteristics: relatively fixed

capacity, perishable inventory, variable but predictable demand, and a favorable cost

structure, which is high fixed costs and low variable costs (Huefner (2015), Chapter

2). By this time, revenue management was also referred to as yield management,

but finally, the term revenue management prevailed. It captures the typical cost

structure of traditional areas of revenue management applications (Strauss et al.

2018): Variable cost can be neglected (Weatherford and Bodily 1992) and applying

demand influencing measures are mainly targeted to improve revenue.

During the last decade, the research on revenue management expanded to new areas

of applications such as manufacturing (Lohnert and Fischer 2019), last-mile delivery

(Klein et al. 2020), and shared-mobility systems (Soppert et al. 2022). In those

business models, variable fulfillment cost are not negligible and a shift from the

term revenue management to the term demand management can be observed in the

respective publications.

In this dissertation, the term demand management is used instead of the term revenue

management, since i-DMVRPs address business models with non-negligible fulfill-

ment cost. Nevertheless, the term summarizes the same measures and approaches

from revenue management literature.

1.2 Approaches and modeling

Demand management approaches can be subdivided into quantity-based and price-

based approaches. Both types are further described in the following. If not stated

differently, the following description are based on the seminal book by Talluri and

Van Ryzin (2006), Chapters 2.1 and 2.5, respectively.
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1.2.1 Quantity-based demand management

Quantity-based demand-management approaches address the optimization of capac-

ity allocation to demand originating from different customer segments, i.e., from

customers with different willingness to pay. A simple problem setting is selling

different fare classes of the same resource, e.g., selling comparable seats in the same

compartment of a plane on the same flight for different fares and thereby address-

ing business customers with higher fares and leisure customers with lower fares.

Quantity-based demand management is then concerned with dynamically controlling

the availability and the number of available tickets of those different fare classes

dynamically over the booking horizon.

Typical quantity-based types of demand-management approaches are determining

booking limits or protection levels, or calculating bid prices, which are briefly

outlined in the following. The presentation aims at giving the reader an initial idea

of how to steer demand.

Class

Fare

# Seats

1 2 3

high middle low

6 4 2

C = 12

b1 = 12

b2 = 6

b3 = 2

y1 = 6

y2 = 10

y3 = 12

Capacity
/

Booking
limits

/
Protection

levels

Figure 1.1: Relationship between booking limits, protection levels, and overall capacity C, cf. Talluri
and Van Ryzin (2006), Chapter 2

Booking limits/Protection levels – The booking limit of a fare class defines the maxi-

mum capacity that is available for this and for lower fare classes. Protection levels

can be understood as the complement; the protection level of a fare class defines the
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capacity that needs to be reserved for this and higher fare classes. Consequently,

booking limits and protection levels have the following relationship: the booking

limit of a fare class equals the overall capacity minus the sum of protection levels

of all higher fare classes. This relationship is depicted in Figure 1.1 for an example

with three fare classes, i = {1,2,3}, and an overall capacity of C = 12. The booking

limit of a fare class i is denoted by bi. The respective protection level is denoted by yi.

Bid prices – Bid prices are threshold values defining whether an incoming request

is accepted or rejected. More precisely, if a request’s revenue exceeds a bid price,

it is accepted. Otherwise, it is rejected. For optimal control, bid prices have to be

updated after every sale and, if they depend on the remaining time of the booking

horizon, with progress of time respectively. In this dissertation, bid price control is

classified as a quantity based approach, in accordance with Talluri and Van Ryzin

(2006). When used as threshold prices for accepting customer requests, the resulting

number of customer request acceptances for certain fare classes equal those resulting

from a respective control bybooking limits/protection level. However, bid prices

can also be interpreted as price-based demand management as, of course, from bid

prices, also dynamic prices to set for each incoming customer request can be derived.

Further, optimal demand-management decisions can be derived from dynamic pro-

gramming formulations. In the following, two dynamic programming formulations

for optimal, quantity-based demand management are presented. The first one models

availability control, i.e., for every incoming customer request, it has to be decided

whether it is accepted or rejected. The second one models assortment optimization,

i.e., for every incoming customer request, it has to be decided which products to

offer from a pre-defined set of alternatives. The following model for availability

control stems from Talluri and Van Ryzin (2006), Chapter 2.5, the one for assortment

optimization from Strauss et al. (2018):

Availability control – For modeling a basic availability control problem it is as-

sumed that there are t = 1, ...,T decision epochs in which customer requests from n
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booking classes arrive. For every decision epoch t, a request of booking class j arrives

with arrival probability λ j(t) such that the overall arrival rate equals ∑
n
j=1(λ j(t)).

Without loss of generality, it is assumed that decision epochs are set sufficiently

small such that at most one customer request arrives per decision epoch. However, if

a request of class j arrives and is accepted, a revenue r j realizes for j = 1, ...,n. For

simplicity, a random variable R(t) is introduced. It equals r j if a customer request

of class j arrives in decision epoch t. Otherwise R(t) = 0 holds. Further, decision

variable u is introduced with u = 1 if there is a customer request and it is accepted.

Otherwise u = 0 holds. The overall capacity is denoted by C and the remaining

capacity is denoted by x. Then, the dynamic program (DP) for availability control

can be represented by its value function vt(x) that equals the well-known Bellman

equation:

vt(x) = E[ max
u∈{0,1}

(
R(t)u+ vt+1(x−u)

)
]

= vt+1(x)+E[ max
u∈{0,1}

((
R(t)−∆vt+1(x)

)
u
)
]

(1.1)

with

∆vt+1(x) = vt+1(x)− vt+1(x−1) (1.2)

representing the expected marginal value of one unit of capacity in decision epoch

t +1 and boundary conditions:

vT+1(x) = 0 ∀x = 1, ...,C, (1.3)

and

vt(0) = 0 ∀t = 1, ...,T. (1.4)

Assortment optimization – Assortment optimization models dynamically optimize

the set of products offered to each incoming customer request. An offered set of

products is called offer set and is denoted by g. The remaining capacity is denoted by

a vector x and a product’s i capacity consumption is represented by column vector ui.

The set of offer sets that can feasibly be offered with remaining capacity x is denoted
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by G (x). The probability that an arriving customer chooses product i when an offer

set g is offered is denoted by Pi(g) and the corresponding revenue is denoted by

ri. Then, the assortment optimization problem can also be represented by its value

function:

vt(x) = max
g∈G (x)

[∑
i∈g

λPi(g)
(
ri−∆ivt+1(x)

)
] (1.5)

with

∆ivt+1(x) = vt+1(x)− vt+1(x−ui) (1.6)

representing the expected marginal value of the capacity consumption that is related

with selling product i and boundary conditions (1.3) and (1.4).

For more details on quantity-based types of demand-management measures, the

interested reader is referred to Talluri and Van Ryzin (2006).

1.2.2 Price-based demand management

Price-based demand management is closely related to quantity-based demand man-

agement in that the above described dynamic models (1.1) and (1.5) can also be

applied in order to steer the availability of different fare classes or to manage dif-

ferent price lists (= combinations of discrete price points for different products)

as offer sets, for example. In both approaches, customers experience the resulting

demand-management control as dynamic pricing. However, there is a wide range

of demand-management approaches that specifically aim at dynamic pricing, mean-

ing that they explicitly optimize prices. The interested reader is referred to Talluri

and Van Ryzin (2006), Chapter 5, for a detailed introduction into dynamic pricing.

Further, the reader is referred to Koch and Klein (2020) for an example of how to

incorporate a continuous pricing problem in an assortment optimization model.
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1.3 Relevance of opportunity cost and their properties

Talluri and Van Ryzin (2006), Chapter 2, state that: "capacity should be allocated to

a request if and only if its revenue is greater than the value of the capacity required

to satisfy it." Thus, to evaluate potential demand-management decisions in general, a

provider needs information about the marginal value of the resources required for

fulfilling the resulting order. In the previously introduced models for availability

control and assortment optimization, (1.1) and (1.5), this marginal value is derived

from comparing two state values: the state value resulting from the conversion of

the request into a certain order and the state value assuming no order is placed

(c.f. Equations (1.2) and (1.6)). These differences are also referred to by the terms

(expected) displacement cost or opportunity cost and in both models, Equations (1.1)

and (1.5), the eminence of their role is obvious: the decision problem in both DP

formulations essentially equals maximizing the expected difference of revenue and

opportunity cost. (This can also be transferred to the DP formulations for price-

based demand-management problems introduced in Talluri and Van Ryzin (2006)

in Chapter 5.) Consequently, optimal policies can be derived from opportunity cost

(as represented by Equations (1.2) and (1.6)). Further, with known opportunity cost,

optimal policies can be replicated by the previously introduced types of demand-

management approaches, i.e., booking limits/protection levels and bid prices, i.e.,

by setting bid prices equal to the given opportunity cost. In summary, demand-

management problems can be decomposed into two steps: (1) calculating opportunity

cost, (2) optimizing demand-management decisions with opportunity cost as input.

However, for most demand-management problems, the value function suffers from

the "curses of dimensionality" (Koch and Klein (2020). and so does the calculation

of opportunity cost. Thus, for determining optimal/good demand-management

decisions, researchers typically rely on an approximation of opportunity cost (Gallego

et al. (2019), Chapter 2). Thereby, exploiting known properties of the value function

and the opportunity cost function, such as monotonicity or non-negativity, improves

the accuracy of approximation approaches and subsequent demand-management

decisions substantially. For the first task, i.e., the approximation of opportunity
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cost, approaches based on linear programming (Adelman 2007) as well as statistical

learning (Koch 2017) are known to perform better if constraints are imposed that

ensure that the resulting approximation also exhibits these properties. For the

second task, i.e., solving the demand-management problem, the validity of certain

opportunity cost properties yields direct insights of the resulting optimal policies or

simplifies the approximation of good policies substantially (Gönsch and Steinhardt

(2015), Maddah et al. (2010)).

1.4 Customer choice modeling

According to Agatz et al. (2013) "revenue management aims to exploit market het-

erogeneities". This means that revenue management bases on the observation that

different customers may have different utilities and preferences, denoted by ui, for

different products i, and on the idea to exploit this. The latter can be achieved, e.g., by

varying prices or offer sets for different customers and therewith provoke a favorable

customer behavior. To do so, the resulting customer behavior has to be anticipated.

For this, typically, past transactions are analyzed and customers who have the same

utilities and preferences ui for the same products i are allocated to the same customer

segment. Afterwards, a choice model is chosen to represent the typical behavior of

the customers belonging to a certain segment and the choice model’s parameters are

estimated. Finally, the resulting customer choice probabilities Pi(g) for choosing to

buy product i, when offer set g is offered, can be used as input to solve a demand-

management problem as, e.g., represented by Equations (1.1) or (1.5). Generally,

it holds that Pi(g) = P(ui ≥ max{ui : i ∈ g}), which is calculated differently for

different customer choice models. Further, different customer choice models differ

in their capability of capturing substitution effects among the offered products and

competitors’ products available in the market (Gallego et al. (2019), Chapter 4).

In the following, only the most common choice models found in recent i-DMVRP

literature are described, based on the seminal book of Gallego et al. (2019), Chapter

4. For more customer choice models and insights about their structural properties,
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how to integrate them into different demand-management modeling approaches, and

about how to estimate specific customer choice model parameters, the interested

reader is referred to Gallego et al. (2019), Train (2009), and Strauss et al. (2018).

Maximum utility model

As the name suggests, the maximum utility model (MUM) assigns a purchase proba-

bility Pi(g) = 1 to the product i, which has the highest utility ui among the offered

products g and Pi′(g) = 0 for all other products in g with ui′ < ui. If there is more

than one product with equal utilities higher than all other utilities, the respective

choice probability is assigned uniformly among them.

Basic attraction model

The basic attraction model (BAM) assigns purchase probabilities Pi(g) ̸= 0 for all

products i in the set of offered products g, with I offered products, that have a utility

ui ̸= 0. Further, the no-purchase option is also assigned a utility u0. Then, the

purchase probability Pi(g) for a product i in g is determined as follows:

Pi(g) =
ui

u0 +∑
I
i′=1 ui′

. (1.7)

The BAM assumes that the no-purchase option is independent of which and how

many products are offered in g, i.e., substitution effects are underestimated. Thus,

the generalized attraction model (GAM) is introduced.

Generalized attraction model

The GAM captures shadow attraction values w j for every product j in the set of rele-

vant products N which are not offered in g and could be purchased somewhere else

in the market. Then, the no-purchase probability is increased by the sum of shadow

attraction values of not offered alternatives. The resulting choice probabilities can be

determined by:

Pi(g) =
ui

u0 +∑ j∈N\g w j +∑
I
i′=1 ui′

. (1.8)
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Multinomial logit model

The multinomial logit model (MNL) is a random utility model which differ from

the previously described in that it is assumed that the utility a customer experiences

when purchasing a certain product can typically be decomposed into an observable

part and an unobservable part. Thus, if the observable part of the utility a customer

experiences for product i is denoted by vi, and the unobservable part by ε i, the

following holds: ui = vi + ε i (Train 2009). Thereby, vi is assumed to be known, i.e.,

it depends on observable product specifications. The random variable ε i is assumed

to be unknown to the modeler and different random utility models differ regarding

the assumptions underpinning the random component’s distribution (Talluri and

Van Ryzin 2006). The MNL bases on the assumption that the ε i are independent

and identically distributed random variables that follow a Gumble distribution. The

resulting choice probabilities can be determined by:

Pi(g) =
e

ui
µ

∑i′∈g e
ui′
µ

, (1.9)

with µ being a scale parameter of the Gumble distribution.
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2. Vehicle routing

Generally, VRPs are a wide range of problems that concern the fulfillment of trans-

portation requests with a given fleet of vehicles at minimum cost or maximum profit,

subject to a number of constraints, such as capacity constraints. The first to intro-

duce a VRP were Dantzig and Ramser (1959) who presented a generalization of

the NP-hard traveling-salesman problem (TSP) and called it "The truck dispatching

problem". Since then, a rich body of literature addressing VRPs, its variants, and

related problems emerged. Further, due to the VRP’s practical relevance, numerous

commercial VRP solvers were developed (Golden et al. (2008), Preface). In the fol-

lowing, a brief introduction to VRPs and its variants is given. It is targeted to provide

a general idea rather than to provide a comprehensive in-depth introduction, which

would be out of scope for this dissertation. Thus, a discussion of how model and

approach VRPs is omitted. Instead, the interested reader is referred to the seminal

books of Toth and Vigo (2014) and Golden et al. (2008), the reviews of Pillac et al.

(2013), Gendreau et al. (1996), and Cattaruzza et al. (2017), and the dissertation of

Ulmer (2017) for a detailed discussion on how to model and approach VRPs and its

variants. If not stated differently, the following discussion bases on the seminal book

of Toth and Vigo (2014), Chapter 1.

Variants of the VRP and related problems can be classified along different dimen-

sions. In the remainder of this section, the following dimensions are addressed: the

evolution of information and uncertainty, environment and network characteristics,

types of transportation requests, fleet characteristics, sources of uncertainty, con-

straints, and objectives.

Evolution of information and uncertainty

Pillac et al. (2013) give a comprehensive review of online tour-planning problems
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and introduce a corresponding two-dimensional classification scheme. The first

dimension is named information evolution and classifies VRPs as static problems

if all required information is known beforehand, and as dynamic problems if the

information input changes over time. The second dimension is called information

quality and it separates deterministic problems from stochastic problems. Thus,

in their classification scheme, there are static and deterministic problems, static

and stochastic problems, dynamic and deterministic problems as well as dynamic

and stochastic problems, as shown by Figure 2.1. How the specific classification

of a VRP along the here described dimensions substantially influences the classes

of solution approaches that can be applied successfully. Chapters 2-4 of Toth and

Vigo (2014) provide a review of how to tackle static and deterministic VRPs. For

approaches of how to address static and stochastic VRPs, the reader is referred to

Florio et al. (2020), Louveaux and Salazar-González (2018), Gauvin et al. (2014)

and Lysgaard (2003). For solving dynamic and deterministic VRPs the same ap-

proaches as for static and deterministic VRPs are applied, with the difference, that

frequent re-planning is conducted. Approaches of how to address dynamic stochastic

VRPs are outlined in Section 5.3. Further, the interested reader is referred to Pillac

et al. (2013) for a general outline of classes of solution approaches for dynamic VRPs.

Information quality

Deterministic input Stochastic input

Static and deterministic Static and stochastic

Dynamic and stochasticDynamic and deterministic

Input known ex ante

Input changes over time
Information

evolution

Figure 2.1: Classifying VRPs with regard to the evolution of information and uncertainty, cf. Pillac
et al. (2013)

Environment and network characteristics

Typically, VRPs address problems which are node-based, opposing to arc-based

problems. This means that, in VRPs, transportation requests originate or terminate

in certain points, i.e., nodes, of a transportation network which represent depots and
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customer locations. On the contrary, in arc-based problems the focus is not to reach

certain points but to traverse certain links, i.e., arcs, of a transportation network.

The latter represent streets for example. Then, VRPs can be classified according to

whether the travel cost between nodes are symmetric, i.e., cost are independent of

the direction travelled, or asymmetric, i.e., cost differ depending on the direction

travelled. There are different modeling approaches that are valid for symmetric

VRPs and cannot be applied to asymmetric ones and vice versa.

Types of transportation requests

Transportation requests that can be modeled in VRPs can be the distribution of goods

from one or multiple depots to customers or, analogously, the collection of goods

at customer locations and their delivery to one or multiple depots. The first are

also known as one-to-many VRPs, the latter as many-to-one VRPs. Additionally,

pick-up-and-delivery problems can be modeled as VRPs. Those are also known as

many-to-many VRPs. Further, VRPs can be classified according to whether they

address the transportation of goods, or the transportation of people, such as service

technicians, medicals, pupils, or passengers.

Fleet characteristics

Another classification dimension regards the fleet involved in a VRP. Those typically

differ in size and whether vehicles are homogeneous, i.e., share the same charac-

teristics and capacity, or heterogeneous, i.e., vehicles differ in characteristics and

capacity. Further, due to technological developments in recent years, many research

articles now address VRPs that include multiple types of transportation vehicles,

e.g., the delivery of goods to micro-depots by usual delivery trucks and subsequent

fulfillment with electric cargo bikes, delivery robots, or drones (Boysen et al. (2021)).

Sources of uncertainty

In dynamic VRPs, there are various uncertain influences. The most considered are

unknown travel and service times, unknown requests, and unknown demand. If there
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is exploitable information available on the distribution underlying the respective

component, the VRP is considered stochastic.

Constraints

VRPs can be further classified according to the constraints considered. Those depend

on its practical application and can for example range from physical vehicle capacity,

route lengths, and driver working hours to specific (un-)loading constraints if for

example a forklift is required to move the load. The problems under consideration in

this dissertation are typically subject to time constraints, e.g., start times of delivery

time windows and delivery deadlines. Additionally, it is relevant to consider whether

vehicles can conduct multiple consecutive tours and whether transportation requests

can be served in any arbitrary delivery order or if there are order constraints as in

pick-up-and-delivery problems.

Objectives

Originally, the first introduced VRP was a cost minimizing problem. However, a vast

variety of objectives of VRPs emerged in the literature, inspired by the underlying

practical applications. There can be single and multiple objectives that range from

finding feasible solutions to only selecting the most profitable customers. The most

common objectives found in the literature relevant for this dissertation are either

minimizing cost, maximizing profit, maximizing the service area covered, maximizing

fairness, or maximizing the number of accepted customers.

Typically, in the literature, VRPs are implicitly classified among the relevant of the

previously mentioned dimensions by speaking names such as stochastic dynamic

vehicle routing problem (Ulmer 2017), profitable multi-trip vehicle routing problem

(p-MTVRP) (Chbichib et al. 2012), profitable single trip vehicle routing problem

with time windows (p-VRPTW) (Toth and Vigo 2014).
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Demand-management problems as described above are stochastic dynamic problems

by nature. Further, in i-DMVRPs as considered in this dissertation, also the tour-

planning component can be a stochastic dynamic VRPs. Therefore, in this section, a

brief introduction to stochastic dynamic problems is given. First, it is outlined how

to model such problems. Then, a high-level introduction to approaching stochastic

dynamic problems is given.

3.1 Modeling stochastic dynamic problems

Stochastic dynamic problems can be modeled as Markov decision processes (MDPs),

which according to Puterman (2014), Chapter 1, are sequential decision making

models, in which "the set of available actions, the rewards, and the transition proba-

bilities depend only on the current state and action and not on states occupied and

actions chosen in the past". In this section, the components of an MDP model, i.e.,

decision epochs, state, action, transition, and objective are briefly outlined. An

in-depth discussion on the preliminaries for modeling a sequential decision process

as an MDP, its history and characteristics, as well as its optimality criteria is out of

scope for this dissertation. The interested reader is referred to the seminal books of

Puterman (2014) for a comprehensive introduction to MDPs. If not stated differently,

the following descriptions base on Puterman (2014), Chapter 2 with a slight adaption

of notation to fit the remainder of this dissertation.

Decision epochs

The decision epochs t of an MDP define the points of time in which decisions have to
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be taken. They can either be continuous or discrete, but only the latter are considered

in this dissertation. In this case, the decision epochs define the beginning of the

stages of the MDP. Further, decision epochs can be subdivided according to whether

they are time-based across (constant) time steps or event-based, e.g., across customer

request arrivals. If time can be discretized, the latter equals time-based modeling

with non-constant time steps. Further, the set of decision epochs can be infinite,

corresponding to an infinite horizon problem, or finite, for problems that either have

a natural end or are modeled as such. Then, T marks the last decision epoch of the

MDP, i.e., t ∈ {1,2, ...,T}. In this dissertation, only finite problems are considered.

State

The state st of an MDP maps the condition of the decision system at a certain de-

cision epoch t and, thus, consists of all information that is known to that decision

epoch and relevant for decision making. It can have different dimensions for different

types of information. The set of all potential states is referred to as state space S . It

can be finite or infinite and can further depend on the decision epoch, i.e., vary with

varying decision epochs, or be constant.

Action

In an MDP model, the action at in decision epoch t corresponds to the realization of

a certain decision. The set of all potential actions is denoted action space A and can

also be finite or infinite as well as dependent or independent of t. Further, it can be

dependent on the state st , i.e., the set of actions to choose from can vary with varying

states.

Rewards

With an action at in state st , a reward r(st ,at) realizes. This reward can be positive,

i.e., equal revenue, or negative, i.e., equal cost. It can be dependent on the state

st+1 | st ,at to which the system transitions through action at when being in state

st , or be independent of it. In the first case, it is modeled via an expectation by

applying a transition probability function described in the following. However, it is
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required for optimal decision making that in decision epoch t either r(st ,at) or its

expectation E(r(st ,at)) is known. In decision epoch T +1 no action is taken but still

a reward rT+1 can realize. It is called scrap value or salvage value and can also be

understood as a state value v(sT+1) or as a function r(sT+1) of the terminal state sT+1.

Transition

The transition from one state st to a successor state st+1 depends on the action taken

in t, i.e., on at , and can be modeled as a transition probability function p(st+1 | st ,at)

for the transition to st+1, or pt(st+1 | st ,at), if it depends on decision epoch t. Usually,

∑st+1∈S p(st+1 | st ,at) = 1 holds.

Objective – Generally, the objective of an MDP is to maximize the sum of re-

wards, positive and negative, accrued over all decision epochs and including the

salvage value:

max
T

∑
t=1

r(st ,at)+ r(sT+1). (3.1)

3.2 Approaching stochastic dynamic problems

It can be shown that the above described objective (3.1) can also be represented by the

well-known Bellman equation, already described for the availability control problem

(1.1 and the assortment optimization problem (1.5) in Section 1. Unfortunately, as

mentioned already, it suffers from the curses of dimensionality (Powell et al. (2012),

Chapter 2) such that it is not tractable for realistic sized instances. Thus, a rich

variety of approaches to solve stochastic dynamic programs (at least heuristically)

emerged from a wide range of different research communities. Powell (2019)

summarize ten different research fields that address stochastic dynamic programs

who all tackle similar problems with similar solution approaches but from different

perspectives and, thus, based on different schemes of notation and taxonomies. The

literature on tackling i-DMVRPs mainly emerged from the field of approximate

dynamic programming (ADP), and only a few authors adapt notation, perspectives
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and taxonomies from the reinforcement learning community. However, those apply

approaches that are also well known in ADP. Therefore, in the following, a short

introduction to the ideas underlying ADP is given. It is the target to provide the reader

with an idea of the general framework of how to tackle stochastic dynamic programs.

A comprehensive introduction to the wide range and manifold challenges of specific

solution approaches is out of scope of this dissertation. Instead, the interested

reader is referred to the seminal book by Powell et al. (2012) for a comprehensive

introduction to ADP, and to the seminal book by Sutton and Barto (2018) for a very

accessible introduction to reinforcement learning. Further, for a broad overview

of the different communities addressing stochastic dynamic problems the reader is

referred to Powell (2019). The following brief introduction to the ideas of ADP

bases on Powell et al. (2012), Chapter 4.

From Equation (1.1), it can be observed that the Bellman function is a recursive

function that draws on the value vt+1 to calculate a value vt . Thus, solving it to

optimality is theoretically achieved by applying backwards recursion, i.e., by starting

at the salvage value in T , passing that forward to T − 1 to calculate vT−1, which

is then passed forward to calculate vT−2, and so on. The key difference between

this optimal dynamic programming and ADP is that in ADP the value function is

calculated by stepping forward through the decision process rather than backward.

Thereby, a successor state’s value vt+1 is not known for any decision epoch t and is

thus approximated for making a decision at . After a decision is made, a reward r

realizes and the system transitions to a successor state. Then, a value vt is approx-

imated drawing on the corresponding reward r(st ,at) and the approximated vt+1,

respectively. Consequently, the approximation of vt , in the following denoted by v̂t ,

is based on a sample realization of the reward and the successor state.

These steps are replicated for every t = 1, ...,T , therewith following a sample path,

i.e., a certain sequence of stochastic realizations within the decision process. After

reaching the terminal decision epoch T , the whole process is repeated multiple times,

updating the state value’s estimate every time the respective state is visited. Thus,

the state value’s estimate is improved with every visit, until a termination criterion is
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reached.

Generally, this procedure is known as value function approximation (VFA) and

existing approaches differ with regard to how the unknown vt+1 is approximated,

and how the updates of state values are conducted. It is highly influenced by

the underlying problems and applications and, therefore, forms the heart of ADP

research. Examples of how the previously outlined, general framework of tackling

stochastic dynamic problems can be applied to tackling i-DMVRPs, is the core of

the literature discussed in Section 5.
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Part III

Integrated demand management and

vehicle routing problems (i-DMVRPs)
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In Part III of this dissertation, i-DMVRPs are formally defined and the related

literature is analyzed. Within this analysis, research gaps are identified, which

motivate a deeper analytical investigation of i-DMVRPs as well as of their solution

approaches.

Over the last decade, new areas of transportation and home delivery have emerged

and have been successfully established with business models such as AHD, SDD,

and mobility-on-demand (MOD) (Fleckenstein et al. 2021). Enabled by the ongoing

evolution of communication technology, these business models have considerably

changed the interaction between providers and customers in LMD services (Agatz

et al. 2013). Thereby, customer expectations regarding offered services, delivery

speed, and accuracy of shipping notifications have crucially increased (McKinsey and

Company 2016). Additionally, the Covid-19-pandemic substantially accelerated the

global proliferation and growth of home delivery services as it forced new customer

groups to rely on such services who would otherwise have been hesitant to try them

(Unnikrishnan and Figliozzi 2020).

