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A B S T R A C T

Support structure design for Laser Powder Bed Fusion has received little attention in Design for Additive
Manufacturing although its importance for a successful and efficient build job. The resulting knowledge
insufficiency on support design can lead to in-process failures of the build. Also, parts can crack due to high,
unaccounted residual stresses. This, and overestimated support designs, lead to an increased manufacturing
time and cost. The presented research contributes to a better understanding of support structure design by
developing a workflow for the design of tree-like support structure and its subsequent meta-model based
parameter optimisation. The design parameters of resulting support structures for two generic geometries in
a cantilever shape with a planar and an arched down-facing surface are compared with each other, showing
consistent values for the minimum distance between branches and the branch length. These and other design
parameters govern the geometry of the tree-like structure within the design space. An additionally performed
sensitivity study revealed high correlations of the stem diameter with the part’s displacements. Based on 500
individual support designs and the meta-model evaluation of 9000 parameter sets, a Pareto frontier emerges
for the trade-off between the minimum support structure volume and the part’s displacements.
1. Introduction

In the laser-based powder bed fusion of metals (PBF-LB/M), an
additive manufacturing (AM) process, support structures are needed to
support overhanging surfaces or anchor the part to the base plate [1].
ver the last few years, many Design for AM (DfAM) guidelines and
ules of thumb were established [2,3]. These DfAM guidelines usually
eal only with the part design and how to avoid support structures
ather than their design. In addition, many investigations apply topol-
gy optimisation with additional constraints regarding the overhang
ngle [4,5] for enhanced printability as a restrictive approach on the
art design. Recently constraints are also added for residual stresses to
revent build failure [6]. Only a few studies focus on an opportunistic
design of supports [7,8]. This leads to a lack of knowledge and insuffi-
ient understanding of support structure design, which is expressed by
he little number of investigations on overhanging structures and the
herefrom resulting residual stress formation [9]. The paper at hand
aims to contribute to a better understanding of support structure design
by using a parameter optimisation of a parametric tree-like support
structure as an example. To keep the focus on the support design and
limit the number of variables in the optimisation, process variables are

∗ Corresponding author at: Universität der Bundeswehr München, Institute for Technical Product Development, 85579 Neubiberg, Germany.
E-mail address: s.weber@unibw.de (S. Weber).

kept constant during the simulations and considered to be given by
the machine’s manufacturer. One of the most critical issues in metal
AM is the build failure or deformations, due to residual stress in the
part [10], which may happen during or after the process has finished.
To reduce the risk of in-process failure, some investigations were made
on optimising support structures for reduced residual stresses or less
part deformation. These investigations commonly involve topology
optimisation for support structure design or to create a density map,
which can further be used for an easy support generation using lattice
structures or unit cells [10,11]. Topology optimised support structure
has the disadvantage that its faceted geometry usually needs some kind
of smoothing and cannot be further processed in CAD tools without
adaption [12]. The optimisation of the parametric tree-like support
presented in this paper on the other hand uses CAD compatible non-
uniform rational basis splines (NURBS). Another benefit of parameter
optimisation is the fast processing, once the meta-model exists. This
way, possible support designs for recurring generalised support sur-
faces can be determined and support structure parameters can be set
specifically for such geometries without the need for computationally
expensive topology optimisation.
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Several studies exist for the topology, but not the parameter opti-
misation of support structure. Studies involving topology optimisation
can be classified by their approach regarding the mechanical behaviour,
the thermal behaviour, or coupled investigations. A few publications,
which use tree-like or similar support structures, are mentioned here-
after. The mechanical compliance is for example the objective in the
investigations of Mezzadri et al. [13], Zhang et al. [14], and Liu et al.
15]. Their studies use or result in tree-like support structure. This
upport type is also part of the investigations of Malekipour et al. [16],
hou et al. [17] and Miki and Nishiwaki [18], which tackle the objec-
ive of increasing heat conduction. Tree-like supports are considered
n effective support solution, especially when optimised for a minimal
hermal compliance [19]. Combined mechanical and thermal loads
re considered for tree-like support by Allaire and Bogosel [20] and
iraldo-Londoño et al. [21]. Despite the large number of investigations
sing topology optimisation, Zhang et al. [22] created a parametric
upport structure, which was optimised for reduced support volume.
n contrast to their and other existing approaches, design parame-
ers, residual stresses, and thermal warping were considered in the
arameter optimisation of the here presented approach. This once more
ighlights the novelty of this study. Section 2 starts with a detailed
description of automatic support generation using parametric tree-like
structures, followed by the set-up of a sequential thermal and struc-
tural simulation model. A subsequent parameter optimisation based
on a meta-model for two generic geometries is described afterwards.
Results of this parameter optimisation are presented and discussed in
Section 3 together with a verification of the supports’ functionality by
a comparison with commercially generated block-support. The study
concludes with a short summary and suggestions for future research.

