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Abstract 
Traditional automotive companies are increasingly object to unfamiliar competition from tech 

companies. The concomitant speed in new product development and the induced changes in technology 
overstrain their established product development systems. Alternative, more flexible and customer-oriented 
design approaches such as agile product development are necessary instead. Agility reflects the continual 
readiness to create, embrace, react to and learn from change to improve customer value. While agile product 
development has become a standard in software development its transferability to mechatronic product 
development in general and cars in specific is yet to be proven. The aim of this research is to explore agility in 
automotive product development. It is divided into three research objectives. First, to systematize agile product 
development in respect to design context characteristics based on coordination theory. Second, to evaluate agile 
methods in the automotive domain and categorize agile constraints. Third, to generate domain specific agile 
coordination strategies to avoid the experienced constraints. 

To accomplish this research aim an Action Research methodology was employed. During a four-year 
research project agile methods and practices were introduced to a spectrum of automotive development 
requirements in eleven pilot projects. Change in the form of adjusted agile practices was actively and repeatedly 
introduced to observe its impact on development dynamics. The methodology allows to iteratively design and 
evaluate context-specific agile practices in collaboration with affected product designers within their application 
contexts. The researcher was an active part of the development projects and able to directly collect qualitative 
data sets. To ensure research rigor participation across projects was varied, data sets were analysed according 
to a standardized process, and findings were cross-referenced with supplementary qualitative and quantitative 
data sets from outside the pilot projects. 

A coordination reference model is established to provide a comprehensive understanding of agile 
product development in relation to context characteristics. The findings show that agile methods rely on 
emergent, self-adjusting coordination strategies based on mutual adjustment coordination modes. The 
lightweight composition of interlinked coordination mechanisms autonomously adjusts to changing project 
dynamics. But in the automotive domain agile product development is limited by constraints of scale and 
physicality. Both cause multiteam development systems and translate into coordination determinants that 
overstrain original agile coordination strategies. Their lack of inter team coordination mechanisms outbalances 
the self-adjustability of the coordination system. Three scenarios are presented to avoid this imbalance. Scenario 
one introduces domain-suitable inter team coordination mechanisms which match automotive coordination 
determinants. Scenario two applies digital development technologies which enable to develop hardware like 
software products. Scenario three changes the product structure to realize coordination determinants that suit 
original agile coordination strategies.  

The research improves the applicability of agile product development in the automotive domain. It 
provides a straightforward tool to adjust agile methods to project specific requirements. Additionally, it allows 
to estimate realistic benefits of agile product development based on project characteristics. The theoretical 
contribution of the research includes a model-based understanding of agile system behaviour in different 
application contexts. This proceed is not limited to automotive development and hence opens opportunities to 
research agile product development in further domains. Moreover, the comparison of constraints of scale and 
physicality in the automotive development shows how opposing characteristics of domains cause similar 
limitations to agility and hence allows to connect both research streams. 
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Kurzfassung 
Traditionelle Automobilkonzerne sind in zunehmender Weise einem aggressiven Wettbewerb durch 

Tech Companies ausgesetzt. Die gesteigerte Entwicklungsgeschwindigkeit für Produkte und der beschleunigte 
Technologiewandel überfordern dabei die etablierten Entwicklungsprozesse. Stattdessen sind flexiblere und 
kundenzentrierte Entwicklungsmethoden wie agile Produktentwicklung notwendig. Agilität umfasst die 
kontinuierliche Bereitschaft Wandel zu erzeugen, zu akzeptieren, auf Wandel zu reagieren und davon zu lernen, 
um den Kundenwert zu erhöhen. Obwohl agile Produktentwicklung mittlerweile ein Standardvorgehen in der 
Softwareentwicklung ist, muss die Übertragbarkeit auf die Entwicklung mechatronischer Produkte wie Autos 
noch nachgewiesen werden. Das Ziel dieses Forschungsprojekts ist daher die Untersuchung von Agilität in der 
Automobilentwicklung. Dieses Ziel teilt sich in drei Teilziele auf. Erstens, die Systematisierung agiler 
Produktentwicklung in Abhängigkeit zu domänenspezifischer Entwicklungsrahmenbedingungen basierend auf 
der Koordinationstheorie. Zweitens, die Evaluierung bestehender agiler Methoden in der Automobilentwicklung 
und die Kategorisierung realer Hemmnisse. Drittens, die Entwicklung von kontextspezifischen agilen 
Koordinationsstrategien, um die analysierten Hemmnisse zu umgehen. 

Um dieses Forschungsziel zu erreichen, wurde eine Action Research Methodik verwendet. Im Rahmen 
eines vierjährigen Forschungsprojekts wurden agile Methoden und Praktiken anhand eines repräsentativen 
Spektrums von Anforderungen der Automobilentwicklung in elf Entwicklungsprojekten getestet. Wandel in Form 
von angepassten agilen Praktiken wurde aktiv und wiederholt eingeführt, um die Auswirkungen auf die 
Entwicklungsdynamik zu bewerten. Die Methodik erlaubt es, in Zusammenarbeit mit den betroffenen 
Produktentwicklern kontextspezifische agile Praktiken iterativ zu gestalten und zu evaluieren. Der Forscher war 
dabei ein aktiver Teil der Entwicklungsprojekte und in der Lage, qualitative Daten direkt zu erheben. Um die 
objektive Aussagefähigkeit der Daten zu gewährleisten, wurde die Beteiligung des Forschenden zwischen den 
Projekten variiert, die Datensätze nach einem standardisierten Verfahren analysiert und die Ergebnisse mit 
ergänzenden qualitativen und quantitativen Datensätzen von außerhalb der Pilotprojekte abgeglichen. 

Das entwickelte Koordinationsmodell ermöglicht ein umfassendes Verständnis der agilen 
Produktentwicklung unter Berücksichtigung spezifischer Anwendungskontextmerkmale. Die Ergebnisse zeigen, 
dass agile Methoden auf emergenten, sich selbst anpassenden Koordinationsstrategien beruhen. Miteinander 
verknüpfte Koordinationsmechanismen passen sich selbständig an Projektdynamiken an. In der 
Automobilbranche ist die agile Produktentwicklung jedoch durch Hemmnisse aufgrund der Körperlichkeit des 
Produkts und der Skalierung des Entwicklungsprozesses begrenzt. Beide bedingen Entwicklungssysteme 
bestehend aus voneinander abhängigen Teams. Aufgrund fehlender teamübergreifender 
Koordinationsmechanismen funktioniert die Selbstanpassungs-fähigkeit der agilen Koordinationsstrategien nicht 
mehr. Es werden drei Szenarien vorgestellt, um dieses Ungleichgewicht zu umgehen. Szenario eins führt 
teamübergreifende Koordinationsmechanismen ein, die den Koordinationsdeterminanten in der 
Automobilentwicklung entsprechen. Szenario zwei führt digitale Entwicklungstechnologien ein, die es 
ermöglichen, mechatronische Produkte ähnlich wie Softwareprodukte zu entwickeln. Szenario drei verändert die 
Produktstruktur so, dass sich Koordinationsdeterminanten ergeben, die den ursprünglichen agilen 
Koordinationsstrategien entsprechen. 

Die Forschungsergebnisse ermöglichen die Anwendbarkeit agiler Produktentwicklung in der 
Automobilentwicklung. Sie beinhalten zudem ein einfaches Werkzeug zur Anpassung agiler Methoden an 
projektspezifische Anforderungen. Darüber hinaus ermöglichen sie eine realistische Abschätzung des Nutzens 
agiler Produktentwicklung basierend auf realen Entwicklungsbedingungen. Der theoretische Beitrag der 
Forschung beinhaltet ein modellbasiertes Verständnis des agilen Systemverhaltens in unterschiedlichen 
Anwendungskontexten. Diese Vorgehensweise ist nicht auf die Automobilentwicklung beschränkt und eröffnet 
daher Möglichkeiten zur Erforschung agiler Produktentwicklung in weiteren Domänen. Darüber hinaus zeigt der 
Vergleich der Hemmnisse durch Skalierung und Produktkörperlichkeit in der Automobilentwicklung, wie 
gegensätzliche Charakteristika von Domänen zu ähnlichen Hemmnissen für Agilität führen und erlaubt es, beide 
Forschungsgebiete zu verknüpfen. 
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 Introduction  
Agility in product design reflects a continual readiness to create, react, embrace, and learn from change in 

order to improve customer value. Agile product design summarizes interlinked design practices and methods that 
rely on a shared set of values and principles to realize this agility. While agile product design has become a 
standard in software development its transferability to physical products is yet to be evaluated. The research 
focus of the thesis at hand is agile product design in the automotive domain. 

The research aim is to comprehend and enable agility in automotive product design. The first research 
objective is to analyse agile system behaviour based on coordination theory. The second research objective is to 
collect and categorize agile constraints in automotive and to adjust the theoretical reference model to match the 
empirical data. The third research objective is to recommend supplementary agile practices to outbalance the 
identified flaws of agile product design in automotive application contexts. 

The contribution of the research includes a theoretical understanding of agile system behaviour in different 
application contexts and a practical adjustment of agile methods to the automotive domain based on 
straightforward design practices. This Introduction chapter is divided into problem outline, research strategy and 
contribution, and structure of the thesis. 

 

1.1 Problem outline, motivation, and relevance of research 
The automotive industry is currently object to a set of tendencies that progressively overstrain its 

established product design systems. Both exogenous and endogenous factors accelerate the dynamics and 
relevance of change in automotive product design (Stelzmann, 2012). The VUCA acronym (volatility, 
uncertainty, complexity and ambiguity) summarizes both the endogenous and exogenous change factors well 
(Bennett and Lemoine, 2015). It characterizes the dynamics in automotive design and underlines the urgency to 
reconfigure automotive design with a focus on flexibility, speed, and customer value. 

Regarding exogenous factors, automotive OEMs are increasingly challenged by growing and 
heterogeneous regulatory requirements, unfamiliar competitors, and inexperienced customer behaviour. The 
ability to manage the product complexity in automotive design has traditionally been the distinguishing capability 
of OEMs (Schömann, 2011). But faster-changing markets contradict the established long duration product design 
projects. Time to market is crucial in digital product design (Wedeniwski, 2015) since shorter technology cycles 
create new customer expectations (Baltes and Selig, 2017). Technological trends in general are a dominant driver 
for changing customer requirements (Ebel and Hofer, 2014). Large automotive OEMs lack the implementation 
and adaption speed to cope with the faster development cycles of digital technologies and hence cannot 
compete with competitors that originate from digital product design. Speed of development has become a key 
competitive factor (Díaz, 2011). Customers’ preferences shift towards digitally connected vehicles and mobility. 
The availability of mobility replaces personal ownership of vehicles in some markets. Shared mobility is driven 
by new and aggressive companies such as Uber or Lyft. Relying on well-established premium brands won’t suffice 
anymore in a market that is characterized by a changing concept of personal mobility (Ueding, 2014). Automotive 
OEMs will have to adapt to the short innovation cycles of the information technology and the consumer’s 
electronics industry to maintain their competitiveness in an increasingly dynamic future (Kortus-Schultes et al., 
2014). 

Endogenous factors that accelerate change in automotive product design are the growing complexity of 
the product and the shifting balance between involved disciplines and their cooperation in an integrative design 
process. Product complexity has increased significantly throughout the last two decades. Automotive OEMs need 
to integrate up to 10,000 parts per vehicle from 3,000 suppliers throughout the design process under the 
presumption of production rates of up to 2,000 cars per day (Schömann, 2011). The mechatronic nature of the 
automotive product requires the connected design activities of mechanical engineering, electrical engineering 
and software engineering amongst additional disciplines (Lefèvre et al., 2014). The interplay between these 
disciplines is difficult (Luckel et al., 2000). Electrical engineers and software designers develop function-oriented 
in fast cycles while mechanical engineers focus on component design based on long-lasting, hardware-intensive 
verification cycles (Hellenbrand, 2013). The faster pace of electronics and software design contradicts the 
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established, hardware-focused design process in automotive (Eigner, 2021). This imbalance even worsens since 
the relevance of software and electronics has increased significantly in automotive design throughout the last 
two decades and continues to do so (Hensel, 2011). 

 

1.2 Agility in automotive design 
Software development companies had been object to very similar challenges twenty years ago and 

established agile product design in response. While independent concepts and individual lightweight methods 
had been employed since the 1970s (Abbas et al., 2008) the Manifesto for Agile Software Development (Fowler 
and Highsmith, 2001) officially coined the term Agile and integrated earlier approaches based on a shared set of 
values and principles in 2001. Since the publication of the manifesto agile design has gained widespread use and 
has become a standard in software design (VersionOne, 2020), even though it lacks a holistic theoretical 
explanation (Baham and Hirschheim, 2021; Dingsøyr et al., 2012; Rathor et al., 2016). Agility in product design is 
characterized by a readiness to create, react, embrace and learn from change to improve customer value 
(Conboy, 2009). The core concepts are inspect and adapt cycles, incremental and iterative development, 
collaboration in teams, and continuous customer involvement (Baham and Hirschheim, 2021). Based on these 
concepts, agile methods are lightweight combinations of design practices that are adapted to different 
application contexts and use cases. 

Numerous publications confirm that agile product design enables design flexibility, higher team 
productivity, early customer involvement, delivery speed and shorter time to market (Pikkarainen et al., 2008). 
These characteristics match the presented challenges in automotive design very well. But the ideal application 
context or sweet spot for agile methods are small, collocated, self-organized teams that design software products 
being object to medium to high levels of change, and little external dependencies (Boehm, 2002; Kruchten, 2013). 
The automotive design context differs significantly from these conditions. It relies on a highly interdependent 
multiteam design system and the enablement of agility in automotive design is therefore not plug and play. Two 
central characteristics of automotive design diverge from agile sweet spot conditions. First, the scale of the 
design process which includes hundreds of teams that need to cooperate closely throughout design projects 
which last several years. Second, the physicality of the product which is fundamentally opposing to the nature of 
software since it requires the cooperation of more disciplines and additional design steps such as production and 
logistics that are not relevant in software design. 

Both factors have been researched in separated research streams and coined as challenges of scale 
(Dingsøyr et al., 2014) and constraints of physicality (Ovesen, 2012) to agility in their respective application 
contexts. Both categories are termed constraints in the thesis at hand to facilitate readability. Constraints of scale 
for large scale agile software development have been reported and classified by several literature reviews (Dikert 
et al., 2016; Edison et al., 2021). The scale of the process complicates the practical implementation of the agile 
core concepts and the original agile methods. Necessary cooperation between autonomous teams is a central 
contradiction that shapes the constraints of scale category. Determining the right coordination mechanisms to 
suit both objectives is central to the research of large scale agile (Gustavsson, 2020a). Constraints of physicality 
are a less mature research stream that has emerged with the first use of agile methods in non-software product 
design only ten years ago (Ovesen, 2012; Schmidt et al., 2019). Characteristics of the hardware product such as 
the materialization process or the physical dependencies between components complicate agile product design 
practices. Original agile principles and methods based on software design do not match the requirements of 
hardware design (Schrof et al., 2018). To enable agility in automotive design the relevance of both constraints’ 
categories and their mutual influence onto each other must be evaluated. 

The existing literature on agile automotive design focuses mostly on experience reports and includes few 
theory-grounded publications. Rigby et al. describe in a Harvard Business Review article agile software design at 
Bosch and agile design approaches at Tesla with a focus on product modularization (Rigby et al., 2018). Denning 
describes the agile transformation at Volvo cars with a focus on shared planning meetings based on the scaled 
method SAFe (Denning, 2020). Ekedahl and Berger investigated scaled agile development in mechatronic 
organizations which several automotive companies and included expected benefits and recommended 26 
mechatronic specific agile practices (Eklund and Berger, 2017). Other reports focus on large scale agile software 
design projects within automotive product design in early product stages (Weber, 2015). Some experience 
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reports spread fascinating success based on easy metaphors and analogies to adjacent fields instead of well-
grounded scientific reports and theories which drives the ambiguity of agile design (Janes and Succi, 2012). 
Completely agile automotive design projects are limited to non-serial and non-standard products in individual 
design projects (Denning, 2012). Hohl et al. explain the lack of necessary agile design in automotive by the factors 
inertia, fear, and context. Inertia is caused by an incomplete understanding of agility and its implications, fear is 
driven by the threat of management losses and context summarizes non-ideal requirements for agile design in 
automotive (Hohl et al., 2016). Especially the amount of disciplines that need to cooperate is seen as a central 
hurdle (Poth and Wolf, 2017). These practice-oriented publications reflect the early stage of the research 
phenomena agile automotive design and open several research gaps. First, the research lacks a shared 
understanding of agility in automotive design. Second, there is no theory-based decomposition of agile 
automotive design even though several theoretical lenses have been employed to examine agile software 
development (Strode et al., 2012; Vidgen and Wang, 2009). Third, the literature lacks rich case descriptions, a 
summary and categorization of agile constraints in automotive design and a domain-specific comparison to the 
established constraints of scale and physicality categories. Fourth, the experienced problems in agile automotive 
design lack a comprehensive theoretical grounding. The thesis at hand addresses these research gaps with the 
aim to realize agility in automotive design. 

 

1.3 Research strategy 
To address the identified research gaps this study aims to investigate and enable agility in automotive 

product design. It therefore analyses agile design practices within automotive product design to define and 
explain the application context specific constraints. Based on this analysis it recommends and evaluates 
adjustments to both the employed agile methods and the application context respectively. Three research 
questions (RQs) divide the research aim into research objectives and thus provide a structure to the complete 
research project. 

RQ 1: How to explain agility and its benefits theoretically? 
RQ2: What constraints reduce agile design applicability how in automotive design? 
RQ3: How to enable agility in automotive product design?  

The first research question addresses the need for a theory-based decomposition and explanation of 
agile product design to analyse its applicability to the automotive context. Coordination theory is chosen as the 
most suitable design theory to construct a reference model of agile design based on the coordination strategy 
concept. It allows to analyse and model agile design system behaviour independent of the application context. 
The second research question focuses on specific constraints of agile design in automotive application contexts. 
Agile pilot projects are used to collect challenges in real world automotive application contexts. The data is 
analysed regarding the influence of constraints of scale and physicality. The established coordination-theory 
specific understanding of agile system behaviour allows to determine how the constraints impact agile design 
functionality. The third research question builds on the earlier findings and addresses concepts to outbalance or 
avoid the experienced constraints in automotive application contexts. 

Pilot projects were the backbone of the practical implementation of the research strategy. Agile 
methods and practices were introduced to eleven different development projects to study their impact on 
automotive design. During the pilot projects change was repeatedly introduced in the form of adjusted agile 
practices to observe the changing impact on the respective design project. This allowed to iteratively design and 
evaluate context-specific agile practices in collaboration with product designers within their practical application 
contexts. Findings were compared and transferred between the sequential pilot projects. Unlike in case studies, 
the researcher was an active part of the design projects. This Action Research methodology is based on an 
Idealist ontological and a Constructivist epistemological position. It addresses both practical utility and 
contribution to design theory to ensure research relevance and validity. Social interactions in pilot projects are 
studied by introducing change and observing the effects. The researcher is part of the pilot projects and 
discontinuous the objective observer position. Activities of design artefact construction, intervening with the 
organization and evaluating the impacts are iteratively interwoven (Sein et al., 2011).  
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To ensure research objectivity the data analysis was conducted according to a research model based on 
coordination theory. This coordination reference model accurately mirrors central traits of agile design. It is 
based on the original model of Van de Ven (Ven et al., 1976) and supplemented with the coordination concepts 
of boundary spanning (Star and Greisemer, 1989) and cognitive coordination (Espinosa et al., 2004) to better 
reflect agile core concepts. The model allows to analyse the coordination efficiency of interlinked design practices 
in relation to different application contexts. Initial theory selection and model development was guided by a 
structured literature review (Okoli and Schabram, 2010) and continuously enriched throughout the pilot projects 
by a narrative literature review (Boell and Cecez-Kecmanovic, 2015). The research does not address the necessary 
change management in agile transformations. Detailed comparisons of scaled agile software development 
methods like the literature review of Edison et al. (Edison et al., 2021) are also out of scope. 

 

1.4 Research contribution 
The research conceptualizes agility as an attribute and as a construct to ensure an unambiguous 

understanding of agile design and avoid the Guru problem (Janes and Succi, 2012). It employs coordination 
theory as a theoretical lens to decompose and analyse agile methods and explain their empirically proven 
functionality. Unlike earlier coordination models the coordination reference model combines coordination 
theories from different fields to best reflect agile design characteristics. It allows to analyse individual agile 
practices and agile system behaviour in relation to the application context based on their coordination strategy 
efficiency. To do so the model employs the theoretical concept coordination strategy to connect dynamically 
coupled application environment characteristics with coordination practices. 

The research provides rich case descriptions of agile design in automotive application contexts. The 
respective data analysis leads to a summary and categorization of problems of agile methods across pilot 
projects. The data analysis proves the existence of constraints of scale and physicality in automotive design. 
Constraints of physicality are viewed as an amplification of constraints of scale to simplify problem understanding 
of the research phenomena since both categories cause inter team coordination problems. 

The research also explains the experienced problems by analysing flaws in the respective agile 
coordination strategies in relation to the application contexts. This approach allows to adjust both agile design 
practices and or the application context to enable agility in automotive design. It also opens opportunities to 
expand agile design to further application contexts. 
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1.5 Structure of the thesis  
The structure of the thesis is divided into seven chapters as presented in Figure 1. The following section 

provides short summaries of the chapters two to seven. 

     

Figure 1: Structure of the thesis. The structure is divided into seven interlinked chapters. The green boxes highlight the most relevant 
contents, and the arrows reproduce the red line of the research. 

Chapter 2: State of the Art. Agility in product design is defined from two viewpoints. Agility as an attribute 
and agility as a construct. This conceptualization of agility is compared to conventional product development 
theory in general and automotive design in particular. Known constraints of agility are subdivided into the 
categories scale and physicality. Coordination theory in product design provides a theoretical background for the 
thesis at hand. 

Chapter 3: Research approach. The scientific strategy is divided into three sections. First, the practical 
problem is specified, corresponding research questions are deduced, the chosen theoretical lens coordination 
theory is presented, and the complete research project is summarized. Second, Design Research as a research 
field is categorized and the respective research challenge between relevance and rigour is outlined. Third, the 
implementation of the chosen Action Research methodology is presented. 

Chapter 4: Coordination perspective of agility in product design. The coordination reference model is 
constructed to mirror typical agile design and thus coordination structures. Agile coordination strategies of 
popular agile methods are analysed and mapped to experienced benefits to understand the systematology of 
agility in product design beyond its straightforward practices. 

Chapter 5: Results. The collected data is presented and analysed with a focus on experienced practical 
problems to the employed agile methods. The section is divided into a bottom-up and a top-down data analysis 
that cluster the data to reoccurring problems in the first stage and relate them to scale or physicality driven 
causes in the second stage. The chapter ends with a case-specific differentiation between constraints of 
physicality and scale in the automotive domain. 

Chapter 6: Discussion. Dysfunctionalities of agile coordination strategies in automotive application 
contexts are deduced and connected to the experienced practical problems. Inter team coordination 
mechanisms within agile coordination modes are discussed to align agile coordination strategies with automotive 
design. Furthermore, changes to the product structure and their influences on coordination determinants and 
agile coordination strategies are depicted. Lastly, the enablement of agile coordination strategies through digital 
design technologies in automotive design is discussed.  

Chapter 7: Conclusion. The main findings in relation to the research questions are summarized. 
Additionally, the contribution and limitation of the research project are stated, and future research opportunities 
are outlined. 
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 State of the Art 
 

"If I have seen further, it is by standing on the shoulders of giants." 
 Isaac Newton 

 

 

This chapter aims to introduce, describe and summarize the state of the art of the relevant design 
theories and practical knowledge fields necessary for the research project. Agility in product design is defined and 
compared to conventional design theories. The fundamental product design principles and established 
methodologies are introduced to establish a scaffolding to delaminate agility in product design. The domain 
automotive design is introduced, and its characteristics are compared to the requirements of agile design. 
Especially the impact of the scale of the design process and the physicality of the product on agile design are 
referenced since they differ from software design. Coordination in product design is the second focus of this 
chapter. Coordination theories from different fields are presented to provide a broad theoretical understanding 
of the current research. Practical applications of coordination theories from different research fields related to 
product design are introduced to show the relevance of the field. Coordination theories that reflect fundamental 
principles of agile design are connected to create a research model which serves three purposes. First, analyse 
the established agile methods regarding their empirically proven benefits and provide an explanation of their 
functionality. Second, analyse the collected data from the agile pilot projects regarding practical constraints due 
to the automotive domain. Third, establish adjustments to existing agile methods to improve their applicability 
in automotive design. 

The chapter is subdivided into seven subchapters. The first subchapter establishes an understanding of 
agility from two perspectives. Agility as an attribute defines agility based on its origins, suitable application 
context, practical interpretations, core concepts and experienced benefits. Agility as a construct defines agility 
based on the manifesto of agile software development, agile methods and scaled agile frameworks. The second 
subchapter introduces the established design theory in product design and provides a scaffolding to delaminate 
agile design from it. The third subchapter describes the domain automotive design and emphasises differences to 
software design as the ideal application context of agile methods. It includes two subchapters that summarize 
the literature on agile constraints caused by the scale of the design process and the physicality of the product 
since both characteristics are unavoidable in automotive design. The last subchapter focuses on coordination 
theory. It defines coordination and provides perspectives from different adjacent research fields. Based on the 
coordination strategy concept coordination determinants, coordination modes, mechanisms, and coordination 
outcomes are connected. 
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2.1 Agility in product design 
 

“There is nothing permanent except change.“ 
 Heraclitus of Ephesus 

 

Tseng and Lin describe agility as “the business paradigm of the 21st century” (Tseng and Lin, 2011) and 
Denning claims that “agile is a global movement that is transforming the world of work” (Denning, 2017). Reports 
from industry underline the relevance of agility as a standard in software development today (Komus and Kuberg, 
2020; VersionOne, 2020) and studies show that agility has become the new norm within software development 
(Gustavsson, 2020b). This success of agility is not limited to software development but continuously expands to 
other domains (Atzberger, Nicklas, et al., 2020; Komus and Kuberg, 2020; Schmidt et al., 2019). 

Despite this undeniable success in practice, it remains ambiguous what exactly agility entails and what 
it stands for. Even after at least two decades of research agile design is still reported to lack a theoretical core 
(Baham and Hirschheim, 2021; Rathor et al., 2016). The resulting lack of a unified theoretical understanding of 
agility has resulted in different views with practitioners and researchers asserting their own understandings, 
which often differ from each other (Wang et al., 2012). Conboy, therefore, describes agility as a concept that is 
highly multifaceted and which has been used by different people to refer to different phenomena (Conboy, 
2009). In practice, agility is often interpreted as a progressive alternative to traditional, plan-driven product 
design approaches and not specified comprehensively. 

The agile manifesto (Beck and Beedle, 2001) is the most quoted reference to agility. It communicates 
values and principles like a philosophy and invites to interpret but does not prescribe clear guidelines and 
practices for product design. Such guidelines are provided in agile methods. But different agile methods focus on 
different aspects of the manifesto. This divergence within the set of agile methods includes methods that differ 
clearly (Baham and Hirschheim, 2021) and sometimes contradicting practices (Conboy, 2009). Today a broad set 
of agile methods exists (Abrahamsson et al., 2002; Edison et al., 2021) with Scrum being the most popular 
method (VersionOne, 2020). Unfortunately, this variety of methods often results in applications without 
questioning the method and considering the design context of the applying company. Even worse, self-
proclaimed gurus present their methods based on single success stories, easy metaphors or analogies to other 
fields and not in relation to the existing body of knowledge (Janes and Succi, 2012). Without a sound theoretical 
foundation new and existing agile methods cannot be evaluated, corrected and or rejected (Strode, 2005). This 
in turn increases confusion about what agility implies and how to implement it in practice. To resolve this 
ambiguous understanding of agility, it is described in the following subchapters from two perspectives: agility as 
an attribute and agility as a construct. 

The first perspective defines agility as a characteristic of product design. It starts with the history of 
agility to depict its origins and the original driver. Definitions of agility across research fields are discussed and a 
definition for the thesis at hand is chosen based on four essential core concepts. Reported benefits of agility are 
aligned to the central concepts. At last, agile requirements or “sweet spot conditions” and implications of 
different application contexts on agility are presented. 

The second perspective “agility as a construct” describes principles and practices in product design to enable 
agility. It describes the Agile Manifesto and connects it to the most relevant agile methods. First, the manifesto 
is described based on its values. Second, the single team agile methods Scrum and XP are presented and set into 
relation to the manifesto. Third, characteristics of scaled agile methods and differences to single team agile 
methods are summarized. 
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2.1.1 Agility as an attribute 
The practice-driven origin of agility has led to a spectrum of approaches, frameworks, and 

interpretations. This subchapter aims to describe a clear picture of what agility in design is, where it came from 
and what it implies, based on scientific literature streams. This clear definition is necessary as a point of reference 
for the following investigation of agility in automotive design. The analysis of different interpretations of agile 
design and their emergence process also improves understanding of its central characteristics. 

The subchapter is divided into five sections. First, the history of agile design is presented and connected 
to central drivers. The Manifesto for Agile Software Design is put into context of the existing streams in software 
development and product design. Second, definitions of agility are summarized and compared to find repeating 
concepts and decide on a common definition for the thesis at hand. Third, based on the definition of agility core 
concepts are described that further detail the definition. Fourth, change in product design as the essential driver 
of agility is detailed and explained. Tools to differentiate and concretize the broad concept of change are 
described and compared. Fifth, based on the established concept of change in product design, ideal conditions 
for agility are summarized. Sixth, benefits and drawbacks of agile product design from literature are compared 
and connected to the core concepts and the definition of agility.  

2.1.1.1 History of Agility 
In February 2001 the Manifesto for Agile Software Development (manifesto) was created by a group of 

17 programmers during a two-day workshop in Utah to discuss alternative software development approaches 
(Beck and Beedle, 2001; Fowler and Highsmith, 2001). The aim of the manifesto was to develop an alternative to 
the then heavyweight and documentation driven software development approaches. The declaration consists of 
four values and twelve principles that frame an understanding of agility in product design. These values and 
principles are discussed in detail in section 2.1.2.1. The essence of the manifesto is the ability of product design 
to embrace change, to focus on people and direct communication and to continuously focus on customer value. 
The publication of the manifesto is often referenced as the formal origin of agile product design (Dingsøyr et al., 
2012). This view is supported by the facts that since the publication of the manifesto in 2001 agile software 
development has gained widespread use and has become a standard in software design (Hoda et al., 2018; 
Venkatesh et al., 2020; VersionOne, 2020). 

But the presentation of the manifesto cannot be decoupled from the then already well-advanced 
discussion about alternative approaches to software design. Abbas et al. provide historical and anecdotal 
evidence that dissatisfaction with heavyweight software development approaches existed before the manifesto 
and alternatives were already established (Abbas et al., 2008). Starting in the 1960s large software projects 
repeatedly overstrained the established software design approaches in complexity and size (Ovesen, 2012). 
Projects that increased the number of programmers without adapting the structure were called “million monkey 
approach” since they did not improve project progress, delivery deadlines and quality requirements (van Vliet, 
2008). The employed traditional approaches were heavily structured and planned in detail in advance and hence 
suffered from changing user requirements, changes in technology and environmental uncertainty throughout 
the project. Abbas et al. question these approaches and point to the contradiction that it was assumed realistic 
to anticipate complete sets of requirements early in the project lifecycle, even though many changes in 
requirements and technology occurred throughout the project’s life span (Abbas et al., 2008). The sequential 
interpretation of the waterfall development approach is often referenced as a negative example to delaminate 
agility in design from these traditional, linear approaches, which misinterprets the original publication of Royce 
that already incorporates iterative design cycles (Royce, 1970). In 1968 the term “Software Crisis” was coined to 
reflect the problems of these approaches with longer and more complex software development projects in highly 
dynamic application contexts that were an object to continuous change in their product design projects (Kraut 
and Streeter, 1995). 

To answer this crisis alternative development approaches were established by independent 
practitioners that would later be sub summarized as agile movement and lead to the manifesto. As a result, 
already in the nineties a number of lightweight frameworks were applied in software design that are known as 
agile methods today (Dingsøyr et al., 2012). Since these methods were driven individually by experienced 
practitioners such as Beck, Schwaber and Cockburn their implementations and concept vary largely (Abbas et al., 
2008). Nevertheless, these methods have in common that they were based on the idea of product design that 
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accepts and integrates turbulent development environments and change as a delamination to linear approaches 
(Highsmith and Cockburn, 2001). Although these agile methods were new, the underlying principles and ideas 
such as incremental, iterative design had been applied before (Abbas et al., 2008). For example, Scrum is based 
on the publication “The New Product Development Game” of Takeuchi and Nonaka from 1986 long before the 
manifesto (Takeuchi and Nonaka, 1986). Other early approaches such as the V-model (Rook, 1986) or the Spiral 
model (Boehm, 1988) integrated similar ideas to overcome shortcomings of linear process models. In summary, 
agile methods were not as new or revolutionary as often idealized but have origins in older methods (Conboy, 
2009). 

Nevertheless, since the publication of the manifesto agile product design has changed from an 
alternative to established design approaches to a standard in software development (VersionOne, 2020). The 
concept has even been transferred to large scale software projects (Dingsoeyr et al., 2019) and mechatronic 
product design (Atzberger, Simon, et al., 2020; Komus, 2017). Both transfers are further specified in sections 
2.3.1 and 2.3.2 To explain the growing success throughout the last decades despite its ambiguous interpretations 
the next sections will compare the most relevant definitions of agility and derive central ideas and concepts.  

2.1.1.2 Definition of agility 
Before defining agility, it is necessary to differentiate the set of terminologies that are connected to it 

and employed in practice. Several terms such as agile, agile methods and agile product development or design 
are used to describe different aspects of agility in product design. The attribute agile is described in product 
design as “an embedded trait or attribute characterized by durability, resilience, speed, flexibility, attunement 
and preparedness” (Prosci, 2021). The word agile in agile methods was originally spelt in capital letters as the 
name of the specific group of methods (Gustavsson, 2020b). In the thesis at hand the lower case is chosen to 
improve readability. Agile methods are a set of frameworks and tools that support and lead to agility in product 
design through recommended practices. Agile product development or design describes design activities 
necessary to develop a product according to agile principles and values. Product design refers to the 
comprehensive activities to realize new products and hence expands the German utilization of the term only in 
reference to aesthetic design activities. While development is more commonly employed in practice, design is 
the more general term in research. For this reason, design is preferred to development in the thesis at hand. 
Nevertheless, both terms are employed synonymously. Agility as a comprehensive term is further specified in 
the following paragraphs. 

Baham and Hirschberg argue that even though the manifesto of agile software development provides 
central values and principles to comprehend agile product design it is not a formal definition of agility (Baham 
and Hirschheim, 2021). It rather provides generic guidelines and value statements instead (Dingsøyr et al., 2012). 
Strode argues that without a sound definition of agility any author or practitioner can state that their method is 
an agile method. Aligned to the manifesto none of the most relevant agile methods fulfils all values and principles 
which clarifies the unsuitability of the manifesto as a practical definition of agility (Strode, 2005). Conboy further 
underlines this assessment and argues that hardly any two agile methods adopt the same definition of agility. 
Some agile methods even propose opposing principles such as collective versus individual code ownership 
(Conboy, 2009). To avoid these unclear and opposing concepts of agility in practice the following section 
conceptualizes a definition of agility from different research fields (see Table 1) for the thesis at hand. Central 
aspects of the definitions are combined to synthesize a consistent understanding of agility for the thesis at hand. 

Table 1: Definitions of agility across knowledge fields. 

“Agility as the ability to both create and respond to change in order to profit in a turbulent 
business environment.” (Agile Alliance, 2021) 

“Agility as the ability of a development team to react rapidly to changes in a dynamic 
environment.” (Conforto et al., 2016) 

“Agility as the ability to balance stability and flexibility.” (Highsmith, 2010) 
“Agility as the continual readiness of an ISD method to rapidly or inherently create change, 
proactively or reactively embrace change, and learn from change while contributing to 
perceived customer value (economy, quality, and simplicity), through its collective 
components and relationships with its environment.” 

(Conboy, 2009) 

“Agility as a software development team's ability to anticipate, create, learn from and 
respond to changes in user requirements through a process of continual readiness.” 

(Baham and Hirschheim, 
2021) 
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The ability to accommodate change had been the central driver throughout the origins of agility. William 
and Cockburn state that agile methods and practices were developed to embrace, rather than reject, change 
(Williams and Cockburn, 2003). This early definition of agility emphasises the ability to integrate change. The 
Agile Alliance further specifies agility as the ability to create and respond to change (Agile Alliance, 2021) and 
therefore expands Williams and Cockburn’s passive concept into an active one. 

Conforto et al. define agility in the project management field as the ability of a development team to 
react rapidly to changes in a dynamic environment. (Conforto et al., 2016). This definition specifies the concept 
of agility to integrate change by means of close teamwork. Baron and Hüttermann underline this team concept 
of agility and define it as a particular way of thinking and attitude to work, that fosters close collaboration within 
the team (Baron and Hüttermann, 2010). Lee and Xia combine both aspects of Conforto and Hüttermann and 
define agility as the software team’s capability to efficiently and effectively respond to and incorporate user 
requirement changes during the project life cycle (Lee and Xia, 2010). 

Erickson et al. explain agility as an approach to strip development methodologies of their heaviness to 
enable fast response to changing environments and user requirements (Erickson et al., 2005). Cockburn similarly 
characterizes agility as being manoeuvrable and fast to respond by means of lightness and effectiveness 
(Cockburn, 2006). These definitions continue the concept of change integration but emphasize the lightness and 
manoeuvrability in design especially in contrast to earlier more formal and planning centric design approaches. 

Haberfellner and de Weck provide a more overarching perspective and define agility as the property of 
a system that can be changed quickly (Haberfellner and de Weck, 2005). Henderson-Sellers and Serour confirm 
the system agility concept and extend the agility concept from adjustment to change with the ability to refine 
and fine-tune development processes as needed (Henderson-Sellers and Serour, 2005). Highsmith also provides 
a system perspective on agility and defines it as the combination of system flexibility and rapid response 
(Highsmith, 2009). These definitions expand the idea of agility to a system behaviour that can continuously adjust 
to answer to dynamic change on a macro scale. 

Conboy derives the most exhaustive definition of agility from these definitions (Conboy, 2009). His 
analysis is based on a structured literature review that integrated agility definitions across related disciplines. 
This composition of definitions is compared to and delaminated from the concepts of flexibility and leanness in 
product design. He conceptualizes leanness as the “contribution to perceived customer value through economy, 
quality and simplicity“ and flexibility as “the ability of a ISD method to create change, or proactively, reactively, 
or inherently embrace change in a timely manner, through its internal components and relationships with its 
environment” (Conboy, 2009). Combining and going beyond these individual concepts Conboy defines agility as: 

“[…] the continual readiness of an […] method to rapidly or inherently create change, proactively or 
reactively embrace change, and learn from change while contributing to perceived customer value (economy, 
quality, and simplicity), through its collective components and relationships with its environment.” 

He further emphasizes “learning from change” as a central characteristic of agility which has been 
confirmed by Lyytinen and Rose and further publications (Lyytinen and Rose, 2006). The presented definitions 
show that the term agility has been employed for a spectrum of design characteristics that are centred around 
and enable the idea of product design that addresses internal and external change. Central are the ability to not 
only respond but also create change, the close teamwork, the lightweight product design process and the 
connected system behaviour. The thesis at hand is based on Conboy’s definition of agility. The aspects within the 
definition of agility allow its delamination from the similar, alternative product design approaches such as Flexible 
Product Development and Adaptive Product Design. Flexible Product Development centrally addresses the ability 
to integrate change throughout the design process but does not account for the quickness and activeness of the 
reaction (Thomke and Reinertsen, 1998). Adaptive Product Design adjusts underlying processes to best suit 
dynamically changing environments (Meißner and Blessing, 2006) but remains at the system-theoretical level 
and focuses on processes. Unlike in agile design enabling product or organizational structures are not part of the 
concepts. 
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2.1.1.3 Core concepts of agility 
Based on Conboy’s systematic definition of agility Baham and Hirschheim concentrate the concept of 

agility as the ability to anticipate, create, learn from and respond to change (Baham and Hirschheim, 2021). They 
derive four central concepts (see in Table 2) from a review across the most relevant agile methods and 
frameworks that enable agility in software design. These four concepts are interconnected and reinforcing. This 
implies that that agile design represents a design system and should not be simplified to the application of 
individual practices. The core concepts reflect the presented definitions of agility and connect them into 
understandable conceptualizations. Descriptions of each concept are presented in the following paragraphs. 

Table 2: Four core concepts to enable agility based on a review of agile methods and frameworks (Baham and Hirschheim, 2021). 

Core concept 1 Inspect and adapt cycles 
Core Concept 2 Incremental design and iterative development 
Core concept 3 Working collaboratively in close communication 
Core concept 4 Continuous customer involvement 

Inspect and adapt cycles allow teams to analyse and reflect on design activities and adapt them if 
necessary. This concept allows to deal with change in design projects. Each design cycle allows to reconfigure 
assumptions according to results or change in a repetitive learning process (Baham and Hirschheim, 2021). Agile 
teams rely on inspect and adapt cycles to verify technical implementations and validate their interpretation of 
user requirements in continuous design cycles. Based on this evaluation design projects adapt their design 
activities soon and at low costs. The concept of inspect and adapt includes a broad spectrum of use cases ranging 
from small design activities of individuals to repetitive impersonal automated continuous integration systems to 
complete design project evaluations. Iterative design accommodates the inspect and adapt cycle concept 
centrally into design projects as every iteration represents an individual design cycle that provides the 
opportunity to reflect and adapt progress. 

Baham and Hirschheim underline the importance of incremental and iterative development and value 
the concepts to breakdown the development process and product delivery into smaller units as the most 
fundamental and universal approach to achieving agility (Baham and Hirschheim, 2021). Iterative design divides 
the design process into continuous, short design cycles to incorporate inspect and adapt cycles within each 
iteration. Incremental design requires each iteration to result in an increment which presents a part of the 
product that has costumer value and offers the opportunity to verify and validate the progress of the iteration 
to a large degree without having to rely on the complete product. Both are essential to the assumption that 
design progress and requirements cannot be specified completely in advance. Iterations result in increments 
which represent continuous feedback sources to adapt progress and requirements as design knowledge grows. 
Short iteration lengths establish quick feedback loops and minimize rework in changing environments (Vidgen 
and Wang, 2009). Overall, iterative design provides understanding of past issues, sensing of current issues and 
responding to future issues (Rathor et al., 2016). Teams are enabled to focus on design activities and reduce time 
spent on interpreting unclear requirements. 

Working collaboratively in close communication is the third core concept of Baham and Hirschheim 
(Baham and Hirschheim, 2021). It paraphrases the teamwork ideal in agile product design. The intensive 
cooperation in teams realizes open and close communication between designers. Agile teams include the 
customer as a part of design teams if requirements are dynamic and teams need to readjust often. Agile design 
teams are self-organized, autonomous and promote mutual participation and teamwork. They collaborate 
towards a common goal. Teams need to be authorized to make their own decision largely autonomously without 
complicated management or hierarchy consultation to answer quickly to change. Another important aspect of 
agile teamwork is the cross-functionality of such teams which further enhances the autonomy of teams (Stray et 
al., 2018) since team-external input that might block, or slow design activities is minimized. 

Continuous customer involvement in design teams is the fourth of Baham and Hirschheim’s core 
concepts (Baham and Hirschheim, 2021). Wood et al. even argue that agile product quality advantages are driven 
rather by close design team and customer cooperation than better teamwork in design teams (Wood et al., 
2013). The intensive exchange between customer and design team in agile design establishes close relations 
which lead to shared understanding of user requirements. This increases predictability of the product and hence 
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customer acceptance of it (Cohn, 2010). The close connection between designer and customer within a design 
team allows to directly adjust to changes of both design implementation and the customer requirements. The 
proven increase in customer satisfaction improves a team’s ability to provide business value. 

2.1.1.4 Change in design contexts 
After having described where agility was established originally, what it stands for, and how it is 

implemented the concept of change is clearly central to it. This subchapter defines and frames change in product 
design. 

The strengths of agility in product design are most valuable in dynamic design environments. Denning 
emphasizes the continuous expectance and integration of change in agile design. For him this trait is essential in 
an increasingly dynamic and unpredictable world (Denning, 2016). Bennet and Lemoine summarize such dynamic 
product design conditions with the VUCA acronym which emphasizes volatility, uncertainty, complexity and 
ambiguity in design environments (Bennett and Lemoine, 2015). The VUCA categorization allows to specify the 
rather general concept of change or dynamic environments in product design that is referenced in the presented 
agility definitions. Volatility relates to the increasing rate of change and the need for speed to answer to it. 
Uncertainty underlines the lack of knowledge what kind of change is to be expected and how action might trigger 
it. Ambiguity implies that cause-effect relations are unclear and therefore impacts of change are not unequivocal. 
Complexity is defined by the number of elements, their interdependencies and the dynamics of these relations. 
(Bennett and Lemoine, 2015). To differentiate unpredictable VUCA environments and recommend appropriate 
actions concepts such as the Cynefin framework or the Stacey matrix have been developed. 

                     

Figure 2: Cynefin framework and Stacey matrix. The Cynefin framework (left) differentiates five problem contexts based on their change 
dynamic and recommends respective approaches (Kurtz and Snowden, 2003). The Stacey matrix (right) differentiates four change situations 
based on the axes “what” for the problem understanding and “how” for the problem approach (Stacey, 2007). 

To improve problem understanding and categorization within VUCA environments the Cynefin 
framework (Figure 2, left) differentiates five contexts and recommends specific approaches for each of them 
(Kurtz and Snowden, 2003). Simple and complicated contexts are representatives of ordered systems. Within 
these contexts cause-effect relations are well understood, and existing approaches can be selected or generated 
based on the given facts. Complex and chaotic contexts on the other hand represent unordered systems. 
Complex cause-effect relations are unclear to such a degree that they are understood only in retrospect while 
chaotic cause-effect relations remain unspecifiable even in retrospect. Both lack transparent and linear cause-
effect relations and require an emergent problem-solving strategy. Known and established patterns are 
applicable to complex contexts. Chaotic contexts require emergent action and cannot apply proven procedures. 
In both contexts better problem understanding is generated through action and reflection of the corresponding 
change in relation to existing knowledge. In the complex context, short iterative design cycles are recommended 
to increase problem understanding incrementally. Chaotic contexts on the other hand are characterized by the 
need to drive change immediately at large scale and therefore cannot apply structured, iterative design cycles. 
Besides the ordered and unordered systems, the Cynefin framework also includes a disorder category. This 
category represents problems which cannot be assigned clearly to one of the four contexts due to opposing or 
wrong interpretations. Such situations are especially threatening since inadequate action might worsen the 
unspecifiable situation. The Cynefin framework recommends to break down such situations into constituent 
parts until individual parts can be categorized to the four known contexts. (Kurtz and Snowden, 2003) 
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The Stacey matrix (Figure 2, right) also provides guidance on how to approach VUCA contexts (Stacey, 
2007). Based on the two dimensions “knowing what” which means clear understanding of requirements and 
“knowing how” which means clear understanding (and technology) on how to solve a problem the Stacey matrix 
categorizes situations and recommends suitable, proven approaches. The two dimensions form four situations 
that require different approaches. Clear definitions of what and how are defined as simple situations. Fact-based 
decision making is applicable and sensible in this context. Within the complicated situation either the what or 
how dimension are only clarified partially. Cause-effect relations are unclear, and discussions and negotiations 
are necessary. Complex situations are based on increasing uncertainty in both dimensions. Such situations 
require deviation from existing approaches or initial action to further specify the situation. If both what and how 
are completely unclear the Stacey matrix defines the chaotic (anarchy) situation. Conventional approaches are 
not useful within this area. 

Both the Cynefin framework and the Stacey matrix further differentiate the change concept and claim 
to be able to determine if agile design is suitable. The Stacey matrix emphasizes situation evaluation while the 
Cynefin framework recommends appropriate action. Their combined categorizations of design situations help to 
understand whether agile design is suitable and beneficial. In predictable contexts (Cynefin: simple, Stacey: 
simple) change dynamic is low and agile design is applicable but not needed since more efficient product design 
methods such as best practices or automatization can be applied. In such contexts the efficacy advantage of agile 
methods is often outbalanced by their additional cost compared to efficiency focused approaches such as lean 
development or plan-driven approaches. The complicated and complex contexts are ideal for agile design. Agile 
design approaches quickly improve problem understanding and parallelly drive solutions in short iterative design 
cycles that allow fast learning cycles. If problem understanding has been improved to such a degree that it suits 
the simple contexts, agile methods might be changed to more efficient design approaches. On the contrary, 
chaotic (Cynefin framework) or anarchic (Stacey matrix) contexts that are completely dominated by change are 
also unsuitable contexts for agile design since neither the problem nor the solution are understood sufficiently. 
Instead of iterative design based on learning cycles such environments require direct action and cannot rely on 
small, agile learning steps. 

2.1.1.5 Sweet Spot conditions for agility 
Change-driven design environments within the complicated and complex categories of the Cynefin 

framework are viewed as ideal application contexts for agile design. Another factor is the type of product. 
Software products present characteristics that suit the agile core concepts ideally. Because of both factors 
different agile methods emerged from similar contexts in software design that were object to VUCA conditions 
(Bennett and Lemoine, 2015). Takeuchi, Sutherland and Rigby specify ideal agile project characteristics as 
complex problems, initially unknown solutions, changing product requirements, modularizable work, direct 
costumer access and critical time to market (Takeuchi et al., 2016). Even though they avoid a delamination based 
on the product type most of their characteristics reflect software products. Strode underlines this categorization 
and states that agile design was developed to cope with change and uncertainty in small teams that de-
emphasize traditional coordination mechanisms such as forward planning, specific coordination roles, contracts 
and extensive documentation, mostly free of pre-defined specified processes (Strode et al., 2012). 

The idea of ideal conditions for agile design was first introduced by Barry Boehm (Boehm, 2002; Boehm 
and Turner, 2004). Kruchten later employs the term “agile sweet spot” which he describes as the ideal conditions 
of which agile software design practices originated from and where they are most likely to succeed (Kruchten, 
2013). This contextualization is based on small, collocated teams around twelve persons and a governance model 
based on simple rules. He states that little criticality of product safety is necessary for iterative product design 
and changes even after first customer application. Also, medium or high rates of change are ideal for agile design, 
since low change rates do not require the high adaptivity of agile design. He continues that in-house business 
models support the agile principle to maintain the product at the responsibility of a team throughout the design 
process. Handovers categorically lead to loss of information regarding product, process, and organization. Finally, 
a stable overall product architecture supports modularization which is necessary to divide larger products into 
smaller sub products which suit the design capacity of compact teams throughout the complete design process. 
Changes in the product modularity lead to changes in team responsibility and lead to unspecified interfaces and 
handovers which result in information losses.  
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The presented sources clearly show that agility in product design suits dynamic application contexts that 
are driven by change. Additionally, agile design is most valuable under certain project internal conditions such as 
small, co-located, collaborating teams, unclear requirements, and stable product architecture. The type of 
product has a certain influence on both internal and external influences. It therefore also influences the added 
value of agile design. Especially software products feature characteristics that support agile requirements. 