Consequently, the fast growth of e-commerce and increasing customer expectations

require the providers of LMD services to improve delivery efficiency and consider

new measures to enable a profitable business operation. Hence, in practice, innovative

transportation modes, such as crowd shipping and the delivery with drones, and

mechanisms to steer customer choice toward efficient delivery operations, i.e., solving

i-DMVRPs, are considered, and in parts successfully applied (Agatz et al. (2013),

Agatz et al. (2021), Boysen et al. (2021), Archetti and Bertazzi (2021)).

In parallel, researchers began to address the same issues from a wide range of

perspectives. Among engineering communities for instance, a vast body of literature

emerged that considers the development and incorporation of delivery robots or

drones, and technologies to deposit deliveries in car trunks were developed (Boysen

et al. (2021), Chen et al. (2021)). Researchers of the operations research community

who deal with tour-planning problems and VRPs shifted their research toward online

optimization (Azi et al. (2012), Voccia et al. (2019)). The revenue management

community began to explore transferring known revenue management instruments
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from, e.g., the airline industry to this area of transportation and home delivery (Klein

et al. 2020). Overall, a vast body of literature emerged that addresses a wide range

of existing business models with an even wider range of approaches to tackle the

diversity of the related challenges (Fleckenstein et al. 2021).

As a consequence of different research communities considering these problems, the

related literature bases on many different taxonomies, non-uniform classification

schemes, and diverse terminology and modeling approaches. Hence, classifying and

comparing business models, and selecting appropriate solution approaches for an

existing problem among the approaches presented in the literature, is a challenge in

itself.

Therefore, in Part III of the dissertation, an abstracted problem description of

i-DMVRPs in LMD is provided and the existing literature that addresses demand

management and online tour planning in i-DMVRPs is analyzed. Finally, a unified

modeling framework to model i-DMVRPs is introduced. The respective contribu-

tions of this part are the following:

(1) A clear definition of i-DMVRPs in LMD that bases on a general taxonomy

is introduced by abstracting from the literature and current practice. A unified

terminology is derived and its components serve as building blocks according to

which i-DMVRPs can be classified. Further, different types of i-DMVRPs are

delineated and contrasted, which then allows to classify individual problem settings

discussed in the literature, accordingly.

(2) A comprehensive literature overview is provided, in which different research

streams are identified. Existing solution approaches are analyzed in depth and the

results are provided in a comprehensive tabular overview. This supports the selection

of an appropriate solution approach for new i-DMVRP applications.

(3) Essential research gaps are identified, which motivate a deeper investigation of

i-DMVRPs, especially with regard to modeling, analytical discussion, the interpreta-

tion of opportunity cost, and anticipatory solution approaches.

(4) A unified modeling framework for i-DMVRPs is developed. It incorporates

anticipatory demand-management and tour-planning decisions and explicitly clarifies
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their temporal interdependencies. The proposed modeling approach is generic

enough that a variety of problem settings can be modeled, but explicit enough that

the reader has a clear understanding of the underlying business process.

This part of the dissertation is organized as follows: in Chapter 4, the addressed

i-DMVRPs in LMD applications are defined and the taxonomy is introduced. Through-

out the chapter, applications with disjoint booking and service horizons are delineated

and contrasted from those with overlapping ones.

In Chapter 5, the related literature is reviewed. First, an overview of existing

surveys that address i-DMVRPs either from a demand-management perspective, a

LMD perspective, or integratively, is provided. Afterwards, the existing literature

proposing anticipatory solution approaches is reviewed. Finally, a comprehensive

tabular overview of the discussed solution approaches is provided and essential

research gaps are identified.

In Chapter 6, the first of the research gaps identified in Chapter 5 is closed: a unified

modeling framework for i-DMVRPs is developed.
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4. Description of i-DMVRPs

In this chapter, different types of i-DMVRPs of LMD found in the literature and

existing business models are abstracted with the target to derive a general description

that follows a clear, specifically introduced terminology. This terminology bases on

a decomposition of different influencing factors within the booking and fulfillment

processes and serves as building blocks for future classifications. The derived build-

ing blocks are: customer request arrivals, fulfillment options, offer sets, customer

choice probabilities, as well as fulfillment operations aspects when serving customer

orders. Throughout the chapter, similarities of different types of i-DMVRPs are

elaborated and decisive differences are highlighted. Later on, this allows to classify

the settings discussed in the literature, i.e., AHD and SDD, accordingly.

First, a short overview of how the above mentioned influencing factors, i.e., the

resulting building blocks, integrate into an i-DMVRP business process is given: as

described in the introduction, i-DMVRPs comprise two integrated types of deci-

sions, namely demand-management decisions and tour-planning decisions. Demand-

management decisions have to be made for every customer request arrival and

correspond to decisions on which fulfillment options to offer each particular customer

at which delivery fees. The combination of a subset of fulfillment options with fixed

prices is termed an offer set (Fleckenstein et al. 2021). Every offer set yields different

customer choice probabilities according to which customers choose a fulfillment

option. This either turns the customer request into a confirmed customer order, or

the customer leaves the system without purchasing anything. In the latter case, the

customer request is not considered any further. Finally, all confirmed customer

orders have to be served by the provider’s fulfillment operations.

At this point, different types of i-DMVRPs differ from each other. Figure 4.1 shows
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Figure 4.1: Overview i-DMVRP booking and fulfillment process

the corresponding temporal relationships of the previously introduced building blocks

of different types of i-DMVRPs. In an i-DMVRP with disjoint booking and service

horizons (DJP), all customer orders are served after a predefined cut-off time (Lang

et al. (2021a), Koch and Klein (2020)). In an i-DMVRP with overlapping booking

and service horizons (OP), the fulfillment operations run in parallel to incoming

customer requests (Azi et al. (2012), Voccia et al. (2019)). However, in both types of

i-DMVRPs tour-planning decisions correspond to solving an underlying VRP. In

DJPs this is a static VRP that is only solved once after the booking horizon’s end. In

OPs, it corresponds to an online and dynamic VRP that has to be solved (Fleckenstein

et al. 2021). Thus, in OPs, the provider continuously takes tour-planning decisions

and executes them, while the booking horizon is still running. Below, DJPs and

OPs are described in more detail along the previously introduced building blocks for

deeper classification.

4.1 i-DMVRPs with disjoint booking and service hori-

zons

In LMD, DJPs are better known as AHD problems. They concern business mod-

els in which customers request the delivery of perishable goods (e.g., groceries,

flowers), personal/addressee-sensitive goods (e.g., pharmaceutical products, confi-

dential documents), or bulky goods (e.g. home appliances or furniture), online or
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in-store (Campbell and Savelsbergh (2005), Lang et al. (2021a)). Those business

models typically have in common that product delivery requires the presence of the

customer because the products cannot be left in the mailbox. Since redelivery is

costly, provider and customer consequently agree on a certain delivery time window

in which the provider promises delivery (Agatz et al. (2008), Lang et al. (2021a),

Fleckenstein et al. (2021)). Thereby, the customer and the provider follow diverg-

ing targets. The customer prefers a very narrow delivery time window in order to

minimize the time in which they have to be at home. The provider, in contrast,

prefers wide time windows in order to maximize flexibility in fulfillment operations

(Köhler et al. (2019), Köhler et al. (2020)). Further, there are certain time windows,

which are more frequently requested by customers than others (e.g., evening slots

vs. morning slots) (Asdemir et al. (2009), Agatz et al. (2013)). Thus, the provider

integrates demand-management measures into the process in order to steer customer

choice behavior towards efficient fulfillment operations (Klein et al. 2019). In the

following, the main components of such business models are described.

Customer request arrivals

In the considered problems, customer requests arrive sequentially at random times

with either time-dependent or time-independent arrival rates, within a predefined

booking horizon until a predefined cut-off time (Asdemir et al. (2009)). The arriving

customers log in to the provider’s website with registered profiles and fill their shop-

ping basket or place delivery orders in-store. For every incoming customer request,

the provider is assumed to know the corresponding location, as well as the shopping

basket’s potential revenue. The requesting customer expects to be offered a selection

of fulfillment options with fixed delivery fees to choose from.

Fulfillment options

In DJPs, fulfillment options are typically predefined time windows (Agatz et al. 2008),

either overlapping or non-overlapping, with either varying or fixed lengths, in which

the provider commits to deliver (Fleckenstein et al. 2021). The set of fulfillment

options could, for example, be composed of the following options: delivery the
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following day between 10am and noon, between 11am and 1pm, and between 10am

and 1pm.

Offer sets and customer choice probabilities

For every incoming customer request, the provider decides on a subset of fulfill-

ment options to offer. In doing so, the provider also selects a delivery fee for each

fulfillment option, either from a predefined set of discrete price points or from a

continuous (potentially limited) range. Thus, the set of all offer sets is either finite,

if potential delivery fees originate from a finite set, or infinite, if potential delivery

fees originate from a continuous range (Strauss et al. (2018), Klein et al. (2020),

Fleckenstein et al. (2021)).

Consistent and logical offer-sets follow three guidelines:

(1) Within an offer set, each fulfillment option appears only once.

(2) If a customer can decide not to make a purchase, a fictive fulfillment option

that represents a no-purchase option is included in every offer set. It is priced

at zero.

(3) To ensure pricing consistency, the delivery fees of fulfillment options with

longer time spans do not exceed the delivery fees of those with shorter spans.

Different offer sets yield different choice probabilities for different customers (Train

(2009), Chapter 2, Gallego et al. (2019), Chapter 4).

Fulfillment operations

If a customer chooses an option other than the no-purchase option, their request

turns into a confirmed customer order that needs to be served by the provider as

promised. Therefore, every customer order is assigned a delivery time window in

which they have to be served. Those time windows can either form hard constraints,

i.e., customer orders have to be served within the exact time window, or soft con-

straints. If they form soft constraints, the customer orders could also be served

before the beginning of the time window or after its end, but in acceptance of a
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corresponding penalty. All delivery time windows fall into a service horizon. It starts

after a predefined cut-off time which marks the booking horizon’s end (Asdemir et al.

(2009), Agatz et al. (2013)). Thus, when the tour-planning decisions are taken, all

customer orders, their locations, and their delivery time windows are known.

Generally speaking, in DJPs, tour-planning decisions correspond to solving a VRP.

Its exact characteristics depend on the setting of the business model and the cor-

responding requirements (Agatz et al. (2008), Fleckenstein et al. (2021)). For

example, some providers operate a fleet of a fixed number of homogeneous or non-

homogeneous vehicles. Others collaborate with a large amount of sub-providers,

such that the number of delivery vehicles is inexhaustible. For business models

in which groceries are shipped, the number of orders that can be served with one

delivery vehicle may not be limited by physical vehicle capacity. Opposingly, if

bulky goods are shipped, the physical vehicle capacity may be a decisive factor.

Other potential restrictions, among others, can be (Toth and Vigo (2014), Chapter 1):

- limited tour lengths (especially for electric vehicles),

- limited driver working hours,

- required (un-)loading times,

- access restrictions at customer sites,

- specific vehicle requirements for specific orders (e.g., for temperature-sensitive

goods that require refrigeration or for bulky goods that require a forklift to be

unloaded).

4.2 i-DMVRPs with overlapping booking and service

horizons

In LMD, OPs are better known as SDD problems. They concern business models in

which customers order the delivery of certain goods on short notice. More precisely,

they expect to receive their order the very same day, within a few couple of hours, or

even within the same hour. This concerns business models such as courier services,

pharmaceutical product delivery, grocery and consumer goods delivery, meal delivery,
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and heating oil delivery (Fleckenstein et al. 2021). Some business models require the

provider to load customer orders in a depot (Voccia et al. (2019), Chen et al. (2019),

Ulmer (2020a)), as typical for grocery delivery. In other business models, all goods

that can potentially be ordered are stocked in all delivery vehicles. In the latter case,

a delivery vehicle does not have to return to the depot in order to load new customer

orders but can insert a new customer order into a currently running tour (Ulmer et al.

(2018), Ulmer et al. (2019), Ulmer (2020b)). A prominent example is heating oil

delivery.

However, in both types of these business models, the provider starts their fulfill-

ment operations immediately with, or shortly after, the first realized customer order

(Archetti and Bertazzi 2021) to match the customers’ expectations regarding fast de-

livery. While this brings instant gratification for the customer, it poses the following

challenges to the provider, which are essential for profitable fulfillment operations

and which can be tackled by integrating demand-management measures into the

process (e.g. Klapp et al. (2018), Archetti and Bertazzi (2021)):

(1) Defining the start time of a tour and allocating orders to tours. If a tour starts

early or a certain destination is visited early in the service horizon, the tour

may not be profitable because there are not enough orders included to cover the

resulting cost. If a tour starts late, the corresponding delivery vehicle may not

yet be available when a more profitable customer request arrives. Further, it

might be profitable to serve already known customer orders later in the service

horizon with a different tour if more requests are expected from its vincinity.

(2) Covering peak times without having too many drivers and vehicles idle during

low demand times.

In summary, the decisive difference between DJPs and OPs is that in DJPs the

fulfillment operations start after the booking horizon’s end, while in OPs, they run

in parallel to the incoming customer requests. Hence, for OPs, tour-planning opti-

mization has to be run in parallel to the demand management optimization as well.

Consequently, while the demand-management related building blocks (customer
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request arrival, offer set definition, and calculating choice probabilities) structurally

remain unchanged, OPs differ from DJPs by the delivery options offered to incoming

customer requests and by the corresponding fulfillment operations. In the following,

these distinguishing components are described in more detail.

Fulfillment options

In OPs, fulfillment options are typically predefined nested time spans in which the

provider commits to deliver. The set of fulfillment options could, for example, com-

prise delivery within the next 90 minutes or within the next 300 minutes. It has to

be noted that there is also business models for OPs in which fulfillment options are

potentially overlapping time windows of equal or varying lengths as described for

DJPs. Those business models for OPs are not discussed any further as they can be

reduced to either the described DJPs or the described OPs (Waßmuth et al. 2022).

Fulfillment operations

If a customer chooses an option other than the no-purchase option, their request

turns into a customer order. A customer order is assigned a delivery deadline that

is calculated from the request time and the length of the chosen fulfillment option.

As described before, in OPs, the service horizon starts with, or shortly after, the first

realized customer order and ends when the last customer order of a day has been

served. In the following, the fulfillment operations resulting from the two previously

introduced different OP business models are delineated.

No depot returns required – No depot return is required to load newly arrived

customer orders if all goods that a customer can potentially order are stocked in

the delivery vehicles. The provider continuously takes tour-planning decisions.

Those correspond to decisions on whether a vehicle should idle at its current

location, continue its trip (a pre-planned sequence of customer locations to be

served), or which location to visit next.

Depot returns required – Depot returns are required to load newly arrived

customer orders if the delivery vehicles only stock goods for orders assigned
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to the running tour. Thus, a newly arrived order can only be served either by

a vehicle that visits a depot after the customer order’s request time or by a

vehicle that is idle in a depot. Again, the provider continuously takes tour-

planning decisions. Those involve decisions on whether and when a vehicle

should leave the depot/return to the depot and which orders will be assigned to

outgoing vehicles. Once a vehicle left the depot, most providers fully execute

the resulting tours as planned, without preemptive depot returns (e.g. Ulmer

(2020a)). However, other providers allow running tours to be interrupted for

depot returns in order to load new or different customer orders (e.g. Côté et al.

(2021)).

Building block DJPs OPs

Customer request
arrivals

sequentially within a predefined booking horizon,
location/revenue are known

Fulfillment
options

predefined overlapping or non-
overlapping time windows of

varying or fixed length

predefined nested time spans
of varying lengths

Offer sets subset of fulfillment options offered with certain delivery fees

Customer choice
probabilities

probabilities with which a customer chooses a certain fulfillment option when
being offered a certain offer set, calculated with a predefined choice model

Fulfillment
operations

start after the booking horizon’s end,
all customer orders and their location
are known when tours are planned,

no preemptive depot returns

run in parallel to booking horizon,
not all customer orders are known

when tours/trips are planned,
preemptive depot returns,

tours can be revised after their start

Table 4.1: Differences DJPs and OPs

For both types of OPs, tours and trips are either planned in such a way

- that no customer orders will be served later than their delivery deadline (Ulmer

2020a),

- that a predefined service level is matched (Klapp et al. 2018),

- or that penalty cost arising from late deliveries or the required outsourcing to a

third-party logistics provider (3PL) are minimized (Voccia et al. 2019).

Travel and service times can thereby be assumed deterministic (Azi et al. (2012),
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Voccia et al. (2019), Côté et al. (2021)) or stochastic (Prokhorchuk et al. (2019)),

depending on the specific problem setting. Moreover, the VRPs underlying specific

fulfillment operations can be subject to further operational restrictions as already

described for DJPs. Table 4.1 summarizes the differences between DJPs and OPs.
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5. Literature on i-DMVRPs in last-mile

delivery

Both, traditional demand management applications as described in Chapter 1 and

LMD applications as described in Chapter 4, face the challenge of how to match

fixed, scarce resources with heterogeneous demand. This similarity has prompted

the establishment of vehicle routing as a new application for demand management

(Agatz et al. 2013), which is also reflected by the rapid development of the respective

literature. While there is some earlier work in the related field of stochastic and dy-

namic vehicle routing, the works by Campbell and Savelsbergh (2005) and Campbell

and Savelsbergh (2006) can be viewed as the first contributions to integrating active

demand management and vehicle routing. These publications initiated the literature

stream on AHD demand-management problems, i.e., on DJPs in LMD (Yang et al.

(2016), Koch and Klein (2020), and Vinsensius et al. (2020)).

On the contrary, Azi et al. (2012) present the first work on steering booking processes

in parallel to fulfillment operations. Therewith, they initiate the literature stream on

SDD demand-management problems, i.e., addressing OPs in LMD (Prokhorchuk

et al. (2019), Ulmer (2020a)).

In this chapter, these two literature streams are examined. First, in Section 5.1, a short

overview of the recent literature dealing with i-DMVRPs in LMD on a general level

is given. This includes literature reviewing related research, elaborating different

business concepts, and literature that features high-level modeling or solution frame-

works. Afterwards, existing solution approaches for operational decision making in

specific problem settings of such i-DMVRPs are analyzed. Thereby, the literature

that addresses relevant DJPs (see Section 5.2) is distinguished from the literature
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that addresses respective OPs (see Section 5.3). As described earlier, the overlap of

the booking and service horizons yields substantially different challenges since it

incorporates an online tour-planning component, which is not required for DJPs. As

a consequence, the literature on OPs mainly evolved from the literature on stochastic

dynamic vehicle routing which is not the case for the literature on DJPs. The latter

mainly evolved from the revenue management literature. However, for both problem

settings the discussion is focused on anticipatory solution approaches. Further, the

discussed literature is differentiated according to whether it involves learning-based

anticipation or non-learning-based anticipation.

It has to be noted that there are other research streams related to i-DMVRPs in LMDs

that consider a variety of research questions that are not subject to further discussion

in the remainder of this dissertation. These consider, for example, innovative delivery

modes such as crowd-sourced delivery (Dayarian and Savelsbergh 2020), delivery

by autonomous vehicles or drones (Ulmer and Streng (2019), Ulmer and Thomas

(2018)), or further operational aspects such as customer discrimination by delivery

areas (Chen et al. 2020).

5.1 Surveys and general frameworks for i-DMVRPs in

last-mile delivery

In this section, the existing literature considering i-DMVRPs in LMD in general

is outlined. This literature mainly addresses recent research from two perspec-

tives, either from a demand-management perspective or from an operational fulfill-

ment/vehicle routing perspective. At first, general surveys of those main literature

streams are outlined. Then, literature that is concerned with general modeling or

solution frameworks is discussed.

Surveys

Table 5.1 gives an overview of the existing surveys on literature related to i-DMVRPs

in LMD that are outlined in the following. It shows whether specific applications,
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i.e., DJPs, are considered or LMD concepts in general (G). There is no survey that

specifically addresses OPs. Further, Table 5.1 summarizes whether the authors focus

on a specific component, i.e., the demand management component (DM) or the op-

erational fulfillment/VRP component (VRP), or consider i-DMVRPs. Additionally,

Table 5.1 gives an overview of whether the respective survey addresses business

concepts, mathematical models, and/or solution approaches. In the following, at

first, surveys that consider i-DMVRPs from the demand-management perspective are

outlined. Then, the respective literature considering i-DMVRPs from the operational

fulfillment/VRP perspective. At last, literature that considers both perspectives in

an integrative manner, i.e., literature that deals with i-DMVRPs comprehensively is

reviewed.

Authors Application Perspective Concepts Models Approaches
Agatz et al. (2008) G DM ✓ ✓ ✗
Agatz et al. (2013) DJP DM ✓ ✗ ✓

Archetti and Bertazzi (2021) G VRP ✓ ✗ ✓
Boysen et al. (2021) G VRP ✓ ✗ ✗

Fleckenstein et al. (2021) G i-DMVRPs ✓ ✓ ✓
Klein et al. (2020) G DM ✓ ✓ ✓

Snoeck et al. (2020) DJP VRP ✓ ✗ ✗
Soeffker et al. (2021) G VRP ✓ ✓ ✓
Waßmuth et al. (2022) G i-DMVRPs ✓ ✗ ✓

Table 5.1: Surveys that feature related problems

Demand-management perspective – Agatz et al. (2008) provide the first review

on LMD concepts, more precisely on the distributional challenges in e-fulfillment,

including initial ideas to connect demand management and LMD. The authors name

two features of e-fulfillment systems that enable demand management. The first

is an increased pricing flexibility compared to stationary retail, for example, and

the second is an extensive availability of data concerning purchasing behavior. In

those two features, the authors see the foundation for segment-specific pricing as

well as promotion and conclude that they see "a shift from reactive forecasting to a

much more active demand management in e-fulfillment". In a later review, Agatz

et al. (2013) compare the demand-management-related processes of a large e-grocer

with those prevalent in airline revenue management and elaborate similarities as

well as decisive features of both concepts. As a result, they provide starting points
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for incorporating differentiated slotting/pricing, or dynamic slotting/pricing into

business concepts of AHD and thereby focus on the demand-management side of

i-DMVRPs. The same holds for Klein et al. (2020) who review recent generalizations

and advances of revenue management techniques in traditional applications and new

industry applications. They show how to transfer availability control to AHD problem

settings and present the corresponding DP formulation. Further, they outline how the

reviewed publications incorporate fulfillment cost and how the involved opportunity

cost are approximated.

Operational fulfillment/VRP perspective – Archetti and Bertazzi (2021) consider

i-DMVRPs from the other perspective, i.e., with a focus on operational fulfillment/VRP

aspects. They review recent advancement and challenges of LMD systems espe-

cially in relation to e-commerce. They see pricing as a measure to balance demand

among favorable and unfavorable delivery time windows and conclude: "We be-

lieve that the immediate challenge in time window assignment and management is

related to defining proper pricing policies to influence customer requirements and

favor a more balanced distribution of required delivery slots." They do not further

elaborate demand-management measures in particular. The same is true for the

survey by Snoeck et al. (2020). Although the authors specifically address revenue

management in LMD with a focus on AHD problem settings, they do not discuss

demand-management aspects but focus on the influences of potential extensions

and future developments on the fulfillment operation level, such as incorporating a

flexible crowdsourced fleet, or accounting for collection and delivery points. Further,

Boysen et al. (2021) survey LMD research with a focus on newly emerged business

concepts and Soeffker et al. (2021) discuss the related stochastic dynamic VRPs and

embed them into a prescriptive analytics framework. Both consider pricing as an

essential decision dimension in existing business concepts that concern LMD and

stochastic dynamic vehicle routing respectively.

Integrated perspective – The most recent and comprehensive survey of literature

on i-DMVRPs that integrates both perspectives, i.e., the demand-management and

the last-mile-delivery perspective, is the survey by Fleckenstein et al. (2021). The
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authors provide a generalized problem definition and outline applications from LMD,

i.e., AHD and SDD, as well as from the MOD sector. They propose a high-level,

generic MDP modeling formulation and outline typically involved customer choice

models. Further, they provide a comprehensive survey of general solution con-

cepts and describe solution approaches for all involved subproblems, i.e., demand

management-related subproblems and tour-planning-related subproblems. They

conclude that the research area of i-DMVRPs can benefit from the development and

proliferation of common model formulations and standardized solution approaches.

In the following, recent research contributions in this directions are described in

chronological order. Another survey that considers i-DMVRPs is a survey by Waß-

muth et al. (2022). They survey recent literature dealing with i-DMVRPs on the

strategic, tactical and operational level and specifically differentiate between two

demand-management levers that are offering and pricing. Although they mention

modeling aspects of the reviewed literature in their tabular overviews, they do not

comprehensively discuss different modeling approaches and rather focus on brief

outlines of solution approaches.

i-DMVRP frameworks

Ulmer et al. (2020) propose a generalized framework for modeling stochastic dy-

namic VRPs, which they call route-based MDPs. This framework can also be applied

to model VRPs with stochastic customer requests. The authors aim at closing a gap

between modeling stochastic dynamic VRPs and existing solution methods. They

propose to include (preliminary) route plans into the state space. Further, they define

immediate rewards for a certain action as the resulting myopic marginal changes

in the value of those route plans. In parallel, Fleckenstein et al. (2021) propose a

similar idea in their generalized modeling framework, namely, to include the ve-

hicle/fulfillment state as part of the state definition. However, due to the specific

objective function formulation Ulmer et al. (2020) propose, their MDP model frame-

work is not intuitively transferable to i-DMVRPs. Presumably, this is the reason why

many authors (see for example Klapp et al. (2020), Chen et al. (2019), Fleckenstein

et al. (2021)) adopt their proposed state definition but not their proposed objective
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function when modeling i-DMVRPs.

Lang and Cleophas (2020) present a simulation-based benchmarking framework

for prescriptive analytics based solution approaches tackling AHD optimization

problems, denoted by SiLFul. It is an open source platform that provides problem

settings and benchmark solution approaches to researchers. Therewith, the authors

strive for more comparability and reproducibility of research results.

Hildebrandt et al. (2021) summarize solution frameworks for solving stochastic dy-

namic VRPs that originate from different research streams, namely computer science

and operations research. They propose a high-level concept on how to combine

those frameworks to build a reinforcement learning-based solution framework.

5.2 Solution approaches for i-DMVRPs with disjoint

booking and service horizons

In this section, solution approaches for DJPs in LMD, i.e., for AHD problem settings,

are discussed. Although tour-planning decisions in AHD problem settings are static

ones that arise after the booking horizon has ended, involving a dynamic tour-

planning component in the decision process during the booking horizon is valuable

for two reasons: first, in order to check the feasibility of demand-management

decisions, and second, to approximate future expected revenue and/or final fulfillment

cost in order to evaluate the effect of demand-management decisions (Fleckenstein

et al. 2021). The respective tour-planning component can be myopic, such that solely

the already accepted customer orders are considered (Campbell and Savelsbergh

(2006)), or anticipatory, such that future expected customer requests are taken into

consideration as well. In the following, only anticipatory approaches are discussed as

it has been shown that those outperform myopic ones (Fleckenstein et al. 2021). The

elaboration of these approaches is structured as follows: at first, research that involves

learning-based anticipation (see Section 5.2.1) is discussed. Afterwards, research

that involves non-learning-based anticipation (see Section 5.2.2) is discussed.
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Beyond the following discussion, the existing approaches can further be subdivided

according to their individual objectives, e.g., maximization of the number of accepted

customer requests, revenue or profit, or minimization of cost. They can also be

subdivided by considering whether anticipation involves explicit tour planning and

whether it is used to anticipate both, revenue and cost, or solely one of both. Further,

the approaches can be subdivided by distinguishing different demand-management

types such as assortment optimization for availability control or dynamic pricing,

and/or by the use of different customer choice models. For a comprehensive and

detailed classification on those differentiation dimensions, the interested reader is

referred to the recent survey of Fleckenstein et al. (2021).