2. Methodology

This section describes the approach for an automated generation of
biomimetic tree-support and its subsequent adaption through parame-
ter optimisation. For this, an additive manufacturing process simulation
is carried out to evaluate the total displacements of a generic part after
cool down, using the tree-support. The parameter optimisation is based
on a set of design points (DP), where each DP is a set of parameters
leading to a specific geometry of the support structure. These design
points are created and evaluated iteratively until a specified prediction
accuracy is met. In this way, the necessary amount of calculations can
be kept to a minimum. Additionally, a sensitivity study is performed to
figure out correlations between parameters and to estimate the effect
of each parameter on the results. Two different generic geometries
are chosen for the automated tree-support generation. The resulting
parameter optimised tree structures are compared against each other
in Section 3.

.1. Automated parametric support generation

Common bio-inspired approaches for realistic tree representations
n computer graphics rely on recursive algorithms such as the Linden-
ayer system (L-system) [23–25]. For the complex case of PBF-LB/M,
ree-like supports using the L-system turned out to be impractical.
easons for this are the bottom-up approach, i.e. the trees grow from
he stem, the high order of branching or the complexity to parameterise
he system. Additionally, more organic structures can be created using
he new method introduced in this section, since the guiding splines
ave at least a G1 continuity. The support geometry is generated within
he commercial software ANSYS® SpaceClaim® using the Python®
rogramming language.

.1.1. Design parameters
The design parameters used for creating the tree-support can be

lassified into two groups. The first set of parameters defines the
661
Fig. 1. Tree-support design parameters shown on the generated support geometry and
the guiding skeleton.

geometry directly and is therefore used for optimisation. The second set
contains parameters, which control some boundary conditions of the
support generation and are therefore kept constant during parameter
optimisation. Dimensional parameters, except the reduction factor 𝑘𝑟𝑒𝑑 ,
belonging to the first group are explained in Fig. 1. The reduction
factor 𝑘𝑟𝑒𝑑 describes the relationship between points on the support
surface and the number of points for the stems. Points on the support
surface are further called seed points, as they build the grid that defines
the tree generation. Dimensional parameters are the diameter for the
top part of the structure 𝑑𝑡𝑜𝑝, the stem diameter 𝑑𝑠𝑡𝑒𝑚, the minimum
distance between branches 𝑙𝑚𝑖𝑛 as well as parameters for the continuity
representation 𝑙𝑠𝑡𝑒𝑚 and 𝑙𝑡𝑜𝑝, see Fig. 1. The latter set the length for
a straight line extending from the support surface or respectively the
base surface. Parameters of the second group are used to control the
behaviour. The representation accuracy can be set as well as a binary
value expressing a perpendicular or non-perpendicular attachment of
the branches to the support faces. One additional parameter is the
surface angle – measured in respect to the horizontal – below which
the surfaces require support. Distinct values for parameters of the
first group can vary in a specified range, which is listed and further
discussed in Table 1 of Section 2.3.

2.1.2. Determination of overhanging surfaces
After the parameters are initialised in the Python® script, the sur-

faces requiring support need to be determined. For this, all surfaces
of the build body with a z-coordinate of the face midpoint larger
than the one from the base surface are checked for their face normal
direction. To determine all possible candidate surfaces that might need
support, the z-component of the normal vector is checked for a negative
value. The need for support is later checked for each seed point of the
support branches individually using the surface angle parameter and
the angle of the face normal evaluated at the seed point. For the PBF-
LB/M process the surface angle parameter is set to 45° as this is known
in literature as the critical angle for self-supporting surfaces [26,27].
nother method to determine the points on the part needing support is
resented by Wang et al. [28].

.1.3. Seed points and number of stems
The third step in the support generation is the calculation of nec-

ssary seed points. For this, the support surfaces are assumed to have
rectangular outline with the lengths 𝑙𝑋 and 𝑙𝑌 respectively along the
- and y-coordinate system. The number of seed points in x- and 𝑦-
irection can be calculated by rounding the result of Eq. (1) to full
integer values.

