

Universität der Bundeswehr München
Institut für Technische Produktentwicklung

A coordination perspective of agility in

automotive product development.

Julian Immanuel Schrof, M.Sc.

Vollständiger Abdruck der von der Fakultät für Luft- und Raumfahrttechnik der Universität
der Bundeswehr München zur Erlangung des akademischen Grades eines

Doktor-Ingenieur (Dr.-Ing.)

genehmigten Dissertation.

Gutachterin / Gutachter:
1. Univ.-Prof. Dr. Ing. Kristin Paetzold
2. Prof. Dr. Ing. Torgeir Dingsøyr

Die Dissertation wurde am 07.06.2022 bei der Universität der Bundeswehr München
eingereicht und durch die Fakultät für Luft- und Raumfahrttechnik am 07.11.2022

angenommen. Die mündliche Prüfung fand am 21.11.2022 statt.

i

Acknowledgement

I would like to start by acknowledging that there have been many people who have helped me to finish
my Ph.D. thesis with inspiration and motivation. I would like to express my deepest gratitude to all of you.

First, I am deeply grateful for my wonderful wife Christina who has been my foundation throughout this
project. I also would like to thank my parents and my sisters for their belief in me and for introducing me
early to the fascinating world of science.

I would like to express my sincere gratitude to my advisors Prof. Dr. -Ing. Kristin Paetzold and
Prof Dr. -Ing Torgeir Dingsøyr for their guidance, motivation, and trust. Both invested many hours to discuss
theories and review findings which I am deeply grateful for. Kristin gave me the opportunity to conduct this
industrial research project with scientific rigor at her chair. Torgeir inspired me to connect the novel research
field agile automotive development with the established field large scale agile software development. From
our exchange emerged the idea to employ coordination theory as the theoretic lens for this thesis.

I would like to extend my sincere thanks to Dr. rer. nat. Sabine Rittmann, Dr. rer. nat. Florian Fischer and
Dr. -Ing. Nicolai Martin who were my mentors at the BMW Group. Sabine encouraged me with both here
ease and proficiency throughout the complete PhD project and has become a dear friend. Florian’s
farsighted vision of agile automotive design laid the groundworks for my research and our exchange was a
prominent orientation. Nicolai encouraged me to overcome obstacles and find my own path by sharing his
own experiences from top level management. My sincere thanks go to my colleagues at the BMW Group,
who believed in me and gave me the chance to validate theoretical constructs in practical projects. I would
like to highlight the welcoming cooperation with Dr. -Ing. Robert Irlinger, Dr. -Ing. Johannes Staeves and
Rainer Rump.

Furthermore, I would like to thank the whole team at the LRT 3 in Munich for the great working
atmosphere, the fruitful discussions, and the organizational and technical support. Especially the friendly
collaboration with Dr. -Ing. Alexander Atzberger and Dr. -Ing. Tobias Schmidt has been very valuable. I was
also lucky to supervise several excellent students during their Bachelor and Master theses. I would like to
highlight the great teamwork with Felix Rathert, Franziska Scharold, Jörg Holzer and Andreas Sedlmair. I am
sure that I learned at least as much from them as they did from me.

I would also like to thank the whole SINTEF Digital team in Trondheim, Norway where I spend a fruitful
research exchange. I appreciate the open exchange, the new perspectives, and the invitation into exciting
research projects. Thanks to Anastasiia Tkalich and Tor Sporsem I felt like a part of the team from the very
first day. They made my stay most enjoyable.

ii

iii

Abstract
Traditional automotive companies are increasingly object to unfamiliar competition from tech

companies. The concomitant speed in new product development and the induced changes in technology
overstrain their established product development systems. Alternative, more flexible and customer-oriented
design approaches such as agile product development are necessary instead. Agility reflects the continual
readiness to create, embrace, react to and learn from change to improve customer value. While agile product
development has become a standard in software development its transferability to mechatronic product
development in general and cars in specific is yet to be proven. The aim of this research is to explore agility in
automotive product development. It is divided into three research objectives. First, to systematize agile product
development in respect to design context characteristics based on coordination theory. Second, to evaluate agile
methods in the automotive domain and categorize agile constraints. Third, to generate domain specific agile
coordination strategies to avoid the experienced constraints.

To accomplish this research aim an Action Research methodology was employed. During a four-year
research project agile methods and practices were introduced to a spectrum of automotive development
requirements in eleven pilot projects. Change in the form of adjusted agile practices was actively and repeatedly
introduced to observe its impact on development dynamics. The methodology allows to iteratively design and
evaluate context-specific agile practices in collaboration with affected product designers within their application
contexts. The researcher was an active part of the development projects and able to directly collect qualitative
data sets. To ensure research rigor participation across projects was varied, data sets were analysed according
to a standardized process, and findings were cross-referenced with supplementary qualitative and quantitative
data sets from outside the pilot projects.

A coordination reference model is established to provide a comprehensive understanding of agile
product development in relation to context characteristics. The findings show that agile methods rely on
emergent, self-adjusting coordination strategies based on mutual adjustment coordination modes. The
lightweight composition of interlinked coordination mechanisms autonomously adjusts to changing project
dynamics. But in the automotive domain agile product development is limited by constraints of scale and
physicality. Both cause multiteam development systems and translate into coordination determinants that
overstrain original agile coordination strategies. Their lack of inter team coordination mechanisms outbalances
the self-adjustability of the coordination system. Three scenarios are presented to avoid this imbalance. Scenario
one introduces domain-suitable inter team coordination mechanisms which match automotive coordination
determinants. Scenario two applies digital development technologies which enable to develop hardware like
software products. Scenario three changes the product structure to realize coordination determinants that suit
original agile coordination strategies.

The research improves the applicability of agile product development in the automotive domain. It
provides a straightforward tool to adjust agile methods to project specific requirements. Additionally, it allows
to estimate realistic benefits of agile product development based on project characteristics. The theoretical
contribution of the research includes a model-based understanding of agile system behaviour in different
application contexts. This proceed is not limited to automotive development and hence opens opportunities to
research agile product development in further domains. Moreover, the comparison of constraints of scale and
physicality in the automotive development shows how opposing characteristics of domains cause similar
limitations to agility and hence allows to connect both research streams.

iv

v

Kurzfassung
Traditionelle Automobilkonzerne sind in zunehmender Weise einem aggressiven Wettbewerb durch

Tech Companies ausgesetzt. Die gesteigerte Entwicklungsgeschwindigkeit für Produkte und der beschleunigte
Technologiewandel überfordern dabei die etablierten Entwicklungsprozesse. Stattdessen sind flexiblere und
kundenzentrierte Entwicklungsmethoden wie agile Produktentwicklung notwendig. Agilität umfasst die
kontinuierliche Bereitschaft Wandel zu erzeugen, zu akzeptieren, auf Wandel zu reagieren und davon zu lernen,
um den Kundenwert zu erhöhen. Obwohl agile Produktentwicklung mittlerweile ein Standardvorgehen in der
Softwareentwicklung ist, muss die Übertragbarkeit auf die Entwicklung mechatronischer Produkte wie Autos
noch nachgewiesen werden. Das Ziel dieses Forschungsprojekts ist daher die Untersuchung von Agilität in der
Automobilentwicklung. Dieses Ziel teilt sich in drei Teilziele auf. Erstens, die Systematisierung agiler
Produktentwicklung in Abhängigkeit zu domänenspezifischer Entwicklungsrahmenbedingungen basierend auf
der Koordinationstheorie. Zweitens, die Evaluierung bestehender agiler Methoden in der Automobilentwicklung
und die Kategorisierung realer Hemmnisse. Drittens, die Entwicklung von kontextspezifischen agilen
Koordinationsstrategien, um die analysierten Hemmnisse zu umgehen.

Um dieses Forschungsziel zu erreichen, wurde eine Action Research Methodik verwendet. Im Rahmen
eines vierjährigen Forschungsprojekts wurden agile Methoden und Praktiken anhand eines repräsentativen
Spektrums von Anforderungen der Automobilentwicklung in elf Entwicklungsprojekten getestet. Wandel in Form
von angepassten agilen Praktiken wurde aktiv und wiederholt eingeführt, um die Auswirkungen auf die
Entwicklungsdynamik zu bewerten. Die Methodik erlaubt es, in Zusammenarbeit mit den betroffenen
Produktentwicklern kontextspezifische agile Praktiken iterativ zu gestalten und zu evaluieren. Der Forscher war
dabei ein aktiver Teil der Entwicklungsprojekte und in der Lage, qualitative Daten direkt zu erheben. Um die
objektive Aussagefähigkeit der Daten zu gewährleisten, wurde die Beteiligung des Forschenden zwischen den
Projekten variiert, die Datensätze nach einem standardisierten Verfahren analysiert und die Ergebnisse mit
ergänzenden qualitativen und quantitativen Datensätzen von außerhalb der Pilotprojekte abgeglichen.

Das entwickelte Koordinationsmodell ermöglicht ein umfassendes Verständnis der agilen
Produktentwicklung unter Berücksichtigung spezifischer Anwendungskontextmerkmale. Die Ergebnisse zeigen,
dass agile Methoden auf emergenten, sich selbst anpassenden Koordinationsstrategien beruhen. Miteinander
verknüpfte Koordinationsmechanismen passen sich selbständig an Projektdynamiken an. In der
Automobilbranche ist die agile Produktentwicklung jedoch durch Hemmnisse aufgrund der Körperlichkeit des
Produkts und der Skalierung des Entwicklungsprozesses begrenzt. Beide bedingen Entwicklungssysteme
bestehend aus voneinander abhängigen Teams. Aufgrund fehlender teamübergreifender
Koordinationsmechanismen funktioniert die Selbstanpassungs-fähigkeit der agilen Koordinationsstrategien nicht
mehr. Es werden drei Szenarien vorgestellt, um dieses Ungleichgewicht zu umgehen. Szenario eins führt
teamübergreifende Koordinationsmechanismen ein, die den Koordinationsdeterminanten in der
Automobilentwicklung entsprechen. Szenario zwei führt digitale Entwicklungstechnologien ein, die es
ermöglichen, mechatronische Produkte ähnlich wie Softwareprodukte zu entwickeln. Szenario drei verändert die
Produktstruktur so, dass sich Koordinationsdeterminanten ergeben, die den ursprünglichen agilen
Koordinationsstrategien entsprechen.

Die Forschungsergebnisse ermöglichen die Anwendbarkeit agiler Produktentwicklung in der
Automobilentwicklung. Sie beinhalten zudem ein einfaches Werkzeug zur Anpassung agiler Methoden an
projektspezifische Anforderungen. Darüber hinaus ermöglichen sie eine realistische Abschätzung des Nutzens
agiler Produktentwicklung basierend auf realen Entwicklungsbedingungen. Der theoretische Beitrag der
Forschung beinhaltet ein modellbasiertes Verständnis des agilen Systemverhaltens in unterschiedlichen
Anwendungskontexten. Diese Vorgehensweise ist nicht auf die Automobilentwicklung beschränkt und eröffnet
daher Möglichkeiten zur Erforschung agiler Produktentwicklung in weiteren Domänen. Darüber hinaus zeigt der
Vergleich der Hemmnisse durch Skalierung und Produktkörperlichkeit in der Automobilentwicklung, wie
gegensätzliche Charakteristika von Domänen zu ähnlichen Hemmnissen für Agilität führen und erlaubt es, beide
Forschungsgebiete zu verknüpfen.

vi

vii

Contents

 Introduction ... 1-1

1.1 Problem outline, motivation, and relevance of research .. 1-1

1.2 Agility in automotive design ... 1-2

1.3 Research strategy ... 1-3

1.4 Research contribution .. 1-4

1.5 Structure of the thesis .. 1-5

 State of the Art ... 2-7

2.1 Agility in product design ... 2-8

2.1.1 Agility as an attribute ... 2-9

2.1.2 Agility as a construct .. 2-17

2.2 Product development theory ... 2-22

2.2.1 Linear and iterative process models .. 2-23

2.2.2 Categorization of agile product development ... 2-25

2.3 Automotive product development .. 2-26

2.3.1 Agility in mechatronic product design ... 2-28

2.3.2 Agility in scaled design contexts ... 2-30

2.4 Coordination theory in product design .. 2-33

2.4.1 Coordination in organization research ... 2-34

2.4.2 Coordination in team and multiteam systems ... 2-35

2.4.3 Coordination mechanisms.. 2-37

2.4.4 Coordination determinants .. 2-38

2.4.5 Coordination outcome ... 2-39

2.4.6 Coordination strategy... 2-41

 Research approach ... 3-43

3.1 Research design .. 3-44

3.1.1 Research questions .. 3-44

3.1.2 Theoretical lens coordination theory ... 3-45

3.1.3 Research fields ... 3-46

3.1.4 Research overview ... 3-49

3.2 Design Research ... 3-51

3.2.1 Research paradigm ... 3-51

3.2.2 Design Research paradigm ... 3-52

3.2.3 Relevance and rigor in Design Research .. 3-53

3.3 Research methodology .. 3-55

viii

3.3.1 Action Research method .. 3-56

3.3.2 Structured and narrative literature reviews ... 3-61

3.3.3 Complementary data collection ... 3-63

 Coordination perspective of agile product design ... 4-65

4.1 Coordination reference model ... 4-66

4.2 Agile coordination strategies .. 4-69

4.2.1 Analysis Scrum coordination strategy .. 4-69

4.2.2 Analysis eXtreme Programming XP coordination strategy ... 4-72

4.2.3 Findings in response to research question one .. 4-76

4.3 Inter team coordination in second generation large-scale agile methods 4-78

4.3.1 LeSS - inter team coordination modes and mechanisms ... 4-78

4.3.2 Essential SAFe - inter team coordination modes and mechanisms 4-79

 Results .. 5-83

5.1 Agile pilot projects in automotive design ... 5-84

5.2 Bottom-up data breakdown ... 5-88

5.2.1 Distribution and relevance of experienced problems .. 5-91

5.3 Top-down data breakdown: Constraints of physicality and scale 5-92

5.4 Problem space integration ... 5-94

 Discussion ... 6-97

6.1 Functionality of agile coordination strategies in automotive design 6-98

6.1.1 Coordination determinants in automotive design ... 6-98

6.1.2 Functionality of agile coordination modes and mechanisms in automotive design 6-100

6.1.3 Self-adjustment of agile coordination strategies in automotive design 6-102

6.1.4 Suitability of agile coordination strategies in automotive 6-104

6.1.5 Findings in response to research question two .. 6-105

6.2 Scenarios to enable agile coordination strategies in automotive design 6-107

6.2.1 Inter team coordination in agile coordination strategies... 6-108

6.2.2 Technological enablement of agile coordination strategies 6-119

6.2.3 Product architecture influence on agile coordination strategies 6-122

6.2.4 Findings in response to research question three ... 6-125

 Conclusion .. 7-127

7.1 Response to the research questions .. 7-127

7.2 Research contribution .. 7-130

7.3 Research limitations ... 7-131

7.4 Further work ... 7-132

7.5 Closing summary .. 7-132

ix

Acronyms .. 7-134

List of figures .. 7-135

List of tables ... 7-138

References .. 7-139

x

1-1

 Introduction
Agility in product design reflects a continual readiness to create, react, embrace, and learn from change in

order to improve customer value. Agile product design summarizes interlinked design practices and methods that
rely on a shared set of values and principles to realize this agility. While agile product design has become a
standard in software development its transferability to physical products is yet to be evaluated. The research
focus of the thesis at hand is agile product design in the automotive domain.

The research aim is to comprehend and enable agility in automotive product design. The first research
objective is to analyse agile system behaviour based on coordination theory. The second research objective is to
collect and categorize agile constraints in automotive and to adjust the theoretical reference model to match the
empirical data. The third research objective is to recommend supplementary agile practices to outbalance the
identified flaws of agile product design in automotive application contexts.

The contribution of the research includes a theoretical understanding of agile system behaviour in different
application contexts and a practical adjustment of agile methods to the automotive domain based on
straightforward design practices. This Introduction chapter is divided into problem outline, research strategy and
contribution, and structure of the thesis.

1.1 Problem outline, motivation, and relevance of research
The automotive industry is currently object to a set of tendencies that progressively overstrain its

established product design systems. Both exogenous and endogenous factors accelerate the dynamics and
relevance of change in automotive product design (Stelzmann, 2012). The VUCA acronym (volatility,
uncertainty, complexity and ambiguity) summarizes both the endogenous and exogenous change factors well
(Bennett and Lemoine, 2015). It characterizes the dynamics in automotive design and underlines the urgency to
reconfigure automotive design with a focus on flexibility, speed, and customer value.

Regarding exogenous factors, automotive OEMs are increasingly challenged by growing and
heterogeneous regulatory requirements, unfamiliar competitors, and inexperienced customer behaviour. The
ability to manage the product complexity in automotive design has traditionally been the distinguishing capability
of OEMs (Schömann, 2011). But faster-changing markets contradict the established long duration product design
projects. Time to market is crucial in digital product design (Wedeniwski, 2015) since shorter technology cycles
create new customer expectations (Baltes and Selig, 2017). Technological trends in general are a dominant driver
for changing customer requirements (Ebel and Hofer, 2014). Large automotive OEMs lack the implementation
and adaption speed to cope with the faster development cycles of digital technologies and hence cannot
compete with competitors that originate from digital product design. Speed of development has become a key
competitive factor (Díaz, 2011). Customers’ preferences shift towards digitally connected vehicles and mobility.
The availability of mobility replaces personal ownership of vehicles in some markets. Shared mobility is driven
by new and aggressive companies such as Uber or Lyft. Relying on well-established premium brands won’t suffice
anymore in a market that is characterized by a changing concept of personal mobility (Ueding, 2014). Automotive
OEMs will have to adapt to the short innovation cycles of the information technology and the consumer’s
electronics industry to maintain their competitiveness in an increasingly dynamic future (Kortus-Schultes et al.,
2014).

Endogenous factors that accelerate change in automotive product design are the growing complexity of
the product and the shifting balance between involved disciplines and their cooperation in an integrative design
process. Product complexity has increased significantly throughout the last two decades. Automotive OEMs need
to integrate up to 10,000 parts per vehicle from 3,000 suppliers throughout the design process under the
presumption of production rates of up to 2,000 cars per day (Schömann, 2011). The mechatronic nature of the
automotive product requires the connected design activities of mechanical engineering, electrical engineering
and software engineering amongst additional disciplines (Lefèvre et al., 2014). The interplay between these
disciplines is difficult (Luckel et al., 2000). Electrical engineers and software designers develop function-oriented
in fast cycles while mechanical engineers focus on component design based on long-lasting, hardware-intensive
verification cycles (Hellenbrand, 2013). The faster pace of electronics and software design contradicts the

1-2

established, hardware-focused design process in automotive (Eigner, 2021). This imbalance even worsens since
the relevance of software and electronics has increased significantly in automotive design throughout the last
two decades and continues to do so (Hensel, 2011).

1.2 Agility in automotive design
Software development companies had been object to very similar challenges twenty years ago and

established agile product design in response. While independent concepts and individual lightweight methods
had been employed since the 1970s (Abbas et al., 2008) the Manifesto for Agile Software Development (Fowler
and Highsmith, 2001) officially coined the term Agile and integrated earlier approaches based on a shared set of
values and principles in 2001. Since the publication of the manifesto agile design has gained widespread use and
has become a standard in software design (VersionOne, 2020), even though it lacks a holistic theoretical
explanation (Baham and Hirschheim, 2021; Dingsøyr et al., 2012; Rathor et al., 2016). Agility in product design is
characterized by a readiness to create, react, embrace and learn from change to improve customer value
(Conboy, 2009). The core concepts are inspect and adapt cycles, incremental and iterative development,
collaboration in teams, and continuous customer involvement (Baham and Hirschheim, 2021). Based on these
concepts, agile methods are lightweight combinations of design practices that are adapted to different
application contexts and use cases.

Numerous publications confirm that agile product design enables design flexibility, higher team
productivity, early customer involvement, delivery speed and shorter time to market (Pikkarainen et al., 2008).
These characteristics match the presented challenges in automotive design very well. But the ideal application
context or sweet spot for agile methods are small, collocated, self-organized teams that design software products
being object to medium to high levels of change, and little external dependencies (Boehm, 2002; Kruchten, 2013).
The automotive design context differs significantly from these conditions. It relies on a highly interdependent
multiteam design system and the enablement of agility in automotive design is therefore not plug and play. Two
central characteristics of automotive design diverge from agile sweet spot conditions. First, the scale of the
design process which includes hundreds of teams that need to cooperate closely throughout design projects
which last several years. Second, the physicality of the product which is fundamentally opposing to the nature of
software since it requires the cooperation of more disciplines and additional design steps such as production and
logistics that are not relevant in software design.

Both factors have been researched in separated research streams and coined as challenges of scale
(Dingsøyr et al., 2014) and constraints of physicality (Ovesen, 2012) to agility in their respective application
contexts. Both categories are termed constraints in the thesis at hand to facilitate readability. Constraints of scale
for large scale agile software development have been reported and classified by several literature reviews (Dikert
et al., 2016; Edison et al., 2021). The scale of the process complicates the practical implementation of the agile
core concepts and the original agile methods. Necessary cooperation between autonomous teams is a central
contradiction that shapes the constraints of scale category. Determining the right coordination mechanisms to
suit both objectives is central to the research of large scale agile (Gustavsson, 2020a). Constraints of physicality
are a less mature research stream that has emerged with the first use of agile methods in non-software product
design only ten years ago (Ovesen, 2012; Schmidt et al., 2019). Characteristics of the hardware product such as
the materialization process or the physical dependencies between components complicate agile product design
practices. Original agile principles and methods based on software design do not match the requirements of
hardware design (Schrof et al., 2018). To enable agility in automotive design the relevance of both constraints’
categories and their mutual influence onto each other must be evaluated.

The existing literature on agile automotive design focuses mostly on experience reports and includes few
theory-grounded publications. Rigby et al. describe in a Harvard Business Review article agile software design at
Bosch and agile design approaches at Tesla with a focus on product modularization (Rigby et al., 2018). Denning
describes the agile transformation at Volvo cars with a focus on shared planning meetings based on the scaled
method SAFe (Denning, 2020). Ekedahl and Berger investigated scaled agile development in mechatronic
organizations which several automotive companies and included expected benefits and recommended 26
mechatronic specific agile practices (Eklund and Berger, 2017). Other reports focus on large scale agile software
design projects within automotive product design in early product stages (Weber, 2015). Some experience

1-3

reports spread fascinating success based on easy metaphors and analogies to adjacent fields instead of well-
grounded scientific reports and theories which drives the ambiguity of agile design (Janes and Succi, 2012).
Completely agile automotive design projects are limited to non-serial and non-standard products in individual
design projects (Denning, 2012). Hohl et al. explain the lack of necessary agile design in automotive by the factors
inertia, fear, and context. Inertia is caused by an incomplete understanding of agility and its implications, fear is
driven by the threat of management losses and context summarizes non-ideal requirements for agile design in
automotive (Hohl et al., 2016). Especially the amount of disciplines that need to cooperate is seen as a central
hurdle (Poth and Wolf, 2017). These practice-oriented publications reflect the early stage of the research
phenomena agile automotive design and open several research gaps. First, the research lacks a shared
understanding of agility in automotive design. Second, there is no theory-based decomposition of agile
automotive design even though several theoretical lenses have been employed to examine agile software
development (Strode et al., 2012; Vidgen and Wang, 2009). Third, the literature lacks rich case descriptions, a
summary and categorization of agile constraints in automotive design and a domain-specific comparison to the
established constraints of scale and physicality categories. Fourth, the experienced problems in agile automotive
design lack a comprehensive theoretical grounding. The thesis at hand addresses these research gaps with the
aim to realize agility in automotive design.

1.3 Research strategy
To address the identified research gaps this study aims to investigate and enable agility in automotive

product design. It therefore analyses agile design practices within automotive product design to define and
explain the application context specific constraints. Based on this analysis it recommends and evaluates
adjustments to both the employed agile methods and the application context respectively. Three research
questions (RQs) divide the research aim into research objectives and thus provide a structure to the complete
research project.

RQ 1: How to explain agility and its benefits theoretically?
RQ2: What constraints reduce agile design applicability how in automotive design?
RQ3: How to enable agility in automotive product design?

The first research question addresses the need for a theory-based decomposition and explanation of
agile product design to analyse its applicability to the automotive context. Coordination theory is chosen as the
most suitable design theory to construct a reference model of agile design based on the coordination strategy
concept. It allows to analyse and model agile design system behaviour independent of the application context.
The second research question focuses on specific constraints of agile design in automotive application contexts.
Agile pilot projects are used to collect challenges in real world automotive application contexts. The data is
analysed regarding the influence of constraints of scale and physicality. The established coordination-theory
specific understanding of agile system behaviour allows to determine how the constraints impact agile design
functionality. The third research question builds on the earlier findings and addresses concepts to outbalance or
avoid the experienced constraints in automotive application contexts.

Pilot projects were the backbone of the practical implementation of the research strategy. Agile
methods and practices were introduced to eleven different development projects to study their impact on
automotive design. During the pilot projects change was repeatedly introduced in the form of adjusted agile
practices to observe the changing impact on the respective design project. This allowed to iteratively design and
evaluate context-specific agile practices in collaboration with product designers within their practical application
contexts. Findings were compared and transferred between the sequential pilot projects. Unlike in case studies,
the researcher was an active part of the design projects. This Action Research methodology is based on an
Idealist ontological and a Constructivist epistemological position. It addresses both practical utility and
contribution to design theory to ensure research relevance and validity. Social interactions in pilot projects are
studied by introducing change and observing the effects. The researcher is part of the pilot projects and
discontinuous the objective observer position. Activities of design artefact construction, intervening with the
organization and evaluating the impacts are iteratively interwoven (Sein et al., 2011).

1-4

To ensure research objectivity the data analysis was conducted according to a research model based on
coordination theory. This coordination reference model accurately mirrors central traits of agile design. It is
based on the original model of Van de Ven (Ven et al., 1976) and supplemented with the coordination concepts
of boundary spanning (Star and Greisemer, 1989) and cognitive coordination (Espinosa et al., 2004) to better
reflect agile core concepts. The model allows to analyse the coordination efficiency of interlinked design practices
in relation to different application contexts. Initial theory selection and model development was guided by a
structured literature review (Okoli and Schabram, 2010) and continuously enriched throughout the pilot projects
by a narrative literature review (Boell and Cecez-Kecmanovic, 2015). The research does not address the necessary
change management in agile transformations. Detailed comparisons of scaled agile software development
methods like the literature review of Edison et al. (Edison et al., 2021) are also out of scope.

1.4 Research contribution
The research conceptualizes agility as an attribute and as a construct to ensure an unambiguous

understanding of agile design and avoid the Guru problem (Janes and Succi, 2012). It employs coordination
theory as a theoretical lens to decompose and analyse agile methods and explain their empirically proven
functionality. Unlike earlier coordination models the coordination reference model combines coordination
theories from different fields to best reflect agile design characteristics. It allows to analyse individual agile
practices and agile system behaviour in relation to the application context based on their coordination strategy
efficiency. To do so the model employs the theoretical concept coordination strategy to connect dynamically
coupled application environment characteristics with coordination practices.

The research provides rich case descriptions of agile design in automotive application contexts. The
respective data analysis leads to a summary and categorization of problems of agile methods across pilot
projects. The data analysis proves the existence of constraints of scale and physicality in automotive design.
Constraints of physicality are viewed as an amplification of constraints of scale to simplify problem understanding
of the research phenomena since both categories cause inter team coordination problems.

The research also explains the experienced problems by analysing flaws in the respective agile
coordination strategies in relation to the application contexts. This approach allows to adjust both agile design
practices and or the application context to enable agility in automotive design. It also opens opportunities to
expand agile design to further application contexts.

1-5

1.5 Structure of the thesis
The structure of the thesis is divided into seven chapters as presented in Figure 1. The following section

provides short summaries of the chapters two to seven.

Figure 1: Structure of the thesis. The structure is divided into seven interlinked chapters. The green boxes highlight the most relevant
contents, and the arrows reproduce the red line of the research.

Chapter 2: State of the Art. Agility in product design is defined from two viewpoints. Agility as an attribute
and agility as a construct. This conceptualization of agility is compared to conventional product development
theory in general and automotive design in particular. Known constraints of agility are subdivided into the
categories scale and physicality. Coordination theory in product design provides a theoretical background for the
thesis at hand.

Chapter 3: Research approach. The scientific strategy is divided into three sections. First, the practical
problem is specified, corresponding research questions are deduced, the chosen theoretical lens coordination
theory is presented, and the complete research project is summarized. Second, Design Research as a research
field is categorized and the respective research challenge between relevance and rigour is outlined. Third, the
implementation of the chosen Action Research methodology is presented.

Chapter 4: Coordination perspective of agility in product design. The coordination reference model is
constructed to mirror typical agile design and thus coordination structures. Agile coordination strategies of
popular agile methods are analysed and mapped to experienced benefits to understand the systematology of
agility in product design beyond its straightforward practices.

Chapter 5: Results. The collected data is presented and analysed with a focus on experienced practical
problems to the employed agile methods. The section is divided into a bottom-up and a top-down data analysis
that cluster the data to reoccurring problems in the first stage and relate them to scale or physicality driven
causes in the second stage. The chapter ends with a case-specific differentiation between constraints of
physicality and scale in the automotive domain.

Chapter 6: Discussion. Dysfunctionalities of agile coordination strategies in automotive application
contexts are deduced and connected to the experienced practical problems. Inter team coordination
mechanisms within agile coordination modes are discussed to align agile coordination strategies with automotive
design. Furthermore, changes to the product structure and their influences on coordination determinants and
agile coordination strategies are depicted. Lastly, the enablement of agile coordination strategies through digital
design technologies in automotive design is discussed.

Chapter 7: Conclusion. The main findings in relation to the research questions are summarized.
Additionally, the contribution and limitation of the research project are stated, and future research opportunities
are outlined.

1-6

2-7

 State of the Art

"If I have seen further, it is by standing on the shoulders of giants."
 Isaac Newton

This chapter aims to introduce, describe and summarize the state of the art of the relevant design
theories and practical knowledge fields necessary for the research project. Agility in product design is defined and
compared to conventional design theories. The fundamental product design principles and established
methodologies are introduced to establish a scaffolding to delaminate agility in product design. The domain
automotive design is introduced, and its characteristics are compared to the requirements of agile design.
Especially the impact of the scale of the design process and the physicality of the product on agile design are
referenced since they differ from software design. Coordination in product design is the second focus of this
chapter. Coordination theories from different fields are presented to provide a broad theoretical understanding
of the current research. Practical applications of coordination theories from different research fields related to
product design are introduced to show the relevance of the field. Coordination theories that reflect fundamental
principles of agile design are connected to create a research model which serves three purposes. First, analyse
the established agile methods regarding their empirically proven benefits and provide an explanation of their
functionality. Second, analyse the collected data from the agile pilot projects regarding practical constraints due
to the automotive domain. Third, establish adjustments to existing agile methods to improve their applicability
in automotive design.

The chapter is subdivided into seven subchapters. The first subchapter establishes an understanding of
agility from two perspectives. Agility as an attribute defines agility based on its origins, suitable application
context, practical interpretations, core concepts and experienced benefits. Agility as a construct defines agility
based on the manifesto of agile software development, agile methods and scaled agile frameworks. The second
subchapter introduces the established design theory in product design and provides a scaffolding to delaminate
agile design from it. The third subchapter describes the domain automotive design and emphasises differences to
software design as the ideal application context of agile methods. It includes two subchapters that summarize
the literature on agile constraints caused by the scale of the design process and the physicality of the product
since both characteristics are unavoidable in automotive design. The last subchapter focuses on coordination
theory. It defines coordination and provides perspectives from different adjacent research fields. Based on the
coordination strategy concept coordination determinants, coordination modes, mechanisms, and coordination
outcomes are connected.

2-8

2.1 Agility in product design

“There is nothing permanent except change.“
 Heraclitus of Ephesus

Tseng and Lin describe agility as “the business paradigm of the 21st century” (Tseng and Lin, 2011) and
Denning claims that “agile is a global movement that is transforming the world of work” (Denning, 2017). Reports
from industry underline the relevance of agility as a standard in software development today (Komus and Kuberg,
2020; VersionOne, 2020) and studies show that agility has become the new norm within software development
(Gustavsson, 2020b). This success of agility is not limited to software development but continuously expands to
other domains (Atzberger, Nicklas, et al., 2020; Komus and Kuberg, 2020; Schmidt et al., 2019).

Despite this undeniable success in practice, it remains ambiguous what exactly agility entails and what
it stands for. Even after at least two decades of research agile design is still reported to lack a theoretical core
(Baham and Hirschheim, 2021; Rathor et al., 2016). The resulting lack of a unified theoretical understanding of
agility has resulted in different views with practitioners and researchers asserting their own understandings,
which often differ from each other (Wang et al., 2012). Conboy, therefore, describes agility as a concept that is
highly multifaceted and which has been used by different people to refer to different phenomena (Conboy,
2009). In practice, agility is often interpreted as a progressive alternative to traditional, plan-driven product
design approaches and not specified comprehensively.

The agile manifesto (Beck and Beedle, 2001) is the most quoted reference to agility. It communicates
values and principles like a philosophy and invites to interpret but does not prescribe clear guidelines and
practices for product design. Such guidelines are provided in agile methods. But different agile methods focus on
different aspects of the manifesto. This divergence within the set of agile methods includes methods that differ
clearly (Baham and Hirschheim, 2021) and sometimes contradicting practices (Conboy, 2009). Today a broad set
of agile methods exists (Abrahamsson et al., 2002; Edison et al., 2021) with Scrum being the most popular
method (VersionOne, 2020). Unfortunately, this variety of methods often results in applications without
questioning the method and considering the design context of the applying company. Even worse, self-
proclaimed gurus present their methods based on single success stories, easy metaphors or analogies to other
fields and not in relation to the existing body of knowledge (Janes and Succi, 2012). Without a sound theoretical
foundation new and existing agile methods cannot be evaluated, corrected and or rejected (Strode, 2005). This
in turn increases confusion about what agility implies and how to implement it in practice. To resolve this
ambiguous understanding of agility, it is described in the following subchapters from two perspectives: agility as
an attribute and agility as a construct.

The first perspective defines agility as a characteristic of product design. It starts with the history of
agility to depict its origins and the original driver. Definitions of agility across research fields are discussed and a
definition for the thesis at hand is chosen based on four essential core concepts. Reported benefits of agility are
aligned to the central concepts. At last, agile requirements or “sweet spot conditions” and implications of
different application contexts on agility are presented.

The second perspective “agility as a construct” describes principles and practices in product design to enable
agility. It describes the Agile Manifesto and connects it to the most relevant agile methods. First, the manifesto
is described based on its values. Second, the single team agile methods Scrum and XP are presented and set into
relation to the manifesto. Third, characteristics of scaled agile methods and differences to single team agile
methods are summarized.

2-9

2.1.1 Agility as an attribute
The practice-driven origin of agility has led to a spectrum of approaches, frameworks, and

interpretations. This subchapter aims to describe a clear picture of what agility in design is, where it came from
and what it implies, based on scientific literature streams. This clear definition is necessary as a point of reference
for the following investigation of agility in automotive design. The analysis of different interpretations of agile
design and their emergence process also improves understanding of its central characteristics.

The subchapter is divided into five sections. First, the history of agile design is presented and connected
to central drivers. The Manifesto for Agile Software Design is put into context of the existing streams in software
development and product design. Second, definitions of agility are summarized and compared to find repeating
concepts and decide on a common definition for the thesis at hand. Third, based on the definition of agility core
concepts are described that further detail the definition. Fourth, change in product design as the essential driver
of agility is detailed and explained. Tools to differentiate and concretize the broad concept of change are
described and compared. Fifth, based on the established concept of change in product design, ideal conditions
for agility are summarized. Sixth, benefits and drawbacks of agile product design from literature are compared
and connected to the core concepts and the definition of agility.

2.1.1.1 History of Agility
In February 2001 the Manifesto for Agile Software Development (manifesto) was created by a group of

17 programmers during a two-day workshop in Utah to discuss alternative software development approaches
(Beck and Beedle, 2001; Fowler and Highsmith, 2001). The aim of the manifesto was to develop an alternative to
the then heavyweight and documentation driven software development approaches. The declaration consists of
four values and twelve principles that frame an understanding of agility in product design. These values and
principles are discussed in detail in section 2.1.2.1. The essence of the manifesto is the ability of product design
to embrace change, to focus on people and direct communication and to continuously focus on customer value.
The publication of the manifesto is often referenced as the formal origin of agile product design (Dingsøyr et al.,
2012). This view is supported by the facts that since the publication of the manifesto in 2001 agile software
development has gained widespread use and has become a standard in software design (Hoda et al., 2018;
Venkatesh et al., 2020; VersionOne, 2020).

But the presentation of the manifesto cannot be decoupled from the then already well-advanced
discussion about alternative approaches to software design. Abbas et al. provide historical and anecdotal
evidence that dissatisfaction with heavyweight software development approaches existed before the manifesto
and alternatives were already established (Abbas et al., 2008). Starting in the 1960s large software projects
repeatedly overstrained the established software design approaches in complexity and size (Ovesen, 2012).
Projects that increased the number of programmers without adapting the structure were called “million monkey
approach” since they did not improve project progress, delivery deadlines and quality requirements (van Vliet,
2008). The employed traditional approaches were heavily structured and planned in detail in advance and hence
suffered from changing user requirements, changes in technology and environmental uncertainty throughout
the project. Abbas et al. question these approaches and point to the contradiction that it was assumed realistic
to anticipate complete sets of requirements early in the project lifecycle, even though many changes in
requirements and technology occurred throughout the project’s life span (Abbas et al., 2008). The sequential
interpretation of the waterfall development approach is often referenced as a negative example to delaminate
agility in design from these traditional, linear approaches, which misinterprets the original publication of Royce
that already incorporates iterative design cycles (Royce, 1970). In 1968 the term “Software Crisis” was coined to
reflect the problems of these approaches with longer and more complex software development projects in highly
dynamic application contexts that were an object to continuous change in their product design projects (Kraut
and Streeter, 1995).

To answer this crisis alternative development approaches were established by independent
practitioners that would later be sub summarized as agile movement and lead to the manifesto. As a result,
already in the nineties a number of lightweight frameworks were applied in software design that are known as
agile methods today (Dingsøyr et al., 2012). Since these methods were driven individually by experienced
practitioners such as Beck, Schwaber and Cockburn their implementations and concept vary largely (Abbas et al.,
2008). Nevertheless, these methods have in common that they were based on the idea of product design that

2-10

accepts and integrates turbulent development environments and change as a delamination to linear approaches
(Highsmith and Cockburn, 2001). Although these agile methods were new, the underlying principles and ideas
such as incremental, iterative design had been applied before (Abbas et al., 2008). For example, Scrum is based
on the publication “The New Product Development Game” of Takeuchi and Nonaka from 1986 long before the
manifesto (Takeuchi and Nonaka, 1986). Other early approaches such as the V-model (Rook, 1986) or the Spiral
model (Boehm, 1988) integrated similar ideas to overcome shortcomings of linear process models. In summary,
agile methods were not as new or revolutionary as often idealized but have origins in older methods (Conboy,
2009).

Nevertheless, since the publication of the manifesto agile product design has changed from an
alternative to established design approaches to a standard in software development (VersionOne, 2020). The
concept has even been transferred to large scale software projects (Dingsoeyr et al., 2019) and mechatronic
product design (Atzberger, Simon, et al., 2020; Komus, 2017). Both transfers are further specified in sections
2.3.1 and 2.3.2 To explain the growing success throughout the last decades despite its ambiguous interpretations
the next sections will compare the most relevant definitions of agility and derive central ideas and concepts.

2.1.1.2 Definition of agility
Before defining agility, it is necessary to differentiate the set of terminologies that are connected to it

and employed in practice. Several terms such as agile, agile methods and agile product development or design
are used to describe different aspects of agility in product design. The attribute agile is described in product
design as “an embedded trait or attribute characterized by durability, resilience, speed, flexibility, attunement
and preparedness” (Prosci, 2021). The word agile in agile methods was originally spelt in capital letters as the
name of the specific group of methods (Gustavsson, 2020b). In the thesis at hand the lower case is chosen to
improve readability. Agile methods are a set of frameworks and tools that support and lead to agility in product
design through recommended practices. Agile product development or design describes design activities
necessary to develop a product according to agile principles and values. Product design refers to the
comprehensive activities to realize new products and hence expands the German utilization of the term only in
reference to aesthetic design activities. While development is more commonly employed in practice, design is
the more general term in research. For this reason, design is preferred to development in the thesis at hand.
Nevertheless, both terms are employed synonymously. Agility as a comprehensive term is further specified in
the following paragraphs.

Baham and Hirschberg argue that even though the manifesto of agile software development provides
central values and principles to comprehend agile product design it is not a formal definition of agility (Baham
and Hirschheim, 2021). It rather provides generic guidelines and value statements instead (Dingsøyr et al., 2012).
Strode argues that without a sound definition of agility any author or practitioner can state that their method is
an agile method. Aligned to the manifesto none of the most relevant agile methods fulfils all values and principles
which clarifies the unsuitability of the manifesto as a practical definition of agility (Strode, 2005). Conboy further
underlines this assessment and argues that hardly any two agile methods adopt the same definition of agility.
Some agile methods even propose opposing principles such as collective versus individual code ownership
(Conboy, 2009). To avoid these unclear and opposing concepts of agility in practice the following section
conceptualizes a definition of agility from different research fields (see Table 1) for the thesis at hand. Central
aspects of the definitions are combined to synthesize a consistent understanding of agility for the thesis at hand.

Table 1: Definitions of agility across knowledge fields.

“Agility as the ability to both create and respond to change in order to profit in a turbulent
business environment.” (Agile Alliance, 2021)

“Agility as the ability of a development team to react rapidly to changes in a dynamic
environment.” (Conforto et al., 2016)

“Agility as the ability to balance stability and flexibility.” (Highsmith, 2010)
“Agility as the continual readiness of an ISD method to rapidly or inherently create change,
proactively or reactively embrace change, and learn from change while contributing to
perceived customer value (economy, quality, and simplicity), through its collective
components and relationships with its environment.”

(Conboy, 2009)

“Agility as a software development team's ability to anticipate, create, learn from and
respond to changes in user requirements through a process of continual readiness.”

(Baham and Hirschheim,
2021)

2-11

The ability to accommodate change had been the central driver throughout the origins of agility. William
and Cockburn state that agile methods and practices were developed to embrace, rather than reject, change
(Williams and Cockburn, 2003). This early definition of agility emphasises the ability to integrate change. The
Agile Alliance further specifies agility as the ability to create and respond to change (Agile Alliance, 2021) and
therefore expands Williams and Cockburn’s passive concept into an active one.

Conforto et al. define agility in the project management field as the ability of a development team to
react rapidly to changes in a dynamic environment. (Conforto et al., 2016). This definition specifies the concept
of agility to integrate change by means of close teamwork. Baron and Hüttermann underline this team concept
of agility and define it as a particular way of thinking and attitude to work, that fosters close collaboration within
the team (Baron and Hüttermann, 2010). Lee and Xia combine both aspects of Conforto and Hüttermann and
define agility as the software team’s capability to efficiently and effectively respond to and incorporate user
requirement changes during the project life cycle (Lee and Xia, 2010).

Erickson et al. explain agility as an approach to strip development methodologies of their heaviness to
enable fast response to changing environments and user requirements (Erickson et al., 2005). Cockburn similarly
characterizes agility as being manoeuvrable and fast to respond by means of lightness and effectiveness
(Cockburn, 2006). These definitions continue the concept of change integration but emphasize the lightness and
manoeuvrability in design especially in contrast to earlier more formal and planning centric design approaches.

Haberfellner and de Weck provide a more overarching perspective and define agility as the property of
a system that can be changed quickly (Haberfellner and de Weck, 2005). Henderson-Sellers and Serour confirm
the system agility concept and extend the agility concept from adjustment to change with the ability to refine
and fine-tune development processes as needed (Henderson-Sellers and Serour, 2005). Highsmith also provides
a system perspective on agility and defines it as the combination of system flexibility and rapid response
(Highsmith, 2009). These definitions expand the idea of agility to a system behaviour that can continuously adjust
to answer to dynamic change on a macro scale.

Conboy derives the most exhaustive definition of agility from these definitions (Conboy, 2009). His
analysis is based on a structured literature review that integrated agility definitions across related disciplines.
This composition of definitions is compared to and delaminated from the concepts of flexibility and leanness in
product design. He conceptualizes leanness as the “contribution to perceived customer value through economy,
quality and simplicity“ and flexibility as “the ability of a ISD method to create change, or proactively, reactively,
or inherently embrace change in a timely manner, through its internal components and relationships with its
environment” (Conboy, 2009). Combining and going beyond these individual concepts Conboy defines agility as:

“[…] the continual readiness of an […] method to rapidly or inherently create change, proactively or
reactively embrace change, and learn from change while contributing to perceived customer value (economy,
quality, and simplicity), through its collective components and relationships with its environment.”

He further emphasizes “learning from change” as a central characteristic of agility which has been
confirmed by Lyytinen and Rose and further publications (Lyytinen and Rose, 2006). The presented definitions
show that the term agility has been employed for a spectrum of design characteristics that are centred around
and enable the idea of product design that addresses internal and external change. Central are the ability to not
only respond but also create change, the close teamwork, the lightweight product design process and the
connected system behaviour. The thesis at hand is based on Conboy’s definition of agility. The aspects within the
definition of agility allow its delamination from the similar, alternative product design approaches such as Flexible
Product Development and Adaptive Product Design. Flexible Product Development centrally addresses the ability
to integrate change throughout the design process but does not account for the quickness and activeness of the
reaction (Thomke and Reinertsen, 1998). Adaptive Product Design adjusts underlying processes to best suit
dynamically changing environments (Meißner and Blessing, 2006) but remains at the system-theoretical level
and focuses on processes. Unlike in agile design enabling product or organizational structures are not part of the
concepts.

2-12

2.1.1.3 Core concepts of agility
Based on Conboy’s systematic definition of agility Baham and Hirschheim concentrate the concept of

agility as the ability to anticipate, create, learn from and respond to change (Baham and Hirschheim, 2021). They
derive four central concepts (see in Table 2) from a review across the most relevant agile methods and
frameworks that enable agility in software design. These four concepts are interconnected and reinforcing. This
implies that that agile design represents a design system and should not be simplified to the application of
individual practices. The core concepts reflect the presented definitions of agility and connect them into
understandable conceptualizations. Descriptions of each concept are presented in the following paragraphs.

Table 2: Four core concepts to enable agility based on a review of agile methods and frameworks (Baham and Hirschheim, 2021).

Core concept 1 Inspect and adapt cycles
Core Concept 2 Incremental design and iterative development
Core concept 3 Working collaboratively in close communication
Core concept 4 Continuous customer involvement

Inspect and adapt cycles allow teams to analyse and reflect on design activities and adapt them if
necessary. This concept allows to deal with change in design projects. Each design cycle allows to reconfigure
assumptions according to results or change in a repetitive learning process (Baham and Hirschheim, 2021). Agile
teams rely on inspect and adapt cycles to verify technical implementations and validate their interpretation of
user requirements in continuous design cycles. Based on this evaluation design projects adapt their design
activities soon and at low costs. The concept of inspect and adapt includes a broad spectrum of use cases ranging
from small design activities of individuals to repetitive impersonal automated continuous integration systems to
complete design project evaluations. Iterative design accommodates the inspect and adapt cycle concept
centrally into design projects as every iteration represents an individual design cycle that provides the
opportunity to reflect and adapt progress.

Baham and Hirschheim underline the importance of incremental and iterative development and value
the concepts to breakdown the development process and product delivery into smaller units as the most
fundamental and universal approach to achieving agility (Baham and Hirschheim, 2021). Iterative design divides
the design process into continuous, short design cycles to incorporate inspect and adapt cycles within each
iteration. Incremental design requires each iteration to result in an increment which presents a part of the
product that has costumer value and offers the opportunity to verify and validate the progress of the iteration
to a large degree without having to rely on the complete product. Both are essential to the assumption that
design progress and requirements cannot be specified completely in advance. Iterations result in increments
which represent continuous feedback sources to adapt progress and requirements as design knowledge grows.
Short iteration lengths establish quick feedback loops and minimize rework in changing environments (Vidgen
and Wang, 2009). Overall, iterative design provides understanding of past issues, sensing of current issues and
responding to future issues (Rathor et al., 2016). Teams are enabled to focus on design activities and reduce time
spent on interpreting unclear requirements.

Working collaboratively in close communication is the third core concept of Baham and Hirschheim
(Baham and Hirschheim, 2021). It paraphrases the teamwork ideal in agile product design. The intensive
cooperation in teams realizes open and close communication between designers. Agile teams include the
customer as a part of design teams if requirements are dynamic and teams need to readjust often. Agile design
teams are self-organized, autonomous and promote mutual participation and teamwork. They collaborate
towards a common goal. Teams need to be authorized to make their own decision largely autonomously without
complicated management or hierarchy consultation to answer quickly to change. Another important aspect of
agile teamwork is the cross-functionality of such teams which further enhances the autonomy of teams (Stray et
al., 2018) since team-external input that might block, or slow design activities is minimized.

Continuous customer involvement in design teams is the fourth of Baham and Hirschheim’s core
concepts (Baham and Hirschheim, 2021). Wood et al. even argue that agile product quality advantages are driven
rather by close design team and customer cooperation than better teamwork in design teams (Wood et al.,
2013). The intensive exchange between customer and design team in agile design establishes close relations
which lead to shared understanding of user requirements. This increases predictability of the product and hence

2-13

customer acceptance of it (Cohn, 2010). The close connection between designer and customer within a design
team allows to directly adjust to changes of both design implementation and the customer requirements. The
proven increase in customer satisfaction improves a team’s ability to provide business value.

2.1.1.4 Change in design contexts
After having described where agility was established originally, what it stands for, and how it is

implemented the concept of change is clearly central to it. This subchapter defines and frames change in product
design.

The strengths of agility in product design are most valuable in dynamic design environments. Denning
emphasizes the continuous expectance and integration of change in agile design. For him this trait is essential in
an increasingly dynamic and unpredictable world (Denning, 2016). Bennet and Lemoine summarize such dynamic
product design conditions with the VUCA acronym which emphasizes volatility, uncertainty, complexity and
ambiguity in design environments (Bennett and Lemoine, 2015). The VUCA categorization allows to specify the
rather general concept of change or dynamic environments in product design that is referenced in the presented
agility definitions. Volatility relates to the increasing rate of change and the need for speed to answer to it.
Uncertainty underlines the lack of knowledge what kind of change is to be expected and how action might trigger
it. Ambiguity implies that cause-effect relations are unclear and therefore impacts of change are not unequivocal.
Complexity is defined by the number of elements, their interdependencies and the dynamics of these relations.
(Bennett and Lemoine, 2015). To differentiate unpredictable VUCA environments and recommend appropriate
actions concepts such as the Cynefin framework or the Stacey matrix have been developed.

Figure 2: Cynefin framework and Stacey matrix. The Cynefin framework (left) differentiates five problem contexts based on their change
dynamic and recommends respective approaches (Kurtz and Snowden, 2003). The Stacey matrix (right) differentiates four change situations
based on the axes “what” for the problem understanding and “how” for the problem approach (Stacey, 2007).

To improve problem understanding and categorization within VUCA environments the Cynefin
framework (Figure 2, left) differentiates five contexts and recommends specific approaches for each of them
(Kurtz and Snowden, 2003). Simple and complicated contexts are representatives of ordered systems. Within
these contexts cause-effect relations are well understood, and existing approaches can be selected or generated
based on the given facts. Complex and chaotic contexts on the other hand represent unordered systems.
Complex cause-effect relations are unclear to such a degree that they are understood only in retrospect while
chaotic cause-effect relations remain unspecifiable even in retrospect. Both lack transparent and linear cause-
effect relations and require an emergent problem-solving strategy. Known and established patterns are
applicable to complex contexts. Chaotic contexts require emergent action and cannot apply proven procedures.
In both contexts better problem understanding is generated through action and reflection of the corresponding
change in relation to existing knowledge. In the complex context, short iterative design cycles are recommended
to increase problem understanding incrementally. Chaotic contexts on the other hand are characterized by the
need to drive change immediately at large scale and therefore cannot apply structured, iterative design cycles.
Besides the ordered and unordered systems, the Cynefin framework also includes a disorder category. This
category represents problems which cannot be assigned clearly to one of the four contexts due to opposing or
wrong interpretations. Such situations are especially threatening since inadequate action might worsen the
unspecifiable situation. The Cynefin framework recommends to break down such situations into constituent
parts until individual parts can be categorized to the four known contexts. (Kurtz and Snowden, 2003)

2-14

The Stacey matrix (Figure 2, right) also provides guidance on how to approach VUCA contexts (Stacey,
2007). Based on the two dimensions “knowing what” which means clear understanding of requirements and
“knowing how” which means clear understanding (and technology) on how to solve a problem the Stacey matrix
categorizes situations and recommends suitable, proven approaches. The two dimensions form four situations
that require different approaches. Clear definitions of what and how are defined as simple situations. Fact-based
decision making is applicable and sensible in this context. Within the complicated situation either the what or
how dimension are only clarified partially. Cause-effect relations are unclear, and discussions and negotiations
are necessary. Complex situations are based on increasing uncertainty in both dimensions. Such situations
require deviation from existing approaches or initial action to further specify the situation. If both what and how
are completely unclear the Stacey matrix defines the chaotic (anarchy) situation. Conventional approaches are
not useful within this area.

Both the Cynefin framework and the Stacey matrix further differentiate the change concept and claim
to be able to determine if agile design is suitable. The Stacey matrix emphasizes situation evaluation while the
Cynefin framework recommends appropriate action. Their combined categorizations of design situations help to
understand whether agile design is suitable and beneficial. In predictable contexts (Cynefin: simple, Stacey:
simple) change dynamic is low and agile design is applicable but not needed since more efficient product design
methods such as best practices or automatization can be applied. In such contexts the efficacy advantage of agile
methods is often outbalanced by their additional cost compared to efficiency focused approaches such as lean
development or plan-driven approaches. The complicated and complex contexts are ideal for agile design. Agile
design approaches quickly improve problem understanding and parallelly drive solutions in short iterative design
cycles that allow fast learning cycles. If problem understanding has been improved to such a degree that it suits
the simple contexts, agile methods might be changed to more efficient design approaches. On the contrary,
chaotic (Cynefin framework) or anarchic (Stacey matrix) contexts that are completely dominated by change are
also unsuitable contexts for agile design since neither the problem nor the solution are understood sufficiently.
Instead of iterative design based on learning cycles such environments require direct action and cannot rely on
small, agile learning steps.

2.1.1.5 Sweet Spot conditions for agility
Change-driven design environments within the complicated and complex categories of the Cynefin

framework are viewed as ideal application contexts for agile design. Another factor is the type of product.
Software products present characteristics that suit the agile core concepts ideally. Because of both factors
different agile methods emerged from similar contexts in software design that were object to VUCA conditions
(Bennett and Lemoine, 2015). Takeuchi, Sutherland and Rigby specify ideal agile project characteristics as
complex problems, initially unknown solutions, changing product requirements, modularizable work, direct
costumer access and critical time to market (Takeuchi et al., 2016). Even though they avoid a delamination based
on the product type most of their characteristics reflect software products. Strode underlines this categorization
and states that agile design was developed to cope with change and uncertainty in small teams that de-
emphasize traditional coordination mechanisms such as forward planning, specific coordination roles, contracts
and extensive documentation, mostly free of pre-defined specified processes (Strode et al., 2012).

The idea of ideal conditions for agile design was first introduced by Barry Boehm (Boehm, 2002; Boehm
and Turner, 2004). Kruchten later employs the term “agile sweet spot” which he describes as the ideal conditions
of which agile software design practices originated from and where they are most likely to succeed (Kruchten,
2013). This contextualization is based on small, collocated teams around twelve persons and a governance model
based on simple rules. He states that little criticality of product safety is necessary for iterative product design
and changes even after first customer application. Also, medium or high rates of change are ideal for agile design,
since low change rates do not require the high adaptivity of agile design. He continues that in-house business
models support the agile principle to maintain the product at the responsibility of a team throughout the design
process. Handovers categorically lead to loss of information regarding product, process, and organization. Finally,
a stable overall product architecture supports modularization which is necessary to divide larger products into
smaller sub products which suit the design capacity of compact teams throughout the complete design process.
Changes in the product modularity lead to changes in team responsibility and lead to unspecified interfaces and
handovers which result in information losses.

2-15

The presented sources clearly show that agility in product design suits dynamic application contexts that
are driven by change. Additionally, agile design is most valuable under certain project internal conditions such as
small, co-located, collaborating teams, unclear requirements, and stable product architecture. The type of
product has a certain influence on both internal and external influences. It therefore also influences the added
value of agile design. Especially software products feature characteristics that support agile requirements.

2.1.1.6 Benefits of agility
Benefits of agility in product design have been summarized by several researchers. Campanelli and

Parreiras describe in their literature review an increase in quality and enhanced flexibility (Campanelli and
Parreiras, 2015). Gustavsson emphasises accelerated time to market, increase in quality and productivity and
enhanced flexibility (Gustavsson, 2020b). The 14th annual State of Agile Report says that at least 50% of the
respondents value agile design for the following benefits: the ability to manage changing priorities, project
visibility, business/IT alignment, delivery speed, team morale, team productivity, project risk reduction and
project predictability (VersionOne, 2020). Additionally non-research reports from leading tech companies such
as Microsoft (Denning, 2017), Spotify (Kniberg, 2014a, 2014b) or Google (“Google’s Agility”) further underline
the competitive edge of agility in product design.

Takeuchi, Sutherland and Rigby derive agile benefits in comparison to traditional management
approaches (Takeuchi et al., 2016). They emphasis team productivity and employee satisfaction. They see a
reduction in waste caused by redundant meetings, repetitive planning, excessive documentation, and low-value
product features. Customer satisfaction increases due to improved visibility, costumer integration and the ability
to continuously adapt to changing customer requirements. Agility also improves time to market and
predictability of new product design. Mutual trust and respect across organizations are caused by cross-
functional teams. Micromanagement is avoided largely which frees management to focus on removing
impediments to progress, strategy, organization development and customer exchange.

Schmidt connects agile concepts and central principles to experienced benefits of agile design (Schmidt,
2019). For example, agility in product design allows to adapt quickly to evolving changes through self-
organization, team ownership and decentralized decision making. The short and steady iterations enable learning
cycles throughout the design process. Stakeholders and designers have a shared understanding of the product
due to their close and continuous cooperation. Early costumer value is the result of incremental design since
costumer may already profit from individual increments besides the complete product. Team collaboration is
significantly increased due to the close team structures. The team stability increases team motivation and team
commitment. The cross-functionality of the team allows to concentrate cooperation within and not between
teams which simplifies communication structures. Interdisciplinary teams are responsible for a product
throughout the design phases and avoid handshakes and communication problems.

Table 3: Summary of benefits of agility in product design across different sources from scientific and popular literature.