5.2.1 Anticipatory learning-based approaches

Learning-based approaches aim to learn accurate value function approximations and

thus opportunity cost approximations either offline or online. Anticipatory learning-

based approaches for optimizing demand-management decisions in AHD problem

settings can be further subdivided according to whether they apply look-up tables or

base on parametric or non-parametric VFA. In the following, the relevant literature

is discussed in this order.

Lang et al. (2021b) compute a look-up table to solve an assortment optimization

problem and determine which fulfillment options to offer to an incoming customer re-

quest by applying a backward dynamic programming approach. During the booking

horizon, the look-up table returns values for different customer request character-

istics. These are then linearly combined to an overall value as a basis for decision

making. Therewith, the authors analyze the effect of different influencing factors and

their weights in the objective function, e.g., revenue or coverage of the service area.

Ulmer and Thomas (2020) also apply a look-up table-based approach, which they

combine with a parametric VFA. The authors aim at maximizing the overall revenue

in an AHD problem setting by optimizing accept/reject decisions for every incoming

customer request.
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A different group of research papers addresses AHD demand-management problems

more sophisticatedly by setting (continuous) prices or incentives dynamically for

every incoming customer request. Thereby, Yang and Strauss (2017), Vinsensius

et al. (2020), Koch and Klein (2020) and Lebedev et al. (2020) rely on pure para-

metric VFAs to calculate opportunity cost. In the first three of these, the authors

implement linear regression models. Yang and Strauss (2017) and Vinsensius et al.

(2020) base it on parameters that can be derived from the state of the system without

calculating tentative route plans, i.e., without solving a VRP across existing and

potentially anticipated customer orders . Koch and Klein (2020) require such ten-

tative route plans to calculate the parameters’ values before estimating opportunity

cost. However, for all of these approaches, the resulting estimates are the input

for a subsequent pricing problem, which in Yang and Strauss (2017) and Koch

and Klein (2020) is solved with a continuous pricing algorithm and in Vinsensius

et al. (2020) with an incentive-setting quadratic program as proposed by Campbell

and Savelsbergh (2006). Lebedev et al. (2020) propose non-linear VFA models for

profit-maximizing continuous pricing in an AHD problem setting and conduct a

comprehensive sensitivity analysis on the trained parameters.

Finally, a third group of research papers examines the incorporation of neural net-

works for VFAs. Although generally relying on parameters, VFAs by neural net-

works is discussed to be non-parametric in some research papers (Fleckenstein et al.

(2021)) or as a hybrid between parametric and non-parametric (Soeffker et al. (2021)).

Therefore, here they are treated as a special group: Dumouchelle et al. (2021) rely

on learned neural network models to incorporate them in a SARSA algorithm that

directly returns accept/reject decisions. Lang et al. (2021a) train a neural network

model to approximate cost and then solve an assortment optimization problem that

bases on an MNL customer choice model.

5.2.2 Anticipatory non-learning-based approaches

The literature of non-learning-based solution approaches for demand-management

problems in an AHD setting can be subdivided according to whether the anticipa-
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tion within the tour-planning component is sampling-based or seed-based. In the

following, sampling-based refers to solution approaches that sample future customer

requests and incorporate those into tentative tour planning. Seed-based refers to

solution approaches that agglomerate expected demand in pre-defined or dynamically

adjusted locations as a basis for tentative tour planning.

Campbell and Savelsbergh (2005) are among the first to integrate demand manage-

ment and vehicle routing. They consider a profit-maximizing AHD setting in which

the provider decides on the acceptance or rejection of incoming customer requests.

They rely on a sampling-based insertion heuristic that is performed from scratch

for every decision epoch. It considers already accepted customer orders as well as

sampled customer requests in order to approximate the monetary effects of accepting

a customer request with regard to displaced expected revenue and resulting expected

fulfillment cost. Yang et al. (2016) use the same insertion heuristic but amend it by

additionally considering tentative tour plans from previous decision epochs. From

the resulting tour plans, they derive an approximation of the expected increase of

fulfillment cost for all potential fulfillment options and use this as an input to a

continuous dynamic pricing approach that bases on an MNL customer choice model.

Angelelli et al. (2021) also draw on the idea to compare tentative tour plans including

and not including the current customer request for a certain fulfillment option. The

tentative tour plans are created with a team orienteering problem (TOP)-based tour-

planning heuristic and involve accepted customer orders and expected customer

requests. Then, the authors derive an approximation of opportunity cost, which is

used to optimize accept/reject decisions in an one-vehicle AHD problem setting with

regard to profit maximization.

Another sampling-based approach is the one proposed by Strauss et al. (2021). They

approximate fulfillment cost as a linear function of the number of orders (accepted

and expected) according to an approach introduced by Daganzo (1987). Thereby,

the authors account for displaced demand and variable fulfillment cost. Generally,

Strauss et al. (2021) consider a profit-maximizing dynamic pricing problem, which

they tackle with a mixed integer program (MIP)-based approach that also relies on
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an MNL choice model as the approach by Yang et al. (2016).

The existing approaches that use seed-based anticipation within the tour-planning

component incorporate it in deterministic linear programming approaches to solve

the involved demand-management problem. Klein et al. (2018) use an MIP-based

approximation of opportunity cost that involves seed-based tour planning. They

incorporate the resulting estimate into a dynamic pricing problem. It is modeled

like the MDP model of Yang et al. (2016). To solve the pricing problem, they solve

an assortment optimization problem over dynamically re-optimized combinations

of fulfillment options and price points. Mackert (2019) applies the same tour-

planning approximation and uses the resulting opportunity cost estimate as input

to a linearized assortment optimization problem arising under the assumption of a

generalized attraction choice model.

Most recently, Giallombardo et al. (2020) agglomerate expected requests into seeds

to incorporate them explicitly into an MIP-based solution approach. This optimizes

tour-planning decisions and defines booking limits as a basis for solving the involved

demand-management problem. Here, this approach is considered dynamic as the

authors suggest to recompute the MIP’s solution during the booking horizon in order

to derive reoptimized booking limits that account for the current state of the system.

5.3 Solution approaches for i-DMVRPs with overlap-

ping booking and service horizons

In this section, solution approaches for OPs in LMD are discussed. Due to the overlap

of the booking and the service horizons, the respective fulfillment operations run in

parallel to incoming customer orders, which, in turn, are dynamically incorporated

into already running fulfillment operations. Thus, it is a stochastic dynamic problem.

Consequently, only those approaches are discussed in the following, that are designed

to take stochastic dynamic tour-planning into consideration.

The elaboration of the respective literature is structured as follows: as in Section 5.2,
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research that involves learning-based anticipation (see Section 5.3.1) is discussed first.

Then, research that involves non-learning-based anticipation is addressed (see Section

5.3.2). The online tour-planning component decisively distinguishes OPs from DJPs

with regard to the complexity that has to be accounted for by solution approaches,

and thus, how solution approaches developed over time. To account for that, in each

of the following Sections 5.3.1 and 5.3.2, a brief, high-level discussion of the most

related research on pure online tour-planning approaches is provided in order to show

how the discussed integrated approaches evolve from them. Thereby, pure online

tour-planning approaches and integrated solution approaches for stochastic dynamic

VRPs are distinguished following Fleckenstein et al. (2021). Accordingly, integrated

approaches exceed basic feasibility control by (at least) allowing feasible customer

requests to be rejected if the expected contribution to the objective is negative.

5.3.1 Anticipatory learning-based approaches

In this section, learning-based solution approaches for stochastic dynamic VRPs

with stochastic requests are elaborated.

Pure online tour-planning

To solve stochastic dynamic VRPs with unknown requests, VFA approaches can be

applied to derive tour-planning decisions. Recent publications on solving stochastic

dynamic VRPs with stochastic customer requests as considered in typical i-DMVRPs

are Ulmer (2017), Chapters 6-12, Ulmer et al. (2018), and Ulmer (2019). These

publications present a variety of VFA approaches to take tour-planning decisions

that will match as many customer requests as possible. In these approaches, a VFA

is learned offline over a large number of simulation runs. The learned VFAs are then

applied to assess post-decision values in an online decision period in order to take

good tour-planning decisions.

Integrated approaches

Ulmer et al. (2019) combine an offline VFA with a simulation-based online rollout
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algorithm to solve a dynamic VRP with stochastic service requests for a single

vehicle. They learn a look-up table offline, which is generated by approximate value

iteration. It approximates state values based on temporal state information. The

granularity of the look-up table adjusts dynamically during the learning process.

For online decision making, this look-up table is combined with a simulation-based

online rollout algorithm considering spatial information of potential post-decision

states. Soeffker et al. (2017) also rely on such a dynamic look-up table and combine

it with an approximate value iteration algorithm. Their overall target is to evaluate the

effect of dynamic demand management on customer discrimination and to introduce

a measure of fairness to be maximized. This measure aims on equalizing the chances

of being accepted among the customer requests originating from different parts of

the service area. However, look-up table based approaches cannot be implemented

efficiently for realistic sized i-DMVRP applications. Considering multiple vehicles

with multiple tours and offering multiple delivery options to incoming customer

requests results in very large state and action spaces. Thus, even if a state space

aggregation is applied, a respective look-up table is of intractable size.

In a different set of publications, researchers consider a pricing component within

their integrated approaches. Ulmer (2020a) solves a dynamic tour-planning and

pricing problem for an SDD problem setting by developing an anticipatory pricing

and routing policy that is based on a sophisticated VFA approach and upstream

policy learning. He is the first to present a VFA approach for a fleet of vehicles,

which he does by separating the value function with regard to different vehicles. He

includes the tour-plans of the vehicles in the state definition as introduced in Ulmer

et al. (2020). To solve the pricing problem, the author relies on an opportunity cost

estimate for different delivery options from comparing approximated state values. If

the respective opportunity cost estimates are low, the corresponding delivery options

are offered for budget prices derived from the upstream policy learning. Those prices

represent the typical base prices of the delivery options. Only in cases where the

approximated opportunity cost exceeds the budget price, the corresponding delivery

options are priced differently. Then, the prices are set to equal the opportunity cost
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estimate. Therefore, this procedure ensures that only requests with a non-negative

contribution to the overall objective are accepted. Tour-planning decisions are

determined by a simple, non-anticipatory insertion heuristic.

In the same set of publications, Prokhorchuk et al. (2019) introduce a stochastic

dynamic pricing and routing problem for an SDD problem setting with stochastic

travel times. They also base decision making on approximating opportunity cost and

amend the approach of Ulmer (2020a) by stochastic travel times, a different tour-

planning heuristic that accounts for stochastic travel times, and by using standard

VFA procedures.

A relatively new set of publications addresses integrated approaches by relying on

offline reinforcement learning. More precisely, the authors apply deep-Q-learning

algorithms to derive respective demand-management decisions. Chen et al. (2019)

maximize the number of accepted customer requests in a setting where SDD ful-

fillment is conducted with delivery vehicles and drones. In Chen et al. (2020),

fulfillment is only conducted by delivery vehicles, but the problem’s setting is

amended by the aspect of fairness within accepting/rejecting customer requests for

SDD as in Soeffker et al. (2017).

5.3.2 Anticipatory non-learning-based approaches

In this section, non-learning-based solution approaches for stochastic dynamic VRPs

with stochastic requests are discussed.

Pure online tour planning

Bent and Van Hentenryck (2004) introduce a multiple scenario approach to opti-

mize tour-planning decisions in dynamic VRPs with stochastic customer requests.

They aim at maximizing the number of accepted customer requests by constantly

generating multiple tour plans based on sampled customer requests. From those

tour plans, a distinguished tour plan is chosen by a so-called consensus function and

frequently updated. It serves as input for taking decisions on which customers to

serve next and by which vehicle. In Bent and Van Hentenryck (2007), the authors
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enhance the previous approach by including waiting and relocating strategies. With

this approach, not only tour-planning decisions, e.g., a vehicle’s next destination, but

also dispatching decisions, i.e., which orders to allocate to which tours, are taken.

Integrated approaches

Among the considered integrated, non-learning-based approaches, the most relevant

group of papers is based on the idea of the multiple scenario approach by Bent and

Van Hentenryck (2004), as described above:

Azi et al. (2012) introduce an initial demand-management approach to a dynamic

VRP with stochastic requests. They consider a profit maximization problem in

determining which requests to accept and which to reject. To solve the tour-planning

problem, they apply an adaptive large neighborhood search to scenarios that, like the

ones in Bent and Van Hentenryck (2004), include already accepted customer orders

and sampled customer requests. What is new about their approach is that they then

compare scenario solutions with and without the current customer request and define

the difference in solution quality as a scenario-specific opportunity value. If the

sum of all scenario-specific opportunity values is positive, they accept the request.

This approach delivers an estimate of whether or not the acceptance of a customer

request yields a positive contribution to the overall objective, taking potential future

developments into account.

Voccia et al. (2019) also adapt the ideas from Bent and Van Hentenryck (2004)

and Bent and Van Hentenryck (2007). They aim at maximizing the number of

feasibly inserted customer requests for a stochastic dynamic VRP with time windows

and stochastic requests. The customer requests that are not inserted in a feasible

solution are outsourced to a 3PL, which comes with a penalty cost per outsourced

order. Their approach yields comprehensive tour-planning decisions including

the set of orders allocated, vehicle assignment, as well as a schedule for each

tour. Like Bent and Van Hentenryck (2007), they consider future, not yet realized

customer requests by applying a sample-scenario approach. Thereby, they solve a

multi-trip team orienteering problem with a standard implementation of a variable
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neighborhood search. Afterwards, the scenario solutions are used to construct

anticipatory tour plans. Compared to Bent and Van Hentenryck (2007), they apply an

enhanced consensus function that chooses partial plans according to their appearance

frequency in the scenario solutions. Also, they include waiting strategies to improve

the anticipatory quality of their solutions.

Côté et al. (2021) build on the approach by Voccia et al. (2019) and amend it by a

regret heuristic, a different consensus function, and a specifically tailored branch-

and-regret method. Further, they also consider settings in which pre-emptive depot

returns are allowed.

Finally, there is another research stream dealing with OPs considering integrated

approaches. Klapp et al. (2018) introduce a dynamic dispatch waves problem

for an SDD problem setting in which decisions on which customer orders can be

allocated to tours are taken while still unknown customer requests from known

potential locations occur. They introduce an MIP based on the rolling-horizon

solution approach, discuss policies calculated beforehand (called a priori policies),

and enhance these policies by dynamically rolling them out during the joint booking

and service horizon. With this approach, the authors aim at minimizing penalty

costs for not-served orders. In Klapp et al. (2020), the authors extend this approach

by introducing instant accept/reject decisions. Thereby, they explicitly model a

dynamic programming model resembling the state definition in Ulmer et al. (2020),

but maintaining tour plans that include anticipated customer requests in the state

definition. Here, they take accept/reject decisions according to expected penalty

costs derived from different policies. Both approaches aim at solving SDD problem

settings with known customer locations served by a single vehicle only. Thus, the

approaches cannot be transferred to realistic sized OPs in LMD without greater

effort.
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5.4 Tabular overview and identification of research

gaps

In this section, the findings from analyzing the literature addressing i-DMVRPs in

LMD are summarized and conclusions regarding essential research gaps are derived.

Tabular overview

Table 5.2 summarizes the literature that addresses anticipatory solution approaches

for DJPs and OPs in LMD as described in Sections 5.2 and 5.3, as well as literature

that deals with i-DMVRPs analytically. The second column shows for which appli-

cations, i.e., DJPs or OPs, a solution approach is designed. In the next two columns,

it is indicated whether an approach involves anticipatory demand management (DM)

(✓) and/or tour planning (TP) (✓) or not (✗). The fourth column shows whether the

addressed anticipation is analytical, learning-based (✓), or non-learning-based (✗).

The fifth column summarizes the objectives addressed by an approach. The observed

objectives are the maximization of revenue (rev), profit (profit), customer request

acceptances (accept), fairness (fair), coverage of the service area (serv), the minimiza-

tion of cost (cost), or a (hierarchical) combination of those objectives. Approaches

that aim at minimizing the number of rejected customer requests are counted as

those maximizing customer request acceptances. The last column shows whether

opportunity cost are considered explicitly and, if so, whether they are considered

comprehensively, accounting for displaced acceptances and variable fulfillment cost

(✓), or whether the displacement of expected revenue (DPC) or variable fulfillment

cost (MCTS) are considered only. In the following, first, conclusions regarding the

relevant literature on DJPs are summarized. Then, conclusions regarding the relevant

literature on OPs are summarized.

Conclusion regarding the relevant literature on DJPs

Concerning the literature on DJPs in LMD, it becomes clear that solution ap-

1consider penalty cost but no fulfillment cost
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Authors Appli- Anticipatory Learning Objective OC
cation DM TP based

Asdemir et al. (2009) DJP ✓ ✗ analytical rev DPC
Lebedev et al. (2021) DJP ✓ ✗ analytical prof ✓

Dumouchelle et al. (2021) DJP ✓ ✗ ✓ profit -
Koch and Klein (2020) DJP ✓ ✗ ✓ profit ✓

Lang et al. (2021a) DJP ✓ ✗ ✓ rev DPC
Lang et al. (2021b) DJP ✓ ✗ ✓ rev DPC

Lebedev et al. (2020) DJP ✓ ✗ ✓ profit -
Ulmer and Thomas (2020) DJP ✓ ✗ ✓ rev -
Yang and Strauss (2017) DJP ✓ ✗ ✓ profit ✓
Vinsensius et al. (2020) DJP ✓ ✗ ✓ cost MCTS
Angelelli et al. (2021) DJP ✓ ✗ ✗ profit ✓

Campbell and Savelsbergh (2005) DJP ✓ ✗ ✗ profit ✓
Giallombardo et al. (2020) DJP ✓ ✗ ✗ profit -

Klein et al. (2018) DJP ✓ ✗ ✗ profit ✓
Mackert (2019) DJP ✓ ✗ ✗ profit ✓

Strauss et al. (2021) DJP ✓ ✗ ✗ profit ✓
Yang et al. (2016) DJP ✓ ✗ ✗ profit MCTS
Chen et al. (2019) OP ✗ ✓ ✓ accept -
Chen et al. (2020) OP ✗ ✓ ✓ accept&fair -

Ulmer (2020b) OP ✗ ✓ ✓ accept -
Ulmer et al. (2018) OP ✗ ✓ ✓ accept -
Ulmer et al. (2019) OP ✗ ✓ ✓ accept -

Azi et al. (2012) OP ✗ ✓ ✗ profit -
Côté et al. (2021) OP ✗ ✓ ✗ accept&cost -

Klapp et al. (2018) OP ✗ ✓ ✗ cost&serv -
Klapp et al. (2020) OP ✗ ✓ ✗ profit -
Voccia et al. (2019) OP ✗ ✓ ✗ cost -

Prokhorchuk et al. (2019) OP ✓ ✗ ✓ rev&cost1 DPC
Soeffker et al. (2017) OP ✓ ✗ ✓ accept&fair -

Ulmer (2020a) OP ✓ ✗ ✓ rev DPC

Table 5.2: Anticipatory solution approaches for i-DMVRPs in LMD

proaches exist for a wide range of problem settings and that the underlying demand-

management and tour-planning problems are tackled with a variety of different,

learning-based and non-learning-based procedures. By definition, in DJPs, the tour-

planning component is a static one, such that anticipation is only required in solving

the demand-management subproblem. Most approaches thereby aim at optimizing

the overall profit and follow the decomposed approach described in Section 1.3, for

which a valid approximation of opportunity cost is essential.

However, only a limited number of works contains attempts to formally define and an-

alyze opportunity cost in the context of i-DMVRPs. Furthermore, existing definitions

are not consistent in terms of generality and scope. Some works provide definitions

in the traditional sense. For example, the definitions by Campbell and Savelsbergh

(2005) and Lang et al. (2021a) only incorporate the cost of displacements of future
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customers. On the contrary, some authors suggest that there is another component of

opportunity cost in i-DMVRPs to consider besides displacement cost. For example,

according to Klein et al. (2018), opportunity cost quantifies the “[. . . ] ’consequences’

concerning potential future requests and the resulting routing cost [. . . ]”. Further,

Yang et al. (2016) and Koch and Klein (2020) state that the lost profits of potential

future orders as well as final delivery costs have to be anticipated when approximat-

ing opportunity cost. Vinsensius et al. (2020) use the term ’opportunity cost’ in the

traditional sense, i.e., referring only to displacement cost, and introduce the broader

term ’marginal fulfillment cost’ for the sum of displacement cost and additional

delivery cost, but then only consider the latter in their optimization approach. The

most extensive, but still not unified definitions of opportunity cost for i-DMVRPs is

provided by Yang and Strauss (2017), Mackert (2019), and Strauss et al. (2021). All

explicitly highlight that opportunity cost comprises two components, one capturing

displacement of future revenue and one capturing variable fulfillment cost.

Conclusion regarding the relevant literature on OPs

Concerning the literature on OPs in LMD, anticipation can be applied to either the

demand-management problem, the tour-planning problem, or both. From Table 5.2 it

can be conducted that there is no approach that combines anticipatory demand man-

agement with anticipatory tour planning. There are only approaches that address only

one in an anticipatory manner and the other one myopically. Among the approaches

that address anticipatory tour planning of which demand-management decisions are

an implicit result, there exist learning-based and non-learning-based approaches.

Among the approaches that apply explicit anticipatory demand management but base

that on myopic tour planning, there are only learning-based approaches. Generally,

most approaches do not aim at maximizing the overall profit. Instead, the existing

approaches rather focus on maximizing the number of acceptances or revenue, ne-

glecting fulfillment cost, or focus on cost-optimization, neglecting displacement of

revenue.

Further research gaps arise regarding the consideration of opportunity cost. There is
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no approach that tackles the demand-management problem by explicitly considering

an opportunity cost estimate that considers displacement of revenue and changes

of fulfillment cost. Only the approaches by Ulmer (2020a) and Prokhorchuk et al.

(2019) explicitly consider opportunity cost. They define it as a value function dif-

ference without further elaborating on its structure and then derive an opportunity

cost estimate as a basis for decision making that only incorporates the displacement

of expected revenue. Additionally, to best of the author’s knowledge there exists no

research tackling OPs in LMD analytically.

Resulting research gaps

From the findings from Section 5.1 and the previous conclusions, the following

research gaps are identified:

- There is no explicit but unified MDP model for i-DMVRPs with disjoint and

overlapping booking and service horizons.

- There is no MDP model for i-DMVRPs, neither for DJPs nor for OPs, that

explicitly accounts for the mutual integration of demand-management and

tour-planning decisions.

- Although it has been identified in the literature that the concept of opportu-

nity cost for i-DMVRPs differs from the original understanding, there is no

unified definition of the same. Further, for OPs, the potential of optimizing

demand-management decisions based on opportunity cost estimates has not

been exploited at all.

- In the related literature, there is no analytical discussion on i-DMVRP models

that also address OPs.

- While there is a wide range of solution approaches that tackle DJPs, the

existing solution approaches for OPs are not sufficiently holistic and evolved

to integrate anticipation in demand management and tour planning at the

same time. Additionally, literature proposing approaches that aim at profit
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optimization and thereby consider revenue and cost at the same time, is scarce

for OPs.

In the following, those research gaps are addressed as follows: first, in Chapter

6, a unified but explicit MDP modeling framework for both discussed types of

i-DMVRPs, i.e., DJPs and OPs, is introduced. This modeling framework explicitly

accounts for the integration of demand-management and tour-planning decisions. It

resembles the approach from Ulmer et al. (2020), i.e., to incorporate (tentative) tour

plans in the state definition, and the approach from Fleckenstein et al. (2021) to keep

the objective function generic and incorporate both types of decisions. However,

opposed to Fleckenstein et al. (2021) and Ulmer et al. (2020), the model introduced in

Chapter 6 explicitly formalizes the two types of decisions, i.e., demand-management

and tour-planning decisions and further emphasizes their mutual interdependency in

a respective value function formulation.

Second, in Chapters 7 to 8 (Part IV) of this dissertation, the traditional concept of

opportunity cost is amended to account for displacement of revenue and variable

fulfillment cost at the same time. It is a comprehensive concept that is valid for DJPs

and OPs. Then, four central properties of the newly derived concept of opportunity

cost are analytically discussed and proven, and implications for i-DMVRP solution

approaches are derived. Opposed to the discussion of Asdemir et al. (2009), the newly

derived concept accounts for displaced revenue and variable fulfillment cost and,

contrary to the discussion of Lebedev et al. (2021), the insights from Part IV are valid

for DJPs and OPs. Moreover, Lebedev et al. (2021) only derive insights regarding

the monotonicity of optimal prices but do not explicitly address the characteristics of

the value function itself. This research gap is also closed in Part IV.

Third, in Chapters 9 to 11 (Part V) of this dissertation, a new solution approach for

an SDD problem setting is presented that accounts for anticipation in the demand-

management component and in the tour-planning component at the same time. It is

the first solution approach for OPs that considers anticipation in both components.

It incorporates non-learning-based anticipation and involves a newly developed

demand-management decomposition to approximate opportunity cost with the com-
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prehensive objective to maximize the overall profit of an SDD provider. Thus, it

closes the last of the previously mentioned research gaps.

Table 5.3 classifies Part IV and V according to the literature classification scheme in

Table 5.2.

Appli- Anticipatory Learning Objective OC
cation DM TP based

Part IV DJP & OP ✓ ✓ analytical p ✓
Part V OP ✓ ✓ ✗ p ✓

Table 5.3: Classification of Parts IV and V with regard to the analyzed literature
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6. Modeling i-DMVRPs

In this chapter, MDP models for DJPs and OPs are presented. Among all the

coexisting modeling approaches in the literature, this work aims to provide a generic

model that is valid for the majority of DJP and OP business models, but is explicit

enough for the reader to immediately get an idea of the underlying process. Further,

the presented OP model is a generalization of the DJP model such that one modeling

approach covers both types of i-DMVRPs. Additionally, although not part of the

MDP model itself, the corresponding value functions are presented as optimality

equations/solution approaches (Powell et al. (2012), Chapter 3, Puterman (2014),

Chapter 4.

First, some general notation of the previously discussed problem components is intro-

duced. Then, an MDP model for DJPs is presented. Afterwards, two generalizations

for OPs are presented. The first one is the most intuitive modeling approach for OPs,

i.e., the corresponding value function strictly maps the underlying business process.

Therefore it is referred to by natural model. However, as shown later in Section 8.4,

important opportunity cost properties do not hold for this modeling approach. This

is why the second modeling approach is presented, for which these properties hold.

It is a modification of the first, and thus, in the following it is referred to by modified

model. Then, the equivalency of the two models is proven, showing that, by model

transformation, it is possible to exploit all opportunity cost properties discussed later.