𝑛𝑠𝑒𝑒𝑑𝑠𝑋 =
𝑙𝑋

( ) ; 𝑛𝑠𝑒𝑒𝑑𝑠𝑌 =
𝑙𝑌

( ) (1)

𝑑𝑡𝑜𝑝 + 𝑙𝑚𝑖𝑛 𝑑𝑡𝑜𝑝 + 𝑙𝑚𝑖𝑛
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The number of stems 𝑛𝑠𝑡𝑒𝑚𝑠 is then determined by multiplying the
umber of seeds with the reduction factor 𝑘𝑟𝑒𝑑 . The resulting value is
floored and converted to an integer data type. In order to determine
the exact position of each seed on the support surface, the edge dis-
tance 𝑥𝑒𝑑𝑔𝑒 is calculated by the following Eq. (2) and a pitch value
representing the distance between the seed points needs to be known.

𝑥𝑒𝑑𝑔𝑒 =

[

𝑙𝑋 −
[

𝑛𝑠𝑒𝑒𝑑𝑠𝑋 ⋅ 𝑑𝑠𝑒𝑒𝑑 +
(

𝑛𝑠𝑒𝑒𝑑𝑠𝑋 − 1
)

⋅ 𝑙𝑚𝑖𝑛
]]

2
(2)

The normal angle of the surface is evaluated at each seed point.
eed points are only further evaluated if the resulting angle is smaller
han the critical angle. This procedure is followed by the determination
f possible stems for each support surface. The location of the stems is
igured out on the support surface and then projected onto the base
urface. After this, a second set for stem and seed points is created. A
opy of the stem points is moved along the global 𝑧-axis by the amount
pecified in 𝑙𝑠𝑡𝑒𝑚. For the seed points, this step is followed respectively
long the negative 𝑧-axis with 𝑙𝑡𝑜𝑝 or along the support face normal, if
he corresponding binary value is set to one.

.1.4. Creation of the branches
The distance to the stem points is calculated for each of the previ-

usly determined seed points individually. Each branch is then created
ne after another for every seed point and the matching stem points
ith the shortest distance within a small tolerance. For this, a function
akes a point list with four points – the seed point, the stem point as well
s the two points for continuity – and the face normal as arguments.
ext, the start and end line are created followed by a spline connecting
hem. At the seed and the stem point the circular cross-sections are
hen created perpendicular to the given face normal or the global 𝑧-
irection with the corresponding diameters 𝑑𝑡𝑜𝑝 or 𝑑𝑠𝑡𝑒𝑚 respectively.
Finally, a transition loft is created by sweeping one cross-section to the
other along the three guiding curves.

The last steps of the script are the combining of the single branches
to complete trees using Boolean functions and the creation of so-called
named selections. These selection sets can later be used in the ANSYS®
echanical™ application. The sets include various selections of faces
or boundary conditions as well as the support structure, base and build
ody itself.

.2. Additive manufacturing process simulation

The simulation model of the complete manufacturing process is
reated using the commercial simulation software ANSYS® Work-
ench™ in the version 2020 R2, following the software’s approach for
he simulation of the additive manufacturing process. The additive
rocess is implemented as an uncoupled simulation with a thermal
imulation followed by a structural simulation that uses the strain
esults of the thermal simulation as an input. During the simulation,
omplete layers of elements are consecutively activated at the melting
emperature of the material. In this way, the computational expensive
imulation of the laser scanning path can be avoided. A build and
ool-down phase is simulated, leading to the thermal history of the
art. These element layers are the so-called super layers, consisting of
ultiple physical layers [29].

.2.1. Geometry and material
The geometry for the simulation model is split into three parts. The

ase plate, the build body and the support geometry. The base plate is
circular plate with a diameter of 100mm and a thickness of 25mm. As
escribed in Section 2.1, the support geometry is created automatically
or parameters specified in Section 2.3 and changes therefore for each
arameter set that is simulated. To investigate not only the support
cenario for flat overhanging surfaces but also for more round and com-
lex surfaces, two different build geometries were simulated. The first
art is a standard cantilever that is used by ANSYS® for the calculation
662

u

Fig. 2. Cantilever geometry used for the simulation models with a flat overhang for
Cantilever A in (a) and an arched down-facing surface for Cantilever B in (b).