 Campanelli and
Parreriras 2015

Gustavsson 2020 VersionOne 2020 Schmidt 2019 Takeuchi, Sutherland,
Rigby 2016

Design
process

Flexibility Flexibility Flexibility Flexibility Flexibility

 Increased productivity Visibility Customer integration Reduction of waste
 Business, IT alignment Early customer value Customer satisfaction
 Project predictability Improved

communication
Trust and respect

Team Team morale Team collaboration Team productivity
 Team productivity Team motivation,

commitment
Employee satisfaction

Product Increased quality Increased quality Risk reduction
 Time to market Delivery speed Time to market

Table 3 gives an overview of the described benefits across the selected literature. Design process
flexibility is a benefit across all literature sources. Increases in transparency and productivity have been reported
repeatedly and costumer integration and early customer feedback are evaluated very positive. Regarding

2-16

characteristics of teams team morale or motivation increase and especially collaboration within teams profits
from agile design. The product benefits from increases in quality, a faster time to market and reduced risks
throughout the design process. These benefits are driven directly by reductions of design complexity and
coordination structures both within teams and also between designers and customers. It is important to
emphasise that agility in design is not a silver bullet for product development. Its strengths are most evident in
change driven design contexts. But central characteristics such as continuous customer integration or weekly
team meetings might turn into drawbacks compared to conventional development approaches in well-
predictable design contexts.

2-17

2.1.2 Agility as a construct
The perspective agility as an attribute emphasized an understanding of the characteristics, the benefits and

the system behaviour that are attributed to agile design. The perspective outlined the change in product
development that started agile design, and explains how it evolved, what values and principles define it and what
core concepts it is based on. In simple terms it provided an exterior view on agile design and depicted the resulting
characteristics. Unlike this first perspective the second perspective on agility focuses on structures to realize agility
in product design. The aim of this subchapter is to describe how agile values and principles are implemented in
rules, practices and frameworks to result in the desired system behaviour. Furthermore, it is presented how these
structures are adjusted to each other in reinforcing systems. Put in simple terms again it provides an interior view
on agile design. This perspective is necessary to decompose agile product design into smaller structures and their
connections which is central for a differentiated analysis of the working principles and adjustments of the systems.

This subchapter first presents the Agile Manifesto for Software Design and analyses its values and principles.
It connects these theoretical guidelines with more practice-oriented agile frameworks. The two popular agile
methods Scrum and XP are described in detail. The perspective concludes with an outlook on scaled agile methods.

2.1.2.1 Manifesto of Agile Software Development and agile methods
As presented in 2.1.1.1 the manifesto for agile software development is the result of a two-day

workshop of 17 designers in Utah (Fowler and Highsmith, 2001). The authors of the manifesto intended to
circumscribe and summarize the basic beliefs and philosophy of agile software design in the shape of four values
and twelve principles (Beck and Beedle, 2001). The four values listed in Table 4 are basic beliefs that frame agile
product design and represent guidelines to desirable project settings. They are designed as tendencies that
prefer aspects that reflect agile product design on the left to aspects that represent more conventional product
design techniques on the right. The supplement in the manifesto which states “… while there is value in the items
on the right, we value the items on the left more.” underlines the adjustability of agile product design. Structures
are matched to the specific project conditions and should not follow standards blindly.

Table 4: Values of the Manifesto for Agile Software Development (Beck and Beedle, 2001).

Value 1 Individuals and interactions over processes and tools
Value 2 Working software over comprehensive documentation
Value 3 Customer collaboration over contract negotiation
Value 4 Responding to change over following a plan

The values reflect the ability to embrace change, the integration of the customer into the design process
and the focus on people and communication to improve product design. The twelve principles (Beck and Beedle,
2001) further elaborate the values. They represent more specific working mechanisms and provide guiding rules
to implement the values. Gustavsson underlines the importance of the manifesto to create self-organized teams
(Gustavsson, 2020b). He states that the manifesto supports team autonomy and trust which enable teams to
make the right decisions, solve problems and deliver results in accordance with literature that confirms the value
of autonomous teams to the success of agility in product design (Stray et al., 2018).

What sets the manifesto apart is its comprehensive approach. Agility in product design is neither only
about responding to change, customer integration or autonomous teams. Instead, it is a systematic approach
that combines and connects these aspects. The manifesto summarizes the basic values that create a foundation
to continuously develop practices and methods to implement individual aspects of agile design. When new
aspects are necessary the manifesto gives guidance how to evaluate and implement them. Partial
implementations or shallow adoptions (Gregory et al., 2015) are avoided by the comprehensive approach of the
manifesto.

The manifesto hast been discussed repeatedly in literature. Different interpretation have been criticised
and specific values and principles questioned (Laanti et al., 2013). While some aspects are very specific other
elements remain vague. Dingsøyr et al. regard the manifesto not as a formal definition agility but rather as
guidelines for delivering high-quality products in an agile manner (Dingsøyr et al., 2012). They view the manifesto
as a foundation for methods and practices that improve customer value in accordance with the core concepts of
Baham and Hirschheim (Baham and Hirschheim, 2021).

2-18

While the manifesto creates a common ground for agility in product design it does not provide specific
practices that can be implemented directly by design teams. Its direct application as rulebook is nonsensical since
application contexts differ and practices that are valuable in one context might be harmful in another. Instead,
agile product design relies on a set of agile methods (or frameworks) that combine practices and rules for
particular goals and specific application contexts. The manifesto describes the agility of a system while agile
methods realize this agility by concrete and applicable practices and principles. Dingsøyr et al. state that agile
methods need to reflect the core values of the manifesto (Dingsøyr et al., 2012). This does not imply that all agile
methods have been designed with the manifesto in mind since some agile methods such as Scrum are actually
older than the manifesto.

In contrary, the manifesto has been composed as a summary of the most valuable concepts of agile
methods that have been proven empirically. Abbas et al. coin agile methods as an umbrella term for well-defined
methods that vary in practice and reflect the manifesto (Abbas et al., 2008). The term method in agile methods
is debateable since in conventional product development terminology XP or Scrum would be methodologies and
their practices such as the Sprint review would be methods (Pahl and Beitz, 2021). Nevertheless, the popular
agile method term is well-established in both practical application and the research community and therefore
also employed in the thesis at hand.

Figure 3: Summary of agile methods (Denning, 2016).

Most agile methods were originally intended for small teams but their popularity has expanded their
use to large design projects and beyond software development (Gustavsson, 2020b; Xu, 2009). While agile
methods were applied to different application context, they also have been adjusted to them. Additionally, new
methods have been introduced that are based on popular agile methods or cannot be traced to existing ones.
This evolution has led to a large set of agile methods as shown in Figure 3. The popular agile methods Scrum and
eXtreme Programming XP (Baham and Hirschheim, 2021; VersionOne, 2020) are presented in the following
sections to provide details how agile methods are structured and applied in practice.

2.1.2.2 Scrum framework
Scrum is by far the most used agile method (VersionOne, 2020). Its origins can be traced to the 1986

article ”The New New Product Development Game” (Takeuchi and Nonaka, 1986). Based on empiric data
Takeuchi and Nonaka describe successful product development as a result of continuous interaction of designers
in small, multidisciplinary teams that are responsible for the complete product development process of a
product. The close collaboration of the team is compared to the Scrum of rugby players. In 1995 Sutherland and
Schwaber presented the first version of the Scrum Guide at the OOPSLA conference based on their experiences
in several product design projects and regular updates have led to the 2020 version (Schwaber and Sutherland,
2020) which is used for the thesis at hand. Scrum is guided by the principles transparency, inspection and
adaption and relies on the values commitment, courage, focus, openness and respect (Schwaber and Sutherland,

2-19

2020). The framework is based on three roles, five events (meetings) and three artifacts to structure product
design.

The three roles in a Scrum Team are a team of cross-functional developers, one Scrum Master SM and
one Product Owner PO. Developers (designers) are responsible for delivering the increment. This includes
responsibilities for creating and adjusting the Sprint Backlog (Sprint Plan), the quality of the increment, and
holding each other responsible. The Product Owner is accountable for the value of the product. This includes the
duty Backlog management in the form of creating, prioritizing and transparently depicting Backlog items which
must match customer requirements and reflect stakeholder restrictions. The Scrum Master is accountable for
the Scrum Team’s effectiveness. Her responsibilities are establishing the Scrum framework, coaching the Scrum
Team, removing impediments, and ensuring the Scrum events. The Scrum Master serves both the developer
team and the Product Owner and facilitates their responsibilities.

The five events are the Sprint, the Sprint Planning, the Daily Scrum, the Sprint Review and the Sprint
Retrospective. The Sprint is a repeating timebox of several weeks with a consistent length during which the
Scrum Team generates the product increment. In the Sprint Planning the Scrum Team decides on which Backlog
items the Scrum Team will work during the next Sprint. It is divides into two parts with and without the Product
Owner and results in the Sprint Backlog. The short Daily Scrum the team allows to coordinate activities for the
following day. The Sprint Review allows the Scrum Team to review and discuss the increment after the Sprint
together with costumers and stakeholders and collect feedback which get documented in the Backlog. In the
Sprint Retrospective the Scrum Team reflects the past Sprint and identifies adjustments to the collaboration
process.

The three artifacts are the Product Backlog, the Sprint Backlog and the Increment. The Product Backlog
is a prioritized list of items that reflect options to further develop the product according to customer
requirements. The Sprint Backlog is a subset of the Product Backlog items chosen for a Sprint by the Scrum Team.
The Increment represents the implemented Backlog items into a subproduct during a Sprint with a value to the
customer. The Product Owner decides whether to release it.

Figure 4: The agile method Scrum. The framework is based on iterative Sprint cycles that connect artifacts and meetings. In the Sprint
Planning prioritized items from the Product Backlog are selected for the Sprint Backlog to be developed during the Sprint. Throughout the
Sprint Daily Scrum meetings are used to improve cooperation and ensure coordination within the team. The Sprint results in the Product
Increment which is presented in the Sprint Review meeting. A Sprint is completed by the Retrospective meeting to continuously question and
improve cooperation.

Figure 4 depicts how the presented artifacts, and events interlock during one iteration (Sprint). In the
Sprint Planning the development team selects the highest prioritized items from the prepared Backlog into the
Sprint Backlog for the upcoming Sprint. During the Sprint the developers focus on the development of the
increment while the Product Owner updates the Backlog. The Scrum Team meets every day for the Daily Scrum
to coordinate progress of the Sprint Backlog and avoid impediments. At the end of the Sprint the increment is
presented and discussed at the Sprint Review amongst the Scrum Team which can also include customers and
stakeholders. The increment represents the sum of the selected items of the Sprint Backlog. Feedback and
discussion help to adjust the Product Backlog. The Sprint Retrospective represents the end of the Sprint and
offers the opportunity to reflect on the past Sprint regarding collaboration and overall progress of the Scrum
Team. The Agile Alliance defines Scrum as empirical since teams continuously establish a hypothesis, test it,
reflect on the experiment and adjust the product accordingly (AgileAlliance, 2021a).

2-20

2.1.2.3 Extreme Programming XP framework
Extreme Programming or XP is almost as popular as Scrum (VersionOne, 2020). It was first applied in

the mid 1990’s in the Chrysler Comprehensive Compensation program in cooperation with Kent Beck
(AgileAlliance, 2021b). Kent Beck also provides a thorough introduction and explanation of the agile method XP
in (Beck, 2004). Unlike Scrum XP provides very specific engineering practices and does not detail the overall
structure of the design cycle. But it is also based on iterative design cycles that connect coding, testing, listening
and designing phases. Close teamwork and the integration of the customer into the design team are like Scrum
but role definition is less formal. The engineering practices are adjusted to software development and therefore
cannot be transferred to other product contexts without difficulties.

Don Wells recommends XP under dynamically changing requirements, high risks caused by new
technologies, small co-located development teams and if automated unit and functional tests are applicable
(Wells, 2021). Especially the last condition shows that XP unlike Scrum relies on highly automated IT
infrastructure. XP is based on the values communication, simplicity, feedback, courage and respect. The XP
practices present the core of the agile methods. Initially twelve practices were published but these practices have
been adjusted by Kent Beck in the second edition of his book (Beck, 2004). The descriptions in the thesis at hand
are based on practices from both versions.

In XP the customer is expected to be available and part of the design team. The On-Site Customer
practice reflects this requirement. This enables understanding of customer requirements, direct feedback,
customer testing and accelerates necessary decisions for small releases. According to the System Metaphor
practice parts of the software product get names that are easy understandable by all stakeholders including the
customers. This practice is connected to user stories. They significantly improve communication between
customer, designers and further stakeholders. The Planning Game practice determines the release and the
iteration planning. During the Release Planning the customer presents the desired features and the designers
estimate their difficulty. They implement an initially imprecise release plan that is continuously adapted
according to project progress. During the Iteration Planning the designers break down features into tasks and
estimate their effort based on their experience from past iterations. The planning steps transparently display
project and product progress and enable to customer to adjust project steering accordingly. The Continuous
Integration practice requires code change to be immediately tested when added to a larger code base. It allows
to detect integration issues directly. It requires a code integration system, Coding Standards, the Ten-Minute
Build and Test First Development to function. The Ten-Minute Build stands for the ability to automatically build
the whole system and run all the tests in ten minutes. It requires an automated build process which has to be
provided or adjusted by the design team. The short time frame is necessary, since a longer time would result in
avoided builds if only small changes are applied. It supports the practices Continuous Integration and Test First
Programming. The Test-First Programming practice reverses the normal path of software design from develop
code, write tests, run tests to write failing automated test, run failing test, develop code to make test pass, run
test. It reduces the feedback cycle for designers to find and resolve bugs and therefore improves quality of the
product. The Refactoring (or Design Improvement) practice focuses on removal of duplication and improving
cohesion of the code. It therefore lowers coupling between pieces of codes. It enables simple design for software
and therefore improves product quality and product design efficiency. It requires testing practices and
continuous integration. The Collective Code Ownership practice allows any designer (or pair of designers) to
improve any code at any time. This improves code quality and ensures that requires features are put in the right
place by the responsible designers. To avoid unreflective code changes the Collective Code Ownership practice
relies on the Pair Programming, the Coding Standards and the Testing practices to provide added value. The
Coding Standard practice results in code throughout the whole systems that could have been written by one
competent designer. It does not imply one standard across industries but requires all connected code to look
familiar. This also requires a commitment of all responsible designers. The Pair Programming practice requires
all product software in XP to be coded by two designers, sitting next to each other at the same computer. It
guarantees direct review and feedback and results in better design, testing and code quality. Like in Scrum the
Incremental Design practice divides the whole product in several sub products that can be designed within
iteration time lengths. The practice creates the opportunity for customer testing, Small Releases and reduces
costs of changes. It requires modular system design and customer integration. The Small Releases practice
includes the release of small, tested and functional packages to both the costumer and the end users after each

2-21

iteration. The practice relies on Incremental Design, Continuous Integration and automated testing. It improves
product quality through additional end user feedback and improves customer value.

2.1.2.4 Large scale agile methods
Throughout the last two decades a set of large scale agile methods has been developed (Larman and

Vodde, 2009). Dingsøyr et al. divide these scaled agile methods into two generations (Dingsøyr et al., 2021). First
generation large-scale agile methods combine agile methods at team level with traditional project management
frameworks such as Prince2 (Bentley, 2005). They connect conventional engineering approaches that provide
structure and orientation and might include several phases over long-time spans with agile design practices at
the team level. These combinations are often called hybrid frameworks (Bick et al., 2018). These process-centric
frameworks often divide work into phases, rely on formal communication and individual roles. Second
generation large-scale agile methods replace the management frameworks with agile and lean structures.
Edison et al. group the most relevant large scale agile development frameworks which include the Disciplined
Agile Delivery (DAD) framework, the Large Scale Scrum (LeSS) framework, the Scaled Agile Framework (SAFe),
the Scrum-at-Scale framework and the Spotify Model framework (Edison et al., 2021). These second generation
frameworks shift the focus from the process towards the product and embrace concepts such as informal
communication or an collaboration oriented management style clearly based on agile principles (Baham and
Hirschheim, 2021). The focus of the thesis at hand is second generation large scale agile methods.

SAFe is currently the most popular large-scale agile method and employed in software and non-software
product design (VersionOne, 2020). Like LeSS it is based on the agile method Scrum and adds further practices,
roles and structure to enable cooperation of several teams and connect long-term planning and strategy with
agile practices at the team level. The concept of the framework was designed to combine agile software
development, lean product development and systems thinking. Origins of SAFe were first presented by Dean
Leffingwell in 2007 SAFe was first presented in 2007 (Leffingwell and Kruchten, 2007) and is described in detail
at the framework homepage (SAFe, 2021). SAFe has been criticized by researchers (Alqudah and Razali, 2016;
Stojanov et al., 2015) and practitioners including Ken Schwaber one of the framework originator of Scrum
(Schwaber, 2013) who claim that SAFe minimizes team autonomy and rebuilds bureaucracy similar to
conventional product design methodologies like the waterfall model or first generation large-scale agile
methods. Regarding this criticism LeSS offers an alternative product design approach for more than one agile
team but requires much less structure compared to SAFe. Further information regarding inter team coordination
in large scale agile methods is discussed in subchapter 4.4.

2-22

2.2 Product development theory
The aim of this subchapter is to supplement a conventional perspective on product development and

respective methodologies independent of product type characteristics. It includes different perceptions on how to
describe product development or specific aspects of it. This classification of conventional product development
understanding is introduced as a scaffolding that allows to analyse agile product design structure in comparison.
The reference frame allows to define parallels and differences between agile and conventional approaches to
product development and hence increases understanding of agile design. The subsection first introduces a
definition of product development and summarizes its elemental characteristics. Thereupon micro and macro
logic in product development are divided and the concept of a design project is differentiated from product
development. Next, the most relevant process models are described and categorized into linear and iterative
(incremental) models. Finally, agile design is categorized according to the presented scaffolding and compared to
popular process models.

Ulrich and Eppinger define product development as the sum of all necessary activities from sensing a
market potential to a product model that is subsequently used for production and sales (Ulrich and Eppinger,
2015). Hammer extends this definition to the product development process which he defines as a series of
interrelated activities that give rise to a valuable result for the company (Hammer, 2001). Ehrlenspiel et al. specify
these activities as including all operations, from the product idea to the start of the production (Ehrlenspiel and
Meerkamm, 2013). Paetzold et al. describe the (mechatronic) product development process by four
characteristics (Paetzold et al., 2017). First, development processes are object of uncertain and incomplete data
and information. Throughout the development process uncertainty is reduced and data is generated to fill these
gaps. Data and information about the product arise in the context of the development activities. Second,
development is multidisciplinary and requires the cooperation of different domains that rely on different process
and integration models. These models result in varying perspectives of the same product development process
which results in variance regarding knowledge content of the models. Third, development activities in these
different domains and their respective departments are parallelized. These concurrent development streams
mutually require input from each other. Interface management is necessary to ensure data and information
availability through any stage of development. Fourth, development consists of a permanent exchange between
synthesis and analysis. This requires appropriate analytical steps of information and continuous corrections of
requirements according to results.

To further differentiate product development Paetzold et al. separate a micro and a macro logic (Paetzold
et al., 2017). The micro logic in product development describes the activities at the concrete project work
(Gausemeier et al., 2004). It is based on a generic problem-solving cycle. Ehrlenspiel describes it as a continuous
sequence of task clarification, solution generation and solution selection (Ehrlenspiel and Meerkamm, 2013). The
concept represents the foundation of iterative product development which is essential for the micro logic in
product development. The micro logic opens a generic approach independent of the product that applies to a
broad spectrum of individual tasks. The macro logic is its counterpart and defines integrating structures in
product development that connect and guide activities and methods at the micro logic level. The macro logic of
product development relies on process models such as the Waterfall model or the Stage Gate model which are
described in detail in the next section. These prescriptive process descriptions organize product development
from the first idea to the finished product based on a chronological and logical order of development activities
(Lindemann, 2009). They are configured to certain product groups but require further adjustment according to
the specific product (Paetzold et al., 2017). These variations explain domain specific development processes that
are not necessarily interlacing in multi domain development. The process models divide the overall development
process into manageable sections that address different goals of product development. Paetzold et al. identify
four domain-independent phases: Planning Phase, Conceptual Phase, Detailing Phase and Integration
Phase (Paetzold et al., 2017).

In practice product development is organized in projects that connect micro and macro logic development
activities. Development projects are “temporary endeavour undertaken to create a unique product, service or
result” (PMI, 2008). Lévárdy and Browning view product development projects as systems that transform input
factors such as project members, artifacts and information into the product (Lévárdy and Browning, 2009). The
project is a temporary system of these interconnected input factors that results in a description of how the

2-23

product works, looks, gets manufactured, is operated, etc. which Lévárdy et al. term the “product recipe”. They
emphasise that each development project is unique because activities necessary to reach the project goal and
the goal are dynamic, uncertain, and ambiguous.

The development project and the development process have severe influence on the different aspects of the
complete life cycle of the product. Schmidt summarizes project management and systems engineering as the
essential perspectives on product development that focus on both micro and macro logic of product
development (Schmidt, 2019). Project management involves administrative activities which include planning,
organizing, coordinating controlling, steering and reporting amongst others. On a micro level project
management continuously compares theoretical targets with practical results to derive necessary means to
remain on track (Kerzner, 2009). Project management organizes product development activities according to
cost and quality requirement. The project manager and project management methods are the implementation
of the objective in either an individual role or a micro logic process description. On a macro level project
management is often attributed to process models such as the Stage Gate model which might include
corresponding roles. System engineering views product development as a system consisting of elements such as
staff, capabilities, information and artifacts, interdependencies and dynamics (Lévárdy and Browning, 2009). It
aims at an integrative view on product development that considers operation, cost, schedule performance,
support, test and production. System engineering is based on the conviction that a system is more than the sum
of its components. The interplay of dependencies and dynamics between elements of product development is
essential in the system engineering view. This macro scale product design is described by the elemental
engineering design process by Pahl and Beitz (Pahl and Beitz, 2013) which gives product independent guidance
on how to generically design a (mechatronic) product.

2.2.1 Linear and iterative process models
Context and product specific process models divide the product development process into

smaller, better predictable phases with specific foci on the macro logic scale. Process models are
categorized into linear and iterative (incremental) models. In the following paragraph these categories
of process models are explained along with descriptions of the popular representatives.

Figure 5: Waterfall and Stage Gate models. Linear, or sequential process models divide the development process into separated phases which
are executed consecutively. The waterfall model consists of the phases initiation, analysis, design, construction, testing, deployment and
maintenance which flow into each other like a cascade. The original publication (Royce, 1970) includes iterative design cycles which are
represented with dotted arrows. Cooper’s Stage Gate Process adds prespecified verification gates between stages to ensure product maturity
(Cooper, 1983).

Linear or sequential process models divide the product development into separated phases
that are executed consecutively (see Figure 5). Extensive planning of the development project
throughout the first phases which is often disparagingly labelled as “front loading” characterizes these
models (Thomke and Fujimoto, 2000). Verification at gates between these phases ensures that the
planned product maturity has been accomplished. Such gates either prolong the earlier phase, stop
the whole project or allow the project to continue. Linear process models are one-way process models.
Repetitions or going back to earlier phases were originally not intended. The most popular linear
process models are the Waterfall model (Royce, 1970) and the Stage-Gate model (Cooper, 1983). The
Waterfall model is often used in software development. It is named after progress in product
development through its sequential stages that resemble a cascade that flows from one phase to the

2-24

next in one direction. Its phases are initiation, analysis, design, construction, testing, deployment, and
maintenance. Even though the Waterfall model is often referred to for linear process models the
original publication of Royce from 1970 includes iterative elements that allowed repetitions of stages
(Royce, 1970). The Stage-Gate model adds formal gates between its sequential design stages that
ensure that product maturity complies with the initial planning (Cooper, 1990). Gates results either in
the next project stage (with conditions), project halt until further decisions or project kill. Gates require
powerful steering committees able to thoroughly verify project progress. Concurrent Engineering is
another linear process model with characteristics overlapping phases (Haberfellner and de Weck,
2005). Its main advantage is a shorter project duration which results in a high popularity in automotive
design, even though the approach risks incomplete or faulty phases.

Iterative process models rely on iterative feedback loops to develop both requirements and
product design in parallel. Unlike in linear process models requirements are adjusted throughout
iterations and are not fixed after the initial phase. General specifications are transformed during
iterations into specific requirements and the product in corresponding subsystems. Within these
subsystems detailed product designs are developed and tested that require further system testing and
integration. Iterative process models release the complete product. The V-Model and Spiral model
(Boehm, 1988) are popular iterative process models. Originally a software development model the V-
Model variation described in the VDI Guideline 2206 (VDI 2206, 2004) applies to mechatronic system
design. The V-Model connects design and test activities in large iterations (see Figure 2). First, unspecific
macro requirements are matched with respective test structures. As the requirements are specified so
are corresponding test and integration specifications. Once requirements refinements are sufficiently
specific, they are get designed and tested at the lowest part of the V. The refinement of requirements
and system characteristics represents the first branch of the V. The resulting product parts are tested
and integrated according to the prespecified verification and validation structures climbing up the
second branch of the V. It is essential that the findings about product characteristics on different
integration levels are used to adjust both earlier requirements and the respective testing and
integration system. In automotive development projects the V-model is repeated with varying level of
detail und changing overall design goal (e.g. concept, design, industrialization) with each repetition
representing one iteration.

Figure 6: The V-Model specifies interlocking granularity levels of design and respective test activities (based on (Eigner, 2021)).

Iterative incremental models are based on the concept of iterative process models. They are
based on much shorter iteration lengths including verification and validation at system level ideally
each iteration to address unclear requirements or changing customer wishes during each iteration.
Their delamination to iterative process models is based on their ability to release product parts with a
high customer value every iteration. Typical examples are the agile methods Scrum (Schwaber and

2-25

Sutherland, 2020) or Extreme Programming (Beck, 1999) which are described in detail in 2.1.2.2 and
2.1.2.3.

2.2.2 Categorization of agile product development
 Agility in product design has been approximated though two perspectives in the thesis at hand. It has
been described as an attribute of product development explaining what agility is, what characteristics it results
in, what its benefits are and where it came from and as a construct explaining what methods and practices are
used to accomplish the desired product development characteristics. The aim of this section is to classify agile
product design within the described scaffolding of product development methodology. This allows to compare
this new product design approach with existing concepts.

The Fuzziness model of Oestereich and Weiss (Figure 7) summarizes the logic of agile product
development straightforward (Oestereich and Weiss, 2008). Initially, the product development project is object
to high uncertainty. Imprecise customer requirements and incomplete technology understanding result in a fuzzy
solution space. To answer this uncertainty the development team projects its incomplete requirements into a
draft of the desired product as an entrepreneurial vision including a description on how to realize it. This initial
product vision shapes the scope of the first iteration which must result in an increment. The increment allows to
validate and specify the initial product requirements with the customer and to verify the planned product
implementation and technology roadmap. The learnings during the iteration help to refine the product vision
and result in an adjusted scope for the second iteration. For each following iteration the development team
adjusts the scope to improve customer understanding and product maturity. With every iteration the solution
space definition improves and the initial uncertainty decreases. This results in a project path that is incrementally
reshaped and verified by the outcome of the iterations (Douglass, 2016) and might lead to unexpected solutions.
Ostereich and Weiss state “that the clarity about the product to be produced does not suddenly arise, but comes
gradually, and that the goals is not a constant size, but can change over time” (Oestereich and Weiss, 2008).

Figure 7: Fundamental logic of agile product development based on the Fuzziness model of (Oestereich and Weiss, 2008). Initially the design
project is object to uncertainty and can only project the desired outcome vaguely. During the following iterations, which all result in
verifiable artifacts, understanding of the product improves in steps. The clarification of the product requirements and the verified design
solutions iteratively decrease the design fuzziness.

Regarding the micro logic of product development scaffolding agile product design is also based on the
elementary problem-solving cycle (Ehrlenspiel and Meerkamm, 2013) like most other approaches. Any iteration
follows the same procedure: Determination of the iteration scope (plan), generation of the increment (do),
verification and validation of the increment (check), transfer of learnings to the next iteration (act). Unlike
conventional approaches agile design emphasizes the independency of teams and hence the micro design cycles.
This independence on the micro logic design level is an essential principle. Agile design emphasizes iterative
design, short iteration length, consistency of the iteration length and incremental results on a micro logic level.
The combination of short iterations and incremental results allows to both validate requirements with the
customer and verify implementations in parallel which differs significantly from traditional approaches. Linear
approaches require a complete and correct set of requirements early in the design process. Another significant
characteristic of agile design is its dominance of the micro logic compared to the macro logic. Iterative learnings
are more relevant to the solution space definition than initial planning procedures. Most traditional design
methodologies subordinate the micro logic to the macro logic.

2-26

Regarding the macro logic according to the presented product development scaffolding agile product
design best matches the Spiral model of Boehm (Haberfellner and de Weck, 2005). Unlike sequential process
models agile design allows to change requirements and plans throughout most of the development project
depending on the product type characteristics. The focus on product increments to verify product
implementation and validate costumer requirements classifies agile design approaches within the subgroup of
iterative incremental process models. Besides the described categories agile product development has further
differentiating characteristics. Nerur and Balijepally summarize the spectrum of differences between traditional
and agile product development and emphasize different goals. Agile development aspires adaption, flexibility,
and responsiveness through an emergent, iterative and exploratory design process, while traditional
development aims at optimization and employs an deliberate, formal and linear design process (Nerur and
Balijepally, 2007).

2.3 Automotive product development
In this subchapter automotive design is described according to the presented product development

scaffolding. Additionally, the development context is compared to sweet spot conditions of agile design and
central differences are categorized. This allows to better understand the suitability of agile design structures in
the context automotive design. The empirical scope of the thesis at hand is the Research and Development
department of the partnering company BMW Group and therefore the reference for automotive design in this
section. The development department is separated into multiple sub departments or divisions according to
product functionalities. The divisions cooperate in large development projects. These projects are divided into
process chains according to a generic product architecture. The product architecture separates systems into
modules and modules into components based on specific parts of cars. The organizational breakdown of the
development department references the product architecture. Divisions are separated into units and groups
which are responsible for modules and components.

The macro logic of large automotive design projects is structured through a stage gate process model that
separates ideation, conceptualization, series design and industrialization phases. Gates are implemented
between each of these phases to assess product maturity and business model viability according to a prespecified
plan. Each evaluation requires a complete integration of the product which has been developed in modules and
components according to the predetermined product architecture. That is why between each stage automotive
design relies on at least one complete cycle of the V-Model. Objectives, product maturity and level of detail of
the V-Model cycles change with the phase of the stage gate process. Consequently, the automotive design
process is a combination of an integrating linear Stage gate and an iterative V-Model process model. The overall
V-Model cycle is subdivided into several modules and components that rely on shorter iteration lengths. The
iterative V-Model cycles throughout the phases are not incremental since only the final product is released to
the costumer. An exception within automotive design is software only products which are directly released as
incremental updates into hardware that is already in use. The micro logic of automotive design includes a broad
spectrum of design activities which reflects the diversity of product types within the automotive product. At the
micro logic level these design activities are highly interdependent, even across product types. These
dependencies are driven by the high integration level and the physicality of the product. Individual teams depend
on input from other teams and decisions within teams influence multiteam systems. Prototypes at a high
integration level are applied to manage the complexity of these interdependent design activities. They allow to
verify the system behaviour of the product and transparently depict interdependencies between product parts
and hence the respective development units.

The highly integrated automotive product development process is implemented in large projects. Several
projects are conducted with an offset to avoid simultaneous use of development resources. A vast interlinkage
of functional, physical and sequential dependencies causes a high interdependency level of organization units
within these product development projects. Significant coordination efforts are necessary to facilitate project
progress and avoid asynchrony between sub projects. Vertical hierarchies and specific role descriptions of both
technical and project management roles are characteristic for the coordination structure. Coordination therefore
accounts for a major part of the product design effort.

Regarding the nature of the product, automotive product design includes separated software and
hardware development projects and hybrid or mechatronic development projects. Product integration and

2-27

testing is implemented differently in hardware and software design projects. In software design automated
integration and testing has been implemented to a large degree. Most of the hardware design on the other hand
is based on sequential testing of physical prototypes. The integration level of these physical prototypes depends
on the analysed functional dependencies and overall (phase-based) product maturity. These verification cycles
and the necessary infrastructure amount for a large share of the overall design process regarding both time and
effort. The more time intensive hardware integration dominates overall design scheduling. The interlinkage
between hardware and software in the highly integrated design process results in suboptimal project frames for
software specific subproducts. The combination of an integral product architecture and the slow hardware
dominated product integration is vulnerable to undetected, unexpected, or peripheral problems.

Automotive design differs considerably from agile sweet spot conditions as described in 2.1.1.5. The two
central factors that differentiate automotive design are the physicality of the product and scale of the design
process. The physicality of the product results in additional dependencies between components and hence
increased independency of design units compared to agile sweet spot conditions. It affects the product
verification strategy which relies on highly integrated physical prototypes. It increases the verification efforts,
complicates redesigns, and limits verification automatization. The physicality of the product also requires up-
front specification of the product architecture and early determination of central design concepts before the
start of the actual design process. The scale of the development projects results in large systems of teams.
Instead of independent design teams like agile sweet spot conditions, interdependent teams cooperate in
multiteam systems. Central drivers of the large scale in automotive design are the product complexity and size
and thus the number of product parts that need to be developed in parallel and the spectrum of necessary
specializations. To understand the impacts of the characteristic scale and physicality on agility in automotive
design both factors are further detailed in the next subchapters.

2-28

2.3.1 Agility in mechatronic product design
The aim of this subchapter is to detail and summarize constraints of agile design caused by the physicality

of hardware products. The reason agility in mechatronic product design is described is that agile automotive
design differs from agile software design regarding the physicality of the product. These differences are essential
to understand the implications on agile automotive design. The subchapter is divided into two parts. First,
hardware products are differentiated from software products regarding their design process and fundamental
product characteristics. These differences to agile sweet spot conditions are connected to drawbacks of agile
design of non-software products. Second, literature sources are presented that provide cause effect relations
between hardware design characteristics and constraints of agile design.

The term “mechatronics” is a composition of the words “mechanics” and “electronics”. This combination
reflects that a mechatronic product consists of mechanics, electronics and software and integrate them into one
product. A mechatronic product is always based on a hardware but must not necessarily contain a software
share. Such products require the cooperation of several disciplines in product design that often result in
challenges due to opposing product design approaches (Lückel et al., 2000). Computer scientists and electrical
engineers are function-oriented and adjusted to short product lifecycles while mechanical engineers are
component-oriented and used to much longer product lifecycles. Their combination in mechatronic product
design results in numerous dependencies between the disciplines.

Socha and Walter fundamentally differentiate product design in software and physical products by
relating activities to effort needed (see Figure 8) to analyse applicability of agile design in non-software products
(Socha and Walter, 2006). They divide the product lifecycle of hardware and software products into the
sequential phases Design, Build, Distribute, Intervene and Operate. The Design phase is central in software
products while their non-physicality allows to minimize the Build and Distribute phases. Hardware products on
the other require additional activities for both the Build and Distribute phases. Also, hardware design relies on
sequential design phases that are interdependent.

Figure 8: Comparison of development efforts for physical and software products throughout their life cycle (Socha and Walter, 2006)).
Larger and bold font implies more effort is needed during that stage of product development. Software products allow to focus effort on the
design phase and require little effort during the build phase. In contrast, physical products need to be materialized in the build stage which
represents a large effort. The production phase has a significant influence on the design of a physical product. Therefore, design and
production requirements must both be considered in the design stage of the product.

The phases Design Build and Distribute are not sequential in automotive design as expected for
hardware products. In contrast, for example automotive design requires concurrent design efforts since
interdependencies between the design activities require parallel activities. Automotive development projects
are composed of three parallel, synchronized projects: the design of the product including the design of the
verification system, the design of the product manufacturing facilities and the design of the necessary supply
chain and product distribution.

Such product design conditions present severe deviations from Boehm’s and Kruchten’s Sweet Spot
conditions (Boehm, 2002; Kruchten, 2013) for agile design. That is why early literature of agility in hardware
design has resulted less efficient compared to software design (Schmidt et al., 2019). Ovesen reports difficulty in
design team composition. Increasing numbers of necessary domains and design phases require additional
designers. Team separations are necessary to avoid oversized teams which in turn result in inter team
dependencies (Ovesen, 2012). Ovesen also coined the term constraints of physicality to describe product and
process characteristics specific to hardware products that reduce applicability of agile design (Ovesen, 2012). He

2-29

states that the physicality of the product reduces the applicability of agile design based on his experiences with
Scrum. More specifically he defines four constraints that cause this reduced applicability.

First, task breakdown into small and independent work packages is complicated in agile design of
hardware products. Scrum requires these packages to fit into one iteration. But physical dependencies between
components, necessary functional integration and multiple necessary domains increase the interdependency
prevent or complicate the necessary task separation. Second, the separation of deliverables or prototypes is
harder in hardware design. Potentially shippable physical products are constrained by long manufacturing times
and necessary cooperation between involved domains. The integrated nature of for example mechatronic
products and the necessary combination of design and manufacturing in hardware contradicts the idea of
functionally separated subproducts which are shippable and provide customer value without the whole product.
Third, there is less flexibility in hardware product design compared to software design. Mechatronic products are
composed by a higher integration level than software products. Decisions cannot be taken without reducing the
level of flexibility significantly. Additionally, physical dependencies increase the overall product interdependency
system complexity and often results in incomplete understanding of system implications. Refactoring and
repeated rebuilds are therefore much more complicated in mechatronic product design since changes might
have unintended consequences for other product parts and often require new physical prototypes. Fourth, time
and resource estimation are harder in agile design of hardware products. The higher interdependency level of
the physical products decreases transparency of relevant dependencies and complicates necessary estimations.
Concept development tasks are characterized by unknown unknowns which cannot be estimated. The first
constraint, the difficulty to define small and independent work packages further enhances the estimation
constraint.

Atzberger and Paetzold reviewed and confirmed Ovesen’s constraints of physicality in 2019.
Additionally, they present a set of updated constraints (Atzberger and Paetzold, 2019). Dependencies to external
suppliers, verification and certification, complicated tool production prevent fast feedback cycles and negatively
affect iteration speed. Legal restrictions require additional documentation. Regarding the number of involved
teams, they underline the lack of sufficient coordination structures.

Ronkainen and Abrahamsson published constraints of agile software development in embedded
systems (Ronkainen and Abrahamsson, 2003). They emphasis the impact of hardware on agile test-driven design
strategies. System performance tests rely on combinations of hardware and software tests, but hardware test
capacity and speed do not match software test characteristics which limits whole product testing performance.
Furthermore, final software verification relies on functional hardware. Inter team coordination becomes more
relevant at the cost of face-to-face communication since larger projects and additional stakeholder require
distributed development across teams. Documentation practices of agile methods are often insufficient.
Especially, change-prone requirements must be identified and managed. Up-front designs and architecture are
necessary for hardware subproducts. Refactoring in turn becomes harder which limits experimenting
opportunities of design teams. Transfer of prototypes into production models becomes harder and requires
necessary maturity steps of the prototypes.

Greene further confirms the findings of Ronkainen and Abrahamsson in a report of shortcomings of
agile methods in embedded firmware development at Intel. Team formation is complicated by the larger number
of necessary experts across additional domains. Hardware tests do not match granularity and automation of
software tests. Additionally, incomplete test coverage increases design dependency of final system tests. Kaisti
et al. confirm the necessity for non-emergent product architecture, up-front design and plans in embedded
design and describe the need for techniques to account for relevant specifications (Kaisti et al., 2013).
Documentation on a system level is necessary to ensure cooperation between designers and stakeholders. The
number of involved design teams grows with increasing product integration which causes changes to affect more
teams. To compensate the effort of change integration, embedded products require more rigid architecture and
corresponding design practices in later development stages.

Conforto et al. differentiate non-software from software industries regarding agile design (Conforto et
al., 2014). Central differences between the product groups are the quantity of interaction between design teams,
the number of designers involved, the complexity level of the product, the technological and cost barrier to
prototype physically and the length of the development cycle. Their analysis emphasises problems with

2-30

multidisciplinary teams in non-software industries. Multidisciplinary full-time teams are hindered by the number
of specializations and designers. The coordination practices of employed agile methods are insufficient to provide
inter team coordination and integrate customers into a multiteam system. Product complexity and prototype
availability and integration level further complicate customer integration. Gustavsson’s literature review of agile
project management in non-software project identifies a lack of process visibility, missing manager buy-in and
inadequate knowledge sharing as the top challenges. Insufficient resource allocation, redundant work,
inadequate long-term planning, a lack of process visibility and individual tasks are secondary challenges
(Gustavsson, 2016).

The presented literature sources have reported similar constraints of agile hardware design. The following
summary lists the most referenced ones compared to software design. The number of disciplines and experts
increases in hardware design projects. This requires documentation, coordination and communication to
improve cooperation. Additional design steps such as manufacturing and distribution are central and connected
to product design tasks. Iterative and incremental design is therefore complicated. Between subparts of the
products are physical dependencies which increase dependencies between design teams and often require full
scale prototypes for verification. Customer involvement is more complicated due to additional design teams and
prototypes that do not reflect full product functionality. Hardware verification systems are less automated and
less connected compared to software testing. Testing focuses on system tests. Technologies such as continuous
integration or automated testing which are essential for agile testing strategies are not available at the same
functionality yet.

Still, practical examples of successful agile design in hardware products such as cars or airplanes (Brown,
2013; Denning, 2012; Furuhjelm et al., 2017) and annual industry reports (Komus, 2017; Schmidt et al., 2019)
prove that the development of physical products profits from agile design approaches. Nevertheless, agile
methods and practices require adjustments to suit the new applications environment (Conforto et al., 2014;
Schrof et al., 2018).

2.3.2 Agility in scaled design contexts
The aim of this subchapter is to describe and define scaled agile design and summarize and explain

constraints of agile design caused by the scale of the process. This is relevant because automotive design is a
large-scale process and therefore must regard the characteristics and limits of agility in scaled contexts. The
subchapter is divided into two sections. In the first parts large-scale agile and current industry relevance are
described. Definitions of large scale agile are compared and evaluated. The second part summarizes reported
constraints of large scale agile.

There is a clear tendency to expand agile product design beyond individual team applications towards
large scale applications. Edison et al. analyse in their literature review 191 primary study that focus on scaled
agile design (Edison et al., 2021). The sheer number of 191 studies reflects the relevance and interest of both the
scientific community and practitioners at large scale agile. Despite this empiric proof of the scaled applications,
agile methods were originally thought to be limited to small, co-located design teams (Conboy, 2009). Conboy
states that even though the application has expanded to large-scale application the amount of literature
regarding corresponding constraints clarifies that these applications might not be simple plug and play (Conboy,
2009). Maples argues that routines, practices and processes that worked well for small teams might be difficult
to scale (Maples, 2009).

Before looking into characteristics of scaled agile design it is necessary to agree on a definition of the term
“scaled agile”. Dingsøyr et al. propose a taxonomy of scaled agile that accounts for the number of interdependent
teams in design projects and the sensible coordination structure (Dingsøyr et al., 2014). It is based on three
categories. Small-scale agile includes one team and relies on agile coordination practices. Large-scale agile
reflects projects that consist of at least two and up to nine teams. Coordination in large scale agile requires
additional forums such Scrum of Scrums. Very large scale agile consists of ten or more teams and coordination is
divided into several forums. Dikert et al. propose a similar division. They define large-scale to include 50 or more
people or at least six teams. The involved persons do not have to be designers and may also include stakeholder.
But there must be a need to collaborate between the involved actors (Dikert et al., 2016). Rolland et al. further
specifies the number of actors and teams with a network of interdependencies that requires collaboration

2-31

between actors and teams (Rolland et al., 2016). They also emphasise project size and overall project cost in their
definition of large-scale agile.

Scaled or large scale design contexts also oppose agile sweet spot conditions. Increasing numbers of
developers, stakeholders and teams connected in large projects affect the applicability of fundamental agile
development principles. In the thesis at hand challenges to agile design approaches that relate to project size
and complexity are summarized under the term constraints of scale and were noticed first in large software
projects. Dependencies on product, process and system level are central causes. The following sources
summarize constraints of scale that have been published since 2010. Constraints of scale reflect two categories.
Systemic constraints of scaled development and constraints that are caused by the transformation process
towards agile design. This study only summarizes systemic constraints.

Edison et al. present the most complete and up to date literature review of scaled agile design to the
author’s knowledge (Edison et al., 2021). They report inter team coordination constraints in scaled agile design
application. Synchronization and transparency across dynamic, adaptive teams are difficult. Communication
overloads are caused by multiple agile layers and various ceremonies. The adjusted balance between inter and
intra team activities increases external distractions for team collaboration. Organizational structure constraints
are caused by the need to balance generalists and specialists teams, the fluidity of agile roles and flow levelling
for limited resources. Architectural constraints include difficulties to see the big picture, lack of continuous
integration and test automatization and a lack of software security awareness and measure. Requirements
engineering constraints are driven by the difficulties in coordination rapidly changing requirements planning
across teams, prioritisation and formulating small, valuable and measurable stories. Customer collaboration
constraints are caused by difficulties to maintain a constant pace indefinitely. Team related constraints
summarize a lack of ownership of user stories, over-commitment for faster delivers, a lack of team autonomy
and fear of criticism. Project management constraints include conflicts between long-term planning and short-
term sprint-based planning of agile, alignment difficulties to existing processes and stakeholder and insufficient
meaningful metrics for performance and improvement.

Dikert et al. analyse scaling constraints and success factors in another literature review (Dikert et al.,
2016). They summarized systemic constraints into three categories: coordination in multiteam systems,
requirements engineering and quality assurance and testing. Inter team coordination suffered from problematic
interfacing between teams, distributed teams, individually divergent balance between team autonomy and
collaboration with other teams and, insufficient technical consistency between teams and systems.
Requirements engineering constraints included non-existent high-level requirements management, challenging
requirement refinement, difficulties to create and estimate user stories and a gap between long-term and short-
term planning. Quality assurance and testing constraints are driven by a lack of non-functional tests (e.g.
performance, load and memory tests), a lack of test automatization across sub and ambiguous requirements due
to insufficient requirements refinement. Uludag et al. confirm Dikert et al.’s findings in a secondary literature
review focusing on systemic constraints of scale (Uludag et al., 2018). They confirm Dikert’s three systematic
constraints categories and identify the additional constraints categories software architecture, team distribution,
knowledge management and enterprise architecture. Sekitoleko et al. report technical dependencies between
activities, artifacts and teams caused by scaled agile practices. The authors summarize difficulties in task
prioritization, product quality, knowledge sharing, planning and product integration (Sekitoleko et al., 2014).

Based on a large case study Dingsøyr et al. argue that inter team coordination causes severe problems in
scaled agile design because teams which were originally intended autonomous are object to dynamic
dependencies between tasks and hence teams (Dingsøyr, Moe, et al., 2018). Šāblis et al. even state that the
coordination of such interdependencies is one of the biggest challenges associated with large-scale software
development today (Šāblis, Šmite, & Moe, 2020). The agile principle of team autonomy in small scale agile
methods negatively impacts coordination and knowledge exchange between teams in multiteam systems. A
balance between team autonomy and inter team coordination is therefore necessary. Simply scaling existing
agile practices like a Scrum of has Scrum has not been proven successful (Paasivaara et al., 2012). Hobbs and
Petit confirm the existence of inter team coordination challenges in scaled projects and add two further
interrelated constraints of scale: The organization of specialists outside of design teams and the integration of
agile systems with other (existing) systems (Hobbs and Petit, 2017). Berger and Eklund see the need for

2-32

continuous integration of product increments of different teams. This requires appropriate infrastructure and
automated system tests. However, these structures cannot be generated by the development teams, but require
central provision (Berger and Eklund, 2015).

In summary, the following constraints of scale are most relevant. Scaled agile projects increase project
complexity and result in dependencies between tasks and hence teams. Content specific and phase related
dependencies develop dynamically and affect project organization considerably. They result in constraints
regarding inter team coordination, communication, and knowledge transfer. Central agile principles such as
costumer integration, continuous integration and testing as well as emergent architecture are difficult to
implement. Distributed teams, inter team dependencies, and the need for specialized teams contradict self-
organized and cross-functional teams. To answer these challenges an adjusted balance between team autonomy,
inter team coordination and knowledge management is necessary. Xu et al. call for formal centralized
coordination strategies based on vertical communication and control for scaled agile development projects (Xu,
2009). Documentation needs to address stakeholder and costumer integration and product architecture needs
to support overarching product functionality. Such adjustments must be flexible to project dynamics and avoid
inefficient standards in scaled agile application contexts which has been implemented only partly in large scale
agile methods (Alqudah and Razali, 2016).

2-33

2.4 Coordination theory in product design

“Prediction is very difficult, especially if it’s about the future.”
 Niels Bohr

The aim of this subchapter is to present the state of the art of research on coordination theory relevant
to product design with a focus on agile product design. This includes central concepts of coordination and
explanations about dependencies from the relevant spectrum of research fields. The reason to include
coordination into the State of the Art chapter is the theory’s suitability to serve as a theoretical lens to agile
design. Coordination theory allows to analyse and categorize agile design structures and to explain its benefits in
reference to the application context and project settings. Agile design in its original context small-scale software
design is used to generate a comprehensive description of agility in a coordination reference model. Based on this
foundation disfunctions or constraints of agility in other contexts are analysed and adjustments or extensions to
existing methods are recommended to expand applicability to new design contexts.

Table 5: Definitions of coordination across research fields chronologically ordered.

Definition of coordination
“The integration or linking together of different parts of an organization to accomplish a collective set
of tasks” (p. 322)

(Ven et al., 1976)

“The act of managing interdependencies between activities performed to achieve a goal” (p. 361) (Malone and Crowston, 1990)

“[…] different people working on a common project agree to a common definition of what they are
building, share information, and mesh their activities” (p. 69)

(Kraut and Streeter, 1995)

“The extra work organizations and individuals must complete when individuals are working in concert
to accomplish some goal, over and above what they would need to do to accomplish the goal
individually”

(Krauss and Fussel, 1990)

“Coordination of understandings refers to the development of shared perceptions and meanings
among members, including an appreciation of the ways in which members reliably see and interpret
events differently” (p.1)

(McGrath et al., 1999)

“Coordination can be defined as the collective accomplishment of individual goals through a
cooperative process” (p. 401)

(Ballard and Seibold, 2003)

“[…] the integration of organizational work under conditions of task interdependence and uncertainty”
“A temporally unfolding and contextualized process of input regulation and interaction articulation to
realize a collective performance” (p. 1157)

(Faraj and Xiao, 2006)

Table 5 gives an overview of the spectrum of coordination definitions in the last 45 years across research
fields. Van de Ven et al. stress the connection of different organization units (e.g. individuals or teams) to
accomplish a collective set of tasks, which implies dependencies between such tasks (Ven et al., 1976). Malone
and Crowston define coordination in their coordination theory and emphasise the management of
interdependencies between activities without addressing people (Malone and Crowston, 1990). Kraut and
Streeter expand Van de Ven et al.’s original definition and introduce practices (e.g. agree on a common definition,
share information, mesh activities) how this coordination is accomplished (Kraut and Streeter, 1995). Krauss and
Fussel on the other hand define coordination broadly as the necessary extra work of cooperating individuals
without specifying details (Krauss and Fussel, 1990). McGrath et al. point to how coordination is enabled. They
describe the development shared perceptions and meanings among team members as a central enabler for
coordination (McGrath et al., 1999). Ballard and Seibold summarize coordination as an collective
accomplishment of individual goals through a cooperative process (Ballard and Seibold, 2003). Faraj and Xiao
further analyse the concept and the dynamics of coordination and define it as temporally unfolding and changing
according to context inputs (Faraj and Xiao, 2006).

The definitions from above draw from different theoretical fields. Organizational theory, coordination
theory, psychological theory and cognition theory provide different perspectives on coordination. Even though
these definitions focus on different aspects of coordination three common aspects are apparent (Okhuysen and

2-34

Bechky, 2009). First, actors need to work together. Second, the work is interdependent. Third, a goal is achieved.
Therefore, the thesis at hand is based on Faraj and Xiao’s conceptualizations of coordination as

 “…the integration of organizational work under conditions of task interdependence and uncertainty with
an emphasis on its dynamic emergence in design projects” (Faraj and Xiao, 2006).

In this subchapter aspects of coordination in product design are presented relating to several theoretical
fields that are important to agile design characteristics. First, the perspective of organization research on
coordination is introduced. Second, aspects of coordination in team research are summarized. Third,
coordination in multiteam system and inter team coordination is described. Fourth, coordination mechanisms as
practical implementation of coordination or coordination activities are summarized and compared across
different research fields. Fifth, the result of coordination efforts, the dynamic state of coordination is described.
Sixth, the concept of the coordination strategy which integrates coordination determinants, coordination
mechanisms and coordination as a state is explained.

2.4.1 Coordination in organization research
The formal study of coordination started with the emergence of large-scale manufacturing in the

beginning of the 20th century. This initial coordination research field is dominated by two branches with different
approaches. The first group researched the design of work and is mostly associated with Frederic W. Taylor and
his role in scientific management. Work was observed, analysed and decomposed into its most basic elements
to allow for specialization and the reduction of waste. Methods supported standardization and interchangeability
of designs, tools, and materials. These efforts intended a most efficient use of workers in production (Taylor,
1916). Later scholars critically reviewed the downside of standardization regarding necessary integration
activities and additional communication demand (Scott and Davis, 2015). The second group addressed the design
of organizations. Henry Fayol a former student of Taylor is best known for it. Design of organizations aspired
coordination of work through the adjustment of management systems. Rationalization was driven by principles
such as hierarchical systems, centralization, and the subordination of individual interests. The unity of command
as the central element in administration needed to be respected. Fayol positioned his approach as top-down in
contrast to Taylor’s bottom-up work design (Fayol, 1949).

Both approaches defined coordination to be a controlled and efficient state of a work system regarding
either relationships between individuals or task and component decomposition. They assumed that product
development and respective coordination requirements in different contexts and companies can be formalized
into representative models precisely with enough specificity. Work was designed according to these formalized
models to enable individuals to fulfil their part as collectives within these systems. Critics have proposed two
major shortcomings of these coordination approaches. First, interdependencies between pieces of work are
often uncertain or hard to define. This contradicts the assumption that interdependent systems can be described
in sufficient detail. Second, processes and structures need to be adapted continuously to changing conditions
and cannot be planned as formal elements by organizations. Formalized designs cannot account for all
eventualities and therefore require continuous reshaping to emerging coordination challenges. These early
approaches to coordination focused mostly on product manufacturing and not product design. They
underestimated the influence of uncertainty and generated deterministic and therefore more designable
models. In this early organizational Design Research stream unpredictable coordination efforts have been
simplified with terms such as “mutual-adjustment” (Thompson et al., 2017) or “ad-hoc coordination” (Donaldson,
2001). Later theories switch perspective and assume that these coordination efforts represent a significant
amount of the overall coordination demand. More complex product development conditions (driven by new
technologies and cooperation models) changed the nature of work and the limitations of these “classic”
coordination theories became more evident (Okhuysen and Bechky, 2009).

March and Simon therefore proposed a division of coordination by plan and coordination by feedback
in 1958 to account for the human factor in work systems (March and Simon, 1958). Repetitive and predictable
tasks are coordinated by scheduling and planning. Uncertainty or dynamic dependencies require repeated
exchange and communication. Emergent coordination by feedback is more appropriate in these situations. Based
on March and Simon Thompson describes the suitability of coordination methods according to three work
dependency characteristics (Thompson, 1967). Pooled dependencies characterize units that independently
complete tasks without explicit interaction. Standardization with little communication and decision effort is a

2-35

sufficient coordination method. Sequential dependencies arise between units that need outputs from one unit
as input for another unit. Coordination by planning with mediocre communication effort is suitable for such
dependencies. Reciprocal dependencies characterize units that rely on simultaneous bidirectional flow of input
and output between each other. They represent the strongest form of dependencies and require coordination
by feedback. Van de Ven et al. further elaborated March and Simon’s division of coordination types into
coordination by programming or by feedback answering to different coordination needs. They proposed three
modes of coordination with an emphasis on coordination by feedback (Ven et al., 1976). The impersonal mode
includes most programmable coordination mechanisms such as standardization, plans, rules and hierarchies.
Opposed to impersonal coordination is mutual adjustment coordination which relies on direct communication
between relevant parties. To better describe mutual adjustment a group mode and an individual mode were
differentiated. The group mode includes coordination by scheduled and unscheduled meetings in groups.
Scheduled meetings are ideally used for routine coordination efforts such as group meetings, while unscheduled
meetings provide coordination answering to urgent needs of groups. The individual mode describes coordination
by feedback between individuals and includes horizontal channels on the same hierarchy level and vertical
channels across hierarchies. It is based on informal communication. Individual role occupants serve as the
mechanism for making mutual task adjustments. Van de Ven et al. also expand on Thompson’s approach of fitting
coordination methods to task dependency classes (Ven et al., 1976). They add the categories task uncertainty
and size of work unit to task dependency as coordination type determinants. Their empirical findings show that
higher task uncertainty increases substitution of impersonal coordination modes using mutual adjustment in
form of the group mode coordination and by the individual mode coordination through horizontal channels.
Large unit sizes on the other hand result in more impersonal mode of coordination such as plans. Task
dependencies increases group mode coordination while individual mode coordination remain invariant and
impersonal mode coordination diminishes a little. The collective coordination demand increases with unit size.

Malone and Crowston define coordination as “management of dependencies among task activities”.
They published a coordination theory based on actors, interdependent tasks, resources and goals (Malone and
Crowston, 1990). Three types of dependencies that result from resources being required by or result from
different activities are presented. This typology of dependencies further expands Thompson’s categorization of
task dependencies (pooled, sequential and reciprocal) with the constraints actors and resources. The fit
dependency describes a situation in which multiple activities collectively produce components that need to be
integrated into a complete product. The sharing dependency prevails if multiple activities require the same
resource e.g. functional prototypes in physical product testing. The flow dependency represents a sequential
order of activities. Output from one activity is input for another activity. Usability, accessibility and prerequisite
have to be adjusted to coordinate a flow dependency. The theory of Malone and Crowston includes coordination
mechanism to manage these dependencies and show their substitutability in different applications (e.g.
sequencing, tracking, standardization for flow dependencies or goal selection and decomposition for task-
subtask dependencies). Critics of their coordination construct claim that little explanatory theory accompanies
the typology of dependencies and the influence of context and time are not represented (Crowston et al., 2006).

2.4.2 Coordination in team and multiteam systems
Ramesh et al. claim that coordination in knowledge-intensive systems requires a new level of

coordination adaptivity due to the immense impact of fast innovation on work interdependencies (Ramesh et
al., 2002). Therefore, coordination has also been a central topic in the research stream of sociology of work with
a focus on intra team and inter team cooperation in information systems. Coordination in team cognition
research focuses on coordination behaviour of teams. Aspects such as shared experience, personal knowledge
of each other and trust in teams are central coordination enablers in this research stream.