6.1 General notation

In this section, the general notation for the i-DMVRP components described in Chap-

ter 4 is introduced. At the end of this section, a tabular overview of the introduced
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notation is provided in Table 6.2.

Customer request arrivals

An incoming customer request and the customer order it potentially turns into is

denoted by c. It is further described by its location (x,y)c, its revenue rc, and its

arrival rate λc(t). Without loss of generality, it is assumed that multiple customer

requests can arrive from the same location with the same revenue, such that λc(t) is

independent of whether a customer request c has already realized before or not. The

underlying assumption is that a request c only defines location, revenue and choice

behavior, instead of referring to a particular person. Thus, c can refer to different

persons from the same location, i.e., from the same house, street, or block, with the

same socio-economic characteristics. To differ such requests from each other, every

incoming request is assigned its request time treq
c which further plays an important

role in OPs. The set of all potential customer requests, more precisely, the set of all

potential combinations of location, revenue and choice parameters, is denoted by C.

Fulfillment options

As described in Chapter 4, DJPs and OPs differ in the fulfillment options involved.

The fulfillment options of DJPs are delivery time windows with a start time in the

future. The fulfillment options of OPs are delivery time spans that immediately start

after a customer request’s conversion to a customer order.

DJPs – Fulfillment options of DJPs are referred to by indices in ascending

order according to their start time. The corresponding index set of fulfillment

options is denoted by I with elements 0,1, ..., I if there are I fulfillment

options plus a fictive no-purchase option i = 0. The start time of the fulfill-

ment option with index i, denoted by tbeg(i), is earlier than the start time

of fulfillment option i′, denoted by tbeg(i′), for i < i′. The length of a time

window is denoted by l(i). When a customer request c turns into a customer

order by choosing a fulfillment option i ̸= 0, it is assigned a corresponding

delivery start time, tbeg
c = tbeg(i), as well as a corresponding delivery deadline
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tdue
c = tbeg

c + l(i).

OPs – Fulfillment options of OPs are also referred to by indices in ascending

order but according to their length. Thus, the length of the fulfillment option

with index i, denoted by l(i), is shorter than the length of fulfillment option i′,

denoted by l(i′), for i < i′. When a customer request c turns into a customer

order by choosing a fulfillment option i ̸= 0, its delivery time window starts

instantaneously, tbeg
c = treq

c and its delivery deadline is set to tdue
c = treq

c + l(i).

Offer sets and customer choice probabilities

Offer sets comprise a (sub-)set of available fulfillment options with assigned delivery

fees. The delivery fee that is assigned to delivery option i within a certain offer set is

denoted by ri. Among different offer sets, customers experience different utilities

for the offered fulfillment options. This results in varying choice probabilities for a

fulfillment option i depending on the offer set g, which are denoted by Pi(g). Table

6.1 illustratively shows a set of offer sets G with |G |= 9. Every g ∈ G is depicted in

a row with exemplary purchase probabilities. In the example, there are two different

fulfillment options {1,2} with l(1) < l(2), and two potential prices ri1, ri2 each,

with r11 > r12 > r21 > r22. The no-purchase probability for a certain offer set g is

denoted by P0(g) and equals 1−∑
I
i=1 Pi(g).

prices of fulfillment options choice probabilities
g i = 1 i = 2 P0 P1 P2 Σ

1 r12 r22 0.2 0.4 0.4 1
2 r12 r21 0.3 0.4 0.3 1
3 r12 not offered 0.4 0.6 0.0 1
4 r11 r22 0.3 0.2 0.5 1
5 r11 r21 0.4 0.2 0.4 1
6 r11 not offered 0.6 0.4 0.0 1
7 not offered r22 0.3 0.0 0.7 1
8 not offered r21 0.5 0.0 0.5 1
9 not offered not offered 1 0.0 0.0 1

Table 6.1: Exemplary offer sets
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Fulfillment operations

In the considered i-DMVRPs, during the service horizon, V homogeneous or non-

homogeneous delivery vehicles serve the customer orders outgoing from one or

more depots. The set of all delivery vehicles is denoted by V . For DJPs and OPs

that require depot returns, when a vehicle leaves a depot to serve customers, a tour

is planned. A tour is denoted by θ v for a vehicle v ∈ V and is defined by a start

time tstart and a set of loaded customer orders L = {c1,c2,c3, ...}. Further, to store

the order in which a given tour will reach customer locations, a set of tuples is

introduced, which assigns positions χci to customer orders ci ∈ L. This set is denoted

by X = {(c1,χc1),(c2,χc2),(c3,χc3), ...}. Hence, θ v = (tstart ,L,X). Accordingly,

the fields of the tuple of a given tour are referred to by tstart(θ v),L(θ v) and X(θ v).

Building block Notation Description

Customer
request
arrivals

c customer request/customer order
(x,y)c location of customer request c

rc revenue of customer request c
λc(t) (time-dependent) arrival rate of customer request c
treq
c request time of customer request c
C set of all potential customer requests

tbeg
c delivery start time of customer order c

tdue
c delivery deadline of customer order c

Fulfillment
options

i index referring to a certain fulfillment option
tbeg(i) beginning of fulfillment option with index i

l(i) length of fulfillment option with index i
I number of different potential fulfillment options

I = 0, ..., I index set to refer to fulfillment options

Offer
sets

G set of all potential offer sets
g certain offer set

ri(g) delivery fee of delivery option i in offer set g
Pi(g) probability that delivery option i is chosen

when offer set g is presented
P0(g) no-purchase probability when offer set g is presented

V number of delivery vehicles

Fulfillment
operations

V set of delivery vehicles
v index referring to a certain delivery vehicle

θ v tour of vehicle v
tstart(θ v) start time of tour θ v

L(θ v) set of customer orders loaded to tour θ v

X(θ v) set of positions of customer orders in tour θ v

Table 6.2: General notation for i-DVMRP modeling
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For OPs that do not require depot returns, tours do not have to be planned entirely

as the decision which customer orders to serve with which vehicle can be revised

continuously. Still, it is common to at least plan partial tours, also referred to by

trips. Regarding the notation, trips are treated as tours with the difference, that they

do not start in a depot. Instead, the customer order on the first position defines the

start location.

Fulfillment
operations

Request
arrival

Demand
management

decision

Customer
choice

Vehicle
routing
decision

Fulfillment
operations

Request
arrival

Stochastic
transition

Action I
Stochastic
transition

Action II
Deterministic

transition
Stochastic
transition

Overlapping
horizons (OP)

Disjoint
horizons (DJP)

Decision
epoch
State

Reward I Reward II

t t +1
st st+1

Figure 6.1: Overview of the MDP model of the i-DMVRP booking and fulfillment process

Generally, the MDP of an i-DMVRPs works as follows: in every decision epoch with

a customer request arrival, the provider has to take an action, under consideration

of the current state of the system. More precisely, to determine the feasibility of

potential actions, the provider evaluates the customer orders already confirmed

though not yet being delivered. For OPs, the provider additionally evaluates the

current state of the delivery operations. The action then taken yields a transition

as well as a reward in that a customer chooses a fulfillment option from the set

of offered fulfillment options (including the no-purchase option). In OPs, this

triggers the execution of the corresponding tour-planning decision. According to the

transition, rewards follow: if a customer chooses to buy, they pay a delivery fee and

the shopping basket’s revenue realizes. Further, tour cost realize for every vehicle

movement which happen in parallel to the booking process for OPs and after the

booking process’ end for DJPs. The system transitions to the next state, which differs

from the previous one, potentially by the newly accepted customer order. In OPs it

further differs by new tours/trips and the delivery execution’s progress up to the next

decision epoch. The objective that the provider seeks in their decision making is to

maximize the total contribution margin accrued over all decision epochs. Figure 6.1
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shows how these introduced MDP model components integrate into the booking and

fulfillment process of DJPs and OPs.

In the following Sections 6.2 and 6.3, decision epoch, state, action, transition,

rewards, objective, and additionally the corresponding value functions are described

in detail.

6.2 MDP model for i-DMVRPs with disjoint booking

and service horizons

In the following, the MDP model components of DJPs are described.

Decision epochs

In the considered problems, the stages of the MDP, i.e., the decision epochs are

either modeled over (constant) time steps, or over potentially incoming customer

requests. The latter equals MDP modeling with non-constant time steps (Puterman

(2014), Chapter 2). However, time plays an important role in i-DMVRPs: requesting

customers are offered delivery time windows or delivery time spans which have to

be matched when solving the underlying tour-planning problem such that travel and

service times have to be calculated. Thus, in this dissertation, an MDP model over

constant time steps, denoted by t = 1, ...,T , is chosen. Without loss of generality and

as standard in demand-management literature, these time steps are assumed to be

sufficiently small that no more than one customer request arrives per decision epoch.

State

The state st of the beginning of decision epoch t stores information about all con-

firmed but not yet being served customer orders. The set of those orders is denoted by

Ct . For every order c ∈ Ct , it contains all available information stored in a quadruple:

((x,y)c, t
req
c , tbeg

c , tdue
c ). All possible combinations of customer requests c ∈C, with

all possible arrival times and potentially chosen fulfillment options define the state

space S , with st ∈S .
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Action

In the DJPs under consideration, if a customer request arrives, action at corresponds

to a demand-management decision. It corresponds to selecting which offer set to

present to the current customer request, denoted by ct . The offer set presented at

decision epoch t is then denoted by gt . If no customer request arrives, no action is

taken. Thus, the action is formally defined as:

at = gt for t = 1, ...,T, if there is a customer request ct (6.1)

The corresponding action space depends on the current state of the system and the

current customer request and is denoted by A (st ,ct). For DJPs, it corresponds to

the offer sets which only contain feasible fulfillment options given state st and the

current customer request ct . This set of feasible offer sets is denoted by G (st ,ct).

Thus, the action space of the MDP model for DJPs is defined as A (st ,ct) = G (st ,ct)

with at ∈ A (st ,ct). (It has to be noted that, when solving DJPs, theoretically, no

feasibility check has to be made during the booking process. As will be seen later,

in theory, the optimal solution is found by solving the recursive value function.

Thereby, infeasibilities are implicitly considered in the boundary condition. Con-

sequently, an infeasible VRP and the corresponding costs are passed through to

the state where they arise and, thus, a corresponding decision is not taken. Con-

sequently, the action space always equals the set of all offer sets for every state,

i.e., ∀st ∈S ,ct ∈C : G (st ,ct) = G . However, in practice, this optimal solution is

intractable such that heuristic solution approaches are applied. Then, feasibility

checks can be useful for every demand-management decision and the action space

reduces from all offer sets G to all feasible offer sets G (st ,ct).)

Transition

As Figure 6.1 shows, the transition model of DJPs only comprises (stochastic)

demand-management-related transitions. Figure 6.2 is a schematic representation of

such transitions involved in a DJP. It shows the temporal relation between two con-
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secutive states with their respective transitions. Thereby, the dashed lines represent

stochastic outcomes and the solid lines represent deterministic outcomes.

As Figure 6.2 shows, the stochastic event of whether there is a new customer request

arriving or not can be observed at the beginning of a decision epoch t with state

st . If there is a customer request ct and a demand-management decision is made,

a transition, namely the customer choice i′, follows. This is depicted in the upper

stream of Figure 6.2. The transition is stochastic, and potential outcomes i′ can

be observed with known probabilities Pi′(gt). This stochastic transition defines

whether the state, more precisely, the state component Ct , alters from one state st

to a successor state st+1 by adding a new customer order ct . If no customer request

is observed in decision epoch t, no decision needs to be made and no respective

transition follows. This is depicted in the lower stream of Figure 6.2. The transitions

of a DJP can be formalized as follows:

Ct+1 =



Ct , if there is no customer request observed in t,

or if the incoming request does not turn into

a customer order with probability P0(gt)

(Ct ∪{ct}), if there is a customer request in t and it

turns into a customer order with probability

∑
I
i=1 Pi(gt)

(6.2)

Request
arrival

Demand
management

decision

Customer
choice i′

st st+1
No request

arrival

Stochastic transitions

Figure 6.2: Schematic representation of the transitions in a DJP

Rewards

In DJPs, rewards are attributed to demand-management decisions, or more precisely,
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to the (stochastic) customer choice that results from a demand-management decision.

With probability ∑
I
i=1 Pi(gt) the customer request turns into a customer order and

the resulting reward is positive. It is composed of the revenue rct of the shopping

basket of customer request ct plus the delivery fee ri(gt) resulting from a respective

customer choice for a fulfillment option i, determined by the presented offer set gt .

Objective

The objective of the considered DJPs is maximizing the contribution margin across

all decision epochs. This equals maximizing the sum of the revenues of all confirmed

customer orders minus the final fulfillment cost of the corresponding fulfillment

operations that realize after the booking horizon’s end in decision epoch T +1. The

latter is referred to by logistics related rewards at decision epoch T +1, denoted by

rl
T+1 Thus, the objective can be formalized as:

max
T

∑
t=1

(rct + ri′(gt))+ rl
T+1 (6.3)

Value function

The above described objective of DJPs can be represented by its value function that

equals the well-known Bellman equation. As the name suggests, it captures the value

of being in a given state and can be applied to find an optimal policy for an MDP

model (Powell et al. (2012), Chapter 3). The value function for the described model

of DJPs is defined as:

V (st) = ∑
ct∈C

λct (t) · max
gt∈G (st ,ct)

∑
i∈gt

Pi(gt) ·
[
ri(gt)+ ri

ct
+V (st+1 | st ,ct , i)

]
+
(
1− ∑

ct∈C
λct (t)

)
·V (st+1 | st),

(6.4)

with boundary condition:

V (sT+1) = rl
T+1. (6.5)

The first line of equation (6.4) reflects the value and decision making in decision

epoch t when a customer requests ct arrives. The second line reflects the respective
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value when no customer request arrives. Thus, for a certain arriving customer request

ct , the provider derives a corresponding demand-management decision by solving:

max
gt∈G (st ,ct)

(·). (6.6)

Equation (6.5) defines the salvage value (Puterman (2014), Chapter 2) and equals the

negative cost of the final tour-planning problem rl
T+1. Thus, it equals the negative of

the optimal objective value of a (capacitated) VRP defined on a complete graph with

nodes for all customer orders in CT+1. This tour-planning problem is referred to by

V RPCT+1 . The respective objective value is further referred to by the cost function

C(V RPCT+1). In case there is no feasible solution to the final tour-planning problem,

the corresponding cost is set to infinity. The boundary condition can hence be defined

more precisely as:

V (sT+1) = rl
T+1 =

−∞ if V RPCT+1 has no feasible solution

−C(V RPCT+1) else
(6.7)

In the following, an MIP for a basic VRP of the fulfillment operations of a DJP is

stated. For the sake of generality, it is kept as simple as possible. It therefore does

not take into account any capacity or time constraints other than the typical delivery

time window constraints but can be generalized accordingly if needed. Delivery time

windows are assumed to be hard constraints. Consequently, if it is not possible to

serve all customer orders within their individual delivery time windows, there is no

feasible solution to the VRP. Further, it is assumed that a fleet of V homogeneous

vehicles operates the fulfillment execution with one tour each, starting and ending

at a single depot. Thereby, the time needed travelling from customer c to customer

c′ is denoted by τcc′ and without loss of generality it is assumed that it contains the

service time of serving customer c′. The related travel cost are represented by ζcc′ .

A fictive node denoted by c0 represents the depot. M denotes a sufficiently large

number. For ease of readability, in the following model, index T + 1 of CT+1 is

omitted.
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The model includes two types of decision variables. A binary one, denoted by xv
cc′ ,

defining the order in which vehicle v visits customer orders. A positive real valued

one, denoted by av
c′ , defining the time vehicle v serves customer c′:

xv
cc′ =


1 if customer c′ is served directly after cus-

tomer c by vehicle v

0 else

∀c,c′ ∈ C ∪{c0},v ∈ V

av
c′ ∈ R+ ∀c′ ∈ C ∪{c0},v ∈ V

The VRP to determine the salvage value of the MDP model of DJPs can be formu-

lated as follows (Toth and Vigo (2014), Chapter 1) and is briefly described below:

C(V RPC ) = min ∑
v∈V

∑
c∈C∪{c0}

∑
c′∈C∪{c0}

xv
cc′ ·ζcc′ (6.8)

s.t.

∑
v∈V

∑
c∈C∪{c0}

xv
cc′ = 1 ∀c′ ∈ C (6.9)

tbeg
c′ ≤ av

c′ +(1− ∑
c∈C∪{c0}

xv
cc′) ·M ∀v ∈ V ,c′ ∈ C (6.10)

av
c′ ≤ tdue

c′ +(1− ∑
c∈C∪{c0}

xv
cc′) ·M ∀v ∈ V ,c′ ∈ C (6.11)

∑
{a0}

av
c + xv

cc′ · τcc′ ≤ av
c′ +(1− xv

cc′) ·M ∀v ∈ V ,c ∈ C ∪{c0},c′ ∈ C (6.12)

∑
c∈C∪{c0}

xv
cc′ = ∑

c∈C∪{c0}
xv

cc′ ∀v ∈ V ,c′ ∈ C (6.13)

∑
c′∈C∪{c0}

xv
c0c′ ≤ 1 ∀v ∈ V (6.14)

∑
c′∈C

∑
v∈V

xv
c0c′ ≤ V (6.15)

∑
c′∈C

xv+1
c0c′ ≤ ∑

c′∈C
xv

c0c′ ∀v ∈ V \{V} (6.16)

The objective function (6.8) minimizes the overall travel cost. Constraints (6.9)

ensure that all customer orders are being served. Constraints (6.10)-(6.12) are time

restrictions. They ensure that customer orders are served within their allotted time

95



CHAPTER 6. MODELING I-DMVRPS

window. Constraints (6.13) ensure flow conservation. Constraints (6.14) and (6.15)

ensure that the number of available vehicles is not exceeded. Constraints (6.16) are

symmetry breaking constraints.

6.3 MDP model for i-DMVRPs with overlapping book-

ing and service horizons

In this section, the MDP model of DJPs introduced in Section 6.2 is generalized

to an MDP model for OPs. In order for this section to be self-contained, there are

some duplications with Section 6.2. However, the respective descriptions are kept

short. Again, the description is accompanied by a schematic representation of the

underlying stochastic dynamic decision process.

6.3.1 Natural Model

Decision epochs

As in the MDP model for DJPs, decision epochs are modeled over constant time

steps t = 1, ...,T .

State

Due to the overlap of the booking and the service horizon in OPs and contrary to the

DJP model, two state components are required in the MDP model of OPs. The first

component is the set of confirmed and not yet being delivered customer orders as

in the MDP model for DJPs. It is also denoted by Ct . The second component is the

overall tour plan at decision epoch t, denoted by φt (see modelling of route-based

MDPs in Ulmer et al. (2020)). It contains the currently running tours θ v
t for every

vehicle v ∈ V as described in Chapter 6.1. If the vehicle v is idle in the depot it holds

that θ v
t = (). If the vehicle v is idle in a customer location it equals a tour that only
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consists of this customer order. Thus, the state is defined as:

st = (Ct ,φt) (6.17)

The corresponding state space needs to be adjusted as well, such that all possible

combinations of customer requests from the registered customer pool, with all possi-

ble arrival and due times and with all possible tour plans define the state space S ,

with st ∈S .

Action

While in DJPs actions are only taken when there is a customer request ct , for OPs,

actions have to be taken in any decision epoch. Thereby, actions in decision epochs

in which a customer request arrives are differentiated from those in decision epochs

in which no customer request arrives. In the former case, two types of decisions have

to be made integratively, namely demand-management and tour-planning decisions.

In the latter case, only tour-planning decisions have to be made:

Customer request – If in a decision epoch t a customer request ct arrives, a

demand-management decision has to be made by selecting which offer set

g ∈ G to present the requesting customer, as in the DJP model. Again, the

offer set presented at decision epoch t is denoted by gt . In OPs, tour-planning

decisions have to be made additionally. More precisely, for every delivery

option i ∈ gt , potential tour-planning decisions are required. Such a tour-

planning decision defines the subsequent state’s possible overall tour plan

which depends on the yet unknown customer choice for a delivery option i.

Therefore, φ i
t are introduced for i ∈ gt as the tour plans that will be executed if

the customer chooses delivery option i. These tour plans are then included in

the action definition as a second component.

No customer request – If in a decision epoch t no customer request arrives, the

corresponding action only comprises tour-planning decisions φ 0
t+1 without a

new customer request.
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Accordingly, the action at of decision epoch t has two distinct cases:

at =

(gt ,(φ
i
t+1)i∈gt ) if there is a customer request at t

φ 0
t+1 else

(6.18)

Correspondingly, the action space when being in state st and observing customer

request ct or observing no customer request, denoted by A (st ,ct), or A (st) respec-

tively, is also defined for the above-mentioned two distinct cases:

Customer request – For the first case, if there is a customer request in t, the

action space comprises two components. The first component equals the action

space of the MDP model for DJPs. It is denoted by G (st ,ct) and contains all

feasible offer sets given state st and customer ct . (It has to be noted that, unlike

for DJPs, for OPs a feasibility check is required to that point. Tour-planning

decisions that result form a demand-management decisions and the correspond-

ing customer choice are executed during the decision process. Thus, infeasible

tour-planning decisions cannot be defined and hence also demand-management

decisions that necessarily yield infeasible tour-planning decisions cannot be

defined either.) The other component, denoted by (Φi
t+1(st ,ct))i∈G (st ,ct), de-

fines all potential tour plans that are feasible given the current state st , and

assuming that the current customer request ct turns into a customer order with

a deadline according to delivery option i ∈ G (st ,ct). This could also comprise

the decision that no new tour will start. Then, the tour plan does not change.

No customer request – If there is no customer request in t, the action space

accordingly comprises all feasible tour plans for the set of confirmed customers

Ct . In this case, the set of all potential tour plans is denoted by Φ0
t+1(st).

Consequently,

A (st ,ct) =

G (st ,ct),(Φ
i
t+1(st ,ct))i∈G (st ,ct) if there is a customer request ct

Φ0
t+1(st) else.

(6.19)
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It has to be noted that the different types of OPs presented in Chapter 4.2 only differ

in their corresponding action spaces. For example, for OPs that do not require depot

returns, all tours can constantly be revised by inserting newly arrived customer orders.

For OPs that require depot returns, the tour-planning component of the action space

comprises all tours currently running at t and potentially new tours. New tours can

be planned for vehicles that are standing idle at the depot, i.e., vehicles for which

θ v
t = () holds, or vehicles that are returning to the depot during the decision epoch.

If running tours are to be revised, a preemptive depot return has to be scheduled first.

Transition

The transition model of OPs comprises demand-management-related and tour-

planning-related transitions, contrary to DJPs in which only demand management-

related transitions have to be considered. Figure 6.3 is a schematic representation of

the transitions occuring in OPs, with dashed lines representing stochastic outcomes

and solid lines representing deterministic outcomes. Again, at the beginning of a

decision epoch t with state st the stochastic event of whether there is a new customer

request ct arriving or not can be observed. The resulting transitions differ accordingly.

Request
arrival

Integrated
decision

Customer
choice i′

Fulfillment
operations

st st+1
No request

arrival

Tour-
planning
decision

Fulfillment
operations

Stochastic transitions Deterministic transitions

Figure 6.3: Schematic representation of the transitions in an OP

Customer request – If there is a request ct , integrated demand-management

and tour-planning decisions are made and a transition, namely the customer

choice i′ follows. As in DJPs, this is depicted in the upper stream of Figure

6.3. This transition is stochastic, and potential outcomes can be observed with
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known probability Pi′(gt). Again, it defines whether the first state component,

namely the set of confirmed, yet still to be served customer orders Ct , alters

from one state st to a successor state st+1 by adding a new customer order.

Following this, in OPs, another transition realizes before the next state St+1.

This transition concerns the execution of deliveries. It strictly follows the

tour-planning decision φ i′
t+1 in at . Thereby, i′ = 0 represents the case that

the customer of customer request ct has rejected all offered delivery options

other than the fictive no-purchase option. If deterministic travel times are

assumed as depicted in Figure 6.3, this transition is purely deterministic.

Thus, in state st+1, φt+1 is set to the respective φ i′
t+1 of action at . If travel

times are stochastic, according probability distributions have to be considered

when modeling the corresponding transitions with respect to delivery times.

However, whether stochastic or deterministic, fulfillment execution-related

transitions also influence the first state component. For example, for OPs

that require depot returns, all customer orders from set Ct that are newly

loaded onto a vehicle according to the new tour-plan φt+1 are removed from

Ct . Therefore, the set Ψ(φt+1 | φt) is introduced, which contains all such

customer orders. For OPs that do not require depot returns, Ψ(φt+1 | φt) is the

set of customer orders that are newly allocated to tours and removed from Ct .

No customer request – If no customer request is observed in state st , only tour-

planning decisions are made. The corresponding deterministic or stochastic

transition of the delivery execution alters the system from state st to the

successor state st+1. This is depicted in the lower stream of Figure 6.3.

The transitions of the state components can be formalized as follows:

φt+1 = φ
i′
t+1 (6.20)
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Ct+1 =



Ct \Ψ(φt+1 | φt), if there is no customer re-

quest ct , or if the incom-

ing request ct does not

turn into a customer or-

der with probability P0
gt

(Ct ∪{ct})\Ψ(φt+1 | φt), if there is a customer re-

quest ct that turns into a

customer order with prob-

ability ∑
I
i=1 Pi

gt

(6.21)

Rewards

In OPs, some rewards are attributed to demand-management decisions, others to

tour-planning decisions. As in DJPs, the reward accrued with a demand-management

decision is positive with probability ∑
I
i=1 Pi(gt). It is composed of the shopping

basket revenue rct and the delivery fee ri(gt) resulting from a respective customer

choice for a fulfillment option i, determined by the presented offer set gt . The reward

accrued with a tour-planning decision is either zero or negative. Such rewards are

called logistics-related rewards of a transition from st to st+1, given the decision

φ i′
t+1 for the chosen delivery option i′. They are formally denoted by rl

φ i′
t+1

and equal

the sum of fulfillment cost that newly arises with a decision φ i′
t+1 and a respective

customer choice i′. In OPs that do not require depot returns such cost arises, for

example, from starting a trip to a certain customer location. In OPs that require depot

returns such cost arises, for example, from starting new tours in t +1.

Objective

The objective of solving the OPs under consideration is also to maximize the overall

profit. It can be formalized as follows:

max
T

∑
t=1

(rct + ri′(gt)+ rl
φ i′

t+1
) (6.22)
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Value function

The above described objective (6.22) of OPs can be represented by the corresponding

value function that equals the well-known Bellman equation. It captures the value

of being in a given state and can be applied to find an optimal policy for the MDP

model (Powell et al. 2012). Specified to the described model of OPs, the value func-

tion explicitly models the temporal mutual interdependencies of the two integrated

decisions, i.e., the demand-management decision and the tour-planning decision:

V (st) = ∑
ct∈C

λct (t) · max
gt∈G (st ,ct)(

∑
i∈gt

Pi(gt) ·
[
ri(gt)+ ri

ct
+ max

φ i
t+1∈Φi

t+1(st ,ct)i∈G (st ,ct )

(
rl

φ i
t+1

+V (st+1 | st ,φ
i
t+1)

)])
+
(
1− ∑

ct∈C
λct (t)

)
· max

φ 0
t+1∈Φ0

t+1(st)

(
rl

φ 0
t+1

+V (st+1 | st ,φ
0
t+1)

)
(6.23)

With boundary condition:

V (sT+1) = 0 (6.24)

The first two lines of equation (6.23) reflect the value and decision making in

decision epoch t, for when a customer request ct arrives. The third line reflects

the corresponding value and decision making for when no customer request arrives.