 

2.1.1.6 Benefits of agility 
Benefits of agility in product design have been summarized by several researchers. Campanelli and 

Parreiras describe in their literature review an increase in quality and enhanced flexibility (Campanelli and 
Parreiras, 2015). Gustavsson emphasises accelerated time to market, increase in quality and productivity and 
enhanced flexibility (Gustavsson, 2020b). The 14th annual State of Agile Report says that at least 50% of the 
respondents value agile design for the following benefits: the ability to manage changing priorities, project 
visibility, business/IT alignment, delivery speed, team morale, team productivity, project risk reduction and 
project predictability (VersionOne, 2020). Additionally non-research reports from leading tech companies such 
as Microsoft (Denning, 2017), Spotify (Kniberg, 2014a, 2014b) or Google (“Google’s Agility”) further underline 
the competitive edge of agility in product design. 

Takeuchi, Sutherland and Rigby derive agile benefits in comparison to traditional management 
approaches (Takeuchi et al., 2016). They emphasis team productivity and employee satisfaction. They see a 
reduction in waste caused by redundant meetings, repetitive planning, excessive documentation, and low-value 
product features. Customer satisfaction increases due to improved visibility, costumer integration and the ability 
to continuously adapt to changing customer requirements. Agility also improves time to market and 
predictability of new product design. Mutual trust and respect across organizations are caused by cross-
functional teams. Micromanagement is avoided largely which frees management to focus on removing 
impediments to progress, strategy, organization development and customer exchange. 

Schmidt connects agile concepts and central principles to experienced benefits of agile design (Schmidt, 
2019). For example, agility in product design allows to adapt quickly to evolving changes through self-
organization, team ownership and decentralized decision making. The short and steady iterations enable learning 
cycles throughout the design process. Stakeholders and designers have a shared understanding of the product 
due to their close and continuous cooperation. Early costumer value is the result of incremental design since 
costumer may already profit from individual increments besides the complete product. Team collaboration is 
significantly increased due to the close team structures. The team stability increases team motivation and team 
commitment. The cross-functionality of the team allows to concentrate cooperation within and not between 
teams which simplifies communication structures. Interdisciplinary teams are responsible for a product 
throughout the design phases and avoid handshakes and communication problems.  

Table 3: Summary of benefits of agility in product design across different sources from scientific and popular literature. 

 Campanelli and 
Parreriras 2015 

Gustavsson 2020 VersionOne 2020 Schmidt 2019 Takeuchi, Sutherland, 
Rigby 2016 

Design 
process 

Flexibility Flexibility Flexibility Flexibility Flexibility 

  Increased productivity  Visibility Customer integration Reduction of waste 
   Business, IT alignment Early customer value Customer satisfaction 
   Project predictability Improved 

communication 
Trust and respect 

Team   Team morale Team collaboration Team productivity  
   Team productivity Team motivation, 

commitment  
Employee satisfaction 

Product Increased quality Increased quality Risk reduction   
  Time to market  Delivery speed  Time to market 

 

Table 3 gives an overview of the described benefits across the selected literature. Design process 
flexibility is a benefit across all literature sources. Increases in transparency and productivity have been reported 
repeatedly and costumer integration and early customer feedback are evaluated very positive. Regarding 
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characteristics of teams team morale or motivation increase and especially collaboration within teams profits 
from agile design. The product benefits from increases in quality, a faster time to market and reduced risks 
throughout the design process. These benefits are driven directly by reductions of design complexity and 
coordination structures both within teams and also between designers and customers. It is important to 
emphasise that agility in design is not a silver bullet for product development. Its strengths are most evident in 
change driven design contexts. But central characteristics such as continuous customer integration or weekly 
team meetings might turn into drawbacks compared to conventional development approaches in well-
predictable design contexts. 
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2.1.2 Agility as a construct 
The perspective agility as an attribute emphasized an understanding of the characteristics, the benefits and 

the system behaviour that are attributed to agile design. The perspective outlined the change in product 
development that started agile design, and explains how it evolved, what values and principles define it and what 
core concepts it is based on. In simple terms it provided an exterior view on agile design and depicted the resulting 
characteristics. Unlike this first perspective the second perspective on agility focuses on structures to realize agility 
in product design. The aim of this subchapter is to describe how agile values and principles are implemented in 
rules, practices and frameworks to result in the desired system behaviour. Furthermore, it is presented how these 
structures are adjusted to each other in reinforcing systems. Put in simple terms again it provides an interior view 
on agile design. This perspective is necessary to decompose agile product design into smaller structures and their 
connections which is central for a differentiated analysis of the working principles and adjustments of the systems. 

This subchapter first presents the Agile Manifesto for Software Design and analyses its values and principles. 
It connects these theoretical guidelines with more practice-oriented agile frameworks. The two popular agile 
methods Scrum and XP are described in detail. The perspective concludes with an outlook on scaled agile methods. 

2.1.2.1 Manifesto of Agile Software Development and agile methods 
As presented in 2.1.1.1 the manifesto for agile software development is the result of a two-day 

workshop of 17 designers in Utah (Fowler and Highsmith, 2001). The authors of the manifesto intended to 
circumscribe and summarize the basic beliefs and philosophy of agile software design in the shape of four values 
and twelve principles (Beck and Beedle, 2001). The four values listed in Table 4 are basic beliefs that frame agile 
product design and represent guidelines to desirable project settings. They are designed as tendencies that 
prefer aspects that reflect agile product design on the left to aspects that represent more conventional product 
design techniques on the right. The supplement in the manifesto which states “… while there is value in the items 
on the right, we value the items on the left more.” underlines the adjustability of agile product design. Structures 
are matched to the specific project conditions and should not follow standards blindly. 

Table 4: Values of the Manifesto for Agile Software Development (Beck and Beedle, 2001). 

Value 1 Individuals and interactions over processes and tools 
Value 2 Working software over comprehensive documentation 
Value 3 Customer collaboration over contract negotiation 
Value 4 Responding to change over following a plan 

 

The values reflect the ability to embrace change, the integration of the customer into the design process 
and the focus on people and communication to improve product design. The twelve principles (Beck and Beedle, 
2001) further elaborate the values. They represent more specific working mechanisms and provide guiding rules 
to implement the values. Gustavsson underlines the importance of the manifesto to create self-organized teams 
(Gustavsson, 2020b). He states that the manifesto supports team autonomy and trust which enable teams to 
make the right decisions, solve problems and deliver results in accordance with literature that confirms the value 
of autonomous teams to the success of agility in product design (Stray et al., 2018).  

What sets the manifesto apart is its comprehensive approach. Agility in product design is neither only 
about responding to change, customer integration or autonomous teams. Instead, it is a systematic approach 
that combines and connects these aspects. The manifesto summarizes the basic values that create a foundation 
to continuously develop practices and methods to implement individual aspects of agile design. When new 
aspects are necessary the manifesto gives guidance how to evaluate and implement them. Partial 
implementations or shallow adoptions (Gregory et al., 2015) are avoided by the comprehensive approach of the 
manifesto.  

The manifesto hast been discussed repeatedly in literature. Different interpretation have been criticised 
and specific values and principles questioned (Laanti et al., 2013). While some aspects are very specific other 
elements remain vague. Dingsøyr et al. regard the manifesto not as a formal definition agility but rather as 
guidelines for delivering high-quality products in an agile manner (Dingsøyr et al., 2012). They view the manifesto 
as a foundation for methods and practices that improve customer value in accordance with the core concepts of 
Baham and Hirschheim (Baham and Hirschheim, 2021). 
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While the manifesto creates a common ground for agility in product design it does not provide specific 
practices that can be implemented directly by design teams. Its direct application as rulebook is nonsensical since 
application contexts differ and practices that are valuable in one context might be harmful in another. Instead, 
agile product design relies on a set of agile methods (or frameworks) that combine practices and rules for 
particular goals and specific application contexts. The manifesto describes the agility of a system while agile 
methods realize this agility by concrete and applicable practices and principles. Dingsøyr et al. state that agile 
methods need to reflect the core values of the manifesto (Dingsøyr et al., 2012). This does not imply that all agile 
methods have been designed with the manifesto in mind since some agile methods such as Scrum are actually 
older than the manifesto. 

In contrary, the manifesto has been composed as a summary of the most valuable concepts of agile 
methods that have been proven empirically. Abbas et al. coin agile methods as an umbrella term for well-defined 
methods that vary in practice and reflect the manifesto (Abbas et al., 2008). The term method in agile methods 
is debateable since in conventional product development terminology XP or Scrum would be methodologies and 
their practices such as the Sprint review would be methods (Pahl and Beitz, 2021). Nevertheless, the popular 
agile method term is well-established in both practical application and the research community and therefore 
also employed in the thesis at hand. 

 

Figure 3: Summary of agile methods (Denning, 2016). 

Most agile methods were originally intended for small teams but their popularity has expanded their 
use to large design projects and beyond software development (Gustavsson, 2020b; Xu, 2009). While agile 
methods were applied to different application context, they also have been adjusted to them. Additionally, new 
methods have been introduced that are based on popular agile methods or cannot be traced to existing ones. 
This evolution has led to a large set of agile methods as shown in Figure 3. The popular agile methods Scrum and 
eXtreme Programming XP (Baham and Hirschheim, 2021; VersionOne, 2020) are presented in the following 
sections to provide details how agile methods are structured and applied in practice. 

2.1.2.2 Scrum framework 
Scrum is by far the most used agile method (VersionOne, 2020). Its origins can be traced to the 1986 

article ”The New New Product Development Game” (Takeuchi and Nonaka, 1986). Based on empiric data 
Takeuchi and Nonaka describe successful product development as a result of continuous interaction of designers 
in small, multidisciplinary teams that are responsible for the complete product development process of a 
product. The close collaboration of the team is compared to the Scrum of rugby players. In 1995 Sutherland and 
Schwaber presented the first version of the Scrum Guide at the OOPSLA conference based on their experiences 
in several product design projects and regular updates have led to the 2020 version (Schwaber and Sutherland, 
2020) which is used for the thesis at hand. Scrum is guided by the principles transparency, inspection and 
adaption and relies on the values commitment, courage, focus, openness and respect (Schwaber and Sutherland, 
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2020). The framework is based on three roles, five events (meetings) and three artifacts to structure product 
design. 

The three roles in a Scrum Team are a team of cross-functional developers, one Scrum Master SM and 
one Product Owner PO. Developers (designers) are responsible for delivering the increment. This includes 
responsibilities for creating and adjusting the Sprint Backlog (Sprint Plan), the quality of the increment, and 
holding each other responsible. The Product Owner is accountable for the value of the product. This includes the 
duty Backlog management in the form of creating, prioritizing and transparently depicting Backlog items which 
must match customer requirements and reflect stakeholder restrictions. The Scrum Master is accountable for 
the Scrum Team’s effectiveness. Her responsibilities are establishing the Scrum framework, coaching the Scrum 
Team, removing impediments, and ensuring the Scrum events. The Scrum Master serves both the developer 
team and the Product Owner and facilitates their responsibilities. 

The five events are the Sprint, the Sprint Planning, the Daily Scrum, the Sprint Review and the Sprint 
Retrospective. The Sprint is a repeating timebox of several weeks with a consistent length during which the 
Scrum Team generates the product increment. In the Sprint Planning the Scrum Team decides on which Backlog 
items the Scrum Team will work during the next Sprint. It is divides into two parts with and without the Product 
Owner and results in the Sprint Backlog. The short Daily Scrum the team allows to coordinate activities for the 
following day. The Sprint Review allows the Scrum Team to review and discuss the increment after the Sprint 
together with costumers and stakeholders and collect feedback which get documented in the Backlog. In the 
Sprint Retrospective the Scrum Team reflects the past Sprint and identifies adjustments to the collaboration 
process. 

The three artifacts are the Product Backlog, the Sprint Backlog and the Increment. The Product Backlog 
is a prioritized list of items that reflect options to further develop the product according to customer 
requirements. The Sprint Backlog is a subset of the Product Backlog items chosen for a Sprint by the Scrum Team. 
The Increment represents the implemented Backlog items into a subproduct during a Sprint with a value to the 
customer. The Product Owner decides whether to release it. 

 

Figure 4: The agile method Scrum. The framework is based on iterative Sprint cycles that connect artifacts and meetings. In the Sprint 
Planning prioritized items from the Product Backlog are selected for the Sprint Backlog to be developed during the Sprint. Throughout the 
Sprint Daily Scrum meetings are used to improve cooperation and ensure coordination within the team. The Sprint results in the Product 
Increment which is presented in the Sprint Review meeting. A Sprint is completed by the Retrospective meeting to continuously question and 
improve cooperation. 

Figure 4 depicts how the presented artifacts, and events interlock during one iteration (Sprint). In the 
Sprint Planning the development team selects the highest prioritized items from the prepared Backlog into the 
Sprint Backlog for the upcoming Sprint. During the Sprint the developers focus on the development of the 
increment while the Product Owner updates the Backlog. The Scrum Team meets every day for the Daily Scrum 
to coordinate progress of the Sprint Backlog and avoid impediments. At the end of the Sprint the increment is 
presented and discussed at the Sprint Review amongst the Scrum Team which can also include customers and 
stakeholders. The increment represents the sum of the selected items of the Sprint Backlog. Feedback and 
discussion help to adjust the Product Backlog. The Sprint Retrospective represents the end of the Sprint and 
offers the opportunity to reflect on the past Sprint regarding collaboration and overall progress of the Scrum 
Team. The Agile Alliance defines Scrum as empirical since teams continuously establish a hypothesis, test it, 
reflect on the experiment and adjust the product accordingly (AgileAlliance, 2021a). 
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2.1.2.3 Extreme Programming XP framework 
Extreme Programming or XP is almost as popular as Scrum (VersionOne, 2020). It was first applied in 

the mid 1990’s in the Chrysler Comprehensive Compensation program in cooperation with Kent Beck 
(AgileAlliance, 2021b). Kent Beck also provides a thorough introduction and explanation of the agile method XP 
in (Beck, 2004). Unlike Scrum XP provides very specific engineering practices and does not detail the overall 
structure of the design cycle. But it is also based on iterative design cycles that connect coding, testing, listening 
and designing phases. Close teamwork and the integration of the customer into the design team are like Scrum 
but role definition is less formal. The engineering practices are adjusted to software development and therefore 
cannot be transferred to other product contexts without difficulties.  

Don Wells recommends XP under dynamically changing requirements, high risks caused by new 
technologies, small co-located development teams and if automated unit and functional tests are applicable 
(Wells, 2021). Especially the last condition shows that XP unlike Scrum relies on highly automated IT 
infrastructure. XP is based on the values communication, simplicity, feedback, courage and respect. The XP 
practices present the core of the agile methods. Initially twelve practices were published but these practices have 
been adjusted by Kent Beck in the second edition of his book (Beck, 2004). The descriptions in the thesis at hand 
are based on practices from both versions.  

In XP the customer is expected to be available and part of the design team. The On-Site Customer 
practice reflects this requirement. This enables understanding of customer requirements, direct feedback, 
customer testing and accelerates necessary decisions for small releases. According to the System Metaphor 
practice parts of the software product get names that are easy understandable by all stakeholders including the 
customers. This practice is connected to user stories. They significantly improve communication between 
customer, designers and further stakeholders. The Planning Game practice determines the release and the 
iteration planning. During the Release Planning the customer presents the desired features and the designers 
estimate their difficulty. They implement an initially imprecise release plan that is continuously adapted 
according to project progress. During the Iteration Planning the designers break down features into tasks and 
estimate their effort based on their experience from past iterations. The planning steps transparently display 
project and product progress and enable to customer to adjust project steering accordingly. The Continuous 
Integration practice requires code change to be immediately tested when added to a larger code base. It allows 
to detect integration issues directly. It requires a code integration system, Coding Standards, the Ten-Minute 
Build and Test First Development to function. The Ten-Minute Build stands for the ability to automatically build 
the whole system and run all the tests in ten minutes. It requires an automated build process which has to be 
provided or adjusted by the design team. The short time frame is necessary, since a longer time would result in 
avoided builds if only small changes are applied. It supports the practices Continuous Integration and Test First 
Programming. The Test-First Programming practice reverses the normal path of software design from develop 
code, write tests, run tests to write failing automated test, run failing test, develop code to make test pass, run 
test. It reduces the feedback cycle for designers to find and resolve bugs and therefore improves quality of the 
product. The Refactoring (or Design Improvement) practice focuses on removal of duplication and improving 
cohesion of the code. It therefore lowers coupling between pieces of codes. It enables simple design for software 
and therefore improves product quality and product design efficiency. It requires testing practices and 
continuous integration. The Collective Code Ownership practice allows any designer (or pair of designers) to 
improve any code at any time. This improves code quality and ensures that requires features are put in the right 
place by the responsible designers. To avoid unreflective code changes the Collective Code Ownership practice 
relies on the Pair Programming, the Coding Standards and the Testing practices to provide added value. The 
Coding Standard practice results in code throughout the whole systems that could have been written by one 
competent designer. It does not imply one standard across industries but requires all connected code to look 
familiar. This also requires a commitment of all responsible designers. The Pair Programming practice requires 
all product software in XP to be coded by two designers, sitting next to each other at the same computer. It 
guarantees direct review and feedback and results in better design, testing and code quality. Like in Scrum the 
Incremental Design practice divides the whole product in several sub products that can be designed within 
iteration time lengths. The practice creates the opportunity for customer testing, Small Releases and reduces 
costs of changes. It requires modular system design and customer integration. The Small Releases practice 
includes the release of small, tested and functional packages to both the costumer and the end users after each 
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iteration. The practice relies on Incremental Design, Continuous Integration and automated testing. It improves 
product quality through additional end user feedback and improves customer value.  

2.1.2.4 Large scale agile methods 
Throughout the last two decades a set of large scale agile methods has been developed (Larman and 

Vodde, 2009). Dingsøyr et al. divide these scaled agile methods into two generations (Dingsøyr et al., 2021). First 
generation large-scale agile methods combine agile methods at team level with traditional project management 
frameworks such as Prince2 (Bentley, 2005). They connect conventional engineering approaches that provide 
structure and orientation and might include several phases over long-time spans with agile design practices at 
the team level. These combinations are often called hybrid frameworks (Bick et al., 2018). These process-centric 
frameworks often divide work into phases, rely on formal communication and individual roles. Second 
generation large-scale agile methods replace the management frameworks with agile and lean structures. 
Edison et al. group the most relevant large scale agile development frameworks which include the Disciplined 
Agile Delivery (DAD) framework, the Large Scale Scrum (LeSS) framework, the Scaled Agile Framework (SAFe), 
the Scrum-at-Scale framework and the Spotify Model framework (Edison et al., 2021). These second generation 
frameworks shift the focus from the process towards the product and embrace concepts such as informal 
communication or an collaboration oriented management style clearly based on agile principles (Baham and 
Hirschheim, 2021). The focus of the thesis at hand is second generation large scale agile methods.  

SAFe is currently the most popular large-scale agile method and employed in software and non-software 
product design (VersionOne, 2020). Like LeSS it is based on the agile method Scrum and adds further practices, 
roles and structure to enable cooperation of several teams and connect long-term planning and strategy with 
agile practices at the team level. The concept of the framework was designed to combine agile software 
development, lean product development and systems thinking. Origins of SAFe were first presented by Dean 
Leffingwell in 2007 SAFe was first presented in 2007 (Leffingwell and Kruchten, 2007) and is described in detail 
at the framework homepage (SAFe, 2021). SAFe has been criticized by researchers (Alqudah and Razali, 2016; 
Stojanov et al., 2015) and practitioners including Ken Schwaber one of the framework originator of Scrum 
(Schwaber, 2013) who claim that SAFe minimizes team autonomy and rebuilds bureaucracy similar to 
conventional product design methodologies like the waterfall model or first generation large-scale agile 
methods. Regarding this criticism LeSS offers an alternative product design approach for more than one agile 
team but requires much less structure compared to SAFe. Further information regarding inter team coordination 
in large scale agile methods is discussed in subchapter 4.4. 
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2.2 Product development theory 
The aim of this subchapter is to supplement a conventional perspective on product development and 

respective methodologies independent of product type characteristics. It includes different perceptions on how to 
describe product development or specific aspects of it. This classification of conventional product development 
understanding is introduced as a scaffolding that allows to analyse agile product design structure in comparison. 
The reference frame allows to define parallels and differences between agile and conventional approaches to 
product development and hence increases understanding of agile design. The subsection first introduces a 
definition of product development and summarizes its elemental characteristics. Thereupon micro and macro 
logic in product development are divided and the concept of a design project is differentiated from product 
development. Next, the most relevant process models are described and categorized into linear and iterative 
(incremental) models. Finally, agile design is categorized according to the presented scaffolding and compared to 
popular process models.  

Ulrich and Eppinger define product development as the sum of all necessary activities from sensing a 
market potential to a product model that is subsequently used for production and sales (Ulrich and Eppinger, 
2015). Hammer extends this definition to the product development process which he defines as a series of 
interrelated activities that give rise to a valuable result for the company (Hammer, 2001). Ehrlenspiel et al. specify 
these activities as including all operations, from the product idea to the start of the production (Ehrlenspiel and 
Meerkamm, 2013). Paetzold et al. describe the (mechatronic) product development process by four 
characteristics (Paetzold et al., 2017). First, development processes are object of uncertain and incomplete data 
and information. Throughout the development process uncertainty is reduced and data is generated to fill these 
gaps. Data and information about the product arise in the context of the development activities. Second, 
development is multidisciplinary and requires the cooperation of different domains that rely on different process 
and integration models. These models result in varying perspectives of the same product development process 
which results in variance regarding knowledge content of the models. Third, development activities in these 
different domains and their respective departments are parallelized. These concurrent development streams 
mutually require input from each other. Interface management is necessary to ensure data and information 
availability through any stage of development. Fourth, development consists of a permanent exchange between 
synthesis and analysis. This requires appropriate analytical steps of information and continuous corrections of 
requirements according to results. 

To further differentiate product development Paetzold et al. separate a micro and a macro logic (Paetzold 
et al., 2017). The micro logic in product development describes the activities at the concrete project work 
(Gausemeier et al., 2004). It is based on a generic problem-solving cycle. Ehrlenspiel describes it as a continuous 
sequence of task clarification, solution generation and solution selection (Ehrlenspiel and Meerkamm, 2013). The 
concept represents the foundation of iterative product development which is essential for the micro logic in 
product development. The micro logic opens a generic approach independent of the product that applies to a 
broad spectrum of individual tasks. The macro logic is its counterpart and defines integrating structures in 
product development that connect and guide activities and methods at the micro logic level. The macro logic of 
product development relies on process models such as the Waterfall model or the Stage Gate model which are 
described in detail in the next section. These prescriptive process descriptions organize product development 
from the first idea to the finished product based on a chronological and logical order of development activities 
(Lindemann, 2009). They are configured to certain product groups but require further adjustment according to 
the specific product (Paetzold et al., 2017). These variations explain domain specific development processes that 
are not necessarily interlacing in multi domain development. The process models divide the overall development 
process into manageable sections that address different goals of product development. Paetzold et al. identify 
four domain-independent phases: Planning Phase, Conceptual Phase, Detailing Phase and Integration 
Phase (Paetzold et al., 2017). 

In practice product development is organized in projects that connect micro and macro logic development 
activities. Development projects are “temporary endeavour undertaken to create a unique product, service or 
result” (PMI, 2008). Lévárdy and Browning view product development projects as systems that transform input 
factors such as project members, artifacts and information into the product (Lévárdy and Browning, 2009). The 
project is a temporary system of these interconnected input factors that results in a description of how the 
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product works, looks, gets manufactured, is operated, etc. which Lévárdy et al. term the “product recipe”. They 
emphasise that each development project is unique because activities necessary to reach the project goal and 
the goal are dynamic, uncertain, and ambiguous.  

The development project and the development process have severe influence on the different aspects of the 
complete life cycle of the product. Schmidt summarizes project management and systems engineering as the 
essential perspectives on product development that focus on both micro and macro logic of product 
development (Schmidt, 2019). Project management involves administrative activities which include planning, 
organizing, coordinating controlling, steering and reporting amongst others. On a micro level project 
management continuously compares theoretical targets with practical results to derive necessary means to 
remain on track (Kerzner, 2009). Project management organizes product development activities according to 
cost and quality requirement. The project manager and project management methods are the implementation 
of the objective in either an individual role or a micro logic process description. On a macro level project 
management is often attributed to process models such as the Stage Gate model which might include 
corresponding roles. System engineering views product development as a system consisting of elements such as 
staff, capabilities, information and artifacts, interdependencies and dynamics (Lévárdy and Browning, 2009). It 
aims at an integrative view on product development that considers operation, cost, schedule performance, 
support, test and production. System engineering is based on the conviction that a system is more than the sum 
of its components. The interplay of dependencies and dynamics between elements of product development is 
essential in the system engineering view. This macro scale product design is described by the elemental 
engineering design process by Pahl and Beitz (Pahl and Beitz, 2013) which gives product independent guidance 
on how to generically design a (mechatronic) product. 

2.2.1 Linear and iterative process models 
Context and product specific process models divide the product development process into 

smaller, better predictable phases with specific foci on the macro logic scale. Process models are 
categorized into linear and iterative (incremental) models. In the following paragraph these categories 
of process models are explained along with descriptions of the popular representatives. 

 

Figure 5: Waterfall and Stage Gate models. Linear, or sequential process models divide the development process into separated phases which 
are executed consecutively. The waterfall model consists of the phases initiation, analysis, design, construction, testing, deployment and 
maintenance which flow into each other like a cascade. The original publication (Royce, 1970) includes iterative design cycles which are 
represented with dotted arrows. Cooper’s Stage Gate Process adds prespecified verification gates between stages to ensure product maturity 
(Cooper, 1983). 

Linear or sequential process models divide the product development into separated phases 
that are executed consecutively (see Figure 5). Extensive planning of the development project 
throughout the first phases which is often disparagingly labelled as “front loading” characterizes these 
models (Thomke and Fujimoto, 2000). Verification at gates between these phases ensures that the 
planned product maturity has been accomplished. Such gates either prolong the earlier phase, stop 
the whole project or allow the project to continue. Linear process models are one-way process models. 
Repetitions or going back to earlier phases were originally not intended. The most popular linear 
process models are the Waterfall model (Royce, 1970) and the Stage-Gate model (Cooper, 1983). The 
Waterfall model is often used in software development. It is named after progress in product 
development through its sequential stages that resemble a cascade that flows from one phase to the 
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next in one direction. Its phases are initiation, analysis, design, construction, testing, deployment, and 
maintenance. Even though the Waterfall model is often referred to for linear process models the 
original publication of Royce from 1970 includes iterative elements that allowed repetitions of stages 
(Royce, 1970). The Stage-Gate model adds formal gates between its sequential design stages that 
ensure that product maturity complies with the initial planning (Cooper, 1990). Gates results either in 
the next project stage (with conditions), project halt until further decisions or project kill. Gates require 
powerful steering committees able to thoroughly verify project progress. Concurrent Engineering is 
another linear process model with characteristics overlapping phases (Haberfellner and de Weck, 
2005). Its main advantage is a shorter project duration which results in a high popularity in automotive 
design, even though the approach risks incomplete or faulty phases. 

Iterative process models rely on iterative feedback loops to develop both requirements and 
product design in parallel. Unlike in linear process models requirements are adjusted throughout 
iterations and are not fixed after the initial phase. General specifications are transformed during 
iterations into specific requirements and the product in corresponding subsystems. Within these 
subsystems detailed product designs are developed and tested that require further system testing and 
integration. Iterative process models release the complete product. The V-Model and Spiral model 
(Boehm, 1988) are popular iterative process models. Originally a software development model the V-
Model variation described in the VDI Guideline 2206 (VDI 2206, 2004) applies to mechatronic system 
design. The V-Model connects design and test activities in large iterations (see Figure 2). First, unspecific 
macro requirements are matched with respective test structures. As the requirements are specified so 
are corresponding test and integration specifications. Once requirements refinements are sufficiently 
specific, they are get designed and tested at the lowest part of the V. The refinement of requirements 
and system characteristics represents the first branch of the V. The resulting product parts are tested 
and integrated according to the prespecified verification and validation structures climbing up the 
second branch of the V. It is essential that the findings about product characteristics on different 
integration levels are used to adjust both earlier requirements and the respective testing and 
integration system. In automotive development projects the V-model is repeated with varying level of 
detail und changing overall design goal (e.g. concept, design, industrialization) with each repetition 
representing one iteration. 

 

Figure 6: The V-Model specifies interlocking granularity levels of design and respective test activities (based on (Eigner, 2021)). 

Iterative incremental models are based on the concept of iterative process models. They are 
based on much shorter iteration lengths including verification and validation at system level ideally 
each iteration to address unclear requirements or changing customer wishes during each iteration. 
Their delamination to iterative process models is based on their ability to release product parts with a 
high customer value every iteration. Typical examples are the agile methods Scrum (Schwaber and 
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Sutherland, 2020) or Extreme Programming (Beck, 1999) which are described in detail in 2.1.2.2 and 
2.1.2.3. 

2.2.2 Categorization of agile product development 
 Agility in product design has been approximated though two perspectives in the thesis at hand. It has 
been described as an attribute of product development explaining what agility is, what characteristics it results 
in, what its benefits are and where it came from and as a construct explaining what methods and practices are 
used to accomplish the desired product development characteristics. The aim of this section is to classify agile 
product design within the described scaffolding of product development methodology. This allows to compare 
this new product design approach with existing concepts.  

The Fuzziness model of Oestereich and Weiss (Figure 7) summarizes the logic of agile product 
development straightforward (Oestereich and Weiss, 2008). Initially, the product development project is object 
to high uncertainty. Imprecise customer requirements and incomplete technology understanding result in a fuzzy 
solution space. To answer this uncertainty the development team projects its incomplete requirements into a 
draft of the desired product as an entrepreneurial vision including a description on how to realize it. This initial 
product vision shapes the scope of the first iteration which must result in an increment. The increment allows to 
validate and specify the initial product requirements with the customer and to verify the planned product 
implementation and technology roadmap. The learnings during the iteration help to refine the product vision 
and result in an adjusted scope for the second iteration. For each following iteration the development team 
adjusts the scope to improve customer understanding and product maturity. With every iteration the solution 
space definition improves and the initial uncertainty decreases. This results in a project path that is incrementally 
reshaped and verified by the outcome of the iterations (Douglass, 2016) and might lead to unexpected solutions. 
Ostereich and Weiss state “that the clarity about the product to be produced does not suddenly arise, but comes 
gradually, and that the goals is not a constant size, but can change over time” (Oestereich and Weiss, 2008). 

 
Figure 7: Fundamental logic of agile product development based on the Fuzziness model of (Oestereich and Weiss, 2008). Initially the design 
project is object to uncertainty and can only project the desired outcome vaguely. During the following iterations, which all result in 
verifiable artifacts, understanding of the product improves in steps. The clarification of the product requirements and the verified design 
solutions iteratively decrease the design fuzziness. 

Regarding the micro logic of product development scaffolding agile product design is also based on the 
elementary problem-solving cycle (Ehrlenspiel and Meerkamm, 2013) like most other approaches. Any iteration 
follows the same procedure: Determination of the iteration scope (plan), generation of the increment (do), 
verification and validation of the increment (check), transfer of learnings to the next iteration (act). Unlike 
conventional approaches agile design emphasizes the independency of teams and hence the micro design cycles. 
This independence on the micro logic design level is an essential principle. Agile design emphasizes iterative 
design, short iteration length, consistency of the iteration length and incremental results on a micro logic level. 
The combination of short iterations and incremental results allows to both validate requirements with the 
customer and verify implementations in parallel which differs significantly from traditional approaches. Linear 
approaches require a complete and correct set of requirements early in the design process. Another significant 
characteristic of agile design is its dominance of the micro logic compared to the macro logic. Iterative learnings 
are more relevant to the solution space definition than initial planning procedures. Most traditional design 
methodologies subordinate the micro logic to the macro logic.  
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Regarding the macro logic according to the presented product development scaffolding agile product 
design best matches the Spiral model of Boehm (Haberfellner and de Weck, 2005). Unlike sequential process 
models agile design allows to change requirements and plans throughout most of the development project 
depending on the product type characteristics. The focus on product increments to verify product 
implementation and validate costumer requirements classifies agile design approaches within the subgroup of 
iterative incremental process models. Besides the described categories agile product development has further 
differentiating characteristics. Nerur and Balijepally summarize the spectrum of differences between traditional 
and agile product development and emphasize different goals. Agile development aspires adaption, flexibility, 
and responsiveness through an emergent, iterative and exploratory design process, while traditional 
development aims at optimization and employs an deliberate, formal and linear design process (Nerur and 
Balijepally, 2007). 

2.3 Automotive product development 
In this subchapter automotive design is described according to the presented product development 

scaffolding. Additionally, the development context is compared to sweet spot conditions of agile design and 
central differences are categorized. This allows to better understand the suitability of agile design structures in 
the context automotive design. The empirical scope of the thesis at hand is the Research and Development 
department of the partnering company BMW Group and therefore the reference for automotive design in this 
section. The development department is separated into multiple sub departments or divisions according to 
product functionalities. The divisions cooperate in large development projects. These projects are divided into 
process chains according to a generic product architecture. The product architecture separates systems into 
modules and modules into components based on specific parts of cars. The organizational breakdown of the 
development department references the product architecture. Divisions are separated into units and groups 
which are responsible for modules and components. 

The macro logic of large automotive design projects is structured through a stage gate process model that 
separates ideation, conceptualization, series design and industrialization phases. Gates are implemented 
between each of these phases to assess product maturity and business model viability according to a prespecified 
plan. Each evaluation requires a complete integration of the product which has been developed in modules and 
components according to the predetermined product architecture. That is why between each stage automotive 
design relies on at least one complete cycle of the V-Model. Objectives, product maturity and level of detail of 
the V-Model cycles change with the phase of the stage gate process. Consequently, the automotive design 
process is a combination of an integrating linear Stage gate and an iterative V-Model process model. The overall 
V-Model cycle is subdivided into several modules and components that rely on shorter iteration lengths. The 
iterative V-Model cycles throughout the phases are not incremental since only the final product is released to 
the costumer. An exception within automotive design is software only products which are directly released as 
incremental updates into hardware that is already in use. The micro logic of automotive design includes a broad 
spectrum of design activities which reflects the diversity of product types within the automotive product. At the 
micro logic level these design activities are highly interdependent, even across product types. These 
dependencies are driven by the high integration level and the physicality of the product. Individual teams depend 
on input from other teams and decisions within teams influence multiteam systems. Prototypes at a high 
integration level are applied to manage the complexity of these interdependent design activities. They allow to 
verify the system behaviour of the product and transparently depict interdependencies between product parts 
and hence the respective development units. 

The highly integrated automotive product development process is implemented in large projects. Several 
projects are conducted with an offset to avoid simultaneous use of development resources. A vast interlinkage 
of functional, physical and sequential dependencies causes a high interdependency level of organization units 
within these product development projects. Significant coordination efforts are necessary to facilitate project 
progress and avoid asynchrony between sub projects. Vertical hierarchies and specific role descriptions of both 
technical and project management roles are characteristic for the coordination structure. Coordination therefore 
accounts for a major part of the product design effort. 

Regarding the nature of the product, automotive product design includes separated software and 
hardware development projects and hybrid or mechatronic development projects. Product integration and 
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testing is implemented differently in hardware and software design projects. In software design automated 
integration and testing has been implemented to a large degree. Most of the hardware design on the other hand 
is based on sequential testing of physical prototypes. The integration level of these physical prototypes depends 
on the analysed functional dependencies and overall (phase-based) product maturity. These verification cycles 
and the necessary infrastructure amount for a large share of the overall design process regarding both time and 
effort. The more time intensive hardware integration dominates overall design scheduling. The interlinkage 
between hardware and software in the highly integrated design process results in suboptimal project frames for 
software specific subproducts. The combination of an integral product architecture and the slow hardware 
dominated product integration is vulnerable to undetected, unexpected, or peripheral problems. 

Automotive design differs considerably from agile sweet spot conditions as described in 2.1.1.5. The two 
central factors that differentiate automotive design are the physicality of the product and scale of the design 
process. The physicality of the product results in additional dependencies between components and hence 
increased independency of design units compared to agile sweet spot conditions. It affects the product 
verification strategy which relies on highly integrated physical prototypes. It increases the verification efforts, 
complicates redesigns, and limits verification automatization. The physicality of the product also requires up-
front specification of the product architecture and early determination of central design concepts before the 
start of the actual design process. The scale of the development projects results in large systems of teams. 
Instead of independent design teams like agile sweet spot conditions, interdependent teams cooperate in 
multiteam systems. Central drivers of the large scale in automotive design are the product complexity and size 
and thus the number of product parts that need to be developed in parallel and the spectrum of necessary 
specializations. To understand the impacts of the characteristic scale and physicality on agility in automotive 
design both factors are further detailed in the next subchapters. 
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2.3.1 Agility in mechatronic product design 
The aim of this subchapter is to detail and summarize constraints of agile design caused by the physicality 

of hardware products. The reason agility in mechatronic product design is described is that agile automotive 
design differs from agile software design regarding the physicality of the product. These differences are essential 
to understand the implications on agile automotive design. The subchapter is divided into two parts. First, 
hardware products are differentiated from software products regarding their design process and fundamental 
product characteristics. These differences to agile sweet spot conditions are connected to drawbacks of agile 
design of non-software products. Second, literature sources are presented that provide cause effect relations 
between hardware design characteristics and constraints of agile design. 

The term “mechatronics” is a composition of the words “mechanics” and “electronics”. This combination 
reflects that a mechatronic product consists of mechanics, electronics and software and integrate them into one 
product. A mechatronic product is always based on a hardware but must not necessarily contain a software 
share. Such products require the cooperation of several disciplines in product design that often result in 
challenges due to opposing product design approaches (Lückel et al., 2000). Computer scientists and electrical 
engineers are function-oriented and adjusted to short product lifecycles while mechanical engineers are 
component-oriented and used to much longer product lifecycles. Their combination in mechatronic product 
design results in numerous dependencies between the disciplines. 

Socha and Walter fundamentally differentiate product design in software and physical products by 
relating activities to effort needed (see Figure 8) to analyse applicability of agile design in non-software products 
(Socha and Walter, 2006). They divide the product lifecycle of hardware and software products into the 
sequential phases Design, Build, Distribute, Intervene and Operate. The Design phase is central in software 
products while their non-physicality allows to minimize the Build and Distribute phases. Hardware products on 
the other require additional activities for both the Build and Distribute phases. Also, hardware design relies on 
sequential design phases that are interdependent.  

 

Figure 8: Comparison of development efforts for physical and software products throughout their life cycle (Socha and Walter, 2006)). 
Larger and bold font implies more effort is needed during that stage of product development. Software products allow to focus effort on the 
design phase and require little effort during the build phase. In contrast, physical products need to be materialized in the build stage which 
represents a large effort. The production phase has a significant influence on the design of a physical product. Therefore, design and 
production requirements must both be considered in the design stage of the product. 

The phases Design Build and Distribute are not sequential in automotive design as expected for 
hardware products. In contrast, for example automotive design requires concurrent design efforts since 
interdependencies between the design activities require parallel activities. Automotive development projects 
are composed of three parallel, synchronized projects: the design of the product including the design of the 
verification system, the design of the product manufacturing facilities and the design of the necessary supply 
chain and product distribution. 

Such product design conditions present severe deviations from Boehm’s and Kruchten’s Sweet Spot 
conditions (Boehm, 2002; Kruchten, 2013) for agile design. That is why early literature of agility in hardware 
design has resulted less efficient compared to software design (Schmidt et al., 2019). Ovesen reports difficulty in 
design team composition. Increasing numbers of necessary domains and design phases require additional 
designers. Team separations are necessary to avoid oversized teams which in turn result in inter team 
dependencies (Ovesen, 2012). Ovesen also coined the term constraints of physicality to describe product and 
process characteristics specific to hardware products that reduce applicability of agile design (Ovesen, 2012). He 
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states that the physicality of the product reduces the applicability of agile design based on his experiences with 
Scrum. More specifically he defines four constraints that cause this reduced applicability. 

First, task breakdown into small and independent work packages is complicated in agile design of 
hardware products. Scrum requires these packages to fit into one iteration. But physical dependencies between 
components, necessary functional integration and multiple necessary domains increase the interdependency 
prevent or complicate the necessary task separation. Second, the separation of deliverables or prototypes is 
harder in hardware design. Potentially shippable physical products are constrained by long manufacturing times 
and necessary cooperation between involved domains. The integrated nature of for example mechatronic 
products and the necessary combination of design and manufacturing in hardware contradicts the idea of 
functionally separated subproducts which are shippable and provide customer value without the whole product. 
Third, there is less flexibility in hardware product design compared to software design. Mechatronic products are 
composed by a higher integration level than software products. Decisions cannot be taken without reducing the 
level of flexibility significantly. Additionally, physical dependencies increase the overall product interdependency 
system complexity and often results in incomplete understanding of system implications. Refactoring and 
repeated rebuilds are therefore much more complicated in mechatronic product design since changes might 
have unintended consequences for other product parts and often require new physical prototypes. Fourth, time 
and resource estimation are harder in agile design of hardware products. The higher interdependency level of 
the physical products decreases transparency of relevant dependencies and complicates necessary estimations. 
Concept development tasks are characterized by unknown unknowns which cannot be estimated. The first 
constraint, the difficulty to define small and independent work packages further enhances the estimation 
constraint.  

Atzberger and Paetzold reviewed and confirmed Ovesen’s constraints of physicality in 2019. 
Additionally, they present a set of updated constraints (Atzberger and Paetzold, 2019). Dependencies to external 
suppliers, verification and certification, complicated tool production prevent fast feedback cycles and negatively 
affect iteration speed. Legal restrictions require additional documentation. Regarding the number of involved 
teams, they underline the lack of sufficient coordination structures. 

Ronkainen and Abrahamsson published constraints of agile software development in embedded 
systems (Ronkainen and Abrahamsson, 2003). They emphasis the impact of hardware on agile test-driven design 
strategies. System performance tests rely on combinations of hardware and software tests, but hardware test 
capacity and speed do not match software test characteristics which limits whole product testing performance. 
Furthermore, final software verification relies on functional hardware. Inter team coordination becomes more 
relevant at the cost of face-to-face communication since larger projects and additional stakeholder require 
distributed development across teams. Documentation practices of agile methods are often insufficient. 
Especially, change-prone requirements must be identified and managed. Up-front designs and architecture are 
necessary for hardware subproducts. Refactoring in turn becomes harder which limits experimenting 
opportunities of design teams. Transfer of prototypes into production models becomes harder and requires 
necessary maturity steps of the prototypes.  

Greene further confirms the findings of Ronkainen and Abrahamsson in a report of shortcomings of 
agile methods in embedded firmware development at Intel. Team formation is complicated by the larger number 
of necessary experts across additional domains. Hardware tests do not match granularity and automation of 
software tests. Additionally, incomplete test coverage increases design dependency of final system tests. Kaisti 
et al. confirm the necessity for non-emergent product architecture, up-front design and plans in embedded 
design and describe the need for techniques to account for relevant specifications (Kaisti et al., 2013). 
Documentation on a system level is necessary to ensure cooperation between designers and stakeholders. The 
number of involved design teams grows with increasing product integration which causes changes to affect more 
teams. To compensate the effort of change integration, embedded products require more rigid architecture and 
corresponding design practices in later development stages. 

Conforto et al. differentiate non-software from software industries regarding agile design (Conforto et 
al., 2014). Central differences between the product groups are the quantity of interaction between design teams, 
the number of designers involved, the complexity level of the product, the technological and cost barrier to 
prototype physically and the length of the development cycle. Their analysis emphasises problems with 
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multidisciplinary teams in non-software industries. Multidisciplinary full-time teams are hindered by the number 
of specializations and designers. The coordination practices of employed agile methods are insufficient to provide 
inter team coordination and integrate customers into a multiteam system. Product complexity and prototype 
availability and integration level further complicate customer integration. Gustavsson’s literature review of agile 
project management in non-software project identifies a lack of process visibility, missing manager buy-in and 
inadequate knowledge sharing as the top challenges. Insufficient resource allocation, redundant work, 
inadequate long-term planning, a lack of process visibility and individual tasks are secondary challenges 
(Gustavsson, 2016).  

The presented literature sources have reported similar constraints of agile hardware design. The following 
summary lists the most referenced ones compared to software design. The number of disciplines and experts 
increases in hardware design projects. This requires documentation, coordination and communication to 
improve cooperation. Additional design steps such as manufacturing and distribution are central and connected 
to product design tasks. Iterative and incremental design is therefore complicated. Between subparts of the 
products are physical dependencies which increase dependencies between design teams and often require full 
scale prototypes for verification. Customer involvement is more complicated due to additional design teams and 
prototypes that do not reflect full product functionality. Hardware verification systems are less automated and 
less connected compared to software testing. Testing focuses on system tests. Technologies such as continuous 
integration or automated testing which are essential for agile testing strategies are not available at the same 
functionality yet.  

Still, practical examples of successful agile design in hardware products such as cars or airplanes (Brown, 
2013; Denning, 2012; Furuhjelm et al., 2017) and annual industry reports (Komus, 2017; Schmidt et al., 2019) 
prove that the development of physical products profits from agile design approaches. Nevertheless, agile 
methods and practices require adjustments to suit the new applications environment (Conforto et al., 2014; 
Schrof et al., 2018). 

2.3.2 Agility in scaled design contexts 
The aim of this subchapter is to describe and define scaled agile design and summarize and explain 

constraints of agile design caused by the scale of the process. This is relevant because automotive design is a 
large-scale process and therefore must regard the characteristics and limits of agility in scaled contexts. The 
subchapter is divided into two sections. In the first parts large-scale agile and current industry relevance are 
described. Definitions of large scale agile are compared and evaluated. The second part summarizes reported 
constraints of large scale agile. 

There is a clear tendency to expand agile product design beyond individual team applications towards 
large scale applications. Edison et al. analyse in their literature review 191 primary study that focus on scaled 
agile design (Edison et al., 2021). The sheer number of 191 studies reflects the relevance and interest of both the 
scientific community and practitioners at large scale agile. Despite this empiric proof of the scaled applications, 
agile methods were originally thought to be limited to small, co-located design teams (Conboy, 2009). Conboy 
states that even though the application has expanded to large-scale application the amount of literature 
regarding corresponding constraints clarifies that these applications might not be simple plug and play (Conboy, 
2009). Maples argues that routines, practices and processes that worked well for small teams might be difficult 
to scale (Maples, 2009).  

Before looking into characteristics of scaled agile design it is necessary to agree on a definition of the term 
“scaled agile”. Dingsøyr et al. propose a taxonomy of scaled agile that accounts for the number of interdependent 
teams in design projects and the sensible coordination structure (Dingsøyr et al., 2014). It is based on three 
categories. Small-scale agile includes one team and relies on agile coordination practices. Large-scale agile 
reflects projects that consist of at least two and up to nine teams. Coordination in large scale agile requires 
additional forums such Scrum of Scrums. Very large scale agile consists of ten or more teams and coordination is 
divided into several forums. Dikert et al. propose a similar division. They define large-scale to include 50 or more 
people or at least six teams. The involved persons do not have to be designers and may also include stakeholder. 
But there must be a need to collaborate between the involved actors (Dikert et al., 2016). Rolland et al. further 
specifies the number of actors and teams with a network of interdependencies that requires collaboration 
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between actors and teams (Rolland et al., 2016). They also emphasise project size and overall project cost in their 
definition of large-scale agile.  

Scaled or large scale design contexts also oppose agile sweet spot conditions. Increasing numbers of 
developers, stakeholders and teams connected in large projects affect the applicability of fundamental agile 
development principles. In the thesis at hand challenges to agile design approaches that relate to project size 
and complexity are summarized under the term constraints of scale and were noticed first in large software 
projects. Dependencies on product, process and system level are central causes. The following sources 
summarize constraints of scale that have been published since 2010. Constraints of scale reflect two categories. 
Systemic constraints of scaled development and constraints that are caused by the transformation process 
towards agile design. This study only summarizes systemic constraints. 

Edison et al. present the most complete and up to date literature review of scaled agile design to the 
author’s knowledge (Edison et al., 2021). They report inter team coordination constraints in scaled agile design 
application. Synchronization and transparency across dynamic, adaptive teams are difficult. Communication 
overloads are caused by multiple agile layers and various ceremonies. The adjusted balance between inter and 
intra team activities increases external distractions for team collaboration. Organizational structure constraints 
are caused by the need to balance generalists and specialists teams, the fluidity of agile roles and flow levelling 
for limited resources. Architectural constraints include difficulties to see the big picture, lack of continuous 
integration and test automatization and a lack of software security awareness and measure. Requirements 
engineering constraints are driven by the difficulties in coordination rapidly changing requirements planning 
across teams, prioritisation and formulating small, valuable and measurable stories. Customer collaboration 
constraints are caused by difficulties to maintain a constant pace indefinitely. Team related constraints 
summarize a lack of ownership of user stories, over-commitment for faster delivers, a lack of team autonomy 
and fear of criticism. Project management constraints include conflicts between long-term planning and short-
term sprint-based planning of agile, alignment difficulties to existing processes and stakeholder and insufficient 
meaningful metrics for performance and improvement. 

Dikert et al. analyse scaling constraints and success factors in another literature review (Dikert et al., 
2016). They summarized systemic constraints into three categories: coordination in multiteam systems, 
requirements engineering and quality assurance and testing. Inter team coordination suffered from problematic 
interfacing between teams, distributed teams, individually divergent balance between team autonomy and 
collaboration with other teams and, insufficient technical consistency between teams and systems. 
Requirements engineering constraints included non-existent high-level requirements management, challenging 
requirement refinement, difficulties to create and estimate user stories and a gap between long-term and short-
term planning. Quality assurance and testing constraints are driven by a lack of non-functional tests (e.g. 
performance, load and memory tests), a lack of test automatization across sub and ambiguous requirements due 
to insufficient requirements refinement. Uludag et al. confirm Dikert et al.’s findings in a secondary literature 
review focusing on systemic constraints of scale (Uludag et al., 2018). They confirm Dikert’s three systematic 
constraints categories and identify the additional constraints categories software architecture, team distribution, 
knowledge management and enterprise architecture. Sekitoleko et al. report technical dependencies between 
activities, artifacts and teams caused by scaled agile practices. The authors summarize difficulties in task 
prioritization, product quality, knowledge sharing, planning and product integration (Sekitoleko et al., 2014).  

Based on a large case study Dingsøyr et al. argue that inter team coordination causes severe problems in 
scaled agile design because teams which were originally intended autonomous are object to dynamic 
dependencies between tasks and hence teams (Dingsøyr, Moe, et al., 2018). Šāblis et al. even state that the 
coordination of such interdependencies is one of the biggest challenges associated with large-scale software 
development today (Šāblis, Šmite, & Moe, 2020). The agile principle of team autonomy in small scale agile 
methods negatively impacts coordination and knowledge exchange between teams in multiteam systems. A 
balance between team autonomy and inter team coordination is therefore necessary. Simply scaling existing 
agile practices like a Scrum of has Scrum has not been proven successful (Paasivaara et al., 2012). Hobbs and 
Petit confirm the existence of inter team coordination challenges in scaled projects and add two further 
interrelated constraints of scale: The organization of specialists outside of design teams and the integration of 
agile systems with other (existing) systems (Hobbs and Petit, 2017). Berger and Eklund see the need for 
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continuous integration of product increments of different teams. This requires appropriate infrastructure and 
automated system tests. However, these structures cannot be generated by the development teams, but require 
central provision (Berger and Eklund, 2015). 