Espinosa, Lerch and Kraut divide explicit and implicit team coordination (Espinosa et al., 2004). Explicit
team coordination summarizes activities and coordination mechanisms that are purposely applied to coordinate,
while implicit team coordination arises as a consequence of other activities that are used without the direct
intention to coordinate. Explicit coordination is based on task programming mechanisms (e.g. division of labour,
tools, plans and specifications) and communication between parties and individuals. The task programming
classification has been described similarly by Van de Ven et al. as impersonal mechanisms (Ven et al., 1976) and
by Faraj and Sproull as administrative coordination (Faraj and Sproull, 2000). Coordination through
communication has been described earlier under the terms mutual adjustment (Thompson, 1967) as well as

2-36

personal and group mode coordination (Ven et al., 1976). Formal or informal communication may be between
individuals or in groups. In explicit team coordination Espinosa recommends impersonal coordination for routine
and predictable tasks and coordination by feedback based on communication for dynamic and unpredictable
coordination requirements. Espinosa’s conception of explicit coordination overlaps with the early descriptions
of coordination and the respective mechanisms in organization theory. Implicit coordination relies on shared
task knowledge, team cognition and shared mental models (Cannon-Bowers et al., 1993) that develop during
close team cooperation. This expertise covers both the task and the team and help to coordinate implicitly.
Earlier publications reported “synchronization of member actions based on unspoken assumptions about what
others in the group are likely to do" (Wittenbaum and Stasser, 1996). Espinosa defines implicit coordination
mechanisms as “available to team members from shared cognition, which enable them to explain and anticipate
task states and member actions, thus helping them manage task dependencies” (Espinosa et al., 2004). The setup
of coordination mechanisms and team coordination has a strong influence on how team cognition and hence
implicit coordination develops. Throughout cooperation length and intensity team cognition improves and
implicit coordination may substitute initially explicit coordination mechanism. Espinosa et al. present a
framework that dynamically combines implicit and explicit coordination according to team (e.g. size, experience,
and continuity), task and context characteristics (e.g. technology, organization, synchronicity and geographic
dispersion). They emphasize that neither implicit nor explicit coordination mechanisms are to be preferred but
must fit the specific project requirements.

In continuing work Espinosa, Armour and Boh describe a taxonomy of coordination types that includes
mechanistic, organic and cognitive coordination (Espinosa et al., 2010). In this taxonomy mechanistic
coordination refers to plans, processes, automation or rules similar to impersonal coordination from
organization theory (Ven et al., 1976). Mechanistic coordination manages dependencies with little
communication and is most useful for activities that are routine or well-predictable. Organic coordination refers
to coordination by feedback or by mutual adjustment (Ven et al., 1976) and mainly involves coordination by
communication and interaction. It is most relevant with uncertain and non-routine task. Since it requires more
effort Espinosa recommends it if mechanistic coordination is unsuitable, e.g. in unpredictable and dynamic
situations. Cognitive coordination is an implicit coordination mode which is based on shared cognition (Rico et
al., 2008) in teams. It is achieved implicitly and based on tacit team knowledge regarding task and team members.
It includes task awareness, presence awareness, transactive memory (knowledge who knows what) (Wegner,
1995) and expertise coordination (Faraj and Sproull, 2000). Shared mental models in teams (Cannon-Bowers et
al., 1993) are essential since they supports shared goals and enable common understanding (Kang et al., 2006).
Unlike coordination mechanisms in explicit coordination, cognitive coordination cannot be implemented like
organic or mechanistic coordination mechanisms, since it requires specific knowledge distribution (e.g.
accessibility of cognitive coordination mechanisms is limited by the existing level of shared cognition in teams).
It relies on mutual knowledge which is knowledge shared by collaborators they know they mutually share (Krauss
and Fussel, 1990). Common grounding is a related concept and requires collaborating parties to have shared
meaning in the terms they use to communicate (Cramton, 2001). Li and Maedche showed that with increasing
shared cognition cognitive coordination becomes stronger (Li and Maedche, 2012).

Multiteam systems are defined as a setting of multiple teams working jointly and interdependently
towards collective goals (Mathieu et al., 2001). In multiteam projects, work of separated teams is often
interlinked. Even though team division is often chosen according to product modules interdependencies
between teams arise through technical interfaces between these modules (Kazanjian et al., 2000). Such inter
team dependencies generate the need for additional inter team coordination to exchange information, share
knowledge and solve conflicts (Galbrath, 1973). The value of inter team coordination has been proven regarding
performance predictors (Marks et al., 2005), product quality, development time and project commitment (Hoegl
et al., 2004). Studies in organizational psychology on multiteam systems (Marks et al., 2001) showed that inter
team processes are even more important than intra team processes for the performance of multiteam systems
(Marks et al., 2005). Inter team coordination varies from intra team coordination, since coordination
requirements and available coordination mechanisms are different. Still, it has been shown that intra team
coordination has a large influence on inter team coordination (Firth et al., 2015).

Based on Van de Ven’s coordination categories (group and individual mode of personal coordination and
impersonal mode of coordination) Dietrich et al. differentiate three patterns in inter team coordination (Dietrich

2-37

et al., 2013). Centralized coordination relies on formal group meetings (e.g. status review meetings) for
information and knowledge exchange. Informal group meetings (e.g. colocation of project managers), workshops
and integration meeting are complementary channels. Additionally, well-defined roles and responsibilities are
applied, and powerful project managers function as connectors between different teams. Decentralized
coordination on the other hand is largely based on individual contacts between team members. It is not pre-
determined in strict roles and responsibilities and therefore able to adapt to changing situations. Functionality
reports, testing documents, common databases, resource plans, reporting practices and overall project plants
are used as coordination mechanisms. Interaction between teams is frequent and group meetings are
complemented by liaison individuals (e.g. project manager). Balanced coordination features a balance between
centralized and decentralized coordination patterns and relies on group, individual and impersonal coordination
mechanisms. Formal reporting practices and the use of documents and databases are relevant in sharing
information and coordination work with other teams. Individual mode of coordination is important but is mostly
applied by strict roles along existing hierarchies in vertical channels outside development teams. The authors
also analysed efficiency of the coordination patterns. They recommend the decentralized coordination scheme
in cases of high inter team interdependencies. But decentralized coordination may suffer from problems if task
specifications are vague. The selection between centralized and decentralized coordination should be chosen
according to task analysability (Dietrich et al., 2013).

Salas et al. complement a model of five mutually interlinked success factors in teamwork (team
leadership, mutual performance monitoring, back-up behaviour, adaptability and team orientation) based on
coordination mechanisms that apply to single and multi-team projects (Salas et al., 2005). In Salas’ model
coordination mechanisms are shared mental models, closed-loop communication and mutual trust. Shared
mental models (Cannon-Bowers and Salas, 2001) enable team members to coordination by anticipating and
predicting each other’s needs through common understanding of the environment and expectations of
performance. Salas et al. divide team-related and task-related mental models. The importance of this
coordination mechanism increases in teams that are object to stressful conditions, since available time for direct
communication decreases (Cannon-Bowers et al., 1993). Mutual trust is a shared perception that individuals in
the team will perform their tasks according to team agreements. It also implies that team members will recognize
and protects the interests and rights of each other (Simsarian Webber, 2002). This trust is necessary since team
members will work on independent tasks and must be able to rely on each other to meet deadlines and
contribute as agreed without contra productive or selfish intentions. Trust is relevant in both intra and inter team
cooperation. Distrust might by a hindering factor in multi-team systems since different political agendas
complicate cooperation. Closed-loop communication is the third relevant coordination mechanism and enables
efficient information exchange within teams irrespective of medium. Understanding of the meaning of the
message is supported by an additional feedback loop between sender and receiver (McIntyre and Salas, 1995).
It supports decision making in complex environments, avoids misinterpretations and complements information
distribution and selection. Especially in multi team environments this becomes increasingly important since
support of shared mental models decreases between different teams.

2.4.3 Coordination mechanisms
Mintzberg describes coordination mechanisms as organizational arrangements that allow individuals to

realize collective performance (Mintzberg, 1989). They are the practical implementation of coordination and
therefore one of the most basic elements of structure in organizations. According to the chosen coordination
approach, coordination mechanisms might be formal or informal as well as emergent or structural elements. The
concept of coordination mechanisms is used across most coordination theory streams. Okhuysen and Bechky
present the following categories and explanations of coordination mechanisms in their coordination review
(Okhuysen and Bechky, 2009). Roles represent expectations associated with social positions, and therefore
support predictable behaviour (Banks and Hughes, 1959). Defining relationships between roles allows parties to
understand and predict who does what (Bechky, 2006). In traditional organization theory roles are used for
monitoring and updating in formal hierarchies. But roles also provide a shared understanding of task
responsibilities and therefore enable substitution between parties. Inter-group boundary spanning roles expand
a common perspective across separated parties. Plans and rules are conceptualized as purposive elements of
formal organizations (March and Simon, 1958). Plans support a prospective understanding of task completion.
Rules complement plans since they establish relationships between parties and allow fast choices in routine

2-38

situations. Plans and rules define responsibility for tasks and therefore support resource allocation. They can be
developed on team or organization level. The development of plans and schedules highlights conflicts and
difficulties and increases understanding. Feldman defined routines as repeated patterns of behaviour that are
bound by rules and customs (Feldman, 2000). They provide a template for task completion, bring parties together
and create a common understanding of tasks. In literature, routines have been interpreted as stores of
knowledge (Loasby et al., 1983), as stable mechanistic properties of traditional organizations and as complex
constructs in which social meaning and social interaction are embedded (Feldman, 2000). Routines support task
stability and completion, they facilitate hand-off work, they bring groups together and they create a common
perspective. The physical proximity of parties significantly influences the amount of interaction and
communication between them (Allen, 1977). Visibility and familiarity influences communication and liking.
Proximity allows formal and informal monitoring, updating and familiarity. Familiarity is the understanding that
individuals have of each other and it results from proximity (Okhuysen, 2001). Familiarity leads to stronger
relationships that improve coordination. It supports anticipating and responding, the creation of transactive
memory systems as a storage of knowledge and trust development.

Objects and representation are a further category of coordination mechanisms if interpreted as
boundary objects. The concept of boundary objects originally stems from communication research. It is based
on the ability of objects to convey technical and social information and mobilize action across social worlds (Star
and Griesemer, 1989). Exchange between parties does not require comprehensive communication since
knowledge and social dynamics are stored in objects (Winner, 1980; Latour, 1988, 1996). The boundary objects
provide interfaces between different social or technical backgrounds and enable exchange without mutual
translations (Burris and Henderson, 2001). According to the original concept these objects (the understanding of
them) need to be sufficiently plastic (generalizable) to adapt to different social backgrounds but still adequately
robust to support a consistent message. According to varying application situations this balance needs to be
adjusted dynamically. Boundary objects enable efficient communication between parties that focus on different
aspects and prevents miscommunication (e.g. prototypes may connect customers, designers and management
who all have very specific interests). This principle even works without physical manifestation (e.g. user stories
as a subgroup of boundary objects do not require physical manifestations to efficiently connect customers and
designer). Boundary spanners are based on a similar concept as boundary objects. They represent roles that
efficiently connect different interest groups if direct exchange is impractical or not applicable (Levina and Vaast,
2005). In a nutshell, these boundary concepts allow efficient exchange between parties with different
backgrounds and provide efficient information exchange and hence coordination between them.

2.4.4 Coordination determinants
The summarized coordination theory descriptions demonstrate that coordination structures are object

to very heterogeneous project needs. To differentiate these coordination requirements individual project
characteristics have been identified across the presented research streams that have significant influence on the
coordination setup. These coordination determinants allow a direct project analysis according to central projects
characteristics regarding suitability of different coordination types and mechanisms.

Van de Ven et al. list unit size, task uncertainty and task dependency as significant project characteristics
to determine a coordination strategy (Ven et al., 1976). Unit size summarizes factors that influence the total
number of relevant stakeholders within in a project. It depends on the number of participating teams, the
number of designers, the interchangeability of designers, the number of required specializations and
substitutability between them and also includes organizational dependencies. Task uncertainty integrates the
factors task predictability and task changeability. Ramasesh et al. differentiate task uncertainty into known
unknowns (recognized uncertainties) and unknown unknowns (unrecognized uncertainties that are
unpredictable and of which projects are unaware of) (Ramasesh and Browning, 2014). Especially unknown
unknowns require emergent coordination. With increasing project complexity, the additional category unknown
knowns becomes relevant since information gets divided and separated into organizational silos. Task
dependency depicts the degree to which tasks dependent on each other. Thompson defined pooled, sequences
and reciprocal task dependency categories (Thompson, 1967). Pooled tasks feature little direct dependencies
and can be executed independently. Sequenced tasks are subject to an order regarding task execution. Reciprocal
task dependencies include dependencies in both directions and may require repeated exchange between
different tasks. Malone and Crowston included a similar task dependency classification into their coordination

2-39

theory (Malone and Crowston, 1990). They defined fit, flow and sharing dependencies as coordination type
differentiator.

Espinosa et al. define task, team and context as most relevant factors that cause dependencies and
therefore influence coordination setups in teamwork (Espinosa et al., 2004). The nature of the task (e.g.
routineness) predefines a large share of the dependencies like Van den Ven’s categorization. Team variables such
as continuity, composition, expertise and size have a strong influence on cognition development (Cannon-Bowers
et al., 1993; Cannon-Bowers and Salas, 2001). Regarding the emergence of dependencies Espinosa et al. regard
the project context as relevant. They differentiate four context sub-factors: technology, organization,
synchronicity and dispersion. Especially communication between team members relies on information
technology. Dependencies, information flow and workflow among collaborators increasingly depend on
available information technology. Large scale software development relies on systems that supports continuous
integration and simultaneous access for multiple developers to reduce dependencies. The organization (e.g.
culture, structure, standard procedures) also has a strong influence on the number of dependencies between
teams and therefore team interaction. Synchronicity and geographical distribution affect both team and task
factors and need to be addressed in coordination set-up. Asynchronous and dispersed teams have fewer
opportunities to interact and communicate with less rich media. They negatively affect shared cognition and
hence rely on more mechanistic coordination mechanisms. Li and Maedche complement different socio-cultural
environments as an additional factor to generate and influence dependencies (Li and Maedche, 2012). Different
value systems and normative practices create socio-cultural boundaries between parties (Holmstrom et al.,
2006). Li and Maedche also described that changing customer requirements become a strong coordination
determinant in dynamic application contexts.

Diane E. Strode differentiates dependencies between actions and presents a dependency taxonomy
relevant for agile product design. (Strode, 2016). She defines knowledge, process and resource as three
overarching dependency categories that have the potential to influence project progress. Knowledge
dependencies result if progress relevant information is not at hand. The category includes requirements
dependencies (e.g. missing domain knowledge), expertise dependencies (e.g. information only known by
individuals), historical dependencies (e.g. knowledge about past decisions) and task allocation dependencies (e.g.
knowledge who is doing what and when). Process dependencies are caused by the necessary order of tasks and
the relevant activities. They are refined by activity dependencies (e.g. one activity requires the completion of
another activity) and business process dependencies (e.g. an existing business process causes tasks to be carried
out in a predetermined order). Resource dependencies occur if an object is required for a progress to occur.
Strode defined entity dependencies (e.g. unavailable resource or person) and technical dependencies (e.g.
technical dependencies are caused by the presence or absence of software components) as subcategories of
resource dependencies.

These coordination determinants characterize coordination requirements and indicate suitable
coordination mechanisms. The presented literature clarifies that there is an overlap between scholars regarding
task dependencies and project driven factors such as team specific characteristics and context factors.

2.4.5 Coordination outcome
The presented literature shows that coordination is interpreted and approached with different

theoretical backgrounds and means which complicates an overarching understanding. Okhuysen et al. report
three obstacles regarding the body of literature (Okhuysen and Bechky, 2009). First, interdisciplinary research
streams differ strongly regarding the object that is being coordinated. Malone and Crowston’s coordination
theory focuses on dependencies between tasks that require coordination (Malone and Crowston, 1990). Faraj
and Sproull research coordinating knowledge in organizations (Faraj and Sproull, 2000). The integration of these
research streams into a shared understanding of coordination is not trivial since their focus of coordination and
the corresponding action differs considerably. Second, coordination research is embedded in a broad spectrum
of contexts. This complicates comparisons between research streams. Additionally, different terms are used for
similar functionalities and mechanisms in different contexts. Confusion regarding contradicting results might be
caused by unclear terminology. And third, most of the literature does not provide sufficient explanations why
and how coordination mechanisms function. To avoid such misunderstandings between literature streams
Okhuysen et al. identified accountability, common understanding and predictability as the three most relevant

2-40

integration conditions for coordination (Okhuysen and Bechky, 2009). They represent the means of separated
parties to collectively accomplish interdependent tasks. Each condition answers specific demands regarding the
integration of specialized work. To establish and maintain these conditions different coordination mechanisms
can be implemented or combined.

Accountability establishes who is responsible for particular aspects of the task. It supports the
cooperation between interdependent parties since the responsibility for individual parts are clearly allocated
between partners. Transparent responsibilities make parties accountable for their contribution and allows them
to make other accountable for theirs. Accountability is achieved by various means. Traditionally accountability
was built into formal structures such as hierarchical authority by e.g. reporting metrics (Gittell, 2000). But lateral
interaction in meetings or public status reports support accountability as well. Both formal and informal or
emergent action can lead to accountability. Plans and rules connect tasks and people and transparently show
responsibilities. Boundary objects provide scaffolding for the responsible parties. Roles, routines and visibility
support monitoring, updating and hand-offs between cooperation partners. Accountability also requires trust
between the relevant parties to be able to count on consistent and reliable performance of others which can
also be provided by proximity (McEvily et al., 2003).

Common understanding enables a shared perspective on the overall design objective and how different
parties fit into it. It assists parties to integrate their effort into a collective conception of the work. It supports a
common ground that allows independent partners to integrate activities. In literature three perspectives are
considered. First, common understanding of the task regarding necessary action and strategy to perform the task
(Cannon-Bowers and Salas, 2001). Second, knowledge of interaction partners in interdependent situation
(Reagans et al., 2005). And third, knowledge of broader organization or project goals that characterize the design
context (Pinto et al., 1993). Common understanding is provided by formal and emergent coordination
mechanisms. It is generated during the development, distribution and executions of plans in both top-down and
bottom-up approaches on a system level. Objects such as prototypes allow boundary crossing and provide
common understanding on a more task-specific level. Roles facilitate substitution between individuals and
groups. Additionally, boundary spanner roles create a common perspective. Proximity of parties creates
familiarity and knowledge of expertise distribution. In summary, common understanding provides
interdependent parties with a shared conception of interlinked activities.

Predictability supports interdependent partners to anticipate subsequent tasks. It is based on the
knowledge or experience of how tasks are divided into smaller subtasks and their particular sequence.
Predictability enables parties to count on the successful execution of the work of partners and structure their
work accordingly. It allows parties to fit their contribution into the whole enhancing integrating activities. High
levels of predictability go hand in hand with trust into cooperation parties. Routines provide predictability.
Predictability is provided through familiarity that increases understanding of partners and their tasks. Plans
actively define responsibility for tasks and define resource allocation. Boundary objects provide scaffolding for
cooperation partner. Routines passively establish essential tasks and enhance task completion and stability.
Familiarity increases knowledge of coordination partner and therefore improves anticipating their behaviour and
responding accordingly.

Strode et al. described with coordination effectiveness a similar concept to differentiate the state of
coordination but with a focus on agile design (Strode et al., 2011). They subdivide coordination effectiveness into
an implicit and an explicit part. Explicit coordination effectiveness focuses on the persons and objects in a project.
The right person or object needs to be in the right place at the right time. Explicit coordination effectiveness
therefore draws from Malone and Crowston’s coordination theory (Malone and Crowston, 1990). Implicit
coordination effectiveness comprises the knowledge held by project parties. It includes knowledge of overall
project goals (‘know why’), project status (‘what is going on and when’), what tasks need to be done (‘what to
do and when’), what tasks others are doing (‘who is doing what’) and who knows what. The concept of implicit
coordination effectiveness draws from teamwork literature and cognitive coordination (Espinosa et al., 2010).
Strode’s coordination effectiveness concept is similar to Okhuysen and Bechky’s integration conditions.
Especially the implicit part directly corresponds to predictability, common understanding and accountability.

The presented integration conditions represent central manifestations of coordination as a state in
interdependent systems. They rely on the successful application and combination of coordination mechanisms

2-41

according to the chosen coordination approach and the specific coordination requirements. If external or internal
disturbances throw this system out of balance the applied coordination elements require readjustment. The
connection between coordination determinants, coordination mechanisms and integration conditions is
provided by the coordination strategy which is further explained in the following paragraph.

2.4.6 Coordination strategy
Coordination in design projects relies on the selection of suitable coordination mechanisms to realize

integration conditions according to project specific coordination determinants. This connection is evident in all
presented coordination theories. The concept of a coordination strategy combines these inputs into
comprehensive approaches. Li and Maedche define the coordination strategy as ‘a set of prioritized mechanisms
for a given circumstance’ (Li and Maedche, 2012). Strode et al. define it as ‘a group of coordination mechanisms
that manage dependencies in a situation (Strode et al., 2012). Both definitions describe a combination of
coordination mechanisms into an overarching strategy to realize coordination. The coordination mechanisms are
chosen according to coordination determinants to realize an effective coordination implementation specific to
the coordination requirements (see Figure 9). These and given input factors guide the selection of the most
relevant coordination mode for the specific situation. For example, small teams can rely on cognitive
coordination approaches, while large projects require more mechanistic coordination mechanisms to ensure
efficient information distribution and exchange. The selection of coordination mechanisms is therefore
predetermined by the selection of the general coordination approach. The coordination strategy realizes desired
integration conditions and the resulting state of coordination. Their selection is based on project specific
requirements.

Figure 9: The coordination strategy connects coordination determinants with suitable coordination modes and mechanisms to realize
specified integration conditions. The integration conditions reflect the state of coordination and the coordination determinants and their
implementation the process of coordination. The concept allows to adjust coordination to change. Project dynamics that impact integration
conditions lead to changes in coordination determinants and therefore cause an adjusted coordination implementation until the pre-
specified integration conditions are re-established.

To be able to handle project dynamics a coordination strategy requires continuous readjustment to
remain effective (see Figure 9). After an initial state of coordination has been established it is necessary to
maintain it (Li and Maedche, 2012). Repeated re-evaluation of the state and relevance of chosen integration
conditions, coordination determinants and mechanisms are necessary. Since coordination mechanisms have a
strong mutual influence on each other the coordination strategy must account for the changing efficiency and
availability of coordination mechanisms in design projects. An initially mechanistic coordination strategy may be
able to apply more implicit coordination with growing team cognition. Otherwise, a growing project team might
realize that organic coordination mechanisms lose efficiency with larger number of participating parties.

In summary, the coordination strategy concept connects the process and the state of coordination.
While the state coordination is presented in integration conditions (Okhuysen and Bechky, 2009) and
coordination effectiveness (Strode et al., 2011) the necessary action to establish and maintain this state are
presented in the coordination strategy. The coordination strategy is a consistent coordination setup that defines
a combination of coordination mechanisms according to coordination determinants to realize chosen integration
conditions. It needs to account for flexible reactions to dynamics in project development and changing suitability
of coordination mechanisms. Whenever integration conditions are unfulfilled a re-examination of the
coordination elements and hence the coordination strategy is necessary.

2-42

3-43

 Research approach

“Write down the problem. Think very hard. Write down the solution.
 The Feynman Algorithm”
 Murray Gell-Mann

The aim of this research is to comprehend and enable agility in the automotive domain. The research
approach describes how this aim was approached methodically. It summarizes the underlying structure of the
research project and explains the characteristics of Design Research. It introduces the research methodology
Action Research and accounts for methodology inherent and application context specific limitations.

The chapter is subdivided into three interlinked subchapters. Subchapter 3.1 specifies the research based
on the research aim. It introduces the research questions and their connection to the research aim. It explains
why coordination theory is selected as the theoretical lens. The relevant research fields are described, and
corresponding publications are presented. Subchapter 3.1 concludes with the comprehensive research overview
which connects the research questions, the research fields and the employed research methods. Subchapter 3.2
introduces Design Research as an independent research field and delaminates it from adjacent and traditional
fields. Its research paradigm is described based on its ontological and epistemological position. Additionally, the
influence of the research field on the spectrum of suitable research methods is addressed. Concluding, the balance
between research relevance and research rigor are addressed by the selection of a comprehensive research model
for Design Research projects. Subchapter 3.3 presents the selected research methodology and its practical
implementation. Based on the established research principles Action Research is chosen as central research
methodology. The origins and the concept of Action Research are briefly summarized. The research project
implementation is described by the adapted Action Research conduct, the selection of the design projects and the
employed data collection methods. Finally, complementary research methods to improve the Action Research
rigor are supplemented.

3-44

3.1 Research design
The structure of the research project is defined by the research questions, the employed theoretical lens,

the research fields and the research overview. The research questions were formulated to realize the research
aim in relation to the established research gap. To address the research questions a suitable design theory was
selected as a theoretical lens to analyse the findings. The research fields define bodies of knowledge that are
relevant to the research project, and which have been contributed to. The research overview emphasises the
systematic approach of the complete research project. It clarifies the connections between research questions,
research fields, and research methodology. It allows to reproduce how research fields and research questions
are connected and how they were approached methodologically.

The structure of the research project was designed to reflect the practical nature of both the research aim
and the collaborative research conduct within the research and development department of the BMW Group.
The responsibility of the development department is innovation in automotive product design in the form of new
automotive products. The chosen application context offers the opportunity to research agile product design in
a range of pure software, to software hardware hybrid and complete hardware products. The research of this
heterogeneous application context was conducted through agile pilot projects which introduced agile methods
to product design project. They allowed to test and further develop adaptions to existing agile methods to fit the
requirements of automotive design. The selection of pilot projects covered a broad range of the automotive
design requirements to realize a representative data set. This spectrum improved understanding of the research
phenomena and avoided an imprecise problem definition. The independent pilot projects also allowed to
incrementally construct a design artifact that answers to a class of problems instead of an individual instance.

3.1.1 Research questions

“What I love about science is that as you learn, you don’t really get answers.
 You just get better questions.”
 John Green

The research in this study is structured according to three central research questions as presented in
subchapter 1.3. The research questions are based on the real-world problem agility in automotive design. They
are designed to lead to a scientific understanding of a class of problems and to an enrichment of the respective
theory. Their thematic spectrum reflects Mathiassen’s guidelines to distinguish research from practical problems
(Mathiassen, 2017).

Research question one: How to explain agility and its benefits theoretically?

The first question relates to the empiric and pragmatic nature of agile product design. Agile methods
were developed decentralized according to best practices for specific problem fields by practitioners. Even
though a broad body of literature from practice and research confirms the benefits of the approach little
comprehensive theory-based explanations exist what causes these benefits (Dingsøyr et al., 2012). This
theoretical gap remains across application contexts but is especially relevant in the comparably inexperienced
hardware domains. The first research question addresses this lack of a theory based theoretical explanation.
With its theoretical focus research question one defines the design theory selection and model construction for
the research project.

Research question two: What constraints reduce agile design applicability how in automotive design?

The second research question analyses the influence of the application context automotive design on
agile product design. Instead of general assessments regarding the suitability of agile development in new
application contexts it asks for empirically verified descriptions of limitations that are summarized, compared
and classified according to the constraints of scale and physicality categories. Besides empiric evidence
theoretical grounding is necessary to explain correlations and overlaps between both categories. The

3-45

independence of the theoretical concepts constraints of physicality and scale are questioned for automotive
application contexts and intersections between both constructs are identified. Consequently, the second
research question addresses a comprehensive understanding of constraints to agility in automotive design and
asks for a theory-based generalization of the research phenomena agile constraints in relation to and beyond a
specific application context. Furthermore, with the second question word “how” research question two demands
a design theory verified explanation of the experienced constraints.

Research question three: How to enable agility in automotive product design?

Unlike the first two descriptive and analytical research questions the third research question aligns the
research findings towards the discussion of new design artifacts to balance agile constraints in automotive. It
builds on the findings of the first and the second research question regarding precise problem description from
various perspectives and theoretical explanation of functionalities. The combination of these learnings allows to
adjust the existing implementations according to the generated theoretical foundation to improve applicability
in automotive design. Such a design construct includes theoretic contributions in the form of design theory
extensions according to the findings and specific realizations of this adjustment. Added value is also included for
practical applications since the adjustments are chosen according to the demands of practitioners who require
straight forward solutions ready to implement.

3.1.2 Theoretical lens coordination theory
To answer the research questions coordination was chosen as a theoretical lens. Coordination theory

was selected because most agile methods directly address or indirectly influence coordination structures in
design. Relevant coordination activities span from coordination between individuals up to coordination in large,
interconnected design systems. The coordination perspective enables to analyse and compare agile design
structures on a level field based on the same theoretical foundations. The concept coordination strategy allows
to systematise agile methods. This systematization is extended to account for the application context specific
conditions for coordination. It allows to differentiate software specific from other application contexts such as
automotive. To employ coordination as theoretical lens for agile design in different application contexts a
standardized coordination model is necessary that is sufficiently sensitive to differentiate between the examined
agile methods and the regarded application context. In the thesis at hand the employed coordination reference
model was constructed based on different fields of knowledge in coordination theory to ideally reflect agile
design structures. In summary, coordination theory suits the task to analyse agile design in the unfamiliar
application context automotive design and recommend adjusted agile coordination structures that reflect the
changes in automotive design compared to software design.

Regarding the first research question coordination theory was employed to analyse agile design
structures and activities through a coordination lens and reflect them from different fields of coordination
theory. This analysis allowed to connect empirically proven benefits with specific coordination characteristics of
the respective methods. It also aided the iterative design of the coordination reference model and allowed to
combine matching coordination theory aspects from adjacent theoretical fields to ideally mirror agile design
structures. To explain agility in product design theoretically a generalized agile coordination strategy was
developed and matched with central agile product design characteristics. Coordination theory also aided the
research towards the second research question. The empirically collected agile constraints in automotive design
were categorized with the help of the coordination reference model. This allowed to reference the set of
problems towards their influence on the coordination efficiency of the employed agile methods and the
respective agile coordination strategies. With the help of more general project characteristics several
coordination determinants were matched to the categorized agile constraints. This allowed to determine agile
coordination mechanisms unsuitable for automotive design contexts and explain the experienced constraints.
To approach the third research question the connections between agile constraints and coordination
determinants were used to recommend alternative coordination structures. The coordination reference model
allowed to combine more suitable coordination mechanisms into adjusted coordination strategies for typical
project settings in automotive design.

3-46

Similar approaches to employ coordination theory to reflect specific aspects of agility in software
development or teamwork performance have been employed by Strode et al. (Strode et al., 2012) Espinosa et
al. (Espinosa et al., 2007) Hoegl and Gemuenden (Hoegl and Gemuenden, 2001) and Kraut and Streeter (Kraut
and Streeter, 1995). The employment of coordination theory to systematise not only agile design structures but
also in relation to application context and product characteristics sets the thesis at hand apart from earlier
research. To the best knowledge of the author this concept has not been employed before and should be
applicable to similar Design Research approaches.

3.1.3 Research fields
The research in this study is structured into five research fields (see Figure 10) that address different

bodies of knowledge. Inquiry into these interdependent research fields was not sequential. Throughout the
research project research fields were revisited iteratively and theories adjusted according to new findings to
maintain overall consistency despite heterogeneous progress in different fields. The following section describes
the relevant research fields of the theses at hand and explains how they contributed to answer the research
questions.

The first research field was shaped to answer research question one. It connects two focus areas: Agile
product design and automotive product design. The focus area agile product design was studied to realize a
comprehensive understanding of agility as an attribute and as a construct. This included a comparison of agility
and agile methods to classic product design methodologies. Agile methods were studied to collect and categorize
practices and analyse them as practical implementations of shared values and principles including those of the
agile manifesto. Another important aspect agile product design is the origin of agile methods. Both the empiric
development as well as the initial application context software development were analysed regarding their
influence on agile product design. Additionally, agile coordination strategies were derived of central agile
methods which allowed to generalize a representative agile coordination strategy independent of individual
methods. Learnings in research field one mostly relied on theoretical inputs and some practical experiences.
Regarding automotive design general characteristics and current dynamics of the overall design process were
summarized, analysed and referenced to conventional and agile product development methodologies. The
objective was to describe and categorize the application context according to specific characteristics to draw
conclusions regarding the suitability of agile design practices. One aspect was the integral nature of the product
and subsequent properties of the design process. Increasing internally and externally driven dynamics of
automotive design were analysed as well. Dynamic markets and uncertainty in consumer behaviour, complexity
in product design, uncertainty in technology development, digitalization of both product and product design as
well as changing legal requirements were among the most relevant influences. Findings of research field one
were published at the Vienna Motor Symposium in 2020 (Schrof and Paetzold, 2020).

Research field one indicated that agility in design suits the challenges of a more dynamic automotive
product design in theory. Hence transferability from software to automotive design was studied in the second
research field. To answer research question two the theoretical concepts agile constraints of scale and
physicality were studied. Agile constraints of scale summarize limitations of agility in scaled application contexts
consisting of multiple interdependent agile teams. Agile constraints of physicality summarize limitations of agile
design driven by the physicality of the product in comparison to non-physical software products. A review of the
existing literature showed that in several cases agile product design was not directly transferable to the
automotive application contexts. Practical evaluations were necessary to understand dependencies and
mechanisms that cause this inapplicability. Empirically observed problems in agile automotive design were
systematically collected and classified according to the constraints of scale and physicality categories. Both
constraints allowed to systematize and reflect design process and product characteristics that cause difficulties
to agile design approaches. Specific characteristics of automotive design such as product integration and testing
were examined to understand their influences on the limitations of agile design. Findings of research field two
were part of several publications (Schmidt et al., 2019; Schrof et al., 2018, 2019; Schrof and Paetzold, 2020).

To answer research question two the theoretical constructs constraints of scale and constraints of
physicality were applied to the collected data. Even though these categories origin from different application
contexts both are evident in automotive design. They also cause similar mechanisms that limit applicability of

3-47

agile design. This two-dimensional problem definition complicates a comprehensive understanding due to
unclear cross dependencies between both concepts. To avoid a two-dimensional problem space constraint of
physicality were analysed through a coordination perspective. This allowed to simplify the problem space and
allowed to tread constraints of physicality as (inter team) coordination problems. Descriptions of agile constraints
in automotive design collected in research field two, were used to verify this transformation of problem
understanding. Theoretical and practical inputs were important in research field two since empiric data
confirmed initial theories and reinforced the theoretical foundations of the research.

Research field three focused on coordination in product design to provide a theoretical lens necessary
for all three research questions. The coordination perspective allowed to compare agile design practices and
understand their benefits in design systems. To employ coordination as the theoretical lens of the research a
coordination reference model was designed. To construct this reference model coordination theories research
from different streams of product development and sociology were compared. Coordination mechanisms from
organization research, team research and multiteam systems were connected to reflect the characteristics of
agile values, principles and the practices of the most relevant agile methods. The connection of the coordination
mechanisms to the respective coordination determinants based on the concept of Van de Ven et al. (Ven et al.,
1976) allowed to generate adaptive coordination strategies. These coordination strategies improved
understanding of agile design and allowed to analyse agile constraints of scale and physicality in theory.
Furthermore, agile constraints in automotive design were connected to their impact on the corresponding agile
coordination strategies which enabled precise countermeasures. Findings of research field three influenced
several publication (Schmidt et al., 2019; Schrof and Paetzold, 2020, 2019).

Research field four concentrated on agile enablers for automotive design based on changes in product
architecture and digital design tools. The research in this field increased understanding of agile constraints in
automotive and allowed to develop strategies to overcome them. The first focus was the correlation between
product architecture and organization structure and its influence on agile constraints. Agile product design
requires specific team dynamics and structures. Intra team cooperation is emphasized and inter team
distractions from outside the teams are avoided. Value creation is localized inside collaborative teams and agile
practices are shaped to optimize intra team cooperation. Dependencies from outside the teams are not
specifically addressed and therefore reduce agile product design applicability if unavoidable. This minimized inter
team exchange and coordination relies on limited dependencies between design teams which is not realistic in
automotive design. To address this contradiction product architecture and modularization strategies were
researched to understand their influence on organizational dependencies and recommend approaches to reduce
them (Schrof and Paetzold, 2019). The research stream relied mostly on theoretical inputs.

The second focus of research field four addressed agile enablers driven by digitalized design procedures
in automotive hardware components. The sequential and hence time-consuming interplay between various
design steps such as component construction, prototype manufacturing, system verification and production in
automotive design was scrutinized and alternative, digitalized design tools were employed and evaluated.
Component design practices were analysed to assess their impact on agile constraints. To reduce systemic
dependencies (e.g. handovers and meetings) and waiting time for hardware prototypes usage of alternative
design tools was evaluated. Such digital tools integrate construction and verification cycles in rapid design cycles
and hence significantly reduce dependencies to verification, prototype manufacturing and testing units. This
approach allows to apply software inspired design methods in hardware applications. It realizes software alike
digital testing and integration infrastructure close to the original application context. Practical evaluations in pilot
projects were essential and findings were published by Schrof et al. (Schrof et al., 2019). Research field four
increased understanding of agile constraints with an emphasis on constraints of physicality and hence applies to
research question two. The research also resulted in opportunities to avoid agile constraints in automotive which
links the findings to research question three.

Research field five focused on coordination in agile automotive design and a coordination strategy for
agile automotive design was developed. The research field addresses all research questions. The derivation of
coordination strategies in scaled and non-scaled agile methods further increased understanding of agility
working mechanisms and hence supported research question one. Using coordination as a theoretical lens to
explain the problem space and to understand causes and effects addressed research question two. Most

3-48

importantly, the generated coordination strategy is the central research result to overcome agile constraints in
automotive design and therefore addressed research question three. The coordination perspective allowed to
simplify problem space and create specific solutions for the agile constraints in automotive design. This
incremental design artefact development generated a comprehensive understanding of coordination
requirements in agile automotive design. The flexible structure of this construct allows further adjustments
according to project specifics. To ensure functionality practical evaluations in various pilot projects were
conducted. Research field six was characterized by a continuous shift between practical assessment, theoretical
solution development and practical evaluation throughout the iterative development of the overall coordination
strategy.

3-49

3.1.4 Research overview

Figure 10: The research overview represents a comprehensive summary of the research project. It connects the research questions with the
respective research fields, the research methodology and published scientific papers.

The research was organized according to the research overview in Figure 10. The overview connects the
research questions with the visited research fields and clarifies how these research fields were advanced
methodologically. The research overview emphasises the systematic approach of the complete research project
and underlines the systematology between research questions, research fields and research methodology. The

3-50

research overview also reflects how research in one research field is based on findings of other research fields
and how findings were used to select and approach the next research field. Additionally, the research overview
links the published publication of the research to the respective research fields, research questions and
employed methods. The following section details the connection between research questions, research fields
and methodological approach. The detailed research methodology and employed data collection and analysis
methods are described in the following subchapters.

To approach research question one a thorough understanding of agility in product design was
necessary. This was accomplished through the investigation and connection of the research fields agile product
design, agile constraints of physicality and scale and coordination theory. The research field agility in product
design was guided methodologically by the literature review which provided a good theoretical understanding.
Additionally, Action Research was employed through combined pilot projects and expert interviews in
automotive and software application contexts to complement a practical understanding of agile design. The
practical experiences also aided the verification of described benefits in real world application contexts. The
yearly industry survey influenced understanding of agile design since it allowed to validate practical data beyond
automotive design and the central research partner company. Besides agile product design, the research field
constraints of physicality and scale provided necessary understanding of agility in product design to answer
research question one. Constraints of scale were approached through the literature review and Action Research
with a focus on the literature review. Constraints of physicality were approached through the same methods but
with a reverse focus on action research since the research field is less mature than constraints of scale. The
literature review also dominated the methodological approach to investigate the research field coordination
theory. But Action Research activities were central to the adjustment and connection of different fields of
knowledge in coordination to reflect relevant structures and the overall systematology of coordination in agile
design.

Research question two investigates the applicability of agility in automotive design. To answer it the
understanding of agile design from research question one was extended to account for influences of automotive
application contexts on the requirements and functionality of agile design. To answer research question two
findings of the research fields agility in product design, automotive product design, agile constraints of scale and
physicality, agile constraints in automotive and coordination theory were connected. The research field
automotive product design relied on the literature review and Action Research methodologically. The literature
review focused on conventional product design methodologies and their formalized models. The Action Research
focused on the practical implementations and nesting of these models in the automotive design context. Expert
interviews, pilot projects and a case study improved led to a complete picture of automotive design within the
partnering company. Based on the findings of the research field agile constraints of scale and physicality the
research field agile constraints in automotive relied on the literature review and the Action Research methods.
The Action Research pilot projects were employed to identify agile constraints in automotive and compare them
to constraints of scale and physicality. The literature review was employed to verify these findings with
publications from other practitioners in similar industries. The methodological approach to the research fields
agility in product design, agile constraints of scale and physicality and coordination theory to address research
question two did not differ from the descriptions for research question one above.

To address research question three the findings of research questions one and two were connected. The
research focus connected the research fields coordination theory (coordination reference model), technological
enablement of agile constraints, product architecture enablement of agile constraints and automotive specific
agile coordination strategy. The research field technological enablement of agile constraints was based on a case
study. Additionally, the literature review provided theoretical inputs to verify alternative or novel technology
from comparable publications. Product architecture enablement of agile constraints also relied on the literature
review to identify similar approaches in other publications. The yearly industry survey was employed to verify
the relevance of the concept. Nevertheless, action research was the central methodology to approach the
research field. Several hardware and scaling pilot projects were analysed regarding the mutual influence of
product and project architecture. The last research field automotive specific agile coordination strategy relied on
inputs from all other research fields. Therefore, a direct connection to research methods is difficult. In general,
action research was central to develop and verify the adjusted agile coordination strategy for automotive design.
Practitioner workshops were employed to complement the results of the pilot projects.

3-51

3.2 Design Research

“Science is common sense in combination with systematics.”
 Jensen

The presented research strategy is based on a collaborative Design Research project with the industrial
partner BMW Group. Such a Design Research project differs from the classic perception of research in natural
science in various aspects. The following subchapter describes these differentiations transparently and underlines
the scientific validity of Design Research. Design Research is described based on its ontological and
epistemological positions to delimit it from other research fields. The described Design Research paradigm also
guides the selection of appropriate research methods in the research methodology section. Furthermore, scientific
rigor and relevance of Design Research methods are analysed to ensure scientific validity of the research findings
in this study.

3.2.1 Research paradigm
The terminology research paradigm refers to a broad framework of perception, understanding, and

belief within which theories and practices operate. It is a network of coherent ideas about the nature of the
world and the functions of a researcher (Bassey, 1990). The research paradigm clarifies the connection between
research strategy and methodology as well as the corresponding philosophical standpoint. Each methodology is
based on a philosophic perspective that supports its premises and research logic. Therefore, the alignment of
ontology, epistemology and methodology with the research objective is crucial to guarantee a valid, interlocking
research paradigm. The given research context has a significant influence on this construct since it predefines
certain aspects.

Ontology refers to the philosophical understanding of reality and what sort of things exist. This includes
assumptions about the form and the nature of reality. Ontology is concerned with whether reality exists
independently of human understanding and social interpretation (e.g. is there a shared social reality or multiple
context-specific realities). Snape et al. divide three distinct ontological positions (Snape and Spencer, 2003).
Realism claims that there is an external reality independent of what people may think or understand it to be.
Idealism maintains that reality can only be understood via the human mind and socially constructed meanings.
Materialism claims that there is a real world, but it is only the material or physical world that is real. Other
phenomena, for instance, beliefs, values or experiences arise from the material world but do not shape it. In
Design Research realist and idealist ontological positions present different interpretations of relevant system
elements in their contexts. Iivari et al. present a framework to clarify the contradictory positions in the same
context (Iivari et al., 1998). Realism interprets data and information as (relevant) descriptive facts, information
systems as technical systems, human beings as deterministic systems, technology as a causal agent and
organization and society as stable structures. Contrary to this position Idealism interprets data and information
as socially constructed meanings signifying intentions, information systems as a form of social systems, human
beings as voluntarist systems with consciousness and free will, technology as malleable structures subject to
social and human choice and organization and society as interaction systems or socially constructed systems.

Epistemology concerns itself with the nature, the acquisition, the limits, and the grasp of knowledge.
Positivism and Constructivism (Interpretivism) are the two opposing archetypes. The traditional positivistic
approach originates from the natural sciences and the constructivist approach was established as a critical
response to the positivistic tradition. Positivism relies on replicable empirical evidence and endeavours to be
objective. It explains and predicts the social world by searching for regularities and causal relationships. It was
originally established by Auguste Comte (1798-1858) and others as a counterbalance to religious dogmas and
metaphysical speculations. Logical positivists developed the concept of verification as the basic premise of
scientific knowledge. This implies that true knowledge has to be empirically verified through direct observation
(Kvale and Brinkmann, 2009). Constructivism interprets knowledge as social constructions and relies on learning
through social interaction. Observations are subjective and therefore cannot represent an absolute truth. This
criticizes the traditional ideal of research and supports a new understanding of how to perceive science and the
act of research (Iivari et al., 1998). Social constructivists search for relations and certainty, knowing that they will

3-52

never obtain any absolute knowledge or certainty. The term constructivism is helpful because it clarifies the basic
principle that reality is socially constructed and that there is no external reality independent of human
consciousness (Robson, 2011). This implies that a social world is only understandable from the point of
individuals involved in the researched activities. The neutral observer standpoint from the positivist position is
therefore impossible. To understand requires occupying the frame of reference of participants in action.
Understanding happens from inside not outside of researched systems.

Iivari et al. define research methodology as a set of goal-oriented procedures that guide the work and
cooperation of the various parties involved in the building of an Design Artifacts (e.g. an application) (Iivari et al.,
1998). They report three categories to classify the numerous methods in Design Research: Nomothetic,
Idiographic and Constructive methods. Nomothetic methods, including formal mathematical analyses,
experimental methods (laboratory and field experiments), and nonexperimental methods such as field studies
and surveys, are epitomized in the approach and methods employed in the natural sciences, which focus upon
the process of testing hypotheses in accordance with the canons of scientific rigor. Idiographic methods such as
case studies and action research place considerable stress upon getting close to one’s subject and exploring its
detailed background and life-history” (Burrel and Morgan, 1979). Close to an idealist ontology, constructive
methods are concerned with the conceptual (models, frameworks, and procedures) and technological
engineering of artifacts. As artifacts, they do not describe any existing reality but rather help to create a new
one. These method categories also result in different data classes. Nomothetic research methods provide
quantitative data, because of their emphasis on systematology. Idiographic methods focus on contextuality and
usually collect qualitative data. Greenhalgh et al. added that researcher who employ qualitative research search
deeper truths while aiming “ to study things in their natural setting, attempting to make sense of, or interpret,
phenomena in terms of the meanings that people bring to them” (Greenhalgh and Taylor, 1997). Gilbert
emphasized that qualitative researchers seek to uncover the world through another’s eyes, in a discovery and
exploratory process that is deeply experienced (Gilbert, 2000). Ottosson et al. recommend quantitative research
to screen areas and qualitative research to get a deeper knowledge of studied phenomena (Ottosson et al.,
2006).

3.2.2 Design Research paradigm
Friedman defines design in a broad sense. It includes “solving problems, creating something new, or

transforming less desirable situations to preferred situations” (Friedman, 2003). He stated that most design
definitions include three common steps. First, design refers to a process. Second, this process is goal oriented.
Third, the goal of design is to solve problems, meet needs, improve situations and create something new or
useful. According to this definition the term design refers to the comprehensive product development process
and not the aesthetic understanding of design as an art or craft in this study.

Design Research is an umbrella term that comprises design science and behavioural science in product
development. It is motivated by the desire to improve the practical environment by the introduction of new and
innovative artifacts and the processes for building these artifacts (Simon, 1996). Hevner et al. differentiates
Design Research from other research positions by its pragmatic nature and its emphasis on practical relevance.
He emphasizes that unlike theoretical approaches Design Research is supposed to deliver a clear contribution
into the application context (Hevner et al., 2004). This implies a clear delimitation from the positivist position of
natural sciences and a shifted balance between relevance and generalizability, rigor and theory. The socio-
technical nature of product design requires adapted research approaches. Design Research is object to
characteristics of human behaviour in socio-technical systems research. Particularities of human behaviour such
as illogical or irregular conduct, driven by unpredictable social influences and unknown earlier experience, cannot
be addressed with a realist ontology.

Behavioural science and design science paradigms characterize much of Design Research especially in
the Information Systems discipline (Hevner et al., 2004). The behavioural science paradigm seeks to develop and
verify theories that explain or predict organizational or individual human behaviour. The design science paradigm
seeks to extend the boundaries of human and organizational capabilities by creating new and innovative design
artifacts. In this study the term design artifact includes both behavioural theories as well as practical artifacts.
The two paradigms differentiate in their goal. While behavioural science seeks truth, design science seeks utility.

3-53

Design Research covers conceptual knowledge, descriptive knowledge and prescriptive knowledge as
three levels of knowledge (Iivari, 2007). The conceptual level comprises concepts, classifications, taxonomies and
conceptual frameworks. It relies on conceptual theories for analysing and predicting design. The descriptive level
includes observational facts, empirical regularities, and causal laws. It results in descriptive theories for
explaining and predicting. The prescriptive level supports how things could be and how to accomplish them. It
designs alternative artifacts to achieve certain utilitarian ends. It is based on prescriptive theories for design and
action. Prescriptive knowledge emphasizes truth regarding efficiency and effectiveness above absolute truth
value. Whilst design science emphasizes prescriptive knowledge, behavioural science is about descriptive and
conceptual knowledge. Design theories consist of knowledge of practical character. They are aimed for and
related to design activities and as such they are practical theories as described in the pragmatic tradition (Cronen,
2001). The value of practical theories lies in their usefulness for inquiry processes.

3.2.3 Relevance and rigor in Design Research
The research environment in Design Research is not static and predictable but dynamic and

continuously shifting. Therefore, research in this domain is in constant peril to generate irrelevant or outdated
theories and artifacts. This thread is reinforced by the imprecise problem understanding caused by the nature of
product design which is object to probabilistic, unclear and ambivalent influences. Consequently, research
assumptions might be incorrect or object to change. Especially, theoretical research is affected by imprecise
inputs and dynamics. Outdated or incorrect assumptions may result in research projects irrelevant to both theory
and practice. This relevance challenge of Design Research requires the research to be adjusted to the application
domain regarding research project dynamics and research assumptions sensitivity. Methods that simultaneously
build design artifacts together and within an organizational application context while learning from the
intervention avoid the relevance challenge (Baskerville and Pries-Heje, 1999).

Most Design Research methods such as Blessing’s Design Research Methodology (Blessing and
Chakrabarti, 2009) are based on linear stage-gate models in that they separate and sequence building and
evaluation of design artifacts. The three basic stages are problem definition, conceptualization and generation
of design artifact and evaluation. This sequencing separates problem understanding from shaping design
artifacts. It might lead to incomplete or imprecise problem understanding since information may only become
relevant during the generation and evaluation of the design artifacts. Fixed stages complicate or restrict
retrospective adjusting of initial premises or assumptions. Sequential methods emphasize scientific rigor at the
cost of relevance and research consistency. Iterative research methods such as Action Research circumvent this
sequencing challenge in Design Research. This opposing approach assumes that the design artifact emerges from
interaction with the organizational context even if its design is guided by the researchers’ initial intent. Such
methods are based on repetitive small research cycles from problem understanding to solution evaluation. These
iterations allow to evenly expand problem understanding and design artifact functionality.

Figure 11 Combination of Design Research cycles according to (Hevner Alan, 2007). The relevance, design and rigor cycle ensure balance
between practical and theoretical requirements in Design Research projects.

Hevner integrates the relevance and sequencing challenge into a comprehensive Design Research
model that confirms the pragmatic nature of Design Research (Hevner Alan, 2007). He emphasizes that practical
utility cannot be the unique aim of research. A synergy between rigor and relevance is necessary. He analyses

3-54

Design Research as an embodiment of three closely related cycles of activities (see Figure 11). The Relevance
Cycle continuously bridges the design science activities and the contextual environment of the research project.
It derives requirements from the application context into the research and serves to field test and further develop
generated design artifacts. The application context consists of people, organizational systems and technical
systems that interact. The cycle also identifies initial research opportunities and acceptance criteria for
evaluation. The acceptance criteria are an important input to decide whether additional research cycle iterations
are necessary or to stop the research. They prevent unnecessary fine tuning and therefore provide efficiency of
the Design Research. The Rigor Cycle supports theoretical grounding, theories, scientific methods and experience
from the research domain and integrates new knowledge into the existing knowledge base. With state-of-the art
application expertise and existing artifacts and process knowledge it comprises two additional, application
domain specific knowledge types. It informs the research activities with scientific foundations from the existing,
past knowledge base and differentiates the research project from routine designs based on application of well-
known processes (Hevner et al., 2004). The Design Cycle is positioned between the Relevance Cycle and the Rigor
Cycle. It is the central part of the research project and accommodates the activities to construct and evaluate
design artifacts. It iterates between building and evaluating the design artifacts adapting to the inputs of the
Rigor and the Relevance cycle. It is necessary to maintain a balance between constructing and evaluating design
artifacts and ensure that they are based on rigor and relevance. A thorough evaluation is insufficient without a
grounded argument for the construction of the artifact.

Goldkuhl and Lind conceptualize design theory as theorized practical knowledge that requires grounding
in the existing body of knowledge and practical utility. They agree with Hevner’s concept of a rigor cycle to
theoretically ground constructed artifacts. But they question whether the presented existing knowledge base
within a design theory is sufficient. They claim the need for a broader perspective on grounding and present the
concept of multi-grounded Design Research. They present three types of knowledge sources as premise for three
types of grounding processes (Goldkuhl and Lind, 2010). Empirical grounding comprises grounding through
practical evaluation of design artifacts in their application context, which matches Hevner’s relevance cycle.
Theoretical grounding summarizes explanatory grounding of descriptive knowledge based on external, non-
design theories, concepts and values. Internal grounding evaluates the consistency and cohesion of the design
artifact with the existing body of knowledge of design theory. Compared to Hevner’s Rigor Cycle the
differentiation into theoretical and internal grounding provide a more specific understanding of the theoretical
grounding of emergent design artifacts. Goldkuhl specifically mentions both approaches while Hevner does not
mention or exclude either. The ability to also employ external theories allows to explain certain aspects and
functionalities which are proven empirically but cannot be explained within the existing design theory
thoroughly. Therefore, the multi-grounding concept of Godlkuhl and Lind is integrated into the research
paradigm of this research project.

3-55

3.3 Research methodology

“A process cannot be understood by stopping it.
 Understanding must move with the flow of the process, must join it and flow with it.”
 Frank Herbert

The research in this study is based on an Idealist ontological position since human interactions in socio-
technical systems are a central objective. This implies that reality and facts are interpreted as socially constructed
which has a strong influence on data collection and analysis methods. The research is based on an epistemology
position based on Constructivism. Relevant knowledge includes socio-technical and organizational systems.
Knowledge sources are the behaviour of individuals in social systems and the overall system dynamics. Hevner’s
combination of research cycles was chosen as an overall research logic to realize practical utility and scientific
knowledge derivation (Hevner Alan, 2007). Even though the model explains interdependencies in Design
Research it does not specify the means to implement the concept in research projects. To realize the concept in
a research project a suitable research methodology is necessary. It must reflect the restrictions of the application
domain, the research project and the research strategy. In this study Action Research was chosen as central
research methodology in a multimethod research approach which is shown in Figure 12. The following section
explains how the methodology suits Hevner’s research principles in general. Detailed descriptions of the Action
Research methodology and comprehensive research methods follow in the subsequent subchapters.

Figure 12: Employed research methodology based on Action Research with grounding in complementary research methods.

Action Research as research methodology was chosen to integrate and realize Hevner’s theoretical
Design Cycles construct within the given application context. Action Research connects the design science
activities with contextual environment of the research project through the close collaboration of the researcher
with designers within the design project. The close connection promotes the identification of relevant research
opportunities and its iterative questioning of relevance ensures research efficiency. Design requirements are
transferred from the application context into the research and resulting design artefacts are field tested in the
opposite direction. The Action Research data was enriched by an interview series and an annual industry survey
independent of the partnering company. Both data sources combined with the Action Research findings
represent Hevner’s Relevance Cycle. But the implemented Action Research methodology also addresses
theoretical grounding of practical findings and leads to extensions of the relevant body of knowledge. The
iterative action cycles are matched by a continuous literature review to evaluate practical findings with relevant
theories or compare them to empiric results from similar environments. This repeated grounding in theory
differentiates the Action Research from design activities and reflect Hevner’s Rigor Cycle. The central objective
of Action Research is to construct and evaluate design artifacts to improve design activities within the application
context. The researcher participates in design projects and introduces these design artifacts into the real-world

3-56

design activities. This change aides understanding of the research phenomena, the influence of the design artifact
on it and the relevance of the selected design theory. The introduction of change in the form of design artifacts,
the iterative evaluation of this change and the corresponding adjustment of the design artifacts in Action
Research incorporate Hevner’s Design Cycle.

The methodology of the research of connects nomothetic, idiographic and constructive research
methods. Annual surveys including a broad industrial audience were conducted to verify the overall relevance of
the research problem and test hypotheses. These surveys apply to the class of nomothetic methods. The central
part of the research strategy was realized within a comprehensive Action Research frame including both case
studies and interview series. These idiographic methods were applied to understand the research problem from
a practitioner perspective and test specific solutions. Based on the overall problem relevance and the specific
adaptions constructive methods were engaged to generate a model that enables the transfer of understanding
and implementation to other cases.

3.3.1 Action Research method
Action Research as a research method aims to both solve current practical problems and expand the

scientific knowledge base. This dual mission includes contributions to theory and assistance in current and
anticipated problems of practitioners (Benbasat and Zmud, 1999; Rosemann and Vessey, 2008). The direct
practical utility embeds relevance into research projects. Sein et al. conceptualize Action Research as containing
inseparable and interwoven activities of constructing emergent design artifacts, intervening within the
organization and evaluating the impacts (Sein et al., 2011). In this concept design artifacts are dynamic and
emerge from the context of both their initial design and continual reshaping from organizational application.

The fundamental contention of Action Research is that a complex social process can be studied best by
introducing change and observing the effects. The action researcher purposely creates organizational change
and hence discontinues the objective position of the researcher as an external observer. The implications of
these actions allow the researcher to better understand the application context, the structural characteristics of
the product design process and the effect of the design artifact on it. This in turn increases intertwining between
practical problems and theoretical solutions (Babüroglu and Ravn, 1992). The researcher becomes part of the
researched object and intervenes to solve immediate and anticipated organizational problems (Baskerville and
Pries-Heje, 1999).

Action Research accepts the inability to completely understand a dynamic socio-technical system.
Instead, it emphasizes proximity and researcher action to increase understanding of defined parts. Ottosson et
al. claim that the observer of reality is at the same time part of reality because of the nature of product design
which is driven by human interaction. Passive observation is therefore impossible which confutes a positivistic
view of objectivity. Instead Action Research accepts the researcher as being part of the researched object and
strives for generalizability by rigor in data analysis, strong theoretical grounding and empirical evaluation
(Ottosson et al., 2006). Consequently, Action Research is strongly oriented toward collaboration between
researcher and product designer. This changes the recognition of the product designer compared to other
Design Research methods. The role of product designer changes from researched object to constructive partner
of the researcher. This shift is essential to the research logic since both the knowledge of the researcher and the
product designer are valued crucial for the generation of relevant design artifacts. Action researchers contribute
methodological knowledge and design theories and product designer complement situational, practical
knowledge and application context experience. The combination of both knowledge sources complies with
Hevner’s concept of a Rigor and a Relevance Cycle. In a Design Research project both are necessary and the
repeated back and forth between them increases scientific and practical quality of design artifacts. Since Action
Research purposely triggers change this affects the product designer as well as the researcher. Both have to
readjust to a new situation together and draw learnings from the product design and the Design Research
perspective.