For a certain arriving customer request ct , the provider derives a corresponding

demand-management decision by solving

max
gt∈G (st ,ct)

(·). (6.25)

To do so, the provider needs to consider the value of all delivery options (including

the no-purchase option) i that the current customer might choose. This is obtained

by solving

max
φ i

t+1∈Φi
t+1(st ,ct)i∈G (st ,ct )

(·). (6.26)

If no customer request arrives, the tour-planning decisions equal solving equation

(6.26) with i = 0.
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6.3.2 Modified Model

As described above, for the OP model presented in Section 6.3.1, not all opportunity

cost properties discussed later hold. Therefore, in the following, an alternate model

for OPs is presented, for which these properties hold. This alternate model is a

modification of the model introduced in Section 6.3.1 and it differs from the natural

model in regard of cost realization and cost modeling. Thereby, cost realization

concerns the point of time in which the cost are incurred in the real application. Cost

modeling concerns the decision epoch in which the corresponding cost are taken

into account within the MDP model. In the natural model, cost realization and cost

modeling match. In the modified model, cost modeling is delayed. Therefore, the

state of the respective MDP is augmented (compared to the natural OP model) and

the corresponding transition, and the value function are adapted. All other model

components equal those as described for the natural OP model.

State

For the modified model, a third state component denoted by rl cum
t is added. It

captures the cumulative logistics-related rewards, i.e., the negative of the cumulated

fulfillment cost that realized before decision epoch t. Thus, the state is defined as:

st = (Ct ,φt ,rl cum
t ) (6.27)

The state space S comprises all combinations of possible customer requests and

arrival times with potentially chosen fulfillment options and potential cumulative

logistics-related rewards.

Transition

The transition of the additional state component rl cum
t equals:

rl cum
t+1 = rl cum

t + rl
φ i′

t+1
. (6.28)
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Value function

For the modified model, cost modeling is delayed to decision epoch T + 1. Con-

sequently, during the decision epochs t = 1, ...,T , only rewards ri(gt) and ri
ct

are

considered in the value function, which is hence defined as:

V (st) = ∑
ct∈C

λct (t) · max
gt∈G (st ,ct)(

∑
i∈gt

Pi(gt) ·
[
ri(gt)+ ri

ct
+ max

φ i
t+1∈Φi

t+1(st ,ct)i∈G (st ,ct )

V (st+1 | st ,φ
i
t+1)

])
+
(
1− ∑

ct∈C
λct (t)

)
· max

φ 0
t+1∈Φ0

t+1(st)
V (st+1 | st ,φ

0
t+1)

(6.29)

Rewards rl
φ i′

t+1
are only considered in the boundary condition in that the salvage value

equals the respective state component:

V (sT+1) = rl cum
T+1 (6.30)

When the value function of the natural model is denoted by V (st) and the one

of the modified model as V ′(st), then the following relationship holds: V (st) =

V ′(st)− rl cum
t .

Table 6.3 summarizes the introduced modeling framework by combining and delin-

eating the MDP model components of the introduced DJP model, the natural OP

model, and the modified OP model, respectively.

6.3.3 Model equivalency

In this section, the equivalency of the natural and the modified model is proven. This

shows that it is possible to exploit all opportunity cost properties that are discussed

later on in Chapter 8, not only for DJPs but also for OPs. Before proving the model

equivalency, the corresponding value functions of the natural and the modified model

are reformulated for ease of presentation. Then, model equivalency is proven by

induction.
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Component

Decision
epochs

State

Actions

Transitions

Rewards

Values

Boundary
conditions

DJP natural OP modified OP

t = 1,..., T

st = Ct st = (Ct ,φt) st = (Ct ,φt ,rl cum
t )

at = gt at = (gt ,(φ
i
t+1)i∈gt )

Ct+1 =

{
Ct ,

(Ct ∪{ct}),

φt+1 = φ
i′
t+1

Ct+1 =

{
Ct \Ψ(φt+1 | φt)

(Ct ∪{ct})\Ψ(φt+1 | φt)

rl cum
t+1 = rl cum

t + r−t
φt+1 = φ

i′
t+1

Ct+1 =

{
Ct \Ψ(φt+1 | φt)

(Ct ∪{ct})\Ψ(φt+1 | φt)

r+t , r−t

V (st) = r+t +V (st +1)) V (st) = r+t + r−t +V (st +1)) V (st) = r+t +V (st +1))

V (sT+1) = rl
T+1 V (sT+1) = 0 V (sT+1) = rl cum

Table 6.3: Differences of i-DMVRP models

The value functions V (st) and V ′(st) of the natural and the modified model, respec-

tively, are reformulated as follows: first, the maximization operators are replaced by

the corresponding optimal decisions. The optimal demand-management decision,

i.e., maxgt∈G (st ,ct), is represented by g∗t . The optimal tour-planning decision, i.e.,

max
φ i

t+1∈Φi
t+1(st ,ct)i∈G (st ,ct )

, is represented by φ∗ i
t+1. Further, expressions r+t and r−t are

introduced to replace expectations over positive rewards (revenues) and negative

rewards (costs), respectively.
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Value function of the natural model:

V (st) = ∑
ct∈C

λct (t) ·
(

∑
i∈g∗t

Pi(g∗t ) ·
[
ri(g∗t )+ ri

ct
+ rl

φ∗ i
t+1

+V (st+1 | st ,φ
∗ i
t+1)

])
+
(
1− ∑

ct∈C
λct (t)

)
·
(
rl

φ∗ 0
t+1

+V (st+1 | st ,φ
∗ 0
t+1)

)
= ∑

ct∈C
λct (t) · ∑

i∈g∗t

Pi(g∗t ) ·
(
ri(g∗t )+ ri

ct

)
︸ ︷︷ ︸

r+t

+ ∑
ct∈C

λct (t) · ∑
i∈g∗t

Pi(g∗t ) · rl
φ∗ i

t+1
+
(
1− ∑

ct∈C
λct (t)

)
· rl

φ∗ 0
t+1︸ ︷︷ ︸

r−t

+ ∑
ct∈C

λct (t) · ∑
i∈g∗t

Pi(g∗t ) ·V (st+1 | st ,φ
∗ i
t+1)+

(
1− ∑

ct∈C
λct (t)

)
·V (st+1 | st ,φ

∗ 0
t+1)

)
︸ ︷︷ ︸

V (st+1)

= r+t + r−t +V (st+1)

(6.31)

Value function of the modified model:

V ′(st) = ∑
ct∈C

λct (t)·(
∑
i∈g∗t

Pi(g∗t ) ·
[
ri(g∗t )+ ri

ct
+V ′(st+1 | st ,φ

i ∗
t+1)

])
+
(
1− ∑

ct∈C
λct (t)

)
·V ′(st+1 | st ,φ

0 ∗
t+1)

= ∑
ct∈C

λct (t) · ∑
i∈g∗t

Pi(g∗t ) · (ri(g∗t )+ ri
ct
)︸ ︷︷ ︸

r+t

+ ∑
ct∈C

λct (t) · ∑
i∈g∗t

Pi(g∗t ) ·V ′(st+1 | st ,φ
i ∗
t+1)+

(
1− ∑

ct∈C
λct (t)

)
·V ′(st+1 | st ,φ

0 ∗
t+1)︸ ︷︷ ︸

V ′(st+1)

= r+t +V ′(st+1)

(6.32)
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Model equivalency is given, if V (st) =V ′(st)− rl cum
t holds for every t, and V (s0) =

V
′
(s0) holds as well. This is proven by induction, for which the following preposi-

tions are used:

Preposition 6.1. VsT+1 = 0

Preposition 6.2. rl cum
t = rl cum

t+1 − rl
φ i′

t+1

The proof starts with the result for the terminal state sT+1 to which the system

transitioned via a certain sample path denoted by ω , i.e., a specific sequence of

stochastic realizations throughout the decision epochs. Thus, for this realized sample

path, the respective probabilities in r+t , r−t and V (st+1) of equations (6.32) and

(6.31) equal 1 and the probabilities of other realizations ω ′ ̸= ω equal 0, which

is formalized by an additional index ω . Then, independent of which sample path

realizes, i.e., for every sample paths in the set of all potential sample paths, ω ∈Ω,

the following proof by induction can be conducted:

Proof. By induction:

Initial case:

V ω(sT+1) =V ′ω (sT+1)− rω l cum
T+1 = 0 (6.33)

Equation 6.33 holds by definition.

Induction hypothesis:

V ω(st+1) =V ′ω(st+1)− rω l cum
t+1 (6.34)

Induction step:

From Equation (6.31) the following relationship can be derived: V ω(st)=V ω(st+1)+

rω +
t + rω −

t . Then, the induction hypothesis (6.34) and Preposition 6.2 are substi-

tuted:

V ω(st) = (V ′ω(st+1)− rl cum
t+1 )+ rω +

t + rω −
t (6.35)

= (V ′ω(st)− rω +
t )− (rl cum

t + rl
φ i′

t+1
)+ rω +

t + rω −
t (6.36)
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Since rl
φ i′

t+1
= rω −

t for i′ that is observed in sample path ω and rl
φ i′

t+1
= 0 for all other

i′, this yields:

V ω(st) =V ′ω(st)− rl cum
t (6.37)

for any t = 0, ...,T and thus also for t = 0, i.e., V0 =V ′0 + rl cum
0 .

It holds by definition that rl cum
0 = rω −

0 = 0. Consequently, V0 =V ′0 holds and the

natural and the modified OP models are equivalent.

The most important insights from Part III can be summarized as follows: i-DMVRPs

have been introduced and delineated. Further, a uniform taxonomy has derived

to classify practical applications and new research problem settings. The related

literature has been discussed with regard to different perspectives and with a special

focus on modeling, the definition of opportunity cost, and solution approaches.

Therewith, substantial research gaps have been elaborated and the first one has

been closed. More precisely, a unified, explicit MDP modeling framework that

captures temporal interdependencies of the two types of integrated decisions has

been developed. The following Parts IV and V address the outstanding research gaps

that have been identified in Chapter 5.
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Analytical discussion of opportunity

cost for i-DMVRPs
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In Part IV of this dissertation, a unified, specifically tailored definition of opportunity

cost for i-DMVRPs is introduced.

As shown in Section 1.3, in traditional demand-management applications, like the

airline or car rental industry (Klein et al. (2020)), solving the value function is

intractable, such that many researchers approach demand-management problems by

decomposing them into the two subproblems: (1) calculating opportunity cost, (2)

optimizing demand-management decisions. This is why the analysis of opportunity

cost and its properties has already become a standard tool for characterizing problem

settings and for tailoring efficient approximation methods (Talluri and Van Ryzin

(2006), Chapter 2).

Solving the value function of an i-DMVRPs is also intractable for realistic sized

instances, but unfortunately, the results of the existing opportunity cost analyses

from traditional demand-management applications cannot be transferred directly.

This is due to a substantially more complex cost structure in i-DMVRPs compared

with those of, e.g., the airline or car rental industry. More precisely, in i-DMVRPs,

demand-management decisions influence subsequent tour-planning decisions and

vice versa across the entire planning horizon (Agatz et al. (2013)). Thus, the variable

cost of a certain demand-management decision depends on the set of finally served

customer orders and can therefore only be determined ex post. This necessitates a

specific definition and interpretation of opportunity cost as it substantially changes

its composition.

However, despite the well-known relevance of opportunity cost for demand manage-

ment, the discussion in Chapter 5 demonstrates that there is no such unified definition

and interpretation for i-DMVRPs in the literature. Existing solution approaches base

decision making on different opportunity cost definitions and thus incorporate differ-

ent (sub-)components, respectively. As a consequence, optimization potential is left

unexploited for individual problem settings. Further, the transferability of solution

approaches among different problem settings is inhibited.

Therefore, a unified definition of opportunity cost that explicitly addresses the

complex cost structure of i-DMVRPs is introduced. It is tailored to capture all cost
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components occurring in DJPs as well as in OPs. The respective contributions of

this part are the following:

(1) The theoretical foundation of the concept of opportunity cost for i-DMVRPs

is deepened by elaborating the decisive differences between opportunity cost in

traditional demand-management applications and in i-DMVRPs.

(2) A unified opportunity cost definition, specifically tailored for i-DMVRPs, which

is valid for DJPs and OPs at the same time, is developed and analyzed analytically.

(3) Central properties of opportunity cost for i-DMVRPs are derived and proven,

which is essential for developing efficient approximation methods and the transfer-

ability of solution approaches among different problem settings.

This part of the dissertation is organized as follows: in Chapter 7, the concept of

opportunity cost from traditional demand-management applications is analyzed with

regard to crucial underlying assumptions which are then discussed for i-DMVRPs.

Afterwards, in Chapter 8, four central properties of the newly derived opportunity

cost components and also of the respective value functions are analytically elaborated

and proven.
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7. Transferring the concept of oppor-

tunity cost to i-DMVRPs

In this chapter, the concept of opportunity cost from traditional demand-management

applications is transferred to i-DMVRPs. First, in Section 7.1, a general definition

of opportunity cost is provided. For this, a so called interim state is introduced that

separates the effects of a demand-management decision from those of the simulta-

neous tour-planning decision. Afterwards, in Section 7.2, underlying assumptions

from traditional applications are investigated with regard to i-DMVRPs. As a con-

clusion, in Section 7.3, the traditional interpretation of opportunity cost is amended

for i-DMVRPs.

7.1 A general definition of opportunity cost

Due to the well-known curses of dimensionality (Powell et al. (2012), Chapter 4), it

is not possible to solve the i-DMVRP models presented in Chapter 6. Instead, as de-

scribed in Section 1.3, it is common to decompose the demand-management problem.

Thereby, the difference of two values of alternate states succeeding certain actions

is determined as a change of future reward due to an action. This difference, called

opportunity cost, is then used as input for finding the optimal demand-management

decision.

In i-DMVRPs, in particular in OPs, an action can comprise two types of integrated

decisions, namely, demand-management and tour-planning decisions. However, in

this part of the dissertation, only the effects of a demand-management decision are

of interest. Thus, it is the target to calculate opportunity cost from comparing state
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values that only reflect such effects separated from potential effects of tour-planning

decisions of the same decision epoch. Hence, in the following, a new conceptual

approach to separate the effects of two or more integrated decisions in one decision

epoch of an MDP, as for example the demand-management and the tour-planning

decisions in Equation (6.23), is developed:

Fulfillment
operations

Request
arrival ct

Demand
management

decision

Customer
choice i′

Vehicle
routing
decision

Fulfillment
operations

Request
arrival

Stochastic
transition

Action I
Stochastic
transition

Action II
Deterministic

transition
Stochastic
transition

Overlapping
horizons (OP)

Disjoint
horizons (DJP)

Decision
epoch
State

Reward I Reward II

t t +1
st st+1

Interim
state
s′t(c

i′
t )

Figure 7.1: Overview of the MDP model of the i-DMVRP booking and fulfillment process including
the interim state

A fictive state is introduced for each decision epoch t = 1, ...,T . It is referred to as

interim state and denoted as s′t | st ,ct , i. This interim state describes the state that

is reached if a certain fulfillment option i is sold in state st with customer request

ct . (s′t | st denotes the respective interim state at decision epoch t, if no fulfillment

option is sold.) The idea behind it is similar to the idea of the post-decision state

introduced by Powell et al. (2012), Chapter 4, namely to isolate different effects of

decisions and information on the state variable. More precisely, the post-decision

state separates the deterministic effect of a decision from the stochastic effect of

the same decision in order to ease decision making. Still, s′t does not equal a post-

decision state, as it does not separate stochastic and deterministic effects of the same

decision. Instead, it separates the effects of two different decisions, i.e., the stochastic

and deterministic effects of the demand-management decision from the deterministic

effects of a tour-planning decision taken in the same decision epoch. Figure 7.1 is

a modification of the overview of the MDP model of the i-DMVRP booking and

fulfillment processes known from Chapter 6, but it includes the interim state in order
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to illustrate its integration into the presented MDP models.

Generally, the value of such an interim state s′t | st ,ct , i can be calculated as the sum

of the logistics-related rewards rl
φ∗ i

t+1
and the successor state’s value, i.e., of state

st+1 | st ,φ
∗ i
t+1:

V (s′t | st ,ct , i) = rl
φ∗ i

t+1
+V (st+1 | st ,φ

∗ i
t+1). (7.1)

Thus, also the state value V (st) can be calculated based on an interim state value,

thereby isolating the demand-demand management decision as follows:

V (st) = ∑
ct∈C

λct (t) · max
gt∈G (st ,ct)

(
∑
i∈gt

Pi(gt) ·
[
ri(gt)+ ri

ct
+V (s′t | st ,ct , i)

])
+
(
1− ∑

ct∈C
λct (t)

)
·V (s′t | st ,ct ,0).

(7.2)

In DJPs, the respective value of an interim state equals the value of the successor

state, i.e., V (s′t | st ,ct , i) =V (st+1 | st ,ct , i), since there is no tour-planning decision

during the booking horizon. In the following, for ease of presentation, interim state

s′t | st ,ct , i is denoted by s′t(c
i
t) and interim state s′t | st ,ct ,0 is denoted by s′t(0).

Then, the following definition formalizes the concept of opportunity cost for solving

the demand-management problem of i-DMVRPs:

Definition 7.1. The opportunity cost ∆V (st ,ct , i) of a certain fulfillment option i

when being in a certain state st and a customer request ct arrives is calculated

as the difference of the values of the following two interim states: (1) the interim

state following a demand-management decision that results in the customer of ct

choosing the no-purchase option i = 0 and (2) the interim state following a demand-

management decision that results in the customer of ct choosing that particular

fulfillment option i. Thus, it is defined as

∆V (st ,ct , i) =V (s′t(0))−V (s′t(c
i
t)). (7.3)

This opportunity cost is then used as input to solve the demand-management problem,
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which can be illustrated by the following reformulation of the corresponding value

functions (6.4) and (6.29), respectively. This reformulation is typical in revenue-

management literature (e.g., Yang et al. (2016), Fleckenstein et al. (2021)) and

yields:

V (st) = ∑
ct∈C

λct (t) · max
gt∈G (st ,ct)

∑
i∈gt

Pi(gt) ·
[
ri(gt)+ ri

ct
−∆V (st ,ct , i)

]
︸ ︷︷ ︸

Demand management problem
here: assortment optimization

+V (s′t(0))

(7.4)

Since a demand-management decision only has to be taken when a certain customer

request arrives, the probability ∑ct∈C λct (t) is not relevant for decision making. Also,

the second summand of equation (7.4), i.e., V (s′t(0)), is not relevant as it is a constant

and independent of the decision. Further, Pi(gt), ri(gt) and ri
ct

are assumed to be

known. Thus, if the opportunity cost of a fulfillment option i, ∆V (st ,ct , i), is known

and the set G (st ,ct) is not large, it is possible to solve the demand-management

problem by full enumeration. Indeed, for i-DMVRPs, the set G (st ,ct) is assumed to

be of tractable size. However, calculating opportunity cost still involves solving a

recursive function that is intractable for realistic sized instances (Fleckenstein et al.

(2021)) and would further need to be calculated in real-time. This is why, for realistic

problems, it is necessary to find accurate and efficient approximation approaches for

opportunity cost and, thus, for the value function (Yang et al. 2016). This motivates

a deeper understanding of opportunity cost and of its peculiarities and properties in

i-DMVRPs. Consequently, in the following, opportunity cost in traditional demand-

management problems and opportunity cost in i-DMVRPs are compared and decisive

differences are discussed. As a conclusion, the definition of opportunity cost is

augmented by a specifically tailored interpretation for i-DMVRPs. Then, in Chapter

8, four central properties of the value functions and the corresponding opportunity

cost in i-DMVRPs are elaborated and proven analytically.
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7.2 Comparing opportunity cost in traditional applica-

tions and i-DMVRPs

As described in Section 1.1, in traditional demand-management applications, the

following two assumptions are made (Weatherford and Bodily (1992)):

Assumption 1 – Supply is inflexible, i.e., capacities are fixed.

Assumption 2 – Variable costs associated with the usage of capacity are either neg-

ligible or at least directly attributable to individual orders.

If those assumptions hold, opportunity cost is equivalent to displacement cost (DPC)

and is defined as “the expected loss in future revenue from using the capacity now

rather than reserving it for future use” (Talluri and Van Ryzin (2006), Chapter 2).

In the following, it is shown that this definition cannot be transferred to i-DMVRPs

by investigating the underlying assumptions in the respective context. For illustrative

reasons and in order to generate a general intuition of opportunity cost in i-DMVRPs

and its decisive characteristics, it is investigated for a simple problem instance, which

is introduced in the following. However, the respective results can be generalized to

more complex problem instances.

-6 0 6

c0c3 c1 c2

x

Figure 7.2: Customer locations of the problem instance underlying the discussion of opportunity cost
properties in i-DVMRPs

The considered problem instance is a very basic instance of the DJP presented in

Sections 4.1 and 6.2. It is assumed that there are only three potential customer

requests, denoted as c1,c2, and c3. As depicted in Figure 7.2, they are located on

a line with one single, centrally located depot, denoted as c0. There are three de-

cision epochs in which customer requests arrive with time-dependent arrival rates

λci(t) = 0.5, if i = t and λci(t) = 0, else. The potential revenues associated with

those customer requests are 10,10 and 20 monetary units (MU) for requests c1,c2,
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and c3, respectively. The customer request characteristics are summarized in Table

7.1. Further, for every customer request that turns into a customer order, the same

physical capacity consumption is assumed. It equals the size of one trunk. To serve

customer orders, the provider has a single vehicle available, which can only load two

trunks at a time and is not allowed to conduct multiple trips.

ci (x) rci λci(t)
c0 (0) 0 –
c1 (−4) 10

λci(t) =

{
0.5 if i = t
0 else

c2 (4.5) 10
c3 (−5.5) 20

Table 7.1: Customer requests of the problem instance underlying the discussion of opportunity cost
properties in i-DVMRPs

For each incoming customer request, the provider can only offer one fulfillment

option (i= 1) and the fictive no-purchase option (i= 0). The provider does not charge

a delivery fee, i.e., r1 = r0 = 0MU . Consequently, there are only two potential offer

sets g ∈ G = {1,2}, as depicted in Table 7.2, among which the provider can choose

one to present to an incoming customer request. It is assumed that a customer request

turns into a customer order with probability P1 = 1, if i = 1 is offered within an offer

set and P0 = 1, otherwise. Thus, presenting offer set g = 1 to an incoming customer

request equals accepting it. Presenting offer set g = 2 to an incoming customer

request equals rejecting it. Thus, for ease of readability, in the following, presenting

offer set g = 1, i.e., action at = 1, is referred to as accepting the respective customer

request. Presenting offer set g = 2, i.e., action at = 2, is referred to as rejecting it. It

has to be noted that, without loss of generality, this can be transferred to problem

settings with more than one fulfillment option. Then, "accepting a customer request"

can be understood as accepting a customer for a certain fulfillment option or rejecting

them. Fuel cost are assumed to equal 1MU per unit length (UL). With this problem

instance at hand, first, Assumption 1 of traditional demand-management applications

is discussed:

Assumption 1 – In most i-DMVRPs, the first assumption of traditional demand-
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prices of fulfillment options choice probabilities
g i = 0 i = 1 P0 P1

1 0 0 0 1
2 0 not offered 1 0

Table 7.2: Available offer sets of the problem instance underlying the discussion of opportunity cost
properties in i-DVMRPs

management applications is valid. Depending on the problem at hand, either driver

working times, fleet sizes, or loads represent resources with fixed capacities. As ex-

pected, such limited resources may cause a displacement of demand as the following

example illustrates:

Example 6.1: In this example, decision epoch t = 2 of the above described

problem instance is investigated. It is assumed that a customer request c1

arrived in the previous decision epoch and turned into a customer order. In

t = 2, customer request c2 realizes. Thus, C2 = {c1} and the provider has to

decide whether to accept the current customer request c2 with action a2 = 1,

or reject it by action a2 = 2. Clearly, if the provider accepts c2, it turns into a

confirmed customer order. Then, it is not possible to also accept the customer

request c3, which realizes at the subsequent decision epoch with probability

λc3(3) = 0.5. Consequently, decision a2 = 1 results in expected displacement

cost that equals λc3(3) · rc3MU = 0.5 · 20MU = 10MU . This means that an

expected revenue of 10MU is displaced due to limited vehicle capacities if

decision a2 = 1 is taken.

Assumption 2 – The second assumption of traditional demand-management problems,

negligible or directly attributable variable cost, does not hold in most i-DMVRPs.

This can be shown by considering fuel cost as an example: within one tour of one

vehicle that visits various customer locations, it is not possible to attribute a certain

share of fuel consumption to the individual customer locations. The consumption

depends on the specific combination of customer locations in the tour, and hence,

the share of each customer location changes, when other customer locations are

added to or removed from the tour. Thus, there is no way to calculate and attribute
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individual fuel cost (see for example Vinsensius et al. (2020)). Further, such costs

are not negligible as the following example shows.

Example 6.2a: Again, the same decision epoch, with equal state and potential

actions of the problem instance as described in Example 6.1, is considered.

If fuel cost were to be neglected, DPC would equal opportunity cost, i.e.,

∆V (s2,c2,1) = 10MU . Since the immediate contribution of action a2 = 1 also

equals rc2 = 10MU , both decisions, a2 = 1 or a2 = 2, are equally good decisions

for the provider.

Example 6.2b: However, Figure 7.2 shows clearly that the additional fulfillment

cost in case that customer request c2 turns into a confirmed customer order

equals 9MU when optimal subsequent decisions are assumed. In turn, rejecting

customer request c2 by action a2 = 2 and then accepting customer request c3

instead, only leads to additional fulfillment cost of 3MU . Since customer request

c3 realizes with probability λc3(3) = 0.5, the expected increase in delivery

cost caused by decision a2 = 1 is calculated as 9MU − 0.5 · 3MU = 7.5MU .

Considering this cost additionally to the previously calculated DPC, action

a2 = 1 causes an expected cost of 17.5MU . Since the immediate contribution

of accepting customer request c2 is below this expected cost, the provider has

to decide for a2 = 2 in order to operate profitably.

Example 6.2a) and b) show that the exact same combination of state and customer

request of the same problem instance yield different optimal demand-management

decisions depending on whether fulfillment cost are taken into consideration or are

being neglected. This shows that Assumption 2 does not hold in i-DMVRPs and,

thus, that variable fulfillment cost cannot be neglected. Consequently, the traditional

concept of opportunity cost, which equalizes opportunity cost and displacement

cost (Talluri and Van Ryzin (2006), Chapter 2), has to be adapted for i-DMVRPs.

Therefore, in the following Section 7.3 a novel definition for opportunity cost is

introduced.
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7.3 Extension of the concept of opportunity cost for

i-DMVRPs

It has been shown that neglecting variable fulfillment cost leads to suboptimal

demand-management decisions in i-DMVRPs and, hence, that it is required to

take them into consideration for decision making. Further, it has been shown,

that variable fulfillment cost cannot be attributed to individual customer requests

in i-DMVRPs. Thus, it is not possible to consider them implicitly by optimiz-

ing demand-management decisions with regard to customer requests’ individual

contribution margins instead of revenues.