of the strain scaling factor, which is further referred to as Cantilever
A. It is displayed in Fig. 2(a). The geometry in form of a cantilever
was chosen because of the large overhang. Additionally, it is frequently
used in research on support optimisation in some variations [10,11,30]
nd allows thereby for result comparisons. The dimensions, which are
hown in the Figure, were taken from the ANSYS® example for the
ame reason of comparability. The second build geometry, which is
eferred to as Cantilever B, is also modelled in the shape of a cantilever
nd therefore shares the length, width and minimal support height of
he first body. The difference is the arched surface that needs support.
he overall height of the cantilever increases to 14mm to compensate
or the changing thickness of the top section. The second build body is
hown with some dimensions in Fig. 2(b).
All parts of the simulation model use the titanium alloy Ti6Al4V of

he ANSYS® standard material library for additive manufacturing mate-
ials with temperature-dependent properties for density, specific heat,
hermal conductivity and tensile properties. The material uses isotropic
lasticity and bi-linear isotropic hardening for the representation of
lastic deformations. Previous investigations showed a by around 10%
educed tensile strength for additively manufactured support structures
ith small diameters, because of additional powder particles that con-
lomerate to the outside boundaries [31], which is considered in the
odel for this study by multiplying the material properties for the
upport structure with a support property factor of 0.9. For a correct
imulation of the thermal strains, the reference temperature at which
o strains occur needs to be set. For the base plate, this equals the
mbient temperature. For the build body and support structure, on the
ther hand, the reference temperature is the melting temperature of the
sed material — in this case 1605 °C.
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2.2.2. Meshing and contacts
In a previously published article, two different meshing strategies

for additive manufacturing simulation were compared. For geometries
with a high level of curvature, such as tree-like support structure,
layered tetrahedral meshing turned out to be more practical [32]. The
tetrahedral shape of the elements allows for a better representation
of the geometry compared to a cartesian or voxel mesh, even with
a larger element size. This results in shorter simulation times with
the same or better result accuracy, which is especially beneficial for a
large number of necessary simulations in the parameter study presented
in this article. For this simulation, the layered tetrahedral mesh is
used with a quadratic element behaviour and a layer height for the
tetrahedral layers of 0.5mm, which is in accordance with the element
size of 0.5mm for the part. The support structure and the contact
region between the support and the part is meshed with an element
size of 0.25mm for a better representation of the small diameter of
he stems and branches as well as a better convergence of the solver
t the contact pair. To avoid issues during the solution process, the
lement size is selected carefully to match an integer multiple of the
ayer height resulting in two elements in height per layer. The size
or the elements of the base body is set to 5mm, as they have only a
mall influence on the overall simulation results. The model has three
ontact regions. The contact between the base plate and the build part
s well as between the base and the support structure is a fully bonded
ontacts with default settings. The more challenging contact between
he support structure and the build geometry uses also a fully bonded
ontact, but with reduced contact stiffness. A reduction factor of 0.1 for
he stiffness leads to a better convergence of the solver. Additionally,
he method for contact detection is set to node-normal to target, which
ranslates to support structure towards the build part.

.2.3. AM-process settings and boundary conditions
The value for the simulation layer height needs to be the same or

n integer multiple of the mesh layer height. For these simulations,
he layer height is set to 0.5mm for faster calculations and exceeds
hereby the recommended range of 10–20 times of the physical layer
eight [29], which is 20 (mμ) for the selected Trumpf TruPrint 1000
BF-LB/M machine. The deviations using a larger layer height of 25
imes the physical layer height is negligible as shown in a previous
tudy [32]. Other process parameters include the hatch distance with
0 (mμ) and the scanning speed of 905mm s−1. The simulation uses a
ingle heat source and the time between layers is set to 10 s. The
imulation model was validated by a previous set of experiments and
imulations, from which a strain scaling factor of 0.1663 was derived.
his scaling factor allows achieving more accurate and realistic results
or the used PBF-LB/M system.
For the boundary conditions of the model, the ambient temperature

uring the build process is set to 40 °C and during cool-down to 24 °C.
Thereby the gas convection coefficient for the combination of Argon
and the Titanium alloy Ti6Al4V is approximated with 6Wm−2 K−1,
following the range reported by Li et al. [33] The approximation is
done using laws for ideal gases, empirical data and equations given
by the Association of German Engineers (VDI) [34]. As the powder
is not simulated, the heat transfer between the powder and the part
is implemented using a convective coefficient, which is assumed to
be 1% of the gas convection coefficient. Additional thermal boundary
conditions are applied to the lower surface of the base plate. During the
build process, the heat transfer at this surface is neglected and therefore
implemented as an adiabatic condition, following the work of Romano
et al. [35] For the cool-down step, a constant ambient temperature of
24 °C is assumed. On the structural side, also the bottom surface of the
base plate is used to apply boundary conditions. All elements of this
surface are fixed in the x-, y- and z-coordinate.

The additive manufacturing process simulation is divided into a
thermal and a structural simulation. Each simulation is further divided
663

into two steps, one for the heating and one for the cool-down phase.
Table 1
Parameter ranges used for the design point creation.