The role of the action researcher within the action research project is not predefined and may vary
between project management and sporadic observer according to the application context and research settings.
Ottosson et al. define four differentiations of the researcher role: Project lead, team member, observer with
more than 80% presence and observer with sporadic presence (Ottosson et al., 2006). According to these roles
they categorize three levels of Action Research integration into the design project: Action Research, Insider

3-57

Action Research IAR and Participatory Action Research PAR. All four role definitions support basic Action
Research. Insider Action Research requires at least a high presence of the researcher as an observer. Participatory
Action Research PAR requires the researcher to be a productive part of the product design team. Loss of valuable
information due to incorrect reconstructions is minimized and first-hand data collection methods are applicable.
Only team members or the project leader fulfil the requirements of this integration level. The participatory
research position allows to grasp even the smallest details and understand product and project related
interdependencies. Action and stimulus are much easier implemented and analysed from within the design team.
Nevertheless, this position required additional research capacity and the researcher’s interest may be divided
between research and project progression.

Action Research is an iterative research process that capitalizes on learning by both researchers and
subjects within the context of the subjects’ social system (Davison et al., 2004). Iterations allow to separate
smaller cycles within a research project that have distinct objectives. Ideal iterations include each of Hevner’s
design cycles and additional knowledge is won. This iterative research nature is based on working hypotheses
which are refined over repeated cycles of inquiry. Overall understanding of the research object increases
iteratively and assumptions and consequently design artifacts are updated to an emerging knowledge base.
Ottosson et al. report the refinement of the research question with an increasing understanding of the research
field through subsequent iterations. An initially open research question gradually develops and can with time be
broken up into more specific questions. They emphasise how this refinement increases compatibility of research
paradigm, research questions, experiences and design artifacts (Ottosson et al., 2006). Checkland et al. support
this approach and report initial research themes, instead of fixed research hypotheses. These themes are shaped
into specific research questions throughout the research project. They also emphasize the importance the
connectedness and fine tuning between application context, research strategy and methodology to generate
generalizable and valid learnings. A serious and organized Action Research process is essential to present
defensible generalizations. (Checkland and Holwell, 1998). Eden et al. supplement that any tools, techniques, or
models developed need to be linked to the research design. Exploration of data and theory building has to be
explainable to others. Method triangulation is used if possible (Eden and Huxham, 1996).

In a nutshell Action Research as a research method addresses practical relevance and scientific rigor in
Design Research. It links theory with practice, and thinking with doing (Susman, 1983). Consequently, it avoids
shortcomings of other Design Research methods such as practically irrelevant theoretical constructs or
disconnected research phases (e.g. problem definition, artifact construction and evaluation phases) in sequential
research phases (Baskerville and Myers, 2004). It leads to descriptive knowledge regarding the precise
understanding of a design phenomenon in its application context and prescriptive knowledge regarding the
generation and evaluation of design artifacts. The iterative method ideally incorporates Hevner’s Design
Research concept. The repeated shift between research cycles generates scientific understanding and practical
utility. Additionally, a mutual grounding of practice and theory is realized as intended by Hevner.

According to Sein et al. an Action Research project can be divided into four overall stages that each rely
on characteristic principles (Sein et al., 2011). These stages do not imply a fixed sequence but rather predefined
sets of activities. The action researcher is required to alternate between activities and stages according to
findings and the dynamics of the research project.

3-58

Figure 13: Action Research conduct according to (Sein et al., 2011). In practice the stages are not sequential but concurrent in Action Research.

The Problem Formulation stage represents the identification of the research phenomena and its
articulation as an instance of a class of problems in design theory. The trigger is a problem perceived in practice
or anticipated by researchers. Its formulation as a research problem conceptualizes a research opportunity based
on existing theories. Within this stage the scope of the research is initially defined, the role of the researcher
within the design project is decided, an initial research question is formulated and the long-term commitment
between the researcher and the industrial partners is agreed on. Even though a great share of the research
strategy and assumptions are defined initially in this this stage they remain flexible to accommodate later change.
This stage is based on two principles. Practice-inspired Research emphasizes the practical origin of research
opportunities instead of theoretical constructs. The researcher has to realize a design artifact that is both able
to apply to a specific solution within the research project and answer to a generalized class of problems. Theory-
ingrained Artifact implies that design artifacts are informed by theory. This principle recognizes the integration
of prior theories to structure the problem, to identify solutions opportunities and to guide design of artifacts.
This theory input happens during the initial design of the artifact and is repeated as an answer to new learnings
during intervention, evaluation, and further shaping.

The Building, Intervention and Evaluation stage generates an initial design of the design artifact. During
the following iteration it is reshaped by intervention, evaluation and rebuilding cycles. Within this stage
organization dominant artifacts are created with design knowledge from organizational intervention. This stage
draws on three principles. Reciprocal Shaping emphasizes the inseparable mutual influences of design artifact
generation and organizational intervention. A change within one part directly causes adaptions within in the
other and vice versa. Mutually influential Roles signifies different bodies of knowledge from practical and
research side within the project. It also allows individuals to play multiple or different roles. Authentic and
Concurrent Evaluation is a central objective of Action Research that signifies that evaluation is not a separate
stage but a continuous part of the construction of design artifacts resulting in anticipated and not anticipated
adaptions. Evaluation should be addressed whenever possible and authenticity is emphasized above controlled
setting.

The Reflection and Learning stage focuses on transferring design knowledge from a particular instance
to a broader class of problems. Essentially this is done continuously during the other stages. This stage clearly
differentiates Action Research from project management or simple problem solving. It enables a comprehensive
understanding of the research construct from problem framing and design artifact emergence to the theoretical
additions to the body of design knowledge. It also represents an important feedback mechanism to the research
project and therefore increases understanding of the connection between research problem and design artifact.
Finally, this stage allows to assess the need for additional design cycles and therefore provides efficiency to the
research project. Guided emergence, the interplay between the seemingly conflicting perspectives design and
emergence, is the central principle of this stage. Design artifacts reflect both the initial, theory-informed design
of the researcher and the reshaping during practical evaluation cycles by organizational use. Walls et al. include
changes to design, meta-design and meta-requirements alongside action and evaluation cycles that can have
significant impact on the initial design artifact (Walls et al., 1992). During the evolvement of the design artifact

3-59

new design principles can be conducted. This principle indicates the need for sensibility of the action researcher
to signals that indicate the need for refinement.

The Formalization of Learning stage aims to formalize new knowledge. Van Aken refers to the
development of general solution concepts for classes of field problems from (individual) research project situated
knowledge. This includes outlining the accomplishments of design artifacts and organizational outcomes from
the application context to formalize knowledge (Aken, 2004). These results need characterization as design
principles and with further analysis and reflection as adaptions or comprehensions of design theories applied to
the design artifact. Tasks include sharing of assessments with practitioners, articulation in reference to selected
theories and publication of formalized results. This stage draws on Generalized Outcomes as central principle.
While the design artifact represents an ensemble to address a practical problem both need to be generalized,
which is difficult due to the situational nature of Action Research. Sein et al. suggest three level to move from
specific to generic and abstract knowledge (Sein et al., 2011). First, generalization of the problem instance to a
class of problems. Second, generalization of the solution instance to a class of solutions independent of the
organization-specific solution. Third, derivation of design principles from the research project. This requires
reconceptualization of the deduced case-specific knowledge to the defined class of solution.

3.3.1.1 Selection of pilot projects
Research activities were based on product design projects (agile pilot projects) that offered the chance

to change the status quo product design approach according to agile principles, practices or complete agile
methods. The researcher implemented an initial change in working practices to these pilot projects and
repeatedly adapted this change according to system reactions. This action across pilot projects aided the
understanding of the research problem and the generation of a respective design theory.

The pilot projects were chosen according to specific selection criteria. First, the projects had to be object
to agile constraints of scale or physicality. Thus, large software product design projects, including several sub-
projects or smaller but mechatronic product design projects were chosen. Second, the degree to how much
change was accepted in the projects was relevant. Projects that only allowed minimal action were excluded. This
criterion strongly reflected the motivation of the responsible management to try alternative design strategies.
Third, the applicability of (novel) design tools that enabled digitalization of previously manual tasks or testing
was another selection criterion. Fourth, the level of dependencies to other organization units influenced pilot
project selection. Project independence was focused in the first year of the overall research project. In the
second- and third-year project selection focus shifted to inter team dependencies (dependencies between
teams). Hence, larger, connected projects were chosen. Fifth, the duration of the projects was another criterion.
Only projects that lasted at least several weeks were selected. This criterion was important since in shorter
projects initial team motivation, access to teams and earlier knowledge of agile working models might have
caused indeterminable and inconsistent influence onto the results.

Change was introduced to the selected pilot projects in three intensity levels. Independent of the chosen
level the applied change was adjusted thoroughly to the specific requirements of each individual pilot projects.
The first level included agile practices and principles that were introduced to existing teams. This included Kanban
boards, Retrospective meetings, iterative design cycles or complete agile methods such as Scrum amongst
others. The second level of change affected besides agile practices and principles digital and non-digital working
infrastructure. Team colocation and innovative work environments were applied, and novel software tools were
introduced to enable continuous product integration and testing to non-SW application contexts. The third level
of implemented change included modifications of the existing organization structure. Hierarchy structures and
project management standards were revoked and agile roles such as Scrum Master or Product Owner were
introduced permanently. Multi project allocations of designer were discontinued.

3-60

Table 6: Set of agile pilot projects in automotive design. The table details the chosen Action Research mode, the applicable agile constraint
category, the initial project management motivation to change, the employed agile tools, the organizational dependency level, and the
project duration.

Pilot
Project

Action
mode

Action
level

Agile
constrains

Motivation to
change

Digital tools Dependency
level

Project
duration

alpha AR two CoP high CAD/E tools high two months
beta IAR two CoP, CoS medium Simulation tools high three months
gamma PAR two CoP medium CAD/E tools medium four weeks
delta IAR one CoS low CAD/E tools high two months
epsilon AR two CoP low - medium three months
zeta IAR three CoP, CoS high CAD/E, simulation medium four months
eta PAR three CoP, CoS medium CAD/E tools high six months
theta PAR three CoP medium Generative CAD medium three months
iota IAR one CoP low CAD, simulation high two weeks
kappa AR three CoS high Agile tool chain high indefinite
lambda AR three CoS medium Agile tool chain high indefinite

In total eleven projects were researched in detail. Details of the individual design projects are given in 5.1.
Findings in this study are based primarily on these pilot projects. Additionally, learnings from more than 20 similar
pilot projects were collected but are not described and analysed in detail in this study. In Table 6 the selected
pilot projects and information of the research mode, the action level, the encountered agile constraints, the
underlying motivation to change, introduced digital tools, the dependency level and the project duration are
summarized.

Action research mode and hence researcher participation varied among the pilot projects. Participatory
Action Research was chosen in pilot projects gamma, eta and theta. The researcher was as an active and
productive team member in these pilot projects. To support the team and implement action the researcher
incorporated the role of the Scrum Master or of an agile coach. Additionally, the researcher was part of inter
team coordination and specific product design tasks. Insider Action Research IAR was chosen in pilot projects
beta, delta, iota, zeta. The researcher executed the Scrum Master or agile coach role in these projects and did
not take part in specific product design tasks. Action Research without explicit role support of the researcher was
chosen in pilot projects alpha, epsilon, kappa and lambda. The researcher did not occupy a specific team role in
these projects but consulted the preparation of these projects and the correct implementation of the agile
practices. Preparatory works also included team coaching. During the pilot projects the researcher readjusted
the agile working model implementation and focused coaching according to the specific situation in the projects.
This support lasted from the beginning to the end of the pilot projects.

3.3.1.2 Data collection
The data collection focus was structured according to the presented research questions, which resulted

in three focus fields. First, benefits and problems of implemented and adopted agile change was recorded.
Second, application context characteristics were categorized and connected to experienced problems
throughout the pilot projects. Third, successful adjustments to initial change were collected with a focus on
constraints of scale and physicality. The documentation and evaluation of implemented change was based on a
multi-method data collection approach. The applied method selection was chosen to avoid researcher bias and
a methodological influence on data sets. Method triangulation (Blessing and Chakrabarti, 2009) allowed to
approach the research phenomena with problem specific methods from different perspectives to increase data
relevance and specificity. The set of data collection methods was also adjusted to the project specific availability
and accessibility of data sources. The most relevant data collection methods within the pilot projects are
sketched in Figure 14.

In every pilot project the initially intended and implemented action was documented. This pilot project
preparation documentation included project motivation, objective and intension of introduced change.
Additional change and trigger throughout the pilot projects were added to the documentation continuously.
Implications of action were recorded with various data collection methods. The central data collection methods
were personal notes and direct evaluations of the action researcher. These summaries were continuously
expanded throughout the project. Focus was on the working model and not on project specific design progress.
Semi-structured interviews (Bogner et al., 2014) were another important data collection method applied in most

3-61

pilot projects. Project members and management were asked during and after the projects to share their
perception of the implemented action and the overall progress of the pilot projects. The interviews were
conducted by different researcher to avoid researcher bias. Moreover, pilot project members were asked to
summarize their experiences unstructured to address unexpected feedback and complement findings.

Figure 14: Data sources of the Action Research pilot projects. Data from before, throughout and after the pilot projects was collected to
provide a representative view on each pilot project. Data collection sources across pilot projects were unaltered to ensure data consistency
and comparability.

Besides these direct evaluations methods material from the pilot projects was collected and analysed.
Especially retrospective meetings were documented since they directly address the working model and
continuously filtrate and document experienced drawbacks and improvements. They were used to get direct
feedback for previous change and input for further action within the iterative design cycle frame. Planning and
Review meetings and agile practices such as burn-down charts were used to evaluate product design progress
and efficiency in retrospect. Project progress in form of performance indicators were used to derive feasibility
and efficacy of agile practices. The iterative planning review design cycle was an ideal measurement environment
to evaluate the impact of implemented change at a high sensitivity. The ratio between planned and finished talks
as well as overall story points allowed to understand impact of action in detail. Most meetings included boards
for visualization and information aggregation such as Scrum boards which were documented as well. Besides
agile meetings also lessons learned workshops were conducted to evaluate the complete pilot project in
retrospect from both internal and external perspectives. These workshops were especially helpful to collect
learnings outside of the personal range and visibility of the researcher including tendencies in upper
management. Besides these direct information collection methods pilot projects were approached after the
official project termination in retrospect. During discussions with the former team members and stakeholders it
was investigated whether the implemented impulses were transferred into standard working practices or even
further expanded.

Overall data analysis was driven by the following objectives. First, definition and further understanding
of the research phenomena agile design and its implications in the defined application context automotive
design. Second, elaboration and further sharpening of the research questions. Third, verification and
generalization of the research phenomena across pilot projects and outside of the application context. Fourth,
construction and evaluation of a suitable design model according to the specific research phenomena in pilot
projects. Fifth, design of a comprehensive design model covering pilot projects and supplementary data sources.
Derivation of a generalizable design theory answering to the categorized class of design problems.

Data collection and analysis were performed by a several researchers with changing responsibilities to
avoid researcher bias from individual researcher. Additionally, standard key performance indicators from the
partnering company and stakeholder evaluations of pilot projects were added to the data to further minimize
scientific interest-based bias in data evaluation and further increase the relevance of data analysis. Tools such as
MAXQDA were used in open, axial and selective coding procedures in pilot projects and especially for interview
series.

3.3.2 Structured and narrative literature reviews
The literature review is a central element of Hevner’s Rigor Cycle and it addressed several research

objectives throughout the project. First, it provided initial understanding of agility and its dependency of the
application context. A combination of scientific publications and industry reports was used as an initial
theoretical base of the research project. More specifically, literature provided an overview of the maturity and

3-62

implementation of agility in its original application context and therefore confirmed relevance and urgency of
the research project. Practical reports were used to estimate and characterize transferability to other application
contexts. Additionally, accompanying challenges in mechatronic product development were summarized.
Second, the literature review supported the categorization of emergent design artifacts into the existing body of
knowledge. Field reports and theoretical explanation were used to compare, analyse, and explain findings from
pilot projects. Third, systematic exploration of theory constructs from design science and complementary fields
allowed justified adjustments to the existing theoretical grounding perspectives on the research phenomena. A
sketch of the literature review conduct and the researched objectives is given in Figure 15.

Figure 15: The literature review included of a continuous narrative literature review and several structured literature reviews. The narrative
review allowed to maintain an overview of relevant research fields and the structured review was used to thoroughly screen crucial research
fields.

Methodologically the literature review was based on two interlaced approaches. Throughout the
complete research project a traditional or narrative review was conducted (Boell and Cecez-Kecmanovic, 2015).
This iterative review approach allows the researcher to adjust the focus of the search according to earlier findings
research results and expand the review to initially not considered fields. This broad and persistent literature
review was complemented by specific structured literature reviews SLR (Okoli and Schabram, 2010). These
compact reviews were applied several times throughout the complete research project and generated more
comprehensive pictures of the selected review objectives. The application of these two approaches into a
comprehensive review strategy improved both completeness and thorough understanding of focus fields as well
as sensitivity to unobvious but relevant theories and findings and cross-validation of practical findings and
theoretical constructs. Combining both review methods had further benefits, since findings of the narrative
review were used as reference points for more rigorous structured literature reviews.

This literature review strategy was combined to reflect the quality criteria of literature reviews
summarized in Boell and Cecez-Kecmanovic (Boell and Cecez-Kecmanovic, 2015). Comprehensiveness of
literature, breadths and depths of understanding signifies that the quality of literature depends on
comprehensiveness of and insight into the body of literature researched as well as breadth and depth of its
understanding of the researcher (Boote and Beile, 2005). To generate a solid research argument by thoroughly
piercing through a body of knowledge and hence localize gaps or flaws is the basic contribution of a literature
review to a research project. Feak and Swales declare this aspect of a review as Argument development (Feak
and Swales, 2009). Ongoing engagement describes a most vital aspect of narrative literature reviews. From this
perspective reviews are an iterative process that continuously further develop understanding and the
researcher’s ability to assess relevance and quality of publications. It is not a discrete task but an ongoing process
that accompanies a research project up to the final transcript (Combs et al., 2010). Ongoing engagement also
improves criticality in reviews which is necessary to question relevance, quality and rigor of contributions and
hence filter inputs into research projects (Alvesson and Sandberg, 2011). These criteria enabled unevenly by the
two chosen review methods. The structured reviews focused on depth of understanding and criticality in the
literature review. The narrative review supported comprehensiveness, argument development and ongoing
engagement.

3-63

3.3.3 Complementary data collection
Besides data collection in the Action Research pilot projects additional data sources outside of the

central application context were used to verify plausibility of the Action Research approach and results. These
data sets were collected with the goal to research and confirm the relevance of the research phenomena on a
broader scale. Both the generalization of the theoretical constructs behind design phenomena to a class of design
problems and the generalization of the design artifact into design theory rely on data to confirm a broader
applicability beyond the focus research environment. Apart from this the application of additional research
methods minimizes the risk of a disproportionate methodological influence on the research results.

Specifically, the following methods and contexts were used. Outside of the pilot projects but within the
specific application context (company BMW) interview series were conducted. Especially in product integration
and testing processual dependencies, manual activities, cooperation and coordination systems were analysed.
Technological maturity to implement continuous integration tool chains and processual suitability of existing
organization structures to implement agile collaboration models were questioned in these interview series.
Unlike the more flexible often interrupted and resumed interview discussions in pilot projects these interviews
were based on strict semi-structured interview guidelines. The interview sample was selected strictly according
to experience in mechatronic product integration and complexity of relevant process partners. Further expert
interviews were conducted outside of the application context regarding the transferability of agile practices to
mechatronic product design.

An annual industry survey was conducted online to addresses a broad audience of experts in the field
of agile mechatronic product design independent of industries (Atzberger, Nicklas, et al., 2020; Schmidt et al.,
2019). This survey aimed at several goals unreachable with the earlier presented research methods. First, the
survey allowed to reflect the yearly dynamics in a broad set of practical application fields regarding problem
interpretation and diffusion of approaches to overcome them. Second, the survey generated data outside of the
specific application context that allowed to confirm the relevance of the class of problems. Third, the survey
enabled an industry independent evaluation of design artifacts iteratively constructed throughout pilot projects.
This approval of experts from other industries is an important precondition to derive general design theories
from specific design artifacts. Fourth, this data allowed to collect additional practical implications of the research
problem from other industries. Especially if implication change with the application context additional sources
help to avoid missing undetected dependencies and therefore increase understanding of the underlying causes.
Fifth, the quantitative data analyses could only be used in this part of the research. This alternative data
breakdown was used as a repeated evaluation of the research findings and drawbacks of the chosen data
collection and analyses methods were compensated.

4-65

 Coordination perspective of agile product design

“The best way to show that a stick is crooked is not to argue about it or to spend time denouncing it, but to lay a
straight stick alongside it”
 D.L. Moody

In this chapter coordination is used as a theoretical lens to analyse and understand the most relevant
agile methods in accordance to avoid unreflective agile black box applications (see chapter SOA scientific call for
theoretical explanation) and answer research question one. Therefore, a coordination reference model is
synthesized to analyse and compare coordination strategies from different agile frameworks. These coordination
strategies are evaluated regarding their suitability for different application contexts according to their
coordination efficiency. These evaluations are also used to verify and explain empirically proven agile benefits.
Beyond individual practice evaluation the coordination reference model compares interlinked sets of practices of
agile methods in relation to different application contexts. This allows to understand agile method suitability
regarding project and domain specific characteristics. As a result, the model allows to adjust agile coordination
strategies to application contexts.

Similar research on coordination in agile methods has started in the early 2000s and resulted in a
heterogeneous research stream including a broad set of approaches. Cao and Ramesh recognized that classical
coordination theory might explain the efficiency of agile software development. They argue that agile methods
focus on personal and group mode coordination (Lan and Ramesh, 2007). Barlow et al. proposed a methodology
selection framework based on standardization, planning and mutual adjustment (Barlow et al., 2011). Strode et
al. showed how agile software development generates effective coordination by coordination mechanisms that
enable project team synchronization, support team proximity and availability, role substitutability as well as
boundary spanning mechanisms (Strode, 2014). Further empiric research was published focusing on individual
cases. Coordination in a XP project has been achieved by using unit testing, card games for planning and
concurrent versioning systems (Mackenzie and Monk, 2004). Wallboards displaying stories, tasks, work
allocations and progress were significant coordination mechanisms in six agile teams (Sharp et al., 2009).
Pikkarainen et al. concluded that in two co-located agile projects coordination by documentation was substituted
by communication in communities of practice. (Pikkarainen et al., 2008). Pries-Heje et al. explained the efficiency
of Scrum by its practices regarding communication, coordination, social integration and control based on a case
of two distributed teams (Pries-Heje and Pries-Heje, 2011). Dingsøyr et al. reported how in large scale agile
projects coordination modes change throughout the project (Berger and Eklund, 2015) (Dingsøyr et al., 2017).
Scherer et al. researched coordination efficiency in multiteam software development projects (Scheerer et al.,
2014). Still, coordination theory has not been employed to research and structure large scale hardware design in
automotive design.

This chapter is divided into three parts. First, the development of the coordination reference model based
on established coordination theory inputs is presented. Second, the derivation of agile coordination strategies of
several agile methods including suitable coordination determinants is described. Third, the connection of
beneficial characteristics of agile design (depending on application contexts) to the analysed coordination
strategies is explained to answer research question one.

4-66

4.1 Coordination reference model
The analysis and comparison of coordination strategies of agile working models requires a coordination

reference model. This model needs to screen agile practices regarding their impact on coordination efficiency.
This includes intra and inter team coordination. Besides individual practices it must evaluate coordination
systems that are composed of several interlinked coordination mechanisms. Furthermore, these interdependent
coordination systems must be related to coordination determinants which represent application context
characteristics.

The applied coordination reference model was specifically designed to reflect agile product design. It is
based on the coordination model of Van de Ven et al. (Ven et al., 1976) which allows to relate the suitability of
coordination modes to specific coordination contexts which are represented by coordination determinants. The
model connects impersonal, group and individual mode coordination to task uncertainty, task interdependence
and size of work unit. Additionally, the concepts of boundary spanning (Star and Griesemer, 1989), and implicit
cognitive coordination (Espinosa et al., 2004) were introduced to reflect the strong team focus of agile product
design. The coordination reference model allows to deduce coordination strategies (Li and Maedche, 2012) from
different agile methods. It differentiates between intra team and inter team coordination to extend its
applicability to scaled application contexts. The complete model as depicted in Figure 16 is described in the
following paragraphs.

Figure 16: The coordination reference model. It allows to analyse coordination strategies of agile methods. It is based on the original model
of Van de Ven et al. (Ven et al., 1976). It connects the coordination determinants unit size, task uncertainty and task dependency to the
coordination modes impersonal mode, group mode and individual mode coordination. To better reflect agile design the model was
extended to include cognitive mode coordination (Espinosa et al., 2004) and boundary spanning (Star and Griesemer, 1989).

Like in the original model (Ven et al., 1976), the differentiation of impersonal and mutual adjustment
coordination relies on the three separated coordination modes: impersonal mode coordination, group mode
coordination and individual mode coordination. These coordination modes consist of sets of coordination
mechanisms based on similar coordination principles. Impersonal mode coordination includes coordination
mechanisms such as “pre-established plans, schedules, forecasts, formalized tools, policies and procedures, and
standardized information and communication systems” (Ven et al., 1976). These mechanisms present codified
blueprints of action that are impersonally specified. Roles are formally prescribed in impersonal standardized
blueprints or action programs which avoids role articulation (Thompson, 1967) to the given set of tasks. The
application of the impersonal coordination mechanisms requires minimal mutual adjustment such as verbal
exchange between the task performers after their implementation. Coordination by feedback is based on mutual
adjustment upon new information (Thompson, 1967). De Van et al. divide it into group mode and individual
mode. Regarding group mode coordination the model follows the division of Hage et al. into scheduled and
unscheduled meetings as coordination mechanisms (Hage et al., 1971). Scheduled meetings serve for routine
and plannable routine meetings like stuff meetings. Unscheduled meetings represent unplanned communication
like informal, impromptu exchanges between more than two individuals in work-related fields. This also covers
spontaneous collaboration on design activities in groups. Individual role occupants mutually adjust their tasks
based on either vertical or horizontal communication channels in individual mode coordination. Typical
coordination mechanisms for vertical communication would be line manager and unit supervisor. Horizontal

4-67

exchange is based on direct communication between individuals on a one-to-one basis in non-hierarchical
relations.

Impersonal mode, group mode and individual mode coordination are explicit coordination modes. Their
coordination mechanisms require action to obtain a state of coordination. Unlike explicit coordination implicit
coordination is based on shared information and cognition and requires no coordination-specific action.
Research on teamwork has shown that implicit, cognitive coordination mechanisms have a significant influence
on overall coordination efficiency (Espinosa et al., 2004). Agile approaches emphasise close collaboration in
small, long-term teams which are ideal prerequisites for the application of cognitive coordination. Therefore, this
study includes cognitive mode coordination as a fourth coordination mode to the coordination reference model
(see Figure 16) to better reflect agile coordination strategies. Espinosa et al. presented a similar adjustment of
the Van de Ven model (Espinosa et al., 2010). Cognitive mode coordination is based on knowledge collaborating
actors or parties have of the system, each other and of each other’s tasks. It allows them to anticipate each
other’s action without explicit coordination effort. Task awareness, presence awareness, transactive memory
(Wegner, 1995) and expertise coordination (Faraj and Sproull, 2000) are factors that influence cognitive
coordination. Shared mental models in teams (Cannon-Bowers et al., 1993) are essential since they support
shared goals and enable common understanding (Kang et al., 2006). Mutual knowledge (mutual knowledge of
collaborators) and common grounding (similar meaning in terms) are further enabling factors to cognitive
coordination. In contrast to impersonal and personal coordination modes cognitive coordination requires shared
mental models, mutual knowledge and trust between actors and hence cannot be implemented by generic
coordination mechanisms. Since it is based on personal exchange, individual knowledge, trust which require long-
term cooperation its application is mostly limited to intra team coordination.

The coordination reference model also includes the concept of boundary spanning as coordination
mechanism. They represent relevant agile practices such as prototyping or agile artefacts such as the backlog in
the model. The individual implementations of boundary objects, boundary roles and boundary activities fit the
impersonal, group and personal coordination modes and combine their characteristics. As coordination
mechanisms they connect the coordination modes of the coordination reference model. The boundary concept
is used to facilitate coordination between representatives of different design objectives with different
backgrounds and fields of interest. Star et al. define boundary objects as artefacts or concepts with enough
structure to support activities in separated social worlds, and with enough elasticity to cut across multiple social
worlds (Star and Griesemer, 1989). To do so these objects satisfy the institutional requirements of each world.
They are weakly structured in common use and strongly structured in local use (Star and Griesemer, 1989). This
allows them to tie together actors in multiple social worlds, while being capable of assuming different meanings
in each world (Briers and Wai, 2001). Bergman et al. define boundary objects in design as artefacts that enable,
propel, and connect design routines, align stakeholder interests, and identify and reduce gaps in design
knowledge (Bergman et al., 2007). They represent, transform, mobilize, and legitimize design knowledge by
facilitating shared understanding and promoting agreements about designs. Bergman et al. define four essential
features of design boundary objects (Bergman et al., 2007). First, they promote shared representations. Second,
they transform design knowledge. Third, they mobilize for design action. Fourth, they legitimize design
knowledge. Boundary spanner and boundary spanning activities are further extensions of the concept. For
example a coordinator between different knowledge and interest group might serve as a boundary role (Levina
and Vaast, 2005). Certain activities between these stakeholders have a similar affect and serve as boundary
spanning activity. Especially in design environments that rely on a broad spectrum of specializations and need to
connect many stakeholders, boundary objects can increase coordination efficiency significantly.

Van de Ven et al.’s model includes the coordination determinants task uncertainty, task
interdependence and size of work unit that influence coordination mode selection. The combination of these
factors allows to reconstruct different application contexts based on comparable input parameters. Task
uncertainty mirrors the difficulty and variability of the activities necessary to complete a task. This includes
project characteristics such as hardware and software specific design characteristics. It is reflected by the
complexity level of the task, the necessary thinking time and task predictability. Task interdependence describes
how task responsible parties are dependent on the output of other organization units to complete their task.
This includes interdependencies between activities, knowledge and roles (Pennings, 1975). High task
interdependency reduces the share of one-person jobs and increases the necessary degree of collaboration to

4-68

complete tasks. Task interdependence also differentiated between intra team and inter team dependencies. Size
of work unit is defined as the total number of people within an interdependent project.

Van de Ven et al. showed how these coordination determinants influence the presented coordination
modes. Increasing task uncertainty results in a substitution of impersonal mode coordination with mutual
adjustment coordination. Within the group mode coordination unscheduled meetings show a stronger increase
than scheduled meetings. Regarding individual mode coordination the use of horizontal channels increases while
vertical channels remain constant. Increasing task interdependency results in an increased use of group mode
coordination while impersonal mode coordination and individual mode coordination remain invariant. Within
the group mode coordination scheduled meetings increase most. Increasing size of work unit leads to more
impersonal mode coordination. This affects mostly rules and plans. Dietrich et al. researched the same
coordination determinants in multiteam systems and came to very similar connections (Dietrich et al., 2013).
Regarding the cognitive coordination mode unit size and inter team task dependencies reduce its applicability
most since personal relations and shared mental models are harder to establish in larger groups and across
teams.

The coordination reference model determines mutual influence between coordination modes and
coordination determinants to account for the criticism of Jarzabkowski and Okhuysen (Jarzabkowski et al., 2012;
Okhuysen and Bechky, 2009) that the original Van de Ven et al. model (Ven et al., 1976) only reflects a static view
of coordination. Connections between coordination mechanisms allow to depict emergent coordination
dynamics that reflect changing coordination determinants. These connections between coordination
mechanisms and the analyses of mutually influential coordination modes prevent a static understanding of
coordination in the coordination reference model.

The mutual influences between coordination modes are analysed as well. The connection of
coordination modes to coordination determinants, based on Van de Ven et al. original observations, allows to
match coordination strategies of the researched agile working models to application contexts. The coordination
reference model also accounts for the cost and sensitivity of its coordination modes. Cost of coordination is
approximated by the combined time necessary to execute coordination activities for all stakeholders. Impersonal
and cognitive coordination modes require little time, while group mode and individual mode coordination
require much more time. Besides cost the model also considers coordination mode sensitivity. Group and
individual mode coordination are able to cope with higher levels of complexity than impersonal mode
coordination. The coordination reference model connects this task sensitivity with the presented coordination
determinants. Requirements of coordination modes are considered as well. E.g. cognitive mode coordination
requires long-term teams that can rely on individuals that know and trust each other and that have experience
in the required tasks and know project goals and settings.

In summary, the coordination reference model is based the original model of Van de Ven et al. (Ven et
al., 1976). The concepts of cognitive mode coordination and boundary objects were added to better reflect
coordination in agile frameworks.

4-69

4.2 Agile coordination strategies
The aim of this subchapter is to deduce the coordination strategies of the agile methods Scrum and

eXtreme Programming. The analyses are based on the presented coordination reference model. The agile
methods were selected for several reasons. They are the most popular agile methods in practical application
(VersionOne, 2020). Both methods rely on large numbers of industrial experience reports and scientific
evaluations. Later methods are often based on them. They represent two opposing positions within agile methods
regarding domain limitations. Extreme Programming has been established for software design and therefore
includes many domain specific practices, while Scrum is not limited to the domain. They include most of the
employed agile practices in the agile pilot projects.

The analyses of the coordination strategies for both methods. consist of three steps. First, the employed
coordination modes and mechanisms are defined. Second, the balance of the coordination system is analysed.
Connections and trigger between coordination modes and mechanisms are mapped to explain the system
behaviour. Third, the agile coordination strategy is summarized. Characteristics and behaviour of the coordination
strategy are matched with empirically proven benefits of agile methods.

4.2.1 Analysis Scrum coordination strategy
The coordination strategy of Scrum (see subchapter 2.1.2.2) is analysed in the following section. Scrum

emphasises intra team coordination mechanisms. It combines three categories of coordination mechanisms
which are meetings, roles and artefacts. It includes seven different meetings: The Planning (part I and II), the
Daily, the Review, the Retro, the Refinement and the Sprint which structure iterative development cycles. Three
roles with specific tasks and responsibilities are defined: The Product Owner, the Scrum Master and the
Development Team. Additionally, three artefacts the Backlog, the Sprint Backlog and the Increment are defined.
The Scrum Guide (Schwaber and Sutherland, 2020) advises small, long-term, cross-function, co-located and
collaborating teams. The framework specifically recommends minimal inter team (team external) dependencies
and emphasizes intra team collaboration. It advises short iterative design cycles with a fixed length which are
called Sprints.

These basic elements and their connection within the framework are analysed in the following section
to depict the Scrum coordination strategy. The coordination reference model is used as a theoretical lens to
analyse the Scrum elements regarding their influence on its coordination efficiency. The analysis is structured
into three steps. First, the resulting coordination modes are investigated. Second, for every coordination mode
the connected mechanisms are summarized. Third, the connections between coordination modes and respective
coordination mechanisms are outlined.

4.2.1.1 Applied coordination modes
The Scrum meetings enable group mode coordination in the Scrum framework. Besides the Sprint and

the Refinement all meetings can be categorized as scheduled group mode coordination. They are structured
according to design objectives and therefore connect roles that also answer to different design objectives. The
Sprint on the other hand offers the opportunity for unscheduled meetings. This includes informal exchange and
or spontaneous design activities within the team. Unscheduled periods are purposely included in the Sprint to
provide unscheduled exchange. Besides this group mode coordination, the meeting also support cognitive mode
coordination within the team. The Planning meetings provides a shared vision and common understanding
throughout the following Sprint, while the Review meeting generated mutual trust within the team and towards
the framework. The Retro meeting provides information of team dynamics and therefore also supports cognitive
coordination.

The Scrum roles support impersonal mode coordination as standardized blueprints of individual
responsibilities (Thompson, 1967) in product design. They also support individual mode coordination. Since no
disciplinary hierarchy is associated with the role responsibility horizontal communication channels are dominant.
The Scrum roles are directly linked to the scheduled group mode coordination mechanisms. The role definitions
clarify responsibility within the team and towards all meetings and therefore facilitate group mode coordination.
The Scrum Master and the Product Owner are boundary spanners and connect the Development Team to
customers and stakeholders. Lastly, the Scrum roles also support cognitive mode coordination since

4-70

responsibility and functions are clearly assigned to individuals which allows a shared understanding of the overall
design activities.

The Scrum artefacts provide impersonal mode coordination. The Backlog and the Sprint Backlog allow
coordination between stakeholders without personal communication outside of the meetings. They fulfil
Bergman’s four categories of boundary objects in design. The Backlog promotes a shared representation of the
product, the Increment includes transformed design knowledge from different parties, the Backlog and the
Increment mobilize for action and the Increment legitimizes design knowledge. Additionally, they document
findings and results from meetings and the Sprint. The integration of the artefacts into the Scrum design cycle
ensures they document and communicate the status quo. The artefacts are designed to function as boundary
object coordination mechanisms between the Scrum roles, the customer, and stakeholders. This function
facilitates the meeting efficiency since information can be transferred between different roles even though
different backgrounds and objectives are given. The User Stories within the Backlog are an example to connect
Product Owner and Development Team. Additionally, the increment or prototypes are boundary objects in
Scrum.

The required team characteristics from the Scrum Guide shape coordination in a Scrum framework as
well. Group mode coordination is enabled by the small size of the teams, the collaborative approach to design
tasks, the co-location and the cross-functional composition of the team. Each aspect ensures that group mode
coordination is the most usable and useful coordination mode. The same aspects also support individual mode
coordination but to a lesser degree. In the long term these aspects generate very close teams that can rely on
cognitive mode coordination. Another factor to influence coordination mode selection is the handling of
external or inter team dependencies. The role construct attaches external dependencies to the Product Owner
and to a smaller degree to the Scrum Master. The Development Team can therefore focus on design tasks and
hence rely on group mode or individual mode coordination within the team. This use of mutual adjustment
coordination relies on a small number of external dependencies that can be channelled by individual role
occupants.

In summary impersonal mode coordination is implemented in the Scrum framework through the
Backlog, the Sprint Backlog and the Scrum role definitions. Additional elements such as User Stories also provide
impersonal mode coordination. All Scrum artefacts are implemented as boundary objects to be easily adjustable
and maintain a high level of flexibility and actuality. Besides these objects the Scrum framework its guidelines
and standards function as impersonal coordination mechanisms as well. Group mode coordination is the central
coordination mode in Scrum. The meetings, the roles and the team characteristics function as group mode
coordination mechanisms. Even though scheduled meetings structure a large share of the design cycle
unscheduled meetings are driven by the Sprint frame and the close team collaboration. Group mode
coordination mechanisms connect all roles and artefacts and therefore present the central coordination
mechanisms. The different roles and their non-disciplinary relations enable individual mode coordination
mechanisms through horizontal channels. Close collaboration also requires a shift between group and individual
mode coordination depending on the task. Cognitive mode coordination is enabled through the close personal
exchange during the scheduled meetings that provide a shared vision, a common understanding and generate
trust among the teams. The role division clarifies responsibilities and simplifies group dynamics. Required team
characteristics such as long-term teams cultivate cognitive coordination mechanisms. Additionally, the simple
overall framework provides common grounding in terminology which also support cognitive mode coordination.
Collaboration, co-location and cross-functionality all require teams to cooperate very close and hence grow
together. Lastly, the focus on intra team cooperation and the separation from external dependencies avoid inter
team dependencies that also increase unit size and complicate cognitive coordination mechanisms.

4.2.1.2 Connection and balance between coordination modes
After analysing the applied coordination modes in Scrum the following section discusses how these

coordination modes are connected in the framework. Figure 17 gives an overview of how the coordination modes
influence each other. The construct helps to understand the overall coordination strategy besides the individual
coordination implementations.

4-71

Figure 17: Scrum coordination strategy. Group, cognitive and impersonal (including boundary spanning) mode coordination are central. The
coordination system’s flexibility, efficiency and efficacy profit from the close interlinkage of the employed coordination modes.

Impersonal mode coordination mechanisms like the Backlog, the Sprint Backlog and the Increment are
directly linked to group mode coordination mechanisms. The Sprint Backlog structures the Sprint, the Daily and
the Review meetings, while the Backlog structures the Planning meeting. They are input channels for tasks and
document and distribute findings from the verbal meetings replacing additional protocols. Their structure as
boundary objects facilitates cooperation between different roles and stakeholders throughout scheduled and
unscheduled meetings. This also affects individual mode coordination in the Backlog Refinement. These objects
also enable cognitive coordination since they provide transparency and efficiently channel information in
projects and hence facilitate system understanding. The Scrum framework itself and its roles are also impersonal
coordination mechanisms which supports cognitive mode coordination in the design teams since they structure
complex product design systems into well-described roles, meetings and artefacts whose connections and
linkages are transparently stated in the framework rules.

Group mode coordination mechanisms on the other hand also have a strong influence on the boundary
object artefacts. Most prominently the Planning meeting is the central input channel for the Sprint Backlog, while
the Review meeting verifies and validates the Increment of the Sprint. This shows that there is a strong
bidirectional linkage between the impersonal mode coordination boundary objects and group mode
coordination scheduled Scrum meetings. The meetings also provide the basis for further individual mode
coordination that might be more efficient than a group meeting. E.g. the Daily meeting only detects coordination
demand to be solved either in other meetings or in individual mode coordination. Also, the Sprint encourages
direct exchange between individuals in collaborative tasks. Indirectly the meetings also provide a base for
cognitive mode coordination through repeated interaction between team members, shared mental models of
the system, transparency of responsibilities and trust in task fulfilment.

Individual mode coordination might trigger unscheduled group mode meetings or influence boundary
objects. E.g. the adaption of the Backlog during a Refinement of the Product Owner with customers. Cognitive
mode coordination supports the other coordination mechanisms since a large share of the necessary
information is already distributed and does not need to be communicated explicitly. E.g. a personal exchange or
a meeting can focus on the point, or a boundary object can be simplified and still be understood. In very dynamic
and uncertain environments this indirect extension of the given information might also lead to misinformation if
the established mutual knowledge is outdated. Therefore, the shared knowledge needs reference frames and
actualizations from the other coordination modes.

In summary, the Scrum framework relies on interlinked coordination modes that are designed to
support and complement each other. Its compact design cycle applies and combines different coordination
modes to guide the design progress. The connection between these coordination modes is not fixed but able to
adapt to specific or emergent project requirements.

4.2.1.3 Deduced Scrum coordination strategy
The presented analysis shows that the Scrum coordination strategy is dominated by mutual adjustment

coordination especially in the shape of group mode coordination. Individual mode coordination is also relevant,

4-72

but to a lesser degree. Impersonal mode coordination in the form of boundary objects and boundary spanner
roles is interlinked with group mode coordination. Additionally, the framework and its elements are designed to
generate cognitive mode coordination mechanisms. According to Van de Ven’s relation between coordination
modes and coordination determinants this combination of coordination modes is suitable for small unit sizes,
high task uncertainty and high intra team and low inter team task dependencies. The focus on cognitive mode
coordination further emphasises this application focus.

The presented combination of coordination modes is designed to provide project flexibility and speed
which are necessary in dynamic application contexts characterized by high task uncertainty. It combines
coordination efficiency and efficacy since coordination mechanisms are continuously adapted to the demand.
Individual coordination modes and mechanisms are intensified or reduced according to demand. Efficient
impersonal mode coordination is used in predictable situations and more flexible mutual adjustment
coordination modes are applied in uncertain situation. This adjustment mechanism answers to short term
changes and long-term tendencies in projects. Task dependencies are described only from an intra team
perspective. Inter team dependencies are not included explicitly.

The strong connection between the employed coordination modes supports flexibility. The Scrum
framework provides a well-coordinated system, that according to Espinosa (Espinosa et al., 2004), relies on an
effective mix of mechanisms for the coordination needs of the task. Different modes are matched according to
their strengths and weaknesses to generate a mutually supporting coordination system. Group mode
coordination and impersonal mode coordination are interlinked very close. Impersonal mode coordination
artefacts are updated throughout scheduled group mode meetings and scheduled meetings are structured
according to boundary objects. Scheduled group meetings and impersonal coordination mode facilitate mutual
knowledge, trust and shared vision which support implicit coordination. This system supports fast knowledge
exchange, generation and documentation.

These results match the findings of Pries-Heje et al. (Pries-Heje and Pries-Heje, 2011). They explain the
success of Scrum with social capital, which is the ability to build trust, motivate and build relations between
individuals. All concepts that reflect the strong cognitive and group mode coordination in the presented
coordination analysis. It also provides a common language and a shared target to aim for. This social capital
concept is close to the cognitive coordination concept. They also emphasise the importance of boundary objects
and impersonal mechanisms to ensure quality and track progress in Scrum. They argument that the meeting
structure enables efficient communication. Lastly, they draw a similar conclusion saying that the framework suits
small teams in dynamic application contexts.

4.2.2 Analysis eXtreme Programming XP coordination strategy
The coordination strategy of the agile method eXtreme Programming XP (Beck, 2004) is analysed in the

following section. XP was chosen for four reasons. First, it is almost as popular as Scrum (VersionOne, 2020).
Second, its coordination relies unlike Scrum on highly automated coordination mechanisms that require specific
IT infrastructure. Third, some practices exclusively address software design. Fourth, the framework emphasises
product design practices and not project management like Scrum. XP consists of values, principles and practices.
The underlying values are communication, simplicity, feedback, courage and respect. The basic principles are
feedback, assuming simplicity and embracing change. More relevant for the coordination strategy are the XP
practices: On-Site Customer, Planning Game, Stand-Up meetings, Metaphor, Short Releases, Retrospective,
Testing, Simple Design, Refactoring, Pair Programming, Collective Ownership, Continuous Integration, Coding
Standards and Sustainable Pace. Like Scrum XP recommends short iterations based on coding, testing, listening
and designing development cycles. These basic elements and their connection within the framework are
analysed to understand the resulting coordination strategy.

The coordination reference model is used as a theoretical lens to analyse the XP practices regarding
their impact on coordination. The analysis is structured into three steps. First, the resulting coordination modes
are investigated. Second, for every coordination mode the connected elements are summarized. Third, the
connections between coordination modes and respective framework elements are outlined.

4-73

4.2.2.1 Applied coordination modes
The coordination modes in XP are differentiated according to the presented design practices. On-Site

Customer representation triggers individual mode coordination or group mode coordination between designer
and customer both in personal and group mode exchange. The Planning Game functions as a boundary spanning
activity allowing different social or expertise communities to interact directly without complicate translation
activities. Its implementation as a group activity turns it into a (scheduled) group mode coordination mechanism.
The Stand-Up meetings are classic mechanisms of the group mode coordination. Similar to the Planning Game
the Metaphor connects different individuals from different task specific focus areas. Its construction is a
boundary spanning mechanism while the artefact remains a boundary object. The Retrospective meeting
provides frequent reconsideration and adjustment of the process and is a scheduled group mode coordination
mechanism. The Simple Design practice represents the idea to choose the simplest possible design to fulfil
requirements. It allows designer to comprehend outputs of other designer and is therefore categorized as a
cognitive mode coordination mechanism. Refactoring includes the continuous code improvement and
simplification which implicates that initial code needn’t be perfect. It supports impersonal and cognitive mode
coordination mechanisms. The resulting design procedure requires and enables continuous product adjustments
and therefore requires repeated synchronisation points. Pair programming is the most relevant individual mode
coordination mechanism and relies on close personal exchange between two designers. Short Releases and the
corresponding short design cycles as well as the incremental design support impersonal mode coordination. The
Continuous Integration practice is one of the central impersonal mode coordination mechanisms. It enables a
continuous actualization of the current increment and hence allows feedback and evaluation cycles. Coding
standards as a form of team agreed rules are an impersonal mode coordination mechanism. The last practice,
(automated) Testing is another very relevant impersonal mode coordination mechanism. Developing tests first
and then starting the classic design process reverses to original sequence of design cycles and enables a very
efficient design process. This includes mostly verification but also validation tests. Mistakes are spotted fast and
further necessary coordination mechanisms to generate solutions can be triggered. Like the Simple Design
practice once implemented the Testing practice functions like the implicit cognitive mode coordination
mechanisms, since the system automatically detects mistakes and generates coordination trigger.

In summary, impersonal mode coordination is central to the XP framework. The testing and continuous
integration mechanisms are essential to this coordination mode. The Continuous Integration practice enables
transparent product representation throughout the design process without integration delays. The Continuous
Testing practice on the other hand simplifies the original Demming design cycle (Moen and Norman, 2009).
Instead of an independent Check phase the Testing practice is automated and connected to the Do phase which
increases design efficiency significantly since further design on unnoticed errors is avoided. This efficiency gain
is also due to the amount of saved personal interaction that would usually be necessary during the Check phase
to find and fix errors. The practice benefits intra team but also inter team and team-customer coordination.
These benefits of the Testing practice rely on the Continuous Integration practice to avoid tests of incomplete
products and actuality gaps (Schrof and Paetzold, 2020). Further supporting coordination mechanisms are the
Coding Standard practice and the Simple Design practice that allow to efficiently implement tests and aid error
fixing. The Short Releases practice also supports the impersonal mode coordination since it is a design rule that
enables short design cycles and provides direct feedback from the customer in short intervals. These impersonal
mode coordination mechanisms avoid non-value design works regarding both costumer requirements and design
implementation.

Even though, XP relies on strong impersonal mode coordination, individual mode coordination is
reflected through several XP practices as well. The On-Site customer allows direct personal exchange between
designer and customer. The metaphor as a boundary spanning (non-physical) object requires direct exchange
and further connects them. The most important individual mode coordination mechanism in XP is the Pair
Programming practice. It provides a very close personal relation between two individuals.

Group mode coordination is also part of the XP coordination construct even though only two scheduled
meetings are described in the framework. The Retrospective and Stand-Up meeting coordination mechanisms
provide non-automatized mutual adjustment coordination in teams. The Retrospective focuses on the overall,
long-term design process while the Stand-Up meeting has a short-term focus. The Planning Game coordination

4-74

mechanism connects designers with customer requirements and customer expectations. The central XP values
and the Collective Ownership practice emphasis team collaboration and therefore group mode coordination.

Boundary spanning coordination mechanisms are the Metaphor and the Planning Game practices. They
connect groups with different design objectives and enable an efficient and uncomplicated information
exchange. Cognitive mode coordination is a result of the scheduled and unscheduled personal meetings
coordination mechanisms in the form of a common understanding and trust among the team. The On-Site
Customer practice supports a shared product vision and the Planning Game practice allows to realistically
transform this vision into increments. The Simple Design practice generates traceability and product
understanding for teams. Personal knowledge and trust among the team is also created by the Pair Programming
coordination mechanism.

The Sustainable Pace coordination mechanism emphasises compact, iterative design cycles that ensure
entanglement of coordination modes. Additionally, the straightforward XP framework provides common
grounding in terminology. It also limits project boundaries which increases system understanding and hence
cognitive coordination. A large share is of dependencies is automatically handled by the testing and integration
system which allows individuals to focus on components without understanding the complete system.

4.2.2.2 Connection and balance between coordination modes
Impersonal mode coordination mechanisms such as the Testing and Continuous Integration practices

have a direct influence on the implementation of group and individual mode coordination mechanisms as shown
in Figure 18. The continuous integration and testing systems automatically detect design mistakes and problems
that require designers’ attention. This automated analysis allows to employ group and individual mode
coordination only if necessary. Efficient automated, impersonal mechanisms are used for repetitive, standard
tasks and personal mechanisms are triggered to handle complex problems or unpredictable tasks only if
necessary. This approach also provides faster design since these impersonal coordination mode mechanisms are
quicker than personal coordination modes. Meeting efficiency increases if only relevant topics are addressed.
This connection between impersonal mode coordination and individual mode coordination applies to group
mode and individual mode coordination mechanisms. The automated integration and testing infrastructure is
linked to cognitive coordination mechanisms as well. The implemented system provides a similar service since
information distribution results in coordination without explicit effort. This implicit coordination is not based on
cognitive models but on digital data processing in a connected product design IT infrastructure. Therefore,
automated testing and integration practices replace some aspects of cognitive mode coordination while
providing a similar service. Lastly, the XP framework itself is an impersonal mode coordination that structures
and connects impersonal and mutual adjustment coordination modes.

Figure 18: XP coordination strategy. Automated impersonal mode coordination mechanisms represent the foundation of the XP
coordination system. Group, individual and cognitive mode coordination are also present. The coordination modes are well connected into a
coordination system and the connections between them improve coordination efficiency and efficacy.

Personal and group mode coordination are linked to other coordination modes. Pair Programming
generates cognitive coordination in teams. The Retrospective reviews the complete product design process
including impersonal and mutual adjustment coordination mechanisms. This group mode coordination

4-75

mechanism adjusts other coordination modes according to feedback from the team. The Daily Stand-Up
summarizes problems and results at team level on a daily rhythm. It allows direct feedback and reaction and is a
straight connection to other personal and impersonal coordination modes. Both personal and group mode
coordination mechanisms also support cognitive coordination mode since they require personal exchange on
product design relevant tasks.

Boundary Spanning practices such as the Planning game connect individuals and facilitate information
exchange. The Metaphor practice functions similarly. Both improve personal exchange on group and individual
mode coordination. Additionally, they expand system understanding and hence cognitive mode coordination in
the long-term. Cognitive mode coordination on the other hand improves group mode coordination and
individual mode coordination as well as boundary spanning since the amount of necessary information exchange
is reduced and the remaining information exchange is handled more precisely.

In summary, impersonal and individual mode coordination are connected very close. Impersonal
mechanisms trigger and structure personal mechanisms. Personal mechanisms replace impersonal mechanisms
if complex problems need to be addressed. This connection between coordination mechanisms is designed to be
flexible to adapt to changing project characteristics and project dynamics. Unlike Scrum XP only applies to
software products and requires elaborate IT system support in the form of testing algorithms and corresponding
IT infrastructure.

4.2.2.3 Deduced XP coordination strategy
The presented analysis shows that the XP coordination strategy emphasizes impersonal mode

coordination, but personal and group mode coordination mechanisms are relevant as well. Boundary spanning
activities and objects are a third pillar in the XP coordination strategy. Cognitive mode coordination is enabled
to a smaller degree through the framework’s elements. The impersonal mode coordination mechanisms provide
a similar service that does not rely on implicit personal but system knowledge in IT systems. In a nutshell, XP
establishes an interlinked coordination system. According to Van de Ven’s relation between coordination modes
and coordination determinants this combination of coordination modes is suitable for large team sizes, medium
task uncertainty, high intra team and medium inter team dependencies. Larger units benefit from the implicit
impersonal mode coordination mechanisms which provide a similar function like cognitive mode coordination
does in smaller teams. Compared to the Scrum coordination strategy impersonal mode coordination mechanisms
are more relevant while cognitive and group mode coordination are less relevant but still employed. The absence
of roles and instead the focus on practices is the result of this shift. Still, examples like the Pair Programming
practice underline individual mode coordination relevance. Boundary spanning focuses on activities and less on
roles and objects. Quality and progress control are implemented in impersonal mode mechanisms, while Scrum
relied here on group mode mechanisms.

The XP coordination strategy results in coordination efficiency, speed and flexibility which are
necessary in new product design environments. Unlike Scrum the XP coordination strategy requires well-
adjusted Continuous Integration and Testing IT systems. The corresponding costs must be balanced with long-
term reductions in coordination efforts. Impersonal coordination mechanisms provide high efficiency levels for
standardized and predictable tasks. More sensitive and costly coordination mechanisms are applied only if
necessary. Automated impersonal mechanisms increase coordination speed for most coordination activities.
Still, the XP strategy can switch between impersonal and individual mode coordination, which results in
coordination flexibility. Adjustments of coordination mechanisms require little time once the necessary IT
infrastructure is established. Compared to Scrum the XP coordination flexibility is quicker regarding small
changes but slower on a large scale if adjustments to the IT infrastructure are necessary. Additionally, XP is
applicable to larger units. The impersonal mode coordination mechanisms provide inter team and intra team
coordination while personal, mutual adjustment mechanisms are more suitable in intra team coordination.

The selection of XP design practices shows a strong connection between coordination modes. The
Impersonal coordination mechanisms such as Coding Standards, Refactoring, Continuous integration, and
Testing are adjusted mutually and personal coordination modes are connected to them as well. The balance
between impersonal and personal mechanisms provides efficiency for standard design works and flexibility for
unexpected tasks. Automatization of impersonal coordination mechanisms also increases the coordination
coverage of relevant activities which would be inefficient with other coordination modes. This allows to improve

4-76

sensitivity for personal coordination modes that require more coordination effort. The connection between
coordination modes is triggered mostly from impersonal mechanisms. Still, mutual adjustment practices like the
Planning Game or the Daily Stand-up present the opposite direction. Boundary spanning activities like the
Metaphor practice structure group mode coordination meetings and facilitate individual mode coordination
mechanisms such as Pair Programming. Since the integration and testing infrastructure supports cognitive
coordination less detailed information is necessary to generate system comprehension. Implicit coordination is
therefore based on both digital system representation and personal knowledge of individuals.

Unlike Scrum XP requires complex IT infrastructure to provide the presented impersonal coordination
mechanisms. Especially, the Continuous Integration and Testing practices rely on dedicated infrastructure and
software toolchains which are a significant cost factor. Besides, such infrastructure is very product specific. While
the technology is a standard in software design, the same is not true for most hardware design systems.
Immature technology in hardware design might outbalance the expected benefits. Additionally, designers
require competencies regarding test-driven design and integration infrastructure deployment.

The deduced XP coordination strategy matches earlier findings. XU et al. analysed coordination in large
agile systems through impersonal practices such as Coding Standards and personal practices like On-Site
Customers in XP in 2009 (Xu, 2009). Strode et al. looked into the coordination of co-located agile team through
Shared Code Ownership in 2012 (Strode et al., 2012).

4.2.3 Findings in response to research question one
In a review about the last decade of agile development in 2012 Dingsøyr et al. stated that the theory

behind agile development is multifarious and a holistic explanation why agile works does not exist (Dingsøyr et
al., 2012). The presented coordination analysis of agile methods shows that the coordination perspective
improves understanding of why agile design works. Coordination theory cannot provide the holistic
understanding Dingsøyr et al. asked for, but it reflects central traits of agility in design. The four core concepts of
agility (Baham and Hirschheim, 2021) help to elaborate the relation between agility in design and coordination
theory. Close collaboration in teams is based on constant coordination within design teams. Continuous
costumer involvement is based on repeated inter team coordination between designers and costumers. Inspect
and adapt cycles rely on reflection within design teams to inspect and adapt. Iterative and incremental design
are based on repeated analysis and replanning and hence require intensive intra and inter team coordination.
All core concepts directly involve coordination between and within groups. The focus on personal exchange and
communication in agile design practices underlines the relevance of coordination further. Coordination theory
therefore enables to analyse agility in design and hence to answer research question one: How to explain agility
and its benefits theoretically. Coordination theory only represents one central element to a holistic explanation
of agile design. The theoretical explanations based on coordination theory may serve as building blocks for
further applicable design theories.