In summary, the following constraints of scale are most relevant. Scaled agile projects increase project 
complexity and result in dependencies between tasks and hence teams. Content specific and phase related 
dependencies develop dynamically and affect project organization considerably. They result in constraints 
regarding inter team coordination, communication, and knowledge transfer. Central agile principles such as 
costumer integration, continuous integration and testing as well as emergent architecture are difficult to 
implement. Distributed teams, inter team dependencies, and the need for specialized teams contradict self-
organized and cross-functional teams. To answer these challenges an adjusted balance between team autonomy, 
inter team coordination and knowledge management is necessary. Xu et al. call for formal centralized 
coordination strategies based on vertical communication and control for scaled agile development projects (Xu, 
2009). Documentation needs to address stakeholder and costumer integration and product architecture needs 
to support overarching product functionality. Such adjustments must be flexible to project dynamics and avoid 
inefficient standards in scaled agile application contexts which has been implemented only partly in large scale 
agile methods (Alqudah and Razali, 2016). 
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2.4 Coordination theory in product design 
 

“Prediction is very difficult, especially if it’s about the future.” 
 Niels Bohr 

 

The aim of this subchapter is to present the state of the art of research on coordination theory relevant 
to product design with a focus on agile product design. This includes central concepts of coordination and 
explanations about dependencies from the relevant spectrum of research fields. The reason to include 
coordination into the State of the Art chapter is the theory’s suitability to serve as a theoretical lens to agile 
design. Coordination theory allows to analyse and categorize agile design structures and to explain its benefits in 
reference to the application context and project settings. Agile design in its original context small-scale software 
design is used to generate a comprehensive description of agility in a coordination reference model. Based on this 
foundation disfunctions or constraints of agility in other contexts are analysed and adjustments or extensions to 
existing methods are recommended to expand applicability to new design contexts. 

Table 5: Definitions of coordination across research fields chronologically ordered. 

Definition of coordination  
“The integration or linking together of different parts of an organization to accomplish a collective set 
of tasks” (p. 322)  

(Ven et al., 1976) 

“The act of managing interdependencies between activities performed to achieve a goal” (p. 361) (Malone and Crowston, 1990) 

“[…] different people working on a common project agree to a common definition of what they are 
building, share information, and mesh their activities” (p. 69) 

(Kraut and Streeter, 1995)  

“The extra work organizations and individuals must complete when individuals are working in concert 
to accomplish some goal, over and above what they would need to do to accomplish the goal 
individually” 

(Krauss and Fussel, 1990) 

“Coordination of understandings refers to the development of shared perceptions and meanings 
among members, including an appreciation of the ways in which members reliably see and interpret 
events differently” (p.1) 

(McGrath et al., 1999) 

“Coordination can be defined as the collective accomplishment of individual goals through a 
cooperative process” (p. 401) 

(Ballard and Seibold, 2003) 

“[…] the integration of organizational work under conditions of task interdependence and uncertainty” 
“A temporally unfolding and contextualized process of input regulation and interaction articulation to 
realize a collective performance” (p. 1157) 

(Faraj and Xiao, 2006) 

 

Table 5 gives an overview of the spectrum of coordination definitions in the last 45 years across research 
fields. Van de Ven et al. stress the connection of different organization units (e.g. individuals or teams) to 
accomplish a collective set of tasks, which implies dependencies between such tasks (Ven et al., 1976). Malone 
and Crowston define coordination in their coordination theory and emphasise the management of 
interdependencies between activities without addressing people (Malone and Crowston, 1990). Kraut and 
Streeter expand Van de Ven et al.’s original definition and introduce practices (e.g. agree on a common definition, 
share information, mesh activities) how this coordination is accomplished (Kraut and Streeter, 1995). Krauss and 
Fussel on the other hand define coordination broadly as the necessary extra work of cooperating individuals 
without specifying details (Krauss and Fussel, 1990). McGrath et al. point to how coordination is enabled. They 
describe the development shared perceptions and meanings among team members as a central enabler for 
coordination (McGrath et al., 1999). Ballard and Seibold summarize coordination as an collective 
accomplishment of individual goals through a cooperative process (Ballard and Seibold, 2003). Faraj and Xiao 
further analyse the concept and the dynamics of coordination and define it as temporally unfolding and changing 
according to context inputs (Faraj and Xiao, 2006).  

The definitions from above draw from different theoretical fields. Organizational theory, coordination 
theory, psychological theory and cognition theory provide different perspectives on coordination. Even though 
these definitions focus on different aspects of coordination three common aspects are apparent (Okhuysen and 
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Bechky, 2009). First, actors need to work together. Second, the work is interdependent. Third, a goal is achieved. 
Therefore, the thesis at hand is based on Faraj and Xiao’s conceptualizations of coordination as 

 “…the integration of organizational work under conditions of task interdependence and uncertainty with 
an emphasis on its dynamic emergence in design projects” (Faraj and Xiao, 2006).  

In this subchapter aspects of coordination in product design are presented relating to several theoretical 
fields that are important to agile design characteristics. First, the perspective of organization research on 
coordination is introduced. Second, aspects of coordination in team research are summarized. Third, 
coordination in multiteam system and inter team coordination is described. Fourth, coordination mechanisms as 
practical implementation of coordination or coordination activities are summarized and compared across 
different research fields. Fifth, the result of coordination efforts, the dynamic state of coordination is described. 
Sixth, the concept of the coordination strategy which integrates coordination determinants, coordination 
mechanisms and coordination as a state is explained. 

2.4.1 Coordination in organization research 
The formal study of coordination started with the emergence of large-scale manufacturing in the 

beginning of the 20th century. This initial coordination research field is dominated by two branches with different 
approaches. The first group researched the design of work and is mostly associated with Frederic W. Taylor and 
his role in scientific management. Work was observed, analysed and decomposed into its most basic elements 
to allow for specialization and the reduction of waste. Methods supported standardization and interchangeability 
of designs, tools, and materials. These efforts intended a most efficient use of workers in production (Taylor, 
1916). Later scholars critically reviewed the downside of standardization regarding necessary integration 
activities and additional communication demand (Scott and Davis, 2015). The second group addressed the design 
of organizations. Henry Fayol a former student of Taylor is best known for it. Design of organizations aspired 
coordination of work through the adjustment of management systems. Rationalization was driven by principles 
such as hierarchical systems, centralization, and the subordination of individual interests. The unity of command 
as the central element in administration needed to be respected. Fayol positioned his approach as top-down in 
contrast to Taylor’s bottom-up work design (Fayol, 1949).  

Both approaches defined coordination to be a controlled and efficient state of a work system regarding 
either relationships between individuals or task and component decomposition. They assumed that product 
development and respective coordination requirements in different contexts and companies can be formalized 
into representative models precisely with enough specificity. Work was designed according to these formalized 
models to enable individuals to fulfil their part as collectives within these systems. Critics have proposed two 
major shortcomings of these coordination approaches. First, interdependencies between pieces of work are 
often uncertain or hard to define. This contradicts the assumption that interdependent systems can be described 
in sufficient detail. Second, processes and structures need to be adapted continuously to changing conditions 
and cannot be planned as formal elements by organizations. Formalized designs cannot account for all 
eventualities and therefore require continuous reshaping to emerging coordination challenges. These early 
approaches to coordination focused mostly on product manufacturing and not product design. They 
underestimated the influence of uncertainty and generated deterministic and therefore more designable 
models. In this early organizational Design Research stream unpredictable coordination efforts have been 
simplified with terms such as “mutual-adjustment” (Thompson et al., 2017) or “ad-hoc coordination” (Donaldson, 
2001). Later theories switch perspective and assume that these coordination efforts represent a significant 
amount of the overall coordination demand. More complex product development conditions (driven by new 
technologies and cooperation models) changed the nature of work and the limitations of these “classic” 
coordination theories became more evident (Okhuysen and Bechky, 2009).  

March and Simon therefore proposed a division of coordination by plan and coordination by feedback 
in 1958 to account for the human factor in work systems (March and Simon, 1958). Repetitive and predictable 
tasks are coordinated by scheduling and planning. Uncertainty or dynamic dependencies require repeated 
exchange and communication. Emergent coordination by feedback is more appropriate in these situations. Based 
on March and Simon Thompson describes the suitability of coordination methods according to three work 
dependency characteristics (Thompson, 1967). Pooled dependencies characterize units that independently 
complete tasks without explicit interaction. Standardization with little communication and decision effort is a 
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sufficient coordination method. Sequential dependencies arise between units that need outputs from one unit 
as input for another unit. Coordination by planning with mediocre communication effort is suitable for such 
dependencies. Reciprocal dependencies characterize units that rely on simultaneous bidirectional flow of input 
and output between each other. They represent the strongest form of dependencies and require coordination 
by feedback. Van de Ven et al. further elaborated March and Simon’s division of coordination types into 
coordination by programming or by feedback answering to different coordination needs. They proposed three 
modes of coordination with an emphasis on coordination by feedback (Ven et al., 1976). The impersonal mode 
includes most programmable coordination mechanisms such as standardization, plans, rules and hierarchies. 
Opposed to impersonal coordination is mutual adjustment coordination which relies on direct communication 
between relevant parties. To better describe mutual adjustment a group mode and an individual mode were 
differentiated. The group mode includes coordination by scheduled and unscheduled meetings in groups. 
Scheduled meetings are ideally used for routine coordination efforts such as group meetings, while unscheduled 
meetings provide coordination answering to urgent needs of groups. The individual mode describes coordination 
by feedback between individuals and includes horizontal channels on the same hierarchy level and vertical 
channels across hierarchies. It is based on informal communication. Individual role occupants serve as the 
mechanism for making mutual task adjustments. Van de Ven et al. also expand on Thompson’s approach of fitting 
coordination methods to task dependency classes (Ven et al., 1976). They add the categories task uncertainty 
and size of work unit to task dependency as coordination type determinants. Their empirical findings show that 
higher task uncertainty increases substitution of impersonal coordination modes using mutual adjustment in 
form of the group mode coordination and by the individual mode coordination through horizontal channels. 
Large unit sizes on the other hand result in more impersonal mode of coordination such as plans. Task 
dependencies increases group mode coordination while individual mode coordination remain invariant and 
impersonal mode coordination diminishes a little. The collective coordination demand increases with unit size. 

Malone and Crowston define coordination as “management of dependencies among task activities”. 
They published a coordination theory based on actors, interdependent tasks, resources and goals (Malone and 
Crowston, 1990). Three types of dependencies that result from resources being required by or result from 
different activities are presented. This typology of dependencies further expands Thompson’s categorization of 
task dependencies (pooled, sequential and reciprocal) with the constraints actors and resources. The fit 
dependency describes a situation in which multiple activities collectively produce components that need to be 
integrated into a complete product. The sharing dependency prevails if multiple activities require the same 
resource e.g. functional prototypes in physical product testing. The flow dependency represents a sequential 
order of activities. Output from one activity is input for another activity. Usability, accessibility and prerequisite 
have to be adjusted to coordinate a flow dependency. The theory of Malone and Crowston includes coordination 
mechanism to manage these dependencies and show their substitutability in different applications (e.g. 
sequencing, tracking, standardization for flow dependencies or goal selection and decomposition for task-
subtask dependencies). Critics of their coordination construct claim that little explanatory theory accompanies 
the typology of dependencies and the influence of context and time are not represented (Crowston et al., 2006). 

2.4.2 Coordination in team and multiteam systems 
Ramesh et al. claim that coordination in knowledge-intensive systems requires a new level of 

coordination adaptivity due to the immense impact of fast innovation on work interdependencies (Ramesh et 
al., 2002). Therefore, coordination has also been a central topic in the research stream of sociology of work with 
a focus on intra team and inter team cooperation in information systems. Coordination in team cognition 
research focuses on coordination behaviour of teams. Aspects such as shared experience, personal knowledge 
of each other and trust in teams are central coordination enablers in this research stream. 

Espinosa, Lerch and Kraut divide explicit and implicit team coordination (Espinosa et al., 2004). Explicit 
team coordination summarizes activities and coordination mechanisms that are purposely applied to coordinate, 
while implicit team coordination arises as a consequence of other activities that are used without the direct 
intention to coordinate. Explicit coordination is based on task programming mechanisms (e.g. division of labour, 
tools, plans and specifications) and communication between parties and individuals. The task programming 
classification has been described similarly by Van de Ven et al. as impersonal mechanisms (Ven et al., 1976) and 
by Faraj and Sproull as administrative coordination (Faraj and Sproull, 2000). Coordination through 
communication has been described earlier under the terms mutual adjustment (Thompson, 1967) as well as 
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personal and group mode coordination (Ven et al., 1976). Formal or informal communication may be between 
individuals or in groups. In explicit team coordination Espinosa recommends impersonal coordination for routine 
and predictable tasks and coordination by feedback based on communication for dynamic and unpredictable 
coordination requirements. Espinosa’s conception of explicit coordination overlaps with the early descriptions 
of coordination and the respective mechanisms in organization theory. Implicit coordination relies on shared 
task knowledge, team cognition and shared mental models (Cannon-Bowers et al., 1993) that develop during 
close team cooperation. This expertise covers both the task and the team and help to coordinate implicitly. 
Earlier publications reported “synchronization of member actions based on unspoken assumptions about what 
others in the group are likely to do" (Wittenbaum and Stasser, 1996). Espinosa defines implicit coordination 
mechanisms as “available to team members from shared cognition, which enable them to explain and anticipate 
task states and member actions, thus helping them manage task dependencies” (Espinosa et al., 2004). The setup 
of coordination mechanisms and team coordination has a strong influence on how team cognition and hence 
implicit coordination develops. Throughout cooperation length and intensity team cognition improves and 
implicit coordination may substitute initially explicit coordination mechanism. Espinosa et al. present a 
framework that dynamically combines implicit and explicit coordination according to team (e.g. size, experience, 
and continuity), task and context characteristics (e.g. technology, organization, synchronicity and geographic 
dispersion). They emphasize that neither implicit nor explicit coordination mechanisms are to be preferred but 
must fit the specific project requirements.  

In continuing work Espinosa, Armour and Boh describe a taxonomy of coordination types that includes 
mechanistic, organic and cognitive coordination (Espinosa et al., 2010). In this taxonomy mechanistic 
coordination refers to plans, processes, automation or rules similar to impersonal coordination from 
organization theory (Ven et al., 1976). Mechanistic coordination manages dependencies with little 
communication and is most useful for activities that are routine or well-predictable. Organic coordination refers 
to coordination by feedback or by mutual adjustment (Ven et al., 1976) and mainly involves coordination by 
communication and interaction. It is most relevant with uncertain and non-routine task. Since it requires more 
effort Espinosa recommends it if mechanistic coordination is unsuitable, e.g. in unpredictable and dynamic 
situations. Cognitive coordination is an implicit coordination mode which is based on shared cognition (Rico et 
al., 2008) in teams. It is achieved implicitly and based on tacit team knowledge regarding task and team members. 
It includes task awareness, presence awareness, transactive memory (knowledge who knows what) (Wegner, 
1995) and expertise coordination (Faraj and Sproull, 2000). Shared mental models in teams (Cannon-Bowers et 
al., 1993) are essential since they supports shared goals and enable common understanding (Kang et al., 2006). 
Unlike coordination mechanisms in explicit coordination, cognitive coordination cannot be implemented like 
organic or mechanistic coordination mechanisms, since it requires specific knowledge distribution (e.g. 
accessibility of cognitive coordination mechanisms is limited by the existing level of shared cognition in teams). 
It relies on mutual knowledge which is knowledge shared by collaborators they know they mutually share (Krauss 
and Fussel, 1990). Common grounding is a related concept and requires collaborating parties to have shared 
meaning in the terms they use to communicate (Cramton, 2001). Li and Maedche showed that with increasing 
shared cognition cognitive coordination becomes stronger (Li and Maedche, 2012). 

Multiteam systems are defined as a setting of multiple teams working jointly and interdependently 
towards collective goals (Mathieu et al., 2001). In multiteam projects, work of separated teams is often 
interlinked. Even though team division is often chosen according to product modules interdependencies 
between teams arise through technical interfaces between these modules (Kazanjian et al., 2000). Such inter 
team dependencies generate the need for additional inter team coordination to exchange information, share 
knowledge and solve conflicts (Galbrath, 1973). The value of inter team coordination has been proven regarding 
performance predictors (Marks et al., 2005), product quality, development time and project commitment (Hoegl 
et al., 2004). Studies in organizational psychology on multiteam systems (Marks et al., 2001) showed that inter 
team processes are even more important than intra team processes for the performance of multiteam systems 
(Marks et al., 2005). Inter team coordination varies from intra team coordination, since coordination 
requirements and available coordination mechanisms are different. Still, it has been shown that intra team 
coordination has a large influence on inter team coordination (Firth et al., 2015).  

Based on Van de Ven’s coordination categories (group and individual mode of personal coordination and 
impersonal mode of coordination) Dietrich et al. differentiate three patterns in inter team coordination (Dietrich 
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et al., 2013). Centralized coordination relies on formal group meetings (e.g. status review meetings) for 
information and knowledge exchange. Informal group meetings (e.g. colocation of project managers), workshops 
and integration meeting are complementary channels. Additionally, well-defined roles and responsibilities are 
applied, and powerful project managers function as connectors between different teams. Decentralized 
coordination on the other hand is largely based on individual contacts between team members. It is not pre-
determined in strict roles and responsibilities and therefore able to adapt to changing situations. Functionality 
reports, testing documents, common databases, resource plans, reporting practices and overall project plants 
are used as coordination mechanisms. Interaction between teams is frequent and group meetings are 
complemented by liaison individuals (e.g. project manager). Balanced coordination features a balance between 
centralized and decentralized coordination patterns and relies on group, individual and impersonal coordination 
mechanisms. Formal reporting practices and the use of documents and databases are relevant in sharing 
information and coordination work with other teams. Individual mode of coordination is important but is mostly 
applied by strict roles along existing hierarchies in vertical channels outside development teams. The authors 
also analysed efficiency of the coordination patterns. They recommend the decentralized coordination scheme 
in cases of high inter team interdependencies. But decentralized coordination may suffer from problems if task 
specifications are vague. The selection between centralized and decentralized coordination should be chosen 
according to task analysability (Dietrich et al., 2013). 

Salas et al. complement a model of five mutually interlinked success factors in teamwork (team 
leadership, mutual performance monitoring, back-up behaviour, adaptability and team orientation) based on 
coordination mechanisms that apply to single and multi-team projects (Salas et al., 2005). In Salas’ model 
coordination mechanisms are shared mental models, closed-loop communication and mutual trust. Shared 
mental models (Cannon-Bowers and Salas, 2001) enable team members to coordination by anticipating and 
predicting each other’s needs through common understanding of the environment and expectations of 
performance. Salas et al. divide team-related and task-related mental models. The importance of this 
coordination mechanism increases in teams that are object to stressful conditions, since available time for direct 
communication decreases (Cannon-Bowers et al., 1993). Mutual trust is a shared perception that individuals in 
the team will perform their tasks according to team agreements. It also implies that team members will recognize 
and protects the interests and rights of each other (Simsarian Webber, 2002). This trust is necessary since team 
members will work on independent tasks and must be able to rely on each other to meet deadlines and 
contribute as agreed without contra productive or selfish intentions. Trust is relevant in both intra and inter team 
cooperation. Distrust might by a hindering factor in multi-team systems since different political agendas 
complicate cooperation. Closed-loop communication is the third relevant coordination mechanism and enables 
efficient information exchange within teams irrespective of medium. Understanding of the meaning of the 
message is supported by an additional feedback loop between sender and receiver (McIntyre and Salas, 1995). 
It supports decision making in complex environments, avoids misinterpretations and complements information 
distribution and selection. Especially in multi team environments this becomes increasingly important since 
support of shared mental models decreases between different teams.  

2.4.3 Coordination mechanisms 
Mintzberg describes coordination mechanisms as organizational arrangements that allow individuals to 

realize collective performance (Mintzberg, 1989). They are the practical implementation of coordination and 
therefore one of the most basic elements of structure in organizations. According to the chosen coordination 
approach, coordination mechanisms might be formal or informal as well as emergent or structural elements. The 
concept of coordination mechanisms is used across most coordination theory streams. Okhuysen and Bechky 
present the following categories and explanations of coordination mechanisms in their coordination review 
(Okhuysen and Bechky, 2009). Roles represent expectations associated with social positions, and therefore 
support predictable behaviour (Banks and Hughes, 1959). Defining relationships between roles allows parties to 
understand and predict who does what (Bechky, 2006). In traditional organization theory roles are used for 
monitoring and updating in formal hierarchies. But roles also provide a shared understanding of task 
responsibilities and therefore enable substitution between parties. Inter-group boundary spanning roles expand 
a common perspective across separated parties. Plans and rules are conceptualized as purposive elements of 
formal organizations (March and Simon, 1958). Plans support a prospective understanding of task completion. 
Rules complement plans since they establish relationships between parties and allow fast choices in routine 
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situations. Plans and rules define responsibility for tasks and therefore support resource allocation. They can be 
developed on team or organization level. The development of plans and schedules highlights conflicts and 
difficulties and increases understanding. Feldman defined routines as repeated patterns of behaviour that are 
bound by rules and customs (Feldman, 2000). They provide a template for task completion, bring parties together 
and create a common understanding of tasks. In literature, routines have been interpreted as stores of 
knowledge (Loasby et al., 1983), as stable mechanistic properties of traditional organizations and as complex 
constructs in which social meaning and social interaction are embedded (Feldman, 2000). Routines support task 
stability and completion, they facilitate hand-off work, they bring groups together and they create a common 
perspective. The physical proximity of parties significantly influences the amount of interaction and 
communication between them (Allen, 1977). Visibility and familiarity influences communication and liking. 
Proximity allows formal and informal monitoring, updating and familiarity. Familiarity is the understanding that 
individuals have of each other and it results from proximity (Okhuysen, 2001). Familiarity leads to stronger 
relationships that improve coordination. It supports anticipating and responding, the creation of transactive 
memory systems as a storage of knowledge and trust development. 

Objects and representation are a further category of coordination mechanisms if interpreted as 
boundary objects. The concept of boundary objects originally stems from communication research. It is based 
on the ability of objects to convey technical and social information and mobilize action across social worlds (Star 
and Griesemer, 1989). Exchange between parties does not require comprehensive communication since 
knowledge and social dynamics are stored in objects (Winner, 1980; Latour, 1988, 1996). The boundary objects 
provide interfaces between different social or technical backgrounds and enable exchange without mutual 
translations (Burris and Henderson, 2001). According to the original concept these objects (the understanding of 
them) need to be sufficiently plastic (generalizable) to adapt to different social backgrounds but still adequately 
robust to support a consistent message. According to varying application situations this balance needs to be 
adjusted dynamically. Boundary objects enable efficient communication between parties that focus on different 
aspects and prevents miscommunication (e.g. prototypes may connect customers, designers and management 
who all have very specific interests). This principle even works without physical manifestation (e.g. user stories 
as a subgroup of boundary objects do not require physical manifestations to efficiently connect customers and 
designer). Boundary spanners are based on a similar concept as boundary objects. They represent roles that 
efficiently connect different interest groups if direct exchange is impractical or not applicable (Levina and Vaast, 
2005). In a nutshell, these boundary concepts allow efficient exchange between parties with different 
backgrounds and provide efficient information exchange and hence coordination between them.  

2.4.4 Coordination determinants 
The summarized coordination theory descriptions demonstrate that coordination structures are object 

to very heterogeneous project needs. To differentiate these coordination requirements individual project 
characteristics have been identified across the presented research streams that have significant influence on the 
coordination setup. These coordination determinants allow a direct project analysis according to central projects 
characteristics regarding suitability of different coordination types and mechanisms. 

Van de Ven et al. list unit size, task uncertainty and task dependency as significant project characteristics 
to determine a coordination strategy (Ven et al., 1976). Unit size summarizes factors that influence the total 
number of relevant stakeholders within in a project. It depends on the number of participating teams, the 
number of designers, the interchangeability of designers, the number of required specializations and 
substitutability between them and also includes organizational dependencies. Task uncertainty integrates the 
factors task predictability and task changeability. Ramasesh et al. differentiate task uncertainty into known 
unknowns (recognized uncertainties) and unknown unknowns (unrecognized uncertainties that are 
unpredictable and of which projects are unaware of) (Ramasesh and Browning, 2014). Especially unknown 
unknowns require emergent coordination. With increasing project complexity, the additional category unknown 
knowns becomes relevant since information gets divided and separated into organizational silos. Task 
dependency depicts the degree to which tasks dependent on each other. Thompson defined pooled, sequences 
and reciprocal task dependency categories (Thompson, 1967). Pooled tasks feature little direct dependencies 
and can be executed independently. Sequenced tasks are subject to an order regarding task execution. Reciprocal 
task dependencies include dependencies in both directions and may require repeated exchange between 
different tasks. Malone and Crowston included a similar task dependency classification into their coordination 
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theory (Malone and Crowston, 1990). They defined fit, flow and sharing dependencies as coordination type 
differentiator. 

Espinosa et al. define task, team and context as most relevant factors that cause dependencies and 
therefore influence coordination setups in teamwork (Espinosa et al., 2004). The nature of the task (e.g. 
routineness) predefines a large share of the dependencies like Van den Ven’s categorization. Team variables such 
as continuity, composition, expertise and size have a strong influence on cognition development (Cannon-Bowers 
et al., 1993; Cannon-Bowers and Salas, 2001). Regarding the emergence of dependencies Espinosa et al. regard 
the project context as relevant. They differentiate four context sub-factors: technology, organization, 
synchronicity and dispersion. Especially communication between team members relies on information 
technology. Dependencies, information flow and workflow among collaborators increasingly depend on 
available information technology. Large scale software development relies on systems that supports continuous 
integration and simultaneous access for multiple developers to reduce dependencies. The organization (e.g. 
culture, structure, standard procedures) also has a strong influence on the number of dependencies between 
teams and therefore team interaction. Synchronicity and geographical distribution affect both team and task 
factors and need to be addressed in coordination set-up. Asynchronous and dispersed teams have fewer 
opportunities to interact and communicate with less rich media. They negatively affect shared cognition and 
hence rely on more mechanistic coordination mechanisms. Li and Maedche complement different socio-cultural 
environments as an additional factor to generate and influence dependencies (Li and Maedche, 2012). Different 
value systems and normative practices create socio-cultural boundaries between parties (Holmstrom et al., 
2006). Li and Maedche also described that changing customer requirements become a strong coordination 
determinant in dynamic application contexts. 

Diane E. Strode differentiates dependencies between actions and presents a dependency taxonomy 
relevant for agile product design. (Strode, 2016). She defines knowledge, process and resource as three 
overarching dependency categories that have the potential to influence project progress. Knowledge 
dependencies result if progress relevant information is not at hand. The category includes requirements 
dependencies (e.g. missing domain knowledge), expertise dependencies (e.g. information only known by 
individuals), historical dependencies (e.g. knowledge about past decisions) and task allocation dependencies (e.g. 
knowledge who is doing what and when). Process dependencies are caused by the necessary order of tasks and 
the relevant activities. They are refined by activity dependencies (e.g. one activity requires the completion of 
another activity) and business process dependencies (e.g. an existing business process causes tasks to be carried 
out in a predetermined order). Resource dependencies occur if an object is required for a progress to occur. 
Strode defined entity dependencies (e.g. unavailable resource or person) and technical dependencies (e.g. 
technical dependencies are caused by the presence or absence of software components) as subcategories of 
resource dependencies.  

These coordination determinants characterize coordination requirements and indicate suitable 
coordination mechanisms. The presented literature clarifies that there is an overlap between scholars regarding 
task dependencies and project driven factors such as team specific characteristics and context factors. 

2.4.5 Coordination outcome 
The presented literature shows that coordination is interpreted and approached with different 

theoretical backgrounds and means which complicates an overarching understanding. Okhuysen et al. report 
three obstacles regarding the body of literature (Okhuysen and Bechky, 2009). First, interdisciplinary research 
streams differ strongly regarding the object that is being coordinated. Malone and Crowston’s coordination 
theory focuses on dependencies between tasks that require coordination (Malone and Crowston, 1990). Faraj 
and Sproull research coordinating knowledge in organizations (Faraj and Sproull, 2000). The integration of these 
research streams into a shared understanding of coordination is not trivial since their focus of coordination and 
the corresponding action differs considerably. Second, coordination research is embedded in a broad spectrum 
of contexts. This complicates comparisons between research streams. Additionally, different terms are used for 
similar functionalities and mechanisms in different contexts. Confusion regarding contradicting results might be 
caused by unclear terminology. And third, most of the literature does not provide sufficient explanations why 
and how coordination mechanisms function. To avoid such misunderstandings between literature streams 
Okhuysen et al. identified accountability, common understanding and predictability as the three most relevant 
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integration conditions for coordination (Okhuysen and Bechky, 2009). They represent the means of separated 
parties to collectively accomplish interdependent tasks. Each condition answers specific demands regarding the 
integration of specialized work. To establish and maintain these conditions different coordination mechanisms 
can be implemented or combined. 

Accountability establishes who is responsible for particular aspects of the task. It supports the 
cooperation between interdependent parties since the responsibility for individual parts are clearly allocated 
between partners. Transparent responsibilities make parties accountable for their contribution and allows them 
to make other accountable for theirs. Accountability is achieved by various means. Traditionally accountability 
was built into formal structures such as hierarchical authority by e.g. reporting metrics (Gittell, 2000). But lateral 
interaction in meetings or public status reports support accountability as well. Both formal and informal or 
emergent action can lead to accountability. Plans and rules connect tasks and people and transparently show 
responsibilities. Boundary objects provide scaffolding for the responsible parties. Roles, routines and visibility 
support monitoring, updating and hand-offs between cooperation partners. Accountability also requires trust 
between the relevant parties to be able to count on consistent and reliable performance of others which can 
also be provided by proximity (McEvily et al., 2003). 

Common understanding enables a shared perspective on the overall design objective and how different 
parties fit into it. It assists parties to integrate their effort into a collective conception of the work. It supports a 
common ground that allows independent partners to integrate activities. In literature three perspectives are 
considered. First, common understanding of the task regarding necessary action and strategy to perform the task 
(Cannon-Bowers and Salas, 2001). Second, knowledge of interaction partners in interdependent situation 
(Reagans et al., 2005). And third, knowledge of broader organization or project goals that characterize the design 
context (Pinto et al., 1993). Common understanding is provided by formal and emergent coordination 
mechanisms. It is generated during the development, distribution and executions of plans in both top-down and 
bottom-up approaches on a system level. Objects such as prototypes allow boundary crossing and provide 
common understanding on a more task-specific level. Roles facilitate substitution between individuals and 
groups. Additionally, boundary spanner roles create a common perspective. Proximity of parties creates 
familiarity and knowledge of expertise distribution. In summary, common understanding provides 
interdependent parties with a shared conception of interlinked activities. 

Predictability supports interdependent partners to anticipate subsequent tasks. It is based on the 
knowledge or experience of how tasks are divided into smaller subtasks and their particular sequence. 
Predictability enables parties to count on the successful execution of the work of partners and structure their 
work accordingly. It allows parties to fit their contribution into the whole enhancing integrating activities. High 
levels of predictability go hand in hand with trust into cooperation parties. Routines provide predictability. 
Predictability is provided through familiarity that increases understanding of partners and their tasks. Plans 
actively define responsibility for tasks and define resource allocation. Boundary objects provide scaffolding for 
cooperation partner. Routines passively establish essential tasks and enhance task completion and stability. 
Familiarity increases knowledge of coordination partner and therefore improves anticipating their behaviour and 
responding accordingly.  

Strode et al. described with coordination effectiveness a similar concept to differentiate the state of 
coordination but with a focus on agile design (Strode et al., 2011). They subdivide coordination effectiveness into 
an implicit and an explicit part. Explicit coordination effectiveness focuses on the persons and objects in a project. 
The right person or object needs to be in the right place at the right time. Explicit coordination effectiveness 
therefore draws from Malone and Crowston’s coordination theory (Malone and Crowston, 1990). Implicit 
coordination effectiveness comprises the knowledge held by project parties. It includes knowledge of overall 
project goals (‘know why’), project status (‘what is going on and when’), what tasks need to be done (‘what to 
do and when’), what tasks others are doing (‘who is doing what’) and who knows what. The concept of implicit 
coordination effectiveness draws from teamwork literature and cognitive coordination (Espinosa et al., 2010). 
Strode’s coordination effectiveness concept is similar to Okhuysen and Bechky’s integration conditions. 
Especially the implicit part directly corresponds to predictability, common understanding and accountability. 

The presented integration conditions represent central manifestations of coordination as a state in 
interdependent systems. They rely on the successful application and combination of coordination mechanisms 
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according to the chosen coordination approach and the specific coordination requirements. If external or internal 
disturbances throw this system out of balance the applied coordination elements require readjustment. The 
connection between coordination determinants, coordination mechanisms and integration conditions is 
provided by the coordination strategy which is further explained in the following paragraph. 

2.4.6 Coordination strategy  
Coordination in design projects relies on the selection of suitable coordination mechanisms to realize 

integration conditions according to project specific coordination determinants. This connection is evident in all 
presented coordination theories. The concept of a coordination strategy combines these inputs into 
comprehensive approaches. Li and Maedche define the coordination strategy as ‘a set of prioritized mechanisms 
for a given circumstance’ (Li and Maedche, 2012). Strode et al. define it as ‘a group of coordination mechanisms 
that manage dependencies in a situation (Strode et al., 2012). Both definitions describe a combination of 
coordination mechanisms into an overarching strategy to realize coordination. The coordination mechanisms are 
chosen according to coordination determinants to realize an effective coordination implementation specific to 
the coordination requirements (see Figure 9). These and given input factors guide the selection of the most 
relevant coordination mode for the specific situation. For example, small teams can rely on cognitive 
coordination approaches, while large projects require more mechanistic coordination mechanisms to ensure 
efficient information distribution and exchange. The selection of coordination mechanisms is therefore 
predetermined by the selection of the general coordination approach. The coordination strategy realizes desired 
integration conditions and the resulting state of coordination. Their selection is based on project specific 
requirements. 

 

Figure 9: The coordination strategy connects coordination determinants with suitable coordination modes and mechanisms to realize 
specified integration conditions. The integration conditions reflect the state of coordination and the coordination determinants and their 
implementation the process of coordination. The concept allows to adjust coordination to change. Project dynamics that impact integration 
conditions lead to changes in coordination determinants and therefore cause an adjusted coordination implementation until the pre-
specified integration conditions are re-established. 

To be able to handle project dynamics a coordination strategy requires continuous readjustment to 
remain effective (see Figure 9). After an initial state of coordination has been established it is necessary to 
maintain it (Li and Maedche, 2012). Repeated re-evaluation of the state and relevance of chosen integration 
conditions, coordination determinants and mechanisms are necessary. Since coordination mechanisms have a 
strong mutual influence on each other the coordination strategy must account for the changing efficiency and 
availability of coordination mechanisms in design projects. An initially mechanistic coordination strategy may be 
able to apply more implicit coordination with growing team cognition. Otherwise, a growing project team might 
realize that organic coordination mechanisms lose efficiency with larger number of participating parties. 

In summary, the coordination strategy concept connects the process and the state of coordination. 
While the state coordination is presented in integration conditions (Okhuysen and Bechky, 2009) and 
coordination effectiveness (Strode et al., 2011) the necessary action to establish and maintain this state are 
presented in the coordination strategy. The coordination strategy is a consistent coordination setup that defines 
a combination of coordination mechanisms according to coordination determinants to realize chosen integration 
conditions. It needs to account for flexible reactions to dynamics in project development and changing suitability 
of coordination mechanisms. Whenever integration conditions are unfulfilled a re-examination of the 
coordination elements and hence the coordination strategy is necessary. 
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 Research approach 
 

“Write down the problem. Think very hard. Write down the solution. 
 The Feynman Algorithm” 
 Murray Gell-Mann 

 

 

The aim of this research is to comprehend and enable agility in the automotive domain. The research 
approach describes how this aim was approached methodically. It summarizes the underlying structure of the 
research project and explains the characteristics of Design Research. It introduces the research methodology 
Action Research and accounts for methodology inherent and application context specific limitations. 

The chapter is subdivided into three interlinked subchapters. Subchapter 3.1 specifies the research based 
on the research aim. It introduces the research questions and their connection to the research aim. It explains 
why coordination theory is selected as the theoretical lens. The relevant research fields are described, and 
corresponding publications are presented. Subchapter 3.1 concludes with the comprehensive research overview 
which connects the research questions, the research fields and the employed research methods. Subchapter 3.2 
introduces Design Research as an independent research field and delaminates it from adjacent and traditional 
fields. Its research paradigm is described based on its ontological and epistemological position. Additionally, the 
influence of the research field on the spectrum of suitable research methods is addressed. Concluding, the balance 
between research relevance and research rigor are addressed by the selection of a comprehensive research model 
for Design Research projects. Subchapter 3.3 presents the selected research methodology and its practical 
implementation. Based on the established research principles Action Research is chosen as central research 
methodology. The origins and the concept of Action Research are briefly summarized. The research project 
implementation is described by the adapted Action Research conduct, the selection of the design projects and the 
employed data collection methods. Finally, complementary research methods to improve the Action Research 
rigor are supplemented. 
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3.1 Research design 
The structure of the research project is defined by the research questions, the employed theoretical lens, 

the research fields and the research overview. The research questions were formulated to realize the research 
aim in relation to the established research gap. To address the research questions a suitable design theory was 
selected as a theoretical lens to analyse the findings. The research fields define bodies of knowledge that are 
relevant to the research project, and which have been contributed to. The research overview emphasises the 
systematic approach of the complete research project. It clarifies the connections between research questions, 
research fields, and research methodology. It allows to reproduce how research fields and research questions 
are connected and how they were approached methodologically. 

The structure of the research project was designed to reflect the practical nature of both the research aim 
and the collaborative research conduct within the research and development department of the BMW Group. 
The responsibility of the development department is innovation in automotive product design in the form of new 
automotive products. The chosen application context offers the opportunity to research agile product design in 
a range of pure software, to software hardware hybrid and complete hardware products. The research of this 
heterogeneous application context was conducted through agile pilot projects which introduced agile methods 
to product design project. They allowed to test and further develop adaptions to existing agile methods to fit the 
requirements of automotive design. The selection of pilot projects covered a broad range of the automotive 
design requirements to realize a representative data set. This spectrum improved understanding of the research 
phenomena and avoided an imprecise problem definition. The independent pilot projects also allowed to 
incrementally construct a design artifact that answers to a class of problems instead of an individual instance. 

 

3.1.1 Research questions  
 

“What I love about science is that as you learn, you don’t really get answers.  
 You just get better questions.” 
 John Green 

 

The research in this study is structured according to three central research questions as presented in 
subchapter 1.3. The research questions are based on the real-world problem agility in automotive design. They 
are designed to lead to a scientific understanding of a class of problems and to an enrichment of the respective 
theory. Their thematic spectrum reflects Mathiassen’s guidelines to distinguish research from practical problems 
(Mathiassen, 2017). 

Research question one: How to explain agility and its benefits theoretically? 

The first question relates to the empiric and pragmatic nature of agile product design. Agile methods 
were developed decentralized according to best practices for specific problem fields by practitioners. Even 
though a broad body of literature from practice and research confirms the benefits of the approach little 
comprehensive theory-based explanations exist what causes these benefits (Dingsøyr et al., 2012). This 
theoretical gap remains across application contexts but is especially relevant in the comparably inexperienced 
hardware domains. The first research question addresses this lack of a theory based theoretical explanation. 
With its theoretical focus research question one defines the design theory selection and model construction for 
the research project. 

Research question two: What constraints reduce agile design applicability how in automotive design?  

The second research question analyses the influence of the application context automotive design on 
agile product design. Instead of general assessments regarding the suitability of agile development in new 
application contexts it asks for empirically verified descriptions of limitations that are summarized, compared 
and classified according to the constraints of scale and physicality categories. Besides empiric evidence 
theoretical grounding is necessary to explain correlations and overlaps between both categories. The 
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independence of the theoretical concepts constraints of physicality and scale are questioned for automotive 
application contexts and intersections between both constructs are identified. Consequently, the second 
research question addresses a comprehensive understanding of constraints to agility in automotive design and 
asks for a theory-based generalization of the research phenomena agile constraints in relation to and beyond a 
specific application context. Furthermore, with the second question word “how” research question two demands 
a design theory verified explanation of the experienced constraints. 

Research question three: How to enable agility in automotive product design? 

Unlike the first two descriptive and analytical research questions the third research question aligns the 
research findings towards the discussion of new design artifacts to balance agile constraints in automotive. It 
builds on the findings of the first and the second research question regarding precise problem description from 
various perspectives and theoretical explanation of functionalities. The combination of these learnings allows to 
adjust the existing implementations according to the generated theoretical foundation to improve applicability 
in automotive design. Such a design construct includes theoretic contributions in the form of design theory 
extensions according to the findings and specific realizations of this adjustment. Added value is also included for 
practical applications since the adjustments are chosen according to the demands of practitioners who require 
straight forward solutions ready to implement. 

 

3.1.2 Theoretical lens coordination theory 
To answer the research questions coordination was chosen as a theoretical lens. Coordination theory 

was selected because most agile methods directly address or indirectly influence coordination structures in 
design. Relevant coordination activities span from coordination between individuals up to coordination in large, 
interconnected design systems. The coordination perspective enables to analyse and compare agile design 
structures on a level field based on the same theoretical foundations. The concept coordination strategy allows 
to systematise agile methods. This systematization is extended to account for the application context specific 
conditions for coordination. It allows to differentiate software specific from other application contexts such as 
automotive. To employ coordination as theoretical lens for agile design in different application contexts a 
standardized coordination model is necessary that is sufficiently sensitive to differentiate between the examined 
agile methods and the regarded application context. In the thesis at hand the employed coordination reference 
model was constructed based on different fields of knowledge in coordination theory to ideally reflect agile 
design structures. In summary, coordination theory suits the task to analyse agile design in the unfamiliar 
application context automotive design and recommend adjusted agile coordination structures that reflect the 
changes in automotive design compared to software design.  

Regarding the first research question coordination theory was employed to analyse agile design 
structures and activities through a coordination lens and reflect them from different fields of coordination 
theory. This analysis allowed to connect empirically proven benefits with specific coordination characteristics of 
the respective methods. It also aided the iterative design of the coordination reference model and allowed to 
combine matching coordination theory aspects from adjacent theoretical fields to ideally mirror agile design 
structures. To explain agility in product design theoretically a generalized agile coordination strategy was 
developed and matched with central agile product design characteristics. Coordination theory also aided the 
research towards the second research question. The empirically collected agile constraints in automotive design 
were categorized with the help of the coordination reference model. This allowed to reference the set of 
problems towards their influence on the coordination efficiency of the employed agile methods and the 
respective agile coordination strategies. With the help of more general project characteristics several 
coordination determinants were matched to the categorized agile constraints. This allowed to determine agile 
coordination mechanisms unsuitable for automotive design contexts and explain the experienced constraints. 
To approach the third research question the connections between agile constraints and coordination 
determinants were used to recommend alternative coordination structures. The coordination reference model 
allowed to combine more suitable coordination mechanisms into adjusted coordination strategies for typical 
project settings in automotive design.  
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Similar approaches to employ coordination theory to reflect specific aspects of agility in software 
development or teamwork performance have been employed by Strode et al. (Strode et al., 2012) Espinosa et 
al. (Espinosa et al., 2007) Hoegl and Gemuenden (Hoegl and Gemuenden, 2001) and Kraut and Streeter (Kraut 
and Streeter, 1995). The employment of coordination theory to systematise not only agile design structures but 
also in relation to application context and product characteristics sets the thesis at hand apart from earlier 
research. To the best knowledge of the author this concept has not been employed before and should be 
applicable to similar Design Research approaches. 

 

3.1.3 Research fields 
The research in this study is structured into five research fields (see Figure 10) that address different 

bodies of knowledge. Inquiry into these interdependent research fields was not sequential. Throughout the 
research project research fields were revisited iteratively and theories adjusted according to new findings to 
maintain overall consistency despite heterogeneous progress in different fields. The following section describes 
the relevant research fields of the theses at hand and explains how they contributed to answer the research 
questions. 

The first research field was shaped to answer research question one. It connects two focus areas: Agile 
product design and automotive product design. The focus area agile product design was studied to realize a 
comprehensive understanding of agility as an attribute and as a construct. This included a comparison of agility 
and agile methods to classic product design methodologies. Agile methods were studied to collect and categorize 
practices and analyse them as practical implementations of shared values and principles including those of the 
agile manifesto. Another important aspect agile product design is the origin of agile methods. Both the empiric 
development as well as the initial application context software development were analysed regarding their 
influence on agile product design. Additionally, agile coordination strategies were derived of central agile 
methods which allowed to generalize a representative agile coordination strategy independent of individual 
methods. Learnings in research field one mostly relied on theoretical inputs and some practical experiences. 
Regarding automotive design general characteristics and current dynamics of the overall design process were 
summarized, analysed and referenced to conventional and agile product development methodologies. The 
objective was to describe and categorize the application context according to specific characteristics to draw 
conclusions regarding the suitability of agile design practices. One aspect was the integral nature of the product 
and subsequent properties of the design process. Increasing internally and externally driven dynamics of 
automotive design were analysed as well. Dynamic markets and uncertainty in consumer behaviour, complexity 
in product design, uncertainty in technology development, digitalization of both product and product design as 
well as changing legal requirements were among the most relevant influences. Findings of research field one 
were published at the Vienna Motor Symposium in 2020 (Schrof and Paetzold, 2020). 

Research field one indicated that agility in design suits the challenges of a more dynamic automotive 
product design in theory. Hence transferability from software to automotive design was studied in the second 
research field. To answer research question two the theoretical concepts agile constraints of scale and 
physicality were studied. Agile constraints of scale summarize limitations of agility in scaled application contexts 
consisting of multiple interdependent agile teams. Agile constraints of physicality summarize limitations of agile 
design driven by the physicality of the product in comparison to non-physical software products. A review of the 
existing literature showed that in several cases agile product design was not directly transferable to the 
automotive application contexts. Practical evaluations were necessary to understand dependencies and 
mechanisms that cause this inapplicability. Empirically observed problems in agile automotive design were 
systematically collected and classified according to the constraints of scale and physicality categories. Both 
constraints allowed to systematize and reflect design process and product characteristics that cause difficulties 
to agile design approaches. Specific characteristics of automotive design such as product integration and testing 
were examined to understand their influences on the limitations of agile design. Findings of research field two 
were part of several publications (Schmidt et al., 2019; Schrof et al., 2018, 2019; Schrof and Paetzold, 2020).  

To answer research question two the theoretical constructs constraints of scale and constraints of 
physicality were applied to the collected data. Even though these categories origin from different application 
contexts both are evident in automotive design. They also cause similar mechanisms that limit applicability of 
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agile design. This two-dimensional problem definition complicates a comprehensive understanding due to 
unclear cross dependencies between both concepts. To avoid a two-dimensional problem space constraint of 
physicality were analysed through a coordination perspective. This allowed to simplify the problem space and 
allowed to tread constraints of physicality as (inter team) coordination problems. Descriptions of agile constraints 
in automotive design collected in research field two, were used to verify this transformation of problem 
understanding. Theoretical and practical inputs were important in research field two since empiric data 
confirmed initial theories and reinforced the theoretical foundations of the research.  

Research field three focused on coordination in product design to provide a theoretical lens necessary 
for all three research questions. The coordination perspective allowed to compare agile design practices and 
understand their benefits in design systems. To employ coordination as the theoretical lens of the research a 
coordination reference model was designed. To construct this reference model coordination theories research 
from different streams of product development and sociology were compared. Coordination mechanisms from 
organization research, team research and multiteam systems were connected to reflect the characteristics of 
agile values, principles and the practices of the most relevant agile methods. The connection of the coordination 
mechanisms to the respective coordination determinants based on the concept of Van de Ven et al. (Ven et al., 
1976) allowed to generate adaptive coordination strategies. These coordination strategies improved 
understanding of agile design and allowed to analyse agile constraints of scale and physicality in theory. 
Furthermore, agile constraints in automotive design were connected to their impact on the corresponding agile 
coordination strategies which enabled precise countermeasures. Findings of research field three influenced 
several publication (Schmidt et al., 2019; Schrof and Paetzold, 2020, 2019). 

Research field four concentrated on agile enablers for automotive design based on changes in product 
architecture and digital design tools. The research in this field increased understanding of agile constraints in 
automotive and allowed to develop strategies to overcome them. The first focus was the correlation between 
product architecture and organization structure and its influence on agile constraints. Agile product design 
requires specific team dynamics and structures. Intra team cooperation is emphasized and inter team 
distractions from outside the teams are avoided. Value creation is localized inside collaborative teams and agile 
practices are shaped to optimize intra team cooperation. Dependencies from outside the teams are not 
specifically addressed and therefore reduce agile product design applicability if unavoidable. This minimized inter 
team exchange and coordination relies on limited dependencies between design teams which is not realistic in 
automotive design. To address this contradiction product architecture and modularization strategies were 
researched to understand their influence on organizational dependencies and recommend approaches to reduce 
them (Schrof and Paetzold, 2019). The research stream relied mostly on theoretical inputs.  

The second focus of research field four addressed agile enablers driven by digitalized design procedures 
in automotive hardware components. The sequential and hence time-consuming interplay between various 
design steps such as component construction, prototype manufacturing, system verification and production in 
automotive design was scrutinized and alternative, digitalized design tools were employed and evaluated. 
Component design practices were analysed to assess their impact on agile constraints. To reduce systemic 
dependencies (e.g. handovers and meetings) and waiting time for hardware prototypes usage of alternative 
design tools was evaluated. Such digital tools integrate construction and verification cycles in rapid design cycles 
and hence significantly reduce dependencies to verification, prototype manufacturing and testing units. This 
approach allows to apply software inspired design methods in hardware applications. It realizes software alike 
digital testing and integration infrastructure close to the original application context. Practical evaluations in pilot 
projects were essential and findings were published by Schrof et al. (Schrof et al., 2019). Research field four 
increased understanding of agile constraints with an emphasis on constraints of physicality and hence applies to 
research question two. The research also resulted in opportunities to avoid agile constraints in automotive which 
links the findings to research question three. 

Research field five focused on coordination in agile automotive design and a coordination strategy for 
agile automotive design was developed. The research field addresses all research questions. The derivation of 
coordination strategies in scaled and non-scaled agile methods further increased understanding of agility 
working mechanisms and hence supported research question one. Using coordination as a theoretical lens to 
explain the problem space and to understand causes and effects addressed research question two. Most 
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importantly, the generated coordination strategy is the central research result to overcome agile constraints in 
automotive design and therefore addressed research question three. The coordination perspective allowed to 
simplify problem space and create specific solutions for the agile constraints in automotive design. This 
incremental design artefact development generated a comprehensive understanding of coordination 
requirements in agile automotive design. The flexible structure of this construct allows further adjustments 
according to project specifics. To ensure functionality practical evaluations in various pilot projects were 
conducted. Research field six was characterized by a continuous shift between practical assessment, theoretical 
solution development and practical evaluation throughout the iterative development of the overall coordination 
strategy. 
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3.1.4 Research overview 
 

 

Figure 10: The research overview represents a comprehensive summary of the research project. It connects the research questions with the 
respective research fields, the research methodology and published scientific papers. 

The research was organized according to the research overview in Figure 10. The overview connects the 
research questions with the visited research fields and clarifies how these research fields were advanced 
methodologically. The research overview emphasises the systematic approach of the complete research project 
and underlines the systematology between research questions, research fields and research methodology. The 



3-50 
 

 

research overview also reflects how research in one research field is based on findings of other research fields 
and how findings were used to select and approach the next research field. Additionally, the research overview 
links the published publication of the research to the respective research fields, research questions and 
employed methods. The following section details the connection between research questions, research fields 
and methodological approach. The detailed research methodology and employed data collection and analysis 
methods are described in the following subchapters. 