Instead, in the literature on i-DMVRPs, some authors explicitly consider the marginal

increase of variable cost caused by the acceptance of a customer request as already

exemplarily calculated in Example 6.2b. In the literature, this marginal increase is

referred to as (marginal cost to serve (MCTS)) (see for example Vinsensius et al.

(2020), Strauss et al. (2021)). In a static context, a request’s MCTS can be calculated

by optimizing the tour plan for all accepted customer orders including the current

request and comparing its fulfillment cost with the cost of the optimal tour plan

without the current request. Calculating this value at a certain decision epoch of an

i-DMVRP yields exact myopic MCTS (Fleckenstein et al. 2021). However, those

are not sufficient for optimal decision making, as the following example shows:

Example 6.3: Again, the same problem instance as in the previous examples,

with the same potential customer requests regarding locations, revenues, and

arrival rates as depicted in Table 7.1 is considered. Fuel cost are again 1MU/UL.

This time, decision epoch t = 1 is examined. There are no confirmed customer

orders yet, i.e., C1 = {}, and a request c1 realizes. To calculate DPC, the sum

of all expected revenues that can be accrued under optimal decision making

in the subsequent decision epochs until the terminal decision epoch starting

from interim state s′1 has to be calculated. It equals 15MU as explained in the

following. If customer request c1 is rejected, it is still possible to accept c2

and c3 if they realize. Thus, it is possible to accrue the respective revenues
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10MU and 20MU with the respective arrival probabilities λc2(2)= λc3(3)= 0.5.

From that, the corresponding sum of expected revenues under optimal decision

making starting from interim state s′1(c1), which equals 10MU , has to be

substracted. This yields DPC = 15MU−10MU = 5MU . The myopic MCTS

equal 8MU . Consequently, if the provider bases decision making on DPC and

myopic MCTS, the resulting optimal decision is to reject customer request c1

by action a1 = 2.

Nevertheless, the optimal decision resulting from solving the value function is ac-

cepting customer request c1 by action a1 = 1. This is also the intuitive decision

when looking at Figure 7.2 and considering the vincinity to potential future cus-

tomer request c3, or more precisely, when considering the cost-related, anticipatory

opportunity effect of accepting customer request c1. Thus, for optimal decision

making, opportunity cost for i-DMVRPs cannot only be revenue-related in form of

DPC but also have to take cost-related effects on opportunity cost into account in

form of expected MCTS. In the following, only the term MCTS is used and thereby

refers to expected MCTS. If a different interpretation applies, it is explicitly stated.

Correspondingly, the definition of opportunity cost is amended as follows:

Definition 7.2. In i-DMVRPs with variable costs that are not directly attributable

to customer requests, opportunity cost comprises two components: DPC as the

difference of cumulated future expected revenues caused by accepting a customer

request and MCTS as the difference of future expected fulfillment cost caused by

accepting a customer request, both assuming optimal decision making in subsequent

decision epochs.

To define both terms formally, at first cumulated future revenues and expected future

fulfillment cost are defined:

Definition 7.3. The cumulated future revenues given interim state s′t at decision

epoch t and optimal decision making in all subsequent decision epochs until T is
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defined as:

E(Rt | s′t) = ∑
ct+1∈C

λct+1(t +1) · ∑
i∈g∗t+1

Pi(g∗t+1) ·
(
ri(g∗t+1)+ ri

ct+1
(g∗t+1)

)
︸ ︷︷ ︸

r+t+1

+E(Rt+1 | s′ ∗t+1),

(7.5)

with boundary condition:

E(RT | s′T ) = 0, (7.6)

and with g∗t+1 denoting the optimal demand-management decision in t +1, and s′ ∗t+1

denoting the resulting interim state, assuming optimal tour-planning decisions in t.

Definition 7.4. The expected future fulfillment cost given interim state s′t at decision

epoch t and optimal decision making in all subsequent decision epochs until T is

defined as:

E(Ct | s′t) =rl
φ∗ i′

t+1
+ ∑

ct+1∈C
λct+1(t +1) · ∑

i∈g∗t+1

Pi(g∗t+1) ·E(Ct+1 | s′ ∗t+1(c
i
t+1))

+(1− ∑
ct+1∈C

λct+1(t +1)) ·E(Ct+1 | s′ ∗t+1(0)),
(7.7)

with boundary condition:

E(CT | s′T ) = rl
φ∗ i′

T+1
(7.8)

and with i′ denoting the customer request ct’s choice realization (i = 0, if there is

no customer request ct), g∗t+1 denoting the optimal demand-management decision in

t +1, and s′ ∗t+1 denoting the resulting interim state. For DJPs holds rl
φ∗ i′

T
= rl

T+1 =

−C(V RPCT+1).

In the following, DPC and MCTS are formally defined:

Definition 7.5. DPC of accepting customer request ct for fulfillment option i in

decision epoch t and state st is defined as:

∆E(Rt | st ,ct , i) = E(Rt | s′t(0))−E(Rt | s′t(ci
t)). (7.9)
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with

Calculating DPC depends on the state of the system and all consecutive decisions

and transitions. Thus, it suffers from the curse of dimensionality in that the number

of combinations of potential future acceptances/rejections is intractable.

Definition 7.6. MCTS of accepting customer request ct for fulfillment option i, in

decision epoch t and state st is defined as:

∆E(Ct | st ,ct , i) = E(Ct | s′t(ci
t))−E(Ct | s′t(0)). (7.10)

Like DPC, calculating MCTS also depends on the state of the system and all consec-

utive decisions and transitions. Thus, it also suffers from the curse of dimensionality

in that the number of potential tour-planning decisions that have to be evaluated

is intractable for realistic-sized instances. Additionally, it is well known that the

underlying VRPs for every one of those tour-planning decisions are NP-hard (see for

example Vinsensius et al. (2020)).

In the following chapter, Chapter 8, the newly derived definition of opportunity cost

as well as the corresponding MCTS and DPC are investigated analytically.
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of opportunity cost for i-DMVRPs

In Section 7.3, it has been shown that calculating opportunity cost or its components,

DPC and MCTS, is intractable for realistic-sized i-DMVRPs. Consequently, solu-

tion approaches for i-DMVRPs require valid approximations of opportunity cost.

Therefore, in the following, four central properties of the discussed i-DMVRPs, more

precisely of the value functions (6.4), (6.23), and (6.29), and the derived opportunity

cost values, are elaborated. Those are:

1. Decomposability into MCTS and DPC

2. Potential negativity of MCTS and DPC

3. Non-negativity of opportunity cost

4. Monotonicity of the value functions

8.1 Decomposability of opportunity cost into MCTS

and DPC

To prove the decomposability of opportunity cost into MCTS and DPC, it is first

shown that there is a valid decomposition for the value function of an interim state

into two components. In other words, the value of an interim state, V (s′t), equals

the difference of expected cumulated future revenues E(Rt | s′t) and expected future

routing cost E(Ct | s′t), under optimal decisions. This leads to the following Lemma:
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Lemma 8.1. The value (function) of an interim state s′t can be decomposed into

two additive components, one capturing expected future revenues and one capturing

expected future cost:

V (s′t) = E(Rt | s′t)+E(Ct | s′t). (8.1)

Lemma 8.1 holds, if

E(Rt | s′t)+E(Ct | s′t) = rl
φ∗ i

t+1
+V (st+1 | st ,φ

∗ i
t+1) (8.2)

holds for every interim state s′t .

Proof. By induction:

Initial case:

In the terminal decision epoch T , rewards are defined by the boundary conditions

(6.24), (7.6) and (7.8). Substituted into (8.2), this leaves:

0+ rl
φ∗ i

T+1
= rl

φ∗ i
T+1

+0, (8.3)

showing that (8.2) holds for T .

Induction hypothesis: (8.2)

126



8.1. DECOMPOSABILITY OF OPPORTUNITY COST INTO MARGINAL COST TO
SERVE (MCTS) AND DISPLACEMENT COST (DPC)

Induction step:
E(Rt−1 | s′t−1)+E(Ct−1 | s′t−1)

= ∑
ct∈C

λct (t) · ∑
i∈g∗t

Pi(g∗t ) ·
(
ri(g∗t )+ ri

ct
(g∗t )

)
+E(Rt | s′ ∗t )

+ rl
φ∗ i′

t
+ ∑

ct∈C
λct (t) · ∑

i∈g∗t

Pi(g∗t ) ·E(Ct | s′ ∗t (ci
t))+(1− ∑

ct∈C
λct (t)) ·E(Ct | s′ ∗t (0))

=rl
φ∗ i′

t
+ ∑

ct∈C
λct (t) · ∑

i∈g∗t

Pi(g∗t ) ·
(
ri(g∗t )+ ri

ct
(g∗t )+E(Ct | s′ ∗t (ci

t))
)

+(1− ∑
ct∈C

λct (t)) ·E(Ct | s′ ∗t (0))+E(Rt | s′ ∗t )

(8.4)

Now, repeatedly substituting (7.1) and again the induction hypothesis (8.2) until T

yields:

rl
φ∗ i

t
+V (st | st−1,φ

∗ i
t ) (8.5)

With this in mind, the first property can be formally proven:

Property 8.2. Opportunity cost can be decomposed into DPC and MCTS:

∆V (st ,ct , i) = ∆E(Rt | st ,ct , i)+∆E(Ct | st ,ct , i). (8.6)

To prove Property 8.2, Lemma 8.1 is substituted into Equation (7.3). Further,

Definitions 7.5 and 7.6 are substituted, which results in:

Proof.

∆V (st ,ct , i) =V (s′t(0))−V (s′t(c
i
t))

= E(Rt | s′t(0))−E(Rt | s′t(ci
t))−E(Ct | s′t(0))+E(Ct | s′t(ci

t))

= ∆E(Rt | st ,ct , i)+∆E(Ct | st ,ct , i)

(8.7)
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8.2 Potential negativity of MCTS and DPC

In Example 6.2 of Chapter 7.2, a problem instance has been discussed, in which

MCTS and DPC are both positive. However, contrary to traditional demand-

management applications in which DPC can only be positive (Talluri and Van Ryzin

(2006), Chapter 2), in i-DVMRPs, MCTS and DPC can be negative. This is the

next property that will be discussed. Hence, in the following, constructed examples

are presented in which either of the components is negative. First, a situation with

negative MCTS is elaborated.

Example 7.1: The same problem instance as in Example 6.3 is considered, with

the same potential customer requests regarding locations, revenues, and arrival

rates as depicted in Table 7.1. Fuel cost are again assumed to equal 1MU/UL

and decision epoch t = 1 is examined with C1 = {}. Customer request c1 real-

izes. Decision a1 = 1, i.e., accepting c1, results in value V (s′1(c1)) = 0.5MU .

Rejecting it by decision a1 = 2, results in value V (s′1(0)) = 5MU . Conse-

quently, the corresponding opportunity cost of decision a1 = 1 for customer

request c1 when being in the considered state equals 4.5MU . DPC are cal-

culated as in Example 6.3, thus, ∆E(R1 | s1,c1,1) = 5MU . Exploiting Prop-

erty 8.2 yields MCT S = ∆E(C1 | s1,c1,1) = ∆V (s1,c1,1)−∆E(R1 | s1,c1,1) =

4.5MU−5MU =−0.5MU .

For illustrative reasons, Figure 8.1 shows the partial decision tree for this problem

instance, originating in state s1, assuming a customer request arrives. Random

nodes are depicted as circles, which in Figure 8.1 represent whether there is a

customer request or not. The outgoing upper arc always represents the arrival of

a customer request, the outgoing lower arc represents the case that there is no

such arrival. Decision nodes are depicted as rectangles and represent demand-

management decisions. The upper arcs originating in such nodes represent accepting

the respective customer request. The corresponding lower arcs represent rejecting

the customer request. Optimal decisions in each decision epoch, derived from

solving the corresponding value function, are depicted as solid arcs originating in

the demand-management decision nodes.
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{c0,c1,c2}
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t = 1 t = 2 T = 3 C(s4) N

c1 = (−4,0)
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c3 = (−5.5,0)

λci = 0.5 if i = t, 0 else

Rci = [10,10,20]
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Customer request

Request arrival

No request arrival

Demand decision
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V (s′1(c1)) = 0.5

V (s′2(c2)) =−17

V (s′2(0)) = 0.5

V (s′1(0)) = 5

V (s′2(c2)) =−4.5

V (s′2(0)) = 4.5

Figure 8.1: Decision Tree - Example 7.1

The intuition behind negative MCTS, as they occur in Example 7.1, is the following:

accepting the corresponding customer request and following the subsequent optimal

decisions leads to expected final routing cost that are lower than those generated

by optimal decisions following the rejection of the same customer request. In other

words, accepting a certain customer request inhibits the acceptance of one or more

later customer requests, which would otherwise be accepted with optimal decisions

and would lead to higher final fulfillment cost. In the example given, if customer

request c1 were to be rejected, it would be optimal to accept customer request c2

in case it realizes. However, a final fulfillment tour that includes a customer order

c2 costs 9MU more than any final fulfillment tour that does not. Due to restricted

capacities, by accepting customer request c1, also accepting a customer request c2

becomes suboptimal. Thus, the corresponding MCTS are negative and the acceptance

of a request leads to an overall decrease of expected fulfillment costs.
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In the following, an example with negative DPC is elaborated.

Example 7.2: To show a situation with negative DPC, the same problem instance

as in the previous examples is considered. Thereby, the same potential customer

requests regarding locations and arrival rates, but with potential revenues rc1 =

10MU , rc2 = 10MU , and rc3 = 10.5MU are assumed. Furthermore, now it

is assumed that the physical vehicle capacity is unrestricted, and instead, the

maximum route length is constrained to 12UL. Travelling one UL still costs

1MU .

Again, decision epoch t = 1 is investigated, and again, it is assumed that there

is no confirmed customer order yet, i.e., C1 = {}, and a customer request c1

realizes. Now, E(R1 | s′1(0)) = 5MU as with rejecting c1 by action a1 = 2, the

subsequent optimal decisions lead to a future revenue of 10MU with probability

λc2(2) = 0.5. If request c2 does not realize, still, a request c3 will not be

accepted. In case the current customer request c1 converts into a confirmed

customer order, in turn, it is optimal to also accept a customer request c3, if it

realizes. Consequently, E(R1 | s′1(c1)) = 5.25MU and, thus, ∆E(R1 | s1,c1,1) =

−0.25MU < 0MU .

Figure 8.2 illustrates optimal decisions for all decision epochs, derived from solving

the corresponding value function.

The intuition behind negative DPC, as they occur in Example 7.2, is the following:

turning the corresponding customer request into a customer order enables accepting

one or more expected future customer requests in its vincinity that otherwise would

not be profitable with regard to their related fulfillment cost and revenues. Thus,

without including MCTS in the consideration of opportunity cost, DPC cannot be

negative. This is a decisive difference between the traditional concept of opportunity

cost and the newly derived concept for i-DMVRPs. Thus, it is formalized in the

following:

Property 8.3. MCTS and DPC can both be negative:

∃MCT S < 0 (8.8)
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V (s′2(0)) = 0

Figure 8.2: Decision Tree - Example 7.2

and

∃ DPC < 0. (8.9)

Proof. By counterexamples 7.1 and 7.2.

8.3 Non-negativity of opportunity cost

Despite the observation that both MCTS and DPC can be negative, it can be proven

that, for value functions (6.4), (6.23), and (6.29) of the described MDP models, the

resulting opportunity cost are always non-negative. To prove this property, it is

shown that the value of the interim state following the acceptance of a customer

request ct by action at = 1 cannot be higher than the value of the interim state

following a rejection of the same customer request ct by action at = 2.
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The corresponding proof builds on three lemmata, which formalize i-DMVRP model

characteristics.

The first lemma concerns the stochastic transition probabilities, i.e., arrival rates and

customer choice probabilities in a decision epoch t. Both are independent of the

corresponding set of confirmed customer orders Ct .

Lemma 8.4. Stochastic transition probabilities are independent of the set of already

confirmed customer orders:

∀t ∈ 1, ...,T, i ∈I ,ci ∈C,gt ∈ G : λci(t) independent of Ct (8.10)

and

Pi(gt) independent of Ct . (8.11)

Proof. By definition.

The second lemma concerns the relationship of the action spaces of any two states

st and ŝt , which only differ in that the latter contains the same confirmed customer

orders as the first, but additionally, contains exactly one customer order, denoted by

ĉ, more, i.e., Ĉt = Ct ∪{ĉ}. For those two states, the action space of the latter is a

subset of the action space of the first.

Lemma 8.5. The action space of any state ŝt = (Ct ∪{ĉ},φt) is a subset of the action

space of a corresponding state st = (Ct ,φt):

∀t ∈ 1, ...,T,ct ∈C, ĉ ∈C : A (ŝt ,ct)⊆A (st ,ct). (8.12)

Generally, the action space of a state comprises two components:

(1) the demand-management component G (st ,ct)

(2) the tour-planning component (Φi
t+1(st ,ct))i∈G (st ,ct).

The demand-management component strongly depends on the tour-planning com-

ponent in that it only comprises delivery options, for which a feasible tour plan can
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be found. Thus, to prove Lemma 8.5, it is sufficient to show that the tour-planning

component of A (ŝt ,ct) is a subset of the respective tour-planning component of

A (st ,ct).

Proof. (Φi
t+1(st ,ct))i∈G (st ,ct) corresponds to the solution space of the constraint

satisfaction variant of the underlying VRP. Enforcing the fulfillment of an additional

customer order ĉ requires an additional constraint compared to fulfilling the set of

customer orders Ct , without ĉ. This constraint is either redundant or further restricts

the solution space, which proves Lemma 8.5 as long as the triangle inequality

holds.

The third lemma concerns the state space of an i-DMVRP MDP model. More

precisely, it says that, for any state ŝt = (Ĉt ,φt), there exists a state st = (Ct ,φt),

which only differs in that it does not include a certain customer order ĉ.

Lemma 8.6. For every state ŝt = (Ĉt ,φt), there exists a corresponding state st =

(Ct ,φt) with Ct = Ĉt \{ĉ}:

∀ŝt with t ∈ 1, ...,T : ∃st : Ct = Ĉt \{ĉt}. (8.13)

To prove Lemma 8.6, it has to be shown that, assuming the rejection of a certain cus-

tomer request ĉ, the same future decisions can be made as assuming the acceptance

of ĉ, and that those decisions result in the same transitions.

Proof. By Lemma 8.5, the same future decisions can be made assuming the rejection

of a customer request ĉ as by assuming its acceptance. Further, by Lemma 8.4, those

decisions result in the same subsequent transitions.

Now, a certain decision sequence π =(at ,at+1,at+2, ...,aT ) is considered and applied

to a certain sample path ω , which starts in an interim state s′t . Given Lemmata 8.4 to

8.6, two general lemmata regarding the resulting revenue, denoted by Rπ ω
t (s′t), and

regarding the resulting fulfillment cost, denoted by Cπ ω
t (s′t), can be derived. More

precisely, the first of these lemmata says that, applying π to ω , assuming it starts in
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the interim state s′t(c
i
t), results in the same cummulative revenues as it does, assuming

it starts in the corresponding interim state s′t(0). The second of these lemmata states

that, applying π to ω , assuming it starts in the interim state s′t(c
i
t), results in lower or

equal fulfillment cost as it does, assuming it starts in the corresponding interim state

s′t(0).

Lemma 8.7. Applying decision sequence π to sample path ω , assuming it starts

in interim state s′t(c
i
t) results in the same sum of cummulated revenues as it does,

assuming it starts in the corresponding interim state s′t(0):

Rπ ω
t (s′t(c

i
t)) = Rπ ω

t (s′t(0)) (8.14)

Proof. From Lemmata 8.5 and 8.6 follows that any π that can be applied feasibly

to ω starting in interim state s′t(c
i
t) can also feasible applied to ω starting in interim

state s′t(0). Then, 8.7 directly follows from Lemma 8.4 since, starting from both

interim states, the same set of customer orders are received, when the same decisions

are made.

Lemma 8.8. Applying decision sequence π to sample path ω , assuming it starts in

the interim state s′t(c
i
t), results in higher or equal fulfillment cost as it does, assuming

it starts in the corresponding interim state s′t(0):

|Cπ ω
t (s′t(c

i
t)) |≥|Cπ ω

t (s′t(0)) | (8.15)

Proof. π and ω start with the same set of confirmed customer orders Ct−1, irre-

spective of whether their start is assumed from interim state s′t(c
i
t) or s′t(0). Then,

assuming π and ω start in interim state s′t(c
i
t), customer order ct is added to the

set of confirmed customer orders Ct+1 whereas it is not added assuming π and ω

start in interim state s′t(0). Afterward, starting from interim states s′t(c
i
t) and s′t(0),

respectively and applying the same decision sequence π to ω , which is possible

by Lemmata 8.5 and 8.6, again, the same customer orders are confirmed, which

results from Lemma 8.4. Consequently, starting π and ω in interim state s′t(c
i
t)

results in subsequent states ŝt ′ = (Ĉt ′,φt ′) and starting in interim state s′t(0) results
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in subsequent states st ′ = (Ct ′,φt ′) for t ′ = t + 1, ...,T , with Ĉt ′ = Ct ′ ∪{ci
t}. This

proves Lemma 8.8 analogously to the proof of Lemma 8.5, as the underlying VRP is

more restricted and consequently the resulting fulfillment cost cannot be smaller as

long as the triangle inequality holds (Asdemir et al. (2009)).

Combining Lemmata 8.7 and 8.8 shows that applying a decision sequence π to

sample path ω starting in interim state s′t(c
i
t) cannot result in a higher objective value

than starting in interim state s′t(0). This is formalized in the following Lemma:

Lemma 8.9. If the same decision sequence π is applied to sample path ω starting

in interim state s′t(c
i
t), it cannot yield a higher value than it does when starting in

interim state s′t(0):

∀ω ∈Ω : V π ω(s′t(c
i
t))≤V π ω(s′t(0)). (8.16)

With this in mind, the third crucial opportunity cost property can be formally proven

by contradiction.

Property 8.10. Opportunity cost are non-negative:

∆V (st ,ct , i) ∈ R+
0 . (8.17)

Proof. It is assumed that for a sample path ω , starting in an interim state s′t(c
i
t), an

optimal sequence of decisions, denoted by π∗, is found which results in a value

V π∗ ω(s′t(c
i
t)) higher than any value that can be accrued on the same sample path

starting in interim state s′t(0). With Lemmata 8.4 to 8.6, π∗ can be applied to the

sample path starting in interim state s′t(0) and, with Lemma 8.9, results in at least

the same value. The original assumption is proven wrong and hence:

V ω(s′t(c
i
t)) =V π∗ ω(s′t(c

i
t))≤V ω(s′t(0)) =V π∗ ω(s′t(0)). (8.18)

This proof by contradiction can be replicated for every sample path ω ∈Ω. Thus:

V (s′t(c
i
t)) =V π∗(s′t(c

i
t))≤V (s′t(0)) =V π∗(s′t(0)) (8.19)
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and substituted in equations (7.3) it proves that ∆V (st ,ct , i)≥ 0 .

8.4 Monotonicity of value functions

For the presented DJP model and the modified OP model, Property 8.10 directly

implies that the value function is monotonically decreasing in the number of con-

firmed but not yet being served customer orders |Cst |, i.e., the following holds:

∆V (st ,ct , i) =V (s′t(0))−V (s′t(c
i
t))≥ 0⇔V (s′t(0))≥V (s′t(c

i
t)). Analogously, it can

be shown that the value functions (6.4) and (6.29) are monotonically decreasing

in time, i.e., in consecutive states st and st ′ , with t ′ > t. For two states, st and st ′ ,

to be consecutive, there must exist an optimal decision sequence π∗ with resulting

stochastic transitions, that causes the system to transition from state st to state st ′ in a

finite number of decision epochs. Then, it can be shown that V (st)≥V (s′t)≥V (st ′).

Therefore, it has to be shown that V (st) ≥ V (s′t) and V (s′t) ≥ V (st+1) hold, as the

latter directly implies that ∀t ′ > t : V (s′t)≥V (st ′).

Property 8.11. The value function is monotonically decreasing in the course of

consecutive states:

∀t ′ > t : V (st)≥V (st ′). (8.20)

Proof. V (st)≥V (s′t) directly follows from Equation 7.4 with the following intuition:

starting from a certain state st in decision epoch t means that there is one more

customer request ct potentially contributing to the state value than compared to the

interim state of the same decision epoch resulting from any demand-management

decision s′t . If all potentially arriving requests ct ∈C are not profitable based on st , the

optimal demand-management decision is the rejection in any case, and V (st) =V (s′t)

holds, because no revenue can be collected in t. Otherwise, if there is at least one

potentially arriving request ct that is profitable, it is optimal to accept this request and

the associated expected revenue positively contributes to V (st). Then, V (st)>V (s′t)

holds. V (s′t)≥V (st+1) directly follows from Equation (7.1), since for the considered

value functions ∀t ∈ 1, ...,T, i ∈I : rl
φ∗ i

t+1
= 0 holds by definition of the underlying

MDP formulations. Thus ∀t ∈ 1, ...,T , it holds that V (s′t) =V (st+1).
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It has to be noted, that Property 8.11 is the only of the discussed properties which

cannot be transferred to the natural OP model. Due to the cost modeling during the

booking horizon, the respective value function (6.23) is not monotone in time. This

can have a destabilizing effect for learning value function approximations which

is why the modified OP model with value function (6.29) is introduced in Chapter

6.3.2.

This concludes Part IV of this dissertation in which two of the identified research gaps

have been closed. Namely, a unified definition of opportunity cost for i-DMVRPs has

been introduced and the value functions of the underlying i-DMVRP MDP models

as well as the derived opportunity cost properties have been discussed analytically.
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Part V

Development of a novel dynamic

demand-management and online

tour-planning approach for same-day

delivery
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In Part V of this dissertation, a newly developed, integrated approach to demand

management and tour planning for an OP, more precisely for an SDD problem setting,

is presented. As shown in Chapter 5, heuristic optimization approaches for DJPs

have been broadly discussed in the literature. Also, optimization approaches that

address dynamic tour planning in OP settings and, correspondingly, initial demand

management approaches that aim on optimized fulfillment operations, separately,

are already discussed in the literature. However, comprehensive approaches that

optimize fulfillment operations with regard to anticipatory decision making and aim

on levering the potential of active demand-management measures at the same time

form a gap in i-DMVRP literature. One potential reason for that gap is the increased

problem complexity of OPs compared with DJPs. As the booking horizon and the

service horizon overlap, demand management for OPs is substantially more difficult

to optimize than for the broadly investigated DJPs. This can be ascribed to the

necessity of incorporating an online tour-planning component. More precisely, a

decision dimension is added to the demand-management problem, which itself is

computationally intractable. With OPs, the decision on which fulfillment options to

offer at which prices must be made online. In addition, the decision on which orders

to allocate to which tours and when to start them, has to be made online and under

consideration of potential future decisions.

In practice however, the need to optimize demand management and tour planning for

same-day delivery business models comprehensibly and in an anticipatory manner

has been demonstrated. Despite increasing demand for SDD and the customers’

willingness to pay higher delivery fees for faster delivery, a large number of SDD

providers went out of service or shifted their service portfolio toward more profitable

business branches. Meanwhile, new businesses that promise delivery of groceries

and common every day goods proliferate in urban last-mile-delivery markets.