The coordination strategy concept was chosen to apply coordination theory for the analysis of agile
design. It connects coordination determinants to suitable coordination modes and respective coordination
mechanisms within a coordination system. It also allows to relate coordination system behaviour with attributed
benefits of agile design. To derive comparable coordination strategies from different agile methods a
coordination reference model was necessary. The employed model was constructed to connect relevant
concepts of the broad field coordination theory that best reflect agile design structures such as coordination
between and within teams. The coordination reference model allows to categorize individual agile elements.
Furthermore, it can analyse the coordination connection between agile elements. Even more, it allows to define
the system behaviour of coordination systems, summarizing the mutual influence of several coordination
elements. To evaluate the suitability of agile coordination strategies it is also able to account for the influence of
design project characteristics. Lastly, it allows to explain how disturbances to agile coordination strategies lead
to agile constraints.

The analyses of agile coordination strategies revealed repetitive patterns across agile methods. Agile
methods rely on mutual adjustment mode, impersonal mode and cognitive mode coordination. Scrum
emphasises group mode coordination mechanisms that provide efficacy, synchronization, knowledge exchange

4-77

and learning. Its practices also recommend individual mode coordination mechanisms. At the same time
impersonal mode coordination provides efficiency and productivity and often relies on boundary object
coordination mechanisms. Typical impersonal mode coordination mechanisms such as detailed long-term plans
or strict roll descriptions are avoided. What sets agile methods distinctively apart from conventional design
methodologies is their focus on close team collaboration. This results in cognitive mode coordination
mechanisms. These mechanisms enable very efficient coordination within teams that require little explicit
coordination activities. They improve design transparency, design speed and mutual learning within teams.
Besides cognitive mode coordination a similar pattern of implicit mode coordination is achieved by impersonal
mechanisms relying on IT systems such as continuous toolchains that provide continues integration and testing.
Unlike cognitive coordination mechanisms they are not restricted to small teams but require costly
infrastructure. Both mechanisms provide very efficient coordination since they require very little explicit
coordination activities. Agile methods further improve coordination within teams by reducing dependencies to
other teams. This focus on intrateam coordination allows to further improve coordination efficiency within
teams.

Besides the selection of coordination mechanisms their connectivity within agile methods further explains
the reported benefits of agile design. This connection allows the coordination system to self-adjust to changing
design requirements. Throughout unclear project phases the coordination system focuses coordination
mechanisms on learning and efficacy. While unclarity decreases and projects goals become clear the
coordination system changes to more efficiency-oriented coordination mechanisms. This self-adjusting
coordination system relies on coordination mechanisms connected by straight forward design practices. The
system automatically adjusts the coordination objective and designers can focus completely on design activities.
A common characteristic of agile methods are short design cycles that frame the coordination activities. These
continuous design cycles are also central for the self-adjustment of the coordination system since each new
design cycle allows to reconfigure the coordination mechanisms. The combination of coordination mechanisms
from different coordination modes is more powerful than the sum of the individual elements. The composition
of coordination mechanisms is designed not for one specific situation, but for a spectrum of requirements. Still,
it remains lightweight since the sensitive adjustment happens automatically triggered by agile practices as a
reaction to changing projects dynamics. This self-adjusting system results in both very effective and efficient
coordination in design projects.

In summary, the coordination theory perspective on agile design enables comprehension beyond the
straightforward design practices of agile methods. It shows that agile methods rely on emergent coordination
strategies that combine specific team collaboration focused coordination modes and reconfigure the respective
coordination mechanisms according to project dynamics. This self-adjustment of the coordination strategy is
triggered by agile practices in accordance with design project requirements. This self-adjusting coordination
system provides efficiency and effectivity. The presented coordination strategies of agile methods explain the
reported benefits. Nevertheless, they have some limitations regarding design project applicability. They rely on
compact, autonomous teams with little external dependencies. Intra team coordination is emphasised and inter
team coordination is avoided. Especially boundary spanning and cognitive mode coordination mechanisms
cannot simply be transferred to larger multiteam systems.

Other research streams have employed similar concepts to explain agile design. Socha et al. interpreted
agile projects as complex adaptive systems that consist of interdependent components that learn and adapt
collectively to internal and external stimuli in a self-organized manner (Socha et al., 2013). Strode et al. also
analysed coordination efficiency in agile design. They focused on mutual adjustment practices relying on group
and individual mode coordination. In their view the focus on mutual adjustment coordination engenders high
coordination cost (Strode et al., 2011). Especially in large-scale agile coordination theory has been used to
analyse constraints of scale in agile design and propose suitable agile practices (Dingsøyr, Bjørnson, et al., 2018).
Pikkarainen et al. explain the benefits of Scrum in software development with a focus on communication also
relying on boundary objects (Pikkarainen et al., 2008). Evans et al. analyse the benefits of Scrum relying on the
concept of social capital (Randy Evans and Carson, 2005). Pries-Heje et al. also rely on coordination to explain
the benefits of Scrum with a focus on the articulation theory as a prerequisite for successful collaboration based
on a case study (Pries-Heje and Pries-Heje, 2011).

4-78

4.3 Inter team coordination in second generation large-scale agile methods
The presented analyses of agile coordination strategies were focused on the small-scale agile methods

Scrum and XP. Their intended applications are small or medium-sized teams with minimal external dependencies.
Both frameworks recommend autonomous teams and therefore avoid inter team cooperation. Little to no
explanation is given how inter team coordination in larger projects should be structured.

In this subchapter, coordination strategies of scaled agile methods are analysed. The emphasis is put on
inter team coordination mechanisms. Specifically, the second-generation (Dingsøyr et al., 2021) large-scale agile
software design frameworks Large Scale Scrum LeSS and scaled agile meetings and Scaled Agile Framework SAFe
(Leffingwell and Kruchten, 2007; SAFe, 2021) were selected because both are based on Scrum at the team level
and recommend test driven development similar to XP. This facilitates comparison between the small scale and
large-scale agile coordination strategies. In the 2020 industry report State Of Agile (VersionOne, 2020) both
frameworks are ranked highest in industrial application. Regarding their coordination strategies LeSS and SAFe
open a spectrum with varying foci between mutual adjustment and impersonal mode inter team coordination
mechanisms. The inter team coordination strategy analyses differ from the analyses of the agile methods Scrum
and XP. Only inter team coordination mechanisms and corresponding parts of the frameworks are analysed.
Complete descriptions of the frameworks and their intra team coordination mechanisms are not included in this
section.

The inter team coordination analyses are divided into several steps. First, a compact introduction to the
coordination strategy of the respective framework is presented. This includes a summary of the inter team
coordination practices and principles. Second, the coordination mechanisms are subdivided according to the
coordination reference model into coordination modes and their mutual influences are analysed. Third, the inter
team coordination strategies are summarized and compared to the underlying Scrum coordination strategy. The
balance between inter team and intra team coordination as well as the balance between coordination structure
and emergent coordination are part of this section.

4.3.1 LeSS - inter team coordination modes and mechanisms
The scaled agile framework Large Scale Scrum LeSS (Larman et al., 2017) is based on the agile method

Scrum. The analysis of its inter team coordination mechanisms is focused on the LeSS implementation that is
suitable for up to eight teams. Nevertheless, most findings apply to the LeSS Huge implementation. The
framework was designed to preserve the lightweight coordination strategy of Scrum and add only necessary
coordination structure to avoid incoordination on a project level. According do Dietrich et al.’s classification
(Dietrich et al., 2013) decentralized, self-organized coordination is emphasized instead of centralized
coordination. This implies that inter team coordination remains the responsibility of the development teams.
Like in the Scrum analysis the inter team coordination analysis is based on the roles, meetings and artefacts in
LeSS.

The LeSS roles are very similar to the Scrum roles and include only few adaptions. A hierarchy is
introduced to the Product with the Area Product Owner. The Manager role is added, and leading teams might be
responsible for inter team coordination between other teams in large projects if necessary. Scouts and Travellers
are team members that stay with other teams for a defined period. Regarding inter team coordination
mechanisms all additional role descriptions are standardized blueprints of individual responsibilities (Thompson,
1967) and therefore impersonal mode coordination mechanisms. The Area Product Owner and the Manager
imply vertical individual mode coordination mechanisms, while the Scout and the Traveller support horizontal
individual mode coordination mechanisms. The PO hierarchy increases the boundary spanning ability of the PO
role and improves inter team coordination. The leading team is based on group mode and cognitive mode within
the team. Due to the team’s inter team coordination responsibility these intra team mechanisms are transformed
to inter team coordination mechanisms to the other teams. The leading team’s team members become
interfaces between the other teams. The LeSS meetings remain mostly the Scrum meetings for regular design
teams. Still, some team meetings are changed to or complemented by additional multi-team meetings. These
multi-team meetings are the Product Backlog Refinement, the Planning II, the Overall Sprint Review, the Overall
Retrospective, and the Design Workshop. These multi-team meetings enable group mode inter team
coordination. The Overall Review is organized like a bazar which means that most team members can talk to
other teams while only few remain to present the team increment. This exchange between individuals is also an

4-79

individual mode coordination mechanism. Lastly, all these personal meetings bring designers across teams
repeatedly together and hence generate cognitive mode coordination within the project across teams. LeSS
adapts the Scrum artefact Product Backlog to a multi-team Backlog. Its function as an impersonal boundary
object coordination mechanism is extended to also include inter team coordination.

Besides these Scrum structures LeSS includes the concept Community of Practice COP as a mutual
adjustment inter team coordination mechanism. Groups of interest organize themselves across feature teams in
these communities to address shared responsibilities such as architecture or to organize exchange between role
holders. These communities can have a mentor to lead the meetings and be responsible for the organization of
the COP. These communities of practice are group mode inter team coordination mechanisms. Continuous
communities also create cognitive mode inter team coordination. Like XP LeSS emphasises test driven
development including test automation, acceptance testing, continuous integration, and continuous delivery.
The continuous integration and test automation of new increments from all teams highlights problems between
product parts and the responsible teams immediately. Further personal inter team coordination is triggered by
this impersonal mode inter team coordination mechanism. As analysed in XP these practices enable very efficient
impersonal mode inter team coordination up to a certain complexity but require elaborate IT infrastructure.

Table 7: Selected inter team coordination mechanisms in Large Scale Scrum LeSS.

LeSS principles, practices Coordination mode
Teams responsible for inter team coordination Group mode, individual mode
Decentralized over centralized inter team coordination Group mode, individual mode
Leading coordination teams Group, cognitive mode
Multi-team meetings Group mode
Multi-team artefacts Boundary spanning
Additional roles, little hierarchy Group, personal, cognitive mode
Community of practice and community mentor Group mode, cognitive mode
Coordination friendly environment Impersonal mode
Test driven development Impersonal mode
Coordination through integration Impersonal mode

Table 7 summarizes the inter team coordination mechanisms in LeSS. The inter team coordination
strategy emphasises group mode coordination and impersonal mode coordination. The lightweight approach
relies on self-organized mutual exchange mechanisms between the design teams and underlines decentralized
coordination. Still, the LeSS meetings are a centralized connector between roles and artefacts and design teams
and present therefore a centralized balanced to the self-organized approach. The balanced inter team
coordination strategy highlights personal exchanges between teams and hence individual mode coordination.
Leading teams provide further mutual adjustment inter team coordination. Their team structure and exchange
with other teams relies partly on cognitive mode coordination. Besides these leading teams and continuous
personal exchange in multi-team meetings cognitive mode coordination does no remain a central inter team
coordination mechanism in LeSS in comparison to Scrum. Test driven development coordination mechanisms
present an additional centralized inter team coordination mechanisms in LeSS. Besides these design principles
few additional impersonal structures and hierarchies are implemented. In summary, LeSS applies an inter team
coordination strategy based on mutual adjustment and impersonal mode coordination. The focus on group mode
and individual mode coordination is close to the original Scrum coordination strategy. Cognitive mode
coordination is not as important in inter team coordination. The test-driven development approach increases
the relevance of impersonal mode compared to the Scrum coordination strategy.

4.3.2 Essential SAFe - inter team coordination modes and mechanisms
Like LeSS the scaled framework Scaled Agile Framework SAFe is also based on the agile method Scrum.

Additionally, it integrates aspects of Design Thinking, Kanban and Scrumban as agile methods at the team level.
The following analysis of inter team coordination mechanisms is focused on Essential SAFe but the findings also
apply to its other implementations Large Solution SAFe, Portfolio SAFe and Full SAFe. Unlike LeSS SAFe adds more
structure to provide centralized project and inter team coordination. Inter team coordination responsibility is

4-80

therefore shifted from the design teams towards the framework structures. Like in the Scrum and LeSS analysis
the inter team coordination analysis is based on the SAFe roles, meetings and artefacts.

Compared to Scrum SAFE applies the same roles but introduces clear hierarchies between them. The
Product Owner role is divided into a Business Owner, Product Management and the Product Owner. The Scrum
Master is divided into a Release Train Engineer and the Scrum Master, both roles are personally responsible for
inter team coordination. Development Teams are complemented by the independent System Architect role, who
is responsible for overall technical product architecture across teams. Additionally, specialized service teams
such as the System Team are introduced. Unlike regular design teams they are responsible for the development
of infrastructure, product integration, end-to-end testing, or system demos. Regarding inter team coordination
these additional roles are standardized blueprints for responsibilities and hence impersonal mode inter team
coordination mechanisms. SAFe introduces hierarchies to all Scrum roles which creates vertical individual mode
inter team coordination structures at the cost of unformalized horizontal exchange. The role hierarchies increase
the boundary spanning ability of the Product Owner and Scrum Master but negatively affect more flexible group,
personal and cognitive mode coordination. The concept of specialized service teams is based on group mode and
cognitive mode inter team coordination mechanism similar to the leading team in LeSS. The role structure shows
a clear shift from team-organized inter team coordination to personalized inter team coordination structures
based on role responsibilities. SAFe also introduces the multi-team meetings PI Planning, System Demo, Scrum
of Scrums, Product Owner Sync and the Inspect & Adapt meeting to provide inter team coordination. All of these
meetings are group mode inter team coordination mechanisms. Furthermore, the regular personal exchange
within these meetings establishes cognitive mode coordination across teams. These multi-team meetings in SAFe
are specified in detail and rely on more specifications than in LeSS. The Innovation and Planning Iteration is
another SAFe adaption that repurposes a regular development iteration within each PI to innovation and inter
team coordination. Since it is not structured by additional meetings it is both an unscheduled group mode and
individual mode inter team coordination mechanism. Similar to its approach on Scrum roles SAFe introduces a
hierarchy to the Scrum artefact Product Backlog as well. The artefact Program Backlog is a multi-team Product
Backlog and hence an impersonal, boundary object inter team coordination mechanism. Besides the Product
Backlog SAFe establishes further artefacts such as the Vision, the Roadmap, Milestones, PI Objectives, the
Architectural Runway, the Program Board that affect inter team coordination. The vision, the roadmap and the
Milestones are impersonal mode inter team coordination mechanisms. The Program Board and the PI Objectives
are both generated throughout the Inspect and Adapt meeting and represent inter team coordination boundary
objects. During the meeting they structure group mode inter team coordination mechanisms and throughout
the PI they function as impersonal mode inter team coordination mechanisms. The Architectural Runway is
another impersonal mode inter team coordination mechanism.

SAFe also relies on the Community of Practice COP concept to facilitate inter team mutual adjustment
coordination like LeSS. Depending of the COP relevance this can include a mentor role. This COP approach is
another group mode inter team coordination mechanism. Continuous COPs also generate cognitive mode
coordination across teams since personal connections are established between teams. Like LeSS SAFe is based
on test driven development which functions as an impersonal mode inter team coordination mechanism. SAFe
also recommends colocation of all teams which enables unscheduled group mode inter team coordination.

Table 8: Selected inter team coordination mechanisms in Scaled Agile Framework SAFe.

SAFe principles, practices Coordination mode
Inter team coordination responsibility in roles and structures Impersonal, individual mode
Centralized inter team coordination Impersonal, group mode
Test driven development Impersonal mode
Coordination through integration Impersonal mode
Structure artefacts Impersonal mode
Multi-team artefacts Boundary spanning
Service teams provide inter team coordination Group mode
Multi-team meetings Group mode
Additional roles, little hierarchy group, personal, cognitive mode
Communities of practice and mentors Group, personal, cognitive mode
Colocation of all teams Group mode

4-81

Table 8 summarizes the inter team coordination mechanisms in SAFe. Its inter team coordination
strategy emphasises group mode and formalized impersonal mode inter team coordination. Unlike LeSS SAFe
adds several new roles, role hierarchies and multi-team artefacts to the underlying Scrum framework. This causes
a severe shift towards impersonal mode inter team coordination mechanisms at the cost of more flexible mutual
adjustment coordination and establishes centralized inter team coordination. The multi-team SAFe meetings
remain the central connector to inter team coordination mechanisms based on roles and artefacts. These rigid
structures suppress additional personal inter team coordination between individual team members. This results
in clear coordination interfaces and role responsibilities but slows direct exchange between teams. Like in LeSS
test-driven Development presents the second important impersonal mode inter team coordination mechanism.
Service teams provide group mode inter team coordination and increase flexibility of the inter team coordination
system. The SAFe coordination strategy replaces cognitive mode coordination with impersonal and group mode
coordination compared to Scrum. Artefacts that function as boundary objects such as the Vision also provide
implicit cognitive coordination. The SAFe inter team coordination strategy is based to a large degree on
centralized impersonal coordination and group mode coordination mechanisms. Additional roles and hierarchies
within the roles establish vertical individual mode coordination. Little cognitive inter team coordination is
provided in SAFe.

5-83

 Results

“It is a capital mistake to theorize before one has data.”
 Arthur Conan Doyle

The aim of this chapter is to present the collected data, describe the context of the data collection and
summarize findings. Eleven agile pilot projects which were accompanied over a time span of four years represent
the main data source. The data is structured according to matching bottom-up and top-down data analyses. The
bottom-up analysis identifies and ranks practical problems of agile methods in automotive application contexts
while the bottom-up data analysis compares them to the established constraint categories scale and physicality.
The presented findings are the foundation of the following discussion chapter of the thesis at hand.

The results chapter is subdivided into four sections. In the first section, the agile pilot projects are described
to provide empirical context. The descriptions reflect the same characteristics across all pilot projects and include
the objective of the project, its length, the number of affiliated designers and teams, the level of
interdependencies between tasks, and the chosen agile method as well as the implemented changes to it
throughout the project. The second section presents a bottom-up data analysis to identify and rank the
experienced problems of the agile working models across the pilot project. The third section supplements a top-
down data analysis to evaluate the relevance of the constraints of scale and constraints of physicality categories
in automotive design. The fourth section redefines problem understanding and outlines agile automotive design
as an agile scaling problem. Coordination theory is recommended as the appropriate design theory for further
discussion of the collected data.

5-84

5.1 Agile pilot projects in automotive design
An overview of the agile pilot projects and the encountered problems regarding agile product design are

presented in this section of the study. The project descriptions provide context and hence improve understanding
of the experienced challenges. Project descriptions are generalized to protect the intellectual property of the
partnering company BMW Group. Therefore, project goals and connections to ongoing design activities are
generalized. A consistent description sequence is used to improve comparability between pilot projects. First, a
generalized specification of the project goals and an estimation of the relevant design phase are described. The
presented projects are either situated in the early, conceptual product design phase (about 0-1,5 years after
project start) or the serialization phase (about 1,5- 4 years after project start) of automotive product design.
None of the pilot projects were situated in later phases. Second, the project size is described. This includes the
team size, the number of affiliated teams and the number of relevant stakeholders. Third, dependencies to
project external stakeholders from other organization units are categorized qualitatively into low medium and
high, depending on the overall share of time spent to deal with them. Fourth, the initially chosen agile working
model, implemented changes to it and the duration of the project are reflected. Change was implemented in
two phases. The first phase included the initial introduction of agile methods or practices and the second phase
focused on the introduction of inter team coordination mechanisms. Finally, pilot descriptions include whether
the focus of the pilot project was on hardware or software design and what implications these characteristics
had on the agile working model and the testing strategy. Table 9 shows a summary of the characteristics across
all selected pilot projects. The following section introduces the design projects individually.

Table 9: Summary of the researched agile pilot projects. The design phase locates the design project within the product development phases
conceptualization and serialization. The project size connects the team size, the number of teams and the number of relevant stakeholders.
The dependency differentiates between low, medium, and high dependency levels. The agile method refers to the initially introduced agile
framework and the implemented change describes adaptions to it during the project. The product type differentiates between hardware
and software products.

 Design
phase

Project size,
#Stakeholders

Depende
ncies

Agile
method Implemented change Product

type

Alpha Conceptual One team, ~20 SH Medium Scrum Product Owner Team
POT HW

Beta Conceptual Two teams, ~20 SH Medium Scrum Product Owner
Couple SW, (HW)

Gamma Conceptual One Team, ~10 SH Low Scrum - HW
Delta Serialization One team, ~5SH Low Scrum - HW

Epsilon Serialization
One coordination

team, several design
teams, > 30SH

High Kanban Standard iteration
length across teams HW, SW

Zeta Serialization Two teams,
~20 SH Medium Scrum,

Kanban

Team
reorganizations,

method adaptions
SW (HW)

Eta Conceptual > 5 teams,
> 30 SH High

Selected
agile

principles

Elements of several
non-scaled agile

methods
HW, SW

Theta Conceptual One Team,
~10 SH Low Scrum Team backlog, PO

only SH integration HW, SW

Iota Late
serialization

One team,
~20 SH Medium Scrum-

based
Product Owner Team

POT HW

Kappa Conceptual,
serialization

> 5 teams,
> 30 SH High LeSS-based several SW

Lambda Conceptual,
serialization

> 5 teams,
> 30 SH High SaFE-

based BizDevOp SW

The objective of pilot project Alpha was the design of a revolutionary hybrid drive train within the
restrictions of an already existing vehicle architecture. Since this included conceptual work it was part of the early
phase of the product design process. Regarding project size the project included a core team of seven designers,
several adjunct teams and various stakeholders. The cross-functional core team represented a broad

5-85

specialization range in drive train and vehicle architecture. The existing vehicle architecture and the participating
number of organization units resulted in a medium level of relevant dependencies. Project duration was three
months, and the chosen agile working model was based on to the Scrum method. It included a Scrum master and
the Scrum meetings. A Product Owner team was introduced to integrate important stakeholders. The project
focused on hardware design and relied on established software tools such as CAD and well-established functional
simulation tools. The focus on hardware design affected the agile working model directly since many
dependencies to other organizations units such as verification and production had to be considered and
integrated. Regarding the small size of the project little inter team cooperation problems affected the core team.
Still, stakeholder coordination was challenging. Most testing was done virtually which suited the short iterative
development cycles.

The design and implementation of new use cases for alternative user interface hardware was the goal
of the Beta pilot project. The conceptual work was situated in the first third of the product design process. The
project included two teams with one team focusing on use cases and visual designs and one team on
implementing the software prototypes on existing hardware. Since this project affected future user interface
architectures to a large extent more than 15 stakeholders from several organization units had to be integrated.
The project teams required expertise in design, user experience, and software design. Due to the relevance of
the project for future user interface architectures a great share of dependencies to other units had to be
coordinated. The project duration was three months, and the applied agile working model was based on Scrum
with some additional practices (e.g. the Work In Progress WIP limit). Throughout the project a second Product
Owner was introduced to improve stakeholder management. Additionally, the meeting structure and team
composition was adapted. The resulting prototypes were realized as software embedded in regular user interface
hardware. Therefore, both software and hardware characteristics influenced the design process. The teams
relied on established visual design and simulation tools to be able to get feedback from user experience experts.
The inter team cooperation was handled well even though some designers were company external service
provider. Problems caused by the scale of the project mostly occurred due to the challenging stakeholder
integration which was addressed by shared review meetings and prototypes that were handed to stakeholders
for validation. Testing was problematic especially regarding the employed hardware prototypes. The chosen
iteration length of one week was insufficient to design and realize the use cases in prototypes. The teams
addressed this problem by implementing two connected design phases that lasted two iterations and accepting
incomplete design cycles during iterations.

Like project Alpha the goal of pilot project Gamma was the design of an alternative drive train
configuration in an existing vehicle architecture. The project was situated in the early phase of the design process.
It consisted of one large team that supported a large spectrum of competencies in drive train configuration
including production, crash, and durability experts. Compared to project Alpha this larger expertise range
allowed the integration of external stakeholders and dependencies into the team. Still the complexity of the task
required the repeated integration of additional experts and stakeholders. The project length was four weeks and
the chosen agile working model based on Scrum. Little adjustments were made to the working model throughout
the project. The focus of the project was hardware design and hence standard hardware design tools such as
CAD and simulation programs were applied. Similar to project Alpha physical dependencies to neighbouring
modules and components caused dependencies to other organization units. The network of personal contacts
of the larger team allowed to coordinate these more efficiently. Testing in this early phase of design was done
virtually and caused therefore little problems. Also, stakeholder integration was more successful since personal
contacts to the most relevant stakeholders provided direct and efficient communication channels.

The design of new armoured vehicle concepts and the adjustment of the existing armoured vehicle
strategy was the goal of pilot project Delta. The project was situated in the serialization phase of the product
design process and lasted four months. Several teams were involved but only one team applied an agile working
model close to the Scrum method with little changes throughout the project. In this team, external dependencies
were limited to few essential stakeholders. Most of the activities were based on conceptual work and hence
neither software nor hardware product characteristics were relevant to the working model. For the same reason
no software tools besides regular office tools were applied. Hardware restrictions limited the solution space, but
no project size related problems were noted. Only reviews with the Product Owner were part of the pilot project
which allowed to apply short compact design cycles.

5-86

Pilot project Epsilon was part of a larger project to integrate a fuel cell energy source into an existing
vehicle architecture and apply it to a small fleet of test vehicles. The reconfiguration of the existing product was
situated after the initial product design process. The project size included a coordination team and several design
teams for technical challenges and production integration. The size of the project required a broad spectrum of
specializations ranging from project management to mechatronic product design including visual exterior vehicle
design, crash simulation and manufacturing. The size of the project resulted in various project internal and
external dependencies that severely affected the chosen Kanban-based agile working model. The agile pilot
project duration was two months, but the overall design process continued for two years. A project-wide iterative
cycle was introduced to synchronize the teams. Team compositions were reconfigured to enable cross-functional
and co-located teams since dependency management between teams was a problem. Additionally,
Retrospectives were introduced to increase continuous improvement and adaptivity of the initially chosen agile
working model. Both hardware and software design tasks were necessary and standard tools were applied.
Testing affected the agile working model severely since complete vehicle tests required detailed preparations
and prototype constructions that did not fit the short iterative design cycles. Regarding prototype testing the
coordination team had to integrate many stakeholders which were not directly affiliated with the project. This
challenging situation resulted in repeating problems in project coordination.

The design of a user-centric, software-based function to enhance efficient driving was the goal of pilot
project Zeta. The project was situated late in the overall product design process. One large team was responsible
for the design of the software trainer. The team was repeatedly divided to focus on specific tasks. Activities were
divided into conceptual functionality, user interface and visual design on the one side and technical
implementation as working software on the other side. The project was object to medium external
dependencies. Cooperation with the organization unit responsible for the central processing unit were as
important as the integration into the existing design language. Also, external software service provider had to be
integrated. The project lasted four months and results were provided much faster than in comparable non-agile
projects. The agile working model was a combination of practices from Scrum and Kanban with a focus on Scrum.
The working model was continuously adapted to changing requirements. The embedded nature of the product
resulted in hardware and software specific tasks. But throughout the project product design was mostly focused
on software. Established design tools were applied. The agile working model did not suffer from the hardware
focused activities and the integration of the stakeholders into agile meetings worked well. Also, collaboration
between the divided teams worked very well. Testing required hardware infrastructure and specific user
interface components, but the team was able to manage the required activities even though some hardware
specific tasks lasted several iterations.

Pilot project ETA included the complete development of a new vehicle generation of a niche car. The
project started in the early phase of the product design process. It included various teams and experts that were
structured around a central coordinative team including the head of the project. A very broad spectrum of
specialities was required since design activities included all necessary steps to design a new car. The same reason
led to a very large number of stakeholders and hierarchy that needed to be integrated and caused a complex
network of dependencies to other organization units. Such a project usually lasts several years but the research
frame was restricted to 18 months. Even though the overall product design process remained a stage-gate model
essential agile principles and practices were applied in varying intensity at different levels. The core team was
restructured to allow for a cross-functional team. Few central meetings were scheduled, and the project head
position was implemented as a product owner. Supporting organization units including hardware prototype
handling were dedicated exclusively to the project which allowed unscheduled meetings and direct exchange. A
shared iterative rhythm was chosen for the whole project. Since the project did not have direct grip to some
technical design teams from other organization units a Kanban approach was chosen to increase transparency
and integrate their results. The hardware dominant nature of the product resulted in severe implications
regarding the working model. Necessary full-scale hardware prototypes required long term planning. Prototype
testing caused dependencies to many stakeholders and therefore resulted in challenges to the central
coordination team throughout the whole project. The number and distribution of teams also impaired inter team
cooperation. Additionally, the project was object to upper management attention which led to continuous
distractions caused by detailed reporting and top-down driven changes.

5-87

Software inspired engineering methods were tested for component development in the Theta pilot
project. Simplified put, component construction was done autonomously according to manually adjusted
restrictions by an advanced, automated simulation tool in repeated design loops. Restriction also included crash
and durability requirements while focus areas were component strength and weight. The available construction
space and design restrictions were sufficient to enable the simulation tool to generate CAD geometries, which
rely on additive manufacturing for production. This generative approach reduced necessary testing effort since
these criteria were already part of the software driven design. The project was a subproject of the Zeta pilot and
focused on one structural component of the vehicle project. An additional goal of the Theta project was to
establish the new design technology. One team of experts regarding the new design process collaborated using
a Scrum approach. They were supported by several external engineering service provider. Additionally, a product
owner team consisting of high-level management supported the project. The novelty of the technology required
parallel verification from existing testing methods which caused dependencies to further organizations units such
as prototype manufacturing. The complete project including prototype manufacturing lasted five months. Even
though hardware products were part of the design process the approach allowed to reduce constraints of
physicality significantly due to virtual mirroring of physical dependencies and due the integrated product testing.
Therefore, short agile design cycles were applied successfully. Still in this project parallel testing was coordinated
by the team to verify the new design approach based on the simulation technology. The number of stakeholder
and cooperation partner required a large coordination effort, but the agile working model enabled the team to
successfully manage the resulting dependencies.

Pilot project Iota was set up to deal with an emergent issue in electric drive train design that required
immediate action. Testing of hardware prototypes showed use cases that may have resulted in negative user
experience. Therefore, the existing technical hardware had to be readjusted accordingly. The emerging problems
were detected late in the product design process which resulted in pressure from management. One large team
consisting of 15 designers was dedicated to the project. The work required a set of specialization ranging from
mass scale production integration to mechatronic component development. Additionally, expertise in battery
chemistry and crash verification were necessary. According to tasks the team was repeatedly divided into sub
teams. No specific agile method was chosen but practices of Design thinking, a Kanban board and Scrum roles
were combined. The immediate pilot and hence the research phase only lasted two weeks but further design
and verification continued for another two months. Even though the number of stakeholders was relatively low
compared to the other pilot projects management expected fast solutions. Hence direct and continuous
reporting structures were established. The nature of the design task focused on hardware adjustments which
also affected the agile working model. Manufacturing configurations, material design and long-term contracts
with external supplier were some of the challenges that resulted from the focus on hardware. Testing was done
mostly virtually to avoid slow prototype tooling and construction which suited the chosen agile working model
well. To increase testing accuracy different simulations were compared and combined to increase verification
accuracy.

The project Kappa was situated within the IT department. It presents a large-scale agile transformation
of the organization structure from team level up to top management. The scaling framework SaFE was introduced
first and comprehensively adjusted to the requirements of the IT department. To better connect the IT
department to the partnering organization units and increase cooperation between the partners the SaFE
framework was broadened to a BizDevOp approach. The resulting framework is called Agile Working Model
AWM. The transformation towards this framework lasted several years and presents a continuing effort. It
affected a couple of thousand employees and many external service provider. Several agile transformation teams
were shaped to support the agile transformation on different levels, adapt the working model and ensure its
correct application. Since the IT department is a close cooperation partner of nearly all other organization units
many external dependencies led to the BizDevOp reorganization. The integration of stakeholders and partners
from both the business and the operation side allowed to bundle dependencies between these partners in
respective projects. The overall size of the IT department and the number of affiliated software designer has an
important influence on the agile working model. Inter team cooperation was facilitated by multiple agile
practices, roles and artefacts. Hierarchy in agile roles and the introduction of project levels ranging from team to
company initiative supported transparency beyond individual projects. Still, new agile practices and model
adjustments are further developed answering to needs of the design and product owner teams. A complete agile

5-88

tool chain was implemented to facilitate continuous testing, integration and deployment. The tool chain also
improved project management and dependency tracking.

The project Lambda provided the software infrastructure and services necessary to support vehicle
navigation and autonomous driving functions. The design activity during the research was situated between the
first and second half of the product design process. The project consisted of thirteen software design teams, a
team of agile coaches and a Product Owner team also including security experts. The necessary expertise was
mainly situated in embedded software design. The close cooperation with the autonomous driving organization
units resulted in external dependencies to these partners. Still some additional external dependencies existed
towards the IT department. Additionally, the project also relied on external service provider which further
increased dependencies. The research duration was limited to six weeks in this continuing project. The chosen
scaled agile working model LeSS was adjusted at some points to increase inter team cooperation. But unlike the
Kappa project adaptions in the Lambda project to the underlying scaled agile working model were few. LeSS was
chosen since the most important cooperation partner had implemented this scaled agile working model earlier
and framework-based cooperation problems were to be avoided. The project had little problems with hardware
design since most of the activity focused on software design. Still, some embedded testing required the
installation of hardware-based testing units. Like the Kappa project a complete agile tool chain was used which
enables continuous testing and integration. The tool chain also had a direct interface to partnering design teams
from other organizations units which enabled cooperation in project management and dependency
transparency. More than half of the teams were not co-located on a shared working space (international
distribution of teams) which affected inter team cooperation and required adaptions to the agile working model.

5.2 Bottom-up data breakdown
The first step of the data analysis identified reoccurring problems across the agile pilot projects. The

collected data was analysed according to a bottom-up coding procedure independent of predetermining design
theories. It summarizes the problems that complicate agile working models and represents a first level coding of
broader problem categories. These problem generalizations enable comparisons across projects, serve as the
base for theory-based analyses and frame the derivation of solution spaces. Table 10 summarizes the problem
categories that were encountered throughout the pilot projects. The table does not represent a complete list of
all encountered problems but summarizes problems that occurred across multiple pilot projects and that relate
to the applied agile frameworks. The experienced problems were cross coded with problem categories from
relevant literature and with findings from concurrent interview series. Detailed descriptions of the experienced
problems are presented in the following paragraphs.

Table 10: Encountered problems in each pilot project affecting the employed agile working models.

Pilot Projects Encountered problems

Alpha

(V8 PHEV)

• Inter team cooperation
• Team composition
• # Stakeholder and experts

• Information distribution
• Documentation
• Inflexible architecture
• Inflexible requirements

• System integration

• # Specialists

• Integrative design

• Task division

Beta

(ABK)

• Inter team cooperation
• Planning
• Resource allocation
• Redundant work
• Distributed teams
• Team composition
• Insufficient communication
• # Stakeholder and experts

• Information exchange
• Documentation
• (communication channels)
• Inflexible architecture

• Prototype (physical)
• System integration
• # Specialists
• Integrative design
• Task division

Gamma

(LU PHEV)

• Planning
• Redundant work
• Team composition
• # Stakeholder and experts

• Information exchange
• Documentation
• Inflexible architecture
• Inflexible requirements

• System integration
• #specialists
• Integrative design
• Task division

Delta

(Fuel cell)

• Inter team cooperation
• Planning
• Resource allocation
• Redundant work

• Information distribution
• Information exchange
• Documentation
• Inflexible architecture

• Testing
• Prototype (physical)
• Tooling
• System integration

5-89

• Task prioritization
• Distributed teams
• Team composition
• Insufficient communication
• # Stakeholder and experts

• Inflexible requirements • Task division
• # Specialists
• Integrative design

Epsilon

(Armoured
vehicle)

• Inter team cooperation
• Planning
• Redundant work
• Task prioritization
• Team composition
• Insufficient communication
• # Stakeholder and experts

• Information distribution
• Documentation
• Inflexible architecture
• Inflexible requirements

• Testing
• Tooling
• System integration
• Task division
• Necessary number of specialists
• Integrative design

Zeta

(Efficiency
trainer)

• Inter team cooperation
• Planning
• Resource allocation
• Task prioritization
• Distributed teams
• Team composition
• Insufficient communication
• # Stakeholder and experts

• Information distribution
• Information exchange

• Tooling
• Prototype (physical)
• System integration
• Necessary number of specialists
• Integrative design

Eta

(i8)

• Inter team cooperation
• Planning
• Resource allocation
• Redundant work
• Task prioritization
• Distributed teams
• Team composition
• Insufficient communication
• # Stakeholder and experts

• Information distribution
• Documentation
• Inflexible architecture
• Inflexible requirements

• Testing
• Prototype (physical)
• Tooling
• System integration
• Task division
• Necessary number of specialists
• Integrative design
• Task division

Theta

(GeDe)

• Inter team cooperation
• Resource allocation
• Redundant work
• Task prioritization
• Team composition
• # Stakeholder and experts

• Information exchange
• Inflexible architecture
• Inflexible requirements

• Testing
• System integration
• Integrative design

Iota

(Storage
exhaust)

• Redundant work
• Task prioritization
• Team composition
• # Stakeholder and experts

• Documentation
• Inflexible architecture
• Inflexible requirements

• Prototype (physical)
• Tooling
• System integration
• Necessary number of specialists
• Integrative design
• Task division

Kappa

(FG)

• Inter team cooperation
• Planning
• Resource allocation
• Redundant work
• Task prioritization
• Distributed teams
• # Stakeholder and experts

• Information exchange
• Documentation
• Inflexible architecture
• Inflexible requirement

• System integration
• Task division

Lambda

(Foresight)

• Inter team cooperation
• Planning
• Task prioritization
• Distributed teams
• Team composition
• # Stakeholder and experts

• Documentation
• Inflexible requirements

• System integration
• System integration
• Task division

Inter team cooperation problems occurred if task dependencies required several teams to cooperate.
Most of the projects applied a Scrum-based agile working model which does not specify inter team coordination
mechanisms. Therefore, no advice on inter team cooperation was given. Two pilot projects applied scaled agile
approaches that included some inter team coordination practices but still suffered from inter team cooperation
problems in automotive design. Planning in short iterations was another problem. Dependencies between tasks

5-90

complicated the generation of an unmistakable task priority. Large tasks included activities that overlapped
iterations which further complicated iterative planning. Additionally, external stakeholders requested long term
planning to adjust their activities, which in some cases overruled the iterative agile planning practices.

Resource allocation problems were caused by task dependencies between teams. Even though the pilot
projects were able to increase transparency regarding their own tasks, little transparency was experienced for
activities from other teams of the same project or from other parts of the organization. This lack of information
caused nonoptimal resource allocation and redundant work. The amount of team external dependencies
complicated task prioritization and task division. Some pilot projects were unable to divide tasks into sufficiently
small parts because of task dependencies. Large items prevented continuous iterative development cycles since
they required longer time spans than the chosen iteration rhythm. In a conventional reaction more capacity and
hence additional teams were used to balance such large items. These capacity expansions resulted in distributed
teams which were unable to remain in close contact. But distributed teams also resulted from high total numbers
of teams in design projects.

In most pilot projects a broad range of expertise was necessary which complicated team composition
because cross-functionality and upper limit of team size requirements collided. As a result, teams were divided
which resulted in dependencies between teams and limited cross-functionality of individual teams. Inadequate
or inexistent inter team communication and cooperation practices led to insufficient communication (channels)
between teams working on dependent tasks. The large number of stakeholders and experts further complicated
this tendency. These information and requirement exchanges were further complicated by organizational
separation of the given organization structures. Cooperation with company external suppliers and certification
service providers suffered from existing bureaucracy and legal requirements and therefore severely complicated
agile working models. In some cases, this added up to redundant work and increased task prioritization and
division problems.

The level and quality of documentation was repeatedly criticized since automotive product design relies
on the cooperation of many parties for several years. Agile practices that reduced bureaucracy efforts resulted
in unreliable documentation levels and made inter team cooperation even more difficult in several pilot projects.
Also, legal requirements demanded a very specific level of product design documentation to guarantee user
safety compliance. Regarding inter team cooperation agile communication channels were criticised as being
focused completely on intra team cooperation and being hardly inapplicable to multiteam systems.

Some cases reported problems with the inflexible product architecture and requirements structure.
The existing requirements management was unable to handle the speed and amount of change driven by agile
working models. On the other hand, projects reported that they required more structure in requirements
definition and a more stable product architecture to handle testing, tooling and dependencies to other
components. Agile approaches that minimize architecture predetermination faced challenges in such
environments.

Testing and integrative design were a large problem in most pilot projects. Software inspired agile testing
guidelines were not practicable in hardware design projects. Product focused design activities must be matched
with integrative design activities that provide and verify system properties. Automotive verification is still based
to a large degree on physical prototypes from component to system level. These prototypes require extensive
manufacturing machinery and represent a large share of the overall development effort. The necessary
preparation of the tooling (manufacturing of prototypes) often contradicted fast iterative testing cycles. Tooling
also represented challenges regarding the necessary design of the mass production system which represents a
large share of the overall design effort in automotive. Physical dependencies between components further
complicated task division and testing. Necessary system integration of hardware components to modules and
systems further complicated this problem since the slowest component determined complete system tests. Such
system tests required specialists from various organization units which further increased inter team cooperation
problems and hence problem complexity. Additionally, a large share of the development and testing effort in
automotive design focuses on design efforts to manage physical dependencies between components to avoid
undesired properties of the complete product without being directly affiliated to costumer functions.
Implementation of system integration and verification as well as the generation of new design approaches are
also viewed as non-function development effort in design projects.

5-91

5.2.1 Distribution and relevance of experienced problems
Table 10 shows the distribution of experienced problems across agile pilot projects. To better

understand the overall impact of individual problems on automotive design the following section presents a
comparison of problem relevance. A ranking of the experienced agile problems was implemented based on the
number of affected pilot projects.

The number of external stakeholders and experts and system integration are the two most relevant
problems. They have been reported in all analysed pilot projects and therefore seem to have the strongest
influence on agile product design in automotive. The required spectrum of specializations, dependencies
between components organization units, external service provider in design activities, the need for full scale
prototypes in testing and verification as well as little automated product verification are characteristics of
automotive design that cause these problems.

Team composition was problematic in ten out of the eleven agile pilot projects. Especially the
generation of cross-functional teams was difficult. Usually, many specialists were required which led to oversized
teams, team division or part-time teams. All three options were problematic to the chosen agile working models.
The tendency of very narrow specialization fields in automotive design together with the broader required
spectrum of expertise in hardware-focused automotive design caused and intensified this problem category.

Inter team cooperation, documentation and integrative design work caused complications in nine agile
pilot projects. Inter team cooperation problems appeared in both the scaled agile pilot projects Iota and Kappa
including multiple teams but also in the smaller projects based on few teams. Even pilot projects consisting of
only one team such as Theta suffered from inter team cooperation problems with project external teams.
Automotive design activities are tightly interlinked due to the physical dependencies between components and
modules and the existing verification approach. The applied inter team coordination practices were not able to
solve this and additional coordination demand and required further adaptions.

Insufficient documentation intensified this problem since documentation is an important inter team
coordination mechanism in automotive design. Therefore, agile practices that reduced documentation effort led
to additional inter team cooperation challenges. The relevance of challenges caused integrative design work in
automotive clarifies that design activities are necessary for the creation of design infrastructure or to focus on
problems caused by physical dependencies between components. The employed agile frameworks emphasized
focus the product increments and neglected the necessary verification system of necessary product properties.

The high number of specialists, planning, task prioritization and redundant work challenges were
reported in eight pilot projects. The large number of specialists caused complications in pilot projects that
focused on hardware or embedded software. Challenges with agile planning practices occurred in larger pilot
projects including several teams. Challenges with documentation and task prioritization were reported from
multiteam pilot projects, but also from smaller projects with many external stakeholders such as Alpha.
Redundant work challenges were distributed equally amongst pilot projects.

The remaining problem categories were reported in six or less pilot projects. Their distribution in pilot
projects is interesting since for example resource allocation problems were reported in small and large projects
independent of hardware or software focused design. This is an indication that even though pilot projects faced
similar challenges some approaches were more successful than others in coping with these challenges. For
example, pilot projects Beta and Theta faced physical prototyping as an agile challenge. But they had developed
completely different strategies to deal with physicality in prototyping.

In summary, most of the experienced problems in the pilot projects are related to inter team or team
external coordination problems. Increasing numbers of external experts, stakeholders and teams resulted in
complications independent of the chosen agile practices and independent of hardware or software design. They
caused challenges in inter team cooperation, in planning, in task prioritization, in resource allocation and in task
division. All pilot projects with multiple design teams that cooperate on dependent tasks suffered from inter
team cooperation challenges. The data analysis also shows that hardware related design activities resulted in
more problems to agile working models than software only products. Physical dependencies between
components resulted in dependencies between design activities and hence tasks. These dependencies caused

5-92

larger and more complicated projects and implied project external dependencies. Both factors resulted in inter
team cooperation challenges. Additionally, the physicality of the product and the corresponding design activities
required a broader spectrum of specializations. While the relative contribution of such specialists to the complete
design process diminished the number of required individuals increased. This tendency led to severe
coordination complications in system integration.

5.3 Top-down data breakdown: Constraints of physicality and scale
The presented bottom-up data analysis describes the experienced problems, gives context to the pilot

project application domain, and ranks the problems according to occurrence across pilot projects. To understand
and better differentiate the cause-effect relations between automotive design and the experienced problems a
supplementary top-down data analysis was conducted. This analysis regroups the experienced problems (see
Table 10) according to the influence of the physicality of the product and the scale of the automotive design
process. Both factors have been identified as central constraints to agile working models in the literature
research (see sections 2.4 and 2.5). The connection between experienced agile problems and constraints of
physicality and or scale is based on cause-effect relations which are presented in the following paragraphs.

Figure 19 summarizes experienced problems from the bottom-up analysis that are related to the scale
of the design project. Scaled projects in automotive consist of several sub projects that focus on different aspects
of the design process. Each sub project may include several teams. The sub projects are not independent but
object to dependencies to other sub projects, due to product or process specific connections. On a system
perspective this causes networks of inter team dependencies. Throughout the pilot projects reoccurring
characteristics of scaled projects were identified. The following section investigates the cause-effect relations
between these characteristics and the experienced problems from the bottom-up analysis.

Figure 19: The scale of the project in automotive design relates to most of the experienced problems.

Multiple teams working on the same project required inter team cooperation between the teams. This
caused inter team coordination problems since little inter team coordination structures were given in the applied
agile working models. Similarly, the agile implementation of design documentation was not sufficient to facilitate
inter team cooperation which was a problem in most pilot project. Team distribution within teams and
distribution between teams to different locations further enhanced these problems because applied agile
coordination mechanisms were based on personal exchange in meetings or on sight which was unpractical for
large projects. Dependencies between teams resulted in task division, task prioritization and system integration
problems. Multiple teams also resulted in knowledge and information exchange and hence affected planning
efficiency within the scaled project which caused redundant work. Besides the number of parallel teams, team
size was another scale specific characteristic that caused some of the experienced problems. Large teams
complicated intra team cooperation, task division and planning according to the chosen agile practices. Larger
teams also led to testing problems due to insufficient exchange within the teams. Additionally, large numbers of
stakeholders and experts for each team were encountered in most pilot projects. The stakeholders and experts
had to be integrated into product design on a team level. This was problematic since they were not obliged to
the agreed working practices and demanded special treatment which often consumed a large part of overall
team capacity. The encountered project hierarchy complicated planning, task prioritization, documentation,

5-93

communication, and system integration problems because they wanted the teams to also integrate traditional
project management and reporting structures. Lastly, the scale of the design systems also included the
heterogeneity of the project and project external dependencies which complicated system integration,
planning, documentation, and inter team cooperation.

This summary shows that most of the collected problems to agile working models were influenced by
the scale of automotive design projects. It underlines the significance of scaling factor to the experienced
problems in agile automotive design. This connection has been drawn in further publications from large-scale
agile software design and is summarized in this study as constraints of scale.

Figure 20 summarizes experienced agile problems of the bottom-up analysis that are related to the
physicality of the product. It is the second overarching category that has a strong influence on the experienced
problems in the pilot projects. It summarizes attributes that differentiate hardware products from non-hardware
products such as software. In automotive these attributes include physical dependencies between components
that are not existent in non-physical products. In the pilot projects they affected product verification, prototype
manufacturing, product manufacturing but also project size and dependencies between sub projects.

Figure 20: The physicality of the product in automotive design affects most of the experienced problems.

Physical dependencies between sub-products directly affected several of the experienced problems.
The physical dependencies between components resulted in inter team dependencies which required inter team
cooperation. These dependencies between teams negatively affected task division and prioritization. The
management of the physical dependencies required a large spectrum of specialists and stakeholders in each
team which complicated team composition. Additionally, the higher complexity level of dependencies decreased
product architecture flexibility.

Testing was also affected by the network of physical dependencies since most testing was done on full
scale integrative prototypes that required elaborate integrative design efforts themselves and hence
contradicted short iterative design cycles. Physical product verification and prototype manufacturing caused
the problems categories system testing, system integration, documentation, integrative design activities number
of specialists and tooling for prototypes. Indirectly the necessary specializations to manufacture prototypes also
affected inter team cooperation, team composition, the number of external stakeholders, planning and
integrative design work.

The design of the product mass manufacturing presents a large share of the effort in hardware design
which is not the case for software products. This influenced tooling for production, planning, the number of
specialists and stakeholder and integrative design work, documentation, inflexible architecture, system
integration, inter team cooperation and team composition. In summary, the majority of the collected problem
categories from the pilot projects in automotive design are directly affected by the physicality of the product.
Therefore, physicality presents a significant constraint to agility in automotive product design.

To conclude the top-down analysis, a match with the bottom-up analysis has been established. The
collected problems from the agile pilot projects are directly related to the physicality of the product and the scale
of the design process. Therefore, both constraints are central to agile automotive design. Furthermore, the

5-94

bottom-up data analysis revealed that a large share of the experienced problems is related to insufficient and
unspecified inter team coordination. The top-down data analysis complements that these inter team
coordination problems are connected to constraints of scale and physicality. Moreover, most problems are
influenced by both constraints which allows to draw two conclusions. First, the collected data and the chosen
data analysis do not point to an additional equally significant constraint category besides physicality and scale.
Second, the overlapping influences of physicality and scale show that both categories are interlinked and have
similar constraining effects on agile product design.

5.4 Problem space integration
The presented top-down data analysis clarifies that both agile constraints of physicality and scale are

evident and relevant in automotive design. The match with the bottom-up analysis shows significant overlapping
between both fields (see Figure 21). Hence, most reported problems are influenced by constraints of physicality
and scale. This questions the delimitation of the two separated constraints categories. Alternatively, a combined
constraint category would integrate problem understanding. To evaluate this concept the following section
compares cause-effect relations between constraints of physicality and the experienced problems across the
analysed agile pilot projects.

Figure 21: Overlap between problems caused by constraints of scale and physicality across pilot projects.

Inter team cooperation complications are caused by both categories. The physicality of the product
requires a larger spectrum of expertise throughout the design process which requires additional specializations
and experts. This causes team division into interdependent teams to remain under team size limits and hence
inter team cooperation problems. Different teams are responsible for these steps which results in inter team
dependencies between those teams. Project scaling on the other hand does not per se affect the required
spectrum of expertise but the total number of designers and hence teams to drive the complete project. These
teams are part of larger projects which creates dependencies between them and therefore causes inter team
cooperation problems. Both constraints result in challenges to agile working models that require inter team
coordination mechanisms which are typical for scaling problems.

Other constraints of physicality problem categories result in coordination challenges as well. Physical
dependencies between product parts result in dependencies between tasks and therefore dependencies
between the responsible organization units which are teams in agile design projects. Such inter team
dependencies complicate planning and task prioritization. Necessary knowledge is separated in different teams.
Problems in these areas indicate insufficient inter team exchange and communication channels that cause
inadequate knowledge exchange. Increasing dependencies between tasks also complicate documentation and
system integration and hence require additional inter team cooperation mechanisms.

The design of physical products requires additional integrative design activities in product verification
(e.g. vibrations, acoustic, security, legal admission amongst others) that only apply to hardware (automotive)
products. Since these design activities are closely linked to other design activities, they either require additional
expertise and capacity in existing design teams or additional supporting teams that increase inter team
dependencies. Either way they result in team composition or inter team coordination challenges.

5-95

The required expertise in the design of physical products requires a larger spectrum of specialisations
than in software design throughout the sequential design steps (e.g. prototyping, manufacturing, physical
dependencies on component level). The large number of necessary individuals in projects complicate team
composition, prioritization, planning, task division and require the cooperation between interdependent teams.
To avoid inter team cooperation problems agile teams working on shared tasks require adjusted inter team
cooperation mechanisms.

Testing in automotive design is based to a large extent on functional, full-scale physical prototypes on
a high system integration level. The manufacturing of these prototypes is a complicated and lengthy process that
requires additional expertise in prototype manufacturing. These highly integrated prototypes are necessary for
various design teams that need to plan and coordinate the shared use. This testing approach also requires
adjustments to agile planning practices to better integrate necessary long-time perspectives.

The design of the mass manufacturing machinery and logistics presents a large share of the overall
design effort in automotive. Unlike software hardware products need to be materialized. In automotive product
design, the design of the production and logistics machinery has significant influences on the product design
process. It requires additional expertise, capacity and close cooperation with product designer and therefore
results in additional inter team dependencies between product and production design teams.

In summary, compared to software design the physicality of the automotive design process results in
two distinct process characteristics. First, an increasing interdependency of the collective design tasks. Second,
a larger size and heterogeneity of the collective design activities. In agile product design both characteristics
lead to growing numbers of interdependent organization units. These interdependencies result in inter team
coordination problems in the analysed data set.

These findings imply that constraints of physicality translate into coordination complications which were
originally attributed to constraints of scale. The conclusions encourage a new perspective of constraints of
physicality as a subcategory of constraints of scale in this study. Constraints of physicality are therefore viewed
as an additional driver of to the existing constraint of scale category (see Figure 22). But this integration of
constraints of physicality into constraints of scale is not complete. Some aspects of physicality cannot be
attributed to typical scaling problems.

Figure 22: The cause-effect analysis of the experienced problems underlines the relevance of coordination specific problem causes for both
constraints of scale and physicality. Therefore, constraints of physicality are viewed as an additional reinforcement of the constraints of
scale category to simplify problem understanding and facilitate solution approaches for the thesis at hand.

The integrated problem perspective simplifies problem understanding. It avoids interferences, overlapping
and logical gaps between separated problem spaces in the thesis at hand. The unified constraints category
facilitates a comprehensive solution approach regarding agile product design for the domain automotive. It
allows to apply one theoretical lens to analyse the mechanisms that cause the constraints and construct
respective solutions. Coordination theory and the coordination reference model are chosen as theoretical lens
to analyse and address this unified constraint category. The respective analysis of the extracted problems from
the data set according to the coordination reference model (section 4.1) is presented in chapter 6.1.

5-96

6-97

 Discussion

“Speculation and the exploration of ideas beyond what we know with certainty are what lead to progress.”
 Lisa Randall

The aim of the discussion chapter is to answer research questions two and three. The first section of the
discussion 6.1 addresses research question two: What constraints reduce agile design applicability how in
automotive design? The summarized problems of agile methods in automotive application contexts of chapter 5
are analysed from a coordination perspective to answer this question. The influence of the automotive application
context on the derived agile coordination strategies from chapter 4 is evaluated to determine their functionality
in this domain. The functionality assessment allows to further analyse and explain the experienced problems
throughout the pilot projects. The first part of the discussion finishes with a summarizing response to research
question two.

The second section of the discussion addresses research question three: How to enable agility in
automotive product design? The findings of section 6.1 explain the experienced problems with a mismatch
between coordination determinants in multiteam automotive design and employed agile coordination strategies.
To address these dysfunctionalities of agile coordination strategies in automotive design three scenarios are
described. The first scenario supplements the agile coordination strategy with new inter team coordination
mechanisms. It also changes the balance of employed coordination modes to match the coordination
determinants in automotive. The second scenario relies on new design technologies to improve existing agile
coordination mechanisms to provide inter team coordination. The third scenario details how reconfigurations of
the product architecture change coordination determinants in automotive and hence increase the applicability of
the initially employed agile coordination strategies. The second part of the discussion finishes with a summarizing
response to research question three.

6-98

6.1 Functionality of agile coordination strategies in automotive design

“We cannot solve problems with the same thinking we used to create them.”
 Albert Einstein

The results of chapter 5 show that agile methods are less beneficial in automotive design than in their
original domain software design. The bottom-up and top-down data analysis in subchapters 5.2 and 5.3 show
that both constraints of scale and physicality cause the experienced problems. More precisely, the data analysis
clarifies that both factors push towards multiteam design projects. The resulting inter team cooperation
networks contradict the original focus of agile design on intra team cooperation and require adjusted
coordination structures. Since both constraint categories cause similar inter team cooperation problems, they
are merged to facilitate a coordination perspective analysis.

The aim of the first part of the discussion is to better understand the imbalanced agile coordination
strategy to answer the how question word in research question two: What constraints reduce agile design
applicability how in automotive design? Unlike in the design theory unspecific bottom-up and top-down data
analyses, coordination theory is employed here to analyse the experienced problems regarding the influence of
coordination structures on them. The coordination reference model (see 4.1) is used as a theoretical lens to
analyse and understand the cause-effect relations between the experienced practical problems and the
functionality of the respective agile coordination strategy. The analysis relies on four steps which are discussed
in the subchapters of 6.1.

First, automotive design as a generalized application context is categorized according to the
coordination determinants of the reference model. Second, the influence of the automotive coordination
determinants on the individually employed coordination modes and their mechanisms is demonstrated in
relation to the experienced problems from the pilot projects. Third, the influence of the automotive coordination
determinants on the mutual connection between agile coordination mechanisms and the self-adjustment of agile
coordination strategies are analysed. Fourth, a discussion is presented, how the generalized automotive design
application context affects agile product design in response to research question two. Recommendations are
presented what coordination modes and mechanisms need adaptions to suit the automotive application context.