To approach research question one a thorough understanding of agility in product design was 
necessary. This was accomplished through the investigation and connection of the research fields agile product 
design, agile constraints of physicality and scale and coordination theory. The research field agility in product 
design was guided methodologically by the literature review which provided a good theoretical understanding. 
Additionally, Action Research was employed through combined pilot projects and expert interviews in 
automotive and software application contexts to complement a practical understanding of agile design. The 
practical experiences also aided the verification of described benefits in real world application contexts. The 
yearly industry survey influenced understanding of agile design since it allowed to validate practical data beyond 
automotive design and the central research partner company. Besides agile product design, the research field 
constraints of physicality and scale provided necessary understanding of agility in product design to answer 
research question one. Constraints of scale were approached through the literature review and Action Research 
with a focus on the literature review. Constraints of physicality were approached through the same methods but 
with a reverse focus on action research since the research field is less mature than constraints of scale. The 
literature review also dominated the methodological approach to investigate the research field coordination 
theory. But Action Research activities were central to the adjustment and connection of different fields of 
knowledge in coordination to reflect relevant structures and the overall systematology of coordination in agile 
design.  

Research question two investigates the applicability of agility in automotive design. To answer it the 
understanding of agile design from research question one was extended to account for influences of automotive 
application contexts on the requirements and functionality of agile design. To answer research question two 
findings of the research fields agility in product design, automotive product design, agile constraints of scale and 
physicality, agile constraints in automotive and coordination theory were connected. The research field 
automotive product design relied on the literature review and Action Research methodologically. The literature 
review focused on conventional product design methodologies and their formalized models. The Action Research 
focused on the practical implementations and nesting of these models in the automotive design context. Expert 
interviews, pilot projects and a case study improved led to a complete picture of automotive design within the 
partnering company. Based on the findings of the research field agile constraints of scale and physicality the 
research field agile constraints in automotive relied on the literature review and the Action Research methods. 
The Action Research pilot projects were employed to identify agile constraints in automotive and compare them 
to constraints of scale and physicality. The literature review was employed to verify these findings with 
publications from other practitioners in similar industries. The methodological approach to the research fields 
agility in product design, agile constraints of scale and physicality and coordination theory to address research 
question two did not differ from the descriptions for research question one above.  

To address research question three the findings of research questions one and two were connected. The 
research focus connected the research fields coordination theory (coordination reference model), technological 
enablement of agile constraints, product architecture enablement of agile constraints and automotive specific 
agile coordination strategy. The research field technological enablement of agile constraints was based on a case 
study. Additionally, the literature review provided theoretical inputs to verify alternative or novel technology 
from comparable publications. Product architecture enablement of agile constraints also relied on the literature 
review to identify similar approaches in other publications. The yearly industry survey was employed to verify 
the relevance of the concept. Nevertheless, action research was the central methodology to approach the 
research field. Several hardware and scaling pilot projects were analysed regarding the mutual influence of 
product and project architecture. The last research field automotive specific agile coordination strategy relied on 
inputs from all other research fields. Therefore, a direct connection to research methods is difficult. In general, 
action research was central to develop and verify the adjusted agile coordination strategy for automotive design. 
Practitioner workshops were employed to complement the results of the pilot projects. 
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3.2 Design Research  
 

“Science is common sense in combination with systematics.”  
 Jensen 

 

The presented research strategy is based on a collaborative Design Research project with the industrial 
partner BMW Group. Such a Design Research project differs from the classic perception of research in natural 
science in various aspects. The following subchapter describes these differentiations transparently and underlines 
the scientific validity of Design Research. Design Research is described based on its ontological and 
epistemological positions to delimit it from other research fields. The described Design Research paradigm also 
guides the selection of appropriate research methods in the research methodology section. Furthermore, scientific 
rigor and relevance of Design Research methods are analysed to ensure scientific validity of the research findings 
in this study. 

3.2.1 Research paradigm 
The terminology research paradigm refers to a broad framework of perception, understanding, and 

belief within which theories and practices operate. It is a network of coherent ideas about the nature of the 
world and the functions of a researcher (Bassey, 1990). The research paradigm clarifies the connection between 
research strategy and methodology as well as the corresponding philosophical standpoint. Each methodology is 
based on a philosophic perspective that supports its premises and research logic. Therefore, the alignment of 
ontology, epistemology and methodology with the research objective is crucial to guarantee a valid, interlocking 
research paradigm. The given research context has a significant influence on this construct since it predefines 
certain aspects. 

Ontology refers to the philosophical understanding of reality and what sort of things exist. This includes 
assumptions about the form and the nature of reality. Ontology is concerned with whether reality exists 
independently of human understanding and social interpretation (e.g. is there a shared social reality or multiple 
context-specific realities). Snape et al. divide three distinct ontological positions (Snape and Spencer, 2003). 
Realism claims that there is an external reality independent of what people may think or understand it to be. 
Idealism maintains that reality can only be understood via the human mind and socially constructed meanings. 
Materialism claims that there is a real world, but it is only the material or physical world that is real. Other 
phenomena, for instance, beliefs, values or experiences arise from the material world but do not shape it. In 
Design Research realist and idealist ontological positions present different interpretations of relevant system 
elements in their contexts. Iivari et al. present a framework to clarify the contradictory positions in the same 
context (Iivari et al., 1998). Realism interprets data and information as (relevant) descriptive facts, information 
systems as technical systems, human beings as deterministic systems, technology as a causal agent and 
organization and society as stable structures. Contrary to this position Idealism interprets data and information 
as socially constructed meanings signifying intentions, information systems as a form of social systems, human 
beings as voluntarist systems with consciousness and free will, technology as malleable structures subject to 
social and human choice and organization and society as interaction systems or socially constructed systems. 

Epistemology concerns itself with the nature, the acquisition, the limits, and the grasp of knowledge. 
Positivism and Constructivism (Interpretivism) are the two opposing archetypes. The traditional positivistic 
approach originates from the natural sciences and the constructivist approach was established as a critical 
response to the positivistic tradition. Positivism relies on replicable empirical evidence and endeavours to be 
objective. It explains and predicts the social world by searching for regularities and causal relationships. It was 
originally established by Auguste Comte (1798-1858) and others as a counterbalance to religious dogmas and 
metaphysical speculations. Logical positivists developed the concept of verification as the basic premise of 
scientific knowledge. This implies that true knowledge has to be empirically verified through direct observation 
(Kvale and Brinkmann, 2009). Constructivism interprets knowledge as social constructions and relies on learning 
through social interaction. Observations are subjective and therefore cannot represent an absolute truth. This 
criticizes the traditional ideal of research and supports a new understanding of how to perceive science and the 
act of research (Iivari et al., 1998). Social constructivists search for relations and certainty, knowing that they will 
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never obtain any absolute knowledge or certainty. The term constructivism is helpful because it clarifies the basic 
principle that reality is socially constructed and that there is no external reality independent of human 
consciousness (Robson, 2011). This implies that a social world is only understandable from the point of 
individuals involved in the researched activities. The neutral observer standpoint from the positivist position is 
therefore impossible. To understand requires occupying the frame of reference of participants in action. 
Understanding happens from inside not outside of researched systems. 

Iivari et al. define research methodology as a set of goal-oriented procedures that guide the work and 
cooperation of the various parties involved in the building of an Design Artifacts (e.g. an application) (Iivari et al., 
1998). They report three categories to classify the numerous methods in Design Research: Nomothetic, 
Idiographic and Constructive methods. Nomothetic methods, including formal mathematical analyses, 
experimental methods (laboratory and field experiments), and nonexperimental methods such as field studies 
and surveys, are epitomized in the approach and methods employed in the natural sciences, which focus upon 
the process of testing hypotheses in accordance with the canons of scientific rigor. Idiographic methods such as 
case studies and action research place considerable stress upon getting close to one’s subject and exploring its 
detailed background and life-history” (Burrel and Morgan, 1979). Close to an idealist ontology, constructive 
methods are concerned with the conceptual (models, frameworks, and procedures) and technological 
engineering of artifacts. As artifacts, they do not describe any existing reality but rather help to create a new 
one. These method categories also result in different data classes. Nomothetic research methods provide 
quantitative data, because of their emphasis on systematology. Idiographic methods focus on contextuality and 
usually collect qualitative data. Greenhalgh et al. added that researcher who employ qualitative research search 
deeper truths while aiming “ to study things in their natural setting, attempting to make sense of, or interpret, 
phenomena in terms of the meanings that people bring to them” (Greenhalgh and Taylor, 1997). Gilbert 
emphasized that qualitative researchers seek to uncover the world through another’s eyes, in a discovery and 
exploratory process that is deeply experienced (Gilbert, 2000). Ottosson et al. recommend quantitative research 
to screen areas and qualitative research to get a deeper knowledge of studied phenomena (Ottosson et al., 
2006). 

3.2.2 Design Research paradigm 
Friedman defines design in a broad sense. It includes “solving problems, creating something new, or 

transforming less desirable situations to preferred situations” (Friedman, 2003). He stated that most design 
definitions include three common steps. First, design refers to a process. Second, this process is goal oriented. 
Third, the goal of design is to solve problems, meet needs, improve situations and create something new or 
useful. According to this definition the term design refers to the comprehensive product development process 
and not the aesthetic understanding of design as an art or craft in this study. 

Design Research is an umbrella term that comprises design science and behavioural science in product 
development. It is motivated by the desire to improve the practical environment by the introduction of new and 
innovative artifacts and the processes for building these artifacts (Simon, 1996). Hevner et al. differentiates 
Design Research from other research positions by its pragmatic nature and its emphasis on practical relevance. 
He emphasizes that unlike theoretical approaches Design Research is supposed to deliver a clear contribution 
into the application context (Hevner et al., 2004). This implies a clear delimitation from the positivist position of 
natural sciences and a shifted balance between relevance and generalizability, rigor and theory. The socio-
technical nature of product design requires adapted research approaches. Design Research is object to 
characteristics of human behaviour in socio-technical systems research. Particularities of human behaviour such 
as illogical or irregular conduct, driven by unpredictable social influences and unknown earlier experience, cannot 
be addressed with a realist ontology. 

Behavioural science and design science paradigms characterize much of Design Research especially in 
the Information Systems discipline (Hevner et al., 2004). The behavioural science paradigm seeks to develop and 
verify theories that explain or predict organizational or individual human behaviour. The design science paradigm 
seeks to extend the boundaries of human and organizational capabilities by creating new and innovative design 
artifacts. In this study the term design artifact includes both behavioural theories as well as practical artifacts. 
The two paradigms differentiate in their goal. While behavioural science seeks truth, design science seeks utility. 
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Design Research covers conceptual knowledge, descriptive knowledge and prescriptive knowledge as 
three levels of knowledge (Iivari, 2007). The conceptual level comprises concepts, classifications, taxonomies and 
conceptual frameworks. It relies on conceptual theories for analysing and predicting design. The descriptive level 
includes observational facts, empirical regularities, and causal laws. It results in descriptive theories for 
explaining and predicting. The prescriptive level supports how things could be and how to accomplish them. It 
designs alternative artifacts to achieve certain utilitarian ends. It is based on prescriptive theories for design and 
action. Prescriptive knowledge emphasizes truth regarding efficiency and effectiveness above absolute truth 
value. Whilst design science emphasizes prescriptive knowledge, behavioural science is about descriptive and 
conceptual knowledge. Design theories consist of knowledge of practical character. They are aimed for and 
related to design activities and as such they are practical theories as described in the pragmatic tradition (Cronen, 
2001). The value of practical theories lies in their usefulness for inquiry processes. 

3.2.3 Relevance and rigor in Design Research 
The research environment in Design Research is not static and predictable but dynamic and 

continuously shifting. Therefore, research in this domain is in constant peril to generate irrelevant or outdated 
theories and artifacts. This thread is reinforced by the imprecise problem understanding caused by the nature of 
product design which is object to probabilistic, unclear and ambivalent influences. Consequently, research 
assumptions might be incorrect or object to change. Especially, theoretical research is affected by imprecise 
inputs and dynamics. Outdated or incorrect assumptions may result in research projects irrelevant to both theory 
and practice. This relevance challenge of Design Research requires the research to be adjusted to the application 
domain regarding research project dynamics and research assumptions sensitivity. Methods that simultaneously 
build design artifacts together and within an organizational application context while learning from the 
intervention avoid the relevance challenge (Baskerville and Pries-Heje, 1999). 

Most Design Research methods such as Blessing’s Design Research Methodology (Blessing and 
Chakrabarti, 2009) are based on linear stage-gate models in that they separate and sequence building and 
evaluation of design artifacts. The three basic stages are problem definition, conceptualization and generation 
of design artifact and evaluation. This sequencing separates problem understanding from shaping design 
artifacts. It might lead to incomplete or imprecise problem understanding since information may only become 
relevant during the generation and evaluation of the design artifacts. Fixed stages complicate or restrict 
retrospective adjusting of initial premises or assumptions. Sequential methods emphasize scientific rigor at the 
cost of relevance and research consistency. Iterative research methods such as Action Research circumvent this 
sequencing challenge in Design Research. This opposing approach assumes that the design artifact emerges from 
interaction with the organizational context even if its design is guided by the researchers’ initial intent. Such 
methods are based on repetitive small research cycles from problem understanding to solution evaluation. These 
iterations allow to evenly expand problem understanding and design artifact functionality. 

 

Figure 11 Combination of Design Research cycles according to (Hevner Alan, 2007). The relevance, design and rigor cycle ensure balance 
between practical and theoretical requirements in Design Research projects.  

Hevner integrates the relevance and sequencing challenge into a comprehensive Design Research 
model that confirms the pragmatic nature of Design Research (Hevner Alan, 2007). He emphasizes that practical 
utility cannot be the unique aim of research. A synergy between rigor and relevance is necessary. He analyses 
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Design Research as an embodiment of three closely related cycles of activities (see Figure 11). The Relevance 
Cycle continuously bridges the design science activities and the contextual environment of the research project. 
It derives requirements from the application context into the research and serves to field test and further develop 
generated design artifacts. The application context consists of people, organizational systems and technical 
systems that interact. The cycle also identifies initial research opportunities and acceptance criteria for 
evaluation. The acceptance criteria are an important input to decide whether additional research cycle iterations 
are necessary or to stop the research. They prevent unnecessary fine tuning and therefore provide efficiency of 
the Design Research. The Rigor Cycle supports theoretical grounding, theories, scientific methods and experience 
from the research domain and integrates new knowledge into the existing knowledge base. With state-of-the art 
application expertise and existing artifacts and process knowledge it comprises two additional, application 
domain specific knowledge types. It informs the research activities with scientific foundations from the existing, 
past knowledge base and differentiates the research project from routine designs based on application of well-
known processes (Hevner et al., 2004). The Design Cycle is positioned between the Relevance Cycle and the Rigor 
Cycle. It is the central part of the research project and accommodates the activities to construct and evaluate 
design artifacts. It iterates between building and evaluating the design artifacts adapting to the inputs of the 
Rigor and the Relevance cycle. It is necessary to maintain a balance between constructing and evaluating design 
artifacts and ensure that they are based on rigor and relevance. A thorough evaluation is insufficient without a 
grounded argument for the construction of the artifact. 

Goldkuhl and Lind conceptualize design theory as theorized practical knowledge that requires grounding 
in the existing body of knowledge and practical utility. They agree with Hevner’s concept of a rigor cycle to 
theoretically ground constructed artifacts. But they question whether the presented existing knowledge base 
within a design theory is sufficient. They claim the need for a broader perspective on grounding and present the 
concept of multi-grounded Design Research. They present three types of knowledge sources as premise for three 
types of grounding processes (Goldkuhl and Lind, 2010). Empirical grounding comprises grounding through 
practical evaluation of design artifacts in their application context, which matches Hevner’s relevance cycle. 
Theoretical grounding summarizes explanatory grounding of descriptive knowledge based on external, non-
design theories, concepts and values. Internal grounding evaluates the consistency and cohesion of the design 
artifact with the existing body of knowledge of design theory. Compared to Hevner’s Rigor Cycle the 
differentiation into theoretical and internal grounding provide a more specific understanding of the theoretical 
grounding of emergent design artifacts. Goldkuhl specifically mentions both approaches while Hevner does not 
mention or exclude either. The ability to also employ external theories allows to explain certain aspects and 
functionalities which are proven empirically but cannot be explained within the existing design theory 
thoroughly. Therefore, the multi-grounding concept of Godlkuhl and Lind is integrated into the research 
paradigm of this research project. 
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3.3 Research methodology 
 

“A process cannot be understood by stopping it. 
 Understanding must move with the flow of the process, must join it and flow with it.” 
 Frank Herbert 

 

The research in this study is based on an Idealist ontological position since human interactions in socio-
technical systems are a central objective. This implies that reality and facts are interpreted as socially constructed 
which has a strong influence on data collection and analysis methods. The research is based on an epistemology 
position based on Constructivism. Relevant knowledge includes socio-technical and organizational systems. 
Knowledge sources are the behaviour of individuals in social systems and the overall system dynamics. Hevner’s 
combination of research cycles was chosen as an overall research logic to realize practical utility and scientific 
knowledge derivation (Hevner Alan, 2007). Even though the model explains interdependencies in Design 
Research it does not specify the means to implement the concept in research projects. To realize the concept in 
a research project a suitable research methodology is necessary. It must reflect the restrictions of the application 
domain, the research project and the research strategy. In this study Action Research was chosen as central 
research methodology in a multimethod research approach which is shown in Figure 12. The following section 
explains how the methodology suits Hevner’s research principles in general. Detailed descriptions of the Action 
Research methodology and comprehensive research methods follow in the subsequent subchapters. 

 

 

Figure 12: Employed research methodology based on Action Research with grounding in complementary research methods. 

Action Research as research methodology was chosen to integrate and realize Hevner’s theoretical 
Design Cycles construct within the given application context. Action Research connects the design science 
activities with contextual environment of the research project through the close collaboration of the researcher 
with designers within the design project. The close connection promotes the identification of relevant research 
opportunities and its iterative questioning of relevance ensures research efficiency. Design requirements are 
transferred from the application context into the research and resulting design artefacts are field tested in the 
opposite direction. The Action Research data was enriched by an interview series and an annual industry survey 
independent of the partnering company. Both data sources combined with the Action Research findings 
represent Hevner’s Relevance Cycle. But the implemented Action Research methodology also addresses 
theoretical grounding of practical findings and leads to extensions of the relevant body of knowledge. The 
iterative action cycles are matched by a continuous literature review to evaluate practical findings with relevant 
theories or compare them to empiric results from similar environments. This repeated grounding in theory 
differentiates the Action Research from design activities and reflect Hevner’s Rigor Cycle. The central objective 
of Action Research is to construct and evaluate design artifacts to improve design activities within the application 
context. The researcher participates in design projects and introduces these design artifacts into the real-world 
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design activities. This change aides understanding of the research phenomena, the influence of the design artifact 
on it and the relevance of the selected design theory. The introduction of change in the form of design artifacts, 
the iterative evaluation of this change and the corresponding adjustment of the design artifacts in Action 
Research incorporate Hevner’s Design Cycle. 

The methodology of the research of connects nomothetic, idiographic and constructive research 
methods. Annual surveys including a broad industrial audience were conducted to verify the overall relevance of 
the research problem and test hypotheses. These surveys apply to the class of nomothetic methods. The central 
part of the research strategy was realized within a comprehensive Action Research frame including both case 
studies and interview series. These idiographic methods were applied to understand the research problem from 
a practitioner perspective and test specific solutions. Based on the overall problem relevance and the specific 
adaptions constructive methods were engaged to generate a model that enables the transfer of understanding 
and implementation to other cases. 

3.3.1 Action Research method 
Action Research as a research method aims to both solve current practical problems and expand the 

scientific knowledge base. This dual mission includes contributions to theory and assistance in current and 
anticipated problems of practitioners (Benbasat and Zmud, 1999; Rosemann and Vessey, 2008). The direct 
practical utility embeds relevance into research projects. Sein et al. conceptualize Action Research as containing 
inseparable and interwoven activities of constructing emergent design artifacts, intervening within the 
organization and evaluating the impacts (Sein et al., 2011). In this concept design artifacts are dynamic and 
emerge from the context of both their initial design and continual reshaping from organizational application.  

The fundamental contention of Action Research is that a complex social process can be studied best by 
introducing change and observing the effects. The action researcher purposely creates organizational change 
and hence discontinues the objective position of the researcher as an external observer. The implications of 
these actions allow the researcher to better understand the application context, the structural characteristics of 
the product design process and the effect of the design artifact on it. This in turn increases intertwining between 
practical problems and theoretical solutions (Babüroglu and Ravn, 1992). The researcher becomes part of the 
researched object and intervenes to solve immediate and anticipated organizational problems (Baskerville and 
Pries-Heje, 1999). 

Action Research accepts the inability to completely understand a dynamic socio-technical system. 
Instead, it emphasizes proximity and researcher action to increase understanding of defined parts. Ottosson et 
al. claim that the observer of reality is at the same time part of reality because of the nature of product design 
which is driven by human interaction. Passive observation is therefore impossible which confutes a positivistic 
view of objectivity. Instead Action Research accepts the researcher as being part of the researched object and 
strives for generalizability by rigor in data analysis, strong theoretical grounding and empirical evaluation 
(Ottosson et al., 2006). Consequently, Action Research is strongly oriented toward collaboration between 
researcher and product designer. This changes the recognition of the product designer compared to other 
Design Research methods. The role of product designer changes from researched object to constructive partner 
of the researcher. This shift is essential to the research logic since both the knowledge of the researcher and the 
product designer are valued crucial for the generation of relevant design artifacts. Action researchers contribute 
methodological knowledge and design theories and product designer complement situational, practical 
knowledge and application context experience. The combination of both knowledge sources complies with 
Hevner’s concept of a Rigor and a Relevance Cycle. In a Design Research project both are necessary and the 
repeated back and forth between them increases scientific and practical quality of design artifacts. Since Action 
Research purposely triggers change this affects the product designer as well as the researcher. Both have to 
readjust to a new situation together and draw learnings from the product design and the Design Research 
perspective. 

The role of the action researcher within the action research project is not predefined and may vary 
between project management and sporadic observer according to the application context and research settings. 
Ottosson et al. define four differentiations of the researcher role: Project lead, team member, observer with 
more than 80% presence and observer with sporadic presence (Ottosson et al., 2006). According to these roles 
they categorize three levels of Action Research integration into the design project: Action Research, Insider 
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Action Research IAR and Participatory Action Research PAR. All four role definitions support basic Action 
Research. Insider Action Research requires at least a high presence of the researcher as an observer. Participatory 
Action Research PAR requires the researcher to be a productive part of the product design team. Loss of valuable 
information due to incorrect reconstructions is minimized and first-hand data collection methods are applicable. 
Only team members or the project leader fulfil the requirements of this integration level. The participatory 
research position allows to grasp even the smallest details and understand product and project related 
interdependencies. Action and stimulus are much easier implemented and analysed from within the design team. 
Nevertheless, this position required additional research capacity and the researcher’s interest may be divided 
between research and project progression. 

Action Research is an iterative research process that capitalizes on learning by both researchers and 
subjects within the context of the subjects’ social system (Davison et al., 2004). Iterations allow to separate 
smaller cycles within a research project that have distinct objectives. Ideal iterations include each of Hevner’s 
design cycles and additional knowledge is won. This iterative research nature is based on working hypotheses 
which are refined over repeated cycles of inquiry. Overall understanding of the research object increases 
iteratively and assumptions and consequently design artifacts are updated to an emerging knowledge base. 
Ottosson et al. report the refinement of the research question with an increasing understanding of the research 
field through subsequent iterations. An initially open research question gradually develops and can with time be 
broken up into more specific questions. They emphasise how this refinement increases compatibility of research 
paradigm, research questions, experiences and design artifacts (Ottosson et al., 2006). Checkland et al. support 
this approach and report initial research themes, instead of fixed research hypotheses. These themes are shaped 
into specific research questions throughout the research project. They also emphasize the importance the 
connectedness and fine tuning between application context, research strategy and methodology to generate 
generalizable and valid learnings. A serious and organized Action Research process is essential to present 
defensible generalizations. (Checkland and Holwell, 1998). Eden et al. supplement that any tools, techniques, or 
models developed need to be linked to the research design. Exploration of data and theory building has to be 
explainable to others. Method triangulation is used if possible (Eden and Huxham, 1996). 

In a nutshell Action Research as a research method addresses practical relevance and scientific rigor in 
Design Research. It links theory with practice, and thinking with doing (Susman, 1983). Consequently, it avoids 
shortcomings of other Design Research methods such as practically irrelevant theoretical constructs or 
disconnected research phases (e.g. problem definition, artifact construction and evaluation phases) in sequential 
research phases (Baskerville and Myers, 2004). It leads to descriptive knowledge regarding the precise 
understanding of a design phenomenon in its application context and prescriptive knowledge regarding the 
generation and evaluation of design artifacts. The iterative method ideally incorporates Hevner’s Design 
Research concept. The repeated shift between research cycles generates scientific understanding and practical 
utility. Additionally, a mutual grounding of practice and theory is realized as intended by Hevner. 

According to Sein et al. an Action Research project can be divided into four overall stages that each rely 
on characteristic principles (Sein et al., 2011). These stages do not imply a fixed sequence but rather predefined 
sets of activities. The action researcher is required to alternate between activities and stages according to 
findings and the dynamics of the research project.  
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Figure 13: Action Research conduct according to (Sein et al., 2011). In practice the stages are not sequential but concurrent in Action Research. 

The Problem Formulation stage represents the identification of the research phenomena and its 
articulation as an instance of a class of problems in design theory. The trigger is a problem perceived in practice 
or anticipated by researchers. Its formulation as a research problem conceptualizes a research opportunity based 
on existing theories. Within this stage the scope of the research is initially defined, the role of the researcher 
within the design project is decided, an initial research question is formulated and the long-term commitment 
between the researcher and the industrial partners is agreed on. Even though a great share of the research 
strategy and assumptions are defined initially in this this stage they remain flexible to accommodate later change. 
This stage is based on two principles. Practice-inspired Research emphasizes the practical origin of research 
opportunities instead of theoretical constructs. The researcher has to realize a design artifact that is both able 
to apply to a specific solution within the research project and answer to a generalized class of problems. Theory-
ingrained Artifact implies that design artifacts are informed by theory. This principle recognizes the integration 
of prior theories to structure the problem, to identify solutions opportunities and to guide design of artifacts. 
This theory input happens during the initial design of the artifact and is repeated as an answer to new learnings 
during intervention, evaluation, and further shaping. 

The Building, Intervention and Evaluation stage generates an initial design of the design artifact. During 
the following iteration it is reshaped by intervention, evaluation and rebuilding cycles. Within this stage 
organization dominant artifacts are created with design knowledge from organizational intervention. This stage 
draws on three principles. Reciprocal Shaping emphasizes the inseparable mutual influences of design artifact 
generation and organizational intervention. A change within one part directly causes adaptions within in the 
other and vice versa. Mutually influential Roles signifies different bodies of knowledge from practical and 
research side within the project. It also allows individuals to play multiple or different roles. Authentic and 
Concurrent Evaluation is a central objective of Action Research that signifies that evaluation is not a separate 
stage but a continuous part of the construction of design artifacts resulting in anticipated and not anticipated 
adaptions. Evaluation should be addressed whenever possible and authenticity is emphasized above controlled 
setting.  

The Reflection and Learning stage focuses on transferring design knowledge from a particular instance 
to a broader class of problems. Essentially this is done continuously during the other stages. This stage clearly 
differentiates Action Research from project management or simple problem solving. It enables a comprehensive 
understanding of the research construct from problem framing and design artifact emergence to the theoretical 
additions to the body of design knowledge. It also represents an important feedback mechanism to the research 
project and therefore increases understanding of the connection between research problem and design artifact. 
Finally, this stage allows to assess the need for additional design cycles and therefore provides efficiency to the 
research project. Guided emergence, the interplay between the seemingly conflicting perspectives design and 
emergence, is the central principle of this stage. Design artifacts reflect both the initial, theory-informed design 
of the researcher and the reshaping during practical evaluation cycles by organizational use. Walls et al. include 
changes to design, meta-design and meta-requirements alongside action and evaluation cycles that can have 
significant impact on the initial design artifact (Walls et al., 1992). During the evolvement of the design artifact 
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new design principles can be conducted. This principle indicates the need for sensibility of the action researcher 
to signals that indicate the need for refinement. 

The Formalization of Learning stage aims to formalize new knowledge. Van Aken refers to the 
development of general solution concepts for classes of field problems from (individual) research project situated 
knowledge. This includes outlining the accomplishments of design artifacts and organizational outcomes from 
the application context to formalize knowledge (Aken, 2004). These results need characterization as design 
principles and with further analysis and reflection as adaptions or comprehensions of design theories applied to 
the design artifact. Tasks include sharing of assessments with practitioners, articulation in reference to selected 
theories and publication of formalized results. This stage draws on Generalized Outcomes as central principle. 
While the design artifact represents an ensemble to address a practical problem both need to be generalized, 
which is difficult due to the situational nature of Action Research. Sein et al. suggest three level to move from 
specific to generic and abstract knowledge (Sein et al., 2011). First, generalization of the problem instance to a 
class of problems. Second, generalization of the solution instance to a class of solutions independent of the 
organization-specific solution. Third, derivation of design principles from the research project. This requires 
reconceptualization of the deduced case-specific knowledge to the defined class of solution.  

3.3.1.1 Selection of pilot projects 
Research activities were based on product design projects (agile pilot projects) that offered the chance 

to change the status quo product design approach according to agile principles, practices or complete agile 
methods. The researcher implemented an initial change in working practices to these pilot projects and 
repeatedly adapted this change according to system reactions. This action across pilot projects aided the 
understanding of the research problem and the generation of a respective design theory. 

The pilot projects were chosen according to specific selection criteria. First, the projects had to be object 
to agile constraints of scale or physicality. Thus, large software product design projects, including several sub-
projects or smaller but mechatronic product design projects were chosen. Second, the degree to how much 
change was accepted in the projects was relevant. Projects that only allowed minimal action were excluded. This 
criterion strongly reflected the motivation of the responsible management to try alternative design strategies. 
Third, the applicability of (novel) design tools that enabled digitalization of previously manual tasks or testing 
was another selection criterion. Fourth, the level of dependencies to other organization units influenced pilot 
project selection. Project independence was focused in the first year of the overall research project. In the 
second- and third-year project selection focus shifted to inter team dependencies (dependencies between 
teams). Hence, larger, connected projects were chosen. Fifth, the duration of the projects was another criterion. 
Only projects that lasted at least several weeks were selected. This criterion was important since in shorter 
projects initial team motivation, access to teams and earlier knowledge of agile working models might have 
caused indeterminable and inconsistent influence onto the results. 

Change was introduced to the selected pilot projects in three intensity levels. Independent of the chosen 
level the applied change was adjusted thoroughly to the specific requirements of each individual pilot projects. 
The first level included agile practices and principles that were introduced to existing teams. This included Kanban 
boards, Retrospective meetings, iterative design cycles or complete agile methods such as Scrum amongst 
others. The second level of change affected besides agile practices and principles digital and non-digital working 
infrastructure. Team colocation and innovative work environments were applied, and novel software tools were 
introduced to enable continuous product integration and testing to non-SW application contexts. The third level 
of implemented change included modifications of the existing organization structure. Hierarchy structures and 
project management standards were revoked and agile roles such as Scrum Master or Product Owner were 
introduced permanently. Multi project allocations of designer were discontinued. 
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Table 6: Set of agile pilot projects in automotive design. The table details the chosen Action Research mode, the applicable agile constraint 
category, the initial project management motivation to change, the employed agile tools, the organizational dependency level, and the 
project duration. 

Pilot 
Project 

Action 
mode 

Action 
level 

Agile 
constrains 

Motivation to 
change 

Digital tools Dependency 
level 

Project 
duration 

alpha AR two CoP high CAD/E tools high two months 
beta IAR two CoP, CoS medium Simulation tools high three months 
gamma PAR two CoP medium CAD/E tools medium four weeks 
delta IAR one CoS low CAD/E tools high two months 
epsilon AR two CoP low - medium three months 
zeta IAR three CoP, CoS high CAD/E, simulation medium four months 
eta PAR three CoP, CoS medium CAD/E tools high six months 
theta PAR three CoP medium Generative CAD medium three months 
iota IAR one CoP low CAD, simulation high two weeks 
kappa AR three CoS high Agile tool chain high indefinite 
lambda AR three CoS medium Agile tool chain high indefinite 

 
In total eleven projects were researched in detail. Details of the individual design projects are given in 5.1. 
Findings in this study are based primarily on these pilot projects. Additionally, learnings from more than 20 similar 
pilot projects were collected but are not described and analysed in detail in this study. In Table 6 the selected 
pilot projects and information of the research mode, the action level, the encountered agile constraints, the 
underlying motivation to change, introduced digital tools, the dependency level and the project duration are 
summarized. 

Action research mode and hence researcher participation varied among the pilot projects. Participatory 
Action Research was chosen in pilot projects gamma, eta and theta. The researcher was as an active and 
productive team member in these pilot projects. To support the team and implement action the researcher 
incorporated the role of the Scrum Master or of an agile coach. Additionally, the researcher was part of inter 
team coordination and specific product design tasks. Insider Action Research IAR was chosen in pilot projects 
beta, delta, iota, zeta. The researcher executed the Scrum Master or agile coach role in these projects and did 
not take part in specific product design tasks. Action Research without explicit role support of the researcher was 
chosen in pilot projects alpha, epsilon, kappa and lambda. The researcher did not occupy a specific team role in 
these projects but consulted the preparation of these projects and the correct implementation of the agile 
practices. Preparatory works also included team coaching. During the pilot projects the researcher readjusted 
the agile working model implementation and focused coaching according to the specific situation in the projects. 
This support lasted from the beginning to the end of the pilot projects. 

3.3.1.2 Data collection 
The data collection focus was structured according to the presented research questions, which resulted 

in three focus fields. First, benefits and problems of implemented and adopted agile change was recorded. 
Second, application context characteristics were categorized and connected to experienced problems 
throughout the pilot projects. Third, successful adjustments to initial change were collected with a focus on 
constraints of scale and physicality. The documentation and evaluation of implemented change was based on a 
multi-method data collection approach. The applied method selection was chosen to avoid researcher bias and 
a methodological influence on data sets. Method triangulation (Blessing and Chakrabarti, 2009) allowed to 
approach the research phenomena with problem specific methods from different perspectives to increase data 
relevance and specificity. The set of data collection methods was also adjusted to the project specific availability 
and accessibility of data sources. The most relevant data collection methods within the pilot projects are 
sketched in Figure 14. 

In every pilot project the initially intended and implemented action was documented. This pilot project 
preparation documentation included project motivation, objective and intension of introduced change. 
Additional change and trigger throughout the pilot projects were added to the documentation continuously. 
Implications of action were recorded with various data collection methods. The central data collection methods 
were personal notes and direct evaluations of the action researcher. These summaries were continuously 
expanded throughout the project. Focus was on the working model and not on project specific design progress. 
Semi-structured interviews (Bogner et al., 2014) were another important data collection method applied in most 
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pilot projects. Project members and management were asked during and after the projects to share their 
perception of the implemented action and the overall progress of the pilot projects. The interviews were 
conducted by different researcher to avoid researcher bias. Moreover, pilot project members were asked to 
summarize their experiences unstructured to address unexpected feedback and complement findings. 

 

Figure 14: Data sources of the Action Research pilot projects. Data from before, throughout and after the pilot projects was collected to 
provide a representative view on each pilot project. Data collection sources across pilot projects were unaltered to ensure data consistency 
and comparability. 

Besides these direct evaluations methods material from the pilot projects was collected and analysed. 
Especially retrospective meetings were documented since they directly address the working model and 
continuously filtrate and document experienced drawbacks and improvements. They were used to get direct 
feedback for previous change and input for further action within the iterative design cycle frame. Planning and 
Review meetings and agile practices such as burn-down charts were used to evaluate product design progress 
and efficiency in retrospect. Project progress in form of performance indicators were used to derive feasibility 
and efficacy of agile practices. The iterative planning review design cycle was an ideal measurement environment 
to evaluate the impact of implemented change at a high sensitivity. The ratio between planned and finished talks 
as well as overall story points allowed to understand impact of action in detail. Most meetings included boards 
for visualization and information aggregation such as Scrum boards which were documented as well. Besides 
agile meetings also lessons learned workshops were conducted to evaluate the complete pilot project in 
retrospect from both internal and external perspectives. These workshops were especially helpful to collect 
learnings outside of the personal range and visibility of the researcher including tendencies in upper 
management. Besides these direct information collection methods pilot projects were approached after the 
official project termination in retrospect. During discussions with the former team members and stakeholders it 
was investigated whether the implemented impulses were transferred into standard working practices or even 
further expanded. 

Overall data analysis was driven by the following objectives. First, definition and further understanding 
of the research phenomena agile design and its implications in the defined application context automotive 
design. Second, elaboration and further sharpening of the research questions. Third, verification and 
generalization of the research phenomena across pilot projects and outside of the application context. Fourth, 
construction and evaluation of a suitable design model according to the specific research phenomena in pilot 
projects. Fifth, design of a comprehensive design model covering pilot projects and supplementary data sources. 
Derivation of a generalizable design theory answering to the categorized class of design problems.  

Data collection and analysis were performed by a several researchers with changing responsibilities to 
avoid researcher bias from individual researcher. Additionally, standard key performance indicators from the 
partnering company and stakeholder evaluations of pilot projects were added to the data to further minimize 
scientific interest-based bias in data evaluation and further increase the relevance of data analysis. Tools such as 
MAXQDA were used in open, axial and selective coding procedures in pilot projects and especially for interview 
series. 

3.3.2 Structured and narrative literature reviews 
The literature review is a central element of Hevner’s Rigor Cycle and it addressed several research 

objectives throughout the project. First, it provided initial understanding of agility and its dependency of the 
application context. A combination of scientific publications and industry reports was used as an initial 
theoretical base of the research project. More specifically, literature provided an overview of the maturity and 
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implementation of agility in its original application context and therefore confirmed relevance and urgency of 
the research project. Practical reports were used to estimate and characterize transferability to other application 
contexts. Additionally, accompanying challenges in mechatronic product development were summarized. 
Second, the literature review supported the categorization of emergent design artifacts into the existing body of 
knowledge. Field reports and theoretical explanation were used to compare, analyse, and explain findings from 
pilot projects. Third, systematic exploration of theory constructs from design science and complementary fields 
allowed justified adjustments to the existing theoretical grounding perspectives on the research phenomena. A 
sketch of the literature review conduct and the researched objectives is given in Figure 15.  

 

Figure 15: The literature review included of a continuous narrative literature review and several structured literature reviews. The narrative 
review allowed to maintain an overview of relevant research fields and the structured review was used to thoroughly screen crucial research 
fields. 

Methodologically the literature review was based on two interlaced approaches. Throughout the 
complete research project a traditional or narrative review was conducted (Boell and Cecez-Kecmanovic, 2015). 
This iterative review approach allows the researcher to adjust the focus of the search according to earlier findings 
research results and expand the review to initially not considered fields. This broad and persistent literature 
review was complemented by specific structured literature reviews SLR (Okoli and Schabram, 2010). These 
compact reviews were applied several times throughout the complete research project and generated more 
comprehensive pictures of the selected review objectives. The application of these two approaches into a 
comprehensive review strategy improved both completeness and thorough understanding of focus fields as well 
as sensitivity to unobvious but relevant theories and findings and cross-validation of practical findings and 
theoretical constructs. Combining both review methods had further benefits, since findings of the narrative 
review were used as reference points for more rigorous structured literature reviews. 

This literature review strategy was combined to reflect the quality criteria of literature reviews 
summarized in Boell and Cecez-Kecmanovic (Boell and Cecez-Kecmanovic, 2015). Comprehensiveness of 
literature, breadths and depths of understanding signifies that the quality of literature depends on 
comprehensiveness of and insight into the body of literature researched as well as breadth and depth of its 
understanding of the researcher (Boote and Beile, 2005). To generate a solid research argument by thoroughly 
piercing through a body of knowledge and hence localize gaps or flaws is the basic contribution of a literature 
review to a research project. Feak and Swales declare this aspect of a review as Argument development (Feak 
and Swales, 2009). Ongoing engagement describes a most vital aspect of narrative literature reviews. From this 
perspective reviews are an iterative process that continuously further develop understanding and the 
researcher’s ability to assess relevance and quality of publications. It is not a discrete task but an ongoing process 
that accompanies a research project up to the final transcript (Combs et al., 2010). Ongoing engagement also 
improves criticality in reviews which is necessary to question relevance, quality and rigor of contributions and 
hence filter inputs into research projects (Alvesson and Sandberg, 2011). These criteria enabled unevenly by the 
two chosen review methods. The structured reviews focused on depth of understanding and criticality in the 
literature review. The narrative review supported comprehensiveness, argument development and ongoing 
engagement.  
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3.3.3 Complementary data collection  
Besides data collection in the Action Research pilot projects additional data sources outside of the 

central application context were used to verify plausibility of the Action Research approach and results. These 
data sets were collected with the goal to research and confirm the relevance of the research phenomena on a 
broader scale. Both the generalization of the theoretical constructs behind design phenomena to a class of design 
problems and the generalization of the design artifact into design theory rely on data to confirm a broader 
applicability beyond the focus research environment. Apart from this the application of additional research 
methods minimizes the risk of a disproportionate methodological influence on the research results.  

Specifically, the following methods and contexts were used. Outside of the pilot projects but within the 
specific application context (company BMW) interview series were conducted. Especially in product integration 
and testing processual dependencies, manual activities, cooperation and coordination systems were analysed. 
Technological maturity to implement continuous integration tool chains and processual suitability of existing 
organization structures to implement agile collaboration models were questioned in these interview series. 
Unlike the more flexible often interrupted and resumed interview discussions in pilot projects these interviews 
were based on strict semi-structured interview guidelines. The interview sample was selected strictly according 
to experience in mechatronic product integration and complexity of relevant process partners. Further expert 
interviews were conducted outside of the application context regarding the transferability of agile practices to 
mechatronic product design. 

An annual industry survey was conducted online to addresses a broad audience of experts in the field 
of agile mechatronic product design independent of industries (Atzberger, Nicklas, et al., 2020; Schmidt et al., 
2019). This survey aimed at several goals unreachable with the earlier presented research methods. First, the 
survey allowed to reflect the yearly dynamics in a broad set of practical application fields regarding problem 
interpretation and diffusion of approaches to overcome them. Second, the survey generated data outside of the 
specific application context that allowed to confirm the relevance of the class of problems. Third, the survey 
enabled an industry independent evaluation of design artifacts iteratively constructed throughout pilot projects. 
This approval of experts from other industries is an important precondition to derive general design theories 
from specific design artifacts. Fourth, this data allowed to collect additional practical implications of the research 
problem from other industries. Especially if implication change with the application context additional sources 
help to avoid missing undetected dependencies and therefore increase understanding of the underlying causes. 
Fifth, the quantitative data analyses could only be used in this part of the research. This alternative data 
breakdown was used as a repeated evaluation of the research findings and drawbacks of the chosen data 
collection and analyses methods were compensated.  
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 Coordination perspective of agile product design 
 

“The best way to show that a stick is crooked is not to argue about it or to spend time denouncing it, but to lay a 
straight stick alongside it” 
 D.L. Moody 

 

 

In this chapter coordination is used as a theoretical lens to analyse and understand the most relevant 
agile methods in accordance to avoid unreflective agile black box applications (see chapter SOA scientific call for 
theoretical explanation) and answer research question one. Therefore, a coordination reference model is 
synthesized to analyse and compare coordination strategies from different agile frameworks. These coordination 
strategies are evaluated regarding their suitability for different application contexts according to their 
coordination efficiency. These evaluations are also used to verify and explain empirically proven agile benefits. 
Beyond individual practice evaluation the coordination reference model compares interlinked sets of practices of 
agile methods in relation to different application contexts. This allows to understand agile method suitability 
regarding project and domain specific characteristics. As a result, the model allows to adjust agile coordination 
strategies to application contexts. 

Similar research on coordination in agile methods has started in the early 2000s and resulted in a 
heterogeneous research stream including a broad set of approaches. Cao and Ramesh recognized that classical 
coordination theory might explain the efficiency of agile software development. They argue that agile methods 
focus on personal and group mode coordination (Lan and Ramesh, 2007). Barlow et al. proposed a methodology 
selection framework based on standardization, planning and mutual adjustment (Barlow et al., 2011). Strode et 
al. showed how agile software development generates effective coordination by coordination mechanisms that 
enable project team synchronization, support team proximity and availability, role substitutability as well as 
boundary spanning mechanisms (Strode, 2014). Further empiric research was published focusing on individual 
cases. Coordination in a XP project has been achieved by using unit testing, card games for planning and 
concurrent versioning systems (Mackenzie and Monk, 2004). Wallboards displaying stories, tasks, work 
allocations and progress were significant coordination mechanisms in six agile teams (Sharp et al., 2009). 
Pikkarainen et al. concluded that in two co-located agile projects coordination by documentation was substituted 
by communication in communities of practice. (Pikkarainen et al., 2008). Pries-Heje et al. explained the efficiency 
of Scrum by its practices regarding communication, coordination, social integration and control based on a case 
of two distributed teams (Pries-Heje and Pries-Heje, 2011). Dingsøyr et al. reported how in large scale agile 
projects coordination modes change throughout the project (Berger and Eklund, 2015) (Dingsøyr et al., 2017). 
Scherer et al. researched coordination efficiency in multiteam software development projects (Scheerer et al., 
2014). Still, coordination theory has not been employed to research and structure large scale hardware design in 
automotive design.  

This chapter is divided into three parts. First, the development of the coordination reference model based 
on established coordination theory inputs is presented. Second, the derivation of agile coordination strategies of 
several agile methods including suitable coordination determinants is described. Third, the connection of 
beneficial characteristics of agile design (depending on application contexts) to the analysed coordination 
strategies is explained to answer research question one. 
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4.1 Coordination reference model 
The analysis and comparison of coordination strategies of agile working models requires a coordination 

reference model. This model needs to screen agile practices regarding their impact on coordination efficiency. 
This includes intra and inter team coordination. Besides individual practices it must evaluate coordination 
systems that are composed of several interlinked coordination mechanisms. Furthermore, these interdependent 
coordination systems must be related to coordination determinants which represent application context 
characteristics. 

The applied coordination reference model was specifically designed to reflect agile product design. It is 
based on the coordination model of Van de Ven et al. (Ven et al., 1976) which allows to relate the suitability of 
coordination modes to specific coordination contexts which are represented by coordination determinants. The 
model connects impersonal, group and individual mode coordination to task uncertainty, task interdependence 
and size of work unit. Additionally, the concepts of boundary spanning (Star and Griesemer, 1989), and implicit 
cognitive coordination (Espinosa et al., 2004) were introduced to reflect the strong team focus of agile product 
design. The coordination reference model allows to deduce coordination strategies (Li and Maedche, 2012) from 
different agile methods. It differentiates between intra team and inter team coordination to extend its 
applicability to scaled application contexts. The complete model as depicted in Figure 16 is described in the 
following paragraphs. 

 

 

Figure 16: The coordination reference model. It allows to analyse coordination strategies of agile methods. It is based on the original model 
of Van de Ven et al. (Ven et al., 1976). It connects the coordination determinants unit size, task uncertainty and task dependency to the 
coordination modes impersonal mode, group mode and individual mode coordination. To better reflect agile design the model was 
extended to include cognitive mode coordination (Espinosa et al., 2004) and boundary spanning (Star and Griesemer, 1989). 

Like in the original model (Ven et al., 1976), the differentiation of impersonal and mutual adjustment 
coordination relies on the three separated coordination modes: impersonal mode coordination, group mode 
coordination and individual mode coordination. These coordination modes consist of sets of coordination 
mechanisms based on similar coordination principles. Impersonal mode coordination includes coordination 
mechanisms such as “pre-established plans, schedules, forecasts, formalized tools, policies and procedures, and 
standardized information and communication systems” (Ven et al., 1976). These mechanisms present codified 
blueprints of action that are impersonally specified. Roles are formally prescribed in impersonal standardized 
blueprints or action programs which avoids role articulation (Thompson, 1967) to the given set of tasks. The 
application of the impersonal coordination mechanisms requires minimal mutual adjustment such as verbal 
exchange between the task performers after their implementation. Coordination by feedback is based on mutual 
adjustment upon new information (Thompson, 1967). De Van et al. divide it into group mode and individual 
mode. Regarding group mode coordination the model follows the division of Hage et al. into scheduled and 
unscheduled meetings as coordination mechanisms (Hage et al., 1971). Scheduled meetings serve for routine 
and plannable routine meetings like stuff meetings. Unscheduled meetings represent unplanned communication 
like informal, impromptu exchanges between more than two individuals in work-related fields. This also covers 
spontaneous collaboration on design activities in groups. Individual role occupants mutually adjust their tasks 
based on either vertical or horizontal communication channels in individual mode coordination. Typical 
coordination mechanisms for vertical communication would be line manager and unit supervisor. Horizontal 
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exchange is based on direct communication between individuals on a one-to-one basis in non-hierarchical 
relations. 

Impersonal mode, group mode and individual mode coordination are explicit coordination modes. Their 
coordination mechanisms require action to obtain a state of coordination. Unlike explicit coordination implicit 
coordination is based on shared information and cognition and requires no coordination-specific action. 
Research on teamwork has shown that implicit, cognitive coordination mechanisms have a significant influence 
on overall coordination efficiency (Espinosa et al., 2004). Agile approaches emphasise close collaboration in 
small, long-term teams which are ideal prerequisites for the application of cognitive coordination. Therefore, this 
study includes cognitive mode coordination as a fourth coordination mode to the coordination reference model 
(see Figure 16) to better reflect agile coordination strategies. Espinosa et al. presented a similar adjustment of 
the Van de Ven model (Espinosa et al., 2010). Cognitive mode coordination is based on knowledge collaborating 
actors or parties have of the system, each other and of each other’s tasks. It allows them to anticipate each 
other’s action without explicit coordination effort. Task awareness, presence awareness, transactive memory 
(Wegner, 1995) and expertise coordination (Faraj and Sproull, 2000) are factors that influence cognitive 
coordination. Shared mental models in teams (Cannon-Bowers et al., 1993) are essential since they support 
shared goals and enable common understanding (Kang et al., 2006). Mutual knowledge (mutual knowledge of 
collaborators) and common grounding (similar meaning in terms) are further enabling factors to cognitive 
coordination. In contrast to impersonal and personal coordination modes cognitive coordination requires shared 
mental models, mutual knowledge and trust between actors and hence cannot be implemented by generic 
coordination mechanisms. Since it is based on personal exchange, individual knowledge, trust which require long-
term cooperation its application is mostly limited to intra team coordination.  