Therefore, a new heuristic solution approach for an SDD problem setting is devel-

oped. It integratively optimizes the SDD demand-management and tour-planning

components, both under anticipation of future customer requests and decisions. The

approach is developed to make the concept of SDD profitable and improve provider
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services and, thus, customer satisfaction. It is tailored to exploit two demand-

management levers, namely reserving more capacity for higher valued customers,

and steering the stochastic customer choice toward efficient fulfillment options. Si-

multaneously, it improves online tour planning. This is achieved, by combining

ideas of multiple scenario approaches for online tour planning with the ideas of

state value approximation via sampled trajectories, such as those known from rollout

algorithms/Monte Carlo methods (see for example Sutton and Barto (2018), Chapter

5). Further, a novel hierarchical demand-management decomposition is incorporated.

The contributions of this part are the following:

(1) A comprehensive anticipatory solution approach to the i-DMVRP is proposed. It

links a pricing optimization problem to an anticipatory sample-scenario based value

approximation method, relying on an explicit online tour-planning heuristic. It does

not require extensive offline learning, and guarantees applicability and scalability to

realistically sized problem instances.

(2) A novel hierarchical demand-management decomposition for solving stochastic

scenarios is introduced, in which demand management is decomposed into two steps.

The first step is to perform tentative tour planning that will decide which customer

requests to accept and by what time they can be served. The second step is to

re-integrate the provider’s actual demand-management decisions and the customers’

corresponding choices into the first step’s solution. This allows to amend the solution

of a customized MIP tour-planning model by retrospectively integrating realistic

customer choice behavior, and to derive accurate values of the solutions.

(3) In a comprehensive computational study, a potential of up to 50% of contribution

margin increase by anticipation in decision making within the newly developed ap-

proach is demonstrated. However, due to the online tour-planning component that dis-

tinguishes demand management of SDD problems from other demand-management

problems in last-mile delivery research, anticipation in decision making does not

always lead to substantial profitability improvement. Such cases are elaborated,

and thus a differentiated insight into the problem is given. Further, the results are

compared with those of other demand-management and pricing approaches, adopt-
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ing ideas from the existing literature. It is shown how explicit price optimization

increases the profit margin compared with these benchmarks and discussed how the

different approaches affect the solution structure.

This part of the dissertation is organized as follows. In Chapter 9 the general solution

framework and the idea behind the hierarchical demand-management decomposition

are outlined. Then, in Chapter 10, the solution approach is presented with its

technical details. Subsequently, in Chapter 11, the solution approach is evaluated

comprehensively in a broad numerical study. Further, the corresponding results and

insights that emerged from them are summarized and future research directions are

pointed out.
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9. General solution framework and hi-

erarchical demand-management de-

composition

In this chapter, the problem setting under consideration is introduced, the general

solution framework (Chapter 9.2) is presented, and the newly developed hierarchical

demand-management decomposition (Chapter 9.3) approach is outlined. The latter

is one of the core ideas underlying the solution approach. As will be shown later,

the approach relies on a sample-scenario value approximation and tour-planning

approach, of which a detailed technical description is given in Chapter 10.

9.1 Problem setting

The proposed approach interacts with the SDD booking and service horizon as fol-

lows: a customer logs in to the website with information about their location and

delivery preferences stored in the profile, chooses a shopping basket online while

expecting a selection of narrow delivery time spans to be offered at affordable prices.

This initiates a delivery request in response to which the provider has to make a

demand-management decision. Therefore, simultaneously to the customer’s login,

the provider samples different customer request trajectories and conducts tentative

tour-planning optimization, as well as value approximation with the help of the newly

developed hierarchical demand-management decomposition. From the correspond-

ing solutions, the provider derives anticipatory decisions on which delivery time

spans to offer the current customer and at what prices. The customer then chooses
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one of the options offered or leaves the website without purchasing, following their

own individual, stochastic preferences. If the customer decides to purchase, the

delivery request becomes a confirmed customer order with a delivery deadline and

the tour planning is updated on the basis of the previously sampled trajectories. To

enable prompt delivery, the execution of deliveries might start/continue immediately,

even though further customer requests could arrive. When a new customer request

arrives, the whole process starts over again.

9.2 General solution framework

The proposed solution approach is based on the following consideration: if the

optimal tour-planning decision and the associated value of the successor state, more

precisely

V ′(si
t+1) := max

φ i
t+1∈Φi

t+1

(rl
φ i

t+1
+V (st+1 | st ,φ

i
t+1)) (9.1)

were known, solving the value function (6.23) would be simplified tremendously.

This is because with known V ′(si
t+1) and if |G | is not large, Equation (6.23) could

even be solved to optimality by total enumeration across all g ∈ G (Yang et al.

(2016)). In the same-day delivery demand-management and tour-planning problem

(SDD-DMTP), it is indeed assumed that |G | is of tractable size. However, V ′(si
t+1)

cannot be determined exactly. Thus, a problem-specific approximation of V ′(si
t+1) is

proposed. More specifically, every time a customer request arrives and the demand-

management problem of Equation (6.23) has to be solved, a procedure to approximate

V ′(si
t+1) is carried out. This procedure simultaneously returns heuristic tour-planning

decisions. The proposed approximation approach is a forward ADP approach (c.f.

Powell et al. (2012), Chapter 4). It is based on a heuristic solution of the SDD-DMTP

on sampled realizations of customer requests. Thus, it is referred to as sample-

scenario value approximation and tour-planning approach. The full procedure is

depicted schematically in Figure 9.1.

Every time a customer request arrives, the sample-scenario based approximation of

V ′(si
t+1) is carried out.
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Figure 9.1: General solution framework

Therefore, different customer request realizations are sampled into the future to

generate scenarios. A scenario ω ∈Ωi
t at time t and for a certain fulfillment option i

consists of three types of customers: first, the confirmed and not yet being delivered

customer orders Ct ; second, the current customer request ct with assigned deadline

according to i, i.e., tdue
ct

= t + l(i), if i ̸= 0; third, a sampled realization of customer

requests Nω , sampled from t on until the end of a predefined sampling horizon length.

Consequently, the scenarios are state-, time-, and customer-choice-specific. For all

scenarios, a deterministic version of the SDD-DMTP (d-SDD-DMTP) is solved (see

Chapter 10.1) which returns state-specific scenario tour plans that are then used for

the following two purposes:

(1) Value approximation: Based on the scenario tour plans, a value for each

scenario is approximated. Then, the average across all state-specific scenario

values is used as the approximation of the corresponding state’s value (see

Chapter 10.2). This in turn, is the input to the provider’s demand-management

decision. All relevant successor state values are substituted in equation (6.23),

and the provider can enumerate across all g ∈ G to decide which offer set to

present to the current customer. Presenting an offer set then triggers a customer

choice i′ which the provider can observe.

(2) Anticipatory tour planning: According to the resulting customer choice i′, the

147



CHAPTER 9. GENERAL SOLUTION FRAMEWORK

provider finally has to make certain tour-planning decisions φ i′
t+1, which again,

are constructed from the scenario tour plans (see Chapter 10.3).

It has to be noted that the tour-planning decisions are based on predictions into

the future. This means they consider later customer requests and also time-steps

in between future customer arrivals. Accordingly, it is only necessary to revise

tour plans if a new customer request arrives. Only then, new explicit information

about tour-optimization potential becomes known. Therefore, the respective delivery

operations are executed until a new customer request arrives; only then will the

whole decision-making procedure begin anew. Therefore, unlike the MDP model of

OPs, the solution approach is not defined across all decision epochs t in the booking

horizon. Instead, it is event driven, i.e., driven by customer request arrivals.

Regarding the literature discussed in Section 5.3, the solution approach falls in the

class of non-learning approaches. For decision making, it uses an information model

predictively (Soeffker et al. (2021)) and is conducted fully online.

9.3 Hierarchical demand-management decomposition

The sample-scenario value approximation and tour-planning approach adapts the

online tour-planning ideas of Bent and Van Hentenryck (2004) as well as Voccia

et al. (2019) and substantially extends them in order to include demand-management

decisions. The basic idea is to solve the d-SDD-DMTP for different scenarios,

and then to average the values of the scenario solutions to derive state values.

Theoretically, due to the assumption of all customer orders to be known within an

ex-post solution, the averaged scenario values have a tendency to overestimate the

actual state value. However, as explained in more detail in Chapter 10.2, this has no

major impact on the decision.

To manage the particular challenges that result from integrating demand management,

a hierarchical demand-management decomposition is proposed. This procedure

heuristically divides the demand management into two subsequent tiers, namely

accepting/rejecting customer requests (first tier) and explicitly steering customer
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choices by selecting the offer sets to present (second tier):

(1) Acceptance/rejection: When the d-SDD-DMTP for a scenario ω is solved, in

the optimization it is first assumed that a decision on accepting/rejecting a

customer requests can be taken directly. This allows to formulate the first-tier

problem as a deterministic, p-MTVRP. It is formalized as an MIP in Chapter

10.1.1 and can be solved by a tailored heuristic as presented in Chapter 10.1.2.

This results in an anticipatory scenario solution, i.e., in a scenario tour plan

φ ω(si
t+1). It comprises tours that are already running, currently starting, or

will start at any time from the decision moment on until the sample-horizon’s

end. Note that, a scenario tour plan can now comprise more than one tour

per vehicle. The tours include all customer orders from Ct in state st and the

current customer request ct with a choice i′-specific delivery deadline. Further,

they include an optimized subset of the sampled customer requests that are

scheduled for delivery within the longest predefined fulfillment option.

(2) Offer set selection: From the first-tier solutions, it is possible to construct

tour-planning decisions for the SDD-DMTP. However, it is not yet possible to

derive a precise value approximation as input for demand-management deci-

sions. This is due to neglecting the choice and no-choice probabilities of the

sampled customer requests and their resulting delivery revenues. Consequently,

in the second-tier demand management, these aspects are retrospectively cap-

tured and integrated into the scenario solutions. Therefore, the main target is

to reconstruct demand-management decisions for a scenario’s sampled cus-

tomers in such a way that the same scenario tour plan results as in the first-tier

problem’s solution. More precisely, for every sampled customer request of a

scenario solution, it has to be determined which offer sets provoke purchase

choices with which the corresponding scenario solution is feasible. Across

those offer sets, the expected contribution for every sampled customer is maxi-

mized and a scenario value Ṽ ω can be determined. This procedure is described

in Chapter 10.2.
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10. Sample-scenario value approxima-

tion and tour planning with two-tier

demand-management integration

In this chapter, a detailed presentation of the three components of the sample-scenario

value approximation and tour-planning approach is given.

10.1 Deterministic SDD demand-management and tour-

planning problem with first-tier demand manage-

ment

At first, a MIP formulation for the d-SDD-DMTP is presented in Chapter 10.1.1 and

then it is shown how to solve it heuristically in Chapter 10.1.2.

10.1.1 MIP formulation

The d-SDD-DMTP with first-tier demand management is a deterministic profitable

multi-trip vehicle routing problem with release and due times (p-VRPRDT). It is

defined across nodes for the already confirmed and not yet being delivered customer

orders, a node representing the current customer request, and nodes for all sampled

customers. Additionally, one node c0 that represents a centrally located depot with

coordinates (x,y)c0 = (0,0), is needed. Thus, the corresponding set of nodes N ω

equals the the following union: Ct ∪{ct}∪Nω ∪{c0}. For every confirmed customer
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order and for the current customer request, this set contains information about the

customer’s location (x,y)c and their confirmed delivery deadline tdue
c . For every

sampled customer request, the set contains information about the customer’s location

(x,y)c, their request time treq
c , the revenue of their requested shopping-basket rc, and

their utility ui
c for fulfillment options i ∈I . Further, all sampled customers c ∈ Nω

are assigned a preliminary delivery deadline according to the longest available

delivery span, tdue
c = treq

c +max{l(i) | i ∈I }. The underlying idea is that if those

customers are included in a scenario’s solution, it is always possible to offer them at

least one, namely the longest, fulfillment option when their request realizes. This

ensures that it is always possible to feasibly reconstruct a first-tier solution with the

second-tier demand management (see Chapter 10.1.2 and 10.2).

In the d-SDD-DMTP, V homogeneous vehicles operate chronologically ordered

tours k ∈ K = 1, ...,K. ζcc′ represents the costs of travelling from the location

of customer order c to the location of customer order c′. ρc′ is a customer order

individual penalty which equals the value of the shopping basket for all c′ ∈ Nω and

equals a sufficiently high number M for all c′ ∈ Ct ∪{ct}. Since Ct only contains

customer orders for which a feasible solution (without delays and dropped visits)

is available, these penalties ensure that no confirmed customer order is dropped

when solving the model. The parameter t describes the current decision period. The

following decision variables are included in the model:

xvk
cc′ =


1 if customer c′ is served after cus-

tomer c on tour k by vehicle v

0 else

∀c, c′ ∈N ω : c ̸= c′, v ∈ V , k ∈K

avk
c′ ≥ t ∀c′ ∈N ω , k ∈K , v ∈ V

Delivery time at customer location c′

on tour k of vehicle v

Avk ≥ t ∀k ∈K , v ∈ V
Erliest departure time of tour k

of vehicle v

Bvk ≥ t ∀k ∈K , v ∈ V
Time of finishing tour k of vehicle v

in the depot

The d-SDD-DMTP can be formulated as the following MIP, which is further ex-
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plained below:

min ∑
v∈V

∑
k∈K

∑
c∈N ω

∑
c′∈N ω

xvk
cc′ ·ζcc′ + ∑

c′∈N ω\{0}
(1− ∑

v∈V
∑

k∈K
∑

c∈N ω

xvk
cc′) ·ρc′ (10.1)

s.t. ∑
v∈V

∑
k∈K

∑
c∈N ω

xvk
cc′ ≤ 1 ∀c′ ∈N ω \{c0} (10.2)

Avk ≤ avk
0 ∀v ∈ V , k ∈K (10.3)

treq
c′ · ∑

c∈N ω

xvk
cc′ ≤ Avk ∀v ∈ V , k ∈K , c′ ∈N ω \{c0} (10.4)

tdue
c′ +(1− ∑

c∈N ω

xvk
cc′) ·M ≥ avk

c′ ∀v ∈ V , k ∈K , c′ ∈N ω \{c0} (10.5)

avk
c′ +(1− xvk

cc′) ·M ≥ avk
c + xvk

cc′ · τcc′
∀v ∈ V , k ∈K , c ∈N ω ,

c′ ∈N ω \{c0}
(10.6)

Avk + ∑
c∈N ω

∑
c′∈N ω\{c0}

xvk
cc′ · τcc′ ≤ Bvk ∀v ∈ V , k ∈K (10.7)

Bvk ≤ Avk+1 ∀v ∈ V , k ∈K \{K} (10.8)

∑
c∈N ω

xvk
cc′ = ∑

c∈N ω

xvk
c′c ∀v ∈ V , k ∈K , c′ ∈N ω \{c0} (10.9)

∑
c′∈N ω\{c0}

∑
v∈V

xv0
0c′ ≤ V (10.10)

∑
c′∈N ω\{c0}

∑
k∈K

xvk
0c′ ≤ K ∀v ∈ V (10.11)

∑
c′∈N ω

xvk
0c′ ≤ 1 ∀v ∈ V , k ∈K (10.12)

∑
c′∈N ω\{0}

xv+1 0
c0c′ ≤ ∑

c′∈N ω\{c0}
xv0

0c′ ∀v ∈ V \{V} (10.13)

∑
c′∈N ω\{0}

xvk+1
0c′ ≤ ∑

c′∈N ω\{c0}
xvk

0c′ ∀v ∈ V , k ∈K \{K} (10.14)

The objective function (10.1) minimizes the overall travel costs and the sum of the

penalties of all dropped visits. Dropping a sampled customer in the solution of the

MIP means rejecting their request. Therefore, (10.1) balances the increase in travel

costs for visiting a sampled customer and their shopping basket value – if marginal

costs to serve and displacement costs are higher than a customer’s shopping basket

value, this customer request is rejected. Constraints (10.2) enable dropping vis-

its/rejection of customer requests. Thus, in combination with the objective function,

this represents the first-tier demand management. Constraints (10.3)-(10.8) are time

restrictions, which ensure that a tour starts neither before t, nor before all allocated
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customer orders have realized, that all customer orders will be served on time, that

the duration of a tour is the sum of all travel times of that tour, and that a vehicle can

only start a new tour after having returned to the depot. Constraints (10.9) ensure

flow conservation. Constraints (10.10) - (10.12) ensure that the number of available

vehicles and the maximum number of tours are not exceeded. Constraints (10.13) -

(10.14) are symmetry breaking constraints.

This MIP formulation is a generalization of a p-MTVRP, which additionally consid-

ers time restrictions. It is an adaption of the p-MTVRP formulation of Chbichib et al.

(2012) and of a multi-trip team orienteering problem with time windows formulation

by Voccia et al. (2019). Further, it is closely related to a multi-trip vehicle routing

problem with time windows and release dates introduced by Cattaruzza et al. (2016)

who do not state a formal MIP.

10.1.2 Heuristic solution approach

p-MTVRPs belong to the class of NP-hard problems (Chbichib et al. (2012)). Thus,

the MIP given in Chapter 10.1.1 cannot be solved for all sampled scenarios in

reasonable time. Instead, a heuristic approach which consists of the following three

steps is proposed:

Relaxation – First, the explicit consideration of depot returns is relaxed in the d-

SDD-DMTP. The resulting problem is a p-VRPTW (Toth and Vigo (2014), Chapter

1). A customer request’s arrival time now forms the start of their delivery time

window, while the delivery deadline remains unchanged. The trick is that all vehicles

can now start only one tour, but can serve customer requests that have not yet realized

at the time the tour starts.

Solving the relaxed problem – Next, the resulting p-VRPTW is solved heuristically

by means of a standard tour-planning software (e.g. Google OR Tools, https:

//developers.google.com/optimization). The result is a tour plan

with one tour per vehicle, including confirmed and sampled customer orders.

Feasibility repair – When the tours start, not all sampled customer orders have
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already realized, which is why depot returns have to be added to the tours. Thus,

for feasibility, the respective tours are repaired as follows. To generate feasible

tour plans, a vehicle’s tour is interrupted for a depot return each time a sampled

customer order has to be served whose request had not yet arrived when the tour

started in the depot. For this vehicle, a new tour is planned to serve the original tour’s

remaining customers in the same order, until it has to be interrupted for another

depot return. If a depot return causes a late delivery for a sampled customer, the

customer is removed from the tour; yet, if the depot return causes a late delivery

for a confirmed customer, the latest sampled customer is removed from the tour

and, according to vehicle availability, the departure time is updated to an earlier

time. This procedure is repeated until all late deliveries have been removed. If the

algorithm does not find a feasible solution without late deliveries, at the end of the

algorithm, an empty scenario tour plan φ ω and a scenario value Ṽ ω(si
t+1) =−∞ is

returned. For the original decision problem (6.23), this results in not offering the

corresponding fulfillment option i to the current customer request ct . It has to be

noted that, since a tour plan can now comprise more than just one tour per vehicle,

an index k is added to the tour notation, i.e., θ vk denotes the kth tour of vehicle v.

The procedure is more formally presented in the following Algorithm 1.
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Algorithm 1 Feasibility repair scenarios

1: φ ← Heuristic solution of P-VRPTW

2: θ v(φ)← Tour of vehicle v according to solution φ

3: av
c← Delivery time of customer c with vehicle v according to solution φ

4: for v in V do
5: Initialize first tour θ v1 by adding depot c = 0 and customer order c with smallest av

c accord-

ing to θ v(φ)

6: Calculate current departure time: Av next ← av
c− τ0c

7: θ v next ← θ v1

8: φ v← θ v next

9: repeat
10: θ v curr← θ v next

11: Av curr← Av next

12: L(θ v curr)←{}
13: X(θ v curr)←{}
14: Add not yet planned customer orders c of θ v(φ) to L(θ v curr) with increasing av

c until

treq
c ≥ Av curr and amend X(θ v curr) accordingly

15: Cut tour by adding depot return and calculate return time Bv prev

16: θ v curr← (Av curr,L(θ v curr),X(θ v curr))

17: Append θ v curr to φ v

18: Initialize next tour θ v next by adding depot c = 0

19: Add not yet planned customer order c with next smallest av
c according to θ v(φ)

20: Calculate latest departure time: Av next ← max{av
c− τ0c,Bv prev}

21: until all customer orders c in θ v(φ) are planned to tours

22: for tour in φ v do
23: Update all av tour

c according to Av tour and travel times τcc′

24: if av tour
c ≥ tdue

c for any sampled customer order c in θ v tour then
25: Remove c from θ v tour and update all left av tour

c according to Av tour and travel times

τcc′

26: if av tour
c ≥ tdue

c for any confirmed customer order c in θ v tour then
27: repeat
28: Remove sampled customer order c with highest treq

c

29: Update Av tour according to vehicle availability

30: Update all left av tour
c according to Av tour and travel times τcc′

31: until there are no longer any late deliveries

32: φ ←{φ v : v ∈ V }
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10.2 Value approximation and second-tier demand

management

The heuristic presented in Chapter 10.1.2 is used to solve the d-SDD-DMTP for

scenarios ω ∈Ωi
t . In this way, scenario-specific tour plans φ ω are generated. Those

are anticipatory in the sense that they anticipate future customer requests, but only

under the consideration of the first-tier demand management. Thus, as explained

in Chapter 9.3, before determining the scenario value Ṽ ω(si
t+1), the second-tier

demand management has to be re-integrated into the solution. Thereby, in order

to derive the best possible estimate, it is the target to imitate the original demand

management of the SDD-DMTP as the value function (6.23) solved it as closely as

possible. Imagining solving Equation (6.23) by hand: in a first step the feasible action

space would intuitively be defined by excluding all infeasible decisions from the

consideration. For the demand-management decision this means determining which

fulfillment options can be feasibly offered to the current customer, i.e., defining the

set of feasible offer sets. In a next step, the offer set with the highest expected sum

of immediate reward and successor state value is offered to the requesting customer.

This last step includes making tour-planning decisions.

In re-integrating the second-tier demand management into a scenario’s solution φ ω ,

this procedure is mimicked with two modifications:

Modification 1 – When identifying the offer sets for the accepted, sampled

customer requests c ∈ Nω ∩{L(θ vk) : θ vk ∈ φ ω} that are feasible with respect

to the first-tier demand-management solution, all tour-planning decisions have

already been determined. Thus, the specific delivery times for customer orders

avk
c are already defined. Consequently, fulfillment options are only feasible, if

avk
c can be matched within the fulfillment option.

Modification 2 – When selecting which offer set to offer, only the expectation

regarding the immediate rewards is considered. DPC and MCTS can be

neglected.
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The second modification can be made without sacrificing accuracy because the

scenario solution, i.e., the acceptance and delivery times of all requesting customers

in the scenario under consideration, has already been decided. Thus, it does not matter

whether the currently considered customer chooses one of the offered fulfillment

options or the no-purchase option. The value that might be incurred with subsequent

customer requests will not change for this scenario. Consequently, in the second-tier

demand management, neither DPC nor MCTS are relevant for optimizing offer set

selection. Other approaches that approximate values/costs via heuristically solving

scenarios ex-post in order to derive tour-planning decisions are for example Azi et al.

(2012), Campbell and Savelsbergh (2005), and Angelelli et al. (2021).

More formally, re-integrating second-tier demand management into a solution φ ω

can be described as follows. For every c ∈ Nω ∩{L(θ vk) : θ vk ∈ φ ω}, the procedure

determines which fulfillment options i ∈I can feasibly be offered according to their

planned delivery time avk
c when following φ ω . Next, for each of those customers,

a subset G ′c(φ
ω) ⊂ G defines all offer sets that include only the valid fulfillment

options i. To approximate the sampled customer’s contribution rc φ ω to a scenario’s

value Ṽ ω(si
t+1), the expected reward across all g ∈ G ′c(φ

ω) is maximized:

rc φ ω = argmax
g∈G ′c(φ ω )

∑
i∈g

Pi(g) · (ri
c + ri), (10.15)

if a customer order c is being accepted in the first-tier solution, otherwise rc φ ω = 0.

A scenario’s value is then defined as Ṽ ω(si
t+1) = ∑c∈Nω rc φ ω − rl

φ ω . Following this,

V ′(si
t+1) is approximated by

V̂ ′(si
t+1) =

∑ω∈Ωi
t
Ṽ ω(si

t+1)

|Ωi
t |

. (10.16)

Finally, the SDD-DMTP’s demand-management decision is taken by substituting

(10.16) in the value function. That yields the following demand-management deci-
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sion policy for when a customer request arrives:

g∗ = argmax
g∈G

(∑
i∈g

Pi(g) · [ri(g)+ ri
ct
+V̂ ′(si

t+1)]). (10.17)

It has to be noted that the value approximation described above relies on solving

scenarios ex-post, under the assumption that all customer arrivals were known. This

could lead to a systematic over-estimation of the actual value of a state. However, for

deciding on which offer set to present to an incoming customer, this over-estimation

is not a major issue for the reason that when solving Equation 10.17, not the absolute

level of the values V̂ ′(si
t+1) for i ∈ g is decision-relevant, but the differences between

them, i.e., the opportunity cost of the fulfillment options. As the potential over-

estimation is systematic, it applies similarly to all those values.

10.3 Anticipatory tour planning

Having described how to approximate values to derive demand-management deci-

sions based on scenario tour plans, now it is explained how to take tour-planning

decisions. For every potential customer choice i and the corresponding successor

state si
t+1, a set of scenario tour plans φ ω ∈Ωi

t with values Ṽ ω(si
t+1) is available from

the scenarios’ solutions. This can be used to derive tour-planning decisions. Typi-

cally, in multiple-scenario approaches, at this point, a consensus function measures

the robustness of partials of those tour-plans and then constructs a robust overall

tour plan, called a distinguished plan (Bent and Van Hentenryck (2004), Voccia et al.

(2019)). Due to the large number of stochastic influences in the SDD problem set-

ting under consideration, i.e., customer location, request arrival time, and customer

choice, the scenario solutions exhibit high variability. This is why typical consensus

functions proved not to perform well in pre-tests. Therefore, tour-planning decisions

are derived from the sampled tour plan φ ω that has the highest value Ṽ ω(si′
t+1) of

all the tour plans in Ωi′
t , while fully aware of and accepting that the derived tour

plan’s performance might naturally be lower in entirely different realizations. It is
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selected as distinguished plan φ∗ and comprises planned tours θ vk for all v ∈ V . The

tours of one vehicle v still contain sampled and confirmed customer orders. Thus, in

line with the literature on multiple-scenario approaches, all sampled customer orders

are removed from those tours and the delivery times avk
c of all remaining confirmed

customer orders c, as well as the return times to the depot, are updated according to

Avk and relevant τcc′ . Finally, the tours of one vehicle v start sequentially at given

start times Avk. This procedure is more formally described in Algorithm 2.

An executable tour at state si
t+1, derived from the tour-planning decision φ∗ for

vehicle v ∈ V is denoted as θ ∗vk. All θ ∗vk for v ∈ V , k ∈K of φ∗ form the tour-

planning decision φt+1 in t and for all subsequent t ′ until a new customer request

arrives. If a new customer request arrives, the full decision-making procedure as

presented in Figure 9.1 starts all over again. For the tour-planning decisions that

means all tours in φt+1 that have not already started by the time of the new customer

request, can be revised.