6.1.1 Coordination determinants in automotive design
All pilot projects have been conducted in the automotive domain. A coordination-based explanation of

the encountered challenges requires a functional representation of this application context according to the
presented coordination reference model (see 4.1). The coordination reference model links the applicability of
coordination modes to coordination determinants. This allows to evaluate encountered combinations of
coordination modes and determinants. The employed coordination determinants are unit size, task dependency
and task uncertainty. Different application contexts are remodelled based on combinations of these factors.
Since the individual application contexts of the pilot projects varied, an average configuration for automotive
design was chosen to assess the employed agile coordination strategies. This average application context was
designed according to the experienced project characteristics. The descriptions are in relation to the original
agile application context software design in small teams. According to the results from the top-down and bottom-
up data analyses the physicality of the product and the scale of the design process were the central influence
factors to the automotive coordination determinants (see Figure 23).

6-99

Figure 23: The coordination determinants unit size, task uncertainty and task dependency reflect the project scale and the product physicality
in automotive design. While the unit size and task dependency levels increase significantly, the task uncertainty change level remains
insignificant. The observed changes of unit size and task dependency mutually enhance each other.

Automotive design projects are characterized by a broad spectrum of divergent design objectives across
several interdependent teams. Also, many design activities require a specific sequence. This combination results
in complex design systems with both parallel design activities and lengthy overall process sequences. Typical
design projects last for several years. This scale of automotive design results in multiteam design systems with
strong inter team dependencies. Unlike the agile sweet spot intra team software design, they require
cooperation between teams. This project scale enlarges the coordination determinant unit size because more
people and different specializations for system integration and support are necessary. While the total number of
teams increases, individual team sizes do not follow proportionally but remain constant under a maximum
number of team members. The unit size coordination determinant therefore reflects the number of involved
teams as an approximation to the total number of involved individuals. Task dependency also increases in scaled
projects. The division of large projects into smaller sub projects requires system planning that includes task
division and integration to divide and combine the product into sub products and back into the whole product.
Each division into sub-projects creates interfaces between teams and results in task dependencies across teams.
The project scale does not necessarily affect task uncertainty. But the pilot projects show that in larger projects
knowledge is distributed in different teams. If known knowledge is not available to the task responsible designer
task uncertainty is increased indirectly. Especially unknown knowns (Ramasesh and Browning, 2014) are driven
by the larger number of teams while unknown unknowns are not directly affected.

The physicality of the automotive product differs from the agile sweet spot application context as well.
The design process of physical products implies several phases from conceptualization to manufacturing. It is
also more heterogeneous due to physical dependencies between components and the necessary parallel design
process of the manufacturing machinery. Both factors result in a broad spectrum of design objectives within the
overall process. Unit size increases due to the growing number of necessary specializations and due to the larger
number of design steps. This affects the number of teams and to a lower degree the size of teams, since more
experts need to be integrated. Physical dependencies between components and manufacturing design also
increase interlinkage between individual design steps. This significantly increases task dependency for physical
product design. Most of the design steps in automotive are predetermined through long-term planning, legal
obligations, and further restrictions. Therefore, task uncertainty is at a lower level than in less standardized
software design. On the other hand, testing of physical systems is less automated and much slower which
increases task uncertainty. Regarding task uncertainty these two factors balance each other and require case-
specific consideration.

In the pilot projects it has been observed that changing coordination determinants also have mutual
influences onto each other. A larger unit size increases task uncertainty because of recessive knowledge
distribution and transparency. Existing team knowledge to solve tasks is not accessible for task responsible teams
if inter team communication and exchange channels are not established or if they are inappropriate to the inter
team dependency level. Task uncertainty also increases task dependency. If task dependencies are unclear,

6-100

teams tend to expect additional dependencies to avoid ignoring relevant task dependencies. On the other hand,
task dependencies lead to higher task uncertainty since more factors have an influence on the task. Teams are
unable to comprehensively understand problems if relevant input from other teams is missing.

The presented coordination determinants in Figure 23 reflect average automotive design projects. But
they also vary between projects depending on project scale, physicality of the product maturity and innovation
level. The pilot projects show that coordination determinants change according to project dynamics during
projects. In summary, coordination determinants in automotive design are influenced by several product and
design factors. Compared to agile sweet spot conditions this results in clear changes. The broader spectrum of
necessary expertise and the total number of project participants increases the unit size significantly. The concept
of one growing unit is replaced with a multiteam system with growing numbers of interdependent teams but
limited team sizes in the coordination reference model. In this study the larger unit size is subcategorized into
small, medium, and large regarding the number of interdependent teams. The small unit size represents two
teams, the medium unit size up to five teams and the large unit size more than five teams. Such multiteam system
require inter team coordination concepts. Both physicality and scale increase task dependency in automotive
design. Relevant factors are physical dependencies between components, physical prototyping, system
integration and parallel design of product and manufacturing machinery (and logistics). Like the unit size
coordination determinant, the task dependency coordination determinant is also subcategorized into low,
medium and high levels in this study. The low dependency level includes dependencies between two teams, the
medium dependency level describes dependencies between up to five teams and the high dependency level
describes dependencies between more than five teams. In automotive these additional dependencies are well-
predictable in general and only few occur unexpectedly. Therefore, unlike the other two coordination
determinants task uncertainty does not necessarily rise in automotive design. Two opposing tendencies
outbalance each other. Project scale and task dependency as well as slower and hardware focused verification
often result in decreasing project transparency which increases task uncertainty. But automotive design relies to
a large degree on repetitive and predefined activities driven by legal restrictions and long-term plans which
improve predictability and hence reduce task uncertainty.

To conclude, coordination determinants in automotive design clearly differ from the agile sweet spot
intra team software design. Automotive design is based on multiteam systems with strong inter team
dependencies. The original focus of agile methods task uncertainty remains on a similar level, while the
determinants unit size and task dependency increase significantly. These shifts have significant influences on the
applicability of agile coordination strategies which is shown in the following sections.

6.1.2 Functionality of agile coordination modes and mechanisms in automotive design
The next step to understand the problems from the pilot projects is to analyse the influence of the

changed coordination determinants onto the agile coordination modes and the respective coordination
mechanisms. Cause-effect relations between automotive coordination determinants and employed agile
coordination modes are discussed based on the experienced problems from the pilot project.

According to Van de Ven et al. (Ven et al., 1976) and the coordination reference model additional
impersonal mode coordination is recommended if the unit size increases (Ven et al., 1976). Still agile impersonal
mode coordination mechanisms are negatively affected by the increasing unit size in automotive in several ways.
Broader project specialization and different design objectives complicate and contradict a common terminology
in projects. This decreases impersonal communication efficiency. Shared practices and rules that require
agreement across teams such as Coding Standards or Simple Design rules lose applicability if design objectives
of teams vary largely. Basic agile roles (e.g. Scrum roles) which aim to establish clearly separated responsibilities
often oversimplify the more complex automotive design role structures and lead to unclear competencies and
responsibilities.

A high level of task dependency influences impersonal mode coordination mechanisms as well.
Continuous integration and continuous testing practices can hardly be applied due to the higher dependency
level between physical subcomponents and the less mature level of automatized testing of hardware in
automotive. The manifold verification steps in automotive design mostly rely on physical prototypes to manage
task dependencies. Often, sequential and parallel steps are not connected sufficiently to each other. System
integration in automotive is more complicated since subcomponents need to be connected into more complex

6-101

whole products and cannot be employed independently. Task dependency also complicates the application of
common Scrum practices like e.g. the Definition of Done. With a growing number of dependencies per task,
unfinished parallel tasks prevent task completion. The employed agile methods themselves as overarching
impersonal mode coordination mechanisms have severe problems to manage the higher level of task
dependency.

Additionally, the level of task uncertainty in automotive influences the applicability of agile impersonal
mode coordination mechanisms. Since most design activities are well predictable and repetitive the low level of
standardization in agile methods contradicts the potential of standardization in automotive design. Agile
methods are adjusted to high uncertainty levels. In automotive design this results in unnecessary coordination
effort for well-predictable tasks.

In conclusion, the automotive application context decreases the functionality of the lightweight
impersonal coordination mode mechanisms in agile methods. Task dependency and unit size have the largest
impact on impersonal mode coordination. First, the original lightweight structures are not able to support the
task dependency level. The scale and predictability of the process require more efficient integrative impersonal
coordination mode mechanisms. Second, the change to multiteam systems contradicts the focus of impersonal
coordination mechanisms on intra team mechanisms. Third, automatized impersonal mechanisms such as
continuous integration and testing are not available in automotive design. The necessary IT infrastructure and
software implementation are not a standard in physical automotive design yet. These finding clarify that even
though impersonal mode coordination should be suitable for the larger unit size in automotive, agile methods
lack the necessary implementations such as impersonal mode inter team coordination mechanisms.

The reconfiguration of the coordination determinants also affects the applicability of the boundary
spanning objects, activities, and roles in agile coordination strategies. The larger unit size implies more teams
with separated design objectives. This includes more specializations in teams and hence larger team sizes. Agile
boundary objects such as the Backlog are designed for straightforward implementation, easy updates, and fast
uncomplicated knowledge exchange in small projects. In large projects this compactness is not sufficiently
versatile to provide transparency across teams and specializations and support interdependent prioritization.
Their design does not factor the inter team coordination requirements and the growing number of necessary
tasks in automotive design. Regarding the increasing task dependency boundary objects are well-suited to
enable teams with different design objectives to cooperate efficiently without the need to mutually understand
design objectives and terminology completely. Still in the pilot projects this function was overwhelmed by the
experienced complexity of task dependencies. Boundary spanning roles such as the Product Owner are adapted
to single teams and had difficulty to handle the network of resulting task dependencies, since no specifications
are given how to scale the Product Owner role in multiteam systems in the Scrum guide. In summary, most agile
boundary spanning coordination mechanisms are adjusted to small projects and therefore showed decreasing
functionality in automotive design. That is why agile boundary spanning coordination decreases in automotive
application context even though boundary objects are suitable for the larger task dependency in general.

Coordination by mutual adjustment in the group mode is essential to all analysed agile coordination
strategies. According to the coordination reference model group mode coordination should be suitable for the
higher task dependency level. Still, the analysed agile meetings become less efficient in interdependent
multiteam systems with experts/designers working in several teams. The relation between useful time and
invested time per individual decreases with the number of participants and additional scopes of the meetings.
Across the complete design project, the meeting overhead increases disproportionally driven by a larger unit size
and more participants. Meetings as coordination mechanisms are vulnerable to discussions between individuals
that block much larger groups. Group mode coordination also requires complete team presence. Partial presence
of teams in meetings results in incomplete knowledge distribution and hence insufficient coordination.
Unscheduled meetings are less affected by a larger unit size, since meetings have no fixed number of participants
and also apply to subgroups of teams. But the risk of incomplete coordination remains. Additionally, the increase
in unit size complicates aspired team characteristics such as co-location which in turn negatively affects the ability
for unscheduled meetings. Cross-functionality suffers from the larger expertise spectrum in designers. Especially,
the Retrospective a group mode coordination mechanism in most agile frameworks cannot provide its function
as central design process adjustment mechanism. It has a project size limit to collect necessary information and

6-102

generate solutions. The growing task dependency in automotive design further affects the applicability of group
mode coordination. While intra team dependencies are well managed by the presented meetings, inter team
dependencies are not addressed. E.g. Scrum meetings focus completely on intra team dependencies. In the
automotive multiteam systems inter team dependencies clearly increase which reduces the applicability of the
established agile group mode coordination mechanisms. The experienced changes in task uncertainty have little
impact on group mode coordination. In summary, automotive coordination determinants severely influence
group mode coordination in agile design frameworks. The functionality of the implemented group mode
coordination mechanisms decreases significantly even though the coordination mode should be suitable for the
larger task dependency level. Like in impersonal mode coordination agile group mode coordination lacks
adjusted inter team coordination mechanisms.

In general, individual mode coordination is less affected by the presented changes in coordination
determinants. The coordination mechanisms are applicable independent of the overall project size because only
two designers are connected. Agile frameworks are based on horizontal communication channels. But the larger
unit size limits their applicability for overall project coordination for efficiency reasons. Personal exchanges of n
individuals grow with a quadratic increase of n individuals ((n+1)*n/2). Additionally, some agile individual mode
coordination mechanisms such as the On-Site-Customer suffer from locally distributed teams while other
practices such as Pair-Programming are not affected. Unlike group mode mechanisms individual mode
coordination mechanisms manage increasing task dependencies in projects more efficiently. Effort for inter team
coordination is limited since dependencies only require two individuals that distribute relevant information in
their respective teams. Still this only applies to an inter team dependency complexity limit dependent of the total
number of coordination activities. In summary, the coordination determinants in automotive do not restrict agile
individual mode coordination mechanisms as much as they affect group mode mechanisms. Changes in unit size
and task dependency have little consequences on coordination between individuals. The flexibility and efficacy
of these mechanisms allow them to fulfil high complexity coordination tasks. Still, individual mode coordination
efficiency decreases for larger projects.

Changes in coordination determinants from the agile sweet spot intra team cooperation to automotive
design affect cognitive mode coordination most. This implicit form of coordination is based on close intra team
cooperation with little team external dependencies. Several requirements of cognitive mode coordination are
impaired in automotive design. The greater unit size causes inter team dependencies and requires cooperation
between teams. Inter team design activities are insufficient to create sustainable, personal inter team relations
and trust. They also reduce exchange and personal relations and trust within teams. Distributed teams, multi-
project employments and less cooperation time affect proximity and familiarity two main mechanisms of
cognitive coordination. The increasing task dependency increases complexity of the product and the design
process and thus complicates the emergence of shared mental models of the product and the project. Cognitive
coordination mechanisms also tend to oversimplify intransparent task dependencies in automotive. The broader
spectrum of specializations impedes a common design terminology throughout projects. Still, other cognitive
coordination mechanisms such as a shared vision are applicable in automotive design. Briefly, agile cognitive
coordination mode mechanisms are affected most by automotive coordination determinants. This influence
results in serious problems for the agile frameworks as seen in the pilot projects, because cognitive coordination
mechanisms are central to the efficiency of agile coordination strategies.

6.1.3 Self-adjustment of agile coordination strategies in automotive design
In 4.3 it has been demonstrated that the efficiency and efficacy of agile coordination strategies relies on

the balance and connection between different coordination modes. This self-adjusting coordination system has
been identified as a central reason for the success of agile design frameworks. Therefore, a comprehensive
analysis of the impact of automotive coordination determinants on agile coordination strategies cannot be based
exclusively on the impacts on the individual coordination modes and mechanisms (6.1.2) alone. Additionally, the
connections between the coordination modes need to be examined to comprehend the effect on the agile
coordination system. The following section examines the impact of the automotive coordination determinants
onto this connected coordination system.

First, the links from mutual adjustment mechanisms to other coordination modes are analysed. Group
mode coordination is central in agile frameworks and provides coordination speed, efficacy, and flexibility. The

6-103

implemented agile meetings integrate results, task dependencies, information, verification, and validation. These
coordination mechanisms were designed as the integrative platform for the other agile coordination mechanisms
in agile frameworks. Increases in unit size and task dependency not only impact the functionality of these
meetings as coordination mechanisms but also their connection to impersonal mode coordination mechanisms.
In the pilot projects the Scrum meetings were not able to integrate inter team dependencies and heterogeneous
information as required. This resulted in insufficient connections between agile coordination modes. For
example, the information channelling from multiteam systems into boundary objects such as the Backlog was
impaired. Inter team dependencies were not addressed in Scrum meetings which affected the generation and
continuous employment of common design standards and rules. Retrospective meetings, as the central learning
functionality of agile frameworks, had troubles to adjust the agile coordination systems according to project
dynamics for large unit sizes. Such incomplete coordination integration prevents emergent coordination
strategies that continuously adjust to changing tasks and coordination requirements. Lastly, agile group mode
coordination mechanisms are not able to generate intense personal exchange, repeated activities, and mutual
trust necessary to maintain cognitive mode coordination mechanisms in automotive design. Unlike agile group
mode coordination mechanisms, agile individual mode coordination mechanisms are less affected by the
changes in design coordination determinants. Consequently, individual mode coordination mechanisms remain
able to initiate other coordination mechanisms or adjust to them. Individual mode coordination mechanisms like
the Backlog Refinement still trigger Boundary Object coordination mechanisms. Nevertheless, boundary
spanning roles such as the Product Owner are affected by an increasing task dependency which complicates her
responsibility to prioritize design tasks. In a nutshell, individual mode coordination mechanisms address specific
coordination tasks between individuals. But to function in a coordination system they rely on integrative
coordination mechanisms to distribute information and provide project transparency.

Second, agile impersonal mode coordination mechanisms such as design rules, roles, plans, testing
infrastructure and standards integrate other coordination mechanisms in agile frameworks (see 4.2.1.2 and
4.2.2.2). In automotive design these agile impersonal coordination mechanisms have difficulties to connect the
coordination system. The impersonal coordination mechanisms standards and blueprints of action answer well
to the large unit size, but not the high task dependency level. High task-dependency levels resulted in incomplete
connections between impersonal coordination mechanisms and mutual adjustment coordination mechanisms.
Continuous integration systems allow to connect impersonal and mutual adjustment coordination mechanisms
based on automated product verification. But in automotive design the technology is not applicable yet to the
larger unit size and task-dependency. Agile Boundary Object mechanisms such as the Backlog remain effective
to structure agile meetings and hence connect well to group mode coordination mechanisms. But agile Boundary
Objects also suffered from the task dependency level and were not able to integrate the amount of design
objectives from the interlinked teams.

Lastly, automotive design is based on design in multiteam systems. As described, this significantly
reduces cognitive mode coordination mechanisms. The support of other coordination modes by cognitive mode
coordination is therefore limited to few mechanisms such as the shared vision in automotive multiteam systems.
After long-term cooperation in a steady network personal relations and trust may be generated in multi-team
systems between individuals across teams but in automotive this is unlikely due to the dynamic change of
cooperation partners. The resulting cognitive mode inter team coordination mechanisms cannot replace the
connection to other coordination modes as intended in the original coordination strategies for single teams. The
loss of cognitive coordination mechanisms deprives the agile coordination system of a central connector in
automotive application contexts.

The findings demonstrate that automotive coordination determinants reduce the applicability of the
employed agile coordination mechanisms. Furthermore, they severely reduce the connections between them.
The function of impersonal and group mode coordination to integrate other coordination modes in agile
frameworks is less effective. Alternatives to integrate coordination mechanisms into a connected coordination
system are necessary. Additionally, implicit cognitive and implicit impersonal coordination mechanisms are
unable to replace and support other coordination mechanisms as emphasized in agile frameworks. These
dysfunctionalities impair the self-adjustment of agile coordination structures in automotive. The coordination
system is not able to adapt to project change and dynamics as required anymore. Agile frameworks therefore
lose flexibility and efficiency in automotive design applications.

6-104

6.1.4 Suitability of agile coordination strategies in automotive
To conclude this subchapter, a summary of the coordination specific data analyses is given. The

researched automotive application context differs significantly from agile sweet spot conditions. The
coordination determinants unit size and task dependency increase significantly and cause a system of inter team
dependencies. The third coordination determinants task uncertainty remains on a similar level compared to the
agile sweet spot. These changes in the coordination determinants in automotive design have severe influences
on the applicability of agile coordination strategies as shown in Figure 24.

Figure 24: Compared to agile sweet spot conditions (Boehm, 2002; Kruchten, 2013) automotive design results in different coordination
determinants. These changes in coordination determinants result in inappropriate coordination modes, ineffective and insufficient
coordination mechanisms and a lack of connectivity for agile coordination strategies. Cognitive mode coordination is affected most, while
individual mode coordination and boundary spanning are affected least.

In the original model of Van de Ven et al. (Ven et al., 1976) increases in unit size are addressed by
impersonal mode coordination mechanisms and increases in task dependency by group mode coordination
mechanisms. Both are central coordination modes in agile coordination strategies. Contradictory, the data
analysis clarifies that the analysed agile group mode and impersonal mode coordination mechanisms are unable
to manage coordination in automotive application contexts. Lightweight agile impersonal mode coordination
mechanisms are overstrained by the task dependency level while agile group mode coordination mechanisms
suffer from the larger unit size. Agile individual mode coordination mechanisms and boundary objects remain
mostly functional in automotive application context. Then again implicit cognitive and impersonal mode
coordination mechanisms are almost completely inapplicable to automotive multiteam systems.

Additionally, the self-adjusting ability and connection of agile coordination strategies is also limited in
automotive application contexts. The ability of central impersonal and group mode coordination mechanisms to
integrate other coordination mechanisms is overwhelmed by the number of teams and the level of task
dependency. The emphasis of agile coordination strategies on cognitive mode coordination to support other
coordination mechanisms is not applicable to automotive design. These findings show that the ability of agile
coordination to adapt to project dynamics decreases significantly in automotive design. Figure 24 summarizes
the changes of coordination determinants in automotive and the effect of this change onto agile coordination
strategies.

In a nutshell, the findings allow to draw two conclusions. First, the analysed agile coordination
mechanisms are less suitable to automotive application contexts than to software application contexts. Second,
the connection between employed agile coordination mechanisms is weaker in automotive design which affects
the ability of the coordination system to adapt to dynamic coordination requirements. Both conclusions are
caused by the focus of agile methods on intra team coordination. Nevertheless, these findings do not contradict
agile coordination strategies and their emphasis on impersonal mode and mutual adjustment mode coordination
in automotive in general. Neither impersonal mode coordination nor group mode coordination face impassable
restrictions in automotive design but both lack adjusted coordination mechanisms. Only cognitive mode

6-105

coordination may turn out unfit as a central coordination mode for large multiteam design systems in automotive
independent of the coordination mechanism selection.

To adjust agile coordination strategies to automotive application contexts it is necessary to accept and
embrace cooperation across teams. The lack of agile inter team coordination mechanisms is the main reason for
its reduced applicability in automotive design. Inter team coordination mechanisms answer directly to larger unit
sizes and resulting multiteam systems as well as larger task dependencies and resulting inter team dependencies.
Additionally, these inter team coordination mechanisms need to reconnect agile coordination modes to re-
establish self-adjusting coordination systems in automotive design. This requires two necessary adaptions of
agile coordination systems in automotive design. First, specific agile inter team coordination mechanisms are
necessary and must be integrated. Second, cognitive mode coordination needs to be replaced to a large degree
by impersonal and individual mode coordination.

6.1.5 Findings in response to research question two
One central objective of the thesis at hand is the analysis whether agile product design approaches are

suitable in the domain automotive design. Even though, agile methods and their benefits suit the current
challenges and problems of automotive design in theory, agile pilot projects in automotive are necessary to
evaluate their performance in practice. Data of eleven pilot projects was analysed regarding the practicability of
agile methods in this unfamiliar application context. The focus of research question two are constraints to agility
in automotive design. To answer this research question three research streams were connected. Practical
problems were summarized and classified according to their statistical frequency across the agile pilot projects.
These classified problems were categorized to the existing concepts constraints of scale and physicality via cause-
effect relations. Comprehensive understanding of the problem’s roots was enabled through a coordination
strategy analysis.

Throughout the agile design pilot projects in automotive design several problems to the methodology
reoccurred. A bottom-up data analysis resulted in the following problems. Design teams need to integrate team
external stakeholders into the design activities. Additionally, the number of relevant experts often surpasses
upper limits of team sizes and hence further increases the number of relevant stakeholders. The large and design
phase dependent spectrum of necessary specializations complicates team composition and prevents continuity
of team constellations. Agile communication channels are often not sufficiently versatile to connect the
necessary network of designers and stakeholder. Large multiteam design projects in automotive result in inter
team cooperation problems to the applied agile methods. Agile planning in short iterations gets complicated by
the strong interlinkage of design activities. Multiple physical dependencies between components lead to a much
more interdependent design process. Task prioritisation and task division suffer from unclear and emergent
dependencies between both components and hence tasks. Task dependencies also drive resource allocation
problems and redundant work. Distributed teams are unable to remain close personal contact which hampers
with agile design paradigms. The documentation granularity is not sufficient to support independent design
activities across teams and requires additional exchange between teams. Further problems regarding product
architecture and requirements structure are due to management systems that are unable to respond to the
speed of agile methods. Automotive design requires elaborate IT and prototyping infrastructure. Integrative
design activities necessary to design and provide such infrastructure were not considered sufficiently in the agile
pilot projects. Also, slow prototyping in automotive contradicts short iterative design cycles.

A top-down data analysis investigated cause-effect relations between the experienced problems and
the physicality of the product and the scale of the design system in automotive. Scaled systems of teams result
in characteristics that directly contribute to most of the experienced problems. The same relation is evident for
the physicality of the product. These cause-effect relations lead to the answer to research question two that both
constraints of scale and constraints of physicality are evident and relevant in automotive design. Additionally,
both categories clearly overlap regarding the experienced problems to agile design. The connection of findings
of the bottom-up and the top-down data analysis shows that both constraints fields cause similar multiteam
cooperation problems. Therefore, in the thesis at hand constraints of physicality are viewed as an additional
driver to the constraints of scale category.

This simplification of the problem space allows to analyse the unified problem space regarding the
employed agile coordination strategies with the coordination reference model. This analysis clarifies that agile

6-106

coordination strategies do not function as expected in automotive design. The malfunctions of the coordination
strategies directly relate to the experienced problems. The following concatenation of circumstances explains
the dysfunctionality of the employed agile coordination strategies and further details the answer to research
question two.

First, coordination determinants in large-scale automotive design are distinctly different compared to
small scale software design teams. The unit size increases significantly driven by the number of teams, even
though the upper limit of team sizes increases only slightly. Task dependency increases due to physical
dependencies and a larger spectrum of specializations. Task uncertainty on the other hand increases only to a
small degree due to more distributed and less connected knowledge, while basic design activities are more
predictable due to well established processes.

Second, these changes in coordination determinants severely influence the suitability of agile
coordination mechanisms and respective coordination modes. Typical lightweight impersonal coordination
mechanisms are not suited for automotive design. Especially, intra team boundary object and cognitive mode
coordination mechanisms are impacted. Even though, the coordination reference model recommends
impersonal mode coordination for automotive coordination determinants, agile coordination strategies lack the
respective coordination mechanisms. The same applies to agile group mode coordination which lacks inter team
coordination mechanisms. Individual mode coordination mechanisms remain functional in automotive
application contexts. Implicit mode coordination in agile coordination strategies suffers most from the
experienced coordination determinants in automotive. Cognitive coordination mechanisms are inefficient in
inter team coordination. The increasing inter team task dependency even decreases the excellent intra team
coordination efficiency of cognitive mode coordination mechanisms. Impersonal implicit coordination
mechanisms such as continuous integration systems are overstrained by the complexity of the product and the
prescribed verification system. In summary, agile coordination modes are either less suitable in automotive
design and or lack respective coordination mechanisms. Also, multiteam design systems in automotive require
inter team coordination mechanisms, which basically contradicts the original focus of agile methods on intra
team cooperation. Especially cognitive mode coordination mechanisms are less applicable in multiteam systems.

Third, the impact on these individual coordination modes and mechanisms severely impairs the
connectivity of the agile coordination system. This lack of connection between coordination mechanisms
decreases the ability of agile coordination strategies to self-adjust to project dynamics which is elementary to its
coordination efficiency and efficacy. Agile meetings as group mode coordination mechanisms cannot provide the
interlinkage to other coordination mechanisms any more for multiteam automotive design systems. Especially
the balance between group mode coordination mechanisms and boundary objects is overstrained due to number
of different parties and the spectrum of specializations. Furthermore, personal exchange necessary for cognitive
mode coordination mechanisms decreases with ever larger meetings. Unlike group mode, individual mode
coordination mechanisms remain functional in multiteam systems and therefore keep their ability to trigger
other coordination modes. Still, boundary spanning roles such as the Product Owner are affected by the larger
network of inter team dependencies. Furthermore, within the coordination system individual mode coordination
mechanisms suffer from incomplete reactions of other coordination mechanisms to their trigger. High task
dependency levels result in incomplete connections between impersonal and mutual adjustment coordination
mechanisms. Especially continuous integration infrastructure and boundary objects to structure agile meetings
are affected by it. With multiteam systems seriously affecting cognitive mode coordination this leaves only few
cognitive mode coordination mechanisms connected to the coordination system.

In summary, the findings clarify why agile coordination strategies are less efficient in automotive design.
The experienced project characteristics do not match their requirements. They differ to such a degree that some
employed coordination modes become inapplicable, and others lack adjusted coordination mechanism. The
connectivity of the employed coordination mechanisms also decreases severely. The change in coordination
determinants goes beyond the ability of agile coordination systems to self-adjust to project dynamics since the
balance of coordination modes is disrupted and necessary coordination mechanisms are not available. These
findings are central to a comprehensive understanding of agile design in automotive design. They provide the
base for alterations of agile methods to enable them for automotive application contexts.

6-107

6.2 Scenarios to enable agile coordination strategies in automotive design

“[…] well-coordinated teams will […] find an effective mix of mechanisms for the coordination needs of the task
they are engaged in.”
 Alberto Espinosa

The aim of the second part of the discussion is to suggest approaches to counteract the described
dysfunctionalities of agile coordination strategies in automotive design in response to research question three:
How to enable agility in automotive product design? In chapter 5 the practical problems of agile methods across
eleven pilot projects have been summarized and compared. The design theory-unspecific data analyses establish
the conclusion that the experienced problems are caused by constraints of scale and physicality. Both factors
increase inter team cooperation in design activities and hence contradict the focus of agile methods on intra team
cooperation. The coordination-specific data analysis in subchapter 6.1 examined how inadequacies of the agile
coordination strategies in automotive design caused the experienced problems to agile methods throughout the
pilot projects. The original balance of coordination modes and the employed coordination mechanisms in agile
coordination strategies are inappropriate for the coordination determinants in automotive design. Figure 25
represents how changes in coordination determinants in comparison to agile sweet spot conditions have resulted
in inadequate agile coordination strategies. The swelling river represents the changes in coordination
determinants in automotive design in comparison to agile sweet spot conditions. The bridge that crossed the
original river but cannot span the swelling river represents the original agile coordination strategies.

Figure 25: Transcribing sketch regarding the difficulty of agile automotive design. The larger river represents the context automotive design
in comparison to the agile sweet spot software design and the bridge represents original agile coordination strategies. While the
established bridge was fitted to cross the initial river, it cannot span the enlarged river. The same is true for agile design in the automotive
domain. Transferred into the new domain agile product design cannot realize its original functionality.

Three different approaches to answer research question three will be presented. All concepts are based
on the coordination perspective on agile design and therefore intend to realize a match between agile
coordination strategies and the automotive design domain. To achieve this goal, they focus on different aspects
of agile coordination strategies. Figure 26 presents simplified analogies to reflect the opposing ideas behind the
three approaches in detail. To recreate the original function of crossing the bridge three different options are
available. First, repair and enlarge the bridge. Second, dig a tunnel below the river and avoid the bridge
completely. Third, restructure the river so the original bridge can span it again.

In subchapter 6.2.1 a concept to adjust the agile coordination system to match the automotive design
coordination determinants is described. This represents the idea to repair and enlarge the original bridge across
the larger river. The integration of inter team coordination mechanisms to answer to the requirements of
multiteam design systems is the first step towards this approach. The second step is the adjustment of the
coordination system connectivity to include the new inter team coordination mechanisms. Lastly, the balance
between the employed agile coordination modes needs to be recalibrated to reflect automotive design
characteristics. This results in a shift towards coordination modes that better reflect the needs of multiteam
design projects.

6-108

Figure 26: The three sketches (left, middle, right) represent developed scenarios to adjust agile coordination strategies to the coordination
determinants in automotive design. In scenario 1 (left) the original bridge is enhanced with additional structures to reestablish its original
functionality. It represents the readjustment of agile coordination strategies with additional inter team coordination mechanisms. In scenario
two (middle) the larger river is avoided by a tunnel instead of fixing the bridge. It reflects the use of a new design technology to realize agile
automotive design. In scenario three (right) not the bridge but the river is adjusted. To carry more water without increasing its width its depth
is increased. This approach reflects the idea to adjust the product structure to reestablish agile sweet spot coordination determinants.

In subchapter 6.2.2 the influence of new design technology onto agile coordination mechanisms and
strategies is presented. It reflects the idea to build a tunnel below instead of a river above the larger river to get
across it. Generative Design as an example of new design technologies is described within the automotive
verification and design process. The perspective of Generative Design as a new impersonal mode inter team
coordination mechanism is analysed. Furthermore, it is shown how its coordination abilities open the
opportunity to change the balance between agile coordination modes and reconfigure the agile coordination
strategy.

In subchapter 6.2.3 it is shown how the relation between product architecture and coordination
determinants could be used to approximate agile sweet spot conditions in automotive design. This new setting
increases the applicability of agile coordination strategies. The concept reflects the idea to change the river width
and depth of the swelling river back to its original shape and use the existing bridge to cross it. A modularization
strategy is described that structures the product in relation to an agile design enabling organization structure.

6.2.1 Inter team coordination in agile coordination strategies
The aim of this subchapter is to present adjustments to agile coordination strategies to match the

analysed coordination determinants in automotive design and hence avoid the experienced practical problems.
These adjustments focus on enabling existing coordination modes with new coordination mechanisms to re-
establish the original functionality of agile coordination strategies. The presented analysis of agile coordination
strategies in automotive design clarifies that both the coordination determinants unit size and task dependency
increase compared to agile sweet spot conditions. In practice this results in design activities that require
cooperation between teams and hence need inter team coordination. These multiteam design systems in
automotive design cannot support the original premise of agile design to focus on intra team cooperation. They
require inter team coordination mechanisms to answer to inter team dependencies. To fill this gap a set of inter
team coordination mechanisms were developed, introduced and evaluated across the pilot projects. The
development of these design artifacts balanced their individual shape and function and their mutual interlinkages
as a prerequisite to analyse the resulting system behaviour. These aspects are necessary to re-establish the
efficiency, efficacy and flexibility of agile coordination strategies. Both the design of the inter team coordination
mechanisms and their system behaviour evaluation were based on the addressed system dysfunctionalities
identified with the coordination reference model (see Figure 24).

The subchapter is divided into four sections. In the first section, agile inter team coordination
mechanisms from software design are summarized. In the second section agile inter team coordination
mechanisms in automotive are described. The set is limited to inter team coordination mechanisms that have
been employed in pilot projects. In the third section the presented set of inter team coordination mechanisms is
evaluated regarding their suitability to address the relevant levels of unit size and task dependency in automotive
design. The fourth section assesses the connectivity between the adjusted set of agile intra and inter coordination
mechanisms. This includes an evaluation if the flexibility and self-adjustment capabilities of the reconfigured agile
coordination strategy have been restored.

6-109

6.2.1.1 Agile inter team coordination mechanisms in scaled software development
Table 11 summarizes findings of relevant secondary literature (Dingsøyr, Bjørnson, et al., 2018; Edison

et al., 2021; Nyrud and Stray, 2017) regarding inter team coordination mechanisms in large scale agile design. In
the table coordination mechanisms are categorized according to the coordination modes of Van de Ven et al.
Impersonal mode inter team coordination mechanisms are central team directives, visualizations of
dependencies and deliveries, collaborative tool platforms, common Sprint goals, regular product integration
steps across domains, scaled agile roles, strategic roadmaps, shared backlogs and open work areas. Individual
mode inter team coordination mechanisms are iterative proxy collaboration, team member rotation, instant
messaging, and informal ad hoc conversation. Group mode inter team coordination mechanisms are
synchronized sprint cycles, virtual meetings, mid sprint reviews, theme reviews, agile role coordination meetings,
cross team demos, physical proximity of teams, experience forums, architecture teams, management meetings
across teams, and scaled agile meetings, including the Retrospective, the product Demos, the Planning, and the
Backlog grooming. The distribution the coordination mechanisms shows that impersonal mode and group mode
coordination seem to be best suited to provide inter team coordination in scaled software development. Details
and descriptions of the coordination mechanisms are added in the following subchapters.

Table 11:Impersonal mode, personal mode and group mode inter team coordination mechanisms in large-scale agile software engineering
(Dingsøyr, Moe, et al., 2018; Edison et al., 2021; Nyrud and Stray, 2017).

 Edison 2021 Dingsøyr, Moe 2018 Nyrud and Stray, 2017
Impersonal
mode

Central team directives Masterplan- common backlog Agile processes
Visualization (dependencies,
deliveries, IT project portfolio)

Open space technology JIRA (shared, digital backlog)

Collaborative (tool) platform Wiki- architectural guidelines Rules for QA
Common sprint goal Open work area
Regular full integration of software,
hardware, mechanics

Scaled agile roles
Strategic roadmap

Individual
mode

Iterative proxy collaboration Instant messaging Instant messaging
Ad-hoc communication Rotation of team members Informal ad hoc conversations
Team member rotation

Group mode Ad-hoc communication Central team planning Stand up meetings
Synchronized sprint cycle Open work area Overall Retrospective
Virtual stand-up meetings Experience forum Overall Demo
Mid sprint review Scrum of Scrum Overall Sprint planning
Theme review meetings Technical corner- Briefing of teams

by architects
Overall Backlog grooming

PO coordination meetings MetaScrum – Management meeting
across teams

Cross-team demo Board discussions
Physical proximity of teams Overall demos
Scrum of Scrum meetings (Grande
SoS, feature SoS)

The spectrum of inter team coordination mechanisms shows the relevance of the problem. But the
presented set of mechanisms has been established in large-scale software design. Its relevance in agile hardware
design is to be evaluated yet. Throughout the pilot projects several of the presented inter team coordination
mechanisms are employed and evaluated regarding their suitability in automotive design. The following
subchapter describes agile inter team coordination mechanisms that have been employed successfully
throughout the agile pilot projects. The nomenclature between the secondary sources, scaled agile methods and
the use in the pilot projects may differ for some coordination mechanisms. For the thesis at hand the employed
names in automotive design were selected.

6-110

6.2.1.2 Agile inter team coordination mechanisms in automotive design

Group mode inter team coordination mechanisms

The findings of the data analysis in the results chapter indicate unsuitable group mode coordination
based on the lack of appropriate scheduled meetings for automotive multiteam systems. The larger unit size in
automotive projects increases the length of scheduled meetings which results in non-relevant meeting overhead
for individual participants. Regarding the large task dependency in automotive agile meetings answer well to it
within teams but not between teams. In a nutshell, the employed agile coordination strategies lack adjusted
group mode coordination mechanisms that address inter team coordination demand in automotive design
projects. To address these findings adjusted and new group mode coordination mechanisms supporting inter
team coordination in the form of scheduled multiteam meetings have been tested and evaluated throughout the
pilot projects. These scheduled meetings can be categorized into coordination meetings that connect complete
teams, meetings that connect agile roles across teams and meetings that connect individuals or communities
across teams with similar responsibility or interest.

Scaled agile meetings (e.g. Scrum of Scrum, multiteam grooming, PI Planning, …) connect several teams
and allow to address inter team dependencies before, during and after the Sprint cycle. Several teams cooperate
during these meetings. The shared Planning allows to discuss and predict inter team dependencies and prepare
accordingly. Tasks are divided and distributed to minimize inter team dependencies. The Scrum of Scrum meeting
answers to emergent inter team coordination demand and the shared Review meeting connects components
dependencies and presents increments composed of interlinked subcomponents. The multiteam Grooming
meeting focuses on inter team dependencies and clarifies them within the Backlog as preparation for a successful
planning. Such a multiteam Grooming needn’t necessarily include complete teams but rather relevant designers
from the respective teams. These scaled agile meetings answer well to medium task dependency levels in
automotive, but the number of participating teams should not exceed five teams and hence cannot include
complete projects. Applied at larger unit sizes they require extensive preparation and often result in inefficient
coordination. The extension of the meetings to accommodate several teams results in multiplied participants
which negatively affects coordination efficiency. To outmanoeuvre this tendency new non-linear meeting
formats were applied. Instead of one person addressing the complete audience parallel structures are employed
to ensure both inter team coordination and maintain overall efficiency and flexibility. Formats include speed
dating or fish bowl during planning meetings or the market place and bazar formats from Liberating Structures
(“Liberating Structures”, 2022) during review meetings. These adjusted agile meetings are divided into joint and
separated parts. They provide overall project coordination in the joint sessions and emphasis inter team
dependencies in break out parts including only few teams and hence providing more intense coordination. Intra
team dependencies are addressed in team individual meetings. Since the capacity of shared areas is often limited
digital versions of the meetings have been tested and approved valuable in automotive.

Agile role bearer meetings (e.g. PO synchronization, SM meeting) connect agile role bearers across
teams. Much smaller than scaled agile meetings these meetings enable inter team coordination specific to
individual agile roles. Throughout the pilot project the PO synchronization emphasised task prioritization and
capacity overview across teams while the SM exchange addressed a concerted working model throughout the
complete project. Additionally, inter team conflicts and impediments were discussed, and solutions decided
upon. These meetings are applicable at medium and large unit sizes and up to a medium task-dependency level.
Communities of Practice (COPs) connect fields of specialization across teams. Individuals with the same
specialization or similar interest can exchange information through these meetings. In automotive COPs were
beneficial in product architecture and the verification system. Depending on the demand of the exchange such
meetings are structured very strictly or resemble a lose exchange that dynamically adapts to a changing interest
of exchange in the design project. Communities of Practice provide inter team coordination across more than
five teams and hence answer to large unit sizes. In automotive they have been proven beneficial in integrative
design activities. The emergent character of the meeting is applicable to low inter team dependency levels.

The presented scheduled and unscheduled meetings function as group mode inter team coordination
mechanisms. They present arenas that encourage inter team coordination between interdependent teams in
automotive. As such these inter team coordination mechanisms answer to both the large unit size and the high

6-111

task dependency in automotive design. In summary, they re-establish the applicability of group mode
coordination in automotive application contexts. Still, these adjusted and new meetings are limited regarding
the unit size. They answer well to a medium unit size up to five interdependent teams and suffer from further
scaling.

These selected group mode inter team coordination mechanisms match well with the mechanisms
presented in Table 11. Edison et al., Dingsøyr et al. and Nyrud and Stray summarize similar scaled agile meetings
(e.g. Scrum of Scrum, joint Retrospectives, cross-team Demo, theme Review, overall Backlog Grooming) as
valuable inter team coordination mechanisms in software design (Dingsøyr, Moe, et al., 2018; Nyrud and Stray,
2017) based on a synchronized Sprint cycle (Edison et al., 2021). Edison et al. recommend agile role coordination
meeting such as the PO coordination meeting (Edison et al., 2021). Communities of practice have been
successfully implemented in scaled software design projects (Paasivaara and Lassenius, 2014) and large
organizations with strong inter team dependencies (Kahkonen, 2004)

Individual mode inter team coordination mechanisms

Regarding individual mode coordination the findings indicate that the analysed agile coordination
mechanisms remain functional in automotive design applications environments (section 4.2). Still, with a growing
number of teams, coordination efficiency decreases due to an exponential increase of necessary personal
exchanges between interdependent teams. Inter team dependencies between few teams are well manageable
but larger projects require additional individual mode inter team coordination mechanisms. Another central
drawback of the employed agile individual mode coordination is the need for direct exchange and hence co-
location. But distributed teams are unavoidable in automotive design, due to the large overall project size and
the number of required teams. Therefore, location independent, individual mode inter team coordination
mechanisms are necessary. Several specific individual mode inter team coordination mechanisms were
introduced and evaluated in the pilot projects to address this inadequacy of agile coordination strategies in
automotive design.

Instant messenger and video conferencing tools (e.g. Skype, Microsoft Teams, Slack, …) are digital
individual mode inter team mechanisms. They are easy to implement and remove the need for co-located teams
regarding individual mode exchange. Direct exchange between individuals of different teams is independent of
personal location and team size. Tools like Microsoft Teams integrate personal exchange, documentation, and
collaboration between team members of different teams. They are more flexible than emails and function more
like oral conversations and therefore improve coordination efficiency in comparison. These tools are applicable
to the high dependency levels of other individual mode coordination mechanisms since communication in video
conferencing includes language and facial expressions. An alternative approach represents multiteam working
areas that provide sufficient room for several teams with high dependency levels. These areas include shared
areas and team specific sites but require large, available spaces.

Team member rotation describes the temporal exchange of team members between teams. The
Traveller or Scout are specific inter team exchange roles within teams, who are responsible for inter team
coordination tasks. They participate in other teams for a defined period or for specific meetings. They establish
knowledge regarding both teams, their dynamics and influence Planning and Review meetings to address inter
team dependencies. A less formal option is a personally allocated responsibility for inter team coordination
within the team for a limited period. This individual remains in her team but changes her responsibilities towards
attending multiteam meetings and channels exchange with other teams. Selection of such coordination team
members often includes her specialization being suited to the given task dependency between teams. The
coordination responsible team member changes according to coordination dynamics and therefore differs from
permanent agile roles. In automotive these coordination roles are suitable for small to medium unit sizes with
two to five teams. They are applicable up to medium inter team dependency levels. The individual’s capacity for
inter team exchange limits the coordination role concept to a medium task dependency level.

The findings from the pilot projects in automotive match well with earlier studies on individual mode
coordination in scaled agile design projects. Instant messaging has been proposed as individual mode inter team
coordination mechanisms in several studies as depicted in Table 11 (Dingsøyr, Moe, et al., 2018; Nyrud and Stray,

6-112

2017). Team member rotations have been reported beneficial for inter team coordination in several industry
reports and review paper (Grewal and Maurer, 2007; Lindlöf and Furuhjelm, 2018).

Impersonal mode inter team coordination mechanisms

Even though impersonal mode coordination is recommended for larger unit sizes, the analysed agile
coordination strategies lack suitable inter team coordination mechanisms for automotive application contexts
(section 4.2). The presented results clarify that the employed agile lightweight impersonal mode coordination
mechanisms are insufficient for multiteam design projects in automotive. The scale and the predictability of the
design projects require more efficient impersonal mode inter team coordination mechanisms to connect other
coordination mechanisms. Throughout the pilot projects several impersonal mode inter team coordination
mechanisms were evaluated, and the findings are discussed in the following paragraph.

Synchronized sprint cycles are a requirement of multiteam meetings (Lindkvist et al., 2016; Martensson
et al., 2017) in large design projects and interdependent teams need to agree on a synchronized Sprint rhythm.
In automotive synchronized Sprint cycles were applicable independent of the unit size and the task dependency
level but substantial differences in design characteristics resulted in opposing ideal Sprint length for some teams.
To deal with such contradicting requirements longer sprint cycles were defined as double or three times the
length of shorter sprint lengths to ensure simultaneous and synchronized meetings every third or second
iteration.

Hierarchies of the agile roles Scrum Master and Product Owner are important inter team coordination
mechanisms in automotive design. A leading Product Owner maintains the overview of the product as a system
of parts and especially the interfaces between them. The other Product Owners focus on delimited parts at a
much more detailed level. The leading product owner mediates conflicts between Product Owners and leads
with a strategy for the complete product. She guides the other Product Owners to prevent inter team
coordination conflicts. This hierarchy allows to distribute responsibilities between two levels and ensures, that
cooperation between Product Owners leads to an overall optimum and not local optima. This connecting role
also provides a fast and flexible escalation process if inter team coordination problems cannot be solved between
the respective Product Owners of the teams. A similar hierarchy works well for the Scrum Master. A leading agile
coach is not assigned to an individual team but addresses continuous system design and deals with impediments
on a system level. Additionally, she facilitates cooperation between Scrum Masters and ensures that their input
is addressed on a system level. The agile coach also represents the interface towards the Product Owner
organization. Another responsibility of the role is the continuous adaption of the agile working system and the
coordination strategy to the dynamics of the design projects. Both agile role hierarchies are relevant inter team
coordination mechanisms in automotive design projects. They are applicable at large unit size levels and up to a
high task dependency level.

Information distribution systems also support inter team coordination. They replace direct personal
exchange between individuals and teams with online information access. Such systems support inter team
coordination regarding information exchange at a low complexity level, but cannot replace direct, personal
exchange coordination for more complex tasks. The findings from the pilot projects show that their function as
inter team coordination mechanisms relies on the usability, accessibility, completeness and currency of the
system and the relevance of the information. The underlying system and tools must guarantee easy access and
usability must be sufficiently well to replace often accustomed direct exchange. The provided information must
include the complete system and the underlying data must be current. These factors show that such
infrastructure needs continuous care and adjustment to provide inter team coordination. Wikis or the tool
Confluence have been proven beneficial in automotive at a large scale. Company specific social networks are
additional organization maps that provide information regarding current responsibilities of org units within
design projects. They might include hierarchical structures to clarify responsibilities. They positively impact
individual mode coordination since access to relevant parties is facilitated. Such tools are applicable independent
of the unit size level but only up to medium task dependency level. Automatized impersonal mechanisms such
as continuous integration and testing are not commonly available in hardware-intensive automotive design yet.
Possible digitalized impersonal mode coordination in automotive are discussed in section 6.4.

6-113

The high level of task dependency in automotive design are driven to a large degree by the physical
dependencies between components. They result in similar effects that can be categorized into vibrations,
acoustics, crash behaviour and durability amongst others. To address these categories in all tasks automotive
specific Definitions of Done have been proven beneficial. Tasks are only accepted as done if these criteria have
been evaluated or the respective teams have been contacted. This extension to an existing agile practice results
into an easy applicable impersonal mode inter team coordination mechanism.

Boundary spanning inter team coordination mechanisms

The deduced coordination determinants in automotive affect the applicability of boundary spanning
objects, activities, and roles in the analysed agile coordination strategies severely (section 4.2). The larger unit
size mirrors more design teams with a divergent spectrum of design objectives. Most of the applied agile
boundary objects such as the Backlog are designed for straight-forward implementation, easy updates, and
uncomplicated knowledge exchange in small projects. In large projects they are not sufficiently versatile to
provide transparency and prioritization across numerous interdependent teams and specializations. Regarding
the task dependency levels, in theory boundary objects enable teams with different design objectives to
cooperate efficiently without the need to mutually understand design objectives and terminology completely.
Still, in the pilot projects this function was unable to address the experienced complexity of task dependencies.
Most agile boundary spanning coordination mechanisms are adjusted to small projects and showed decreasing
functionality in multiteam design projects. To address the resulting inter team dependencies several additional
boundary spanning coordination mechanisms have been tested and evaluated throughout the pilot projects.

The multiteam Backlog as a boundary-object inter team coordination mechanism has been proven in
automotive. Such a Backlog includes all relevant tasks of a design project independent of the number of teams.
Like in a single team Backlog tasks are related to each other, to clarify dependencies between tasks and teams
to improve inter team coordination. Tasks are subcategorized from team to project level granularity and
dependency definitions follow this granularity. Depending on the user or the purpose the shared Backlog
provides different views on task and additional information. It facilitates a range of use cases starting from
personal task management up to agile multiteam meetings. The Backlog supports documentation during
multiteam Planning and Review meetings. The shared Backlog remains adjustable to reflect project dynamics.
Such a Backlog transparently depicts the complete design project tasks and their dependencies. This information
improves task allocation between teams and enables an efficient overall project coordination. Automotive
project sizes require digital tools that provide simultaneous access up to thousands of users. For example, JIRA
by Atlassian is such an IT tool that provides task management for very large projects without reducing usability
for individual team. The multiteam Backlog concept is well suitable for large unit size levels and up to medium
task dependency levels.

The Roadmap and the System Map boundary objects address the large number of teams and a high
level of inter team dependencies in automotive design projects. The term map is used here as a visualization of
information such as different kind of dependencies that facilitates inter team coordination that is easily available
to all designers. Unlike rigid plans or rules the boundary object map is regularly updated during agile meetings
or by responsible individuals. Without displaying all the available information focus is put on information that
improves inter team coordination. Digitalized versions are implemented in tools to improve accessibility and
usability in distributed multiteam systems. Similar visualization boundary objects have been mentioned in
various publications (Dingsøyr, Moe, et al., 2018; Middleton et al., 2007; Tripathi et al., 2015).

The Roadmap is an extension to the multiteam Backlog that specifies at what time larger increments
need to be implemented to ensure overall system compatibility or strategic goals. It strengthens the Backlog’s
ability to estimate future design activities that can be well planned. It also supports effective capacity estimation
and hence improves Backlog prioritization. In agreement with the Backlog principles these future activities
needn’t be specified in detail. These Backlog items additionally include known dependencies to earlier and later
design activities. These dependencies improve Backlog prioritization and allow to reduce or transparently display
inter team dependencies to improve inter team collaboration. Like other Backlog items the Roadmap items are
adjusted according to relevant findings during the Refinement meetings. Especially in automotive this boundary
object enhancement is beneficial since large parts of the overall design effort consist of the product verification

6-114

and product manufacture design. Both design activities are well-predictable and strongly interlinked. The
roadmap is applicable up to a medium unit size level and a medium task dependency level.

The boundary object System or Integration map integrates the product structure and procedural
information. It reflects the overall product architecture including components, modules, and the (physical)
dependencies between them. This product structure is connected to the respective design activities and their
sequence. The corresponding visualization in the System Map improves transparency of dependencies between
components and hence tasks during product design. Teams can rely on the system map during the Backlog
Refinement meeting and the Planning meetings to avoid unnecessary inter team dependencies and to define
remaining inter team dependencies. This information is valuable to the affected teams since they can adjust their
mutual synchronization activities to address such inter team dependencies in advance. Even during the iteration,
the System Map facilitates understanding and management of unexpected dependencies between teams. As a
boundary object the System Map relies on continuous updates which must be incorporated into the design
system to reflect the current system. The system map improves agile design particularly in large and complex
automotive design projects. Especially in the complicated automotive verification process the System Map is
beneficial since many teams must cooperate on highly interdependent tasks. The System Map is applicable to
medium unit size levels and up to large task dependency levels. Teams needn’t understand the complete system
and can focus on design not coordination activities. Still benefits of the System Map must be balanced with the
effort to construct it and keep it up to date. Tripathi et al. proposed a similar digital visualization tool for
multiteam Kanban systems in software engineering to answer to multisite organizations (Tripathi et al., 2015).

Boundary spanning roles are also suitable inter team coordination mechanisms in automotive design.
Responsibility to ensure coordination between teams or different design objectives in a project is located within
a personal role. The SAFe framework proposes the Release Train Engineer and Solution Train Engineer STE roles
to extend the Scrum Master role to larger projects. A central responsibility of such a Project Scrum Master is
inter team coordination. The role connects different teams and facilitates coordination between them. The role
is not attached to a specific team but to the system and a close partner of the respective PO level. It is based on
a system understanding regarding organization structure, design process and product structure. This system
understanding facilitates inter team coordination if teams cannot solve problems independently. The boundary
spanning role is applicable up to a medium unit size level and a medium task dependency level. The project guide
role is close to Project Scrum Master role relying on more traditional project management tools. A similar role is
the system architect role. The role might be implemented by an individual or a team of experts. The architect
predefines the product architecture and proposes architecture guidelines. The role balances the need for overall
architecture interfaces and the ability of the architecture to adjust to findings throughout design. The definition
of the product structure and interfaces between components has a significant influence on inter team
coordination. Specifications of interfaces may lead teams that need to cooperate. The role is necessary in larger
projects to enable teams to focus on specific design tasks. The architect is guided by agile design principles to
avoid inter team dependencies and still allow emergent architecture. The architect role is applicable to the large
unit size level and the high task dependency level.

Cognitive mode inter team coordination mechanisms

The large unit size and the high task dependency in automotive design result in highly interdependent
multiteam systems. The analysed agile cognitive mode coordination mechanisms (section 4.2) are not suitable
to answer to this coordination demand between teams. Personal relations and trust between members of
different teams in multiteam design systems are at a much lower level than required for cognitive mode
coordination since personal exchange happens mostly within and not between teams. Furthermore, the high
level of task dependency in automotive complicates the emergence of shared mental models of the product and
the design process for members of different teams. In a nutshell, the analysed agile cognitive mode coordination
mechanisms are suited for intra team and not inter team coordination. This results in two drawbacks regarding
automotive multiteam design systems. First, cognitive mode coordination mechanisms within teams are less
efficient, since exchange and cooperation within teams are reduced by a larger share of design activities between
teams. Second, team centred cognitive mode coordination mechanisms are not suitable for inter team
coordination. To address this flaw in agile coordination strategies in automotive design, cognitive mode inter
team coordination mechanisms have been tested and evaluated throughout the pilot projects.

6-115

Teams across teams represent the opportunity to transfer cognitive mode coordination from intra team
coordination to inter team coordination. Such teams include role bearers, or team members across teams and
integrate them into stand-alone or additional agile teams. Within these cross-section teams cognitive mode intra
team coordination mechanisms are applicable and result in inter team coordination, since the team members
remain interfaces to their original teams. Requirements of cognitive mode coordination such as mutual
knowledge, personal trust, shared mental models, shared goals longevity and common grounding (Cannon-
Bowers and Salas, 2001; Kang et al., 2006) must be provided within these teams. The cross-section team concept
is based on the compromise that some team members are part of two teams. This allows to transfer cognitive
intra team coordination mechanisms into inter team coordination mechanisms but also results in drawbacks.
Affected individuals must divide their attention between two teams and attend two meeting structures, which
decreases efficiency of cognitive mode intra team coordination mechanisms in both teams. The balance between
intra team and inter team coordination must be chosen according to project characteristics. Nevertheless, agile
role bearer teams and specialized design teams have been proven successful as cognitive mode inter team
coordination mechanisms throughout the pilot projects.

Agile role bearer teams transfer agile role responsibilities from individuals towards a team. Such teams
function like regular design teams and address excessive workload and complexity that are not manageable by
individuals. But foremost these agile role teams answer to strong inter team dependencies that require close
collaboration between design teams. Bass and Haxby describe tailored Product Owner teams that address inter
team coordination in large scale agile design projects (Bass, 2015; Bass and Haxby, 2019). In the pilot projects
Product Owners of different design teams collaborated closely within Product Owner teams to manage design
projects that consist of multiple components and respective teams. Especially if dependencies between these
components are high such close collaboration of the Product Owner role is beneficial. Like other agile teams the
Product Owner teams follow agile rules and require an agile coach and a leading Product Owner. Even though,
the Product Owners collaborate within their cross-section teams and fulfil their role as a team, the connection
to their own teams remains unchanged to ensure that the agile design teams remain unaffected. The close team
setup within the Product Owner teams allows to address inter team dependencies at the Product Owner level.
Dependencies are considered during generation and distribution of tasks to facilitate cooperation on the team
level or avoid inter team dependencies. Scrum Master or agile coach teams follow the same concept have been
proven beneficial as well. Agile role bearer teams improve inter team coordination for high task dependency and
medium unit size levels.

Specialized, integrative design teams consist of a cross-section of experts of a similar functionality from
other design teams. They ensure certain characteristics for the whole product across design teams in a design
project. Like agile role bearer teams these specialized design teams are agile teams with a much higher level of
collaboration and exchange than Communities of Practice. In automotive design integration teams that are
responsible for product integration and verification have been proven very beneficial. Further specialized design
teams have been architecture teams that specify and maintain a common product architecture throughout the
design project. Often team members of the architecture team spend more time in the architecture teams than
within their original teams, because of the relevance of a common product architecture. Other teams are
generated for a limited period like system teams that establish necessary infrastructure such as a tooling system
to improve design activities across their original design teams. Even though these teams are limited in time they
require at least several months to grow into a team and benefit from the cognitive mode intra team coordination
mechanisms.

6-116

6.2.1.3 Applicability agile inter team coordination mechanisms in automotive design
In section 6.1.1 coordination determinants have been deduced for automotive design projects in

comparison to software design projects. Especially higher unit size and task dependency levels have decreased
the applicability of agile coordination strategies in automotive since respective inter team coordination
mechanisms were lacking. Throughout the pilot projects agile inter team coordination mechanisms were
evaluated regarding their applicability in automotive design. The spectrum of presented agile inter team
coordination mechanisms across coordination modes are summarized and evaluated regarding applicability for
unit size and task dependency levels in Figure 27.