The coordination reference model also includes the concept of boundary spanning as coordination 
mechanism. They represent relevant agile practices such as prototyping or agile artefacts such as the backlog in 
the model. The individual implementations of boundary objects, boundary roles and boundary activities fit the 
impersonal, group and personal coordination modes and combine their characteristics. As coordination 
mechanisms they connect the coordination modes of the coordination reference model. The boundary concept 
is used to facilitate coordination between representatives of different design objectives with different 
backgrounds and fields of interest. Star et al. define boundary objects as artefacts or concepts with enough 
structure to support activities in separated social worlds, and with enough elasticity to cut across multiple social 
worlds (Star and Griesemer, 1989). To do so these objects satisfy the institutional requirements of each world. 
They are weakly structured in common use and strongly structured in local use (Star and Griesemer, 1989). This 
allows them to tie together actors in multiple social worlds, while being capable of assuming different meanings 
in each world (Briers and Wai, 2001). Bergman et al. define boundary objects in design as artefacts that enable, 
propel, and connect design routines, align stakeholder interests, and identify and reduce gaps in design 
knowledge (Bergman et al., 2007). They represent, transform, mobilize, and legitimize design knowledge by 
facilitating shared understanding and promoting agreements about designs. Bergman et al. define four essential 
features of design boundary objects (Bergman et al., 2007). First, they promote shared representations. Second, 
they transform design knowledge. Third, they mobilize for design action. Fourth, they legitimize design 
knowledge. Boundary spanner and boundary spanning activities are further extensions of the concept. For 
example a coordinator between different knowledge and interest group might serve as a boundary role (Levina 
and Vaast, 2005). Certain activities between these stakeholders have a similar affect and serve as boundary 
spanning activity. Especially in design environments that rely on a broad spectrum of specializations and need to 
connect many stakeholders, boundary objects can increase coordination efficiency significantly. 

Van de Ven et al.’s model includes the coordination determinants task uncertainty, task 
interdependence and size of work unit that influence coordination mode selection. The combination of these 
factors allows to reconstruct different application contexts based on comparable input parameters. Task 
uncertainty mirrors the difficulty and variability of the activities necessary to complete a task. This includes 
project characteristics such as hardware and software specific design characteristics. It is reflected by the 
complexity level of the task, the necessary thinking time and task predictability. Task interdependence describes 
how task responsible parties are dependent on the output of other organization units to complete their task. 
This includes interdependencies between activities, knowledge and roles (Pennings, 1975). High task 
interdependency reduces the share of one-person jobs and increases the necessary degree of collaboration to 
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complete tasks. Task interdependence also differentiated between intra team and inter team dependencies. Size 
of work unit is defined as the total number of people within an interdependent project. 

Van de Ven et al. showed how these coordination determinants influence the presented coordination 
modes. Increasing task uncertainty results in a substitution of impersonal mode coordination with mutual 
adjustment coordination. Within the group mode coordination unscheduled meetings show a stronger increase 
than scheduled meetings. Regarding individual mode coordination the use of horizontal channels increases while 
vertical channels remain constant. Increasing task interdependency results in an increased use of group mode 
coordination while impersonal mode coordination and individual mode coordination remain invariant. Within 
the group mode coordination scheduled meetings increase most. Increasing size of work unit leads to more 
impersonal mode coordination. This affects mostly rules and plans. Dietrich et al. researched the same 
coordination determinants in multiteam systems and came to very similar connections (Dietrich et al., 2013). 
Regarding the cognitive coordination mode unit size and inter team task dependencies reduce its applicability 
most since personal relations and shared mental models are harder to establish in larger groups and across 
teams.  

The coordination reference model determines mutual influence between coordination modes and 
coordination determinants to account for the criticism of Jarzabkowski and Okhuysen (Jarzabkowski et al., 2012; 
Okhuysen and Bechky, 2009) that the original Van de Ven et al. model (Ven et al., 1976) only reflects a static view 
of coordination. Connections between coordination mechanisms allow to depict emergent coordination 
dynamics that reflect changing coordination determinants. These connections between coordination 
mechanisms and the analyses of mutually influential coordination modes prevent a static understanding of 
coordination in the coordination reference model.  

The mutual influences between coordination modes are analysed as well. The connection of 
coordination modes to coordination determinants, based on Van de Ven et al. original observations, allows to 
match coordination strategies of the researched agile working models to application contexts. The coordination 
reference model also accounts for the cost and sensitivity of its coordination modes. Cost of coordination is 
approximated by the combined time necessary to execute coordination activities for all stakeholders. Impersonal 
and cognitive coordination modes require little time, while group mode and individual mode coordination 
require much more time. Besides cost the model also considers coordination mode sensitivity. Group and 
individual mode coordination are able to cope with higher levels of complexity than impersonal mode 
coordination. The coordination reference model connects this task sensitivity with the presented coordination 
determinants. Requirements of coordination modes are considered as well. E.g. cognitive mode coordination 
requires long-term teams that can rely on individuals that know and trust each other and that have experience 
in the required tasks and know project goals and settings. 

In summary, the coordination reference model is based the original model of Van de Ven et al. (Ven et 
al., 1976). The concepts of cognitive mode coordination and boundary objects were added to better reflect 
coordination in agile frameworks. 
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4.2 Agile coordination strategies 
The aim of this subchapter is to deduce the coordination strategies of the agile methods Scrum and 

eXtreme Programming. The analyses are based on the presented coordination reference model. The agile 
methods were selected for several reasons. They are the most popular agile methods in practical application 
(VersionOne, 2020). Both methods rely on large numbers of industrial experience reports and scientific 
evaluations. Later methods are often based on them. They represent two opposing positions within agile methods 
regarding domain limitations. Extreme Programming has been established for software design and therefore 
includes many domain specific practices, while Scrum is not limited to the domain. They include most of the 
employed agile practices in the agile pilot projects. 

The analyses of the coordination strategies for both methods. consist of three steps. First, the employed 
coordination modes and mechanisms are defined. Second, the balance of the coordination system is analysed. 
Connections and trigger between coordination modes and mechanisms are mapped to explain the system 
behaviour. Third, the agile coordination strategy is summarized. Characteristics and behaviour of the coordination 
strategy are matched with empirically proven benefits of agile methods.  

4.2.1 Analysis Scrum coordination strategy  
The coordination strategy of Scrum (see subchapter 2.1.2.2) is analysed in the following section. Scrum 

emphasises intra team coordination mechanisms. It combines three categories of coordination mechanisms 
which are meetings, roles and artefacts. It includes seven different meetings: The Planning (part I and II), the 
Daily, the Review, the Retro, the Refinement and the Sprint which structure iterative development cycles. Three 
roles with specific tasks and responsibilities are defined: The Product Owner, the Scrum Master and the 
Development Team. Additionally, three artefacts the Backlog, the Sprint Backlog and the Increment are defined. 
The Scrum Guide (Schwaber and Sutherland, 2020) advises small, long-term, cross-function, co-located and 
collaborating teams. The framework specifically recommends minimal inter team (team external) dependencies 
and emphasizes intra team collaboration. It advises short iterative design cycles with a fixed length which are 
called Sprints. 

These basic elements and their connection within the framework are analysed in the following section 
to depict the Scrum coordination strategy. The coordination reference model is used as a theoretical lens to 
analyse the Scrum elements regarding their influence on its coordination efficiency. The analysis is structured 
into three steps. First, the resulting coordination modes are investigated. Second, for every coordination mode 
the connected mechanisms are summarized. Third, the connections between coordination modes and respective 
coordination mechanisms are outlined. 

4.2.1.1 Applied coordination modes 
The Scrum meetings enable group mode coordination in the Scrum framework. Besides the Sprint and 

the Refinement all meetings can be categorized as scheduled group mode coordination. They are structured 
according to design objectives and therefore connect roles that also answer to different design objectives. The 
Sprint on the other hand offers the opportunity for unscheduled meetings. This includes informal exchange and 
or spontaneous design activities within the team. Unscheduled periods are purposely included in the Sprint to 
provide unscheduled exchange. Besides this group mode coordination, the meeting also support cognitive mode 
coordination within the team. The Planning meetings provides a shared vision and common understanding 
throughout the following Sprint, while the Review meeting generated mutual trust within the team and towards 
the framework. The Retro meeting provides information of team dynamics and therefore also supports cognitive 
coordination.  

The Scrum roles support impersonal mode coordination as standardized blueprints of individual 
responsibilities (Thompson, 1967) in product design. They also support individual mode coordination. Since no 
disciplinary hierarchy is associated with the role responsibility horizontal communication channels are dominant. 
The Scrum roles are directly linked to the scheduled group mode coordination mechanisms. The role definitions 
clarify responsibility within the team and towards all meetings and therefore facilitate group mode coordination. 
The Scrum Master and the Product Owner are boundary spanners and connect the Development Team to 
customers and stakeholders. Lastly, the Scrum roles also support cognitive mode coordination since 
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responsibility and functions are clearly assigned to individuals which allows a shared understanding of the overall 
design activities. 

The Scrum artefacts provide impersonal mode coordination. The Backlog and the Sprint Backlog allow 
coordination between stakeholders without personal communication outside of the meetings. They fulfil 
Bergman’s four categories of boundary objects in design. The Backlog promotes a shared representation of the 
product, the Increment includes transformed design knowledge from different parties, the Backlog and the 
Increment mobilize for action and the Increment legitimizes design knowledge. Additionally, they document 
findings and results from meetings and the Sprint. The integration of the artefacts into the Scrum design cycle 
ensures they document and communicate the status quo. The artefacts are designed to function as boundary 
object coordination mechanisms between the Scrum roles, the customer, and stakeholders. This function 
facilitates the meeting efficiency since information can be transferred between different roles even though 
different backgrounds and objectives are given. The User Stories within the Backlog are an example to connect 
Product Owner and Development Team. Additionally, the increment or prototypes are boundary objects in 
Scrum. 

The required team characteristics from the Scrum Guide shape coordination in a Scrum framework as 
well. Group mode coordination is enabled by the small size of the teams, the collaborative approach to design 
tasks, the co-location and the cross-functional composition of the team. Each aspect ensures that group mode 
coordination is the most usable and useful coordination mode. The same aspects also support individual mode 
coordination but to a lesser degree. In the long term these aspects generate very close teams that can rely on 
cognitive mode coordination. Another factor to influence coordination mode selection is the handling of 
external or inter team dependencies. The role construct attaches external dependencies to the Product Owner 
and to a smaller degree to the Scrum Master. The Development Team can therefore focus on design tasks and 
hence rely on group mode or individual mode coordination within the team. This use of mutual adjustment 
coordination relies on a small number of external dependencies that can be channelled by individual role 
occupants. 

In summary impersonal mode coordination is implemented in the Scrum framework through the 
Backlog, the Sprint Backlog and the Scrum role definitions. Additional elements such as User Stories also provide 
impersonal mode coordination. All Scrum artefacts are implemented as boundary objects to be easily adjustable 
and maintain a high level of flexibility and actuality. Besides these objects the Scrum framework its guidelines 
and standards function as impersonal coordination mechanisms as well. Group mode coordination is the central 
coordination mode in Scrum. The meetings, the roles and the team characteristics function as group mode 
coordination mechanisms. Even though scheduled meetings structure a large share of the design cycle 
unscheduled meetings are driven by the Sprint frame and the close team collaboration. Group mode 
coordination mechanisms connect all roles and artefacts and therefore present the central coordination 
mechanisms. The different roles and their non-disciplinary relations enable individual mode coordination 
mechanisms through horizontal channels. Close collaboration also requires a shift between group and individual 
mode coordination depending on the task. Cognitive mode coordination is enabled through the close personal 
exchange during the scheduled meetings that provide a shared vision, a common understanding and generate 
trust among the teams. The role division clarifies responsibilities and simplifies group dynamics. Required team 
characteristics such as long-term teams cultivate cognitive coordination mechanisms. Additionally, the simple 
overall framework provides common grounding in terminology which also support cognitive mode coordination. 
Collaboration, co-location and cross-functionality all require teams to cooperate very close and hence grow 
together. Lastly, the focus on intra team cooperation and the separation from external dependencies avoid inter 
team dependencies that also increase unit size and complicate cognitive coordination mechanisms. 

 

4.2.1.2 Connection and balance between coordination modes 
After analysing the applied coordination modes in Scrum the following section discusses how these 

coordination modes are connected in the framework. Figure 17 gives an overview of how the coordination modes 
influence each other. The construct helps to understand the overall coordination strategy besides the individual 
coordination implementations.   
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Figure 17: Scrum coordination strategy. Group, cognitive and impersonal (including boundary spanning) mode coordination are central. The 
coordination system’s flexibility, efficiency and efficacy profit from the close interlinkage of the employed coordination modes. 

Impersonal mode coordination mechanisms like the Backlog, the Sprint Backlog and the Increment are 
directly linked to group mode coordination mechanisms. The Sprint Backlog structures the Sprint, the Daily and 
the Review meetings, while the Backlog structures the Planning meeting. They are input channels for tasks and 
document and distribute findings from the verbal meetings replacing additional protocols. Their structure as 
boundary objects facilitates cooperation between different roles and stakeholders throughout scheduled and 
unscheduled meetings. This also affects individual mode coordination in the Backlog Refinement. These objects 
also enable cognitive coordination since they provide transparency and efficiently channel information in 
projects and hence facilitate system understanding. The Scrum framework itself and its roles are also impersonal 
coordination mechanisms which supports cognitive mode coordination in the design teams since they structure 
complex product design systems into well-described roles, meetings and artefacts whose connections and 
linkages are transparently stated in the framework rules.  

Group mode coordination mechanisms on the other hand also have a strong influence on the boundary 
object artefacts. Most prominently the Planning meeting is the central input channel for the Sprint Backlog, while 
the Review meeting verifies and validates the Increment of the Sprint. This shows that there is a strong 
bidirectional linkage between the impersonal mode coordination boundary objects and group mode 
coordination scheduled Scrum meetings. The meetings also provide the basis for further individual mode 
coordination that might be more efficient than a group meeting. E.g. the Daily meeting only detects coordination 
demand to be solved either in other meetings or in individual mode coordination. Also, the Sprint encourages 
direct exchange between individuals in collaborative tasks. Indirectly the meetings also provide a base for 
cognitive mode coordination through repeated interaction between team members, shared mental models of 
the system, transparency of responsibilities and trust in task fulfilment.  

Individual mode coordination might trigger unscheduled group mode meetings or influence boundary 
objects. E.g. the adaption of the Backlog during a Refinement of the Product Owner with customers. Cognitive 
mode coordination supports the other coordination mechanisms since a large share of the necessary 
information is already distributed and does not need to be communicated explicitly. E.g. a personal exchange or 
a meeting can focus on the point, or a boundary object can be simplified and still be understood. In very dynamic 
and uncertain environments this indirect extension of the given information might also lead to misinformation if 
the established mutual knowledge is outdated. Therefore, the shared knowledge needs reference frames and 
actualizations from the other coordination modes. 

In summary, the Scrum framework relies on interlinked coordination modes that are designed to 
support and complement each other. Its compact design cycle applies and combines different coordination 
modes to guide the design progress. The connection between these coordination modes is not fixed but able to 
adapt to specific or emergent project requirements.  

4.2.1.3 Deduced Scrum coordination strategy  
The presented analysis shows that the Scrum coordination strategy is dominated by mutual adjustment 

coordination especially in the shape of group mode coordination. Individual mode coordination is also relevant, 
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but to a lesser degree. Impersonal mode coordination in the form of boundary objects and boundary spanner 
roles is interlinked with group mode coordination. Additionally, the framework and its elements are designed to 
generate cognitive mode coordination mechanisms. According to Van de Ven’s relation between coordination 
modes and coordination determinants this combination of coordination modes is suitable for small unit sizes, 
high task uncertainty and high intra team and low inter team task dependencies. The focus on cognitive mode 
coordination further emphasises this application focus. 

The presented combination of coordination modes is designed to provide project flexibility and speed 
which are necessary in dynamic application contexts characterized by high task uncertainty. It combines 
coordination efficiency and efficacy since coordination mechanisms are continuously adapted to the demand. 
Individual coordination modes and mechanisms are intensified or reduced according to demand. Efficient 
impersonal mode coordination is used in predictable situations and more flexible mutual adjustment 
coordination modes are applied in uncertain situation. This adjustment mechanism answers to short term 
changes and long-term tendencies in projects. Task dependencies are described only from an intra team 
perspective. Inter team dependencies are not included explicitly. 

The strong connection between the employed coordination modes supports flexibility. The Scrum 
framework provides a well-coordinated system, that according to Espinosa (Espinosa et al., 2004), relies on an 
effective mix of mechanisms for the coordination needs of the task. Different modes are matched according to 
their strengths and weaknesses to generate a mutually supporting coordination system. Group mode 
coordination and impersonal mode coordination are interlinked very close. Impersonal mode coordination 
artefacts are updated throughout scheduled group mode meetings and scheduled meetings are structured 
according to boundary objects. Scheduled group meetings and impersonal coordination mode facilitate mutual 
knowledge, trust and shared vision which support implicit coordination. This system supports fast knowledge 
exchange, generation and documentation.  

These results match the findings of Pries-Heje et al. (Pries-Heje and Pries-Heje, 2011). They explain the 
success of Scrum with social capital, which is the ability to build trust, motivate and build relations between 
individuals. All concepts that reflect the strong cognitive and group mode coordination in the presented 
coordination analysis. It also provides a common language and a shared target to aim for. This social capital 
concept is close to the cognitive coordination concept. They also emphasise the importance of boundary objects 
and impersonal mechanisms to ensure quality and track progress in Scrum. They argument that the meeting 
structure enables efficient communication. Lastly, they draw a similar conclusion saying that the framework suits 
small teams in dynamic application contexts.  

4.2.2 Analysis eXtreme Programming XP coordination strategy  
The coordination strategy of the agile method eXtreme Programming XP (Beck, 2004) is analysed in the 

following section. XP was chosen for four reasons. First, it is almost as popular as Scrum (VersionOne, 2020). 
Second, its coordination relies unlike Scrum on highly automated coordination mechanisms that require specific 
IT infrastructure. Third, some practices exclusively address software design. Fourth, the framework emphasises 
product design practices and not project management like Scrum. XP consists of values, principles and practices. 
The underlying values are communication, simplicity, feedback, courage and respect. The basic principles are 
feedback, assuming simplicity and embracing change. More relevant for the coordination strategy are the XP 
practices: On-Site Customer, Planning Game, Stand-Up meetings, Metaphor, Short Releases, Retrospective, 
Testing, Simple Design, Refactoring, Pair Programming, Collective Ownership, Continuous Integration, Coding 
Standards and Sustainable Pace. Like Scrum XP recommends short iterations based on coding, testing, listening 
and designing development cycles. These basic elements and their connection within the framework are 
analysed to understand the resulting coordination strategy.  

The coordination reference model is used as a theoretical lens to analyse the XP practices regarding 
their impact on coordination. The analysis is structured into three steps. First, the resulting coordination modes 
are investigated. Second, for every coordination mode the connected elements are summarized. Third, the 
connections between coordination modes and respective framework elements are outlined.  
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4.2.2.1 Applied coordination modes 
The coordination modes in XP are differentiated according to the presented design practices. On-Site 

Customer representation triggers individual mode coordination or group mode coordination between designer 
and customer both in personal and group mode exchange. The Planning Game functions as a boundary spanning 
activity allowing different social or expertise communities to interact directly without complicate translation 
activities. Its implementation as a group activity turns it into a (scheduled) group mode coordination mechanism. 
The Stand-Up meetings are classic mechanisms of the group mode coordination. Similar to the Planning Game 
the Metaphor connects different individuals from different task specific focus areas. Its construction is a 
boundary spanning mechanism while the artefact remains a boundary object. The Retrospective meeting 
provides frequent reconsideration and adjustment of the process and is a scheduled group mode coordination 
mechanism. The Simple Design practice represents the idea to choose the simplest possible design to fulfil 
requirements. It allows designer to comprehend outputs of other designer and is therefore categorized as a 
cognitive mode coordination mechanism. Refactoring includes the continuous code improvement and 
simplification which implicates that initial code needn’t be perfect. It supports impersonal and cognitive mode 
coordination mechanisms. The resulting design procedure requires and enables continuous product adjustments 
and therefore requires repeated synchronisation points. Pair programming is the most relevant individual mode 
coordination mechanism and relies on close personal exchange between two designers. Short Releases and the 
corresponding short design cycles as well as the incremental design support impersonal mode coordination. The 
Continuous Integration practice is one of the central impersonal mode coordination mechanisms. It enables a 
continuous actualization of the current increment and hence allows feedback and evaluation cycles. Coding 
standards as a form of team agreed rules are an impersonal mode coordination mechanism. The last practice, 
(automated) Testing is another very relevant impersonal mode coordination mechanism. Developing tests first 
and then starting the classic design process reverses to original sequence of design cycles and enables a very 
efficient design process. This includes mostly verification but also validation tests. Mistakes are spotted fast and 
further necessary coordination mechanisms to generate solutions can be triggered. Like the Simple Design 
practice once implemented the Testing practice functions like the implicit cognitive mode coordination 
mechanisms, since the system automatically detects mistakes and generates coordination trigger. 

In summary, impersonal mode coordination is central to the XP framework. The testing and continuous 
integration mechanisms are essential to this coordination mode. The Continuous Integration practice enables 
transparent product representation throughout the design process without integration delays. The Continuous 
Testing practice on the other hand simplifies the original Demming design cycle (Moen and Norman, 2009). 
Instead of an independent Check phase the Testing practice is automated and connected to the Do phase which 
increases design efficiency significantly since further design on unnoticed errors is avoided. This efficiency gain 
is also due to the amount of saved personal interaction that would usually be necessary during the Check phase 
to find and fix errors. The practice benefits intra team but also inter team and team-customer coordination. 
These benefits of the Testing practice rely on the Continuous Integration practice to avoid tests of incomplete 
products and actuality gaps (Schrof and Paetzold, 2020). Further supporting coordination mechanisms are the 
Coding Standard practice and the Simple Design practice that allow to efficiently implement tests and aid error 
fixing. The Short Releases practice also supports the impersonal mode coordination since it is a design rule that 
enables short design cycles and provides direct feedback from the customer in short intervals. These impersonal 
mode coordination mechanisms avoid non-value design works regarding both costumer requirements and design 
implementation.  

Even though, XP relies on strong impersonal mode coordination, individual mode coordination is 
reflected through several XP practices as well. The On-Site customer allows direct personal exchange between 
designer and customer. The metaphor as a boundary spanning (non-physical) object requires direct exchange 
and further connects them. The most important individual mode coordination mechanism in XP is the Pair 
Programming practice. It provides a very close personal relation between two individuals.  

Group mode coordination is also part of the XP coordination construct even though only two scheduled 
meetings are described in the framework. The Retrospective and Stand-Up meeting coordination mechanisms 
provide non-automatized mutual adjustment coordination in teams. The Retrospective focuses on the overall, 
long-term design process while the Stand-Up meeting has a short-term focus. The Planning Game coordination 
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mechanism connects designers with customer requirements and customer expectations. The central XP values 
and the Collective Ownership practice emphasis team collaboration and therefore group mode coordination.  

Boundary spanning coordination mechanisms are the Metaphor and the Planning Game practices. They 
connect groups with different design objectives and enable an efficient and uncomplicated information 
exchange. Cognitive mode coordination is a result of the scheduled and unscheduled personal meetings 
coordination mechanisms in the form of a common understanding and trust among the team. The On-Site 
Customer practice supports a shared product vision and the Planning Game practice allows to realistically 
transform this vision into increments. The Simple Design practice generates traceability and product 
understanding for teams. Personal knowledge and trust among the team is also created by the Pair Programming 
coordination mechanism. 

The Sustainable Pace coordination mechanism emphasises compact, iterative design cycles that ensure 
entanglement of coordination modes. Additionally, the straightforward XP framework provides common 
grounding in terminology. It also limits project boundaries which increases system understanding and hence 
cognitive coordination. A large share is of dependencies is automatically handled by the testing and integration 
system which allows individuals to focus on components without understanding the complete system.  

4.2.2.2 Connection and balance between coordination modes 
Impersonal mode coordination mechanisms such as the Testing and Continuous Integration practices 

have a direct influence on the implementation of group and individual mode coordination mechanisms as shown 
in Figure 18. The continuous integration and testing systems automatically detect design mistakes and problems 
that require designers’ attention. This automated analysis allows to employ group and individual mode 
coordination only if necessary. Efficient automated, impersonal mechanisms are used for repetitive, standard 
tasks and personal mechanisms are triggered to handle complex problems or unpredictable tasks only if 
necessary. This approach also provides faster design since these impersonal coordination mode mechanisms are 
quicker than personal coordination modes. Meeting efficiency increases if only relevant topics are addressed. 
This connection between impersonal mode coordination and individual mode coordination applies to group 
mode and individual mode coordination mechanisms. The automated integration and testing infrastructure is 
linked to cognitive coordination mechanisms as well. The implemented system provides a similar service since 
information distribution results in coordination without explicit effort. This implicit coordination is not based on 
cognitive models but on digital data processing in a connected product design IT infrastructure. Therefore, 
automated testing and integration practices replace some aspects of cognitive mode coordination while 
providing a similar service. Lastly, the XP framework itself is an impersonal mode coordination that structures 
and connects impersonal and mutual adjustment coordination modes. 

 

Figure 18: XP coordination strategy. Automated impersonal mode coordination mechanisms represent the foundation of the XP 
coordination system. Group, individual and cognitive mode coordination are also present. The coordination modes are well connected into a 
coordination system and the connections between them improve coordination efficiency and efficacy. 

Personal and group mode coordination are linked to other coordination modes. Pair Programming 
generates cognitive coordination in teams. The Retrospective reviews the complete product design process 
including impersonal and mutual adjustment coordination mechanisms. This group mode coordination 
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mechanism adjusts other coordination modes according to feedback from the team. The Daily Stand-Up 
summarizes problems and results at team level on a daily rhythm. It allows direct feedback and reaction and is a 
straight connection to other personal and impersonal coordination modes. Both personal and group mode 
coordination mechanisms also support cognitive coordination mode since they require personal exchange on 
product design relevant tasks. 

Boundary Spanning practices such as the Planning game connect individuals and facilitate information 
exchange. The Metaphor practice functions similarly. Both improve personal exchange on group and individual 
mode coordination. Additionally, they expand system understanding and hence cognitive mode coordination in 
the long-term. Cognitive mode coordination on the other hand improves group mode coordination and 
individual mode coordination as well as boundary spanning since the amount of necessary information exchange 
is reduced and the remaining information exchange is handled more precisely. 

In summary, impersonal and individual mode coordination are connected very close. Impersonal 
mechanisms trigger and structure personal mechanisms. Personal mechanisms replace impersonal mechanisms 
if complex problems need to be addressed. This connection between coordination mechanisms is designed to be 
flexible to adapt to changing project characteristics and project dynamics. Unlike Scrum XP only applies to 
software products and requires elaborate IT system support in the form of testing algorithms and corresponding 
IT infrastructure. 

4.2.2.3 Deduced XP coordination strategy 
The presented analysis shows that the XP coordination strategy emphasizes impersonal mode 

coordination, but personal and group mode coordination mechanisms are relevant as well. Boundary spanning 
activities and objects are a third pillar in the XP coordination strategy. Cognitive mode coordination is enabled 
to a smaller degree through the framework’s elements. The impersonal mode coordination mechanisms provide 
a similar service that does not rely on implicit personal but system knowledge in IT systems. In a nutshell, XP 
establishes an interlinked coordination system. According to Van de Ven’s relation between coordination modes 
and coordination determinants this combination of coordination modes is suitable for large team sizes, medium 
task uncertainty, high intra team and medium inter team dependencies. Larger units benefit from the implicit 
impersonal mode coordination mechanisms which provide a similar function like cognitive mode coordination 
does in smaller teams. Compared to the Scrum coordination strategy impersonal mode coordination mechanisms 
are more relevant while cognitive and group mode coordination are less relevant but still employed. The absence 
of roles and instead the focus on practices is the result of this shift. Still, examples like the Pair Programming 
practice underline individual mode coordination relevance. Boundary spanning focuses on activities and less on 
roles and objects. Quality and progress control are implemented in impersonal mode mechanisms, while Scrum 
relied here on group mode mechanisms. 

The XP coordination strategy results in coordination efficiency, speed and flexibility which are 
necessary in new product design environments. Unlike Scrum the XP coordination strategy requires well-
adjusted Continuous Integration and Testing IT systems. The corresponding costs must be balanced with long-
term reductions in coordination efforts. Impersonal coordination mechanisms provide high efficiency levels for 
standardized and predictable tasks. More sensitive and costly coordination mechanisms are applied only if 
necessary. Automated impersonal mechanisms increase coordination speed for most coordination activities. 
Still, the XP strategy can switch between impersonal and individual mode coordination, which results in 
coordination flexibility. Adjustments of coordination mechanisms require little time once the necessary IT 
infrastructure is established. Compared to Scrum the XP coordination flexibility is quicker regarding small 
changes but slower on a large scale if adjustments to the IT infrastructure are necessary. Additionally, XP is 
applicable to larger units. The impersonal mode coordination mechanisms provide inter team and intra team 
coordination while personal, mutual adjustment mechanisms are more suitable in intra team coordination.  

The selection of XP design practices shows a strong connection between coordination modes. The 
Impersonal coordination mechanisms such as Coding Standards, Refactoring, Continuous integration, and 
Testing are adjusted mutually and personal coordination modes are connected to them as well. The balance 
between impersonal and personal mechanisms provides efficiency for standard design works and flexibility for 
unexpected tasks. Automatization of impersonal coordination mechanisms also increases the coordination 
coverage of relevant activities which would be inefficient with other coordination modes. This allows to improve 
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sensitivity for personal coordination modes that require more coordination effort. The connection between 
coordination modes is triggered mostly from impersonal mechanisms. Still, mutual adjustment practices like the 
Planning Game or the Daily Stand-up present the opposite direction. Boundary spanning activities like the 
Metaphor practice structure group mode coordination meetings and facilitate individual mode coordination 
mechanisms such as Pair Programming. Since the integration and testing infrastructure supports cognitive 
coordination less detailed information is necessary to generate system comprehension. Implicit coordination is 
therefore based on both digital system representation and personal knowledge of individuals.  

Unlike Scrum XP requires complex IT infrastructure to provide the presented impersonal coordination 
mechanisms. Especially, the Continuous Integration and Testing practices rely on dedicated infrastructure and 
software toolchains which are a significant cost factor. Besides, such infrastructure is very product specific. While 
the technology is a standard in software design, the same is not true for most hardware design systems. 
Immature technology in hardware design might outbalance the expected benefits. Additionally, designers 
require competencies regarding test-driven design and integration infrastructure deployment. 

The deduced XP coordination strategy matches earlier findings. XU et al. analysed coordination in large 
agile systems through impersonal practices such as Coding Standards and personal practices like On-Site 
Customers in XP in 2009 (Xu, 2009). Strode et al. looked into the coordination of co-located agile team through 
Shared Code Ownership in 2012 (Strode et al., 2012).  

 

4.2.3 Findings in response to research question one 
In a review about the last decade of agile development in 2012 Dingsøyr et al. stated that the theory 

behind agile development is multifarious and a holistic explanation why agile works does not exist (Dingsøyr et 
al., 2012). The presented coordination analysis of agile methods shows that the coordination perspective 
improves understanding of why agile design works. Coordination theory cannot provide the holistic 
understanding Dingsøyr et al. asked for, but it reflects central traits of agility in design. The four core concepts of 
agility (Baham and Hirschheim, 2021) help to elaborate the relation between agility in design and coordination 
theory. Close collaboration in teams is based on constant coordination within design teams. Continuous 
costumer involvement is based on repeated inter team coordination between designers and costumers. Inspect 
and adapt cycles rely on reflection within design teams to inspect and adapt. Iterative and incremental design 
are based on repeated analysis and replanning and hence require intensive intra and inter team coordination. 
All core concepts directly involve coordination between and within groups. The focus on personal exchange and 
communication in agile design practices underlines the relevance of coordination further. Coordination theory 
therefore enables to analyse agility in design and hence to answer research question one: How to explain agility 
and its benefits theoretically. Coordination theory only represents one central element to a holistic explanation 
of agile design. The theoretical explanations based on coordination theory may serve as building blocks for 
further applicable design theories. 

The coordination strategy concept was chosen to apply coordination theory for the analysis of agile 
design. It connects coordination determinants to suitable coordination modes and respective coordination 
mechanisms within a coordination system. It also allows to relate coordination system behaviour with attributed 
benefits of agile design. To derive comparable coordination strategies from different agile methods a 
coordination reference model was necessary. The employed model was constructed to connect relevant 
concepts of the broad field coordination theory that best reflect agile design structures such as coordination 
between and within teams. The coordination reference model allows to categorize individual agile elements. 
Furthermore, it can analyse the coordination connection between agile elements. Even more, it allows to define 
the system behaviour of coordination systems, summarizing the mutual influence of several coordination 
elements. To evaluate the suitability of agile coordination strategies it is also able to account for the influence of 
design project characteristics. Lastly, it allows to explain how disturbances to agile coordination strategies lead 
to agile constraints.  

The analyses of agile coordination strategies revealed repetitive patterns across agile methods. Agile 
methods rely on mutual adjustment mode, impersonal mode and cognitive mode coordination. Scrum 
emphasises group mode coordination mechanisms that provide efficacy, synchronization, knowledge exchange 
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and learning. Its practices also recommend individual mode coordination mechanisms. At the same time 
impersonal mode coordination provides efficiency and productivity and often relies on boundary object 
coordination mechanisms. Typical impersonal mode coordination mechanisms such as detailed long-term plans 
or strict roll descriptions are avoided. What sets agile methods distinctively apart from conventional design 
methodologies is their focus on close team collaboration. This results in cognitive mode coordination 
mechanisms. These mechanisms enable very efficient coordination within teams that require little explicit 
coordination activities. They improve design transparency, design speed and mutual learning within teams. 
Besides cognitive mode coordination a similar pattern of implicit mode coordination is achieved by impersonal 
mechanisms relying on IT systems such as continuous toolchains that provide continues integration and testing. 
Unlike cognitive coordination mechanisms they are not restricted to small teams but require costly 
infrastructure. Both mechanisms provide very efficient coordination since they require very little explicit 
coordination activities. Agile methods further improve coordination within teams by reducing dependencies to 
other teams. This focus on intrateam coordination allows to further improve coordination efficiency within 
teams. 

Besides the selection of coordination mechanisms their connectivity within agile methods further explains 
the reported benefits of agile design. This connection allows the coordination system to self-adjust to changing 
design requirements. Throughout unclear project phases the coordination system focuses coordination 
mechanisms on learning and efficacy. While unclarity decreases and projects goals become clear the 
coordination system changes to more efficiency-oriented coordination mechanisms. This self-adjusting 
coordination system relies on coordination mechanisms connected by straight forward design practices. The 
system automatically adjusts the coordination objective and designers can focus completely on design activities. 
A common characteristic of agile methods are short design cycles that frame the coordination activities. These 
continuous design cycles are also central for the self-adjustment of the coordination system since each new 
design cycle allows to reconfigure the coordination mechanisms. The combination of coordination mechanisms 
from different coordination modes is more powerful than the sum of the individual elements. The composition 
of coordination mechanisms is designed not for one specific situation, but for a spectrum of requirements. Still, 
it remains lightweight since the sensitive adjustment happens automatically triggered by agile practices as a 
reaction to changing projects dynamics. This self-adjusting system results in both very effective and efficient 
coordination in design projects. 

In summary, the coordination theory perspective on agile design enables comprehension beyond the 
straightforward design practices of agile methods. It shows that agile methods rely on emergent coordination 
strategies that combine specific team collaboration focused coordination modes and reconfigure the respective 
coordination mechanisms according to project dynamics. This self-adjustment of the coordination strategy is 
triggered by agile practices in accordance with design project requirements. This self-adjusting coordination 
system provides efficiency and effectivity. The presented coordination strategies of agile methods explain the 
reported benefits. Nevertheless, they have some limitations regarding design project applicability. They rely on 
compact, autonomous teams with little external dependencies. Intra team coordination is emphasised and inter 
team coordination is avoided. Especially boundary spanning and cognitive mode coordination mechanisms 
cannot simply be transferred to larger multiteam systems. 

Other research streams have employed similar concepts to explain agile design. Socha et al. interpreted 
agile projects as complex adaptive systems that consist of interdependent components that learn and adapt 
collectively to internal and external stimuli in a self-organized manner (Socha et al., 2013). Strode et al. also 
analysed coordination efficiency in agile design. They focused on mutual adjustment practices relying on group 
and individual mode coordination. In their view the focus on mutual adjustment coordination engenders high 
coordination cost (Strode et al., 2011). Especially in large-scale agile coordination theory has been used to 
analyse constraints of scale in agile design and propose suitable agile practices (Dingsøyr, Bjørnson, et al., 2018). 
Pikkarainen et al. explain the benefits of Scrum in software development with a focus on communication also 
relying on boundary objects (Pikkarainen et al., 2008). Evans et al. analyse the benefits of Scrum relying on the 
concept of social capital (Randy Evans and Carson, 2005). Pries-Heje et al. also rely on coordination to explain 
the benefits of Scrum with a focus on the articulation theory as a prerequisite for successful collaboration based 
on a case study (Pries-Heje and Pries-Heje, 2011). 
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4.3 Inter team coordination in second generation large-scale agile methods 
The presented analyses of agile coordination strategies were focused on the small-scale agile methods 

Scrum and XP. Their intended applications are small or medium-sized teams with minimal external dependencies. 
Both frameworks recommend autonomous teams and therefore avoid inter team cooperation. Little to no 
explanation is given how inter team coordination in larger projects should be structured. 

In this subchapter, coordination strategies of scaled agile methods are analysed. The emphasis is put on 
inter team coordination mechanisms. Specifically, the second-generation (Dingsøyr et al., 2021) large-scale agile 
software design frameworks Large Scale Scrum LeSS and scaled agile meetings and Scaled Agile Framework SAFe 
(Leffingwell and Kruchten, 2007; SAFe, 2021) were selected because both are based on Scrum at the team level 
and recommend test driven development similar to XP. This facilitates comparison between the small scale and 
large-scale agile coordination strategies. In the 2020 industry report State Of Agile (VersionOne, 2020) both 
frameworks are ranked highest in industrial application. Regarding their coordination strategies LeSS and SAFe 
open a spectrum with varying foci between mutual adjustment and impersonal mode inter team coordination 
mechanisms. The inter team coordination strategy analyses differ from the analyses of the agile methods Scrum 
and XP. Only inter team coordination mechanisms and corresponding parts of the frameworks are analysed. 
Complete descriptions of the frameworks and their intra team coordination mechanisms are not included in this 
section. 

The inter team coordination analyses are divided into several steps. First, a compact introduction to the 
coordination strategy of the respective framework is presented. This includes a summary of the inter team 
coordination practices and principles. Second, the coordination mechanisms are subdivided according to the 
coordination reference model into coordination modes and their mutual influences are analysed. Third, the inter 
team coordination strategies are summarized and compared to the underlying Scrum coordination strategy. The 
balance between inter team and intra team coordination as well as the balance between coordination structure 
and emergent coordination are part of this section. 

4.3.1 LeSS - inter team coordination modes and mechanisms 
The scaled agile framework Large Scale Scrum LeSS (Larman et al., 2017) is based on the agile method 

Scrum. The analysis of its inter team coordination mechanisms is focused on the LeSS implementation that is 
suitable for up to eight teams. Nevertheless, most findings apply to the LeSS Huge implementation. The 
framework was designed to preserve the lightweight coordination strategy of Scrum and add only necessary 
coordination structure to avoid incoordination on a project level. According do Dietrich et al.’s classification 
(Dietrich et al., 2013) decentralized, self-organized coordination is emphasized instead of centralized 
coordination. This implies that inter team coordination remains the responsibility of the development teams. 
Like in the Scrum analysis the inter team coordination analysis is based on the roles, meetings and artefacts in 
LeSS.  

The LeSS roles are very similar to the Scrum roles and include only few adaptions. A hierarchy is 
introduced to the Product with the Area Product Owner. The Manager role is added, and leading teams might be 
responsible for inter team coordination between other teams in large projects if necessary. Scouts and Travellers 
are team members that stay with other teams for a defined period. Regarding inter team coordination 
mechanisms all additional role descriptions are standardized blueprints of individual responsibilities (Thompson, 
1967) and therefore impersonal mode coordination mechanisms. The Area Product Owner and the Manager 
imply vertical individual mode coordination mechanisms, while the Scout and the Traveller support horizontal 
individual mode coordination mechanisms. The PO hierarchy increases the boundary spanning ability of the PO 
role and improves inter team coordination. The leading team is based on group mode and cognitive mode within 
the team. Due to the team’s inter team coordination responsibility these intra team mechanisms are transformed 
to inter team coordination mechanisms to the other teams. The leading team’s team members become 
interfaces between the other teams. The LeSS meetings remain mostly the Scrum meetings for regular design 
teams. Still, some team meetings are changed to or complemented by additional multi-team meetings. These 
multi-team meetings are the Product Backlog Refinement, the Planning II, the Overall Sprint Review, the Overall 
Retrospective, and the Design Workshop. These multi-team meetings enable group mode inter team 
coordination. The Overall Review is organized like a bazar which means that most team members can talk to 
other teams while only few remain to present the team increment. This exchange between individuals is also an 
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individual mode coordination mechanism. Lastly, all these personal meetings bring designers across teams 
repeatedly together and hence generate cognitive mode coordination within the project across teams. LeSS 
adapts the Scrum artefact Product Backlog to a multi-team Backlog. Its function as an impersonal boundary 
object coordination mechanism is extended to also include inter team coordination. 

Besides these Scrum structures LeSS includes the concept Community of Practice COP as a mutual 
adjustment inter team coordination mechanism. Groups of interest organize themselves across feature teams in 
these communities to address shared responsibilities such as architecture or to organize exchange between role 
holders. These communities can have a mentor to lead the meetings and be responsible for the organization of 
the COP. These communities of practice are group mode inter team coordination mechanisms. Continuous 
communities also create cognitive mode inter team coordination. Like XP LeSS emphasises test driven 
development including test automation, acceptance testing, continuous integration, and continuous delivery. 
The continuous integration and test automation of new increments from all teams highlights problems between 
product parts and the responsible teams immediately. Further personal inter team coordination is triggered by 
this impersonal mode inter team coordination mechanism. As analysed in XP these practices enable very efficient 
impersonal mode inter team coordination up to a certain complexity but require elaborate IT infrastructure. 

Table 7: Selected inter team coordination mechanisms in Large Scale Scrum LeSS. 

LeSS principles, practices Coordination mode 
Teams responsible for inter team coordination Group mode, individual mode 
Decentralized over centralized inter team coordination Group mode, individual mode 
Leading coordination teams Group, cognitive mode 
Multi-team meetings Group mode  
Multi-team artefacts  Boundary spanning 
Additional roles, little hierarchy Group, personal, cognitive mode  
Community of practice and community mentor Group mode, cognitive mode 
Coordination friendly environment Impersonal mode  
Test driven development Impersonal mode 
Coordination through integration  Impersonal mode  

 

Table 7 summarizes the inter team coordination mechanisms in LeSS. The inter team coordination 
strategy emphasises group mode coordination and impersonal mode coordination. The lightweight approach 
relies on self-organized mutual exchange mechanisms between the design teams and underlines decentralized 
coordination. Still, the LeSS meetings are a centralized connector between roles and artefacts and design teams 
and present therefore a centralized balanced to the self-organized approach. The balanced inter team 
coordination strategy highlights personal exchanges between teams and hence individual mode coordination. 
Leading teams provide further mutual adjustment inter team coordination. Their team structure and exchange 
with other teams relies partly on cognitive mode coordination. Besides these leading teams and continuous 
personal exchange in multi-team meetings cognitive mode coordination does no remain a central inter team 
coordination mechanism in LeSS in comparison to Scrum. Test driven development coordination mechanisms 
present an additional centralized inter team coordination mechanisms in LeSS. Besides these design principles 
few additional impersonal structures and hierarchies are implemented. In summary, LeSS applies an inter team 
coordination strategy based on mutual adjustment and impersonal mode coordination. The focus on group mode 
and individual mode coordination is close to the original Scrum coordination strategy. Cognitive mode 
coordination is not as important in inter team coordination. The test-driven development approach increases 
the relevance of impersonal mode compared to the Scrum coordination strategy. 

4.3.2 Essential SAFe - inter team coordination modes and mechanisms 
Like LeSS the scaled framework Scaled Agile Framework SAFe is also based on the agile method Scrum. 

Additionally, it integrates aspects of Design Thinking, Kanban and Scrumban as agile methods at the team level. 
The following analysis of inter team coordination mechanisms is focused on Essential SAFe but the findings also 
apply to its other implementations Large Solution SAFe, Portfolio SAFe and Full SAFe. Unlike LeSS SAFe adds more 
structure to provide centralized project and inter team coordination. Inter team coordination responsibility is 
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therefore shifted from the design teams towards the framework structures. Like in the Scrum and LeSS analysis 
the inter team coordination analysis is based on the SAFe roles, meetings and artefacts. 

Compared to Scrum SAFE applies the same roles but introduces clear hierarchies between them. The 
Product Owner role is divided into a Business Owner, Product Management and the Product Owner. The Scrum 
Master is divided into a Release Train Engineer and the Scrum Master, both roles are personally responsible for 
inter team coordination. Development Teams are complemented by the independent System Architect role, who 
is responsible for overall technical product architecture across teams. Additionally, specialized service teams 
such as the System Team are introduced. Unlike regular design teams they are responsible for the development 
of infrastructure, product integration, end-to-end testing, or system demos. Regarding inter team coordination 
these additional roles are standardized blueprints for responsibilities and hence impersonal mode inter team 
coordination mechanisms. SAFe introduces hierarchies to all Scrum roles which creates vertical individual mode 
inter team coordination structures at the cost of unformalized horizontal exchange. The role hierarchies increase 
the boundary spanning ability of the Product Owner and Scrum Master but negatively affect more flexible group, 
personal and cognitive mode coordination. The concept of specialized service teams is based on group mode and 
cognitive mode inter team coordination mechanism similar to the leading team in LeSS. The role structure shows 
a clear shift from team-organized inter team coordination to personalized inter team coordination structures 
based on role responsibilities. SAFe also introduces the multi-team meetings PI Planning, System Demo, Scrum 
of Scrums, Product Owner Sync and the Inspect & Adapt meeting to provide inter team coordination. All of these 
meetings are group mode inter team coordination mechanisms. Furthermore, the regular personal exchange 
within these meetings establishes cognitive mode coordination across teams. These multi-team meetings in SAFe 
are specified in detail and rely on more specifications than in LeSS. The Innovation and Planning Iteration is 
another SAFe adaption that repurposes a regular development iteration within each PI to innovation and inter 
team coordination. Since it is not structured by additional meetings it is both an unscheduled group mode and 
individual mode inter team coordination mechanism. Similar to its approach on Scrum roles SAFe introduces a 
hierarchy to the Scrum artefact Product Backlog as well. The artefact Program Backlog is a multi-team Product 
Backlog and hence an impersonal, boundary object inter team coordination mechanism. Besides the Product 
Backlog SAFe establishes further artefacts such as the Vision, the Roadmap, Milestones, PI Objectives, the 
Architectural Runway, the Program Board that affect inter team coordination. The vision, the roadmap and the 
Milestones are impersonal mode inter team coordination mechanisms. The Program Board and the PI Objectives 
are both generated throughout the Inspect and Adapt meeting and represent inter team coordination boundary 
objects. During the meeting they structure group mode inter team coordination mechanisms and throughout 
the PI they function as impersonal mode inter team coordination mechanisms. The Architectural Runway is 
another impersonal mode inter team coordination mechanism. 

SAFe also relies on the Community of Practice COP concept to facilitate inter team mutual adjustment 
coordination like LeSS. Depending of the COP relevance this can include a mentor role. This COP approach is 
another group mode inter team coordination mechanism. Continuous COPs also generate cognitive mode 
coordination across teams since personal connections are established between teams. Like LeSS SAFe is based 
on test driven development which functions as an impersonal mode inter team coordination mechanism. SAFe 
also recommends colocation of all teams which enables unscheduled group mode inter team coordination. 

Table 8: Selected inter team coordination mechanisms in Scaled Agile Framework SAFe. 

SAFe principles, practices Coordination mode 
Inter team coordination responsibility in roles and structures Impersonal, individual mode 
Centralized inter team coordination Impersonal, group mode 
Test driven development Impersonal mode 
Coordination through integration Impersonal mode  
Structure artefacts Impersonal mode 
Multi-team artefacts  Boundary spanning 
Service teams provide inter team coordination Group mode 
Multi-team meetings Group mode  
Additional roles, little hierarchy group, personal, cognitive mode  
Communities of practice and mentors  Group, personal, cognitive mode 
Colocation of all teams Group mode 
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Table 8 summarizes the inter team coordination mechanisms in SAFe. Its inter team coordination 
strategy emphasises group mode and formalized impersonal mode inter team coordination. Unlike LeSS SAFe 
adds several new roles, role hierarchies and multi-team artefacts to the underlying Scrum framework. This causes 
a severe shift towards impersonal mode inter team coordination mechanisms at the cost of more flexible mutual 
adjustment coordination and establishes centralized inter team coordination. The multi-team SAFe meetings 
remain the central connector to inter team coordination mechanisms based on roles and artefacts. These rigid 
structures suppress additional personal inter team coordination between individual team members. This results 
in clear coordination interfaces and role responsibilities but slows direct exchange between teams. Like in LeSS 
test-driven Development presents the second important impersonal mode inter team coordination mechanism. 
Service teams provide group mode inter team coordination and increase flexibility of the inter team coordination 
system. The SAFe coordination strategy replaces cognitive mode coordination with impersonal and group mode 
coordination compared to Scrum. Artefacts that function as boundary objects such as the Vision also provide 
implicit cognitive coordination. The SAFe inter team coordination strategy is based to a large degree on 
centralized impersonal coordination and group mode coordination mechanisms. Additional roles and hierarchies 
within the roles establish vertical individual mode coordination. Little cognitive inter team coordination is 
provided in SAFe. 
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 Results 
 

“It is a capital mistake to theorize before one has data.” 
 Arthur Conan Doyle 

 

 

The aim of this chapter is to present the collected data, describe the context of the data collection and 
summarize findings. Eleven agile pilot projects which were accompanied over a time span of four years represent 
the main data source. The data is structured according to matching bottom-up and top-down data analyses. The 
bottom-up analysis identifies and ranks practical problems of agile methods in automotive application contexts 
while the bottom-up data analysis compares them to the established constraint categories scale and physicality. 
The presented findings are the foundation of the following discussion chapter of the thesis at hand. 

The results chapter is subdivided into four sections. In the first section, the agile pilot projects are described 
to provide empirical context. The descriptions reflect the same characteristics across all pilot projects and include 
the objective of the project, its length, the number of affiliated designers and teams, the level of 
interdependencies between tasks, and the chosen agile method as well as the implemented changes to it 
throughout the project. The second section presents a bottom-up data analysis to identify and rank the 
experienced problems of the agile working models across the pilot project. The third section supplements a top-
down data analysis to evaluate the relevance of the constraints of scale and constraints of physicality categories 
in automotive design. The fourth section redefines problem understanding and outlines agile automotive design 
as an agile scaling problem. Coordination theory is recommended as the appropriate design theory for further 
discussion of the collected data. 
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5.1 Agile pilot projects in automotive design 
An overview of the agile pilot projects and the encountered problems regarding agile product design are 

presented in this section of the study. The project descriptions provide context and hence improve understanding 
of the experienced challenges. Project descriptions are generalized to protect the intellectual property of the 
partnering company BMW Group. Therefore, project goals and connections to ongoing design activities are 
generalized. A consistent description sequence is used to improve comparability between pilot projects. First, a 
generalized specification of the project goals and an estimation of the relevant design phase are described. The 
presented projects are either situated in the early, conceptual product design phase (about 0-1,5 years after 
project start) or the serialization phase (about 1,5- 4 years after project start) of automotive product design. 
None of the pilot projects were situated in later phases. Second, the project size is described. This includes the 
team size, the number of affiliated teams and the number of relevant stakeholders. Third, dependencies to 
project external stakeholders from other organization units are categorized qualitatively into low medium and 
high, depending on the overall share of time spent to deal with them. Fourth, the initially chosen agile working 
model, implemented changes to it and the duration of the project are reflected. Change was implemented in 
two phases. The first phase included the initial introduction of agile methods or practices and the second phase 
focused on the introduction of inter team coordination mechanisms. Finally, pilot descriptions include whether 
the focus of the pilot project was on hardware or software design and what implications these characteristics 
had on the agile working model and the testing strategy. Table 9 shows a summary of the characteristics across 
all selected pilot projects. The following section introduces the design projects individually. 