𝑑𝑠𝑡𝑒𝑚 𝑑𝑡𝑜𝑝 𝑙𝑠𝑡𝑒𝑚 𝑙𝑡𝑜𝑝 𝑙𝑚𝑖𝑛 𝑘𝑟𝑒𝑑
min [mm] 0.5 0.5 0.5 0.5 0.5 −0.5 [–]
max [mm] 0.8 0.8 2.5 2.5 1.5 0.6 [–]

These two steps are repeated for each simulation layer. After the cool-
down step of the finished build process in the structural simulation
back to ambient temperature, one additional step for the removal of
the support structure is added. The large deformation option of the
structural simulation is used to account for non-linear behaviour and
to allow plastic deformations of the parts.

2.3. Sensitivity analysis

One goal of this research is the determination of support struc-
ture design parameters that have a large influence on the mechanical
behaviour of the final part. The term mechanical behaviour stands
partially in contrast to mechanical properties and includes the part’s
deformation and the formation of residual stresses during the build
and after cool-down. It is in contrast to mechanical properties, since,
for example, the density or tensile properties of the part are not taken
into account. A sensitivity study is performed to determine the design
parameters. The analysis uses the Advanced Meta-model of Optimal
Prognosis (AMOP) approach from the optiSLang® plug-in for ANSYS®
Workbench™ which is an extended version of the Meta-model of Opti-
mal Prognosis (MOP) that was first introduced by Most and Will [36].
Polynomial regression can be used to approximate the response of
a model. The Moving Least Squares (MLS) approximation [37] takes
this one step further and introduces distance-dependent weighting
functions for better approximation. These two prediction approaches
build, together with the search for optimum input values, the base for
the MOP [36]. The quality of the prediction can be checked using the
Coefficient of Prognosis (CoP), which is a value calculated using the
squared prediction errors and the total variation of the output. The
result prediction is fast and computationally cheap compared to neural
network approaches since no complex training algorithm is necessary
for the AMOP. The meta-model is also suitable for additional parameter
analysis or parameter optimisation and needs only a single solver run
for verification [38].

In contrast to the more traditional full-factorial or fractional facto-
rial Design of Experiments, the AMOP can keep the number of necessary
solver runs to a minimum, while still keeping the prediction quality
high. This is achieved by subsequently adding and solving design points
until the CoP reaches a target value or the maximum number of desired
design points is reached. The meta-model can be further refined by
adding constraints for valid designs and optimisation objectives. One of
these constraints is the sum of both parameters describing the straight
part of the stem and the top branch, which needs to be smaller than
3mm to keep a valid design. The second constraint that is introduced is
to check the minimum distance of the stems, as the distance is driven
by the seed point distance and the reduction factor. A third constraint is
a failure criterion, which compares the maximum principal stress of the
part with the ultimate tensile stress of the material following Rankine’s
theory for brittle materials.

Table 1 shows the lower and upper bounds of the support structure
esign parameters for the sensitivity analysis. The diameters of the
ree-like structures were given a range of 0.5mm to 0.8mm based on
ensile tests of a preceding study, which showed the best results for
.6mm and 0.7mm [31]. The bounding values for the other parameters
were determined by creating the support structure virtually until the
resulting designs violated Design for Additive Manufacturing (DfAM)

rules [26] or the trees were no longer identifiable as such.
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2.4. Parameter optimisation

Following the creation of the meta-model and the sensitivity anal-
ysis, parameter optimisation is performed. Therefore, an evolutionary
algorithm is used, because of the relatively high number of input pa-
rameters and multiple objectives. These objectives are the minimisation
of the support volume, i.e. respectively powder usage and build time,
and the minimisation of the maximum nodal displacement after cool
down, as this is a measure for the geometric accuracy of the part before
heat treatment is performed. The maximum displacement is preferred
over a stress objective because the displacement is better suited for an
automated result evaluation as the stress shows sometimes peak values
at singularities. Due to the fact, that the volume and the displacement
objective are self-interfering, as low material usage – in general –
contradicts support strength, a trade-off needs to be found. Therefore
the admired result of the parameter optimisation is a Pareto frontier.
A Pareto frontier is a set of Pareto optimal values, which are the result
of a multi-objective optimisation, where improving one response would
harm at least one other result value [39]. In this way, the designer can
hoose an optimal result between less material consumption or higher
art deformation.