Figure 27: Overview of suitable agile inter team coordination mechanisms in automotive design according to task dependency and unit size
levels of the design project. The location in the graph reflects the upper limit of the applicability regarding both task dependency and unit size.

Figure 27 shows that a spectrum of agile inter team coordination mechanisms have been applied and
evaluated to answer to the coordination demand in agile automotive design projects. As a set they answer to
both large unit size and task dependency levels but within the underlying coordination modes their applicability
is distinct. Impersonal mode inter team coordination mechanisms improve coordination for large unit size levels
in large multiteam projects, but they are limited to medium task dependency levels. While they provide
information independent of the number of participating teams, they lack detail for more complicated task
dependency activities. Group mode inter team coordination mechanisms answer well to medium unit size and
task dependency levels. These large meetings are limited regarding the number of teams that can be integrated
due to the group-based information exchange which is inefficient for large teams. The community of practice
concept allows to increase the number of teams since only team representatives are invited but is also limited
for very large design projects. The synchronized design cycle concept is independent of the unit size and task
dependency a generally applicable facilitator for other group mode inter team coordination mechanism.
Boundary spanning objects and roles such as the Roadmap and System map improve inter team coordination up
to high task dependency levels. But they are limited to a medium unit size level with some boundary spanning
roles such as the system architect being able to address even larger systems. As boundary spanners these inter
team coordination mechanisms are limited to a range of design objectives between teams and cannot be
extended further since they turn unspecific in the process and lose coordination value to all teams. Individual
mode inter team coordination mechanisms are suitable for medium to high task dependency levels but only up
to medium unit size levels. Personal exchange is facilitated between teams independent of their location and the
total number for high task dependency levels. For larger number of teams this inter team coordination
mechanisms needs to be linked to more efficient coordination modes.

6-117

The overlapping between inter team coordination mechanisms and modes opens the opportunity to
apply different coordination mechanisms for similar design activities. This allows to choose coordination
mechanisms not only according to their general applicability but also regarding further aspects such as project
dynamics or coordination system connectivity.

6.2.1.4 Connectivity between agile inter team coordination mechanisms
In section 4.3 it has been shown that benefits of agile product design can be derived from the underlying

coordination system. The efficiency and flexibility of an agile coordination systems is based on the connectivity
of different coordination mechanisms to establish a coordination system that flexibly answers to dynamic project
characteristics. Coordination mechanisms must be interlinked to support this property. Therefore, to re-establish
agile coordination strategies in multiteam automotive design projects both inter team coordination mechanisms,
and the systemic behaviour of the adjusted coordination systems are relevant. This means that inter team
coordination mechanisms must be connected to other inter team and intra team coordination mechanisms to
ensure coordination system consistency and hence flexibility.

In multiteam automotive design group and impersonal mode inter team coordination mechanisms are
connected centrally and provide the foundation of the adaptive agile coordination system as depicted in Figure
28. In the following section the connections between these coordination mechanisms are described.

Figure 28: Interlinkage system of inter team coordination mechanisms in agile automotive design. Group mode and impersonal mode are the
crucial coordination modes.

The agile group mode inter team coordination mechanisms are multiteam agile meetings, agile role
bearer meetings and communities of practice. These meetings are directly connected to the impersonal mode
inter team coordination mechanisms synchronized design cycle, multiteam backlog, hierarchies of agile roles and
information and distribution systems. Multiteam coordination meetings are only possible if all participating
teams agree on a synchronized design cycle with the multiteam meetings as continuous pacemaker between and
within the cycles. Furthermore, the multiteam meetings are directly connected to the multiteam backlog.
Throughout the meetings the interdependent issues within the multiteam backlog get either refined, prioritized,
distributed, or reviewed. The multiteam backlog is the central input source for the multiteam meetings and
requires the meetings as adjustment mechanisms. Findings and decisions from the meetings are documented
within the Backlog or Wikis. The multiteam meeting structure also mirrors the agile role hierarchy. Throughout
the shared sessions the leading PO structures design activities across teams, while the other POs are responsible
throughout the parallel sessions with fewer teams participating. Differences between multiteam meetings, agile
role bearer meetings and communities of practice allow to address different unit size and task dependency levels
as shown in Figure 27. The participation of the same roles, or teams and the application of the same boundary
objects ensures that the meetings are interlinked as well.

Boundary spanning inter team coordination mechanisms are directly connected to the agile multiteam
meetings. The boundary objects Roadmap and the System map are used to transparently depict organizational,
procedural and architectural dependencies in the meetings which facilitates task priorization and distribution.
Like the multiteam backlog, the boundary objects are adjusted throughout and after the meetings according to
the latest findings. This mutual dependency between multiteam meeting and boundary object coordination
mechanisms ensures both efficient meetings despite little personal exchange between teams with divergent
design objectives as well as updated boundary objects. The multiteam meetings also connect the Roadmap,
System map and the multiteam backlog. Far reaching and less specific information from the latter objects is

6-118

transferred through the multiteam refinement and planning into short-team, unambiguous design activities in
the multiteam backlog. Boundary spanner roles are also integrated into the multiteam meetings. The project SM
is responsible for the multiteam meetings and structures them to improve the overall coordination system.

But the multiteam meetings are also connected closely to the cognitive mode inter team coordination
mechanisms. Cross-section design teams participate in the multiteam meetings like regular design teams. These
meetings are ideal connectors to directly address inter team dependencies with all involved design teams. The
agile role meetings on the other hand are necessary for agile role bearer teams to collaborate and synchronize
between teams. The less structured group mode inter team coordination mechanisms communities of practice
can be transformed into cross-section teams if the task dependency level increases and vice versa if the task
dependency level decreases. Unlike in intra team coordination, cognitive mode inter team coordination
mechanisms are not suitable to provide a central integrative coordination function in multiteam systems. Cross-
section teams and role bearer teams are cognitive mode inter team coordination mechanisms but they cannot
provide the same implicit coordination integration as in small scale applications. Individual mode inter team
coordination mechanisms require group or impersonal mode inter team coordination mechanisms to distribute
information. Multiteam meetings or Wikis are both suitable mechanisms.

In summary, agile inter team coordination mechanisms show a similar ability to generate interlinked
coordination systems as intra team coordination mechanisms do in autonomous teams. This ability allows to
realize coordination flexibility and efficiency in large scale applications. Furthermore, the agile inter team
coordination mechanism are connected to the established agile intra team coordination mechanisms. This
connection realizes a balance between intra and inter team coordination to ensure the continuity of high-
performance characteristics of agile, autonomous teams. Bass and Haxby emphasis that “as soon as self-
organizing teams work together, they must sacrifice some level of autonomy” (Bass and Haxby, 2019). Therefore
the alignment between autonomous teams and their focus on intra team coordinating mechanisms with a
multiteam system goal and its focus on inter team coordination remains a compromise that affects the
coordination efficiency of both (Moe et al., 2021).

6-119

6.2.2 Technological enablement of agile coordination strategies
The aim of this subchapter is to describe how new design technologies such as Generative Design can

enable existing agile coordination mechanisms to match the coordination determinants in automotive design.
This extension to the set of inter team coordination mechanisms from section 6.2.1 is presented as an alternative
scenario to answer research question three: How to enable agility in automotive product design? The subchapter
is based on the publication of Schrof et al. about technology enablement of agile automotive design (Schrof et al.,
2019). Such technology driven enhancements of coordination mechanisms allow to maintain the simplicity of
existing agile coordination strategies regarding the number of coordination mechanisms and hence avoid
unexpected side effects of new coordination mechanisms. Furthermore, the technological empowerment of
individual coordination mechanisms leads to a shifted balance of coordination modes within agile coordination
strategies. Additionally, this subchapter exemplarily shows how similar design technologies might be analysed
and evaluated regarding their impact on agile coordination strategies. Such an evaluation improves design
technology selection and combination for practitioners.

The subchapter is subdivided into four sections. First, a comparison to the previous coordination strategy
adjustments is drawn to further differentiate the opposing concepts. Second, the product verification process and
the applied coordination strategy in automotive design is recapitulated to clarify obstacles to test-driven
development, continuous integration, and continuous testing design practices. Third, Generative Design as new
design technology is described. Lastly, Generative Design is analysed regarding its benefits to an agile
coordination strategy.

The presented adjustments of agile coordination strategies to automotive design determinants focused
on additional inter team coordination mechanisms within the original combination of coordination modes. These
coordination mechanisms supplement the original set of agile coordination determinants and hence enlarge the
initially lightweight agile coordination systems. An alternative approach is to employ new design technology to
extend and improve existing coordination mechanisms to meet the requirements of automotive design. This
approach allows to enhance the original agile coordination strategy and avoid additional inter team coordination
mechanisms. In the presented case the employed technology Generative Design increases the functionality of
test-driven development, continuous integration and testing as impersonal mode coordination mechanisms in
automotive even beyond their original level in software design. The coordination mechanism improvements are
of such relevance that the complete coordination mode balance shifts toward impersonal mode coordination. In
Figure 29 the tunnel instead of a somehow modified bridge across a broader river exemplarily shows how a new
functionality provides an unexpected solution space.

Figure 29: The second scenario to enable agility in automotive design introduces a new design technology that allows to develop the
automotive product like software despite its physicality. It opens a new solution space “below” the original functionality of agile coordination
strategies.

The complexity and interdependence of the automotive product and the scale of the respective design
system require an interconnected verification system that must integrate a spectrum of verification objectives
of different design disciplines. Both digital and hardware prototypes are necessary to ensure the required
product quality. In practice, this results in a complex verification system which requires cooperation between all
involved teams. Throughout this integration and verification process group mode and individual mode
coordination mechanisms are employed as dominant coordination modes to answer to the level of complexity
and number of stakeholders. Additionally, impersonal mode coordination mechanisms such as rules, standards
are applied. Together these mechanisms result in a multi-layered and not necessarily transparent coordination
strategy in automotive product verification. Consequently, the coordination system slows overall design progress
and is prone to distribute incomplete information. Experiences throughout the pilot projects have shown that
automotive design lacks the necessary technology and IT systems for automated test-driven development

6-120

(Beck, 2003). Causevic et al. also emphasis such domain particularities and insufficient tool support as central
prohibitors of test-driven development (Causevic et al., 2011). Findings from a case study of a scaled agile product
design project confirm that immature software integration tools and infrastructure can result in serious efficiency
losses in overall product design (Sutherland and Frohman, 2011). In automotive design necessary continuous
integration and testing (Beck, 2003) platforms are not standardized like in software design. For this reason, only
a small share of the digital verification system is automated and continuously connected. Their size is not
sufficient to reduce coordination effort and increase coordination efficiency significantly.

Despite the lack of standardized continuous integration and continuous testing infrastructure in
automotive design new design technologies such as Generative Design are developed that provide similar
functionality. Generative Design is employed as an umbrella term for the combination of automated design
practices such as topology optimization (Bendsoe and Sigmund, 2004) and Vertex Morphing to design 3D
geometries (Tyflopoulos et al., 2018). Instead of manually starting and evaluating each design cycle, algorithms
automatically run a defined number of iterations according to prespecified objective functions and restrictions
until the desired optimization has been reached or unexpected results require interference by a designer.
Interfaces to neighbouring components are addressed in the design restriction. Such design practices go beyond
the original continuous integration and testing practices since the need for designers to plan, start and evaluate
each iteration is no longer necessary.

Without the designer interaction active coordination between designers is not necessary anymore.
Relevant information remains within the optimization system until manual adjustment is necessary or an interim
result requires evaluation. The digitalized design system also reduces the number of necessary stakeholders
regarding the spectrum of relevant specializations since they are integrated into the algorithm. It allows to start
the design optimization with incomplete objective and restrictive functions. They are adjusted throughout the
optimization which increases the flexibility of the design process. Another benefit is the ability to provide digital
prototypes at any time to for example improve costumer integration. Such automated design systems are
continuously expanded to integrate a larger share of the automotive product. This allows to reduce explicit
coordination activities between teams that used to be responsible for separated parts of the product. In
automotive such new design technologies require a digitalized design process and a continuous tool chain. The
current combination of digital and hardware prototypes limits the possibilities of digitalized design approaches.

Generative Design or similarly revolutionary design approaches such as Additive Manufacturing have a
tremendous influence on agile coordination strategies. From a coordination perspective Generative Design is
the equivalent of test-driven development, continuous integration and testing and hence an implicit impersonal
mode coordination mechanism. Its automatization of design activities provides very efficient coordination. It
integrates intra and inter team dependencies. Furthermore, it replaces currently necessary intra and inter team
coordination activities since explicit coordination is only requested within and between teams if necessary. Its
ability to provide results and prototypes as requested connects it well with group mode coordination
mechanisms such as project meetings and boundary object coordination mechanisms based on prototypes.
Furthermore, it triggers task specific individual mode coordination between the relevant designers further
increasing coordination efficiency. This goes beyond the functionality of the original coordination mechanisms
continuous integration and testing as intended in the agile method XP. These capabilities allow to change the
agile coordination system to a next level.

Implicit impersonal mode coordination replaces group mode coordination as central integrative
coordination mode. The agile coordination strategy balance moves towards impersonal mode coordination since
functionalities of former group mode coordination are integrated in impersonal mode coordination. In general,
coordination efficiency increases once the system is installed and running. Still, some effort is necessary to
update and maintain the system. Coordination efficacy also increases since more coordination happens implicitly
within the system and explicit coordination is only requested if necessary and not as a standard. The flexibility of
the new coordination strategy remains high since the system directly responds to bugs or changes. This
coordination flexibility confirms the request of dynamic coordination systems of Jarzabkowski et al.
(Jarzabkowski et al., 2012). Nevertheless, larger updates to the system might negatively affect the coordination
flexibility.

6-121

In summary, new design technologies might re-establish or even improve existing agile coordination
mechanisms to match changes in coordination determinants. This facilitates the transfer of existing agile
coordination strategies to new application contexts. In the case of automotive design, the technology Generative
Design allows introduce test-driven development, continuous integration and testing to the application context
in spite of the existing constraints of scale and physicality. Similarly, technologies like Additive Manufacturing
also the potential to improve agile coordination strategies.

6-122

6.2.3 Product architecture influence on agile coordination strategies
The aim of this subchapter is to explain how changes to the product architecture present an alternative

strategy to enable agile coordination strategies in automotive design. The in subchapters 6.2.1 and 6.2.3
presented strategies to enable agile automotive design were based on adaptions of agile coordination strategies
to match automotive coordination determinants. Simply put, they adapted the solution to a changed problem.
The inverse strategy would be to adjust the problem and maintain the existing solution. In Figure 30 the increasing
water flow is kept in the same river width by increasing its depth.

More specific this alternative implies the adjust automotive coordination determinants to agile sweet
spot conditions (Boehm, 2002; Kruchten, 2013) and employ existing agile coordination strategies. If the
coordination requirements are closer to the original software application context agile coordination strategies
will probably function as expected. Changes in the product structure are an indirect option to influence the
coordination determinants. The product structure has a large influence on dependencies between components
and hence on dependencies between tasks and teams. It also influences team composition and unit size due to
the necessary expertise to design components and operate interfaces between components. This approach to
enable agility in automotive design is straight forward for practitioners. Changes to the modularization strategy
of the product might are easier to implement than the introduction and maintenance of additional inter team
coordination mechanisms or new design technologies. It opens an alternative opportunity to improve agility in
product design.

This subchapter is divided into six parts. First, the connection between product architecture and
organization structure is explained. Second, the definitions of product architecture and modularization in product
design are described. Third, agile core principles are matched with corresponding modularization characteristics
to realize a suitable modularization strategy. Fifth, a combination of existing modularization methods is described
to realize the developed modularization strategy. Sixth, the changes of the modularization of the product are
analysed regarding their influence on agile coordination strategies.

Figure 30: The third scenario to enable agility in automotive design focuses on changing the experienced coordination determinants. The
deeper river reflects changes to the modularization structure of the product to support agile core principles and hence recreate agile sweet
spot condition coordination determinants.

In 1968 M. Conway published a correlation between the organizational and the product architecture:

"[...] organizations which design systems [...] are constrained to produce designs which are copies of the
communication structures of these organizations." (Conway, 1968).

This correlation is known as Conway’s law today and has been proven empirically by MacCormack et al.
in their mirroring hypotheses publication (MacCormack et al., 2012). The described correlation is bidirectional.
The technical product architecture also influences the functionality of the organization structure. Hatch et al.
showed that changes in technical product structure require changes to the corresponding organizational
structure (Hatch et al., 2001; Henderson and Clark, 1990). Bowman et al. emphasized the importance between
organizational and technical structures since the organizational structure determines the distribution and
availability of tacit knowledge (Bowman and Holt, 1998) which predetermines possible coordination structures.
To take advantage of this correlation Schrof and Paetzold (Schrof and Paetzold, 2019) propose a product
architecture modularization approach that reflects agile organization principles in the product modularization.
As a result, it minimizes organizational inter team dependencies and reduces unit size by changing the given
product structure. A similar approach has been termed “Inverse Conway Manoeuvre” by Skelton and Pais
(Skelton and Pais, 2019).

6-123

The product architecture defines the properties, functionalities and characteristics of a product based
on the product structure and functional structure (Krause and Gebhardt, 2018). The product structure is defined
as the hierarchical decomposition of a product into physical modules and components and the interfaces
between them (Pahl and Beitz, 2021). The functional structure connects product functions to components. Figure
31 depicts the relation between product architecture, product structure and functional structure. Modular
product structures emphasise intra-modular coupling and inter-modular decoupling of dependencies. Göpfert
divides four classes of product modularization (Göpfert, 1998). Integral product architectures have low functional
and structural independence between modules. Modular product architecture on the other hand aim for
structural and functional independence between modules. Between both bookends are functionally modular
product architectures which are physically coupled and physically modular product architectures that are
functionally coupled. The modularization process structures components and combines them into modules. It
includes the definition of physical and functional interfaces between modules. Module driver represent certain
characteristics of the aspired structure and influence the modularization process. They emphasis functional,
technical or organizational aspects during the modularization (Göpfert, 1998). Krause et al. present an overview
of different modularization methods (Krause and Gebhardt, 2018).

Figure 31: The product architecture maps functions to different components which are combined into modules. Inter team coordination
problems (e.g. team 3 and four in module 1) are avoided if modules and teams are matched.

Agile product design is based on core concepts (Baham and Hirschheim, 2021) and principles (Beck and
Beedle, 2001) which depend directly on the product architecture. The following section details requirements of
agile design on product architecture and module structure features. Compact, self-organized, responsible, cross-
functional, co-located and stable teams are at the core of agile product design. Ideally, these agile teams are
responsible for adequately sized product modules regarding both necessary expertise and workload. In
automotive this would translate to smaller modules and a limitation of required specialization spectrum for each
module. To allow self-organized and independent teams such modules must be largely decoupled, and remaining
dependencies or external expertise requirements must be transparently described in interface definitions.
Ideally, the module structure defines clear interfaces and given requirements around any module to enable
independence between teams responsible for modules. Short iterations that are employed in a continuous
cadence for synchronization are emphasized in most agile frameworks. Module and hence increment size have
a strong influence on the practicability of such short time periods. The continuous and automated integration
of increments in product verification as an impersonal coordination mechanism requires precise interface
definitions to facilitate automated product integration and testing. The respective verification system would have
a strong influence on the overall product quality since it guarantees a functioning system of modules despite
their independence on module level. It would also alert designers if systems of or interfaces between modules
deviate from expected performance. Continuous customer validation on the other hand requires the module
structure to mirror costumer value to establish a direct link to customer integration. Additionally, agility in
product design emphasises the ability to adapt quickly to internal or external change. The product architectures
must be able to answer to changes and adapt its structure accordingly. This implies change within given module
structures but also includes change of the modularization structure. Such adaptions require several modules to
change collectively and might result in additional modules, removal of modules and change of existing module
structure. The overall product architecture must also provide uniform product maturity across modules to ensure
findings are exchanged between modules as long as changes are still feasible.

6-124

In summary, the ideal automotive product structure to enable agility in product design consists of
compact, decoupled modules that suit the expertise and capacity of agile teams and allow relevant increments
in the chosen iteration cadence. Standardized interfaces between these modules facilitate continuous
integration and testing of the overall product in iterative product verification. These interfaces also standardize
exchange between modules and teams to facilitate inter team cooperation. The chosen module structure must
also represent costumer value to guarantee customer validation. The whole product structure must be able to
change according to internal or external impulses.

Two suitable modularization methods to realize these requirements are the Integration Analysis
Methodology of Pimmler and Eppinger (Pimmler and Eppinger, 1994) and the Methodological support for system
building of Göpfert and Steinbrecher (Göpfert and Steinbrecher, 2000). The Integration Analysis Methodology
evaluates the coupling between components and generates modularization concepts. The regarded connections
at interfaces are local distribution, energy, information and material. These criteria are evaluated with the Design
Structure Matrix (Steward, 1981). Every combination of components is evaluated in the weighted four
dimensions. The resulting design structure matrix allows to define modules accordingly.

The Methodological support for system building modularization method aspires functional, technical,
and organizational decoupling of modules. It relies on five sequential steps. First, definition of premises
(requirements, interfaces, organizational suitability). Second, generation of technical (functional and structural)
modularization alternatives. Third, evaluation and selection of a technical alternative. Fourth, generation of
organizational modularization alternatives, based on the technical modularizations. Fifth, evaluation and
selection of overall solution. To adapt the automotive product architecture according to the presented agile
design principles a combination of both modularization methods is proposed. The structure of such a hybrid
method follows Göpfert’s combined modularization of organization and product, while the evaluation of the
possible modularization options relies on the Integration Analysis Methodology of Pimmler. The evaluation
criteria of the Design Structure Matrix are complemented by the module driver agility in design which reflects
the presented agile design principles. This implies that module sizes and connections between modules are
structured in a way that facilitates agile coordination structures significantly. Göpfert’s five step approach is
adapted as a frame for the updated Integration Analysis Methodology. Assuming given agile organization
structures implies that certain specifics of the organizational modularization are fixed before the technical
modularization. Step four and step three are therefore merged and reflect technical and organizational priorities
in the selection of a shared modularization approach.

From a coordination perspective the modularization of the product architecture is crucial to changes in
coordination determinants. Regarding task dependency the decoupling of the modules decreases inter team
dependencies and emphasises intra team dependencies. This allows a focus on original agile coordination
strategies based on mutual adjustment and cognitive mode coordination within teams. The modularization
according to team expertise further reduces inter team dependencies since less team external expertise needs
to be integrated. The standardization of interfaces between modules allows to implement automated impersonal
mode coordination mechanisms for inter team dependencies. Modules in automotive cannot be decoupled
completely due to the described physical dependencies and the necessary integration and verification system.
But standardized interfaces allow to channel coordination between responsible teams more efficiently. The
effective unit size is also affected by the changes. While the overall project size remains unaffected, more
compact module sizes allow for smaller teams per module. Still, standardized module interfaces allow a reduction
of inter team cooperation efforts. While the total number of teams increases, the coordination determinant unit
size decreases since less designers work in interdependent projects. In summary, the presented modularization
strategy reduces the coordination determinants task dependency and unit size close to their original agile sweet
spot levels. This reorganisation of the product architecture improves the suitability of agile coordination
strategies to automotive application contexts.

6-125

6.2.4 Findings in response to research question three
In the introduction chapter automotive design is described as being object to an increasingly faster

changing design environment. Conventional and established design practices are no longer able to answer to
these dynamics. Agile design was developed to answer to a similar challenge in software design two decades
ago. The objective of the thesis at hand is to determine if agile design can be a solution for automotive design
despite the differences between both industries. Research question three asks for strategies to realize agility in
automotive design that account for the fundamental differences: How to enable agile product design in the
automotive domain?

The answer to research question three requires a linkage of the earlier findings. Chapter 4 shows that
the reported benefits of agile methods are related to the respective coordination strategies. The lightweight agile
coordination strategies ensure flexibility, efficiency, and efficacy in product design. Contrary to these findings
chapter 5 summarizes negative experiences and problems of employed agile methods in automotive design. It
emphasises that constraints of physicality and scale reduce the applicability of agile methods in automotive
design. Both require multiteam design cooperation in contradiction to the original agile focus intra team
cooperation.

The experienced problems are further differentiated in subchapter 6.1 with a focus on the
dysfunctionality of the respective agile coordination strategies in automotive design. The findings clearly indicate
that the constraints of scale and physicality are linked to coordination determinants in automotive that differ
significantly from agile sweet spot conditions. The original balance of agile coordination modes and the
respective set of coordination mechanisms does not match these automotive coordination determinants. More
specifically, the employed agile coordination strategies lack inter team coordination mechanisms to apply to the
multiteam design system. Furthermore, the connectivity of the agile coordination systems suffers which results
in a decreasing self-adjustment ability of the coordination system. The coordination specific analysis allows to
explain and differentiate the experienced loss in flexibility, efficiency, and efficacy with the dysfunctionality of
agile coordination strategies in automotive design.

In subchapter 6.2 three distinct scenarios are discussed to re-establish agile coordination strategies and
hence agility in automotive design. They respond directly to research question three. These scenarios differ
regarding their basic approach to enable agile coordination strategies in automotive design. Scenario one intends
to recreate agile coordination strategies in accordance with automotive coordination determinants. Agile inter
team coordination mechanisms are introduced and the connectivity of the coordination system is re-established.
Scenario two employs a new design technology to enable existing impersonal mode coordination mechanisms
to match coordination determinants in automotive design. Additionally, the balance of agile coordination modes
is reconfigured. Scenario three addresses automotive coordination determinants. Changes to the product
architecture allow to adjust automotive coordination determinants to better match the original agile
coordination strategies.

Table 12: Implemented and evaluated agile inter team coordination mechanisms throughout pilot projects.

Group
mode

Individual mode Impersonal mode Boundary spanning Cognitive mode

Scaled agile
meeting

Instant messaging, video
conferencing

Agile role hierarchy Roadmap,
System map

Agile role bearer team

Agile role
bearer meeting

Team member rotation Documentation, and
information distribution
system

Boundary spanning role Specialized design
team

Community of
Practice

 Automotive specific
Definition of Done

Multiteam Backlog Integrative design
team

Scenario one addresses the lack of agile inter team coordination mechanisms in multiteam project
settings in automotive design. It presents agile inter team coordination mechanisms which have been tested and
evaluated throughout the agile pilot projects. Table 12 summarizes the implemented inter team coordination
mechanism according to the respective coordination mode. The employed inter-team coordination mechanisms
have been compared to similar practices from scaled agile methods such as SAFe and LeSS and to the current
scientific literature of large-scale agile software development. Compared to agile sweet spot conditions

6-126

automotive coordination determinants differ in the larger unit size and task dependency. The set of agile inter
team coordination mechanisms has been evaluated and matched regarding their applicability on both unit size
variations and task dependency variations in multiteam design system. Additionally, the connectivity of the new
set of intra and inter team coordination mechanisms has been reaffirmed to ensure the flexibility and self-
adjustment ability of the resulting agile coordination strategies. These characteristics are central to the capability
of agile coordination strategies to adjust to changing project dynamics.

Scenario two employs Generative Design as a design technology to automatically and independently
run iterative design cycles to generate 3D topologies according to prespecified objective functions and
restrictions. From a coordination perspective this technology allows to realize continuous integration and testing
coordination mechanisms across several teams. Unlike the original agile practices which include test driven
development and requires designers to design and evaluate every iteration manually the new approach allows
the system to run as many iterative design cycles as necessary to realize the desired output. Designers are only
addressed if manual interaction is required, or interim results need evaluation. This implies that continuous and
frequent coordination activities between different teams that were necessary to realize components
cooperatively are no longer necessary, since the design algorithm integrates the relevant design objectives.
Coordination efforts are reduced, and coordination efficiency increases significantly while coordination efficacy
remains strong. Furthermore, the new design technology reduces necessary inter team coordination and hence
allows to adjust the balance of coordination modes within agile coordination strategies from mutual adjustment
towards impersonal mode coordination like the approach in software only design.

Unlike scenario one and two scenario three aims to change the coordination determinants in
automotive design and not the coordination systems. Changes to the existing product modularization structure
are implemented to match it with agile organization setups. Module size, necessary specializations for module
design activities and module interdependencies are adjusted to reflect the core concepts of agility in design.
Existing modularization methods are changed to reflect agile design as an additional modularization driver. The
implemented change to the product modularization approximates automotive to agile sweet spot coordination
determinants. This improves suitability of existing and proven agile coordination strategies in automotive design.

The three scenarios are presented in subchapters 6.2.1, 6.2.2, and 6.2.3 as independent and distinct
concepts to enable agile coordination strategies and hence agility in automotive design. Nevertheless, they are
not exclusive and may well be combined in practical applications to obtain optimal results. One paradox of
product design as proposed by Paetzold et a. (Paetzold et al., 2017) states that the same exact results of a
development process is never expected twice, because development processes are different in each case.
Therefore, a single ideal solution is improbable for a spectrum of slightly varying application contexts. Whereas
a set of approaches allows to tailor a suiting solution for specific requirement. Furthermore, pilot projects
indicate a beneficial mutual influence of scenarios one and three onto each other.

Regarding the core concepts of agility scenario one and two and to a minor degree scenario three
considerably reduce the autonomy of self-organized teams to enable cooperation across teams as predicted by
Bass and Haxby for large agile projects (Bass and Haxby, 2019). Even though, this implies a reduction of the agility
of individual teams it increases the overall agility of multiteam design systems and therefore presents a possible
optimum in automotive design. In such a system behaviour the benefits of autonomous, empowered teams are
inferior to the benefits of alignment as questioned by Moe et al. (Moe et al., 2016).

From a research perspective the presented scenarios one, two and three are iteratively designed research
artifacts connecting the theoretical product design fields coordination theory and agile product design. These
artifacts might well be analysed from different theoretical perspectives for further evaluation and borrowed to
further empiric application fields.

7-127

 Conclusion

“Science never solves a problem without creating ten more.”
 George Bernard Shaw

This chapter concludes the thesis by summarising the key research findings in relation to the research
questions and discussing the value and contribution thereof. The aim of this thesis is to investigate and enable
agility in automotive design contexts. An Action Research methodology was chosen to approach this aim. Agile
product design methods and practices were employed, evaluated, and adjusted throughout eleven automotive
design projects. The findings show that agile methods are object to constraints in the automotive domain. These
constraints are driven by the physicality of the product and scale of the development process. Both factors result
in multiteam design systems instead of independent autonomous teams and hence require inter team
coordination mechanisms. The research highlights the efficiency of agile coordination strategies to explain the
empirically proven benefits of agile methods. Nevertheless, original agile coordination strategies were adjusted
to autonomous teams and therefore lack inter team coordination mechanisms necessary in automotive design.
To realize agility in automotive design three adjustment scenarios of agile coordination strategies are introduced
to cope with the domain specific coordination requirements.

The conclusion chapter is subdivided into five sections. In the first section, the findings are summarized in
relation to the research questions. The second section defines the research contribution and emphasises what
new knowledge has been added. The third section addresses research limitations, and the fourth section provides
opportunities for future research. The last section concludes the thesis with a closing summary.

7.1 Response to the research questions
The first research question “How to explain agility and its benefits theoretically?” was approached by

three sequential steps. First, the selection of an appropriate design theory that reflects agile design
characteristics and functionality. Second, the development of a design theory grounded research model that
suits the research aim, data availability, and the research project restrictions. Third, the evaluation and
comparison of popular agile methods and their empirically reported benefits according to the research model.

Dingsøyr et al. stated in a review of agile design that the theory behind agile design is multifarious and a
holistic explanation why agile works does not exist (Dingsøyr et al., 2012). Different design theories have been
applied successfully to explain specific aspects of agile design. Several studies rely on coordination theory to
reflect on and explain agility in design (Dingsøyr, Bjørnson, et al., 2018; Pries-Heje and Pries-Heje, 2011; Strode
et al., 2011). The four core concepts of agility involve and specify coordination between changing parties which
underlines its importance (Baham and Hirschheim, 2021). The focus on personal exchange and communication
in the Agile Manifesto for Software development (Fowler and Highsmith, 2001) underlines the relevance of
coordination to realize agility in design. Coordination theory is also central to evaluate and enable inter team
cooperation which is crucial in automotive design. More specifically, coordination theory enables to analyse and
optimize the balance between team autonomy and system dynamics in agile multiteam systems. Additionally,
coordination theory models respect dynamic system behaviour which allows to analyse how change and
disturbances affect design systems. This ability is key to inflict change and understand its impacts in the chosen
Action Research methodology. It also aides to explain the experienced constraints in agile automotive design.
For these reasons coordination theory was chosen as the underlying design theory for this study.

The practical application of coordination theory in the research project required the development of a
research model. This coordination reference model was shaped according to the coordination strategy concept
(Li and Maedche, 2012; Strode et al., 2012). The coordination strategy defines coordination determinants in
relation to project characteristics and relates suitable coordination modes and respective mechanisms to realize
coordination efficiency. Changes to the coordination determinants or the integration conditions lead to
adjustments of the coordination mechanisms. The research model is based on the model of Van de Ven et al.

7-128

(Ven et al., 1976) and follows its selection of the coordination determinants task uncertainty, task dependency
and unit size. Still, alterations to the original model were added to better reflect agile design characteristics.
Cognitive mode coordination (Espinosa et al., 2004) was integrated to better reflect cooperation in close teams
and boundary spanning coordination through boundary objects (Star and Griesemer, 1989) was added to explain
the functionality of design artefacts in agile methods. Additionally, the model was designed to account for mutual
connections between coordination mechanisms to analyse the system behaviour of interlinked agile practices.
These adjustments enable the coordination reference model to analyse coordination strategies of agile methods.
The deduced coordination strategies allow to decompose the system behaviour of the respective agile methods
and explain reported benefits. Furthermore, the coordination reference model enables to explain
dysfunctionalities in agile coordination strategies caused by external impacts or unsuitable coordination
determinants. Both aspects are crucial to trace agile constraints.

The application context independent analysis of agile coordination strategies revealed characteristic
patterns which reoccur across popular agile methods. They differ distinctively from conventional automotive
design methods regarding their focus on undisturbed collaboration in autonomous, self-organized teams. The
avoidance of external dependencies and the focus on intra team coordination results in excellent intra team
coordination efficiency. This set-up ideally supports cognitive mode coordination mechanisms in daily
cooperation. They require few explicit coordination activities and result in efficient, fast, and flexible
coordination within teams. Besides implicit cognitive mode coordination mechanisms explicit group mode
coordination mechanisms are emphasized to structure design projects. They provide efficacy, synchronization,
knowledge exchange and learning in teams. Impersonal mode coordination mechanisms in the form of boundary
objects are also complemented to ensure coordination efficiency. Some agile methods realize implicit impersonal
mode coordination such as continuous integration and testing through the employment of respective IT systems.
Unlike implicit cognitive mode coordination mechanisms, they are not restricted to small teams but also apply
to multiteam systems.

Nevertheless, the deduced selection of coordination modes alone could not sufficiently explain the
experienced benefits. The connectivity between the coordination mechanisms is crucial to explain the
experienced benefits. It enables the system of coordination mechanisms to self-adjust to changing design
requirements. It relies on several characteristics of agile methods. First, the compact length and iterative nature
of the implemented design cycles allow to readjust the coordination settings according to changing project
dynamics with every new iteration in short time lapses. Second, the practices in agile methods actuate and
connect coordination mechanisms without manual adjustment. Third, the coordination mechanisms are
designed to mutually activate each other answering to project dynamics. The composition of coordination
mechanisms in agile coordination strategies is designed for a spectrum of requirements. The coordination
strategy remains lightweight through changing projects dynamics since the adjustment is performed implicitly
by straight forward design practices. This self-adjusting coordination system results in both very effective and
efficient coordination in agile design projects.

The second research question “What constraints reduce agile design applicability how in automotive
design?” provides context-specific empirical data and analyses it based on the established coordination
reference model. It was addressed by two sequential steps. First, the collection and classification of context-
specific problems that emerge if existing agile methods are employed in automotive design. This step included
the comparison of the collected data to the established constraints of scale and physicality concepts. Second,
the explanation of the experienced problems based on dysfunctionalities of agile coordination strategies in
automotive design. Data collection was based on eleven agile pilot projects in automotive design contexts. These
pilot projects were situated in typical application contexts to include a representative spectrum of automotive
design requirements.

The bottom-up data analysis of the pilot projects showed that the employed agile methods face a
repeating set of problems in automotive design. Numerous inter team dependencies, overwhelming numbers of
stakeholders and demanding team composition in multiteam design systems, unclear task division, slow
prototyping and incomplete product integration in short iterations were the most prominent among them. A
corresponding top-down data analysis of the same data set matched the experienced problems to the agile
constraints categories scale of design system and product physicality. Based on cause-effect relations both

7-129

categories were evident in agile automotive design. Their impacts overlap and mainly cause inter team
coordination problems in multiteam design systems. Therefore, in the thesis at hand constraints of physicality
are viewed as an additional driver to the well-established constraints of scale category. This simplification of the
problem space allowed to comprehensively analyse it with the coordination reference model.

The respective analysis identified dysfunctionalities of agile coordination strategies in automotive design
that directly relate to the experienced problems. Coordination determinants in large-scale automotive design
differ from agile sweet spot conditions. The number of involved teams increases the unit size level, while physical
and procedural interdependencies drive the task interdependency level. The task uncertainty level remains
invariant in automotive design compared to agile sweet spot conditions. These coordination determinants
decrease the suitability of agile coordination mechanisms and respective coordination modes. Most affected are
implicit coordination mechanisms. Implicit cognitive coordination mechanisms rely on close teamwork and are
therefore inefficient for inter team coordination. The necessary technology for implicit impersonal coordination
mechanisms such as continuous integration and testing is not able to manage the level of task interdependency
in automotive design yet. Even though, the coordination reference model recommends impersonal mode
coordination for larger unit sizes, agile coordination strategies lack the respective coordination mechanisms.
Instead, agile lightweight impersonal mode coordination mechanisms such as boundary object mechanisms are
overstrained by the number of parties and their opposing design objectives. The same applies to agile group
mode coordination mechanisms. Agile coordination mechanisms were shaped to improve intra team
coordination. They lack inter team coordination mechanisms able to deal with the task interdependency and unit
size level in multiteam design systems.

The impact of automotive coordination determinants on agile coordination mechanisms also impairs the
connectivity of the agile coordination system. The disturbed connection between coordination mechanisms
decreases the ability of agile coordination strategies to self-adjust to project dynamics. The balance between
group mode coordination mechanisms and boundary objects is overstrained due to number of different parties
and the spectrum of specializations. Personal exchange necessary for cognitive mode coordination mechanisms
decreases with ever larger meetings. Unlike group mode, individual mode coordination mechanisms remain
functional in multiteam systems and therefore keep their ability to activate other coordination modes. Still,
boundary spanning roles such as the Product Owner are affected by the larger network of inter team
dependencies. The high task dependency level impairs the connection between group mode and impersonal
mode coordination mechanisms. Boundary objects that structure meetings and get updated by the results are
not suitable for the task dependency level anymore. With multiteam systems seriously affecting cognitive mode
coordination this leaves only few cognitive mode coordination mechanisms connected to the coordination
system.

Research question three asks for alternative approaches to introduce agile product design to automotive
despite the earlier findings: How to enable agility in automotive product design? The research project generated
three distinct scenarios to compensate the dysfunctionalities of agile coordination strategies in automotive
design. While scenario one and two focus on the coordination system to match automotive coordination
determinants, scenario three adjusts the product structure to reconfigure automotive coordination
determinants to interlock with agile coordination strategies.

Scenario one adjusts agile coordination strategies to meet the coordination requirements of automotive
design. The selection of agile coordination modes and respective mechanisms is reconfigured to match
automotive coordination determinants. Agile inter team coordination mechanisms are introduced. These
additional coordination mechanisms not only address the lack of inter team coordination but also re-establish
the connectivity of the agile coordination system. Group mode inter team coordination is provided by scaled
agile meetings, agile role bearer meetings and communities of practice. Individual mode inter team coordination
relies on instant messaging, video conferencing and team member rotation to address the larger distances
between teams. Impersonal mode inter team coordination mechanisms are agile roles hierarchies, automated
documentation, information distribution systems, and a Definition of Done employment that reflects the
complex verification process in automotive. Boundary spanning inter team coordination mechanisms are Product
roadmaps, System maps, boundary spanning roles and multiteam backlogs. Cognitive mode inter team
coordination mechanisms include agile role bearer teams, specialized design teams and integration design

7-130

teams. These additional inter team coordination mechanisms re-establish agile coordination strategies in
automotive multiteam design contexts. They have been tested and evaluated throughout the agile pilot projects.
According to project settings and coordination requirements subsets of the presented inter team coordination
mechanisms might be suitable.

Scenario two also adjusts agile coordination strategies to match automotive coordination determinants.
But unlike scenario one the adjustment is not based on additional inter team coordination mechanisms. Instead,
the impact of the new design technology Generative Design on agile coordination strategies in automotive is
described. Generative Design allows to automatically and independently run iterative design cycles according to
prespecified objective functions and restrictions. From a coordination perspective this technology realizes
continuous integration and testing coordination mechanisms in multiteam design system. Dependencies
between components are mostly managed within the digitalized design system. Designers from the responsible
teams are only addressed if manual interaction is required, or interim results need evaluation. Therefore, the
need for continuous and frequent coordination activities between teams to realize components cooperatively is
reduced. Coordination efficiency increases significantly while coordination efficacy remains high. The Generative
Design technology shifts the focus of agile coordination strategies from mutual adjustment towards impersonal
mode coordination.

In contrast to scenario one and two, scenario three adjusts the automotive coordination determinants to
re-establish existing agile coordination strategies. It changes the product modularization structure to match it
with ideal agile organisation setups. While the overall product remains unchanged its decomposition into
modules is reorganized. The average module size and the quantity of necessary specializations for module design
activities are reduced to match the output of individual agile teams. Additionally, module decoupling is
emphasized to increase team independency of responsible teams. These changes in the module structure
recreate agile sweet spot conditions and the respective coordination determinants in automotive design which
increase the suitability of existing agile coordination strategies.

The three scenarios are described independently but they do not exclude each other. Data from agile pilot
projects indicate that especially scenarios one and three complement each other. Therefore, the scenarios might
well be combined to improve their impact. Their combined introduction allows to realize agility in automotive
design despite the much larger task dependency and unit size level compared to agile sweet spot conditions. The
chosen coordination strategy approach is not constrained to a specific application domain.

7.2 Research contribution
The research contributes to the theoretical field of agile product design by its conceptualization of agility.

It is based on two complementing perspectives. Agility as an attribute focuses on a conceptualization of agility.
It characterizes the system behaviour and central traits of agility from an outside in perspective. Agility as a
construct focuses on how to realize agility. It describes crucial elements and complete frameworks to realize
agility in product design from an inside out perspective. The combination of both perspectives provides an
unambiguous understanding of agility to avoid the Guru problem in practical applications and research.

The research includes rich case descriptions of agile design in automotive application contexts. It
summarizes and categorizes repeating challenges of popular agile methods in the domain and grounds them
theoretically. It proves the existence and interference of the established concepts agile constraints of scale and
physicality within the application environment. The research compares and differentiates the cause-effect
relations between both constraints and shows a strong overlap between their effects. This allows to position
constraints of physicality as a subcategory of constraints of scale to simplify problem understanding for the
selected research case. The connection of both constraints exemplarily shows how opposing characteristics of
domains do not necessarily cause opposing constraints to agility. It underlines the broad applicability of agile
design and avoids premature domain or product biased specific exclusions of agile product design.

The research employs coordination theory as theoretical lens to decompose and analyse agile methods
to explain their empirically proven functionality and benefits. This proceed provides theoretical grounding to
empirically validated design methods. While coordination theory has been employed in the software domain no
comparable use is known to the author in the automotive domain. The research contributes a coordination
reference model that is specifically designed to mirror agile design characteristics to allow for precise analyses.

7-131

Unlike earlier coordination models it connects selected theories from coordination research in the fields of
organization research, team research and multiteam cooperation research. The coordination reference model
allows to analyse individual agile practices and agile system behaviour in relation to the application domain based
on the coordination strategy concept.

The coordination reference model employs the coordination strategy as theoretical concept to connect
dynamically coupled application environment characteristics with coordination practices. This allows to connect
experienced practical problems of agile design with flaws in the respective coordination strategies. It underlines
the influence of the application context on the coordination strategy. The concept accounts for dynamic changes
in the balance and hence represents the core benefits of agility: its adjustability and flexibility in direct relation
to project dynamics. The approach allows to adjust both agile design practices and or characteristics of the
application context to enable agility in automotive design. For the automotive domain several scenarios to avoid
agile constraints are presented. This proceed is not limited to automotive design but opens opportunities to
expand agile design to further domains.

7.3 Research limitations
The findings of this study have to be seen in light of some limitations. This section announces and reflects

on those limitations. In the research outlook recommendations how to avoid the described limitations are
supplemented.

The first limitation set concerns the novelty of the research area as a recent phenomenon which impairs
the design of the research aim and the respective research questions. The selected research area agile
automotive design lacks previous secondary literature. The existing publications in the automotive domain
consist mainly of practice-oriented experience reports. Comprehensive literature reviews are missing, and few
publications include theoretical grounding. Unlike the automotive domain agile software development is well
researched and based on a rich research stream. This imbalance towards software development translates into
a software bias in the research community which translates into the work at hand.

The lack of literature specific to the research phenomenon was addressed by comparably broad research
questions that address the complete domain automotive design and the functionality of agile design in general.
More narrow research questions would have facilitated data collection and improved findings sensitivity. In
retrospect a focus on the early phase of automotive design would have resulted in more conclusive data sets.
Furthermore, the research questions do not account for the significant change within the domain. Even within
the limited time horizon of the research project the transformation from conventional mechatronic design
towards software or software-alike design was evident and had a relevant influence on the results. Regarding
the chosen coordination reference model, the given coordination determinant Unit Size did not adequately
reflect the multiteam design systems in the automotive domain.

The second limitation set reflects the chosen research approach. The selected Action Research
methodology is beneficial for parallel problem understanding and practice relevant solution design. This
advantage in research on novel research phenomena from practice comes with drawbacks compared to more
precise and adjustable research methods. It impairs the realized research depth in particular aspects (e.g. the
sensitivity of the efficiency measurement of coordination practices or the comparability of the pilot projects).
Additionally, Action Research data sets are context and case specific which complicates the generalization of the
findings from specific pilot projects to the complete domain. Still, typical Action Research methodology based
limitations such as a strong researcher bias or focusing on action and neglecting research and hence being little
more than consultancy (Avison and Wood-Harper, 1991) were addressed through the balanced research
approach. The coordination theory grounded data analysis as well as the systematic and comprehensive data
collection ensured validity of the data and rigour in the methodology which are often criticised in Action Research
(Baskerville and Wood-Harper, 1996).

The research is also affected by a sample bias since the selection of the pilot projects was influenced by
research unspecific requirements such as irrevocable management wishes. Furthermore, the set of eleven pilot
projects does not reflect the comprehensive activities in automotive design and therefore only realizes a partial
research phenomenon coverage. Generalizing results to the automotive domain based on the Action Research
pilot projects was only possible with limitations. Therefore, scenarios instead of generally applicable frameworks

7-132

were presented in the discussion. Basing the study in larger sample size could have generated more accurate
results. But the necessary effort for pilot project support impeded a larger set of cases. Furthermore, the research
was limited to one company which limits the validity to the complete domain.

Lastly, the scope of the discussion suffers from incomplete scenario evaluation. While scenario one and
two were evaluated to a certain degree in practice, scenario three remains a theoretical construct based on
applicable theories and comparable cases from different contexts. These limitations of the discussion were also
driven by the restricted time horizon of the research project.

7.4 Further work
The thesis at hand opens several opportunities for future research. Regarding the presented scenarios to

overcome agile constraints in the automotive domain the theoretical scenario three opens the opportunity for
comprehensive practical validation in automotive design. Little research has been published that connects
product modularization with the applicability of agile design throughout the design process. Additionally, the
combination of all three scenarios should lead to interesting findings and help to evaluate the scenarios in
dimensions ranging from ease of application towards practical benefits to reduce agile constraints.

The current set of the pilot projects leaves research opportunities to evaluate the findings in other
automotive design contexts and throughout later phases of automotive design. Large and continuous projects
provide the chance to increase the relevance of the findings to complete automotive design projects. Since the
presented research project was limited to one partnering automotive OEM further validations with other OEMs
or TIER 1 supplier will increase the significance of the findings. Further research opportunities are not restricted
to the automotive domain. The design of the coordination reference model and the scenarios to avoid agile
constraints applies to other large-scale hardware product domains. This opens the possibility to transfer the
findings to a spectrum of industries that face similar challenges of increasing change driven by global phenomena
such as digitalization. Even in software development the application of the coordination reference model could
be studied in comparison to existing coordination models to address the experienced challenges of scale in large
software development programs.

Regarding the second research limitation set due to the selected research methodology the application
of more standardized qualitative methods such as case studies or the application of quantitative research
methods such as surveys might result in additional and more precise findings. Furthermore, research variables
such as confirmed efficiency gains with partnering companies could improve research acceptance and its
transferability to practice. Especially a precise definition and measurement of the efficiency of the employed
coordination strategies would allow a better selection of suitable inter team coordination mechanisms for
multiteam design context conditions.

7.5 Closing summary
Within this conclusion chapter a brief summary of the PhD thesis at hand was given. It included the original

research aim, the selected research questions and the chosen research methodology. The main findings were
presented in relation to the respective research questions to show the consistency of the research project. Three
distinct scenarios to realize agility in automotive design despite the verified constraints to agility in this domain
were presented. Additionally, limitations of the research were announced and reflected and opportunities for
future research were presented. To finalize this PhD thesis the author has selected a quote to underline both the
inherent incompleteness of research and the necessity to conclude anyways.

“A great dissertation is a finished dissertation”
Ancient Grad Student Proverb

7-133

7-134

Acronyms

APD Agile Product Development/Design

COP Community of practice

PD Product Development

PO Product Owner

SM Scrum Master

XP Extreme Programming

SAFe Scaled Agile Frameworks

LeSS Large Scale Scrum

OEM Original Equipment Manufacturer

TIER1 supplier First level supplier

7-135

List of figures

FIGURE 1: STRUCTURE OF THE THESIS. THE STRUCTURE IS DIVIDED INTO SEVEN INTERLINKED CHAPTERS. THE
GREEN BOXES HIGHLIGHT THE MOST RELEVANT CONTENTS, AND THE ARROWS REPRODUCE THE RED LINE
OF THE RESEARCH. ... 1-5

FIGURE 2: CYNEFIN FRAMEWORK AND STACEY MATRIX. THE CYNEFIN FRAMEWORK (LEFT) DIFFERENTIATES
FIVE PROBLEM CONTEXTS BASED ON THEIR CHANGE DYNAMIC AND RECOMMENDS RESPECTIVE
APPROACHES (KURTZ AND SNOWDEN, 2003). THE STACEY MATRIX (RIGHT) DIFFERENTIATES FOUR
CHANGE SITUATIONS BASED ON THE AXES “WHAT” FOR THE PROBLEM UNDERSTANDING AND “HOW”
FOR THE PROBLEM APPROACH (STACEY, 2007). ... 2-13

FIGURE 3: SUMMARY OF AGILE METHODS (DENNING, 2016). .. 2-18
FIGURE 4: THE AGILE METHOD SCRUM. THE FRAMEWORK IS BASED ON ITERATIVE SPRINT CYCLES THAT

CONNECT ARTIFACTS AND MEETINGS. IN THE SPRINT PLANNING PRIORITIZED ITEMS FROM THE PRODUCT
BACKLOG ARE SELECTED FOR THE SPRINT BACKLOG TO BE DEVELOPED DURING THE SPRINT.
THROUGHOUT THE SPRINT DAILY SCRUM MEETINGS ARE USED TO IMPROVE COOPERATION AND ENSURE
COORDINATION WITHIN THE TEAM. THE SPRINT RESULTS IN THE PRODUCT INCREMENT WHICH IS
PRESENTED IN THE SPRINT REVIEW MEETING. A SPRINT IS COMPLETED BY THE RETROSPECTIVE MEETING
TO CONTINUOUSLY QUESTION AND IMPROVE COOPERATION. ... 2-19

FIGURE 5: WATERFALL AND STAGE GATE MODELS. LINEAR, OR SEQUENTIAL PROCESS MODELS DIVIDE THE
DEVELOPMENT PROCESS INTO SEPARATED PHASES WHICH ARE EXECUTED CONSECUTIVELY. THE
WATERFALL MODEL CONSISTS OF THE PHASES INITIATION, ANALYSIS, DESIGN, CONSTRUCTION, TESTING,
DEPLOYMENT AND MAINTENANCE WHICH FLOW INTO EACH OTHER LIKE A CASCADE. THE ORIGINAL
PUBLICATION (ROYCE, 1970) INCLUDES ITERATIVE DESIGN CYCLES WHICH ARE REPRESENTED WITH
DOTTED ARROWS. COOPER’S STAGE GATE PROCESS ADDS PRESPECIFIED VERIFICATION GATES BETWEEN
STAGES TO ENSURE PRODUCT MATURITY (COOPER, 1983). ... 2-23

FIGURE 6: THE V-MODEL SPECIFIES INTERLOCKING GRANULARITY LEVELS OF DESIGN AND RESPECTIVE TEST
ACTIVITIES (BASED ON (EIGNER, 2021)). ... 2-24

FIGURE 7: FUNDAMENTAL LOGIC OF AGILE PRODUCT DEVELOPMENT BASED ON THE FUZZINESS MODEL OF
(OESTEREICH AND WEISS, 2008). INITIALLY THE DESIGN PROJECT IS OBJECT TO UNCERTAINTY AND CAN
ONLY PROJECT THE DESIRED OUTCOME VAGUELY. DURING THE FOLLOWING ITERATIONS, WHICH ALL
RESULT IN VERIFIABLE ARTIFACTS, UNDERSTANDING OF THE PRODUCT IMPROVES IN STEPS. THE
CLARIFICATION OF THE PRODUCT REQUIREMENTS AND THE VERIFIED DESIGN SOLUTIONS ITERATIVELY
DECREASE THE DESIGN FUZZINESS. ... 2-25

FIGURE 8: COMPARISON OF DEVELOPMENT EFFORTS FOR PHYSICAL AND SOFTWARE PRODUCTS THROUGHOUT
THEIR LIFE CYCLE (SOCHA AND WALTER, 2006)). LARGER AND BOLD FONT IMPLIES MORE EFFORT IS
NEEDED DURING THAT STAGE OF PRODUCT DEVELOPMENT. SOFTWARE PRODUCTS ALLOW TO FOCUS
EFFORT ON THE DESIGN PHASE AND REQUIRE LITTLE EFFORT DURING THE BUILD PHASE. IN CONTRAST,
PHYSICAL PRODUCTS NEED TO BE MATERIALIZED IN THE BUILD STAGE WHICH REPRESENTS A LARGE
EFFORT. THE PRODUCTION PHASE HAS A SIGNIFICANT INFLUENCE ON THE DESIGN OF A PHYSICAL
PRODUCT. THEREFORE, DESIGN AND PRODUCTION REQUIREMENTS MUST BOTH BE CONSIDERED IN THE
DESIGN STAGE OF THE PRODUCT. ... 2-28

FIGURE 9: THE COORDINATION STRATEGY CONNECTS COORDINATION DETERMINANTS WITH SUITABLE
COORDINATION MODES AND MECHANISMS TO REALIZE SPECIFIED INTEGRATION CONDITIONS. THE
INTEGRATION CONDITIONS REFLECT THE STATE OF COORDINATION AND THE COORDINATION
DETERMINANTS AND THEIR IMPLEMENTATION THE PROCESS OF COORDINATION. THE CONCEPT ALLOWS
TO ADJUST COORDINATION TO CHANGE. PROJECT DYNAMICS THAT IMPACT INTEGRATION CONDITIONS
LEAD TO CHANGES IN COORDINATION DETERMINANTS AND THEREFORE CAUSE AN ADJUSTED
COORDINATION IMPLEMENTATION UNTIL THE PRE-SPECIFIED INTEGRATION CONDITIONS ARE RE-
ESTABLISHED. ... 2-41

FIGURE 10: THE RESEARCH OVERVIEW REPRESENTS A COMPREHENSIVE SUMMARY OF THE RESEARCH PROJECT.
IT CONNECTS THE RESEARCH QUESTIONS WITH THE RESPECTIVE RESEARCH FIELDS, THE RESEARCH
METHODOLOGY AND PUBLISHED SCIENTIFIC PAPERS. ... 3-49

7-136

FIGURE 11 COMBINATION OF DESIGN RESEARCH CYCLES ACCORDING TO (HEVNER ALAN, 2007). THE
RELEVANCE, DESIGN AND RIGOR CYCLE ENSURE BALANCE BETWEEN PRACTICAL AND THEORETICAL
REQUIREMENTS IN DESIGN RESEARCH PROJECTS. ..3-53

FIGURE 12: EMPLOYED RESEARCH METHODOLOGY BASED ON ACTION RESEARCH WITH GROUNDING IN
COMPLEMENTARY RESEARCH METHODS. ...3-55

FIGURE 13: ACTION RESEARCH CONDUCT ACCORDING TO (SEIN ET AL., 2011). IN PRACTICE THE STAGES ARE
NOT SEQUENTIAL BUT CONCURRENT IN ACTION RESEARCH. ...3-58

FIGURE 14: DATA SOURCES OF THE ACTION RESEARCH PILOT PROJECTS. DATA FROM BEFORE, THROUGHOUT
AND AFTER THE PILOT PROJECTS WAS COLLECTED TO PROVIDE A REPRESENTATIVE VIEW ON EACH PILOT
PROJECT. DATA COLLECTION SOURCES ACROSS PILOT PROJECTS WERE UNALTERED TO ENSURE DATA
CONSISTENCY AND COMPARABILITY. ..3-61

FIGURE 15: THE LITERATURE REVIEW INCLUDED OF A CONTINUOUS NARRATIVE LITERATURE REVIEW AND
SEVERAL STRUCTURED LITERATURE REVIEWS. THE NARRATIVE REVIEW ALLOWED TO MAINTAIN AN
OVERVIEW OF RELEVANT RESEARCH FIELDS AND THE STRUCTURED REVIEW WAS USED TO THOROUGHLY
SCREEN CRUCIAL RESEARCH FIELDS. ..3-62

FIGURE 16: THE COORDINATION REFERENCE MODEL. IT ALLOWS TO ANALYSE COORDINATION STRATEGIES OF
AGILE METHODS. IT IS BASED ON THE ORIGINAL MODEL OF VAN DE VEN ET AL. (VEN ET AL., 1976). IT
CONNECTS THE COORDINATION DETERMINANTS UNIT SIZE, TASK UNCERTAINTY AND TASK DEPENDENCY
TO THE COORDINATION MODES IMPERSONAL MODE, GROUP MODE AND INDIVIDUAL MODE
COORDINATION. TO BETTER REFLECT AGILE DESIGN THE MODEL WAS EXTENDED TO INCLUDE COGNITIVE
MODE COORDINATION (ESPINOSA ET AL., 2004) AND BOUNDARY SPANNING (STAR AND GRIESEMER,
1989). ...4-66