Table 9: Summary of the researched agile pilot projects. The design phase locates the design project within the product development phases 
conceptualization and serialization. The project size connects the team size, the number of teams and the number of relevant stakeholders. 
The dependency differentiates between low, medium, and high dependency levels. The agile method refers to the initially introduced agile 
framework and the implemented change describes adaptions to it during the project. The product type differentiates between hardware 
and software products.  

 Design 
phase 

Project size, 
#Stakeholders 

Depende
ncies 

Agile 
method Implemented change Product 

type 

Alpha Conceptual One team, ~20 SH Medium Scrum Product Owner Team 
POT HW 

Beta Conceptual Two teams, ~20 SH Medium Scrum Product Owner 
Couple SW, (HW) 

Gamma Conceptual One Team, ~10 SH Low Scrum - HW 
Delta Serialization One team, ~5SH Low Scrum - HW 

Epsilon Serialization 
One coordination 

team, several design 
teams, > 30SH 

High Kanban Standard iteration 
length across teams HW, SW 

Zeta Serialization Two teams,  
~20 SH Medium Scrum, 

Kanban 

Team 
reorganizations, 

method adaptions 
SW (HW) 

Eta Conceptual > 5 teams,  
> 30 SH High 

Selected 
agile 

principles 

Elements of several 
non-scaled agile 

methods 
HW, SW 

Theta Conceptual One Team,  
~10 SH Low Scrum Team backlog, PO 

only SH integration HW, SW 

Iota Late 
serialization 

One team,  
~20 SH Medium Scrum- 

based 
Product Owner Team 

POT HW 

Kappa Conceptual, 
serialization 

> 5 teams,  
> 30 SH High LeSS-based several SW 

Lambda Conceptual, 
serialization 

> 5 teams,  
> 30 SH High SaFE- 

based BizDevOp SW 

 

The objective of pilot project Alpha was the design of a revolutionary hybrid drive train within the 
restrictions of an already existing vehicle architecture. Since this included conceptual work it was part of the early 
phase of the product design process. Regarding project size the project included a core team of seven designers, 
several adjunct teams and various stakeholders. The cross-functional core team represented a broad 
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specialization range in drive train and vehicle architecture. The existing vehicle architecture and the participating 
number of organization units resulted in a medium level of relevant dependencies. Project duration was three 
months, and the chosen agile working model was based on to the Scrum method. It included a Scrum master and 
the Scrum meetings. A Product Owner team was introduced to integrate important stakeholders. The project 
focused on hardware design and relied on established software tools such as CAD and well-established functional 
simulation tools. The focus on hardware design affected the agile working model directly since many 
dependencies to other organizations units such as verification and production had to be considered and 
integrated. Regarding the small size of the project little inter team cooperation problems affected the core team. 
Still, stakeholder coordination was challenging. Most testing was done virtually which suited the short iterative 
development cycles. 

The design and implementation of new use cases for alternative user interface hardware was the goal 
of the Beta pilot project. The conceptual work was situated in the first third of the product design process. The 
project included two teams with one team focusing on use cases and visual designs and one team on 
implementing the software prototypes on existing hardware. Since this project affected future user interface 
architectures to a large extent more than 15 stakeholders from several organization units had to be integrated. 
The project teams required expertise in design, user experience, and software design. Due to the relevance of 
the project for future user interface architectures a great share of dependencies to other units had to be 
coordinated. The project duration was three months, and the applied agile working model was based on Scrum 
with some additional practices (e.g. the Work In Progress WIP limit). Throughout the project a second Product 
Owner was introduced to improve stakeholder management. Additionally, the meeting structure and team 
composition was adapted. The resulting prototypes were realized as software embedded in regular user interface 
hardware. Therefore, both software and hardware characteristics influenced the design process. The teams 
relied on established visual design and simulation tools to be able to get feedback from user experience experts. 
The inter team cooperation was handled well even though some designers were company external service 
provider. Problems caused by the scale of the project mostly occurred due to the challenging stakeholder 
integration which was addressed by shared review meetings and prototypes that were handed to stakeholders 
for validation. Testing was problematic especially regarding the employed hardware prototypes. The chosen 
iteration length of one week was insufficient to design and realize the use cases in prototypes. The teams 
addressed this problem by implementing two connected design phases that lasted two iterations and accepting 
incomplete design cycles during iterations.  

Like project Alpha the goal of pilot project Gamma was the design of an alternative drive train 
configuration in an existing vehicle architecture. The project was situated in the early phase of the design process. 
It consisted of one large team that supported a large spectrum of competencies in drive train configuration 
including production, crash, and durability experts. Compared to project Alpha this larger expertise range 
allowed the integration of external stakeholders and dependencies into the team. Still the complexity of the task 
required the repeated integration of additional experts and stakeholders. The project length was four weeks and 
the chosen agile working model based on Scrum. Little adjustments were made to the working model throughout 
the project. The focus of the project was hardware design and hence standard hardware design tools such as 
CAD and simulation programs were applied. Similar to project Alpha physical dependencies to neighbouring 
modules and components caused dependencies to other organization units. The network of personal contacts 
of the larger team allowed to coordinate these more efficiently. Testing in this early phase of design was done 
virtually and caused therefore little problems. Also, stakeholder integration was more successful since personal 
contacts to the most relevant stakeholders provided direct and efficient communication channels. 

The design of new armoured vehicle concepts and the adjustment of the existing armoured vehicle 
strategy was the goal of pilot project Delta. The project was situated in the serialization phase of the product 
design process and lasted four months. Several teams were involved but only one team applied an agile working 
model close to the Scrum method with little changes throughout the project. In this team, external dependencies 
were limited to few essential stakeholders. Most of the activities were based on conceptual work and hence 
neither software nor hardware product characteristics were relevant to the working model. For the same reason 
no software tools besides regular office tools were applied. Hardware restrictions limited the solution space, but 
no project size related problems were noted. Only reviews with the Product Owner were part of the pilot project 
which allowed to apply short compact design cycles. 
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Pilot project Epsilon was part of a larger project to integrate a fuel cell energy source into an existing 
vehicle architecture and apply it to a small fleet of test vehicles. The reconfiguration of the existing product was 
situated after the initial product design process. The project size included a coordination team and several design 
teams for technical challenges and production integration. The size of the project required a broad spectrum of 
specializations ranging from project management to mechatronic product design including visual exterior vehicle 
design, crash simulation and manufacturing. The size of the project resulted in various project internal and 
external dependencies that severely affected the chosen Kanban-based agile working model. The agile pilot 
project duration was two months, but the overall design process continued for two years. A project-wide iterative 
cycle was introduced to synchronize the teams. Team compositions were reconfigured to enable cross-functional 
and co-located teams since dependency management between teams was a problem. Additionally, 
Retrospectives were introduced to increase continuous improvement and adaptivity of the initially chosen agile 
working model. Both hardware and software design tasks were necessary and standard tools were applied. 
Testing affected the agile working model severely since complete vehicle tests required detailed preparations 
and prototype constructions that did not fit the short iterative design cycles. Regarding prototype testing the 
coordination team had to integrate many stakeholders which were not directly affiliated with the project. This 
challenging situation resulted in repeating problems in project coordination. 

The design of a user-centric, software-based function to enhance efficient driving was the goal of pilot 
project Zeta. The project was situated late in the overall product design process. One large team was responsible 
for the design of the software trainer. The team was repeatedly divided to focus on specific tasks. Activities were 
divided into conceptual functionality, user interface and visual design on the one side and technical 
implementation as working software on the other side. The project was object to medium external 
dependencies. Cooperation with the organization unit responsible for the central processing unit were as 
important as the integration into the existing design language. Also, external software service provider had to be 
integrated. The project lasted four months and results were provided much faster than in comparable non-agile 
projects. The agile working model was a combination of practices from Scrum and Kanban with a focus on Scrum. 
The working model was continuously adapted to changing requirements. The embedded nature of the product 
resulted in hardware and software specific tasks. But throughout the project product design was mostly focused 
on software. Established design tools were applied. The agile working model did not suffer from the hardware 
focused activities and the integration of the stakeholders into agile meetings worked well. Also, collaboration 
between the divided teams worked very well. Testing required hardware infrastructure and specific user 
interface components, but the team was able to manage the required activities even though some hardware 
specific tasks lasted several iterations. 

Pilot project ETA included the complete development of a new vehicle generation of a niche car. The 
project started in the early phase of the product design process. It included various teams and experts that were 
structured around a central coordinative team including the head of the project. A very broad spectrum of 
specialities was required since design activities included all necessary steps to design a new car. The same reason 
led to a very large number of stakeholders and hierarchy that needed to be integrated and caused a complex 
network of dependencies to other organization units. Such a project usually lasts several years but the research 
frame was restricted to 18 months. Even though the overall product design process remained a stage-gate model 
essential agile principles and practices were applied in varying intensity at different levels. The core team was 
restructured to allow for a cross-functional team. Few central meetings were scheduled, and the project head 
position was implemented as a product owner. Supporting organization units including hardware prototype 
handling were dedicated exclusively to the project which allowed unscheduled meetings and direct exchange. A 
shared iterative rhythm was chosen for the whole project. Since the project did not have direct grip to some 
technical design teams from other organization units a Kanban approach was chosen to increase transparency 
and integrate their results. The hardware dominant nature of the product resulted in severe implications 
regarding the working model. Necessary full-scale hardware prototypes required long term planning. Prototype 
testing caused dependencies to many stakeholders and therefore resulted in challenges to the central 
coordination team throughout the whole project. The number and distribution of teams also impaired inter team 
cooperation. Additionally, the project was object to upper management attention which led to continuous 
distractions caused by detailed reporting and top-down driven changes. 
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Software inspired engineering methods were tested for component development in the Theta pilot 
project. Simplified put, component construction was done autonomously according to manually adjusted 
restrictions by an advanced, automated simulation tool in repeated design loops. Restriction also included crash 
and durability requirements while focus areas were component strength and weight. The available construction 
space and design restrictions were sufficient to enable the simulation tool to generate CAD geometries, which 
rely on additive manufacturing for production. This generative approach reduced necessary testing effort since 
these criteria were already part of the software driven design. The project was a subproject of the Zeta pilot and 
focused on one structural component of the vehicle project. An additional goal of the Theta project was to 
establish the new design technology. One team of experts regarding the new design process collaborated using 
a Scrum approach. They were supported by several external engineering service provider. Additionally, a product 
owner team consisting of high-level management supported the project. The novelty of the technology required 
parallel verification from existing testing methods which caused dependencies to further organizations units such 
as prototype manufacturing. The complete project including prototype manufacturing lasted five months. Even 
though hardware products were part of the design process the approach allowed to reduce constraints of 
physicality significantly due to virtual mirroring of physical dependencies and due the integrated product testing. 
Therefore, short agile design cycles were applied successfully. Still in this project parallel testing was coordinated 
by the team to verify the new design approach based on the simulation technology. The number of stakeholder 
and cooperation partner required a large coordination effort, but the agile working model enabled the team to 
successfully manage the resulting dependencies.  

Pilot project Iota was set up to deal with an emergent issue in electric drive train design that required 
immediate action. Testing of hardware prototypes showed use cases that may have resulted in negative user 
experience. Therefore, the existing technical hardware had to be readjusted accordingly. The emerging problems 
were detected late in the product design process which resulted in pressure from management. One large team 
consisting of 15 designers was dedicated to the project. The work required a set of specialization ranging from 
mass scale production integration to mechatronic component development. Additionally, expertise in battery 
chemistry and crash verification were necessary. According to tasks the team was repeatedly divided into sub 
teams. No specific agile method was chosen but practices of Design thinking, a Kanban board and Scrum roles 
were combined. The immediate pilot and hence the research phase only lasted two weeks but further design 
and verification continued for another two months. Even though the number of stakeholders was relatively low 
compared to the other pilot projects management expected fast solutions. Hence direct and continuous 
reporting structures were established. The nature of the design task focused on hardware adjustments which 
also affected the agile working model. Manufacturing configurations, material design and long-term contracts 
with external supplier were some of the challenges that resulted from the focus on hardware. Testing was done 
mostly virtually to avoid slow prototype tooling and construction which suited the chosen agile working model 
well. To increase testing accuracy different simulations were compared and combined to increase verification 
accuracy. 

The project Kappa was situated within the IT department. It presents a large-scale agile transformation 
of the organization structure from team level up to top management. The scaling framework SaFE was introduced 
first and comprehensively adjusted to the requirements of the IT department. To better connect the IT 
department to the partnering organization units and increase cooperation between the partners the SaFE 
framework was broadened to a BizDevOp approach. The resulting framework is called Agile Working Model 
AWM. The transformation towards this framework lasted several years and presents a continuing effort. It 
affected a couple of thousand employees and many external service provider. Several agile transformation teams 
were shaped to support the agile transformation on different levels, adapt the working model and ensure its 
correct application. Since the IT department is a close cooperation partner of nearly all other organization units 
many external dependencies led to the BizDevOp reorganization. The integration of stakeholders and partners 
from both the business and the operation side allowed to bundle dependencies between these partners in 
respective projects. The overall size of the IT department and the number of affiliated software designer has an 
important influence on the agile working model. Inter team cooperation was facilitated by multiple agile 
practices, roles and artefacts. Hierarchy in agile roles and the introduction of project levels ranging from team to 
company initiative supported transparency beyond individual projects. Still, new agile practices and model 
adjustments are further developed answering to needs of the design and product owner teams. A complete agile 
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tool chain was implemented to facilitate continuous testing, integration and deployment. The tool chain also 
improved project management and dependency tracking. 

The project Lambda provided the software infrastructure and services necessary to support vehicle 
navigation and autonomous driving functions. The design activity during the research was situated between the 
first and second half of the product design process. The project consisted of thirteen software design teams, a 
team of agile coaches and a Product Owner team also including security experts. The necessary expertise was 
mainly situated in embedded software design. The close cooperation with the autonomous driving organization 
units resulted in external dependencies to these partners. Still some additional external dependencies existed 
towards the IT department. Additionally, the project also relied on external service provider which further 
increased dependencies. The research duration was limited to six weeks in this continuing project. The chosen 
scaled agile working model LeSS was adjusted at some points to increase inter team cooperation. But unlike the 
Kappa project adaptions in the Lambda project to the underlying scaled agile working model were few. LeSS was 
chosen since the most important cooperation partner had implemented this scaled agile working model earlier 
and framework-based cooperation problems were to be avoided. The project had little problems with hardware 
design since most of the activity focused on software design. Still, some embedded testing required the 
installation of hardware-based testing units. Like the Kappa project a complete agile tool chain was used which 
enables continuous testing and integration. The tool chain also had a direct interface to partnering design teams 
from other organizations units which enabled cooperation in project management and dependency 
transparency. More than half of the teams were not co-located on a shared working space (international 
distribution of teams) which affected inter team cooperation and required adaptions to the agile working model. 

5.2 Bottom-up data breakdown 
The first step of the data analysis identified reoccurring problems across the agile pilot projects. The 

collected data was analysed according to a bottom-up coding procedure independent of predetermining design 
theories. It summarizes the problems that complicate agile working models and represents a first level coding of 
broader problem categories. These problem generalizations enable comparisons across projects, serve as the 
base for theory-based analyses and frame the derivation of solution spaces. Table 10 summarizes the problem 
categories that were encountered throughout the pilot projects. The table does not represent a complete list of 
all encountered problems but summarizes problems that occurred across multiple pilot projects and that relate 
to the applied agile frameworks. The experienced problems were cross coded with problem categories from 
relevant literature and with findings from concurrent interview series. Detailed descriptions of the experienced 
problems are presented in the following paragraphs. 

Table 10: Encountered problems in each pilot project affecting the employed agile working models. 

Pilot Projects Encountered problems 

Alpha 

(V8 PHEV) 

• Inter team cooperation 
• Team composition 
• # Stakeholder and experts 

• Information distribution 
• Documentation 
• Inflexible architecture  
• Inflexible requirements 

• System integration 

• # Specialists 

• Integrative design  

• Task division 

Beta 

(ABK) 

• Inter team cooperation 
• Planning 
• Resource allocation 
• Redundant work 
• Distributed teams 
• Team composition 
• Insufficient communication 
• # Stakeholder and experts 

• Information exchange 
• Documentation 
• (communication channels) 
• Inflexible architecture 

• Prototype (physical) 
• System integration 
• # Specialists 
• Integrative design 
• Task division 

Gamma 

(LU PHEV) 

• Planning  
• Redundant work 
• Team composition 
• # Stakeholder and experts 

• Information exchange 
• Documentation 
• Inflexible architecture  
• Inflexible requirements 

• System integration 
• #specialists 
• Integrative design 
• Task division 

Delta 

(Fuel cell) 

• Inter team cooperation 
• Planning  
• Resource allocation 
• Redundant work 

• Information distribution 
• Information exchange 
• Documentation 
• Inflexible architecture  

• Testing 
• Prototype (physical) 
• Tooling  
• System integration 
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• Task prioritization 
• Distributed teams 
• Team composition 
• Insufficient communication 
• # Stakeholder and experts 

• Inflexible requirements • Task division 
• # Specialists 
• Integrative design 

Epsilon 

(Armoured 
vehicle) 

• Inter team cooperation 
• Planning  
• Redundant work 
• Task prioritization 
• Team composition 
• Insufficient communication 
• # Stakeholder and experts 

• Information distribution 
• Documentation 
• Inflexible architecture  
• Inflexible requirements 

• Testing 
• Tooling  
• System integration 
• Task division 
• Necessary number of specialists 
• Integrative design 

Zeta 

(Efficiency 
trainer) 

 

• Inter team cooperation 
• Planning  
• Resource allocation 
• Task prioritization 
• Distributed teams 
• Team composition 
• Insufficient communication 
• # Stakeholder and experts 

• Information distribution 
• Information exchange 

• Tooling  
• Prototype (physical) 
• System integration 
• Necessary number of specialists 
• Integrative design 
 

Eta 

(i8) 

• Inter team cooperation 
• Planning  
• Resource allocation 
• Redundant work 
• Task prioritization 
• Distributed teams 
• Team composition 
• Insufficient communication 
• # Stakeholder and experts 

• Information distribution 
• Documentation 
• Inflexible architecture  
• Inflexible requirements 

• Testing 
• Prototype (physical) 
• Tooling  
• System integration 
• Task division 
• Necessary number of specialists 
• Integrative design 
• Task division 

Theta 

(GeDe) 

 

• Inter team cooperation 
• Resource allocation 
• Redundant work 
• Task prioritization 
• Team composition 
• # Stakeholder and experts 

• Information exchange 
• Inflexible architecture  
• Inflexible requirements 

• Testing 
• System integration  
• Integrative design 

Iota 

(Storage 
exhaust) 

• Redundant work 
• Task prioritization 
• Team composition 
• # Stakeholder and experts 

• Documentation 
• Inflexible architecture  
• Inflexible requirements 

• Prototype (physical) 
• Tooling 
• System integration  
• Necessary number of specialists 
• Integrative design 
• Task division 

Kappa 

(FG) 

• Inter team cooperation 
• Planning  
• Resource allocation 
• Redundant work 
• Task prioritization 
• Distributed teams 
• # Stakeholder and experts 

• Information exchange 
• Documentation 
• Inflexible architecture  
• Inflexible requirement 

• System integration 
• Task division 

Lambda 

(Foresight) 

• Inter team cooperation 
•  Planning  
• Task prioritization 
• Distributed teams 
• Team composition 
• # Stakeholder and experts 

• Documentation 
• Inflexible requirements 

• System integration 
• System integration 
• Task division 

 

Inter team cooperation problems occurred if task dependencies required several teams to cooperate. 
Most of the projects applied a Scrum-based agile working model which does not specify inter team coordination 
mechanisms. Therefore, no advice on inter team cooperation was given. Two pilot projects applied scaled agile 
approaches that included some inter team coordination practices but still suffered from inter team cooperation 
problems in automotive design. Planning in short iterations was another problem. Dependencies between tasks 
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complicated the generation of an unmistakable task priority. Large tasks included activities that overlapped 
iterations which further complicated iterative planning. Additionally, external stakeholders requested long term 
planning to adjust their activities, which in some cases overruled the iterative agile planning practices. 

Resource allocation problems were caused by task dependencies between teams. Even though the pilot 
projects were able to increase transparency regarding their own tasks, little transparency was experienced for 
activities from other teams of the same project or from other parts of the organization. This lack of information 
caused nonoptimal resource allocation and redundant work. The amount of team external dependencies 
complicated task prioritization and task division. Some pilot projects were unable to divide tasks into sufficiently 
small parts because of task dependencies. Large items prevented continuous iterative development cycles since 
they required longer time spans than the chosen iteration rhythm. In a conventional reaction more capacity and 
hence additional teams were used to balance such large items. These capacity expansions resulted in distributed 
teams which were unable to remain in close contact. But distributed teams also resulted from high total numbers 
of teams in design projects. 

In most pilot projects a broad range of expertise was necessary which complicated team composition 
because cross-functionality and upper limit of team size requirements collided. As a result, teams were divided 
which resulted in dependencies between teams and limited cross-functionality of individual teams. Inadequate 
or inexistent inter team communication and cooperation practices led to insufficient communication (channels) 
between teams working on dependent tasks. The large number of stakeholders and experts further complicated 
this tendency. These information and requirement exchanges were further complicated by organizational 
separation of the given organization structures. Cooperation with company external suppliers and certification 
service providers suffered from existing bureaucracy and legal requirements and therefore severely complicated 
agile working models. In some cases, this added up to redundant work and increased task prioritization and 
division problems. 

The level and quality of documentation was repeatedly criticized since automotive product design relies 
on the cooperation of many parties for several years. Agile practices that reduced bureaucracy efforts resulted 
in unreliable documentation levels and made inter team cooperation even more difficult in several pilot projects. 
Also, legal requirements demanded a very specific level of product design documentation to guarantee user 
safety compliance. Regarding inter team cooperation agile communication channels were criticised as being 
focused completely on intra team cooperation and being hardly inapplicable to multiteam systems. 

Some cases reported problems with the inflexible product architecture and requirements structure. 
The existing requirements management was unable to handle the speed and amount of change driven by agile 
working models. On the other hand, projects reported that they required more structure in requirements 
definition and a more stable product architecture to handle testing, tooling and dependencies to other 
components. Agile approaches that minimize architecture predetermination faced challenges in such 
environments. 

Testing and integrative design were a large problem in most pilot projects. Software inspired agile testing 
guidelines were not practicable in hardware design projects. Product focused design activities must be matched 
with integrative design activities that provide and verify system properties. Automotive verification is still based 
to a large degree on physical prototypes from component to system level. These prototypes require extensive 
manufacturing machinery and represent a large share of the overall development effort. The necessary 
preparation of the tooling (manufacturing of prototypes) often contradicted fast iterative testing cycles. Tooling 
also represented challenges regarding the necessary design of the mass production system which represents a 
large share of the overall design effort in automotive. Physical dependencies between components further 
complicated task division and testing. Necessary system integration of hardware components to modules and 
systems further complicated this problem since the slowest component determined complete system tests. Such 
system tests required specialists from various organization units which further increased inter team cooperation 
problems and hence problem complexity. Additionally, a large share of the development and testing effort in 
automotive design focuses on design efforts to manage physical dependencies between components to avoid 
undesired properties of the complete product without being directly affiliated to costumer functions. 
Implementation of system integration and verification as well as the generation of new design approaches are 
also viewed as non-function development effort in design projects. 
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5.2.1 Distribution and relevance of experienced problems 
Table 10 shows the distribution of experienced problems across agile pilot projects. To better 

understand the overall impact of individual problems on automotive design the following section presents a 
comparison of problem relevance. A ranking of the experienced agile problems was implemented based on the 
number of affected pilot projects. 

The number of external stakeholders and experts and system integration are the two most relevant 
problems. They have been reported in all analysed pilot projects and therefore seem to have the strongest 
influence on agile product design in automotive. The required spectrum of specializations, dependencies 
between components organization units, external service provider in design activities, the need for full scale 
prototypes in testing and verification as well as little automated product verification are characteristics of 
automotive design that cause these problems. 

Team composition was problematic in ten out of the eleven agile pilot projects. Especially the 
generation of cross-functional teams was difficult. Usually, many specialists were required which led to oversized 
teams, team division or part-time teams. All three options were problematic to the chosen agile working models. 
The tendency of very narrow specialization fields in automotive design together with the broader required 
spectrum of expertise in hardware-focused automotive design caused and intensified this problem category. 

Inter team cooperation, documentation and integrative design work caused complications in nine agile 
pilot projects. Inter team cooperation problems appeared in both the scaled agile pilot projects Iota and Kappa 
including multiple teams but also in the smaller projects based on few teams. Even pilot projects consisting of 
only one team such as Theta suffered from inter team cooperation problems with project external teams. 
Automotive design activities are tightly interlinked due to the physical dependencies between components and 
modules and the existing verification approach. The applied inter team coordination practices were not able to 
solve this and additional coordination demand and required further adaptions. 

Insufficient documentation intensified this problem since documentation is an important inter team 
coordination mechanism in automotive design. Therefore, agile practices that reduced documentation effort led 
to additional inter team cooperation challenges. The relevance of challenges caused integrative design work in 
automotive clarifies that design activities are necessary for the creation of design infrastructure or to focus on 
problems caused by physical dependencies between components. The employed agile frameworks emphasized 
focus the product increments and neglected the necessary verification system of necessary product properties. 

The high number of specialists, planning, task prioritization and redundant work challenges were 
reported in eight pilot projects. The large number of specialists caused complications in pilot projects that 
focused on hardware or embedded software. Challenges with agile planning practices occurred in larger pilot 
projects including several teams. Challenges with documentation and task prioritization were reported from 
multiteam pilot projects, but also from smaller projects with many external stakeholders such as Alpha. 
Redundant work challenges were distributed equally amongst pilot projects. 

The remaining problem categories were reported in six or less pilot projects. Their distribution in pilot 
projects is interesting since for example resource allocation problems were reported in small and large projects 
independent of hardware or software focused design. This is an indication that even though pilot projects faced 
similar challenges some approaches were more successful than others in coping with these challenges. For 
example, pilot projects Beta and Theta faced physical prototyping as an agile challenge. But they had developed 
completely different strategies to deal with physicality in prototyping. 

In summary, most of the experienced problems in the pilot projects are related to inter team or team 
external coordination problems. Increasing numbers of external experts, stakeholders and teams resulted in 
complications independent of the chosen agile practices and independent of hardware or software design. They 
caused challenges in inter team cooperation, in planning, in task prioritization, in resource allocation and in task 
division. All pilot projects with multiple design teams that cooperate on dependent tasks suffered from inter 
team cooperation challenges. The data analysis also shows that hardware related design activities resulted in 
more problems to agile working models than software only products. Physical dependencies between 
components resulted in dependencies between design activities and hence tasks. These dependencies caused 
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larger and more complicated projects and implied project external dependencies. Both factors resulted in inter 
team cooperation challenges. Additionally, the physicality of the product and the corresponding design activities 
required a broader spectrum of specializations. While the relative contribution of such specialists to the complete 
design process diminished the number of required individuals increased. This tendency led to severe 
coordination complications in system integration. 

 

5.3 Top-down data breakdown: Constraints of physicality and scale 
The presented bottom-up data analysis describes the experienced problems, gives context to the pilot 

project application domain, and ranks the problems according to occurrence across pilot projects. To understand 
and better differentiate the cause-effect relations between automotive design and the experienced problems a 
supplementary top-down data analysis was conducted. This analysis regroups the experienced problems (see 
Table 10) according to the influence of the physicality of the product and the scale of the automotive design 
process. Both factors have been identified as central constraints to agile working models in the literature 
research (see sections 2.4 and 2.5). The connection between experienced agile problems and constraints of 
physicality and or scale is based on cause-effect relations which are presented in the following paragraphs. 

Figure 19 summarizes experienced problems from the bottom-up analysis that are related to the scale 
of the design project. Scaled projects in automotive consist of several sub projects that focus on different aspects 
of the design process. Each sub project may include several teams. The sub projects are not independent but 
object to dependencies to other sub projects, due to product or process specific connections. On a system 
perspective this causes networks of inter team dependencies. Throughout the pilot projects reoccurring 
characteristics of scaled projects were identified. The following section investigates the cause-effect relations 
between these characteristics and the experienced problems from the bottom-up analysis. 

 

Figure 19: The scale of the project in automotive design relates to most of the experienced problems. 

Multiple teams working on the same project required inter team cooperation between the teams. This 
caused inter team coordination problems since little inter team coordination structures were given in the applied 
agile working models. Similarly, the agile implementation of design documentation was not sufficient to facilitate 
inter team cooperation which was a problem in most pilot project. Team distribution within teams and 
distribution between teams to different locations further enhanced these problems because applied agile 
coordination mechanisms were based on personal exchange in meetings or on sight which was unpractical for 
large projects. Dependencies between teams resulted in task division, task prioritization and system integration 
problems. Multiple teams also resulted in knowledge and information exchange and hence affected planning 
efficiency within the scaled project which caused redundant work. Besides the number of parallel teams, team 
size was another scale specific characteristic that caused some of the experienced problems. Large teams 
complicated intra team cooperation, task division and planning according to the chosen agile practices. Larger 
teams also led to testing problems due to insufficient exchange within the teams. Additionally, large numbers of 
stakeholders and experts for each team were encountered in most pilot projects. The stakeholders and experts 
had to be integrated into product design on a team level. This was problematic since they were not obliged to 
the agreed working practices and demanded special treatment which often consumed a large part of overall 
team capacity. The encountered project hierarchy complicated planning, task prioritization, documentation, 
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communication, and system integration problems because they wanted the teams to also integrate traditional 
project management and reporting structures. Lastly, the scale of the design systems also included the 
heterogeneity of the project and project external dependencies which complicated system integration, 
planning, documentation, and inter team cooperation. 

This summary shows that most of the collected problems to agile working models were influenced by 
the scale of automotive design projects. It underlines the significance of scaling factor to the experienced 
problems in agile automotive design. This connection has been drawn in further publications from large-scale 
agile software design and is summarized in this study as constraints of scale. 

 

Figure 20 summarizes experienced agile problems of the bottom-up analysis that are related to the 
physicality of the product. It is the second overarching category that has a strong influence on the experienced 
problems in the pilot projects. It summarizes attributes that differentiate hardware products from non-hardware 
products such as software. In automotive these attributes include physical dependencies between components 
that are not existent in non-physical products. In the pilot projects they affected product verification, prototype 
manufacturing, product manufacturing but also project size and dependencies between sub projects.  

 
 

Figure 20: The physicality of the product in automotive design affects most of the experienced problems. 

Physical dependencies between sub-products directly affected several of the experienced problems. 
The physical dependencies between components resulted in inter team dependencies which required inter team 
cooperation. These dependencies between teams negatively affected task division and prioritization. The 
management of the physical dependencies required a large spectrum of specialists and stakeholders in each 
team which complicated team composition. Additionally, the higher complexity level of dependencies decreased 
product architecture flexibility. 

Testing was also affected by the network of physical dependencies since most testing was done on full 
scale integrative prototypes that required elaborate integrative design efforts themselves and hence 
contradicted short iterative design cycles. Physical product verification and prototype manufacturing caused 
the problems categories system testing, system integration, documentation, integrative design activities number 
of specialists and tooling for prototypes. Indirectly the necessary specializations to manufacture prototypes also 
affected inter team cooperation, team composition, the number of external stakeholders, planning and 
integrative design work. 

The design of the product mass manufacturing presents a large share of the effort in hardware design 
which is not the case for software products. This influenced tooling for production, planning, the number of 
specialists and stakeholder and integrative design work, documentation, inflexible architecture, system 
integration, inter team cooperation and team composition. In summary, the majority of the collected problem 
categories from the pilot projects in automotive design are directly affected by the physicality of the product. 
Therefore, physicality presents a significant constraint to agility in automotive product design.  

To conclude the top-down analysis, a match with the bottom-up analysis has been established. The 
collected problems from the agile pilot projects are directly related to the physicality of the product and the scale 
of the design process. Therefore, both constraints are central to agile automotive design. Furthermore, the 
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bottom-up data analysis revealed that a large share of the experienced problems is related to insufficient and 
unspecified inter team coordination. The top-down data analysis complements that these inter team 
coordination problems are connected to constraints of scale and physicality. Moreover, most problems are 
influenced by both constraints which allows to draw two conclusions. First, the collected data and the chosen 
data analysis do not point to an additional equally significant constraint category besides physicality and scale. 
Second, the overlapping influences of physicality and scale show that both categories are interlinked and have 
similar constraining effects on agile product design. 

 

5.4 Problem space integration 
The presented top-down data analysis clarifies that both agile constraints of physicality and scale are 

evident and relevant in automotive design. The match with the bottom-up analysis shows significant overlapping 
between both fields (see Figure 21). Hence, most reported problems are influenced by constraints of physicality 
and scale. This questions the delimitation of the two separated constraints categories. Alternatively, a combined 
constraint category would integrate problem understanding. To evaluate this concept the following section 
compares cause-effect relations between constraints of physicality and the experienced problems across the 
analysed agile pilot projects.  

 

Figure 21: Overlap between problems caused by constraints of scale and physicality across pilot projects. 

Inter team cooperation complications are caused by both categories. The physicality of the product 
requires a larger spectrum of expertise throughout the design process which requires additional specializations 
and experts. This causes team division into interdependent teams to remain under team size limits and hence 
inter team cooperation problems. Different teams are responsible for these steps which results in inter team 
dependencies between those teams. Project scaling on the other hand does not per se affect the required 
spectrum of expertise but the total number of designers and hence teams to drive the complete project. These 
teams are part of larger projects which creates dependencies between them and therefore causes inter team 
cooperation problems. Both constraints result in challenges to agile working models that require inter team 
coordination mechanisms which are typical for scaling problems. 

Other constraints of physicality problem categories result in coordination challenges as well. Physical 
dependencies between product parts result in dependencies between tasks and therefore dependencies 
between the responsible organization units which are teams in agile design projects. Such inter team 
dependencies complicate planning and task prioritization. Necessary knowledge is separated in different teams. 
Problems in these areas indicate insufficient inter team exchange and communication channels that cause 
inadequate knowledge exchange. Increasing dependencies between tasks also complicate documentation and 
system integration and hence require additional inter team cooperation mechanisms. 

The design of physical products requires additional integrative design activities in product verification 
(e.g. vibrations, acoustic, security, legal admission amongst others) that only apply to hardware (automotive) 
products. Since these design activities are closely linked to other design activities, they either require additional 
expertise and capacity in existing design teams or additional supporting teams that increase inter team 
dependencies. Either way they result in team composition or inter team coordination challenges. 
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The required expertise in the design of physical products requires a larger spectrum of specialisations 
than in software design throughout the sequential design steps (e.g. prototyping, manufacturing, physical 
dependencies on component level). The large number of necessary individuals in projects complicate team 
composition, prioritization, planning, task division and require the cooperation between interdependent teams. 
To avoid inter team cooperation problems agile teams working on shared tasks require adjusted inter team 
cooperation mechanisms.  

Testing in automotive design is based to a large extent on functional, full-scale physical prototypes on 
a high system integration level. The manufacturing of these prototypes is a complicated and lengthy process that 
requires additional expertise in prototype manufacturing. These highly integrated prototypes are necessary for 
various design teams that need to plan and coordinate the shared use. This testing approach also requires 
adjustments to agile planning practices to better integrate necessary long-time perspectives. 

The design of the mass manufacturing machinery and logistics presents a large share of the overall 
design effort in automotive. Unlike software hardware products need to be materialized. In automotive product 
design, the design of the production and logistics machinery has significant influences on the product design 
process. It requires additional expertise, capacity and close cooperation with product designer and therefore 
results in additional inter team dependencies between product and production design teams. 

In summary, compared to software design the physicality of the automotive design process results in 
two distinct process characteristics. First, an increasing interdependency of the collective design tasks. Second, 
a larger size and heterogeneity of the collective design activities. In agile product design both characteristics 
lead to growing numbers of interdependent organization units. These interdependencies result in inter team 
coordination problems in the analysed data set. 

These findings imply that constraints of physicality translate into coordination complications which were 
originally attributed to constraints of scale. The conclusions encourage a new perspective of constraints of 
physicality as a subcategory of constraints of scale in this study. Constraints of physicality are therefore viewed 
as an additional driver of to the existing constraint of scale category (see Figure 22). But this integration of 
constraints of physicality into constraints of scale is not complete. Some aspects of physicality cannot be 
attributed to typical scaling problems.  

 

Figure 22: The cause-effect analysis of the experienced problems underlines the relevance of coordination specific problem causes for both 
constraints of scale and physicality. Therefore, constraints of physicality are viewed as an additional reinforcement of the constraints of 
scale category to simplify problem understanding and facilitate solution approaches for the thesis at hand. 

The integrated problem perspective simplifies problem understanding. It avoids interferences, overlapping 
and logical gaps between separated problem spaces in the thesis at hand. The unified constraints category 
facilitates a comprehensive solution approach regarding agile product design for the domain automotive. It 
allows to apply one theoretical lens to analyse the mechanisms that cause the constraints and construct 
respective solutions. Coordination theory and the coordination reference model are chosen as theoretical lens 
to analyse and address this unified constraint category. The respective analysis of the extracted problems from 
the data set according to the coordination reference model (section 4.1) is presented in chapter 6.1. 
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 Discussion 
 

“Speculation and the exploration of ideas beyond what we know with certainty are what lead to progress.”  
 Lisa Randall 

 

 

The aim of the discussion chapter is to answer research questions two and three. The first section of the 
discussion 6.1 addresses research question two: What constraints reduce agile design applicability how in 
automotive design? The summarized problems of agile methods in automotive application contexts of chapter 5 
are analysed from a coordination perspective to answer this question. The influence of the automotive application 
context on the derived agile coordination strategies from chapter 4 is evaluated to determine their functionality 
in this domain. The functionality assessment allows to further analyse and explain the experienced problems 
throughout the pilot projects. The first part of the discussion finishes with a summarizing response to research 
question two.  

The second section of the discussion addresses research question three: How to enable agility in 
automotive product design? The findings of section 6.1 explain the experienced problems with a mismatch 
between coordination determinants in multiteam automotive design and employed agile coordination strategies. 
To address these dysfunctionalities of agile coordination strategies in automotive design three scenarios are 
described. The first scenario supplements the agile coordination strategy with new inter team coordination 
mechanisms. It also changes the balance of employed coordination modes to match the coordination 
determinants in automotive. The second scenario relies on new design technologies to improve existing agile 
coordination mechanisms to provide inter team coordination. The third scenario details how reconfigurations of 
the product architecture change coordination determinants in automotive and hence increase the applicability of 
the initially employed agile coordination strategies. The second part of the discussion finishes with a summarizing 
response to research question three. 
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6.1 Functionality of agile coordination strategies in automotive design 
 

“We cannot solve problems with the same thinking we used to create them.” 
 Albert Einstein 

 

The results of chapter 5 show that agile methods are less beneficial in automotive design than in their 
original domain software design. The bottom-up and top-down data analysis in subchapters 5.2 and 5.3 show 
that both constraints of scale and physicality cause the experienced problems. More precisely, the data analysis 
clarifies that both factors push towards multiteam design projects. The resulting inter team cooperation 
networks contradict the original focus of agile design on intra team cooperation and require adjusted 
coordination structures. Since both constraint categories cause similar inter team cooperation problems, they 
are merged to facilitate a coordination perspective analysis. 

The aim of the first part of the discussion is to better understand the imbalanced agile coordination 
strategy to answer the how question word in research question two: What constraints reduce agile design 
applicability how in automotive design? Unlike in the design theory unspecific bottom-up and top-down data 
analyses, coordination theory is employed here to analyse the experienced problems regarding the influence of 
coordination structures on them. The coordination reference model (see 4.1) is used as a theoretical lens to 
analyse and understand the cause-effect relations between the experienced practical problems and the 
functionality of the respective agile coordination strategy. The analysis relies on four steps which are discussed 
in the subchapters of 6.1. 

First, automotive design as a generalized application context is categorized according to the 
coordination determinants of the reference model. Second, the influence of the automotive coordination 
determinants on the individually employed coordination modes and their mechanisms is demonstrated in 
relation to the experienced problems from the pilot projects. Third, the influence of the automotive coordination 
determinants on the mutual connection between agile coordination mechanisms and the self-adjustment of agile 
coordination strategies are analysed. Fourth, a discussion is presented, how the generalized automotive design 
application context affects agile product design in response to research question two. Recommendations are 
presented what coordination modes and mechanisms need adaptions to suit the automotive application context. 

6.1.1 Coordination determinants in automotive design 
All pilot projects have been conducted in the automotive domain. A coordination-based explanation of 

the encountered challenges requires a functional representation of this application context according to the 
presented coordination reference model (see 4.1). The coordination reference model links the applicability of 
coordination modes to coordination determinants. This allows to evaluate encountered combinations of 
coordination modes and determinants. The employed coordination determinants are unit size, task dependency 
and task uncertainty. Different application contexts are remodelled based on combinations of these factors. 
Since the individual application contexts of the pilot projects varied, an average configuration for automotive 
design was chosen to assess the employed agile coordination strategies. This average application context was 
designed according to the experienced project characteristics. The descriptions are in relation to the original 
agile application context software design in small teams. According to the results from the top-down and bottom-
up data analyses the physicality of the product and the scale of the design process were the central influence 
factors to the automotive coordination determinants (see Figure 23). 
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Figure 23: The coordination determinants unit size, task uncertainty and task dependency reflect the project scale and the product physicality 
in automotive design. While the unit size and task dependency levels increase significantly, the task uncertainty change level remains 
insignificant. The observed changes of unit size and task dependency mutually enhance each other. 

Automotive design projects are characterized by a broad spectrum of divergent design objectives across 
several interdependent teams. Also, many design activities require a specific sequence. This combination results 
in complex design systems with both parallel design activities and lengthy overall process sequences. Typical 
design projects last for several years. This scale of automotive design results in multiteam design systems with 
strong inter team dependencies. Unlike the agile sweet spot intra team software design, they require 
cooperation between teams. This project scale enlarges the coordination determinant unit size because more 
people and different specializations for system integration and support are necessary. While the total number of 
teams increases, individual team sizes do not follow proportionally but remain constant under a maximum 
number of team members. The unit size coordination determinant therefore reflects the number of involved 
teams as an approximation to the total number of involved individuals. Task dependency also increases in scaled 
projects. The division of large projects into smaller sub projects requires system planning that includes task 
division and integration to divide and combine the product into sub products and back into the whole product. 
Each division into sub-projects creates interfaces between teams and results in task dependencies across teams. 
The project scale does not necessarily affect task uncertainty. But the pilot projects show that in larger projects 
knowledge is distributed in different teams. If known knowledge is not available to the task responsible designer 
task uncertainty is increased indirectly. Especially unknown knowns (Ramasesh and Browning, 2014) are driven 
by the larger number of teams while unknown unknowns are not directly affected.  

The physicality of the automotive product differs from the agile sweet spot application context as well. 
The design process of physical products implies several phases from conceptualization to manufacturing. It is 
also more heterogeneous due to physical dependencies between components and the necessary parallel design 
process of the manufacturing machinery. Both factors result in a broad spectrum of design objectives within the 
overall process. Unit size increases due to the growing number of necessary specializations and due to the larger 
number of design steps. This affects the number of teams and to a lower degree the size of teams, since more 
experts need to be integrated. Physical dependencies between components and manufacturing design also 
increase interlinkage between individual design steps. This significantly increases task dependency for physical 
product design. Most of the design steps in automotive are predetermined through long-term planning, legal 
obligations, and further restrictions. Therefore, task uncertainty is at a lower level than in less standardized 
software design. On the other hand, testing of physical systems is less automated and much slower which 
increases task uncertainty. Regarding task uncertainty these two factors balance each other and require case-
specific consideration. 

In the pilot projects it has been observed that changing coordination determinants also have mutual 
influences onto each other. A larger unit size increases task uncertainty because of recessive knowledge 
distribution and transparency. Existing team knowledge to solve tasks is not accessible for task responsible teams 
if inter team communication and exchange channels are not established or if they are inappropriate to the inter 
team dependency level. Task uncertainty also increases task dependency. If task dependencies are unclear, 
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teams tend to expect additional dependencies to avoid ignoring relevant task dependencies. On the other hand, 
task dependencies lead to higher task uncertainty since more factors have an influence on the task. Teams are 
unable to comprehensively understand problems if relevant input from other teams is missing. 

The presented coordination determinants in Figure 23 reflect average automotive design projects. But 
they also vary between projects depending on project scale, physicality of the product maturity and innovation 
level. The pilot projects show that coordination determinants change according to project dynamics during 
projects. In summary, coordination determinants in automotive design are influenced by several product and 
design factors. Compared to agile sweet spot conditions this results in clear changes. The broader spectrum of 
necessary expertise and the total number of project participants increases the unit size significantly. The concept 
of one growing unit is replaced with a multiteam system with growing numbers of interdependent teams but 
limited team sizes in the coordination reference model. In this study the larger unit size is subcategorized into 
small, medium, and large regarding the number of interdependent teams. The small unit size represents two 
teams, the medium unit size up to five teams and the large unit size more than five teams. Such multiteam system 
require inter team coordination concepts. Both physicality and scale increase task dependency in automotive 
design. Relevant factors are physical dependencies between components, physical prototyping, system 
integration and parallel design of product and manufacturing machinery (and logistics). Like the unit size 
coordination determinant, the task dependency coordination determinant is also subcategorized into low, 
medium and high levels in this study. The low dependency level includes dependencies between two teams, the 
medium dependency level describes dependencies between up to five teams and the high dependency level 
describes dependencies between more than five teams. In automotive these additional dependencies are well-
predictable in general and only few occur unexpectedly. Therefore, unlike the other two coordination 
determinants task uncertainty does not necessarily rise in automotive design. Two opposing tendencies 
outbalance each other. Project scale and task dependency as well as slower and hardware focused verification 
often result in decreasing project transparency which increases task uncertainty. But automotive design relies to 
a large degree on repetitive and predefined activities driven by legal restrictions and long-term plans which 
improve predictability and hence reduce task uncertainty. 

To conclude, coordination determinants in automotive design clearly differ from the agile sweet spot 
intra team software design. Automotive design is based on multiteam systems with strong inter team 
dependencies. The original focus of agile methods task uncertainty remains on a similar level, while the 
determinants unit size and task dependency increase significantly. These shifts have significant influences on the 
applicability of agile coordination strategies which is shown in the following sections. 

6.1.2 Functionality of agile coordination modes and mechanisms in automotive design 
The next step to understand the problems from the pilot projects is to analyse the influence of the 

changed coordination determinants onto the agile coordination modes and the respective coordination 
mechanisms. Cause-effect relations between automotive coordination determinants and employed agile 
coordination modes are discussed based on the experienced problems from the pilot project. 

According to Van de Ven et al. (Ven et al., 1976) and the coordination reference model additional 
impersonal mode coordination is recommended if the unit size increases (Ven et al., 1976). Still agile impersonal 
mode coordination mechanisms are negatively affected by the increasing unit size in automotive in several ways. 
Broader project specialization and different design objectives complicate and contradict a common terminology 
in projects. This decreases impersonal communication efficiency. Shared practices and rules that require 
agreement across teams such as Coding Standards or Simple Design rules lose applicability if design objectives 
of teams vary largely. Basic agile roles (e.g. Scrum roles) which aim to establish clearly separated responsibilities 
often oversimplify the more complex automotive design role structures and lead to unclear competencies and 
responsibilities. 

A high level of task dependency influences impersonal mode coordination mechanisms as well. 
Continuous integration and continuous testing practices can hardly be applied due to the higher dependency 
level between physical subcomponents and the less mature level of automatized testing of hardware in 
automotive. The manifold verification steps in automotive design mostly rely on physical prototypes to manage 
task dependencies. Often, sequential and parallel steps are not connected sufficiently to each other. System 
integration in automotive is more complicated since subcomponents need to be connected into more complex 
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whole products and cannot be employed independently. Task dependency also complicates the application of 
common Scrum practices like e.g. the Definition of Done. With a growing number of dependencies per task, 
unfinished parallel tasks prevent task completion. The employed agile methods themselves as overarching 
impersonal mode coordination mechanisms have severe problems to manage the higher level of task 
dependency. 

Additionally, the level of task uncertainty in automotive influences the applicability of agile impersonal 
mode coordination mechanisms. Since most design activities are well predictable and repetitive the low level of 
standardization in agile methods contradicts the potential of standardization in automotive design. Agile 
methods are adjusted to high uncertainty levels. In automotive design this results in unnecessary coordination 
effort for well-predictable tasks. 

In conclusion, the automotive application context decreases the functionality of the lightweight 
impersonal coordination mode mechanisms in agile methods. Task dependency and unit size have the largest 
impact on impersonal mode coordination. First, the original lightweight structures are not able to support the 
task dependency level. The scale and predictability of the process require more efficient integrative impersonal 
coordination mode mechanisms. Second, the change to multiteam systems contradicts the focus of impersonal 
coordination mechanisms on intra team mechanisms. Third, automatized impersonal mechanisms such as 
continuous integration and testing are not available in automotive design. The necessary IT infrastructure and 
software implementation are not a standard in physical automotive design yet. These finding clarify that even 
though impersonal mode coordination should be suitable for the larger unit size in automotive, agile methods 
lack the necessary implementations such as impersonal mode inter team coordination mechanisms. 

The reconfiguration of the coordination determinants also affects the applicability of the boundary 
spanning objects, activities, and roles in agile coordination strategies. The larger unit size implies more teams 
with separated design objectives. This includes more specializations in teams and hence larger team sizes. Agile 
boundary objects such as the Backlog are designed for straightforward implementation, easy updates, and fast 
uncomplicated knowledge exchange in small projects. In large projects this compactness is not sufficiently 
versatile to provide transparency across teams and specializations and support interdependent prioritization. 
Their design does not factor the inter team coordination requirements and the growing number of necessary 
tasks in automotive design. Regarding the increasing task dependency boundary objects are well-suited to 
enable teams with different design objectives to cooperate efficiently without the need to mutually understand 
design objectives and terminology completely. Still in the pilot projects this function was overwhelmed by the 
experienced complexity of task dependencies. Boundary spanning roles such as the Product Owner are adapted 
to single teams and had difficulty to handle the network of resulting task dependencies, since no specifications 
are given how to scale the Product Owner role in multiteam systems in the Scrum guide. In summary, most agile 
boundary spanning coordination mechanisms are adjusted to small projects and therefore showed decreasing 
functionality in automotive design. That is why agile boundary spanning coordination decreases in automotive 
application context even though boundary objects are suitable for the larger task dependency in general.  