. Results and discussion

In the following section, results of the performed simulations and
he meta-model based optimisation are discussed. First, each geometry
s handled individually, then subsequent comparisons of the results for
antilever A and B are performed. The simulations were performed on
system with an Intel® Core™ i7-8700K processor and 32 GB RAM. A
ingle simulation run took approximately 20 min, but parallelisation of
p to five parameter sets was possible without a noticeable slow down.

.1. Cantilever A

For Cantilever A, the AMOP is based on 500 samples, which was also
he maximum allowed number of design points to be simulated. From
hese 500 DPs, 370 designs failed or were excluded from the meta-
odel generation due to unpredicted errors in the simulation model
r because of constraint violations. Nevertheless, a CoP of 85% was
chieved for the support volume response 𝑉𝑡𝑜𝑡 and a CoP of 94% for
he displacement response 𝛥𝑚𝑎𝑥. These Coefficients of Prognosis are
valuated by the software and are close to the targeted 90% prognosis
uality of the meta-model. For both responses, the input parameters
𝑟𝑒𝑑 and 𝑙𝑚𝑖𝑛 have the best prediction accuracy. The residual plots of
hese two input parameters are displayed with a confidence level of
= 3 for the support volume response in Fig. 3(a) and the displacement
esponse in Fig. 3(b).
The importance of the input parameters 𝑙𝑚𝑖𝑛 and 𝑘𝑟𝑒𝑑 is also reflected

y their high correlation with the response 𝑉𝑡𝑜𝑡 with correlation values
57 = −0.858 and 𝑟67 = −0.758 as well as 𝛥𝑚𝑎𝑥 with 𝑟58 = 0.740 and
68 = 0.914, see Fig. 4. Despite the also high correlations between
he stem diameter and the responses (𝑟 = 0.611, 𝑟 = −0.685), the
664

17 18 r
Fig. 4. Correlation matrix for parameters and responses of Cantilever A.

Fig. 5. Pareto plot for the objectives of Cantilever A.

top diameter shows no correlation with the responses at all. For this
example, 𝑟17 means an increase of support volume, if the stem diameter
is increased. For the negative sign of 𝑟18 this results in a reduction of
the maximum displacement respectively. The self-interference of the
responses described in Section 2.4 results in 𝑟78 = −0.78.

Correlations of the input parameters to be mentioned are between
𝑚𝑖𝑛 and 𝑑𝑠𝑡𝑒𝑚 with a negative correlation of 𝑟15 = −0.454 and for the
tem reduction factor 𝑟56 = 0.566. The stem diameter shows an inverted
ehaviour to the stem reduction factor with 𝑟16 = −0.565. Further minor
egative correlation can be seen for the input parameters 𝑙𝑠𝑡𝑒𝑚 and 𝑙𝑡𝑜𝑝
ith a value of 𝑟34 = −0.321. Other parameters show no noteworthy
orrelations. The full correlation matrix is displayed in Fig. 4.
The optimisation was performed with an evolutionary algorithm,

valuating 9000 samples using the meta-model. At least one of the pre-
iously defined constraints was violated for 553 of these samples. The
bjectives of the optimisation are the minimisation of both mentioned
esponses 𝑉𝑡𝑜𝑡 and 𝛥𝑚𝑎𝑥. As these responses, in general, contradict each
ther to some extent, no single optimum can be determined and the
esult is a Pareto plot, which is shown in Fig. 5.
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Fig. 6. Residual plots: Predicted versus simulated values.
Fig. 7. Correlation matrix for parameters and responses of Cantilever B.

The plot displays the values of both responses for each sample not
iolating any constraints as a point. The best designs are marked in
range and form the Pareto frontier. For Fig. 5, a distinctive Pareto
rontier is visible with a recognisable asymptotic behaviour on both
nds. For the displacement response, the asymptotic threshold value is
ocated at approximately 0.28mm, for the support volume, it is 200mm3.
or a small region of interest, the input parameters leading to responses
n the Pareto frontier are investigated and discussed in Section 3.3.

.2. Cantilever B

For the second geometry, the meta-model was created using also
00 simulations with individual support structure design, from which
75 failed or were excluded due to simulation errors or constraint viola-
ions. Despite the larger amount of exploitable data points, the targeted
0% prognosis quality was not met. For the support volume response,
CoP of 87.5% was achieved, but the prognosis coefficient for the
isplacement response is substantially lower with a value of 59.6%.
ollowing the results of geometry A, the best prediction accuracy was
eached for the input parameters 𝑘𝑟𝑒𝑑 and 𝑙𝑠𝑡𝑒𝑚. The residual plots for
oth of them are displayed in Figs. 6(a) and 6(b) with a confidence
level of 𝜎 = 3.