Algorithm 2 Tour-planning decision and post-processing

1: i← Customer choice

2: si
t+1← Regarding successor state

3: φ ∗← argmax
{φω :ω∈Ωi

t}
Ṽ ω(si

t+1)

4:

5: for v ∈ V do
6: for k ∈K do
7: Remove all sampled customers c ∈ θ vk

8: for remaining customers c ∈ θ k do
9: Update avk

c according to Avk and travel and service times τcc′

10: θ ∗vk← θ vk

11: φ ∗←{θ ∗vk : v ∈ V ,k ∈K }
12: φt+1← φ ∗
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11. Computational study

In this chapter, a computational study on a variety of parameter settings is presented

in which the proposed solution approach is applied in different variants, e.g., with

different lengths of the sampling horizon. Additionally, benchmark approaches are

presented and the respective results are compared with each other. In particular, the

effectiveness of the proposed approach is assessed and the value of anticipation, as

well as that of an explicit price optimization are evaluated. In Section 11.1, first,

the parameters of the settings under consideration are described and it is explained

how instances are generated. In Sections 11.2 and 11.3, the extensive computational

experiments’ results on the value of anticipation and of explicit price optimization

are discussed.

11.1 Setup

The computational study is based on a number of different settings that are examined

in a stochastic simulation, by applying and comparing different anticipation and

pricing approaches. In Section 11.1.1, the parameters that are commonly used

throughout all considered settings are specified. In Section 11.1.2, the parameters

that may vary across settings are introduced. In Section 11.1.3, it is described how

instances are generated for each setting within the stochastic simulation.

11.1.1 Setting-independent parameters

The following parameters are defined identically for all settings considered in the

computational study.
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Time horizon and fulfillment options

The considered time horizon corresponds to the booking and service course of one

day. It is represented by 900 episodes, which could be thought of as representing

900 minutes from 7am to 10pm. The booking horizon consists of 600 minutes, i.e.,

it starts at 7am and ends at 5pm. Thus, T = 600. The service horizon starts with

the first accepted customer order and ends at 10pm, latest. In all settings, offer sets

can be generated based on two possible fulfillment options, i.e., delivery within 90

minutes or within 300 minutes.

Customer segments

Customers are defined by a segment affiliation, their location, their arrival times,

and arrival rates. A customer’s segment affiliation defines the potential contribution

margins of selected shopping baskets. More precisely, it indicates a probability

distribution across the potential contribution margins in connection with a purchase

decision. Further, it defines their utility for different fulfillment options with differ-

ent prices. In the computational study, it is assumed that there are two segments,

distinguishing between segment-one customers and segment-two customers. The

contribution margin of a segment-one customer is drawn from a discrete uniform

distribution over [75,85,100] monetary units (MU). The contribution margin of a

segment-two customer is drawn from a discrete uniform distribution over [20,35,40]

MU. Additionally, segment-one customers have a higher observable utility for shorter

fulfillment options than segment-two customers. The basic observable utilities before

pricing ui
basic of segment-one customers are 22 and 14, and those of segment-two

customers are 13 and 10.5 for the short and the long fulfillment options. To calculate

the observable utility for a fulfillment option with a certain price ui, the correspond-

ing basic utility ui
basic is reduced by the offered price ri, but it cannot be negative,

i.e., ui = max{ui
basic− ri,0}. Also, the no-purchase option has a utility for cus-

tomers from both segments. For segment-one customers, this utility equals 2, while

for segment-two customers it equals 3. This reflects that segment-two customers

are more likely to purchase via a traditional, non-SDD fulfillment option or in a

brick-and-mortar store.
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The purchase probabilities for different fulfillment options within the offer sets are

modeled according to a basic attraction model (Gallego et al. (2019), Chapter 4).

Therefore, the purchase probabilities for fulfillment options i in an offer set g ∈ G

can be calculated by solving

Pi(g) =
ui

∑i∈g ui . (11.1)

Service area and customer locations

The service area is simulated on a squared grid with a width of 120 distance units

(DU), with a centrally located depot. On this grid, 200 customer locations are gener-

ated in advance, drawn from a discrete uniform distribution. These locations will

be used later on in instance generation. Travelling one DU equals one minute in the

simulation run and costs 0.3 MU. Thus, all potential customer locations on this grid

can be visited within 120 minutes. Thus, if vehicle capacity allows, every customer

can at least be offered the longest fulfillment option.

Arrival rates

The customer arrival process is modeled with customer segment s-specific time

dependent arrival rates λ s
t (Lebedev et al. 2021). Further, two peaks in the arrival

rates are assumed which show common online shopping behavior, namely customers

placing orders during their lunch break or after returning home from work. For the

lower valued segment-two customers, lower and wider peaks are assumed than for

the higher valued segment-one customers in order to reflect more flexible working

conditions with lower income. The distribution of arrival rates is illustratively de-

picted in Figure 11.1.

Pricing approach

For the dynamic pricing component, two price points per fulfillment option are

assumed: 8 or 10 MU for guaranteed delivery within 90 minutes and 5 or 7 MU for

guaranteed delivery within 300 minutes. Further, it is assumed that no fulfillment op-

tion other than the no-purchase option needs to be offered. These pricing parameters
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Figure 11.1: Arrival rates

result in nine potential price lists from which the provider can select one to offer to

an incoming request.

11.1.2 Setting-dependent parameters

The considered settings differ in terms of the expected number of incoming customer

requests and the number of delivery vehicles. More specifically, settings resulting

from each possible combination of 100, 150, and 200 expected customer requests

with one, two, and three delivery vehicles are considered. The corresponding settings

are shown in Table 11.1, which states the settings’ names.
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customer requests
100 150 200

vehicles
1 1V_100 1V_150 1V_200
2 2V_100 2V_150 2V_200
3 3V_100 3V_150 3V_200

Table 11.1: Setting-dependent parameters

11.1.3 Instance generation

To ensure comparability, the proposed approach and the benchmark approaches

are tested on the same set of registered customers, which is referred to as the

customer base. More precisely, based on the customer segments’ and customer

locations’ characteristics described in Section 11.1.2, a customer base of 3000

different customer requests is generated initially. 30% of these customer requests are

segment-one customer requests. Then, for each setting, instances represent particular

demand streams that are obtained by event-based discrete simulation based on the

arrival rates and according to the setting’s expected number of customer requests.

Customer requests’ characteristics are obtained by sampling from the customer base.

300 instances are generated for each setting. It has to be noted that, again to ensure

comparability, the same 300 instances are used for settings that differ only in the

number of delivery vehicles.

11.2 Value of anticipation

In the following, the value of anticipation for the SDD-DMTP is discussed with

respect to the developed approach as presented in Chapters 9 and 10.

11.2.1 Experimental design and performance metrics

In studying the impact of different levels of anticipation, different variants of the

proposed approach are applied. They differ as to the length of the sample horizon

used for approximating the scenario values and route planning (see Section 9.2).
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Different sample horizon lengths of 30, 60, 90, and 120 minutes are evaluated. Here,

the decision making is based on the anticipation of a total of 15 scenarios, a number

that led to good decisions in performed pre-tests. Scenarios are sampled by drawing

new customer requests from the customer base each time a decision has to be taken.

Further, the anticipatory approach is benchmarked against myopic decision making.

Myopic decisions are taken in exactly the same way as in the anticipatory approach,

except that all potential successor state values in Equation (6.23) are set to 0. Further,

the tour-planning decisions are taken without anticipated customer requests. Thus,

in this approach the demand-management decision is based only on myopic MCTS

of a request.

To measure performance, for each setting and each length of the sample horizon,

the deviation from the myopic benchmark is evaluated with respect to the following

metrics:
Metric Description

Revenue shopping Baskets (RSB) sum of contribution margins of all shopping

baskets sold in one instance

Revenue Deliveries (RD) sum of delivery fees accrued by selling fulfill-

ment options throughout one instance

Delivery Costs (DC) overall cost of delivery operations, i.e., all exe-

cuted delivery tours in one instance

Contribution Margin (CM) RSB + RD - DC

Number Of Deliveries (NOD) number of accepted customer requests that turned

into orders and are being served in the course of

one instance

The deviation of a given metric from the myopic benchmark for a given setting

with a given sample horizon length is determined as follows: the results of the

metric across the 300 test instances of the setting under consideration is averaged and

compared with the corresponding averaged values resulting from solving the same

300 instances with the myopic benchmark approach. For example, the deviation

of the CM with a sample horizon length of 30 minutes from the myopic results is

calculated by CM30

CMmyopic −1.
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11.2.2 Numerical results

The obtained results are shown in Figure 11.2. On the tested settings, it is possible
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Figure 11.2: Value of anticipation as deviation from myopic benchmark of CM, RSB, RD, ND, and
DC by different look-ahead horizons (30, 60, 90, 120), averaged over 300 simulation runs

to achieve an increase in CM of 15% to 50%. First, the increase grows degressively

as the sample horizon length increases, until it reaches a peak at a sample horizon

length of 90 or 120 minutes for most settings. It then slowly decreases for longer

sample horizon lengths, which is displayed in more detail in Figure 11.4), where the
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absolute values of the mean CM across all 300 instances, as well as the corresponding

95%-confidence intervals are depicted. For almost all settings, these intervals of the

myopic approach and the anticipatory approaches do not overlap.

(a1) 1 vehicle (a2) 2 vehicles (a3) 3 vehicles

(a) 100 customers

(b1) 1 vehicle (b2) 2 vehicles (b3) 3 vehicles

(b) 150 customers
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(c1) 1 vehicle (c2) 2 vehicles (c3) 3 vehicles

(c) 200 customers

Figure 11.4: Mean contribution margins across 300 simulation runs: boxplots and 95%-confidence
intervals of the myopic approach, and the anticipatory approach with look-ahead horizons 30, 60, 90,

and 120

For the respective settings, this implies with a confidence of 95%, that the increase in

CM results from the anticipation approach. The only setting in which the increase in

CM is smaller than 10% and where 95%-confidence intervals overlap, is the setting

with low resource scarcity, in which the myopic approach also yields good results.

Regarding the degressive course of the CM increase with increasing sample horizon

length, pre-tests have shown that using fewer samples flattens the growth and shifts

the peak to a shorter sample horizon length. This is shown illustratively for setting

1V_100 in Figure 11.5. Increasing the sample size does not substantially shift the

peak to a longer sample horizon length.

look-ahead
myopic 30 60 90 120

# segment 1 customers 5.01 7.14 8.71 9.85 10.67
# segment 2 customers 14.16 12.36 10.53 8.77 7.27

# 90 minutes choice 1.25 1.60 1.44 1.21 1.67
# 300 minute choice 17.92 17.90 17.80 17.41 16.26

average price 90 minutes 8.00 8.49 8.55 8.69 8.78
average price 300 minutes 5.00 5.36 5.45 5.52 5.53

Table 11.2: Results for setting 1V_100 and different look-ahead periods, averaged over 300
simulation runs

Table 11.2 shows further numerical results for the 1V_100 setting, namely the
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Figure 11.5: Value of anticipation by different look-ahead horizons for setting 1V_100, 5 samples,
averaged over 300 simulation runs

average absolute values of customer choices, the segments of customer orders, and

the average prices paid for fulfillment options per instance. Here, it can be observed

that, as the length of the sampling horizon increases, the average number of highly

valued customer orders accepted in an instance increases, and correspondingly, the

average number of low-value customer orders accepted, decreases. Another trend

observed as the length of the sample horizon increases, is the increase in the average

prices paid for the delivery spans. The average number of customer decisions for the

different delivery intervals shows no obvious pattern. All of these observations are

representative of the results in the other instances, as can be seen in Tables 11.3 to

11.11.
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11.2.3 Analysis and insights

According to the previously described observations, the contribution margin that can

be achieved with anticipation is always higher than the contribution margin of the

myopic benchmark. This is mainly due to the fact that the revenues generated by

selling shopping baskets increase and the delivery costs decrease disproportionately

to the decrease in delivery orders. Combined with Tables 11.2 to 11.11, this shows

that anticipation indeed allows preserving capacity for high-value customer orders,

and also to generally steer customer choice with respect to a favorable spatial

structure. Thus, compared with myopic decision making, through anticipation

delivery efficiency can be improved.

Further, a degression in the increase of contribution margin with an increasing sample

horizon length can be observed. Such degression is explained by the lengths of the

sample horizon becoming longer, and as this happens, the proportion of uncertainty

in decision making increases. Thus, these results indicate that the solutions’ quality

decreases if the sample horizon is too long or if too few samples are used. This can

be ascribed to the following observation: for every decision, increasing the sampling

horizon length also increases the number of sampled, and hence uncertain requests,

while the number of certain orders does not increase. Additionally, due to the tight

delivery spans that distinguish SDD from other LMD services, all certain orders in

the scenarios will be served shortly after the time when the sampling starts. Hence,

sampling into the future too far leads to decision making based on tours that include

only uncertain orders. This distorts the precision of the value approximation.
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11.3 Value of explicit pricing optimization

Here, the value of the explicit pricing approach as described in Section 11.1.1 is

elaborated and compared with two benchmark pricing approaches.

11.3.1 Experimental design

To determine the value of (explicitly) using a pricing optimization model within

the proposed approach, two benchmark variants are elaborated. The first pricing

benchmark reflects pure availability control, in which the provider can only decide

whether to offer certain fulfillment options or not. Thereby, all prices are set to

the corresponding lower prices from the explicit pricing approach described in

Section 11.1.1. The second pricing benchmark replaces solving an explicit pricing

optimization problem in the developed approach by a simple pricing rule based on

opportunity cost estimation, which mimicks an idea followed by Ulmer (2020a).

If a fulfillment option’s calculated opportunity costs are low, its base price is set

the lower price point used in the explicit pricing optimization. If the opportunity

cost of an option exceed this base price, the price is set to the opportunity costs.

For calculating those, Ulmer (2020a) follows a definition by Yang et al. (2016).
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They define opportunity cost as the difference between the values of the states that

result from rejecting a customer and those from accepting the customer (for a certain

fulfillment option). In the conducted benchmark study, this definition is also followed

and opportunity cost are calculated accordingly, based on state values resulting from

the newly developed approximation approach (see Section 10.2). The first benchmark

is referred to as ’AC-BP’ (for ’availability control with base prices’) and the second

as ’OCBP’ (for ’opportunity cost based pricing’). Further, the developed explicit

pricing approach is referred to as ’OPA’ (for ’original pricing approach’).

The study is conducted on the same 300 instances for each setting as in Section

11.2.1. State values, and therewith opportunity cost, are approximated by averaging

the values of 15 samples across a sample horizon of 120 minutes length. Based

on the analysis in Section 11.2.2, this has proven to be the best combination for

the considered settings. In this way, the effects of bad opportunity cost estimation

by sub-optimal sampling horizon lengths/number of samples is minimized. Again,

performance is measured by evaluating the average of the contribution margins, the

number of accepted customer orders, the sum of revenues from shopping baskets

and from selling fulfillment options, as well as of the delivery costs.

11.3.2 Numerical results

The obtained results are given in Figure 11.7. Although the results of the average

contribution margins are close, the OPA yields better results than the benchmark

approaches in nearly all settings. The AC-BP only yields a higher averaged CM in

the settings with 200 customers, with two as well as with three vehicles; however,

the results of the OPA are exceeded by less than 0.5% and 0.005%, respectively.

In the setting with 100 customers and three vehicles, the OCBP yields a less than

0.05% higher CM than the OPA (see Figure 11.6a). The OCBP, on average, accepts

the most customer requests of all settings (see Figure 11.6b), but in most settings its

average RSB falls below the other approaches’ RSB. Also, it yields a substantially

higher DC for all settings and yields the highest RD in only three settings, where it
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Figure 11.7: Pricing benchmark in monetary units over number of customer requests 100, 150, and
200 - results averaged over 300 simulation runs

does not substantially exceed the RD of the OPA. In most instances the AC-BP

accepts the lowest number of customer requests, also with substantially lower RD

than the other approaches, but it still accrues a comparably high RSB. It even exceeds

the other approaches’ RSB in four settings. Also, the AC-BP yields the lowest DC

of all instances except one.

11.3.3 Analysis and insights

The results in Section 11.3.2 show that the different pricing approaches rely on three

different levers to increase the contribution margin, and that each of the various

approaches exploits those levers to a different extent. The levers observed are

increasing the overall revenue by setting higher prices (L1) if possible (mainly

observed for the OCBP), increasing the overall revenue by preserving capacity for

high-value customer orders (L2) (mainly observed for the BP and AC-BP), and

reduce overall delivery costs by steering customer choices (L3) toward the most

efficient fulfillment options and rejecting those requests that negatively affect routing

efficiency (mainly observed for the AC-BP and OPA). Table 11.12 summarizes the

exploitation of the different optimization levers by the evaluated solution approaches.

The OCBP has the highest pricing flexibility, as prices originate from a continuous

range instead of being chosen from a predefined, finite set of price points. Therefore,

this approach can exploit L1 the most (see Figure 11.6d) and hence can also accept

the most customer requests. Still, regarding the CM, for most settings the OCBP
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Levers
L1 L2 L3

Pricing flexibility Preserving capacity Reducing delivery cost

Solution
approach

OPA ✓ ✓ ✓
AC-BP ✗ ✓ ✓
OCBP ✓ ✗ ✗

Table 11.12: Exploitation of optimization levers by solution approaches

performs worse than the other approaches due to exploiting L2 and L3 less effectively.

This can be derived from the lower or under-proportionally higher RSB (see Figure

11.6c), and from the over-proportionally higher DC (11.7e).

In contrast, the AC-BP has the lowest pricing flexibility and cannot exploit L1 as the

much lower RD (11.6d) shows. Still, the AC-BP is a performs well regarding the

exploitation of L2 and L3. The same can be observed for the OPA. Further, it can

be recognized that the OPA also exploits L1. In addition to exploiting L1, the OPA

enables enlarging the provider’s service provision, as the OPA can offer delivery of

customer requests that the AC-BP would deny and the customers can themselves

decide whether to accept or reject the corresponding offer. This helps to improve

customer goodwill and long-term customer loyalty.
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Despite the increasing practical relevance of i-DMVRPs and the vast body of liter-

ature addressing respective problems, a large number of research gaps concerning

practically relevant questions still existed, e.g., a general taxonomy, a unified model-

ing framework for i-DMVRPs. Therefore, existing analytical discussions, as well

as existing solution approaches could not be transferred between different types of

i-DMVRPs.

After introducing the problem and its relevance in Part I and laying a theoretical

foundation in Part II, this dissertation contributes to the research on i-DMVRPs as

follows: first, by comprehensively analyzing the broad body of related literature in

Part III and, based on this, by deriving a highly explicit but still sufficiently gen-

eral problem definition that includes a mutual taxonomy for further classification.

Moreover, this part contributes by introducing a modeling framework, which is then

deeply analyzed analytically in Part IV. Additionally, a specifically tailored solution

approach that combines anticipation in both components, i.e., demand management

and tour planning, in an integrative manner is developed and presented in Part V.

In the following, for each Part III to V, a conclusion, managerial insights, and an

outlook for future research directions are given.

Part III: Integrated demand management and vehicle routing problems

In Part III of this dissertation, i-DMVRPs were formally defined and different types

of i-DMVRPs were delineated following a newly introduced, uniform taxonomy

that was derived from practical applications as well as existing research. The related

literature was discussed with regard to different perspectives and with a special focus

on modeling, the definition of opportunity cost, and solution approaches. Therewith,

substantial research gaps were identified and elaborated. Those are the lack of:

- an explicit but unified MDP model for i-DMVRPs with disjoint and overlap-

ping booking and service horizons,

- a unified definition of opportunity cost for i-DMVRPs,

- an analytical discussion on i-DMVRP models that also address OPs,
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- and a solution approach for OPs that integrates anticipation in demand man-

agement and tour planning at the same time.

Then, a unified modeling framework was introduced, in which an MDP model for

OPs is the generalization of a respective model for DJPs. Additionally, a modified

model was introduced for OPs in order to preserve a monotone value function. Math-

ematical proof shows the equivalency of this modified model and the original model

with regard to the objective function value. Therewith, different types of i-DMVRPs

can be modeled within the proposed framework, and the modeling approaches are

transferable to a wide range of underlying problem settings. Further, the same

problem setting can be modeled by different but equivalent approaches such that it is

possible to choose the model which better suites a given solution approach.

Part IV: Analytical discussion of opportunity cost for i-DMVRPs

In Part IV of this dissertation, the MDP models introduced in Chapter 6 were in-

vestigated analytically. Thereby, it was shown, that the traditional interpretation of

opportunity cost cannot be transferred to i-DMVRPs, and therefore, the respective

definition of opportunity cost was generalized. Further, central opportunity cost

properties and the monotonicity of the introduced value functions were investigated.

The following conclusions and managerial insights can be derived: first, the discus-

sion shows that neglecting variable fulfillment cost in the estimation of opportunity

cost can lead to sub-optimal decisions. Thus, approximating solely DPC to derive

demand-management decisions is only valid for some specific problem settings

and can lead to expensive suboptimal decisions. Thereby, generally, the follow-

ing relationship can be derived: (1) The tighter the physical vehicle capacity, the

more important is the influence of DPC in decision making. (2) The more spatially

dispersed the demand, the more important is the influence of MCTS in decision

making. This has to be taken into account when selecting or developing a solution

approach for an i-DMVRP setting, as not all solution approaches can approximate

DPC and MCTS at the same time. Further, it has to be taken into account that the

approximation of DPC and MCTS can be variably complex for different problem
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settings and that, at the same time, the required approximation precision can deviate.

A complex demand-management setting, e.g., tends to require more precision in the

approximation of opportunity cost than a simple demand-management setting.

Second, from the observation that DPC and MCTS both can be negative, the follow-

ing insights can be derived and exploited for heuristic decision making:

Negative DPC – If the respective customer request is accepted, further cus-

tomer requests from its vincinity are expected and should also be accepted if

they realize.

Negative MCTS – If the respective customer request is accepted, fulfillment

cost can be saved in that the acceptance causes other customer requests to be

displaced, which come from locations that are less profitable with regard to

fulfillment cost.

Third, the exploitation of the investigated opportunity cost properties and the mono-

tonicity of the value functions can improve solution approaches substantially (c.f.

Koch (2017), Adelman (2007)).

Further, the previous introduction and analysis of opportunity cost for i-DMVRPs is

a starting point for deeper analyses of the impact intensity and scope of the mono-

tonicity of value functions and the discussed opportunity cost properties on different

solution approaches. Specific matters of interest for future studies are for example

the impact of the monotonicity of the value function on the stability of learning-based

solution approaches or the respective impact of the delay of the routing rewards in

the modified OP model. A different, promising research direction is the investigation

of how to preserve the previously described properties for heuristic MDP models that

base on state space aggregation or incorporate heuristic tour-planning approaches.

Part V: Development of a novel dynamic demand-management and online

tour-planning approach for same-day delivery

In Part V of this dissertation, the SDD-DMTP was investigated, with special atten-

tion to explicitly incorporating two types of required decisions, namely demand-
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management decisions and tour-planning decisions. The problem under consider-

ation is characterized by overlapping booking and service horizons. This adds an

online tour-planning component to the demand-management problem, which itself is

computationally intractable. Thus, it makes the overall problem substantially more

difficult to optimize than the related DJPs, to which a variety of solution approaches

is dealt with in the literature as discussed in Section 5.2.

A non-learning based solution approach has been developed which provides inte-

grated decision making for the two types of decisions and does not require extensive

offline learning. In this approach, both decisions are anticipatory and based on the

combination of two central ideas – multiple scenario approaches for online tour-

planning and approximation of state values – which is done by averaging across

sampled trajectories, such as those known from rollout algorithms. Further, a hierar-

chical demand-management decomposition has been developed.

Moreover, an extensive numerical study was conducted, that also shows the superior-

ity of the newly developed approach, first, with regard to incorporating anticipation,

and second, with regard to different pricing benchmarks, in two parts:

In the first part of the study, the performance of the approach regarding different

levels of anticipation was assessed. The assessment demonstrated that anticipation

can increase the contribution margin with up to 10-50% in the settings under con-

sideration, especially if delivery resources are scarce. By incorporating anticipation

through sampling, it was found that appropriately limiting the length of the sample-

horizon can substantially improve decision making. The main reason for this is that

as the length of the sample horizon increases, decisions are made with increasing

uncertainty. This is especially relevant for practical settings where booking and

service horizons overlap, as in the SDD case. If the sampling horizon is too long,

anticipatory decisions are based on tours that contain only sampled orders and no

confirmed ones.

In the second part of the study, three pricing approaches have been compared: pure

availability control, the proposed explicit pricing approach, and a simple pricing

rule based on opportunity cost. Comparing the different approaches with each other,
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it was revealed that as price flexibility increases (from fixed prices to a limited

number of possible price points to possible prices from an unbounded continuous

space), the quality of the resulting tours decreases. This demonstrates that the

integrated state value approximation and decision-making approach does indeed

allow to steer customer choice toward efficient fulfillment options, while at the same

time preserving capacity for high-value customer orders. Compared with the other

two approaches, this one resulted in the best ratios of number of customer requests

accepted to corresponding sum of revenues from shopping baskets, and delivery

efficiency. Further, it was shown that the approach that accepts the most customer

requests is not necessarily the best in terms of contribution margin, as it yields the

highest delivery costs. In practice, when choosing a pricing approach, one has to

examine closely which is more relevant for long-term success – losing a customer’s

goodwill due to being rejected or due to higher delivery cost.

The conducted study’s results provide starting points for future efforts in several

directions. The first direction concerns anticipation in solving i-DMVRPs with

overlapping booking and service horizons. In future studies, it could be useful

to examine hybrid anticipation approaches that combine learning based and non-

learning based decision making. Thus, a good starting point would be to explore

whether adding a previously learned end-of-horizon valuation to the presented

approach would improve its performance. The second direction concerns the pricing

component of the newly developed approach and the different variations compared.

The observed results show that an increase in price flexibility leads to a decrease in

cost efficiency, which is a very intriguing direction for deeper analyses, especially

when dealing with continuous explicit price optimization and more complex customer

choice models. The third direction concerns an entirely different, more revenue

management oriented view. It would be very elucidating to further investigate the

hierarchical demand management decomposition approach that has been developed.

Particularly, it could be studied how this approach performs in different environments

and for different problems, e.g., with more complex pricing and choice models, and

whether it would then still be possible to apply it in online algorithms.
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Overall, the research underlying this dissertation shows that i-DMVRPs form a

highly practice-relevant, but extraordinary complex class of optimization problems,

which have not yet been discussed to completeness in the literature. Therefore, the

results presented in this dissertation contribute to both practice as well as research.

First, the formally introduced problem definition and the derived taxonomy helps

practitioners to classify their practical problems and, thus, supports an efficient,

targeted search for solution approaches. At the same time, it helps researchers to

efficiently gain an overview of existing approaches and, thus, substantially supports

the delineation of future research from existing works. Analogously, the introduced

unified modeling framework enables transferring existing solution approaches among

different problem settings and its analytical discussion sets a crucial foundation

for the acceleration of transferring approaches from different fields of research to

the research on i-DMVRPs. Finally, with the newly developed solution approach,

practitioners are provided with a tool to comprehensively tackle SDD problems and,

therewith, operate SDD services profitably for the first time.
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