Coordination by mutual adjustment in the group mode is essential to all analysed agile coordination 
strategies. According to the coordination reference model group mode coordination should be suitable for the 
higher task dependency level. Still, the analysed agile meetings become less efficient in interdependent 
multiteam systems with experts/designers working in several teams. The relation between useful time and 
invested time per individual decreases with the number of participants and additional scopes of the meetings. 
Across the complete design project, the meeting overhead increases disproportionally driven by a larger unit size 
and more participants. Meetings as coordination mechanisms are vulnerable to discussions between individuals 
that block much larger groups. Group mode coordination also requires complete team presence. Partial presence 
of teams in meetings results in incomplete knowledge distribution and hence insufficient coordination. 
Unscheduled meetings are less affected by a larger unit size, since meetings have no fixed number of participants 
and also apply to subgroups of teams. But the risk of incomplete coordination remains. Additionally, the increase 
in unit size complicates aspired team characteristics such as co-location which in turn negatively affects the ability 
for unscheduled meetings. Cross-functionality suffers from the larger expertise spectrum in designers. Especially, 
the Retrospective a group mode coordination mechanism in most agile frameworks cannot provide its function 
as central design process adjustment mechanism. It has a project size limit to collect necessary information and 
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generate solutions. The growing task dependency in automotive design further affects the applicability of group 
mode coordination. While intra team dependencies are well managed by the presented meetings, inter team 
dependencies are not addressed. E.g. Scrum meetings focus completely on intra team dependencies. In the 
automotive multiteam systems inter team dependencies clearly increase which reduces the applicability of the 
established agile group mode coordination mechanisms. The experienced changes in task uncertainty have little 
impact on group mode coordination. In summary, automotive coordination determinants severely influence 
group mode coordination in agile design frameworks. The functionality of the implemented group mode 
coordination mechanisms decreases significantly even though the coordination mode should be suitable for the 
larger task dependency level. Like in impersonal mode coordination agile group mode coordination lacks 
adjusted inter team coordination mechanisms. 

In general, individual mode coordination is less affected by the presented changes in coordination 
determinants. The coordination mechanisms are applicable independent of the overall project size because only 
two designers are connected. Agile frameworks are based on horizontal communication channels. But the larger 
unit size limits their applicability for overall project coordination for efficiency reasons. Personal exchanges of n 
individuals grow with a quadratic increase of n individuals ((n+1)*n/2). Additionally, some agile individual mode 
coordination mechanisms such as the On-Site-Customer suffer from locally distributed teams while other 
practices such as Pair-Programming are not affected. Unlike group mode mechanisms individual mode 
coordination mechanisms manage increasing task dependencies in projects more efficiently. Effort for inter team 
coordination is limited since dependencies only require two individuals that distribute relevant information in 
their respective teams. Still this only applies to an inter team dependency complexity limit dependent of the total 
number of coordination activities. In summary, the coordination determinants in automotive do not restrict agile 
individual mode coordination mechanisms as much as they affect group mode mechanisms. Changes in unit size 
and task dependency have little consequences on coordination between individuals. The flexibility and efficacy 
of these mechanisms allow them to fulfil high complexity coordination tasks. Still, individual mode coordination 
efficiency decreases for larger projects.  

Changes in coordination determinants from the agile sweet spot intra team cooperation to automotive 
design affect cognitive mode coordination most. This implicit form of coordination is based on close intra team 
cooperation with little team external dependencies. Several requirements of cognitive mode coordination are 
impaired in automotive design. The greater unit size causes inter team dependencies and requires cooperation 
between teams. Inter team design activities are insufficient to create sustainable, personal inter team relations 
and trust. They also reduce exchange and personal relations and trust within teams. Distributed teams, multi-
project employments and less cooperation time affect proximity and familiarity two main mechanisms of 
cognitive coordination. The increasing task dependency increases complexity of the product and the design 
process and thus complicates the emergence of shared mental models of the product and the project. Cognitive 
coordination mechanisms also tend to oversimplify intransparent task dependencies in automotive. The broader 
spectrum of specializations impedes a common design terminology throughout projects. Still, other cognitive 
coordination mechanisms such as a shared vision are applicable in automotive design. Briefly, agile cognitive 
coordination mode mechanisms are affected most by automotive coordination determinants. This influence 
results in serious problems for the agile frameworks as seen in the pilot projects, because cognitive coordination 
mechanisms are central to the efficiency of agile coordination strategies. 

6.1.3 Self-adjustment of agile coordination strategies in automotive design 
In 4.3 it has been demonstrated that the efficiency and efficacy of agile coordination strategies relies on 

the balance and connection between different coordination modes. This self-adjusting coordination system has 
been identified as a central reason for the success of agile design frameworks. Therefore, a comprehensive 
analysis of the impact of automotive coordination determinants on agile coordination strategies cannot be based 
exclusively on the impacts on the individual coordination modes and mechanisms (6.1.2) alone. Additionally, the 
connections between the coordination modes need to be examined to comprehend the effect on the agile 
coordination system. The following section examines the impact of the automotive coordination determinants 
onto this connected coordination system. 

First, the links from mutual adjustment mechanisms to other coordination modes are analysed. Group 
mode coordination is central in agile frameworks and provides coordination speed, efficacy, and flexibility. The 
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implemented agile meetings integrate results, task dependencies, information, verification, and validation. These 
coordination mechanisms were designed as the integrative platform for the other agile coordination mechanisms 
in agile frameworks. Increases in unit size and task dependency not only impact the functionality of these 
meetings as coordination mechanisms but also their connection to impersonal mode coordination mechanisms. 
In the pilot projects the Scrum meetings were not able to integrate inter team dependencies and heterogeneous 
information as required. This resulted in insufficient connections between agile coordination modes. For 
example, the information channelling from multiteam systems into boundary objects such as the Backlog was 
impaired. Inter team dependencies were not addressed in Scrum meetings which affected the generation and 
continuous employment of common design standards and rules. Retrospective meetings, as the central learning 
functionality of agile frameworks, had troubles to adjust the agile coordination systems according to project 
dynamics for large unit sizes. Such incomplete coordination integration prevents emergent coordination 
strategies that continuously adjust to changing tasks and coordination requirements. Lastly, agile group mode 
coordination mechanisms are not able to generate intense personal exchange, repeated activities, and mutual 
trust necessary to maintain cognitive mode coordination mechanisms in automotive design. Unlike agile group 
mode coordination mechanisms, agile individual mode coordination mechanisms are less affected by the 
changes in design coordination determinants. Consequently, individual mode coordination mechanisms remain 
able to initiate other coordination mechanisms or adjust to them. Individual mode coordination mechanisms like 
the Backlog Refinement still trigger Boundary Object coordination mechanisms. Nevertheless, boundary 
spanning roles such as the Product Owner are affected by an increasing task dependency which complicates her 
responsibility to prioritize design tasks. In a nutshell, individual mode coordination mechanisms address specific 
coordination tasks between individuals. But to function in a coordination system they rely on integrative 
coordination mechanisms to distribute information and provide project transparency.  

Second, agile impersonal mode coordination mechanisms such as design rules, roles, plans, testing 
infrastructure and standards integrate other coordination mechanisms in agile frameworks (see 4.2.1.2 and 
4.2.2.2). In automotive design these agile impersonal coordination mechanisms have difficulties to connect the 
coordination system. The impersonal coordination mechanisms standards and blueprints of action answer well 
to the large unit size, but not the high task dependency level. High task-dependency levels resulted in incomplete 
connections between impersonal coordination mechanisms and mutual adjustment coordination mechanisms. 
Continuous integration systems allow to connect impersonal and mutual adjustment coordination mechanisms 
based on automated product verification. But in automotive design the technology is not applicable yet to the 
larger unit size and task-dependency. Agile Boundary Object mechanisms such as the Backlog remain effective 
to structure agile meetings and hence connect well to group mode coordination mechanisms. But agile Boundary 
Objects also suffered from the task dependency level and were not able to integrate the amount of design 
objectives from the interlinked teams. 

Lastly, automotive design is based on design in multiteam systems. As described, this significantly 
reduces cognitive mode coordination mechanisms. The support of other coordination modes by cognitive mode 
coordination is therefore limited to few mechanisms such as the shared vision in automotive multiteam systems. 
After long-term cooperation in a steady network personal relations and trust may be generated in multi-team 
systems between individuals across teams but in automotive this is unlikely due to the dynamic change of 
cooperation partners. The resulting cognitive mode inter team coordination mechanisms cannot replace the 
connection to other coordination modes as intended in the original coordination strategies for single teams. The 
loss of cognitive coordination mechanisms deprives the agile coordination system of a central connector in 
automotive application contexts. 

The findings demonstrate that automotive coordination determinants reduce the applicability of the 
employed agile coordination mechanisms. Furthermore, they severely reduce the connections between them. 
The function of impersonal and group mode coordination to integrate other coordination modes in agile 
frameworks is less effective. Alternatives to integrate coordination mechanisms into a connected coordination 
system are necessary. Additionally, implicit cognitive and implicit impersonal coordination mechanisms are 
unable to replace and support other coordination mechanisms as emphasized in agile frameworks. These 
dysfunctionalities impair the self-adjustment of agile coordination structures in automotive. The coordination 
system is not able to adapt to project change and dynamics as required anymore. Agile frameworks therefore 
lose flexibility and efficiency in automotive design applications. 
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6.1.4 Suitability of agile coordination strategies in automotive 
To conclude this subchapter, a summary of the coordination specific data analyses is given. The 

researched automotive application context differs significantly from agile sweet spot conditions. The 
coordination determinants unit size and task dependency increase significantly and cause a system of inter team 
dependencies. The third coordination determinants task uncertainty remains on a similar level compared to the 
agile sweet spot. These changes in the coordination determinants in automotive design have severe influences 
on the applicability of agile coordination strategies as shown in Figure 24.  

 

 

Figure 24: Compared to agile sweet spot conditions (Boehm, 2002; Kruchten, 2013) automotive design results in different coordination 
determinants. These changes in coordination determinants result in inappropriate coordination modes, ineffective and insufficient 
coordination mechanisms and a lack of connectivity for agile coordination strategies. Cognitive mode coordination is affected most, while 
individual mode coordination and boundary spanning are affected least. 

In the original model of Van de Ven et al. (Ven et al., 1976) increases in unit size are addressed by 
impersonal mode coordination mechanisms and increases in task dependency by group mode coordination 
mechanisms. Both are central coordination modes in agile coordination strategies. Contradictory, the data 
analysis clarifies that the analysed agile group mode and impersonal mode coordination mechanisms are unable 
to manage coordination in automotive application contexts. Lightweight agile impersonal mode coordination 
mechanisms are overstrained by the task dependency level while agile group mode coordination mechanisms 
suffer from the larger unit size. Agile individual mode coordination mechanisms and boundary objects remain 
mostly functional in automotive application context. Then again implicit cognitive and impersonal mode 
coordination mechanisms are almost completely inapplicable to automotive multiteam systems. 

Additionally, the self-adjusting ability and connection of agile coordination strategies is also limited in 
automotive application contexts. The ability of central impersonal and group mode coordination mechanisms to 
integrate other coordination mechanisms is overwhelmed by the number of teams and the level of task 
dependency. The emphasis of agile coordination strategies on cognitive mode coordination to support other 
coordination mechanisms is not applicable to automotive design. These findings show that the ability of agile 
coordination to adapt to project dynamics decreases significantly in automotive design. Figure 24 summarizes 
the changes of coordination determinants in automotive and the effect of this change onto agile coordination 
strategies.  

In a nutshell, the findings allow to draw two conclusions. First, the analysed agile coordination 
mechanisms are less suitable to automotive application contexts than to software application contexts. Second, 
the connection between employed agile coordination mechanisms is weaker in automotive design which affects 
the ability of the coordination system to adapt to dynamic coordination requirements. Both conclusions are 
caused by the focus of agile methods on intra team coordination. Nevertheless, these findings do not contradict 
agile coordination strategies and their emphasis on impersonal mode and mutual adjustment mode coordination 
in automotive in general. Neither impersonal mode coordination nor group mode coordination face impassable 
restrictions in automotive design but both lack adjusted coordination mechanisms. Only cognitive mode 
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coordination may turn out unfit as a central coordination mode for large multiteam design systems in automotive 
independent of the coordination mechanism selection. 

To adjust agile coordination strategies to automotive application contexts it is necessary to accept and 
embrace cooperation across teams. The lack of agile inter team coordination mechanisms is the main reason for 
its reduced applicability in automotive design. Inter team coordination mechanisms answer directly to larger unit 
sizes and resulting multiteam systems as well as larger task dependencies and resulting inter team dependencies. 
Additionally, these inter team coordination mechanisms need to reconnect agile coordination modes to re-
establish self-adjusting coordination systems in automotive design. This requires two necessary adaptions of 
agile coordination systems in automotive design. First, specific agile inter team coordination mechanisms are 
necessary and must be integrated. Second, cognitive mode coordination needs to be replaced to a large degree 
by impersonal and individual mode coordination. 

6.1.5 Findings in response to research question two 
One central objective of the thesis at hand is the analysis whether agile product design approaches are 

suitable in the domain automotive design. Even though, agile methods and their benefits suit the current 
challenges and problems of automotive design in theory, agile pilot projects in automotive are necessary to 
evaluate their performance in practice. Data of eleven pilot projects was analysed regarding the practicability of 
agile methods in this unfamiliar application context. The focus of research question two are constraints to agility 
in automotive design. To answer this research question three research streams were connected. Practical 
problems were summarized and classified according to their statistical frequency across the agile pilot projects. 
These classified problems were categorized to the existing concepts constraints of scale and physicality via cause-
effect relations. Comprehensive understanding of the problem’s roots was enabled through a coordination 
strategy analysis. 

Throughout the agile design pilot projects in automotive design several problems to the methodology 
reoccurred. A bottom-up data analysis resulted in the following problems. Design teams need to integrate team 
external stakeholders into the design activities. Additionally, the number of relevant experts often surpasses 
upper limits of team sizes and hence further increases the number of relevant stakeholders. The large and design 
phase dependent spectrum of necessary specializations complicates team composition and prevents continuity 
of team constellations. Agile communication channels are often not sufficiently versatile to connect the 
necessary network of designers and stakeholder. Large multiteam design projects in automotive result in inter 
team cooperation problems to the applied agile methods. Agile planning in short iterations gets complicated by 
the strong interlinkage of design activities. Multiple physical dependencies between components lead to a much 
more interdependent design process. Task prioritisation and task division suffer from unclear and emergent 
dependencies between both components and hence tasks. Task dependencies also drive resource allocation 
problems and redundant work. Distributed teams are unable to remain close personal contact which hampers 
with agile design paradigms. The documentation granularity is not sufficient to support independent design 
activities across teams and requires additional exchange between teams. Further problems regarding product 
architecture and requirements structure are due to management systems that are unable to respond to the 
speed of agile methods. Automotive design requires elaborate IT and prototyping infrastructure. Integrative 
design activities necessary to design and provide such infrastructure were not considered sufficiently in the agile 
pilot projects. Also, slow prototyping in automotive contradicts short iterative design cycles. 

A top-down data analysis investigated cause-effect relations between the experienced problems and 
the physicality of the product and the scale of the design system in automotive. Scaled systems of teams result 
in characteristics that directly contribute to most of the experienced problems. The same relation is evident for 
the physicality of the product. These cause-effect relations lead to the answer to research question two that both 
constraints of scale and constraints of physicality are evident and relevant in automotive design. Additionally, 
both categories clearly overlap regarding the experienced problems to agile design. The connection of findings 
of the bottom-up and the top-down data analysis shows that both constraints fields cause similar multiteam 
cooperation problems. Therefore, in the thesis at hand constraints of physicality are viewed as an additional 
driver to the constraints of scale category.  

This simplification of the problem space allows to analyse the unified problem space regarding the 
employed agile coordination strategies with the coordination reference model. This analysis clarifies that agile 
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coordination strategies do not function as expected in automotive design. The malfunctions of the coordination 
strategies directly relate to the experienced problems. The following concatenation of circumstances explains 
the dysfunctionality of the employed agile coordination strategies and further details the answer to research 
question two. 

First, coordination determinants in large-scale automotive design are distinctly different compared to 
small scale software design teams. The unit size increases significantly driven by the number of teams, even 
though the upper limit of team sizes increases only slightly. Task dependency increases due to physical 
dependencies and a larger spectrum of specializations. Task uncertainty on the other hand increases only to a 
small degree due to more distributed and less connected knowledge, while basic design activities are more 
predictable due to well established processes. 

Second, these changes in coordination determinants severely influence the suitability of agile 
coordination mechanisms and respective coordination modes. Typical lightweight impersonal coordination 
mechanisms are not suited for automotive design. Especially, intra team boundary object and cognitive mode 
coordination mechanisms are impacted. Even though, the coordination reference model recommends 
impersonal mode coordination for automotive coordination determinants, agile coordination strategies lack the 
respective coordination mechanisms. The same applies to agile group mode coordination which lacks inter team 
coordination mechanisms. Individual mode coordination mechanisms remain functional in automotive 
application contexts. Implicit mode coordination in agile coordination strategies suffers most from the 
experienced coordination determinants in automotive. Cognitive coordination mechanisms are inefficient in 
inter team coordination. The increasing inter team task dependency even decreases the excellent intra team 
coordination efficiency of cognitive mode coordination mechanisms. Impersonal implicit coordination 
mechanisms such as continuous integration systems are overstrained by the complexity of the product and the 
prescribed verification system. In summary, agile coordination modes are either less suitable in automotive 
design and or lack respective coordination mechanisms. Also, multiteam design systems in automotive require 
inter team coordination mechanisms, which basically contradicts the original focus of agile methods on intra 
team cooperation. Especially cognitive mode coordination mechanisms are less applicable in multiteam systems. 

Third, the impact on these individual coordination modes and mechanisms severely impairs the 
connectivity of the agile coordination system. This lack of connection between coordination mechanisms 
decreases the ability of agile coordination strategies to self-adjust to project dynamics which is elementary to its 
coordination efficiency and efficacy. Agile meetings as group mode coordination mechanisms cannot provide the 
interlinkage to other coordination mechanisms any more for multiteam automotive design systems. Especially 
the balance between group mode coordination mechanisms and boundary objects is overstrained due to number 
of different parties and the spectrum of specializations. Furthermore, personal exchange necessary for cognitive 
mode coordination mechanisms decreases with ever larger meetings. Unlike group mode, individual mode 
coordination mechanisms remain functional in multiteam systems and therefore keep their ability to trigger 
other coordination modes. Still, boundary spanning roles such as the Product Owner are affected by the larger 
network of inter team dependencies. Furthermore, within the coordination system individual mode coordination 
mechanisms suffer from incomplete reactions of other coordination mechanisms to their trigger. High task 
dependency levels result in incomplete connections between impersonal and mutual adjustment coordination 
mechanisms. Especially continuous integration infrastructure and boundary objects to structure agile meetings 
are affected by it. With multiteam systems seriously affecting cognitive mode coordination this leaves only few 
cognitive mode coordination mechanisms connected to the coordination system.  

In summary, the findings clarify why agile coordination strategies are less efficient in automotive design. 
The experienced project characteristics do not match their requirements. They differ to such a degree that some 
employed coordination modes become inapplicable, and others lack adjusted coordination mechanism. The 
connectivity of the employed coordination mechanisms also decreases severely. The change in coordination 
determinants goes beyond the ability of agile coordination systems to self-adjust to project dynamics since the 
balance of coordination modes is disrupted and necessary coordination mechanisms are not available. These 
findings are central to a comprehensive understanding of agile design in automotive design. They provide the 
base for alterations of agile methods to enable them for automotive application contexts. 
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6.2 Scenarios to enable agile coordination strategies in automotive design 
 

“[…] well-coordinated teams will […] find an effective mix of mechanisms for the coordination needs of the task 
they are engaged in.” 
 Alberto Espinosa 

 

The aim of the second part of the discussion is to suggest approaches to counteract the described 
dysfunctionalities of agile coordination strategies in automotive design in response to research question three: 
How to enable agility in automotive product design? In chapter 5 the practical problems of agile methods across 
eleven pilot projects have been summarized and compared. The design theory-unspecific data analyses establish 
the conclusion that the experienced problems are caused by constraints of scale and physicality. Both factors 
increase inter team cooperation in design activities and hence contradict the focus of agile methods on intra team 
cooperation. The coordination-specific data analysis in subchapter 6.1 examined how inadequacies of the agile 
coordination strategies in automotive design caused the experienced problems to agile methods throughout the 
pilot projects. The original balance of coordination modes and the employed coordination mechanisms in agile 
coordination strategies are inappropriate for the coordination determinants in automotive design. Figure 25 
represents how changes in coordination determinants in comparison to agile sweet spot conditions have resulted 
in inadequate agile coordination strategies. The swelling river represents the changes in coordination 
determinants in automotive design in comparison to agile sweet spot conditions. The bridge that crossed the 
original river but cannot span the swelling river represents the original agile coordination strategies. 

 

 

Figure 25: Transcribing sketch regarding the difficulty of agile automotive design. The larger river represents the context automotive design 
in comparison to the agile sweet spot software design and the bridge represents original agile coordination strategies. While the 
established bridge was fitted to cross the initial river, it cannot span the enlarged river. The same is true for agile design in the automotive 
domain. Transferred into the new domain agile product design cannot realize its original functionality. 

Three different approaches to answer research question three will be presented. All concepts are based 
on the coordination perspective on agile design and therefore intend to realize a match between agile 
coordination strategies and the automotive design domain. To achieve this goal, they focus on different aspects 
of agile coordination strategies. Figure 26 presents simplified analogies to reflect the opposing ideas behind the 
three approaches in detail. To recreate the original function of crossing the bridge three different options are 
available. First, repair and enlarge the bridge. Second, dig a tunnel below the river and avoid the bridge 
completely. Third, restructure the river so the original bridge can span it again.  

In subchapter 6.2.1 a concept to adjust the agile coordination system to match the automotive design 
coordination determinants is described. This represents the idea to repair and enlarge the original bridge across 
the larger river. The integration of inter team coordination mechanisms to answer to the requirements of 
multiteam design systems is the first step towards this approach. The second step is the adjustment of the 
coordination system connectivity to include the new inter team coordination mechanisms. Lastly, the balance 
between the employed agile coordination modes needs to be recalibrated to reflect automotive design 
characteristics. This results in a shift towards coordination modes that better reflect the needs of multiteam 
design projects. 
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Figure 26: The three sketches (left, middle, right) represent developed scenarios to adjust agile coordination strategies to the coordination 
determinants in automotive design. In scenario 1 (left) the original bridge is enhanced with additional structures to reestablish its original 
functionality. It represents the readjustment of agile coordination strategies with additional inter team coordination mechanisms. In scenario 
two (middle) the larger river is avoided by a tunnel instead of fixing the bridge. It reflects the use of a new design technology to realize agile 
automotive design. In scenario three (right) not the bridge but the river is adjusted. To carry more water without increasing its width its depth 
is increased. This approach reflects the idea to adjust the product structure to reestablish agile sweet spot coordination determinants. 

In subchapter 6.2.2 the influence of new design technology onto agile coordination mechanisms and 
strategies is presented. It reflects the idea to build a tunnel below instead of a river above the larger river to get 
across it. Generative Design as an example of new design technologies is described within the automotive 
verification and design process. The perspective of Generative Design as a new impersonal mode inter team 
coordination mechanism is analysed. Furthermore, it is shown how its coordination abilities open the 
opportunity to change the balance between agile coordination modes and reconfigure the agile coordination 
strategy. 

In subchapter 6.2.3 it is shown how the relation between product architecture and coordination 
determinants could be used to approximate agile sweet spot conditions in automotive design. This new setting 
increases the applicability of agile coordination strategies. The concept reflects the idea to change the river width 
and depth of the swelling river back to its original shape and use the existing bridge to cross it. A modularization 
strategy is described that structures the product in relation to an agile design enabling organization structure. 

 

6.2.1 Inter team coordination in agile coordination strategies 
The aim of this subchapter is to present adjustments to agile coordination strategies to match the 

analysed coordination determinants in automotive design and hence avoid the experienced practical problems. 
These adjustments focus on enabling existing coordination modes with new coordination mechanisms to re-
establish the original functionality of agile coordination strategies. The presented analysis of agile coordination 
strategies in automotive design clarifies that both the coordination determinants unit size and task dependency 
increase compared to agile sweet spot conditions. In practice this results in design activities that require 
cooperation between teams and hence need inter team coordination. These multiteam design systems in 
automotive design cannot support the original premise of agile design to focus on intra team cooperation. They 
require inter team coordination mechanisms to answer to inter team dependencies. To fill this gap a set of inter 
team coordination mechanisms were developed, introduced and evaluated across the pilot projects. The 
development of these design artifacts balanced their individual shape and function and their mutual interlinkages 
as a prerequisite to analyse the resulting system behaviour. These aspects are necessary to re-establish the 
efficiency, efficacy and flexibility of agile coordination strategies. Both the design of the inter team coordination 
mechanisms and their system behaviour evaluation were based on the addressed system dysfunctionalities 
identified with the coordination reference model (see Figure 24). 

The subchapter is divided into four sections. In the first section, agile inter team coordination 
mechanisms from software design are summarized. In the second section agile inter team coordination 
mechanisms in automotive are described. The set is limited to inter team coordination mechanisms that have 
been employed in pilot projects. In the third section the presented set of inter team coordination mechanisms is 
evaluated regarding their suitability to address the relevant levels of unit size and task dependency in automotive 
design. The fourth section assesses the connectivity between the adjusted set of agile intra and inter coordination 
mechanisms. This includes an evaluation if the flexibility and self-adjustment capabilities of the reconfigured agile 
coordination strategy have been restored. 
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6.2.1.1 Agile inter team coordination mechanisms in scaled software development 
Table 11 summarizes findings of relevant secondary literature (Dingsøyr, Bjørnson, et al., 2018; Edison 

et al., 2021; Nyrud and Stray, 2017) regarding inter team coordination mechanisms in large scale agile design. In 
the table coordination mechanisms are categorized according to the coordination modes of Van de Ven et al. 
Impersonal mode inter team coordination mechanisms are central team directives, visualizations of 
dependencies and deliveries, collaborative tool platforms, common Sprint goals, regular product integration 
steps across domains, scaled agile roles, strategic roadmaps, shared backlogs and open work areas. Individual 
mode inter team coordination mechanisms are iterative proxy collaboration, team member rotation, instant 
messaging, and informal ad hoc conversation. Group mode inter team coordination mechanisms are 
synchronized sprint cycles, virtual meetings, mid sprint reviews, theme reviews, agile role coordination meetings, 
cross team demos, physical proximity of teams, experience forums, architecture teams, management meetings 
across teams, and scaled agile meetings, including the Retrospective, the product Demos, the Planning, and the 
Backlog grooming. The distribution the coordination mechanisms shows that impersonal mode and group mode 
coordination seem to be best suited to provide inter team coordination in scaled software development. Details 
and descriptions of the coordination mechanisms are added in the following subchapters. 

Table 11:Impersonal mode, personal mode and group mode inter team coordination mechanisms in large-scale agile software engineering 
(Dingsøyr, Moe, et al., 2018; Edison et al., 2021; Nyrud and Stray, 2017). 

 Edison 2021 Dingsøyr, Moe 2018 Nyrud and Stray, 2017 
Impersonal 
mode 

Central team directives Masterplan- common backlog Agile processes 
Visualization (dependencies, 
deliveries, IT project portfolio) 

Open space technology JIRA (shared, digital backlog) 

Collaborative (tool) platform Wiki- architectural guidelines Rules for QA 
Common sprint goal  Open work area 
Regular full integration of software, 
hardware, mechanics 

  

Scaled agile roles   
Strategic roadmap   

Individual 
mode 

Iterative proxy collaboration Instant messaging Instant messaging 
Ad-hoc communication Rotation of team members Informal ad hoc conversations 
Team member rotation   

Group mode Ad-hoc communication Central team planning Stand up meetings 
Synchronized sprint cycle Open work area Overall Retrospective 
Virtual stand-up meetings Experience forum Overall Demo 
Mid sprint review Scrum of Scrum Overall Sprint planning 
Theme review meetings Technical corner- Briefing of teams 

by architects 
Overall Backlog grooming 

PO coordination meetings MetaScrum – Management meeting 
across teams 

 

Cross-team demo Board discussions  
Physical proximity of teams Overall demos  
Scrum of Scrum meetings (Grande 
SoS, feature SoS) 

  

 

The spectrum of inter team coordination mechanisms shows the relevance of the problem. But the 
presented set of mechanisms has been established in large-scale software design. Its relevance in agile hardware 
design is to be evaluated yet. Throughout the pilot projects several of the presented inter team coordination 
mechanisms are employed and evaluated regarding their suitability in automotive design. The following 
subchapter describes agile inter team coordination mechanisms that have been employed successfully 
throughout the agile pilot projects. The nomenclature between the secondary sources, scaled agile methods and 
the use in the pilot projects may differ for some coordination mechanisms. For the thesis at hand the employed 
names in automotive design were selected. 
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6.2.1.2 Agile inter team coordination mechanisms in automotive design 
 

Group mode inter team coordination mechanisms 

The findings of the data analysis in the results chapter indicate unsuitable group mode coordination 
based on the lack of appropriate scheduled meetings for automotive multiteam systems. The larger unit size in 
automotive projects increases the length of scheduled meetings which results in non-relevant meeting overhead 
for individual participants. Regarding the large task dependency in automotive agile meetings answer well to it 
within teams but not between teams. In a nutshell, the employed agile coordination strategies lack adjusted 
group mode coordination mechanisms that address inter team coordination demand in automotive design 
projects. To address these findings adjusted and new group mode coordination mechanisms supporting inter 
team coordination in the form of scheduled multiteam meetings have been tested and evaluated throughout the 
pilot projects. These scheduled meetings can be categorized into coordination meetings that connect complete 
teams, meetings that connect agile roles across teams and meetings that connect individuals or communities 
across teams with similar responsibility or interest.  

Scaled agile meetings (e.g. Scrum of Scrum, multiteam grooming, PI Planning, …) connect several teams 
and allow to address inter team dependencies before, during and after the Sprint cycle. Several teams cooperate 
during these meetings. The shared Planning allows to discuss and predict inter team dependencies and prepare 
accordingly. Tasks are divided and distributed to minimize inter team dependencies. The Scrum of Scrum meeting 
answers to emergent inter team coordination demand and the shared Review meeting connects components 
dependencies and presents increments composed of interlinked subcomponents. The multiteam Grooming 
meeting focuses on inter team dependencies and clarifies them within the Backlog as preparation for a successful 
planning. Such a multiteam Grooming needn’t necessarily include complete teams but rather relevant designers 
from the respective teams. These scaled agile meetings answer well to medium task dependency levels in 
automotive, but the number of participating teams should not exceed five teams and hence cannot include 
complete projects. Applied at larger unit sizes they require extensive preparation and often result in inefficient 
coordination. The extension of the meetings to accommodate several teams results in multiplied participants 
which negatively affects coordination efficiency. To outmanoeuvre this tendency new non-linear meeting 
formats were applied. Instead of one person addressing the complete audience parallel structures are employed 
to ensure both inter team coordination and maintain overall efficiency and flexibility. Formats include speed 
dating or fish bowl during planning meetings or the market place and bazar formats from Liberating Structures 
(“Liberating Structures”, 2022) during review meetings. These adjusted agile meetings are divided into joint and 
separated parts. They provide overall project coordination in the joint sessions and emphasis inter team 
dependencies in break out parts including only few teams and hence providing more intense coordination. Intra 
team dependencies are addressed in team individual meetings. Since the capacity of shared areas is often limited 
digital versions of the meetings have been tested and approved valuable in automotive. 

Agile role bearer meetings (e.g. PO synchronization, SM meeting) connect agile role bearers across 
teams. Much smaller than scaled agile meetings these meetings enable inter team coordination specific to 
individual agile roles. Throughout the pilot project the PO synchronization emphasised task prioritization and 
capacity overview across teams while the SM exchange addressed a concerted working model throughout the 
complete project. Additionally, inter team conflicts and impediments were discussed, and solutions decided 
upon. These meetings are applicable at medium and large unit sizes and up to a medium task-dependency level. 
Communities of Practice (COPs) connect fields of specialization across teams. Individuals with the same 
specialization or similar interest can exchange information through these meetings. In automotive COPs were 
beneficial in product architecture and the verification system. Depending on the demand of the exchange such 
meetings are structured very strictly or resemble a lose exchange that dynamically adapts to a changing interest 
of exchange in the design project. Communities of Practice provide inter team coordination across more than 
five teams and hence answer to large unit sizes. In automotive they have been proven beneficial in integrative 
design activities. The emergent character of the meeting is applicable to low inter team dependency levels. 

The presented scheduled and unscheduled meetings function as group mode inter team coordination 
mechanisms. They present arenas that encourage inter team coordination between interdependent teams in 
automotive. As such these inter team coordination mechanisms answer to both the large unit size and the high 
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task dependency in automotive design. In summary, they re-establish the applicability of group mode 
coordination in automotive application contexts. Still, these adjusted and new meetings are limited regarding 
the unit size. They answer well to a medium unit size up to five interdependent teams and suffer from further 
scaling. 

These selected group mode inter team coordination mechanisms match well with the mechanisms 
presented in Table 11. Edison et al., Dingsøyr et al. and Nyrud and Stray summarize similar scaled agile meetings 
(e.g. Scrum of Scrum, joint Retrospectives, cross-team Demo, theme Review, overall Backlog Grooming) as 
valuable inter team coordination mechanisms in software design (Dingsøyr, Moe, et al., 2018; Nyrud and Stray, 
2017) based on a synchronized Sprint cycle (Edison et al., 2021). Edison et al. recommend agile role coordination 
meeting such as the PO coordination meeting (Edison et al., 2021). Communities of practice have been 
successfully implemented in scaled software design projects (Paasivaara and Lassenius, 2014) and large 
organizations with strong inter team dependencies (Kahkonen, 2004) 

Individual mode inter team coordination mechanisms 

Regarding individual mode coordination the findings indicate that the analysed agile coordination 
mechanisms remain functional in automotive design applications environments (section 4.2). Still, with a growing 
number of teams, coordination efficiency decreases due to an exponential increase of necessary personal 
exchanges between interdependent teams. Inter team dependencies between few teams are well manageable 
but larger projects require additional individual mode inter team coordination mechanisms. Another central 
drawback of the employed agile individual mode coordination is the need for direct exchange and hence co-
location. But distributed teams are unavoidable in automotive design, due to the large overall project size and 
the number of required teams. Therefore, location independent, individual mode inter team coordination 
mechanisms are necessary. Several specific individual mode inter team coordination mechanisms were 
introduced and evaluated in the pilot projects to address this inadequacy of agile coordination strategies in 
automotive design. 

Instant messenger and video conferencing tools (e.g. Skype, Microsoft Teams, Slack, …) are digital 
individual mode inter team mechanisms. They are easy to implement and remove the need for co-located teams 
regarding individual mode exchange. Direct exchange between individuals of different teams is independent of 
personal location and team size. Tools like Microsoft Teams integrate personal exchange, documentation, and 
collaboration between team members of different teams. They are more flexible than emails and function more 
like oral conversations and therefore improve coordination efficiency in comparison. These tools are applicable 
to the high dependency levels of other individual mode coordination mechanisms since communication in video 
conferencing includes language and facial expressions. An alternative approach represents multiteam working 
areas that provide sufficient room for several teams with high dependency levels. These areas include shared 
areas and team specific sites but require large, available spaces. 

Team member rotation describes the temporal exchange of team members between teams. The 
Traveller or Scout are specific inter team exchange roles within teams, who are responsible for inter team 
coordination tasks. They participate in other teams for a defined period or for specific meetings. They establish 
knowledge regarding both teams, their dynamics and influence Planning and Review meetings to address inter 
team dependencies. A less formal option is a personally allocated responsibility for inter team coordination 
within the team for a limited period. This individual remains in her team but changes her responsibilities towards 
attending multiteam meetings and channels exchange with other teams. Selection of such coordination team 
members often includes her specialization being suited to the given task dependency between teams. The 
coordination responsible team member changes according to coordination dynamics and therefore differs from 
permanent agile roles. In automotive these coordination roles are suitable for small to medium unit sizes with 
two to five teams. They are applicable up to medium inter team dependency levels. The individual’s capacity for 
inter team exchange limits the coordination role concept to a medium task dependency level. 

The findings from the pilot projects in automotive match well with earlier studies on individual mode 
coordination in scaled agile design projects. Instant messaging has been proposed as individual mode inter team 
coordination mechanisms in several studies as depicted in Table 11 (Dingsøyr, Moe, et al., 2018; Nyrud and Stray, 
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2017). Team member rotations have been reported beneficial for inter team coordination in several industry 
reports and review paper (Grewal and Maurer, 2007; Lindlöf and Furuhjelm, 2018). 

Impersonal mode inter team coordination mechanisms 

Even though impersonal mode coordination is recommended for larger unit sizes, the analysed agile 
coordination strategies lack suitable inter team coordination mechanisms for automotive application contexts 
(section 4.2). The presented results clarify that the employed agile lightweight impersonal mode coordination 
mechanisms are insufficient for multiteam design projects in automotive. The scale and the predictability of the 
design projects require more efficient impersonal mode inter team coordination mechanisms to connect other 
coordination mechanisms. Throughout the pilot projects several impersonal mode inter team coordination 
mechanisms were evaluated, and the findings are discussed in the following paragraph. 

Synchronized sprint cycles are a requirement of multiteam meetings (Lindkvist et al., 2016; Martensson 
et al., 2017) in large design projects and interdependent teams need to agree on a synchronized Sprint rhythm. 
In automotive synchronized Sprint cycles were applicable independent of the unit size and the task dependency 
level but substantial differences in design characteristics resulted in opposing ideal Sprint length for some teams. 
To deal with such contradicting requirements longer sprint cycles were defined as double or three times the 
length of shorter sprint lengths to ensure simultaneous and synchronized meetings every third or second 
iteration. 

Hierarchies of the agile roles Scrum Master and Product Owner are important inter team coordination 
mechanisms in automotive design. A leading Product Owner maintains the overview of the product as a system 
of parts and especially the interfaces between them. The other Product Owners focus on delimited parts at a 
much more detailed level. The leading product owner mediates conflicts between Product Owners and leads 
with a strategy for the complete product. She guides the other Product Owners to prevent inter team 
coordination conflicts. This hierarchy allows to distribute responsibilities between two levels and ensures, that 
cooperation between Product Owners leads to an overall optimum and not local optima. This connecting role 
also provides a fast and flexible escalation process if inter team coordination problems cannot be solved between 
the respective Product Owners of the teams. A similar hierarchy works well for the Scrum Master. A leading agile 
coach is not assigned to an individual team but addresses continuous system design and deals with impediments 
on a system level. Additionally, she facilitates cooperation between Scrum Masters and ensures that their input 
is addressed on a system level. The agile coach also represents the interface towards the Product Owner 
organization. Another responsibility of the role is the continuous adaption of the agile working system and the 
coordination strategy to the dynamics of the design projects. Both agile role hierarchies are relevant inter team 
coordination mechanisms in automotive design projects. They are applicable at large unit size levels and up to a 
high task dependency level. 

Information distribution systems also support inter team coordination. They replace direct personal 
exchange between individuals and teams with online information access. Such systems support inter team 
coordination regarding information exchange at a low complexity level, but cannot replace direct, personal 
exchange coordination for more complex tasks. The findings from the pilot projects show that their function as 
inter team coordination mechanisms relies on the usability, accessibility, completeness and currency of the 
system and the relevance of the information. The underlying system and tools must guarantee easy access and 
usability must be sufficiently well to replace often accustomed direct exchange. The provided information must 
include the complete system and the underlying data must be current. These factors show that such 
infrastructure needs continuous care and adjustment to provide inter team coordination. Wikis or the tool 
Confluence have been proven beneficial in automotive at a large scale. Company specific social networks are 
additional organization maps that provide information regarding current responsibilities of org units within 
design projects. They might include hierarchical structures to clarify responsibilities. They positively impact 
individual mode coordination since access to relevant parties is facilitated. Such tools are applicable independent 
of the unit size level but only up to medium task dependency level. Automatized impersonal mechanisms such 
as continuous integration and testing are not commonly available in hardware-intensive automotive design yet. 
Possible digitalized impersonal mode coordination in automotive are discussed in section 6.4. 
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The high level of task dependency in automotive design are driven to a large degree by the physical 
dependencies between components. They result in similar effects that can be categorized into vibrations, 
acoustics, crash behaviour and durability amongst others. To address these categories in all tasks automotive 
specific Definitions of Done have been proven beneficial. Tasks are only accepted as done if these criteria have 
been evaluated or the respective teams have been contacted. This extension to an existing agile practice results 
into an easy applicable impersonal mode inter team coordination mechanism. 

Boundary spanning inter team coordination mechanisms  

The deduced coordination determinants in automotive affect the applicability of boundary spanning 
objects, activities, and roles in the analysed agile coordination strategies severely (section 4.2). The larger unit 
size mirrors more design teams with a divergent spectrum of design objectives. Most of the applied agile 
boundary objects such as the Backlog are designed for straight-forward implementation, easy updates, and 
uncomplicated knowledge exchange in small projects. In large projects they are not sufficiently versatile to 
provide transparency and prioritization across numerous interdependent teams and specializations. Regarding 
the task dependency levels, in theory boundary objects enable teams with different design objectives to 
cooperate efficiently without the need to mutually understand design objectives and terminology completely. 
Still, in the pilot projects this function was unable to address the experienced complexity of task dependencies. 
Most agile boundary spanning coordination mechanisms are adjusted to small projects and showed decreasing 
functionality in multiteam design projects. To address the resulting inter team dependencies several additional 
boundary spanning coordination mechanisms have been tested and evaluated throughout the pilot projects. 

The multiteam Backlog as a boundary-object inter team coordination mechanism has been proven in 
automotive. Such a Backlog includes all relevant tasks of a design project independent of the number of teams. 
Like in a single team Backlog tasks are related to each other, to clarify dependencies between tasks and teams 
to improve inter team coordination. Tasks are subcategorized from team to project level granularity and 
dependency definitions follow this granularity. Depending on the user or the purpose the shared Backlog 
provides different views on task and additional information. It facilitates a range of use cases starting from 
personal task management up to agile multiteam meetings. The Backlog supports documentation during 
multiteam Planning and Review meetings. The shared Backlog remains adjustable to reflect project dynamics. 
Such a Backlog transparently depicts the complete design project tasks and their dependencies. This information 
improves task allocation between teams and enables an efficient overall project coordination. Automotive 
project sizes require digital tools that provide simultaneous access up to thousands of users. For example, JIRA 
by Atlassian is such an IT tool that provides task management for very large projects without reducing usability 
for individual team. The multiteam Backlog concept is well suitable for large unit size levels and up to medium 
task dependency levels. 

The Roadmap and the System Map boundary objects address the large number of teams and a high 
level of inter team dependencies in automotive design projects. The term map is used here as a visualization of 
information such as different kind of dependencies that facilitates inter team coordination that is easily available 
to all designers. Unlike rigid plans or rules the boundary object map is regularly updated during agile meetings 
or by responsible individuals. Without displaying all the available information focus is put on information that 
improves inter team coordination. Digitalized versions are implemented in tools to improve accessibility and 
usability in distributed multiteam systems. Similar visualization boundary objects have been mentioned in 
various publications (Dingsøyr, Moe, et al., 2018; Middleton et al., 2007; Tripathi et al., 2015). 

The Roadmap is an extension to the multiteam Backlog that specifies at what time larger increments 
need to be implemented to ensure overall system compatibility or strategic goals. It strengthens the Backlog’s 
ability to estimate future design activities that can be well planned. It also supports effective capacity estimation 
and hence improves Backlog prioritization. In agreement with the Backlog principles these future activities 
needn’t be specified in detail. These Backlog items additionally include known dependencies to earlier and later 
design activities. These dependencies improve Backlog prioritization and allow to reduce or transparently display 
inter team dependencies to improve inter team collaboration. Like other Backlog items the Roadmap items are 
adjusted according to relevant findings during the Refinement meetings. Especially in automotive this boundary 
object enhancement is beneficial since large parts of the overall design effort consist of the product verification 
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and product manufacture design. Both design activities are well-predictable and strongly interlinked. The 
roadmap is applicable up to a medium unit size level and a medium task dependency level. 

The boundary object System or Integration map integrates the product structure and procedural 
information. It reflects the overall product architecture including components, modules, and the (physical) 
dependencies between them. This product structure is connected to the respective design activities and their 
sequence. The corresponding visualization in the System Map improves transparency of dependencies between 
components and hence tasks during product design. Teams can rely on the system map during the Backlog 
Refinement meeting and the Planning meetings to avoid unnecessary inter team dependencies and to define 
remaining inter team dependencies. This information is valuable to the affected teams since they can adjust their 
mutual synchronization activities to address such inter team dependencies in advance. Even during the iteration, 
the System Map facilitates understanding and management of unexpected dependencies between teams. As a 
boundary object the System Map relies on continuous updates which must be incorporated into the design 
system to reflect the current system. The system map improves agile design particularly in large and complex 
automotive design projects. Especially in the complicated automotive verification process the System Map is 
beneficial since many teams must cooperate on highly interdependent tasks. The System Map is applicable to 
medium unit size levels and up to large task dependency levels. Teams needn’t understand the complete system 
and can focus on design not coordination activities. Still benefits of the System Map must be balanced with the 
effort to construct it and keep it up to date. Tripathi et al. proposed a similar digital visualization tool for 
multiteam Kanban systems in software engineering to answer to multisite organizations (Tripathi et al., 2015). 

Boundary spanning roles are also suitable inter team coordination mechanisms in automotive design. 
Responsibility to ensure coordination between teams or different design objectives in a project is located within 
a personal role. The SAFe framework proposes the Release Train Engineer and Solution Train Engineer STE roles 
to extend the Scrum Master role to larger projects. A central responsibility of such a Project Scrum Master is 
inter team coordination. The role connects different teams and facilitates coordination between them. The role 
is not attached to a specific team but to the system and a close partner of the respective PO level. It is based on 
a system understanding regarding organization structure, design process and product structure. This system 
understanding facilitates inter team coordination if teams cannot solve problems independently. The boundary 
spanning role is applicable up to a medium unit size level and a medium task dependency level. The project guide 
role is close to Project Scrum Master role relying on more traditional project management tools. A similar role is 
the system architect role. The role might be implemented by an individual or a team of experts. The architect 
predefines the product architecture and proposes architecture guidelines. The role balances the need for overall 
architecture interfaces and the ability of the architecture to adjust to findings throughout design. The definition 
of the product structure and interfaces between components has a significant influence on inter team 
coordination. Specifications of interfaces may lead teams that need to cooperate. The role is necessary in larger 
projects to enable teams to focus on specific design tasks. The architect is guided by agile design principles to 
avoid inter team dependencies and still allow emergent architecture. The architect role is applicable to the large 
unit size level and the high task dependency level.  

Cognitive mode inter team coordination mechanisms 

The large unit size and the high task dependency in automotive design result in highly interdependent 
multiteam systems. The analysed agile cognitive mode coordination mechanisms (section 4.2) are not suitable 
to answer to this coordination demand between teams. Personal relations and trust between members of 
different teams in multiteam design systems are at a much lower level than required for cognitive mode 
coordination since personal exchange happens mostly within and not between teams. Furthermore, the high 
level of task dependency in automotive complicates the emergence of shared mental models of the product and 
the design process for members of different teams. In a nutshell, the analysed agile cognitive mode coordination 
mechanisms are suited for intra team and not inter team coordination. This results in two drawbacks regarding 
automotive multiteam design systems. First, cognitive mode coordination mechanisms within teams are less 
efficient, since exchange and cooperation within teams are reduced by a larger share of design activities between 
teams. Second, team centred cognitive mode coordination mechanisms are not suitable for inter team 
coordination. To address this flaw in agile coordination strategies in automotive design, cognitive mode inter 
team coordination mechanisms have been tested and evaluated throughout the pilot projects.  
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Teams across teams represent the opportunity to transfer cognitive mode coordination from intra team 
coordination to inter team coordination. Such teams include role bearers, or team members across teams and 
integrate them into stand-alone or additional agile teams. Within these cross-section teams cognitive mode intra 
team coordination mechanisms are applicable and result in inter team coordination, since the team members 
remain interfaces to their original teams. Requirements of cognitive mode coordination such as mutual 
knowledge, personal trust, shared mental models, shared goals longevity and common grounding (Cannon-
Bowers and Salas, 2001; Kang et al., 2006) must be provided within these teams. The cross-section team concept 
is based on the compromise that some team members are part of two teams. This allows to transfer cognitive 
intra team coordination mechanisms into inter team coordination mechanisms but also results in drawbacks. 
Affected individuals must divide their attention between two teams and attend two meeting structures, which 
decreases efficiency of cognitive mode intra team coordination mechanisms in both teams. The balance between 
intra team and inter team coordination must be chosen according to project characteristics. Nevertheless, agile 
role bearer teams and specialized design teams have been proven successful as cognitive mode inter team 
coordination mechanisms throughout the pilot projects. 

Agile role bearer teams transfer agile role responsibilities from individuals towards a team. Such teams 
function like regular design teams and address excessive workload and complexity that are not manageable by 
individuals. But foremost these agile role teams answer to strong inter team dependencies that require close 
collaboration between design teams. Bass and Haxby describe tailored Product Owner teams that address inter 
team coordination in large scale agile design projects (Bass, 2015; Bass and Haxby, 2019). In the pilot projects 
Product Owners of different design teams collaborated closely within Product Owner teams to manage design 
projects that consist of multiple components and respective teams. Especially if dependencies between these 
components are high such close collaboration of the Product Owner role is beneficial. Like other agile teams the 
Product Owner teams follow agile rules and require an agile coach and a leading Product Owner. Even though, 
the Product Owners collaborate within their cross-section teams and fulfil their role as a team, the connection 
to their own teams remains unchanged to ensure that the agile design teams remain unaffected. The close team 
setup within the Product Owner teams allows to address inter team dependencies at the Product Owner level. 
Dependencies are considered during generation and distribution of tasks to facilitate cooperation on the team 
level or avoid inter team dependencies. Scrum Master or agile coach teams follow the same concept have been 
proven beneficial as well. Agile role bearer teams improve inter team coordination for high task dependency and 
medium unit size levels. 

Specialized, integrative design teams consist of a cross-section of experts of a similar functionality from 
other design teams. They ensure certain characteristics for the whole product across design teams in a design 
project. Like agile role bearer teams these specialized design teams are agile teams with a much higher level of 
collaboration and exchange than Communities of Practice. In automotive design integration teams that are 
responsible for product integration and verification have been proven very beneficial. Further specialized design 
teams have been architecture teams that specify and maintain a common product architecture throughout the 
design project. Often team members of the architecture team spend more time in the architecture teams than 
within their original teams, because of the relevance of a common product architecture. Other teams are 
generated for a limited period like system teams that establish necessary infrastructure such as a tooling system 
to improve design activities across their original design teams. Even though these teams are limited in time they 
require at least several months to grow into a team and benefit from the cognitive mode intra team coordination 
mechanisms. 
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6.2.1.3 Applicability agile inter team coordination mechanisms in automotive design 
In section 6.1.1 coordination determinants have been deduced for automotive design projects in 

comparison to software design projects. Especially higher unit size and task dependency levels have decreased 
the applicability of agile coordination strategies in automotive since respective inter team coordination 
mechanisms were lacking. Throughout the pilot projects agile inter team coordination mechanisms were 
evaluated regarding their applicability in automotive design. The spectrum of presented agile inter team 
coordination mechanisms across coordination modes are summarized and evaluated regarding applicability for 
unit size and task dependency levels in Figure 27.  

 

 

Figure 27: Overview of suitable agile inter team coordination mechanisms in automotive design according to task dependency and unit size 
levels of the design project. The location in the graph reflects the upper limit of the applicability regarding both task dependency and unit size. 