In contrast to the Cantilever A, the correlation between the stem
reduction factor and the responses is lower with values of 𝑟67 = 0.396
and 𝑟68 = −0.650. Instead, the diameter of the stem shows high
correlations with 𝑟17 = 0.663 for the volume response and 𝑟18 = −0.731
for the displacement response. The parameters 𝑑𝑡𝑜𝑝 and 𝑙𝑚𝑖𝑛 seem only
to substantially affect the volume response with values of 𝑟27 = 0.43
and 𝑟57 = −0.868. The self-interference of the responses is with a value
of 𝑟78 = −0.502 smaller than for the Cantilever A.

Correlations between the input parameters are similar to the ones
from cantilever A, but there are more present. Values to be mentioned
are the negative correlations between the stem diameter and the min-
imum distance with 𝑟15 = −0.493 as well as the reduction factor with
𝑟16 = −0.544. The top diameter shows less correlation with these two
665

resulting in 𝑟25 = −0.317 and 𝑟26 = −0.384. Both diameters between
Fig. 8. Pareto plot for the objectives of Cantilever B.

each other are related with 𝑟12 = 0.377. Correlations between 𝑙𝑚𝑖𝑛 and
𝑘𝑟𝑒𝑑 are similar strong with a value of 𝑟56 = 0.480. Additionally, there is
a minor correlation between the top diameter and the stem length with
𝑟24 = 0.261. Other correlations are not noteworthy. The full matrix is
displayed in Fig. 7.

For Cantilever B, the optimisation of the two objectives 𝑉𝑡𝑜𝑡 and 𝛥𝑚𝑎𝑥
meta-model was also performed with 9000 samples. In this case, only
138 of these sample points violated one or more of the constraints.
The resulting Pareto plot is displayed in Fig. 8. A distinctive Pareto
frontier can be seen and is marked in orange. Also, it is visible that
the evolutionary algorithm led to a more dense section for lower
support volume values. This might result in a slightly decreased ac-
curacy of the Pareto frontier for large support volume values or small
displacements respectively. The asymptotic behaviour of the frontier
is less pronounced than for Cantilever A. For the support volume, the
asymptotic threshold is around 180mm3. The displacement side on the
other hand shows only a quasi asymptotic behaviour, which cannot
be described with full certainty due to the mentioned inaccuracy. A
threshold value for the maximum displacement can therefore only be
assumed at 0.24mm.

3.3. Comparison

The Coefficient of Prognosis for the displacement response of Can-
tilever B is substantially lower than the one for A. One possible reason
for this is the more random distribution of result values for the input
parameters 𝑘𝑟𝑒𝑑 and 𝑙𝑚𝑖𝑛. Therefore a simple linear regression approxi-
mation as it is used for the Cantilever A is not sufficient and the more
complex isotropic Kriging approximation is chosen by the software. The
response surfaces are shown in Fig. 9(a) for Cantilever A and in 9(b)
for Cantilever B respectively.

Comparing the correlation results for both geometries with each
other, Cantilever A shows in general fewer correlations between in-
put parameters than Cantilever B. Looking at the responses, it can

be determined that correlations between input parameters and the
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Fig. 9. Displacement response surfaces for Cantilever A and B.
Fig. 10. Parameter values in region of interest.
support volume have similar values, while the parameters 𝑙𝑚𝑖𝑛 and 𝑘𝑟𝑒𝑑
affect the displacement response of B significantly less than the one of
Cantilever A. In addition, both the support volume and displacement
values are lower at the Pareto frontier of Cantilever B than in A, which
can be explained by the better printability of the arches in geometry
B compared to the flat overhang in geometry A. To further compare
the individual parameters, which lead to a result value on the Pareto
frontier, a small region of interest was chosen for each geometry.
For Cantilever A, this region ranges from 0.34mm to 0.36mm on the
displacement axis and for Cantilever B from 0.25mm to 0.27mm as
maximum displacement. Thereby a set of 40 samples is selected for A
and a set of 59 samples for B. A spider-web plot, showing the parameter
sets as splines, is displayed for each geometry in Figs. 10(a) and 10(b).
It can be seen that for both geometries, the parameter 𝑙𝑚𝑖𝑛 resolves
in a Pareto design for values close to the upper bound and for 𝑙𝑡𝑜𝑝,
values close to the lower bounds lead to better results. The latter might
result from a better and more even heat conduction if the length of the
branches is shorter. It can also be noticed that the parameters 𝑑𝑡𝑜𝑝 and
𝑟𝑒𝑑 seem to act in an inverse way depending on the geometry. While
igher values of 𝑑𝑡𝑜𝑝 are better for Cantilever A, B benefits from lower
alues. For the parameter 𝑘𝑟𝑒𝑑 , this finding applies vice versa.

.4. Physical implementation and verification

To verify the functionality of the optimised tree-support, the support
tructure was physically implemented for cantilever A and compared
ith commercially generated support. Block-support with perforation
as generated using Materialise Magics’ standard parameters, which
esulted in a support volume of 246mm3. For the tree-like support,
Pareto optimal design was selected that matched the volume of

he block-support. Both top and stem diameter were 0.8mm with a
inimum distance value of 1.5mm between the branches. The stem
eduction factor was 0.58 to ensure the low volume fraction of the
lock-support. As the removability of the support was not part of
666

f

Fig. 11. PBF-LB/M printed cantilever in as-built condition with standard block-support
and optimised tree-like support.

the investigation, the tree-like support was not altered in any way to
facilitate support removal. Both parts were printed on the same build
plate using Ti6Al4V powder on a Trumpf TruPrint 1000 PBF-LB/M
machine. A layer height of 20 (mμ) was used with a laser power of 110W
at a scanning speed of 905mm s−1 for the core strategy. The printed
parts are shown in Fig. 11 in as-built condition.

It can be observed that the block-support failed to fulfil its function
in supporting the overhang region and anchoring the part to the base
plate. The insufficient design of the support led to delamination at
the support-part interface during the build, which resulted further
in the residual stress-induced curling up of the overhanging region.
The tree-like support on the other hand shows only minor warping
of the unsupported free edge of the overhang surface, which has no
effect on the geometric accuracy of the top surface. This can also be
observed in Fig. 12, where the top surface displacement is displayed
or measurements at the part’s centre line in as-built condition and
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Fig. 12. Measured top surface displacement before (dotted) and after support removal
with simulated displacement after removal (dashed).

after support removal. For both supports, the total deformation after
support removal is almost identical, but the curve of the block-support
sample increases at a steeper angle. In addition to the measurements
on the printed parts, a FE simulation was performed for the selected
tree-like support design. The resulting displacement values are within
the dimensional accuracy of the measuring device and the error in-
duced by the scaling factors of the simulation. Based on these results,
the simulation model is considered to be verified. With the verified
simulation model, also the optimisation is assumed to deliver reliable
results for the Pareto frontier. The optimality of the individual results
was not further investigated, as there is no single optimum for a Pareto
optimisation, and the large number of necessary physical prints was
considered uneconomically.

4. Conclusions

The study tackles the parameter optimisation of parameters in
support structure design, utilising automatic support structure gener-
ation to quickly simulate multiple varying sample geometries for the
optimisation. As supports, parametric tree-like structures are used. Two
exemplary geometries in a cantilever design with different support faces
are chosen, to determine, which parameters have similar behaviour.
Nevertheless, the approach can be applied to any geometry. Addition-
ally, standard block-support is outperformed by the Pareto optimised
tree-like support with a matching support volume.

Results show that the stem diameter is an important parameter
due to high correlations with the support volume response and the
maximum displacement response of the part. Values in the lower third
of the tested parameter range lead to the best designs. High correlations
between input parameters and responses are also visible for the stem
reduction factor and the minimum length between seed points, but
only the second shows a similar behaviour between the two geometries
with best results for parameter values at the upper boundary of the
tested range. The stem reduction factor affects the results in an inverse
manner between Cantilever A and B. Due to the self-interfering nature
of both responses i.e. minimising the support volume increases the parts
displacements, no single best design can be chosen and a Pareto frontier
emerges from the results. Especially for the two different geometries,
there is no set of support structure design parameters that leads in
both cases to the best results. Comparing the results with a previous
parameter investigation on support structure design [40], the high
correlation between the stem diameter and the displacement is in
accordance. This applies also to the correlation between the responses
and the reduction factor combined with 𝑙𝑚𝑖𝑛, which are controlling the
number of supports. Only the top diameter seems to be less important
than assumed by the previous contribution.

Parameter optimisation has the potential to outperform topology
optimisation for support structure generation in the optimisation speed.
Once the meta-model is created, the optimisation can be performed in
less than 10 min. Compared to neural network approaches, there is no
need for a large set of training geometries. Future work could include
similar studies for more geometries with differing support surfaces.
667
In this way, meta-models for a set of surfaces that need support and
commonly occur on parts can be created or design guidelines with
results similar to Lammers et al. [41] can be derived. In addition, the
removability of the supports could be addressed by adding additional
design parameters for the tip design of the branches.
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