Figure 27 shows that a spectrum of agile inter team coordination mechanisms have been applied and 
evaluated to answer to the coordination demand in agile automotive design projects. As a set they answer to 
both large unit size and task dependency levels but within the underlying coordination modes their applicability 
is distinct. Impersonal mode inter team coordination mechanisms improve coordination for large unit size levels 
in large multiteam projects, but they are limited to medium task dependency levels. While they provide 
information independent of the number of participating teams, they lack detail for more complicated task 
dependency activities. Group mode inter team coordination mechanisms answer well to medium unit size and 
task dependency levels. These large meetings are limited regarding the number of teams that can be integrated 
due to the group-based information exchange which is inefficient for large teams. The community of practice 
concept allows to increase the number of teams since only team representatives are invited but is also limited 
for very large design projects. The synchronized design cycle concept is independent of the unit size and task 
dependency a generally applicable facilitator for other group mode inter team coordination mechanism. 
Boundary spanning objects and roles such as the Roadmap and System map improve inter team coordination up 
to high task dependency levels. But they are limited to a medium unit size level with some boundary spanning 
roles such as the system architect being able to address even larger systems. As boundary spanners these inter 
team coordination mechanisms are limited to a range of design objectives between teams and cannot be 
extended further since they turn unspecific in the process and lose coordination value to all teams. Individual 
mode inter team coordination mechanisms are suitable for medium to high task dependency levels but only up 
to medium unit size levels. Personal exchange is facilitated between teams independent of their location and the 
total number for high task dependency levels. For larger number of teams this inter team coordination 
mechanisms needs to be linked to more efficient coordination modes.  
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The overlapping between inter team coordination mechanisms and modes opens the opportunity to 
apply different coordination mechanisms for similar design activities. This allows to choose coordination 
mechanisms not only according to their general applicability but also regarding further aspects such as project 
dynamics or coordination system connectivity. 

6.2.1.4 Connectivity between agile inter team coordination mechanisms 
In section 4.3 it has been shown that benefits of agile product design can be derived from the underlying 

coordination system. The efficiency and flexibility of an agile coordination systems is based on the connectivity 
of different coordination mechanisms to establish a coordination system that flexibly answers to dynamic project 
characteristics. Coordination mechanisms must be interlinked to support this property. Therefore, to re-establish 
agile coordination strategies in multiteam automotive design projects both inter team coordination mechanisms, 
and the systemic behaviour of the adjusted coordination systems are relevant. This means that inter team 
coordination mechanisms must be connected to other inter team and intra team coordination mechanisms to 
ensure coordination system consistency and hence flexibility.  

In multiteam automotive design group and impersonal mode inter team coordination mechanisms are 
connected centrally and provide the foundation of the adaptive agile coordination system as depicted in Figure 
28. In the following section the connections between these coordination mechanisms are described. 

 

Figure 28: Interlinkage system of inter team coordination mechanisms in agile automotive design. Group mode and impersonal mode are the 
crucial coordination modes. 

The agile group mode inter team coordination mechanisms are multiteam agile meetings, agile role 
bearer meetings and communities of practice. These meetings are directly connected to the impersonal mode 
inter team coordination mechanisms synchronized design cycle, multiteam backlog, hierarchies of agile roles and 
information and distribution systems. Multiteam coordination meetings are only possible if all participating 
teams agree on a synchronized design cycle with the multiteam meetings as continuous pacemaker between and 
within the cycles. Furthermore, the multiteam meetings are directly connected to the multiteam backlog. 
Throughout the meetings the interdependent issues within the multiteam backlog get either refined, prioritized, 
distributed, or reviewed. The multiteam backlog is the central input source for the multiteam meetings and 
requires the meetings as adjustment mechanisms. Findings and decisions from the meetings are documented 
within the Backlog or Wikis. The multiteam meeting structure also mirrors the agile role hierarchy. Throughout 
the shared sessions the leading PO structures design activities across teams, while the other POs are responsible 
throughout the parallel sessions with fewer teams participating. Differences between multiteam meetings, agile 
role bearer meetings and communities of practice allow to address different unit size and task dependency levels 
as shown in Figure 27. The participation of the same roles, or teams and the application of the same boundary 
objects ensures that the meetings are interlinked as well. 

Boundary spanning inter team coordination mechanisms are directly connected to the agile multiteam 
meetings. The boundary objects Roadmap and the System map are used to transparently depict organizational, 
procedural and architectural dependencies in the meetings which facilitates task priorization and distribution. 
Like the multiteam backlog, the boundary objects are adjusted throughout and after the meetings according to 
the latest findings. This mutual dependency between multiteam meeting and boundary object coordination 
mechanisms ensures both efficient meetings despite little personal exchange between teams with divergent 
design objectives as well as updated boundary objects. The multiteam meetings also connect the Roadmap, 
System map and the multiteam backlog. Far reaching and less specific information from the latter objects is 
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transferred through the multiteam refinement and planning into short-team, unambiguous design activities in 
the multiteam backlog. Boundary spanner roles are also integrated into the multiteam meetings. The project SM 
is responsible for the multiteam meetings and structures them to improve the overall coordination system. 

But the multiteam meetings are also connected closely to the cognitive mode inter team coordination 
mechanisms. Cross-section design teams participate in the multiteam meetings like regular design teams. These 
meetings are ideal connectors to directly address inter team dependencies with all involved design teams. The 
agile role meetings on the other hand are necessary for agile role bearer teams to collaborate and synchronize 
between teams. The less structured group mode inter team coordination mechanisms communities of practice 
can be transformed into cross-section teams if the task dependency level increases and vice versa if the task 
dependency level decreases. Unlike in intra team coordination, cognitive mode inter team coordination 
mechanisms are not suitable to provide a central integrative coordination function in multiteam systems. Cross-
section teams and role bearer teams are cognitive mode inter team coordination mechanisms but they cannot 
provide the same implicit coordination integration as in small scale applications. Individual mode inter team 
coordination mechanisms require group or impersonal mode inter team coordination mechanisms to distribute 
information. Multiteam meetings or Wikis are both suitable mechanisms. 

In summary, agile inter team coordination mechanisms show a similar ability to generate interlinked 
coordination systems as intra team coordination mechanisms do in autonomous teams. This ability allows to 
realize coordination flexibility and efficiency in large scale applications. Furthermore, the agile inter team 
coordination mechanism are connected to the established agile intra team coordination mechanisms. This 
connection realizes a balance between intra and inter team coordination to ensure the continuity of high-
performance characteristics of agile, autonomous teams. Bass and Haxby emphasis that “as soon as self-
organizing teams work together, they must sacrifice some level of autonomy” (Bass and Haxby, 2019). Therefore 
the alignment between autonomous teams and their focus on intra team coordinating mechanisms with a 
multiteam system goal and its focus on inter team coordination remains a compromise that affects the 
coordination efficiency of both (Moe et al., 2021). 
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6.2.2 Technological enablement of agile coordination strategies 
The aim of this subchapter is to describe how new design technologies such as Generative Design can 

enable existing agile coordination mechanisms to match the coordination determinants in automotive design. 
This extension to the set of inter team coordination mechanisms from section 6.2.1 is presented as an alternative 
scenario to answer research question three: How to enable agility in automotive product design? The subchapter 
is based on the publication of Schrof et al. about technology enablement of agile automotive design (Schrof et al., 
2019). Such technology driven enhancements of coordination mechanisms allow to maintain the simplicity of 
existing agile coordination strategies regarding the number of coordination mechanisms and hence avoid 
unexpected side effects of new coordination mechanisms. Furthermore, the technological empowerment of 
individual coordination mechanisms leads to a shifted balance of coordination modes within agile coordination 
strategies. Additionally, this subchapter exemplarily shows how similar design technologies might be analysed 
and evaluated regarding their impact on agile coordination strategies. Such an evaluation improves design 
technology selection and combination for practitioners. 

The subchapter is subdivided into four sections. First, a comparison to the previous coordination strategy 
adjustments is drawn to further differentiate the opposing concepts. Second, the product verification process and 
the applied coordination strategy in automotive design is recapitulated to clarify obstacles to test-driven 
development, continuous integration, and continuous testing design practices. Third, Generative Design as new 
design technology is described. Lastly, Generative Design is analysed regarding its benefits to an agile 
coordination strategy. 

The presented adjustments of agile coordination strategies to automotive design determinants focused 
on additional inter team coordination mechanisms within the original combination of coordination modes. These 
coordination mechanisms supplement the original set of agile coordination determinants and hence enlarge the 
initially lightweight agile coordination systems. An alternative approach is to employ new design technology to 
extend and improve existing coordination mechanisms to meet the requirements of automotive design. This 
approach allows to enhance the original agile coordination strategy and avoid additional inter team coordination 
mechanisms. In the presented case the employed technology Generative Design increases the functionality of 
test-driven development, continuous integration and testing as impersonal mode coordination mechanisms in 
automotive even beyond their original level in software design. The coordination mechanism improvements are 
of such relevance that the complete coordination mode balance shifts toward impersonal mode coordination. In 
Figure 29 the tunnel instead of a somehow modified bridge across a broader river exemplarily shows how a new 
functionality provides an unexpected solution space. 

 

Figure 29: The second scenario to enable agility in automotive design introduces a new design technology that allows to develop the 
automotive product like software despite its physicality. It opens a new solution space “below” the original functionality of agile coordination 
strategies. 

The complexity and interdependence of the automotive product and the scale of the respective design 
system require an interconnected verification system that must integrate a spectrum of verification objectives 
of different design disciplines. Both digital and hardware prototypes are necessary to ensure the required 
product quality. In practice, this results in a complex verification system which requires cooperation between all 
involved teams. Throughout this integration and verification process group mode and individual mode 
coordination mechanisms are employed as dominant coordination modes to answer to the level of complexity 
and number of stakeholders. Additionally, impersonal mode coordination mechanisms such as rules, standards 
are applied. Together these mechanisms result in a multi-layered and not necessarily transparent coordination 
strategy in automotive product verification. Consequently, the coordination system slows overall design progress 
and is prone to distribute incomplete information. Experiences throughout the pilot projects have shown that 
automotive design lacks the necessary technology and IT systems for automated test-driven development 
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(Beck, 2003). Causevic et al. also emphasis such domain particularities and insufficient tool support as central 
prohibitors of test-driven development (Causevic et al., 2011). Findings from a case study of a scaled agile product 
design project confirm that immature software integration tools and infrastructure can result in serious efficiency 
losses in overall product design (Sutherland and Frohman, 2011). In automotive design necessary continuous 
integration and testing (Beck, 2003) platforms are not standardized like in software design. For this reason, only 
a small share of the digital verification system is automated and continuously connected. Their size is not 
sufficient to reduce coordination effort and increase coordination efficiency significantly. 

Despite the lack of standardized continuous integration and continuous testing infrastructure in 
automotive design new design technologies such as Generative Design are developed that provide similar 
functionality. Generative Design is employed as an umbrella term for the combination of automated design 
practices such as topology optimization (Bendsoe and Sigmund, 2004) and Vertex Morphing to design 3D 
geometries (Tyflopoulos et al., 2018). Instead of manually starting and evaluating each design cycle, algorithms 
automatically run a defined number of iterations according to prespecified objective functions and restrictions 
until the desired optimization has been reached or unexpected results require interference by a designer. 
Interfaces to neighbouring components are addressed in the design restriction. Such design practices go beyond 
the original continuous integration and testing practices since the need for designers to plan, start and evaluate 
each iteration is no longer necessary. 

Without the designer interaction active coordination between designers is not necessary anymore. 
Relevant information remains within the optimization system until manual adjustment is necessary or an interim 
result requires evaluation. The digitalized design system also reduces the number of necessary stakeholders 
regarding the spectrum of relevant specializations since they are integrated into the algorithm. It allows to start 
the design optimization with incomplete objective and restrictive functions. They are adjusted throughout the 
optimization which increases the flexibility of the design process. Another benefit is the ability to provide digital 
prototypes at any time to for example improve costumer integration. Such automated design systems are 
continuously expanded to integrate a larger share of the automotive product. This allows to reduce explicit 
coordination activities between teams that used to be responsible for separated parts of the product. In 
automotive such new design technologies require a digitalized design process and a continuous tool chain. The 
current combination of digital and hardware prototypes limits the possibilities of digitalized design approaches.  

Generative Design or similarly revolutionary design approaches such as Additive Manufacturing have a 
tremendous influence on agile coordination strategies. From a coordination perspective Generative Design is 
the equivalent of test-driven development, continuous integration and testing and hence an implicit impersonal 
mode coordination mechanism. Its automatization of design activities provides very efficient coordination. It 
integrates intra and inter team dependencies. Furthermore, it replaces currently necessary intra and inter team 
coordination activities since explicit coordination is only requested within and between teams if necessary. Its 
ability to provide results and prototypes as requested connects it well with group mode coordination 
mechanisms such as project meetings and boundary object coordination mechanisms based on prototypes. 
Furthermore, it triggers task specific individual mode coordination between the relevant designers further 
increasing coordination efficiency. This goes beyond the functionality of the original coordination mechanisms 
continuous integration and testing as intended in the agile method XP. These capabilities allow to change the 
agile coordination system to a next level. 

Implicit impersonal mode coordination replaces group mode coordination as central integrative 
coordination mode. The agile coordination strategy balance moves towards impersonal mode coordination since 
functionalities of former group mode coordination are integrated in impersonal mode coordination. In general, 
coordination efficiency increases once the system is installed and running. Still, some effort is necessary to 
update and maintain the system. Coordination efficacy also increases since more coordination happens implicitly 
within the system and explicit coordination is only requested if necessary and not as a standard. The flexibility of 
the new coordination strategy remains high since the system directly responds to bugs or changes. This 
coordination flexibility confirms the request of dynamic coordination systems of Jarzabkowski et al. 
(Jarzabkowski et al., 2012). Nevertheless, larger updates to the system might negatively affect the coordination 
flexibility.  
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In summary, new design technologies might re-establish or even improve existing agile coordination 
mechanisms to match changes in coordination determinants. This facilitates the transfer of existing agile 
coordination strategies to new application contexts. In the case of automotive design, the technology Generative 
Design allows introduce test-driven development, continuous integration and testing to the application context 
in spite of the existing constraints of scale and physicality. Similarly, technologies like Additive Manufacturing 
also the potential to improve agile coordination strategies. 
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6.2.3 Product architecture influence on agile coordination strategies  
The aim of this subchapter is to explain how changes to the product architecture present an alternative 

strategy to enable agile coordination strategies in automotive design. The in subchapters 6.2.1 and 6.2.3 
presented strategies to enable agile automotive design were based on adaptions of agile coordination strategies 
to match automotive coordination determinants. Simply put, they adapted the solution to a changed problem. 
The inverse strategy would be to adjust the problem and maintain the existing solution. In Figure 30 the increasing 
water flow is kept in the same river width by increasing its depth. 

More specific this alternative implies the adjust automotive coordination determinants to agile sweet 
spot conditions (Boehm, 2002; Kruchten, 2013) and employ existing agile coordination strategies. If the 
coordination requirements are closer to the original software application context agile coordination strategies 
will probably function as expected. Changes in the product structure are an indirect option to influence the 
coordination determinants. The product structure has a large influence on dependencies between components 
and hence on dependencies between tasks and teams. It also influences team composition and unit size due to 
the necessary expertise to design components and operate interfaces between components. This approach to 
enable agility in automotive design is straight forward for practitioners. Changes to the modularization strategy 
of the product might are easier to implement than the introduction and maintenance of additional inter team 
coordination mechanisms or new design technologies. It opens an alternative opportunity to improve agility in 
product design. 

This subchapter is divided into six parts. First, the connection between product architecture and 
organization structure is explained. Second, the definitions of product architecture and modularization in product 
design are described. Third, agile core principles are matched with corresponding modularization characteristics 
to realize a suitable modularization strategy. Fifth, a combination of existing modularization methods is described 
to realize the developed modularization strategy. Sixth, the changes of the modularization of the product are 
analysed regarding their influence on agile coordination strategies. 

 

Figure 30: The third scenario to enable agility in automotive design focuses on changing the experienced coordination determinants. The 
deeper river reflects changes to the modularization structure of the product to support agile core principles and hence recreate agile sweet 
spot condition coordination determinants. 

In 1968 M. Conway published a correlation between the organizational and the product architecture:  

"[...] organizations which design systems [...] are constrained to produce designs which are copies of the 
communication structures of these organizations." (Conway, 1968). 

This correlation is known as Conway’s law today and has been proven empirically by MacCormack et al. 
in their mirroring hypotheses publication (MacCormack et al., 2012). The described correlation is bidirectional. 
The technical product architecture also influences the functionality of the organization structure. Hatch et al. 
showed that changes in technical product structure require changes to the corresponding organizational 
structure (Hatch et al., 2001; Henderson and Clark, 1990). Bowman et al. emphasized the importance between 
organizational and technical structures since the organizational structure determines the distribution and 
availability of tacit knowledge (Bowman and Holt, 1998) which predetermines possible coordination structures. 
To take advantage of this correlation Schrof and Paetzold (Schrof and Paetzold, 2019) propose a product 
architecture modularization approach that reflects agile organization principles in the product modularization. 
As a result, it minimizes organizational inter team dependencies and reduces unit size by changing the given 
product structure. A similar approach has been termed “Inverse Conway Manoeuvre” by Skelton and Pais 
(Skelton and Pais, 2019). 
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The product architecture defines the properties, functionalities and characteristics of a product based 
on the product structure and functional structure (Krause and Gebhardt, 2018). The product structure is defined 
as the hierarchical decomposition of a product into physical modules and components and the interfaces 
between them (Pahl and Beitz, 2021). The functional structure connects product functions to components. Figure 
31 depicts the relation between product architecture, product structure and functional structure. Modular 
product structures emphasise intra-modular coupling and inter-modular decoupling of dependencies. Göpfert 
divides four classes of product modularization (Göpfert, 1998). Integral product architectures have low functional 
and structural independence between modules. Modular product architecture on the other hand aim for 
structural and functional independence between modules. Between both bookends are functionally modular 
product architectures which are physically coupled and physically modular product architectures that are 
functionally coupled. The modularization process structures components and combines them into modules. It 
includes the definition of physical and functional interfaces between modules. Module driver represent certain 
characteristics of the aspired structure and influence the modularization process. They emphasis functional, 
technical or organizational aspects during the modularization (Göpfert, 1998). Krause et al. present an overview 
of different modularization methods (Krause and Gebhardt, 2018).  

 

Figure 31: The product architecture maps functions to different components which are combined into modules. Inter team coordination 
problems (e.g. team 3 and four in module 1) are avoided if modules and teams are matched. 

Agile product design is based on core concepts (Baham and Hirschheim, 2021) and principles (Beck and 
Beedle, 2001) which depend directly on the product architecture. The following section details requirements of 
agile design on product architecture and module structure features. Compact, self-organized, responsible, cross-
functional, co-located and stable teams are at the core of agile product design. Ideally, these agile teams are 
responsible for adequately sized product modules regarding both necessary expertise and workload. In 
automotive this would translate to smaller modules and a limitation of required specialization spectrum for each 
module. To allow self-organized and independent teams such modules must be largely decoupled, and remaining 
dependencies or external expertise requirements must be transparently described in interface definitions. 
Ideally, the module structure defines clear interfaces and given requirements around any module to enable 
independence between teams responsible for modules. Short iterations that are employed in a continuous 
cadence for synchronization are emphasized in most agile frameworks. Module and hence increment size have 
a strong influence on the practicability of such short time periods. The continuous and automated integration 
of increments in product verification as an impersonal coordination mechanism requires precise interface 
definitions to facilitate automated product integration and testing. The respective verification system would have 
a strong influence on the overall product quality since it guarantees a functioning system of modules despite 
their independence on module level. It would also alert designers if systems of or interfaces between modules 
deviate from expected performance. Continuous customer validation on the other hand requires the module 
structure to mirror costumer value to establish a direct link to customer integration. Additionally, agility in 
product design emphasises the ability to adapt quickly to internal or external change. The product architectures 
must be able to answer to changes and adapt its structure accordingly. This implies change within given module 
structures but also includes change of the modularization structure. Such adaptions require several modules to 
change collectively and might result in additional modules, removal of modules and change of existing module 
structure. The overall product architecture must also provide uniform product maturity across modules to ensure 
findings are exchanged between modules as long as changes are still feasible. 
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In summary, the ideal automotive product structure to enable agility in product design consists of 
compact, decoupled modules that suit the expertise and capacity of agile teams and allow relevant increments 
in the chosen iteration cadence. Standardized interfaces between these modules facilitate continuous 
integration and testing of the overall product in iterative product verification. These interfaces also standardize 
exchange between modules and teams to facilitate inter team cooperation. The chosen module structure must 
also represent costumer value to guarantee customer validation. The whole product structure must be able to 
change according to internal or external impulses. 

Two suitable modularization methods to realize these requirements are the Integration Analysis 
Methodology of Pimmler and Eppinger (Pimmler and Eppinger, 1994) and the Methodological support for system 
building of Göpfert and Steinbrecher (Göpfert and Steinbrecher, 2000). The Integration Analysis Methodology 
evaluates the coupling between components and generates modularization concepts. The regarded connections 
at interfaces are local distribution, energy, information and material. These criteria are evaluated with the Design 
Structure Matrix (Steward, 1981). Every combination of components is evaluated in the weighted four 
dimensions. The resulting design structure matrix allows to define modules accordingly.  

The Methodological support for system building modularization method aspires functional, technical, 
and organizational decoupling of modules. It relies on five sequential steps. First, definition of premises 
(requirements, interfaces, organizational suitability). Second, generation of technical (functional and structural) 
modularization alternatives. Third, evaluation and selection of a technical alternative. Fourth, generation of 
organizational modularization alternatives, based on the technical modularizations. Fifth, evaluation and 
selection of overall solution. To adapt the automotive product architecture according to the presented agile 
design principles a combination of both modularization methods is proposed. The structure of such a hybrid 
method follows Göpfert’s combined modularization of organization and product, while the evaluation of the 
possible modularization options relies on the Integration Analysis Methodology of Pimmler. The evaluation 
criteria of the Design Structure Matrix are complemented by the module driver agility in design which reflects 
the presented agile design principles. This implies that module sizes and connections between modules are 
structured in a way that facilitates agile coordination structures significantly. Göpfert’s five step approach is 
adapted as a frame for the updated Integration Analysis Methodology. Assuming given agile organization 
structures implies that certain specifics of the organizational modularization are fixed before the technical 
modularization. Step four and step three are therefore merged and reflect technical and organizational priorities 
in the selection of a shared modularization approach. 

From a coordination perspective the modularization of the product architecture is crucial to changes in 
coordination determinants. Regarding task dependency the decoupling of the modules decreases inter team 
dependencies and emphasises intra team dependencies. This allows a focus on original agile coordination 
strategies based on mutual adjustment and cognitive mode coordination within teams. The modularization 
according to team expertise further reduces inter team dependencies since less team external expertise needs 
to be integrated. The standardization of interfaces between modules allows to implement automated impersonal 
mode coordination mechanisms for inter team dependencies. Modules in automotive cannot be decoupled 
completely due to the described physical dependencies and the necessary integration and verification system. 
But standardized interfaces allow to channel coordination between responsible teams more efficiently. The 
effective unit size is also affected by the changes. While the overall project size remains unaffected, more 
compact module sizes allow for smaller teams per module. Still, standardized module interfaces allow a reduction 
of inter team cooperation efforts. While the total number of teams increases, the coordination determinant unit 
size decreases since less designers work in interdependent projects. In summary, the presented modularization 
strategy reduces the coordination determinants task dependency and unit size close to their original agile sweet 
spot levels. This reorganisation of the product architecture improves the suitability of agile coordination 
strategies to automotive application contexts. 
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6.2.4 Findings in response to research question three 
In the introduction chapter automotive design is described as being object to an increasingly faster 

changing design environment. Conventional and established design practices are no longer able to answer to 
these dynamics. Agile design was developed to answer to a similar challenge in software design two decades 
ago. The objective of the thesis at hand is to determine if agile design can be a solution for automotive design 
despite the differences between both industries. Research question three asks for strategies to realize agility in 
automotive design that account for the fundamental differences: How to enable agile product design in the 
automotive domain? 

The answer to research question three requires a linkage of the earlier findings. Chapter 4 shows that 
the reported benefits of agile methods are related to the respective coordination strategies. The lightweight agile 
coordination strategies ensure flexibility, efficiency, and efficacy in product design. Contrary to these findings 
chapter 5 summarizes negative experiences and problems of employed agile methods in automotive design. It 
emphasises that constraints of physicality and scale reduce the applicability of agile methods in automotive 
design. Both require multiteam design cooperation in contradiction to the original agile focus intra team 
cooperation. 

The experienced problems are further differentiated in subchapter 6.1 with a focus on the 
dysfunctionality of the respective agile coordination strategies in automotive design. The findings clearly indicate 
that the constraints of scale and physicality are linked to coordination determinants in automotive that differ 
significantly from agile sweet spot conditions. The original balance of agile coordination modes and the 
respective set of coordination mechanisms does not match these automotive coordination determinants. More 
specifically, the employed agile coordination strategies lack inter team coordination mechanisms to apply to the 
multiteam design system. Furthermore, the connectivity of the agile coordination systems suffers which results 
in a decreasing self-adjustment ability of the coordination system. The coordination specific analysis allows to 
explain and differentiate the experienced loss in flexibility, efficiency, and efficacy with the dysfunctionality of 
agile coordination strategies in automotive design.  

In subchapter 6.2 three distinct scenarios are discussed to re-establish agile coordination strategies and 
hence agility in automotive design. They respond directly to research question three. These scenarios differ 
regarding their basic approach to enable agile coordination strategies in automotive design. Scenario one intends 
to recreate agile coordination strategies in accordance with automotive coordination determinants. Agile inter 
team coordination mechanisms are introduced and the connectivity of the coordination system is re-established. 
Scenario two employs a new design technology to enable existing impersonal mode coordination mechanisms 
to match coordination determinants in automotive design. Additionally, the balance of agile coordination modes 
is reconfigured. Scenario three addresses automotive coordination determinants. Changes to the product 
architecture allow to adjust automotive coordination determinants to better match the original agile 
coordination strategies.  

Table 12: Implemented and evaluated agile inter team coordination mechanisms throughout pilot projects. 

Group 
mode 

Individual mode Impersonal mode Boundary spanning Cognitive mode 

Scaled agile 
meeting 

Instant messaging, video 
conferencing  

Agile role hierarchy Roadmap, 
System map 

Agile role bearer team 

Agile role 
bearer meeting 

Team member rotation Documentation, and 
information distribution 
system 

Boundary spanning role Specialized design 
team 

Community of 
Practice 

 Automotive specific 
Definition of Done 

Multiteam Backlog Integrative design 
team 

 

Scenario one addresses the lack of agile inter team coordination mechanisms in multiteam project 
settings in automotive design. It presents agile inter team coordination mechanisms which have been tested and 
evaluated throughout the agile pilot projects. Table 12 summarizes the implemented inter team coordination 
mechanism according to the respective coordination mode. The employed inter-team coordination mechanisms 
have been compared to similar practices from scaled agile methods such as SAFe and LeSS and to the current 
scientific literature of large-scale agile software development. Compared to agile sweet spot conditions 
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automotive coordination determinants differ in the larger unit size and task dependency. The set of agile inter 
team coordination mechanisms has been evaluated and matched regarding their applicability on both unit size 
variations and task dependency variations in multiteam design system. Additionally, the connectivity of the new 
set of intra and inter team coordination mechanisms has been reaffirmed to ensure the flexibility and self-
adjustment ability of the resulting agile coordination strategies. These characteristics are central to the capability 
of agile coordination strategies to adjust to changing project dynamics.  

Scenario two employs Generative Design as a design technology to automatically and independently 
run iterative design cycles to generate 3D topologies according to prespecified objective functions and 
restrictions. From a coordination perspective this technology allows to realize continuous integration and testing 
coordination mechanisms across several teams. Unlike the original agile practices which include test driven 
development and requires designers to design and evaluate every iteration manually the new approach allows 
the system to run as many iterative design cycles as necessary to realize the desired output. Designers are only 
addressed if manual interaction is required, or interim results need evaluation. This implies that continuous and 
frequent coordination activities between different teams that were necessary to realize components 
cooperatively are no longer necessary, since the design algorithm integrates the relevant design objectives. 
Coordination efforts are reduced, and coordination efficiency increases significantly while coordination efficacy 
remains strong. Furthermore, the new design technology reduces necessary inter team coordination and hence 
allows to adjust the balance of coordination modes within agile coordination strategies from mutual adjustment 
towards impersonal mode coordination like the approach in software only design. 

Unlike scenario one and two scenario three aims to change the coordination determinants in 
automotive design and not the coordination systems. Changes to the existing product modularization structure 
are implemented to match it with agile organization setups. Module size, necessary specializations for module 
design activities and module interdependencies are adjusted to reflect the core concepts of agility in design. 
Existing modularization methods are changed to reflect agile design as an additional modularization driver. The 
implemented change to the product modularization approximates automotive to agile sweet spot coordination 
determinants. This improves suitability of existing and proven agile coordination strategies in automotive design.  

The three scenarios are presented in subchapters 6.2.1, 6.2.2, and 6.2.3 as independent and distinct 
concepts to enable agile coordination strategies and hence agility in automotive design. Nevertheless, they are 
not exclusive and may well be combined in practical applications to obtain optimal results. One paradox of 
product design as proposed by Paetzold et a. (Paetzold et al., 2017) states that the same exact results of a 
development process is never expected twice, because development processes are different in each case. 
Therefore, a single ideal solution is improbable for a spectrum of slightly varying application contexts. Whereas 
a set of approaches allows to tailor a suiting solution for specific requirement. Furthermore, pilot projects 
indicate a beneficial mutual influence of scenarios one and three onto each other. 

Regarding the core concepts of agility scenario one and two and to a minor degree scenario three 
considerably reduce the autonomy of self-organized teams to enable cooperation across teams as predicted by 
Bass and Haxby for large agile projects (Bass and Haxby, 2019). Even though, this implies a reduction of the agility 
of individual teams it increases the overall agility of multiteam design systems and therefore presents a possible 
optimum in automotive design. In such a system behaviour the benefits of autonomous, empowered teams are 
inferior to the benefits of alignment as questioned by Moe et al. (Moe et al., 2016).  

From a research perspective the presented scenarios one, two and three are iteratively designed research 
artifacts connecting the theoretical product design fields coordination theory and agile product design. These 
artifacts might well be analysed from different theoretical perspectives for further evaluation and borrowed to 
further empiric application fields.  
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 Conclusion  
 

“Science never solves a problem without creating ten more.” 
 George Bernard Shaw 

 

 

This chapter concludes the thesis by summarising the key research findings in relation to the research 
questions and discussing the value and contribution thereof. The aim of this thesis is to investigate and enable 
agility in automotive design contexts. An Action Research methodology was chosen to approach this aim. Agile 
product design methods and practices were employed, evaluated, and adjusted throughout eleven automotive 
design projects. The findings show that agile methods are object to constraints in the automotive domain. These 
constraints are driven by the physicality of the product and scale of the development process. Both factors result 
in multiteam design systems instead of independent autonomous teams and hence require inter team 
coordination mechanisms. The research highlights the efficiency of agile coordination strategies to explain the 
empirically proven benefits of agile methods. Nevertheless, original agile coordination strategies were adjusted 
to autonomous teams and therefore lack inter team coordination mechanisms necessary in automotive design. 
To realize agility in automotive design three adjustment scenarios of agile coordination strategies are introduced 
to cope with the domain specific coordination requirements. 

The conclusion chapter is subdivided into five sections. In the first section, the findings are summarized in 
relation to the research questions. The second section defines the research contribution and emphasises what 
new knowledge has been added. The third section addresses research limitations, and the fourth section provides 
opportunities for future research. The last section concludes the thesis with a closing summary. 

7.1 Response to the research questions 
The first research question “How to explain agility and its benefits theoretically?” was approached by 

three sequential steps. First, the selection of an appropriate design theory that reflects agile design 
characteristics and functionality. Second, the development of a design theory grounded research model that 
suits the research aim, data availability, and the research project restrictions. Third, the evaluation and 
comparison of popular agile methods and their empirically reported benefits according to the research model. 

Dingsøyr et al. stated in a review of agile design that the theory behind agile design is multifarious and a 
holistic explanation why agile works does not exist (Dingsøyr et al., 2012). Different design theories have been 
applied successfully to explain specific aspects of agile design. Several studies rely on coordination theory to 
reflect on and explain agility in design (Dingsøyr, Bjørnson, et al., 2018; Pries-Heje and Pries-Heje, 2011; Strode 
et al., 2011). The four core concepts of agility involve and specify coordination between changing parties which 
underlines its importance (Baham and Hirschheim, 2021). The focus on personal exchange and communication 
in the Agile Manifesto for Software development (Fowler and Highsmith, 2001) underlines the relevance of 
coordination to realize agility in design. Coordination theory is also central to evaluate and enable inter team 
cooperation which is crucial in automotive design. More specifically, coordination theory enables to analyse and 
optimize the balance between team autonomy and system dynamics in agile multiteam systems. Additionally, 
coordination theory models respect dynamic system behaviour which allows to analyse how change and 
disturbances affect design systems. This ability is key to inflict change and understand its impacts in the chosen 
Action Research methodology. It also aides to explain the experienced constraints in agile automotive design. 
For these reasons coordination theory was chosen as the underlying design theory for this study. 

The practical application of coordination theory in the research project required the development of a 
research model. This coordination reference model was shaped according to the coordination strategy concept 
(Li and Maedche, 2012; Strode et al., 2012). The coordination strategy defines coordination determinants in 
relation to project characteristics and relates suitable coordination modes and respective mechanisms to realize 
coordination efficiency. Changes to the coordination determinants or the integration conditions lead to 
adjustments of the coordination mechanisms. The research model is based on the model of Van de Ven et al. 
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(Ven et al., 1976) and follows its selection of the coordination determinants task uncertainty, task dependency 
and unit size. Still, alterations to the original model were added to better reflect agile design characteristics. 
Cognitive mode coordination (Espinosa et al., 2004) was integrated to better reflect cooperation in close teams 
and boundary spanning coordination through boundary objects (Star and Griesemer, 1989) was added to explain 
the functionality of design artefacts in agile methods. Additionally, the model was designed to account for mutual 
connections between coordination mechanisms to analyse the system behaviour of interlinked agile practices. 
These adjustments enable the coordination reference model to analyse coordination strategies of agile methods. 
The deduced coordination strategies allow to decompose the system behaviour of the respective agile methods 
and explain reported benefits. Furthermore, the coordination reference model enables to explain 
dysfunctionalities in agile coordination strategies caused by external impacts or unsuitable coordination 
determinants. Both aspects are crucial to trace agile constraints. 

The application context independent analysis of agile coordination strategies revealed characteristic 
patterns which reoccur across popular agile methods. They differ distinctively from conventional automotive 
design methods regarding their focus on undisturbed collaboration in autonomous, self-organized teams. The 
avoidance of external dependencies and the focus on intra team coordination results in excellent intra team 
coordination efficiency. This set-up ideally supports cognitive mode coordination mechanisms in daily 
cooperation. They require few explicit coordination activities and result in efficient, fast, and flexible 
coordination within teams. Besides implicit cognitive mode coordination mechanisms explicit group mode 
coordination mechanisms are emphasized to structure design projects. They provide efficacy, synchronization, 
knowledge exchange and learning in teams. Impersonal mode coordination mechanisms in the form of boundary 
objects are also complemented to ensure coordination efficiency. Some agile methods realize implicit impersonal 
mode coordination such as continuous integration and testing through the employment of respective IT systems. 
Unlike implicit cognitive mode coordination mechanisms, they are not restricted to small teams but also apply 
to multiteam systems. 

Nevertheless, the deduced selection of coordination modes alone could not sufficiently explain the 
experienced benefits. The connectivity between the coordination mechanisms is crucial to explain the 
experienced benefits. It enables the system of coordination mechanisms to self-adjust to changing design 
requirements. It relies on several characteristics of agile methods. First, the compact length and iterative nature 
of the implemented design cycles allow to readjust the coordination settings according to changing project 
dynamics with every new iteration in short time lapses. Second, the practices in agile methods actuate and 
connect coordination mechanisms without manual adjustment. Third, the coordination mechanisms are 
designed to mutually activate each other answering to project dynamics. The composition of coordination 
mechanisms in agile coordination strategies is designed for a spectrum of requirements. The coordination 
strategy remains lightweight through changing projects dynamics since the adjustment is performed implicitly 
by straight forward design practices. This self-adjusting coordination system results in both very effective and 
efficient coordination in agile design projects. 

The second research question “What constraints reduce agile design applicability how in automotive 
design?” provides context-specific empirical data and analyses it based on the established coordination 
reference model. It was addressed by two sequential steps. First, the collection and classification of context-
specific problems that emerge if existing agile methods are employed in automotive design. This step included 
the comparison of the collected data to the established constraints of scale and physicality concepts. Second, 
the explanation of the experienced problems based on dysfunctionalities of agile coordination strategies in 
automotive design. Data collection was based on eleven agile pilot projects in automotive design contexts. These 
pilot projects were situated in typical application contexts to include a representative spectrum of automotive 
design requirements. 

The bottom-up data analysis of the pilot projects showed that the employed agile methods face a 
repeating set of problems in automotive design. Numerous inter team dependencies, overwhelming numbers of 
stakeholders and demanding team composition in multiteam design systems, unclear task division, slow 
prototyping and incomplete product integration in short iterations were the most prominent among them. A 
corresponding top-down data analysis of the same data set matched the experienced problems to the agile 
constraints categories scale of design system and product physicality. Based on cause-effect relations both 
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categories were evident in agile automotive design. Their impacts overlap and mainly cause inter team 
coordination problems in multiteam design systems. Therefore, in the thesis at hand constraints of physicality 
are viewed as an additional driver to the well-established constraints of scale category. This simplification of the 
problem space allowed to comprehensively analyse it with the coordination reference model. 

The respective analysis identified dysfunctionalities of agile coordination strategies in automotive design 
that directly relate to the experienced problems. Coordination determinants in large-scale automotive design 
differ from agile sweet spot conditions. The number of involved teams increases the unit size level, while physical 
and procedural interdependencies drive the task interdependency level. The task uncertainty level remains 
invariant in automotive design compared to agile sweet spot conditions. These coordination determinants 
decrease the suitability of agile coordination mechanisms and respective coordination modes. Most affected are 
implicit coordination mechanisms. Implicit cognitive coordination mechanisms rely on close teamwork and are 
therefore inefficient for inter team coordination. The necessary technology for implicit impersonal coordination 
mechanisms such as continuous integration and testing is not able to manage the level of task interdependency 
in automotive design yet. Even though, the coordination reference model recommends impersonal mode 
coordination for larger unit sizes, agile coordination strategies lack the respective coordination mechanisms. 
Instead, agile lightweight impersonal mode coordination mechanisms such as boundary object mechanisms are 
overstrained by the number of parties and their opposing design objectives. The same applies to agile group 
mode coordination mechanisms. Agile coordination mechanisms were shaped to improve intra team 
coordination. They lack inter team coordination mechanisms able to deal with the task interdependency and unit 
size level in multiteam design systems.  

The impact of automotive coordination determinants on agile coordination mechanisms also impairs the 
connectivity of the agile coordination system. The disturbed connection between coordination mechanisms 
decreases the ability of agile coordination strategies to self-adjust to project dynamics. The balance between 
group mode coordination mechanisms and boundary objects is overstrained due to number of different parties 
and the spectrum of specializations. Personal exchange necessary for cognitive mode coordination mechanisms 
decreases with ever larger meetings. Unlike group mode, individual mode coordination mechanisms remain 
functional in multiteam systems and therefore keep their ability to activate other coordination modes. Still, 
boundary spanning roles such as the Product Owner are affected by the larger network of inter team 
dependencies. The high task dependency level impairs the connection between group mode and impersonal 
mode coordination mechanisms. Boundary objects that structure meetings and get updated by the results are 
not suitable for the task dependency level anymore. With multiteam systems seriously affecting cognitive mode 
coordination this leaves only few cognitive mode coordination mechanisms connected to the coordination 
system.  

Research question three asks for alternative approaches to introduce agile product design to automotive 
despite the earlier findings: How to enable agility in automotive product design? The research project generated 
three distinct scenarios to compensate the dysfunctionalities of agile coordination strategies in automotive 
design. While scenario one and two focus on the coordination system to match automotive coordination 
determinants, scenario three adjusts the product structure to reconfigure automotive coordination 
determinants to interlock with agile coordination strategies.  

Scenario one adjusts agile coordination strategies to meet the coordination requirements of automotive 
design. The selection of agile coordination modes and respective mechanisms is reconfigured to match 
automotive coordination determinants. Agile inter team coordination mechanisms are introduced. These 
additional coordination mechanisms not only address the lack of inter team coordination but also re-establish 
the connectivity of the agile coordination system. Group mode inter team coordination is provided by scaled 
agile meetings, agile role bearer meetings and communities of practice. Individual mode inter team coordination 
relies on instant messaging, video conferencing and team member rotation to address the larger distances 
between teams. Impersonal mode inter team coordination mechanisms are agile roles hierarchies, automated 
documentation, information distribution systems, and a Definition of Done employment that reflects the 
complex verification process in automotive. Boundary spanning inter team coordination mechanisms are Product 
roadmaps, System maps, boundary spanning roles and multiteam backlogs. Cognitive mode inter team 
coordination mechanisms include agile role bearer teams, specialized design teams and integration design 
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teams. These additional inter team coordination mechanisms re-establish agile coordination strategies in 
automotive multiteam design contexts. They have been tested and evaluated throughout the agile pilot projects. 
According to project settings and coordination requirements subsets of the presented inter team coordination 
mechanisms might be suitable. 

Scenario two also adjusts agile coordination strategies to match automotive coordination determinants. 
But unlike scenario one the adjustment is not based on additional inter team coordination mechanisms. Instead, 
the impact of the new design technology Generative Design on agile coordination strategies in automotive is 
described. Generative Design allows to automatically and independently run iterative design cycles according to 
prespecified objective functions and restrictions. From a coordination perspective this technology realizes 
continuous integration and testing coordination mechanisms in multiteam design system. Dependencies 
between components are mostly managed within the digitalized design system. Designers from the responsible 
teams are only addressed if manual interaction is required, or interim results need evaluation. Therefore, the 
need for continuous and frequent coordination activities between teams to realize components cooperatively is 
reduced. Coordination efficiency increases significantly while coordination efficacy remains high. The Generative 
Design technology shifts the focus of agile coordination strategies from mutual adjustment towards impersonal 
mode coordination. 

In contrast to scenario one and two, scenario three adjusts the automotive coordination determinants to 
re-establish existing agile coordination strategies. It changes the product modularization structure to match it 
with ideal agile organisation setups. While the overall product remains unchanged its decomposition into 
modules is reorganized. The average module size and the quantity of necessary specializations for module design 
activities are reduced to match the output of individual agile teams. Additionally, module decoupling is 
emphasized to increase team independency of responsible teams. These changes in the module structure 
recreate agile sweet spot conditions and the respective coordination determinants in automotive design which 
increase the suitability of existing agile coordination strategies.  

The three scenarios are described independently but they do not exclude each other. Data from agile pilot 
projects indicate that especially scenarios one and three complement each other. Therefore, the scenarios might 
well be combined to improve their impact. Their combined introduction allows to realize agility in automotive 
design despite the much larger task dependency and unit size level compared to agile sweet spot conditions. The 
chosen coordination strategy approach is not constrained to a specific application domain. 

7.2 Research contribution 
The research contributes to the theoretical field of agile product design by its conceptualization of agility. 

It is based on two complementing perspectives. Agility as an attribute focuses on a conceptualization of agility. 
It characterizes the system behaviour and central traits of agility from an outside in perspective. Agility as a 
construct focuses on how to realize agility. It describes crucial elements and complete frameworks to realize 
agility in product design from an inside out perspective. The combination of both perspectives provides an 
unambiguous understanding of agility to avoid the Guru problem in practical applications and research. 

The research includes rich case descriptions of agile design in automotive application contexts. It 
summarizes and categorizes repeating challenges of popular agile methods in the domain and grounds them 
theoretically. It proves the existence and interference of the established concepts agile constraints of scale and 
physicality within the application environment. The research compares and differentiates the cause-effect 
relations between both constraints and shows a strong overlap between their effects. This allows to position 
constraints of physicality as a subcategory of constraints of scale to simplify problem understanding for the 
selected research case. The connection of both constraints exemplarily shows how opposing characteristics of 
domains do not necessarily cause opposing constraints to agility. It underlines the broad applicability of agile 
design and avoids premature domain or product biased specific exclusions of agile product design. 

The research employs coordination theory as theoretical lens to decompose and analyse agile methods 
to explain their empirically proven functionality and benefits. This proceed provides theoretical grounding to 
empirically validated design methods. While coordination theory has been employed in the software domain no 
comparable use is known to the author in the automotive domain. The research contributes a coordination 
reference model that is specifically designed to mirror agile design characteristics to allow for precise analyses. 
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Unlike earlier coordination models it connects selected theories from coordination research in the fields of 
organization research, team research and multiteam cooperation research. The coordination reference model 
allows to analyse individual agile practices and agile system behaviour in relation to the application domain based 
on the coordination strategy concept. 

The coordination reference model employs the coordination strategy as theoretical concept to connect 
dynamically coupled application environment characteristics with coordination practices. This allows to connect 
experienced practical problems of agile design with flaws in the respective coordination strategies. It underlines 
the influence of the application context on the coordination strategy. The concept accounts for dynamic changes 
in the balance and hence represents the core benefits of agility: its adjustability and flexibility in direct relation 
to project dynamics. The approach allows to adjust both agile design practices and or characteristics of the 
application context to enable agility in automotive design. For the automotive domain several scenarios to avoid 
agile constraints are presented. This proceed is not limited to automotive design but opens opportunities to 
expand agile design to further domains. 

7.3 Research limitations 
The findings of this study have to be seen in light of some limitations. This section announces and reflects 

on those limitations. In the research outlook recommendations how to avoid the described limitations are 
supplemented. 

The first limitation set concerns the novelty of the research area as a recent phenomenon which impairs 
the design of the research aim and the respective research questions. The selected research area agile 
automotive design lacks previous secondary literature. The existing publications in the automotive domain 
consist mainly of practice-oriented experience reports. Comprehensive literature reviews are missing, and few 
publications include theoretical grounding. Unlike the automotive domain agile software development is well 
researched and based on a rich research stream. This imbalance towards software development translates into 
a software bias in the research community which translates into the work at hand. 

The lack of literature specific to the research phenomenon was addressed by comparably broad research 
questions that address the complete domain automotive design and the functionality of agile design in general. 
More narrow research questions would have facilitated data collection and improved findings sensitivity. In 
retrospect a focus on the early phase of automotive design would have resulted in more conclusive data sets. 
Furthermore, the research questions do not account for the significant change within the domain. Even within 
the limited time horizon of the research project the transformation from conventional mechatronic design 
towards software or software-alike design was evident and had a relevant influence on the results. Regarding 
the chosen coordination reference model, the given coordination determinant Unit Size did not adequately 
reflect the multiteam design systems in the automotive domain. 

The second limitation set reflects the chosen research approach. The selected Action Research 
methodology is beneficial for parallel problem understanding and practice relevant solution design. This 
advantage in research on novel research phenomena from practice comes with drawbacks compared to more 
precise and adjustable research methods. It impairs the realized research depth in particular aspects (e.g. the 
sensitivity of the efficiency measurement of coordination practices or the comparability of the pilot projects). 
Additionally, Action Research data sets are context and case specific which complicates the generalization of the 
findings from specific pilot projects to the complete domain. Still, typical Action Research methodology based 
limitations such as a strong researcher bias or focusing on action and neglecting research and hence being little 
more than consultancy (Avison and Wood-Harper, 1991) were addressed through the balanced research 
approach. The coordination theory grounded data analysis as well as the systematic and comprehensive data 
collection ensured validity of the data and rigour in the methodology which are often criticised in Action Research 
(Baskerville and Wood-Harper, 1996). 

The research is also affected by a sample bias since the selection of the pilot projects was influenced by 
research unspecific requirements such as irrevocable management wishes. Furthermore, the set of eleven pilot 
projects does not reflect the comprehensive activities in automotive design and therefore only realizes a partial 
research phenomenon coverage. Generalizing results to the automotive domain based on the Action Research 
pilot projects was only possible with limitations. Therefore, scenarios instead of generally applicable frameworks 
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were presented in the discussion. Basing the study in larger sample size could have generated more accurate 
results. But the necessary effort for pilot project support impeded a larger set of cases. Furthermore, the research 
was limited to one company which limits the validity to the complete domain. 

Lastly, the scope of the discussion suffers from incomplete scenario evaluation. While scenario one and 
two were evaluated to a certain degree in practice, scenario three remains a theoretical construct based on 
applicable theories and comparable cases from different contexts. These limitations of the discussion were also 
driven by the restricted time horizon of the research project. 

7.4 Further work 
The thesis at hand opens several opportunities for future research. Regarding the presented scenarios to 

overcome agile constraints in the automotive domain the theoretical scenario three opens the opportunity for 
comprehensive practical validation in automotive design. Little research has been published that connects 
product modularization with the applicability of agile design throughout the design process. Additionally, the 
combination of all three scenarios should lead to interesting findings and help to evaluate the scenarios in 
dimensions ranging from ease of application towards practical benefits to reduce agile constraints.  

The current set of the pilot projects leaves research opportunities to evaluate the findings in other 
automotive design contexts and throughout later phases of automotive design. Large and continuous projects 
provide the chance to increase the relevance of the findings to complete automotive design projects. Since the 
presented research project was limited to one partnering automotive OEM further validations with other OEMs 
or TIER 1 supplier will increase the significance of the findings. Further research opportunities are not restricted 
to the automotive domain. The design of the coordination reference model and the scenarios to avoid agile 
constraints applies to other large-scale hardware product domains. This opens the possibility to transfer the 
findings to a spectrum of industries that face similar challenges of increasing change driven by global phenomena 
such as digitalization. Even in software development the application of the coordination reference model could 
be studied in comparison to existing coordination models to address the experienced challenges of scale in large 
software development programs. 

Regarding the second research limitation set due to the selected research methodology the application 
of more standardized qualitative methods such as case studies or the application of quantitative research 
methods such as surveys might result in additional and more precise findings. Furthermore, research variables 
such as confirmed efficiency gains with partnering companies could improve research acceptance and its 
transferability to practice. Especially a precise definition and measurement of the efficiency of the employed 
coordination strategies would allow a better selection of suitable inter team coordination mechanisms for 
multiteam design context conditions.  

 

7.5 Closing summary 
Within this conclusion chapter a brief summary of the PhD thesis at hand was given. It included the original 

research aim, the selected research questions and the chosen research methodology. The main findings were 
presented in relation to the respective research questions to show the consistency of the research project. Three 
distinct scenarios to realize agility in automotive design despite the verified constraints to agility in this domain 
were presented. Additionally, limitations of the research were announced and reflected and opportunities for 
future research were presented. To finalize this PhD thesis the author has selected a quote to underline both the 
inherent incompleteness of research and the necessity to conclude anyways. 

 

“A great dissertation is a finished dissertation”  
Ancient Grad Student Proverb 
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APD Agile Product Development/Design 

COP Community of practice 

PD Product Development  

PO Product Owner 

SM Scrum Master 

XP Extreme Programming 

SAFe Scaled Agile Frameworks 

LeSS Large Scale Scrum  

OEM  Original Equipment Manufacturer 

TIER1 supplier  First level supplier 
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