FIGURE 17: SCRUM COORDINATION STRATEGY. GROUP, COGNITIVE AND IMPERSONAL (INCLUDING BOUNDARY
SPANNING) MODE COORDINATION ARE CENTRAL. THE COORDINATION SYSTEM’S FLEXIBILITY, EFFICIENCY
AND EFFICACY PROFIT FROM THE CLOSE INTERLINKAGE OF THE EMPLOYED COORDINATION MODES. .4-71

FIGURE 18: XP COORDINATION STRATEGY. AUTOMATED IMPERSONAL MODE COORDINATION MECHANISMS
REPRESENT THE FOUNDATION OF THE XP COORDINATION SYSTEM. GROUP, INDIVIDUAL AND COGNITIVE
MODE COORDINATION ARE ALSO PRESENT. THE COORDINATION MODES ARE WELL CONNECTED INTO A
COORDINATION SYSTEM AND THE CONNECTIONS BETWEEN THEM IMPROVE COORDINATION EFFICIENCY
AND EFFICACY. ...4-74

FIGURE 19: THE SCALE OF THE PROJECT IN AUTOMOTIVE DESIGN RELATES TO MOST OF THE EXPERIENCED
PROBLEMS..5-92

FIGURE 20: THE PHYSICALITY OF THE PRODUCT IN AUTOMOTIVE DESIGN AFFECTS MOST OF THE EXPERIENCED
PROBLEMS..5-93

FIGURE 21: OVERLAP BETWEEN PROBLEMS CAUSED BY CONSTRAINTS OF SCALE AND PHYSICALITY ACROSS
PILOT PROJECTS. ..5-94

FIGURE 22: THE CAUSE-EFFECT ANALYSIS OF THE EXPERIENCED PROBLEMS UNDERLINES THE RELEVANCE OF
COORDINATION SPECIFIC PROBLEM CAUSES FOR BOTH CONSTRAINTS OF SCALE AND PHYSICALITY.
THEREFORE, CONSTRAINTS OF PHYSICALITY ARE VIEWED AS AN ADDITIONAL REINFORCEMENT OF THE
CONSTRAINTS OF SCALE CATEGORY TO SIMPLIFY PROBLEM UNDERSTANDING AND FACILITATE SOLUTION
APPROACHES FOR THE THESIS AT HAND. ..5-95

FIGURE 23: THE COORDINATION DETERMINANTS UNIT SIZE, TASK UNCERTAINTY AND TASK DEPENDENCY
REFLECT THE PROJECT SCALE AND THE PRODUCT PHYSICALITY IN AUTOMOTIVE DESIGN. WHILE THE UNIT
SIZE AND TASK DEPENDENCY LEVELS INCREASE SIGNIFICANTLY, THE TASK UNCERTAINTY CHANGE LEVEL
REMAINS INSIGNIFICANT. THE OBSERVED CHANGES OF UNIT SIZE AND TASK DEPENDENCY MUTUALLY
ENHANCE EACH OTHER. ...6-99

FIGURE 24: COMPARED TO AGILE SWEET SPOT CONDITIONS (BOEHM, 2002; KRUCHTEN, 2013) AUTOMOTIVE
DESIGN RESULTS IN DIFFERENT COORDINATION DETERMINANTS. THESE CHANGES IN COORDINATION
DETERMINANTS RESULT IN INAPPROPRIATE COORDINATION MODES, INEFFECTIVE AND INSUFFICIENT
COORDINATION MECHANISMS AND A LACK OF CONNECTIVITY FOR AGILE COORDINATION STRATEGIES.
COGNITIVE MODE COORDINATION IS AFFECTED MOST, WHILE INDIVIDUAL MODE COORDINATION AND
BOUNDARY SPANNING ARE AFFECTED LEAST. ..6-104

FIGURE 25: TRANSCRIBING SKETCH REGARDING THE DIFFICULTY OF AGILE AUTOMOTIVE DESIGN. THE LARGER
RIVER REPRESENTS THE CONTEXT AUTOMOTIVE DESIGN IN COMPARISON TO THE AGILE SWEET SPOT

7-137

SOFTWARE DESIGN AND THE BRIDGE REPRESENTS ORIGINAL AGILE COORDINATION STRATEGIES. WHILE
THE ESTABLISHED BRIDGE WAS FITTED TO CROSS THE INITIAL RIVER, IT CANNOT SPAN THE ENLARGED
RIVER. THE SAME IS TRUE FOR AGILE DESIGN IN THE AUTOMOTIVE DOMAIN. TRANSFERRED INTO THE
NEW DOMAIN AGILE PRODUCT DESIGN CANNOT REALIZE ITS ORIGINAL FUNCTIONALITY. 6-107

FIGURE 26: THE THREE SKETCHES (LEFT, MIDDLE, RIGHT) REPRESENT DEVELOPED SCENARIOS TO ADJUST AGILE
COORDINATION STRATEGIES TO THE COORDINATION DETERMINANTS IN AUTOMOTIVE DESIGN. IN
SCENARIO 1 (LEFT) THE ORIGINAL BRIDGE IS ENHANCED WITH ADDITIONAL STRUCTURES TO REESTABLISH
ITS ORIGINAL FUNCTIONALITY. IT REPRESENTS THE READJUSTMENT OF AGILE COORDINATION
STRATEGIES WITH ADDITIONAL INTER TEAM COORDINATION MECHANISMS. IN SCENARIO TWO (MIDDLE)
THE LARGER RIVER IS AVOIDED BY A TUNNEL INSTEAD OF FIXING THE BRIDGE. IT REFLECTS THE USE OF A
NEW DESIGN TECHNOLOGY TO REALIZE AGILE AUTOMOTIVE DESIGN. IN SCENARIO THREE (RIGHT) NOT
THE BRIDGE BUT THE RIVER IS ADJUSTED. TO CARRY MORE WATER WITHOUT INCREASING ITS WIDTH ITS
DEPTH IS INCREASED. THIS APPROACH REFLECTS THE IDEA TO ADJUST THE PRODUCT STRUCTURE TO
REESTABLISH AGILE SWEET SPOT COORDINATION DETERMINANTS. ... 6-108

FIGURE 27: OVERVIEW OF SUITABLE AGILE INTER TEAM COORDINATION MECHANISMS IN AUTOMOTIVE
DESIGN ACCORDING TO TASK DEPENDENCY AND UNIT SIZE LEVELS OF THE DESIGN PROJECT. THE
LOCATION IN THE GRAPH REFLECTS THE UPPER LIMIT OF THE APPLICABILITY REGARDING BOTH TASK
DEPENDENCY AND UNIT SIZE. ... 6-116

FIGURE 28: INTERLINKAGE SYSTEM OF INTER TEAM COORDINATION MECHANISMS IN AGILE AUTOMOTIVE
DESIGN. GROUP MODE AND IMPERSONAL MODE ARE THE CRUCIAL COORDINATION MODES............. 6-117

FIGURE 29: THE SECOND SCENARIO TO ENABLE AGILITY IN AUTOMOTIVE DESIGN INTRODUCES A NEW DESIGN
TECHNOLOGY THAT ALLOWS TO DEVELOP THE AUTOMOTIVE PRODUCT LIKE SOFTWARE DESPITE ITS
PHYSICALITY. IT OPENS A NEW SOLUTION SPACE “BELOW” THE ORIGINAL FUNCTIONALITY OF AGILE
COORDINATION STRATEGIES. .. 6-119

FIGURE 30: THE THIRD SCENARIO TO ENABLE AGILITY IN AUTOMOTIVE DESIGN FOCUSES ON CHANGING THE
EXPERIENCED COORDINATION DETERMINANTS. THE DEEPER RIVER REFLECTS CHANGES TO THE
MODULARIZATION STRUCTURE OF THE PRODUCT TO SUPPORT AGILE CORE PRINCIPLES AND HENCE
RECREATE AGILE SWEET SPOT CONDITION COORDINATION DETERMINANTS. 6-122

FIGURE 31: THE PRODUCT ARCHITECTURE MAPS FUNCTIONS TO DIFFERENT COMPONENTS WHICH ARE
COMBINED INTO MODULES. INTER TEAM COORDINATION PROBLEMS (E.G. TEAM 3 AND FOUR IN
MODULE 1) ARE AVOIDED IF MODULES AND TEAMS ARE MATCHED. .. 6-123

7-138

List of tables

TABLE 1: DEFINITIONS OF AGILITY ACROSS KNOWLEDGE FIELDS. ...2-10
TABLE 2: FOUR CORE CONCEPTS TO ENABLE AGILITY BASED ON A REVIEW OF AGILE METHODS AND

FRAMEWORKS (BAHAM AND HIRSCHHEIM, 2021). ...2-12
TABLE 3: SUMMARY OF BENEFITS OF AGILITY IN PRODUCT DESIGN ACROSS DIFFERENT SOURCES FROM

SCIENTIFIC AND POPULAR LITERATURE. ..2-15
TABLE 4: VALUES OF THE MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT (BECK AND BEEDLE, 2001).2-17
TABLE 5: DEFINITIONS OF COORDINATION ACROSS RESEARCH FIELDS CHRONOLOGICALLY ORDERED.2-33
TABLE 6: SET OF AGILE PILOT PROJECTS IN AUTOMOTIVE DESIGN. THE TABLE DETAILS THE CHOSEN ACTION

RESEARCH MODE, THE APPLICABLE AGILE CONSTRAINT CATEGORY, THE INITIAL PROJECT MANAGEMENT
MOTIVATION TO CHANGE, THE EMPLOYED AGILE TOOLS, THE ORGANIZATIONAL DEPENDENCY LEVEL,
AND THE PROJECT DURATION. ..3-60

TABLE 7: SELECTED INTER TEAM COORDINATION MECHANISMS IN LARGE SCALE SCRUM LESS.4-79
TABLE 8: SELECTED INTER TEAM COORDINATION MECHANISMS IN SCALED AGILE FRAMEWORK SAFE.4-80
TABLE 9: SUMMARY OF THE RESEARCHED AGILE PILOT PROJECTS. THE DESIGN PHASE LOCATES THE DESIGN

PROJECT WITHIN THE PRODUCT DEVELOPMENT PHASES CONCEPTUALIZATION AND SERIALIZATION. THE
PROJECT SIZE CONNECTS THE TEAM SIZE, THE NUMBER OF TEAMS AND THE NUMBER OF RELEVANT
STAKEHOLDERS. THE DEPENDENCY DIFFERENTIATES BETWEEN LOW, MEDIUM, AND HIGH DEPENDENCY
LEVELS. THE AGILE METHOD REFERS TO THE INITIALLY INTRODUCED AGILE FRAMEWORK AND THE
IMPLEMENTED CHANGE DESCRIBES ADAPTIONS TO IT DURING THE PROJECT. THE PRODUCT TYPE
DIFFERENTIATES BETWEEN HARDWARE AND SOFTWARE PRODUCTS. ...5-84

TABLE 10: ENCOUNTERED PROBLEMS IN EACH PILOT PROJECT AFFECTING THE EMPLOYED AGILE WORKING
MODELS. ..5-88

TABLE 11:IMPERSONAL MODE, PERSONAL MODE AND GROUP MODE INTER TEAM COORDINATION
MECHANISMS IN LARGE-SCALE AGILE SOFTWARE ENGINEERING (DINGSØYR, MOE, ET AL., 2018; EDISON
ET AL., 2021; NYRUD AND STRAY, 2017). ...6-109

TABLE 12: IMPLEMENTED AND EVALUATED AGILE INTER TEAM COORDINATION MECHANISMS THROUGHOUT
PILOT PROJECTS. ..6-125

7-139

References

Abbas, N., Gravell, A.M. and Willis, G.B. (2008), “Historical roots of agile methods: Where did ‘Agile thinking’
come from?”, International Conference on Agile Processes and Extreme Programming in Software
Engineering., Springer, Berlin.

Abrahamsson, A.P., Salo, O. and Ronkainen, J. (2002), “Agile Software Development Methods : Review and
Analysis”, VTT Publication.

Agile Alliance. (2021), “Agile 101”, available at: https://www.agilealliance.org/agile101/.

AgileAlliance. (2021a), “Scrum”, available at: https://www.agilealliance.org/glossary/scrum.

AgileAlliance. (2021b), “XP”, available at: https://www.agilealliance.org/glossary/xp.

Aken, J.E. van. (2004), “Management research based on the paradigm of the design sciences: the quest for
field‐tested and grounded technological rules”, Journal of Management Studies, Wiley Online Library,
Vol. 41 No. 2, pp. 219–246.

Allen, T.J. (1977), “Managing the Flow of Technology”, MIT Press Cambridge MA.

Alqudah, M. and Razali, R. (2016), “A Review of Scaling Agile Methods in Large Software Development”,
International Journal on Advanced Science, Engineering and Information Technology, Vol. 6 No. 6, p. 828.

Alvesson, M. and Sandberg, J. (2011), “Generating research questions through problematization”, Academy of
Management Review, Academy of Management Briarcliff Manor, NY, Vol. 36 No. 2, pp. 247–271.

Atzberger, A., Nicklas, S., Schrof, J., Weiss, S. and Paetzold, K. (2020), Agile Entwicklung Physischer Produkte -
Eine Studie Zum Aktuellen Stand Der Industriellen Praxis, Munich, available
at:https://doi.org/10.18726/2020_5.

Atzberger, A. and Paetzold, K. (2019), “Current challenges of agile hardware development: What are still the
pain points nowadays?”, Proceedings of the International Conference on Engineering Design, ICED, Vol.
2019-Augus No. AUGUST, pp. 2209–2218.

Atzberger, A., Simon, N., Schrof, J., Weiss, S. and Paetzold, K. (2020), Agile Entwicklung Physischer Produkte:
Eine Studie Zum Aktuellen Stand in Der Industriellen Praxis, Universität der Bundeswehr München,
Neubiberg, Munich, available at: https://athene-forschung.unibw.de/doc/133438/133438.pdf.

Avison, D.E. and Wood-Harper, A.T. (1991), “Conclusions from Action Research: The Multiview Experience”,
Systems Thinking in Europe, Springer US, Boston, MA, pp. 591–596.

Babüroglu, O.N. and Ravn, I. (1992), “Normative action research”, Organization Studies, SAGE Publications Sage
UK: London, England, Vol. 13 No. 1, pp. 19–34.

Baham, C. and Hirschheim, R. (2021), “Issues, challenges, and a proposed theoretical core of agile software
development research”, Information Systems Journal, p. isj.12336.

Ballard, D.I. and Seibold, D.R. (2003), “Communicating And Organizing In Time”, Management Communication
Quarterly, Vol. 16 No. 3, pp. 380–415.

Baltes, G. and Selig, C. (2017), “Organisationale Veränderungsintelligenz – Wachstumsfähigkeit mit
strategischer Innovation erneuern”, Veränderungsintelligenz, available at:https://doi.org/10.1007/978-3-
658-04889-1_2.

Banks, J.A. and Hughes, E.C. (1959), “Men and Their Work”, The British Journal of Sociology, available
at:https://doi.org/10.2307/587716.

Barlow, J., Giboney, J.S., Keith, M.J., Wilson, D.W., Schuetzler, R.M., Lowry, P.B. and Vance, A. (2011),
“Overview and Guidance on Agile Development in Large Organizations Overview and Guidance on Agile
Development in Large Organizations”, Communications of the ASsociation for Information Systems, Vol.
29 No. July 2011, pp. 25–44.

7-140

Baron, P. and Hüttermann, M. (2010), Fragile Agile: Agile Softwareentwicklung Richtig Verstehen Und Leben,
Hanser Verlag.

Baskerville and Myers. (2004), “Special Issue on Action Research in Information Systems: Making IS Research
Relevant to Practice: Foreword”, MIS Quarterly, Vol. 28 No. 3, p. 329.

Baskerville, R. and Pries-Heje, J. (1999), “Grounded action research: A method for understanding IT in practice”,
Accounting, Management and Information Technologies, Vol. 9 No. 1, pp. 1–23.

Baskerville, R.L. and Wood-Harper, A.T. (1996), “A critical perspective on action research as a method for
information systems research”, Journal of Information Technology, available
at:https://doi.org/10.1080/026839696345289.

Bass, J.M. (2015), “How product owner teams scale agile methods to large distributed enterprises”, Empirical
Software Engineering, Vol. 20 No. 6, pp. 1525–1557.

Bass, J.M. and Haxby, A. (2019), “Tailoring Product Ownership in Large-Scale Agile Projects: Managing Scale,
Distance, and Governance”, IEEE Software, available at:https://doi.org/10.1109/MS.2018.2885524.

Bassey, M. (1990), ON THE NATURE OF RESEARCH IN EDUCATION., HOLLINSHEAD, A. ED2280/ED3843.

Bechky, B.A. (2006), “Gaffers, gofers, and grips: Role-based coordination in temporary organizations”,
Organization Science, available at:https://doi.org/10.1287/orsc.1050.0149.

Beck, K. (1999), Extreme Programming Explained: Embrace Change, XP Series.

Beck, K. (2003), Test-Driven Development: By Example, The Journal of Object Technology, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, United States, available
at:https://doi.org/10.5381/jot.2003.2.2.r1.

Beck, K. (2004), Extreme Programming Explained: Embrace Change, 2nd Edition (The XP Series), Vol. 2.

Beck, K. and Beedle, M. (2001), “Manifesto for Agile Software Development”, available at:
http://agilemanifesto.org/history.html.

Benbasat, I. and Zmud, R.W. (1999), “Empirical research in information systems: The practice of relevance”,
MIS Quarterly: Management Information Systems, Vol. 23 No. 1, pp. 3–16.

Bendsoe, M.P. and Sigmund, O. (2004), Topology Optimization. Theory, Methods and Applications., Springer-
Vlg., Bln., Heidelberg.

Bennett, N. and Lemoine, G.J. (2015), “What a difference a word makes : Understanding threats to
performance in a VUCA world”, Business Horizons, “Kelley School of Business, Indiana University”, p. 8.

Bentley, C. (2005), PRINCE2 Revealed, Routledge, available at:https://doi.org/10.4324/9780080458823.

Berger, C. and Eklund, U. (2015), “Expectations and Challenges from Scaling Agile in Mechatronics-Driven
Companies – A Comparative Case Study”, in Lassenius, C., Dingsøyr, T. and Paasivaara, M. (Eds.), Lecture
Notes in Business Information Processing, Vol. 212, Springer International Publishing, Cham, pp. 15–26.

Bergman, M., Mark, G. and Lyytinen, K. (2007), “Boundary Objects in Design: An Ecological View of Design
Artifacts”, Journal of the Association for Information Systems, Vol. 8 No. 11, pp. 546–568.

Bick, S., Spohrer, K., Hoda, R., Scheerer, A. and Heinzl, A. (2018), “Coordination Challenges in Large-Scale
Software Development: A Case Study of Planning Misalignment in Hybrid Settings”, IEEE Transactions on
Software Engineering, available at:https://doi.org/10.1109/TSE.2017.2730870.

Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, ICED 1995: International
Conference on Engineering Design, Springer London, London, available at:https://doi.org/10.1007/978-1-
84882-587-1.

Boehm, B. (2002), “Get ready for agile methods, with care”, Computer, Vol. 35 No. 1, pp. 64–69.

Boehm, B. and Turner, R. (2004), “Balancing agility and discipline: evaluating and integrating agile and plan-
driven methods”, Proceedings. 26th International Conference on Software Engineering, IEEE Comput. Soc,

7-141

pp. 718–719.

Boehm, B.W. (1988), “A spiral model of software development and enhancement”, Computer, Vol. 21 No. 5,
pp. 61–72.

Boell, S.K. and Cecez-Kecmanovic, D. (2015), “On being ‘Systematic’ in Literature Reviews in IS”, Journal of
Information Technology, Vol. 30 No. 2, pp. 161–173.

Bogner, A., Littig, B. and Menz, W. (2014), Qualitative Sozialforschung, Qualitative Sozialforschung, Oldenbourg
Wissenschaftsverlag Verlag, München, available at:https://doi.org/10.1524/9783486717594.

Boote, D.N. and Beile, P. (2005), “Scholars before researchers: On the centrality of the dissertation literature
review in research preparation”, Educational Researcher, Sage Publications Sage CA: Thousand Oaks, CA,
Vol. 34 No. 6, pp. 3–15.

Bowman, I. and Holt, R. (1998), “Software Architecture Recovery Using Conway’s Law”, Conference of the
Centre for Advanced Studies on Collaborative Research.

Briers, M. and Wai, F.C. (2001), “The role of actor-networks and boundary objects in management accounting
change: A field study of an implementation of activity-based costing”, Accounting, Organizations and
Society, available at:https://doi.org/10.1016/S0361-3682(00)00029-5.

Brown, T.E. (2013), “Skunk works: a sign of failure, a sign of hope?”, Innovation, Entrepreneurship and Culture,
Edward Elgar Publishing, available at:https://doi.org/10.4337/9781845420550.00012.

Burrel, G. and Morgan, G. (1979), Sociological Paradigms and Organizational Analysis, Heineman.

Burris, B.H. and Henderson, K. (2001), “On Line and On Paper: Visual Representations, Visual Culture, and
Computer Graphics in Design Engineering”, Contemporary Sociology, Vol. 30 No. 1, p. 38.

Campanelli, A.S. and Parreiras, F.S. (2015), “Agile methods tailoring - A systematic literature review”, Journal of
Systems and Software, available at:https://doi.org/10.1016/j.jss.2015.08.035.

Cannon-Bowers, J.A. and Salas, E. (2001), “Reflections on shared cognition”, Journal of Organizational Behavior,
available at:https://doi.org/10.1002/job.82.

Cannon-Bowers, J.A., Salas, E. and Converse, S. (1993), “Shared mental models in expert team decision
making”, Individual and Group Decision Making.

Causevic, A., Sundmark, D. and Punnekkat, S. (2011), “Factors Limiting Industrial Adoption of Test Driven
Development: A Systematic Review”, 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation, IEEE, pp. 337–346.

Checkland, P. and Holwell, S. (1998), “Action Research: Its Nature and Validity”, Systemic Practice and Action
Research, Vol. 11 No. 1, pp. 9–21.

Cockburn, A. (2006), Agile Software Development: The Cooperative Game, Pearson Eduction.

Cohn, M. (2010), Succeeding with Agile: Software Development Using Scrum, Pearson Eduction.

Combs, J.P., Bustamante, R.M. and Onwuegbuzie, A.J. (2010), “An interactive model for facilitating
development of literature reviews”, International Journal of Multiple Research Approaches, Taylor &
Francis, Vol. 4 No. 2, pp. 159–182.

Conboy, K. (2009), “Agility from First Principles : Reconstructing the Concept of Agility in Information Systems
Development”, Information Systems Research, Vol. 20(3) No. August 2018, pp. 329–354.

Conforto, E.C., Amaral, D.C., da Silva, S.L., Di Felippo, A. and Kamikawachi, D.S.L. (2016), “The agility construct
on project management theory”, International Journal of Project Management, Vol. 34 No. 4, pp. 660–
674.

Conforto, E.C., Salum, F., Amaral, D.C., da Silva, S.L. and de Almeida, L.F.M. (2014), “Can Agile Project
Management be Adopted by Industries Other than Software Development?”, Project Management
Journal, Vol. 45 No. 3, pp. 21–34.

7-142

Conway, M.E. (1968), “How do committees invent”, Datamation, Vol. 14 No. 4, pp. 28–31.

Cooper, R.G. (1983), “The new product process: an empirically-based classification scheme”, R&D
Management, Vol. 13 No. 1, pp. 1–13.

Cooper, R.G. (1990), “Stage-Gate Systems: A new Tool for Managing New Products”, No. June, available
at:https://doi.org/10.1016/0007-6813(90)90040-I.

Cramton, C.D. (2001), “The Mutual Knowledge Problem and Its Consequences for Dispersed Collaboration”,
Organization Science, available at:https://doi.org/10.1287/orsc.12.3.346.10098.

Cronen, V.E. (2001), “Practical theory, practical art, and the pragmatic-systemic account of inquiry”,
Communication Theory, Oxford University Press, Vol. 11 No. 1, pp. 14–35.

Crowston, K., Rubleske, J. and Howison, J. (2006), “Coordination theory: A ten-year retrospective”, Human-
Computer Interaction and Management Information Systems, available at:https://doi.org/ISBN:
0765614871.

Davison, R., Martinsons, M.G. and Kock, N. (2004), “Principles of canonical action research”, Information
Systems Journal, Wiley Online Library, Vol. 14 No. 1, pp. 65–86.

Denning, S. (2012), “How Agile can transform manufacturing: the case of Wikispeed”, Strategy & Leadership,
Vol. 40 No. 6, pp. 22–28.

Denning, S. (2016), “Explaining Agile”, Forbes, available at:
https://www.forbes.com/sites/stevedenning/2016/09/08/explaining-agile/?sh=7c9e0416301b.

Denning, S. (2017), “The age of Agile”, Strategy and Leadership, available at:https://doi.org/10.1108/SL-12-
2016-0086.

Denning, S. (2020), “Why And How Volvo Embraces Agile At Scale”, Forbes, available at:
https://www.forbes.com/sites/stevedenning/2020/01/26/how-volvo-embraces-agile-at-
scale/?sh=3d4ee9f94cf0.

Díaz, C.E.G. (2011), “Vehicle Architecture and Lifecycle Cost Analysis: In a New Age of Architectural
Competition”, Universitätsbibliothek der TU München.

Dietrich, P., Kujala, J. and Artto, K. (2013), “Inter-Team Coordination Patterns and Outcomes in Multi-Team
Projects”, Project Management Journal, Vol. 44 No. 6, pp. 6–19.

Dikert, K., Paasivaara, M. and Lassenius, C. (2016), “Challenges and success factors for large-scale agile
transformations: A systematic literature review”, Journal of Systems and Software, Elsevier Inc., Vol. 119,
pp. 87–108.

Dingsoeyr, T., Falessi, D. and Power, K. (2019), “Agile Development at Scale: The Next Frontier”, IEEE Software,
Vol. 36 No. 2, pp. 30–38.

Dingsøyr, T., Bjørnson, F.O., Moe, N.B., Rolland, K. and Seim, E.A. (2018), “Rethinking coordination in large-
scale software development”, Proceedings - International Conference on Software Engineering, pp. 91–
92.

Dingsøyr, T., Fægri, T.E. and Itkonen, J. (2014), “What is Large in Large-Scale? A Taxonomy of Scale for Agile
Software Development”, in Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J. and
Raatikainen, M. (Eds.), Product-Focused Software Process Improvement, Vol. 8892, Springer International
Publishing, Cham, pp. 273–276.

Dingsøyr, T., Moe, N.B., Fægri, T.E. and Seim, E.A. (2018), “Exploring software development at the very large-
scale: a revelatory case study and research agenda for agile method adaptation”, Empirical Software
Engineering, Vol. 23 No. 1, pp. 490–520.

Dingsøyr, T., Nerur, S., Balijepally, V. and Moe, N.B. (2012), “A decade of agile methodologies: Towards
explaining agile software development”, Journal of Systems and Software, Vol. 85 No. 6, pp. 1213–1221.

Dingsøyr, T., Olav, B.F., Schrof, J. and Sporsem, T. (2021), “Transitioning from a first- to a second-generation
large-scale agile development method: A longitudinal explanatory case study of coordination in a very

7-143

large development programme”, Empirical Software Engineering.

Dingsøyr, T., Rolland, K., Moe, N.B. and Seim, E.A. (2017), “Coordination in multi-team programmes: An
investigation of the group mode in large-scale agile software development”, Procedia Computer Science,
Vol. 121, pp. 123–128.

Donaldson, L. (2001), The Contingency Theory of Organizations, The Contingency Theory of Organizations, SAGE
Publications, Inc., 2455 Teller Road, Thousand Oaks California 91320 United States, available
at:https://doi.org/10.4135/9781452229249.

Douglass, B.P. (2016), “What Are Agile Methods and Why Should I Care?”, Agile Systems Engineering, Elsevier,
pp. 41–84.

Ebel, B. and Hofer, M.B. (2014), “Automotive Management: Strategie und Marketing in der
Automobilwirtschaft: Springer Berlin Heidelberg”, Online Verfügbar Unter Https://Books. Google.
de/Books.

Eden, C. and Huxham, C. (1996), “Action research for the study of organizations.”, Handbook of Organization
Studies, pp. 526–542.

Edison, H., Wang, X. and Conboy, K. (2021), “Comparing Methods for Large-Scale Agile Software Development:
A Systematic Literature Review”, IEEE Transactions on Software Engineering, pp. 1–1.

Ehrlenspiel, K. and Meerkamm, H. (2013), Integrierte Produktentwicklung – Denkabläufe, Methodeneinsatz,
Zusammenarbeit., Carl Hanser Verlag GmbH Co KG.

Eigner, M. (2021), “Engineering 4.0–Grundlagen der Digitalisierung des Engineerings”, System Lifecycle
Management, Springer, pp. 29–104.

Eklund, U. and Berger, C. (2017), “Scaling agile development in mechatronic organizations - A comparative case
study”, Proceedings - 2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track, ICSE-SEIP 2017, pp. 173–182.

Erickson, J., Lyytinen, K. and Siau, K. (2005), “Agile modeling, agile software development, and extreme
programming: The state of research”, Journal of Database Management, Vol. 16 No. 4, p. 88.

Espinosa, J.A., Armour, F. and Boh, W.F. (2010), “Coordination in enterprise architecting: An interview study”,
Proceedings of the Annual Hawaii International Conference on System Sciences, available
at:https://doi.org/10.1109/HICSS.2010.450.

Espinosa, J.A., Lerch, F.J. and Kraut, R.E. (2004), “Explicit versus implicit coordination mechanisms and task
dependencies: One size does not fit all.”, Team Cognition: Understanding the Factors That Drive Process
and Performance., American Psychological Association, Washington, pp. 107–129.

Espinosa, J.A., Slaughter, S.A., Kraut, R.E. and Herbsleb, J.D. (2007), “Team knowledge and coordination in
geographically distributed software development”, Journal of Management Information Systems,
available at:https://doi.org/10.2753/MIS0742-1222240104.

Faraj, S. and Sproull, L. (2000), “Coordinating expertise in software development teams”, Management Science,
available at:https://doi.org/10.1287/mnsc.46.12.1554.12072.

Faraj, S. and Xiao, Y. (2006), “Coordination in fast-response organizations”, Management Science, available
at:https://doi.org/10.1287/mnsc.1060.0526.

Fayol, H. (1949), “General and Industrial Management”, English Translation, Pitman Publishing Company,
London.

Feak, C.B. and Swales, J.M. (2009), Telling a Research Story: Writing a Literature Review, University of Michigan
Press.

Feldman, M.S. (2000), “Organizational Routines as a Source of Continuous Change”, Organization Science,
available at:https://doi.org/10.1287/orsc.11.6.611.12529.

Firth, B.M., Hollenbeck, J.R., Miles, J.E., Ilgen, D.R. and Barnes, C.M. (2015), “Same Page, Different Books:
Extending Representational Gaps Theory to Enhance Performance in Multiteam Systems”, Academy of

7-144

Management Journal, Vol. 58 No. 3, pp. 813–835.

Fowler, M. and Highsmith, J. (2001), The Agile Manifesto.

Friedman, K. (2003), “Theory construction in design research: criteria: approaches, and methods”, Design
Studies, Elsevier, Vol. 24 No. 6, pp. 507–522.

Furuhjelm, J., Segertoft, J., Justice, J. and Sutherland, J.J. (2017), “Owning the Sky with agile: Building a Jet
Fighter Faster, Cheaper, Better with Scrum”, pp. 1–4.

Galbrath, J.R. (1973), Designing Complex Organizations, Addison-Wesley, Reading, MA.

Gausemeier, J., Michels, J.S., Orlik, L. and Redenius, A. (2004), “Modellierung und Planung von
Produktentstehungsprozessen”, VDI Berichte.

Gilbert, K. (2000), The Emotional Nature of Qualitative Research, CRC Press.

Gittell, J.H. (2000), “Paradox of Coordination and Control”, California Management Review, Vol. 42 No. 3, pp.
101–117.

Goldkuhl, G. and Lind, M. (2010), “A multi-grounded design research process”, Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
Vol. 6105 LNCS, pp. 45–60.

Göpfert, J. (1998), Modulare Produktentwicklung, Modulare Produktentwicklung, Deutscher Universitätsverlag,
Wiesbaden, available at:https://doi.org/10.1007/978-3-663-08152-4.

Göpfert, J. and Steinbrecher, M. (2000), “Modulare Produktentwicklung leistet mehr”, Harvard Business
Review, Vol. 3 No. 089, pp. 1–17.

Greenhalgh, T. and Taylor, R. (1997), “How to read a paper: Papers that go beyond numbers (qualitative
research)”, BMJ, Vol. 315 No. 7110, pp. 740–743.

Gregory, P., Barroca, L., Taylor, K., Salah, D. and Sharp, H. (2015), “Agile challenges in practice: A thematic
analysis”, Lecture Notes in Business Information Processing, available at:https://doi.org/10.1007/978-3-
319-18612-2_6.

Grewal, H. and Maurer, F. (2007), “Scaling Agile Methodologies for Developing a Production Accounting System
for the Oil & Gas Industry”, AGILE 2007 (AGILE 2007), IEEE, pp. 309–315.

Gustavsson, T. (2016), “Benefits of agile project management in a non-software development context - A
literature review”, Project Management Development – Practice and Perspectives: Fifth International
Scientific Conference on Project Management in the Baltic Contries April 14-15, Riga, University of Latvia.

Gustavsson, T. (2020a), “Dynamics of inter-team coordination routines in large-scale agile software
development”, 27th European Conference on Information Systems - Information Systems for a Sharing
Society, ECIS 2019.

Gustavsson, T. (2020b), Inter-Team Coordination in Large-Scale Agile Software Development Projects, Karlstad
University Studies, available at:https://doi.org/978-91-7867-155-7.

Haberfellner, R. and de Weck, O. (2005), “Agile SYSTEMS ENGINEERING versus AGILE SYSTEMS engineering”,
International Council On Systems Engineering (INCOSE), Vol. 15, pp. 1449–1465.

Hage, J., Aiken, M. and Marrett, C.B. (1971), “Organization Structure and Communications”, American
Sociological Review, available at:https://doi.org/10.2307/2093672.

Hammer, M. (2001), “Seven insights about processes”, Conference on Strategic Power Process Ensuring Survival
Creating Competitive Advantage, Boston, MA.

Hatch, N.W., Baldwin, C.Y. and Clark, K.B. (2001), “Design Rules, Volume 1: The Power of Modularity”, The
Academy of Management Review, Vol. 26 No. 1, p. 130.

Hellenbrand, D. (2013), “Transdisziplinäre Planung und Synchronisation mechatronischer
Produktentwicklungsprozesse”, Technische Universität München.

7-145

Henderson-Sellers, B. and Serour, M.K. (2005), “Creating a dual-agility method: The value of method
engineering”, Journal of Database Management, available at:https://doi.org/10.4018/jdm.2005100101.

Henderson, R.M. and Clark, K.B. (1990), “Architectural Innovation: The Reconfiguration of Existing Product
Technologies and the Failure of Established Firms”, Administrative Science Quarterly, Vol. 35 No. 1, p. 9.

Hensel, T. (2011), Modellbasierter Entwicklungsprozess Für Automatisierungslösungen, Vol. 258, Herbert Utz
Verlag.

Hevner Alan, R. (2007), “A Three Cycle View of Design Science Research”, Scandinavian Journal of Information
Systems, Vol. 19 No. 2, pp. 87–92.

Hevner, March, Park and Ram. (2004), “Design Science in Information Systems Research”, MIS Quarterly, Vol.
28 No. 1, p. 75.

Highsmith, J. (2009), Agile Project Management: Creating Innovative Products, Pearson Eduction.

Highsmith, J. and Cockburn, A. (2001), “Agile software development: the business of innovation”, Computer,
Vol. 34 No. 9, pp. 120–127.

Hoda, R., Salleh, N. and Grundy, J. (2018), “The Rise and Evolution of Agile Software Development”, IEEE
Software, Vol. 35 No. 5, pp. 58–63.

Hoegl, M. and Gemuenden, H.G. (2001), “Teamwork Quality and the Success of Innovative Projects: A
Theoretical Concept and Empirical Evidence”, Organization Science, available
at:https://doi.org/10.1287/orsc.12.4.435.10635.

Hoegl, M., Weinkauf, K. and Gemuenden, H.G. (2004), “Interteam Coordination, Project Commitment, and
Teamwork in Multiteam R&D Projects: A Longitudinal Study”, Organization Science, available
at:https://doi.org/10.1287/orsc.1030.0053.

Hohl, P., Münch, J., Schneider, K. and Stupperich, M. (2016), “Forces that Prevent Agile Adoption in the
Automotive Domain”, Product-Focused Software Process Improvement (PROFES), Vol. 10027, pp. 468–
476.

Holmstrom, H., Conchúir, E.Ó., Ågerfalk, P.J. and Fitzgerald, B. (2006), “Global software development
challenges: A case study on temporal, geographical and socio-cultural distance”, Proceedings - 2006 IEEE
International Conference on Global Software Engineering, ICGSE 2006, available
at:https://doi.org/10.1109/ICGSE.2006.261210.

Iivari, J. (2007), “Scandinavian Journal of Information A Paradigmatic Analysis of Information Systems As a
Design Science A Paradigmatic Analysis of Information”, Scandinavian Journal of Information Systems ©
Scandinavian Journal of Information Systems, Vol. 19 No. 2, pp. 39–64.

Iivari, J., Hirschheim, R. and Klein, H.K. (1998), “A Paradigmatic Analysis Contrasting Information Systems
Development Approaches and Methodologies”, Information Systems Research, Vol. 9 No. 2, pp. 164–193.

Janes, A. and Succi, G. (2012), “The dark side of agile software development”, SPLASH 2012: Onward! 2012 -
Proceedings of the ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, pp. 215–227.

Jarzabkowski, P.A., Lê, J.K. and Feldman, M.S. (2012), “Toward a theory of coordinating: Creating coordinating
mechanisms in practice”, Organization Science, Vol. 23 No. 4, pp. 907–927.

Kahkonen, T. (2004), “Agile Methods for Large Organizations - Building Communities of Practice”, Agile
Development Conference, IEEE, pp. 2–11.

Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T. and Lehtonen, T. (2013), “Agile
methods for embedded systems development - a literature review and a mapping study”, EURASIP
Journal on Embedded Systems, Vol. 2013 No. 1, available at:https://doi.org/10.1186/1687-3963-2013-15.

Kang, H.R., Yang, H.D. and Rowley, C. (2006), “Factors in team effectiveness: Cognitive and demographic
similarities of software development team members”, Human Relations, available
at:https://doi.org/10.1177/0018726706072891.

7-146

Kazanjian, R.K., Drazin, R. and Glynn, M.A. (2000), “Creativity and technological learning: The roles of
organization architecture and crisis in large-scale projects”, Journal of Engineering and Technology
Management - JET-M, available at:https://doi.org/10.1016/S0923-4748(00)00026-6.

Kerzner, H.R. (2009), Project Management: A Systems Approach to Planning, Scheduling, and Controlling, 11th
ed., New Jersey: Wiley.

Kniberg, H. (2014a), “Spotify Engineering Culture (part 1)”, Spotify Labs.

Kniberg, H. (2014b), “Spotify engineering culture (part 2)”, Spotify Labs.

Komus, A. (2017), Abschlussbericht: Status Quo Agile 2016/2017.

Komus, A. and Kuberg, M. (2020), Status Quo (Scaled) Agile 2019/20, 4. Internationale Studie Zu Nutzen Und
Erfolgsfaktoren (Skalierter) Agiler Ansätze.

Kortus-Schultes, D., Laufner, W., Hadry, A., Hasler, D., Markes, N., Powalka, V. and Stähler, L. (2014), “Das Auto
als Smartphone: Konvergenz von Geschäftsmodellen der Automobil-Hersteller und der
Telekommunikationsanbieter”, Radikale Innovationen in Der Mobilität, Springer Fachmedien Wiesbaden,
Wiesbaden, pp. 117–142.

Krause, D. and Gebhardt, N. (2018), Methodische Entwicklung Modularer Produktfamilien, Springer Berlin
Heidelberg, Berlin, Heidelberg, available at:https://doi.org/10.1007/978-3-662-53040-5.

Krauss, R.M. and Fussel, S.R. (1990), “Mutual Knowledge and Communicative Effectiveness”, Intellectual
Teamwork: Social and Technological Foundations of Cooperative Work.

Kraut, R.E. and Streeter, L.A. (1995), “Coordination in software development”, Communications of the ACM,
Vol. 38 No. 3, p. 69+.

Kruchten, P. (2013), “Contextualizing agile software development”, Journal of Software: Evolution and Process,
Vol. 25 No. 4, pp. 351–361.

Kurtz, C.F. and Snowden, D.J. (2003), “The new dynamics of strategy: sense-making in a complex and
complicated world”, IEEE Engineering Management Review, Vol. 31 No. 4, pp. 110–110.

Kvale, S. and Brinkmann, S. (2009), Interviews: Learning the Craft of Qualitative Research, California, US: SAGE.

Laanti, M., Similä, J. and Abrahamsson, P. (2013), “Definitions of Agile Software Development and Agility”,
Communications in Computer and Information Science, pp. 247–258.

Lan, C. and Ramesh, B. (2007), “Agile software development: Ad hoc practices or sound principles?”, IT
Professional, available at:https://doi.org/10.1109/MITP.2007.27.

Larman, C. and Vodde, B. (2009), Scaling Lean & Agile Development Thinking and Organizational Tools for
Large-Scale Scrum, Scaling Lean & Agile Development.

Larman, C., Vodde, B. and Jensen, B. (2017), Large-Scale Scrum, Dpunkt.

Lee, G. and Xia, W. (2010), “Toward agile: An integrated analysis of quantitative and qualitative field data on
software development agility”, MIS Quarterly: Management Information Systems, available
at:https://doi.org/10.2307/20721416.

Lefèvre, J., Charles, S., Bosch-Mauchand, M., Eynard, B. and Padiolleau, É. (2014), “Multidisciplinary modelling
and simulation for mechatronic design”, Journal of Design Research 9, Inderscience Publishers Ltd, Vol. 12
No. 1–2, pp. 127–144.

Leffingwell, D. and Kruchten, P. (2007), Scaling Software Agility: Best Practices for Large Enterprises.

Lévárdy, V. and Browning, T.R. (2009), “An Adaptive Process Model to Support Product Development Project
Management”, IEEE Transactions on Engineering Management, Vol. 56 No. 4, pp. 600–620.

Levina and Vaast. (2005), “The Emergence of Boundary Spanning Competence in Practice: Implications for
Implementation and Use of Information Systems”, MIS Quarterly, Vol. 29 No. 2, p. 335.

Li, Y. and Maedche, A. (2012), “Formulating effective coordination strategies in agile global software

7-147

development teams”, International Conference on Information Systems, ICIS 2012.

“Liberating Structures”. (2022), , available at: https://liberatingstructures.de/.

Lindemann, U. (2009), Methodische Entwicklung Technischer Produkte : Methoden Flexibel Und
Situationsgerecht Anwenden, Methodische Entwicklung Technischer Produkte.

Lindkvist, L., Bengtsson, M., Svensson, D.-M. and Wahlstedt, L. (2016), “Replacing old routines: how Ericsson
software developers and managers learned to become Agile”, Industrial and Corporate Change, p.
dtw038.

Lindlöf, L. and Furuhjelm, J. (2018), “Agile beyond software - A study of a large scale agile initiative”,
Proceedings of International Design Conference, DESIGN, available
at:https://doi.org/10.21278/idc.2018.0411.

Loasby, B.J., Nelson, R.R. and Winter, S.G. (1983), “An Evolutionary Theory of Economic Change.”, The
Economic Journal, Vol. 93 No. 371, p. 652.

Luckel, J., Koch, T. and Schmitz, J. (2000), “Mechatronik als integrative Basis für innovative Produkte”,
Mechatronik - Mechanisch/Elektrische Antriebstechnik: Tagung Wiesloch, 29. Und 30. März 2000.

Lückel, J., Koch, T., Schmitz, J., Gausemeier, J., Czubayko, R., Lemke, J., Anderl, R., et al. (2000), “Computer-
Aided Design of Mechatronic Systems, Exemplified by the Integrated Wheel Suspension of an Innovative
Service Vehicle”, IFAC Proceedings Volumes, available at:https://doi.org/10.1016/s1474-6670(17)39240-
6.

Lyytinen, K. and Rose, G.M. (2006), “Information system development agility as organizational learning”,
European Journal of Information Systems, Vol. 15 No. 2, pp. 183–199.

MacCormack, A., Baldwin, C. and Rusnak, J. (2012), “Exploring the duality between product and organizational
architectures: A test of the ‘mirroring’ hypothesis”, Research Policy, Vol. 41 No. 8, pp. 1309–1324.

Mackenzie, A. and Monk, S. (2004), “From Cards to Code: How Extreme Programming Re-Embodies
Programming as a Collective Practice”, Computer Supported Cooperative Work: CSCW: An International
Journal, available at:https://doi.org/10.1023/B:COSU.0000014873.27735.10.

Malone, T.W. and Crowston, K. (1990), “What is coordination theory and how can it help design cooperative
work systems?”, Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work,
CSCW 1990, No. October, pp. 357–370.

Maples, C. (2009), “Enterprise Agile Transformation: The Two-Year Wall”, available
at:https://doi.org/10.1109/agile.2009.62.

March, J.G. and Simon, H.A. (1958), “Organizations.”, NY: Wiley, New York.

Marks, M.A., DeChurch, L.A., Mathieu, J.E., Panzer, F.J. and Alonso, A. (2005), “Teamwork in Multiteam
Systems.”, Journal of Applied Psychology, Vol. 90 No. 5, pp. 964–971.

Marks, M.A., Mathieu, J.E. and Zaccaro, S.J. (2001), “A temporally based framework and taxonomy of team
processes”, Academy of Management Review, available at:https://doi.org/10.5465/AMR.2001.4845785.

Martensson, T., Hammarstrom, P. and Bosch, J. (2017), “Continuous Integration is Not About Build Systems”,
2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), IEEE, pp. 1–
9.

Mathiassen, L. (2017), “Designing Engaged Scholarship: From Real-World Problems to Research Publications”,
Engaged Management ReView, Vol. 1 No. 1, pp. 17–28.

Mathieu, J.E., Marks, M.A. and Zaccaro, S.J. (2001), “Multiteam systems.”, in Anderson, N., Ones, D., Sinangil, H.
and Viswesvaran, C. (Eds.), Handbook of Industrial, Work and Organizational Psychology, London: Sage,
pp. 289-313.

McEvily, B., Perrone, V. and Zaheer, A. (2003), “Trust as an organizing principle”, Organization Science, available
at:https://doi.org/10.1287/orsc.14.1.91.12814.

7-148

McGrath, J.E., Arrow, H. and Berdahl, J.L. (1999), “Cooperation and conflict as manifestations of coordination in
small groups”, Polish Psychological Bulletin.

McIntyre, R.M. and Salas, E. (1995), “Measuring and managing for team performance: Emerging principles from
complex environments.”, Team Effectiveness and Decision Making in Organizations.

Meißner, M. and Blessing, L. (2006), “Defining an adaptive product development methodology”, 9th
International Design Conference, DESIGN 2006.

Middleton, P., Taylor, P.S., Flaxel, A. and Cookson, A. (2007), “Lean principles and techniques for improving the
quality and productivity of software development projects: a case study”, International Journal of
Productivity and Quality Management, Vol. 2 No. 4, p. 387.

Mintzberg, H. (1989), Mintzberg on Management: Inside Our Strange World of Organizations, Simon and
Schuster.

Moe, N.B., Olsson, H.H. and Dingsøyr, T. (2016), “Trends in large-scale agile development: A summary of the
4th workshop at XP2016”, ACM International Conference Proceeding Series, available
at:https://doi.org/10.1145/2962695.2962696.

Moe, N.B., Šmite, D., Paasivaara, M. and Lassenius, C. (2021), “Finding the sweet spot for organizational control
and team autonomy in large-scale agile software development”, Empirical Software Engineering, Vol. 26
No. 5, p. 101.

Moen, R. and Norman, C. (2009), “Evolution of the PDCA Cycle”, Society, pp. 1–11.

Nerur, S. and Balijepally, V. (2007), “Theoretical reflections on agile development methodologies.”,
Communications of the ACM 50.3.

Nyrud, H. and Stray, V. (2017), “Inter-team coordination mechanisms in large-scale agile”, Proceedings of the
XP2017 Scientific Workshops on - XP ’17, ACM Press, New York, New York, USA, pp. 1–6.

Oestereich, B. and Weiss, C. (2008), Agiles Projekt Management, dpunkt.verlag.

Okhuysen, G.A. (2001), “Structuring change: Familiarity and formal interventions in problem-solving groups”,
Academy of Management Journal, available at:https://doi.org/10.2307/3069416.

Okhuysen, G.A. and Bechky, B.A. (2009), “10 Coordination in Organizations: An Integrative Perspective”, The
Academy of Management Annals, Vol. 3 No. 1, pp. 463–502.

Okoli, C. and Schabram, K. (2010), “A Guide to Conducting a Systematic Literature Review of Information
Systems Research”, SSRN Electronic Journal, Vol. 10 No. 2010, available
at:https://doi.org/10.2139/ssrn.1954824.

Ottosson, S., Björk, E., Holmdahl, L. and Vajna, S. (2006), “Research approaches on product development
processes”, 9th International Design Conference, DESIGN 2006, pp. 91–102.

Ovesen, N. (2012), “The Challenges of Becoming Agile: Implementing and Conducting SCRUM in Integrated
Product Development”, p. 200.

Paasivaara, M. and Lassenius, C. (2014), “Communities of practice in a large distributed agile software
development organization - Case Ericsson”, Information and Software Technology, available
at:https://doi.org/10.1016/j.infsof.2014.06.008.

Paasivaara, M., Lassenius, C. and Heikkilä, V.T. (2012), “Inter-team coordination in large-scale globally
distributed scrum: Do scrum-of-scrums really work?”, International Symposium on Empirical Software
Engineering and Measurement, pp. 235–238.

Paetzold, K., Biffl, S., Lüder, A. and Gerhar, D. (2017), “Product and Systems Engineering/CA* Tool Chains”,
Multi-Disciplinary Engineering for Cyber-Physical Production Systems, Springer, p. 36.

Pahl, G. and Beitz, W. (2013), Pahl/Beitz Konstruktionslehre, edited by Feldhusen, J. and Grote, K.-H.Pahl/Beitz
Konstruktionslehre, 8., Springer Berlin Heidelberg, Berlin, Heidelberg, available
at:https://doi.org/10.1007/978-3-642-29569-0.

7-149

Pahl, G. and Beitz, W. (2021), Pahl/Beitz Konstruktionslehre, edited by Bender, B. and Gericke, K.Pahl/Beitz
Konstruktionslehre, Springer Berlin Heidelberg, Berlin, Heidelberg, available
at:https://doi.org/10.1007/978-3-662-57303-7.

Pennings, J.M. (1975), “Interdependence and Complementarity-The Case of a Brokerage Office”, Human
Relations, available at:https://doi.org/10.1177/001872677502800904.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P. and Still, J. (2008), “The impact of agile practices on
communication in software development”, Empirical Software Engineering, Vol. 13 No. 3, pp. 303–337.

Pimmler, T.U. and Eppinger, S.D. (1994), “Integration Analysis of Product Decompositions”, ASME Design
Theory and Methodology Conference, Sloan School of Management Massachusetts Institute of
Technology 38 Memorial Drive, E56-390 Cambridge, MA 02139.

Pinto, M.B., Pinto, J.K. and Prescott, J.E. (1993), “Antecedents and Consequences of Project Team Cross-
Functional Cooperation”, Management Science, available at:https://doi.org/10.1287/mnsc.39.10.1281.

PMI. (2008), A Guide to the Project Managemet Body of Knowledge (PMBoK Guide)., 4th ed., Newtown Square:
Project Management Institute.

Poth, A. and Wolf, F. (2017), “Agile Procedures of an Automotive OEM – Views from Different Business Areas”,
Uluslararasi Iliskiler, Vol. 5, pp. 513–522.

Pries-Heje, L. and Pries-Heje, J. (2011), “Why Scrum Works: A Case Study from an Agile Distributed Project in
Denmark and India”, 2011 AGILE Conference, IEEE, Salt Lake City, Utah, United States, pp. 20–28.

Prosci. (2021), “Stop Confusing agile with Agile”, available at: https://www.prosci.com/resources/articles/stop-
confusing-agile-with-Agile.

Ramasesh, R. V. and Browning, T.R. (2014), “A conceptual framework for tackling knowable unknown
unknowns in project management”, Journal of Operations Management, Elsevier B.V., Vol. 32 No. 4, pp.
190–204.

Ramesh, B., Pries-Heje, J. and Baskerville, R. (2002), “Internet software engineering: A different class of
processes”, Annals of Software Engineering, available at:https://doi.org/10.1023/A:1020557725165.

Randy Evans, W. and Carson, C.M. (2005), “A social capital explanation of the relationship between functional
diversity and group performance”, Team Performance Management: An International Journal, Vol. 11 No.
7/8, pp. 302–315.

Rathor, S., Xia, W., Batra, D. and Zhang, M. (2016), “What constitutes software development agility?”, AMCIS
2016: Surfing the IT Innovation Wave - 22nd Americas Conference on Information Systems.

Reagans, R., Argote, L. and Brooks, D. (2005), “Individual experience and experience working together:
Predicting learning rates from knowing who knows what and knowing how to work together”,
Management Science, available at:https://doi.org/10.1287/mnsc.1050.0366.

Rico, R., Sánchez-Manzanares, M., Gil, F. and Gibson, C. (2008), “Team Implicit Coordination Processes: A Team
Knowledge–Based Approach”, Academy of Management Review, Vol. 33 No. 1, pp. 163–184.

Rigby, D.K., Sutherland, J., Noble, A. and Sutherland, J. (2018), “Agile at Scale- How to get from a few teams to
hundreds”, Harvard Business Review, No. June.

Robson, C. (2011), Real World Research: A Resource for Social Scientists and Practitioner-Researchers, Real
World Research: A Resource for Social Scientists and Practitioner-Researchers.

Rolland, K., Dingsoyr, T., Fitzgerald, B. and Stol, K.-J. (2016), “Problematizing agile in the large: alternative
assumptions for large-scale agile development”, 37th International Conference on Information Systems
(ICIS 2016), Dublin.

Ronkainen, J. and Abrahamsson, P. (2003), “Software development under stringent hardware constraints: do
agile methods have a chance?”, … and Agile Processes in Software …, pp. 1012–1012.

Rook, P. (1986), “Controlling software projects”, Software Engineering Journal, Vol. 1 No. 1, p. 7.

7-150

Rosemann, M. and Vessey, I. (2008), “Toward improving the relevance of information systems research to
practice: The role of applicability checks”, MIS Quarterly: Management Information Systems, Vol. 32 No.
1, pp. 7–22.

Royce, D.W.W. (1970), “Managing the Development of large Software Systems”, Ieee Wescon, No. August, pp.
1–9.

SAFe. (2021), “Scaled Agile Framework SAFe”, available at: https://www.scaledagileframework.com/.

Salas, E., Sims, D.E. and Burke, C.S. (2005), “Is there a ‘Big Five’ in Teamwork?”, Small Group Research, Vol. 36
No. 5, pp. 555–599.

Scheerer, A., Hildenbrand, T. and Kude, T. (2014), “Coordination in large-scale agile software development: A
multiteam systems perspective”, Proceedings of the Annual Hawaii International Conference on System
Sciences, IEEE, pp. 4780–4788.

Schmidt, T.S. (2019), Towards a Method for Agile Development in Mechatronics, Universität der Bundeswehr
München.

Schmidt, T.S., Atzberger, A., Schrof, J.I., Gerling, C., Weiss, S. and Paetzold, K. (2019), Agile Development Of
Physical Products - An Empirical Study about Potentials Transition and Applicability, available at:
www.unibw.de/produktentwicklung-en.

Schömann, S.O. (2011), Produktentwicklung in Der Automobilindustrie: Managementkonzepte Vor Dem
Hintergrund Gewandelter Herausforderungen, Springer-Verlag.

Schrof, J. and Paetzold, K. (2020), “Agile Produktentwicklung in einer zunehmend dynamischen
Automobilwirtschaft: Potentiale und Grenzen”, Wiener Motoren Symposium, pp. 1–15.

Schrof, J., Schmidt, T.S. and Paetzold, K. (2018), “Eignungsanalyse agiler Prinzipien für die Entwicklung
physischer Produkte”, Design for X (DfX) Symposium, Munich, p. 12.

Schrof, J.I., Atzberger, A., Paetzold, K. and Efthymios, P. (2019), “Potential of Technological Enablement for
Agile Automotive Product Development”, ICE 2019: 24th International Conference on Engineering,
Technology and Innovation, Nice, pp. 1–8.

Schrof, J.I. and Paetzold, K. (2019), “Product modularization requirements in agile automotive product
development”, DFX 2019: Proceedings of the 30th Symposium Design for X, 18-19 September 2019,
Jesteburg, Germany, The Design Society, Hamburg, p. 12.

Schwaber, K. (2013), “UnSAFe at any speed”, available at:
https://kenschwaber.wordpress.com/2013/08/06/unsafe-at-any-speed/.

Schwaber, K. and Sutherland, J. (2020), Scrum Guide, available at: https://scrumguides.org/scrum-guide.html.

Scott, W.R. and Davis, G.F. (2015), Organizations and Organizing: Rational, Natural and Open Systems
Perspectives, Organizations and Organizing: Rational, Natural and Open Systems Perspectives, available
at:https://doi.org/10.4324/9781315663371.

Sein, Henfridsson, Purao, Rossi and Lindgren. (2011), “Action Design Research”, MIS Quarterly, Vol. 35 No. 1, p.
37.

Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M. and Olsson, H.H. (2014), “Technical
Dependency in Large-Scale Agile Software Development”, International Conference on Agile Software
Development, pp. 46–61.

Sharp, H., Robinson, H. and Petre, M. (2009), “The role of physical artefacts in agile software development: Two
complementary perspectives”, Interacting with Computers, Vol. 21 No. 1–2, pp. 108–116.

Simon, H.A. (1996), The Sciences of the Artificial (Vol. 136), MIT press.

Simsarian Webber, S. (2002), “Leadership and trust facilitating cross-functional team success”, Journal of
Management Development, available at:https://doi.org/10.1108/02621710210420273.

Skelton, M. and Pais, M. (2019), Team Topologies: Organizing Business and Technology Teams for Fast Flow, IT

7-151

Revolution, available at: https://teamtopologies.com/.

Snape, D. and Spencer, L. (2003), Qualitative Research Practice: A Guide for Social Science Students and
Researchers, Edited by Jane Ritchie & Jane Lewis.

Socha, D., Folsom, T.C. and Justice, J. (2013), “Applying agile software principles and practices for fast
automotive development”, Lecture Notes in Electrical Engineering, available
at:https://doi.org/10.1007/978-3-642-33738-3_8.

Socha, D. and Walter, S. (2006), “Is designing software different from designing other things?”, International
Journal of Engineering Education, Vol. 22, pp. 540–550.

Stacey, R.D. (2007), Strategic Management and Organisational Dynamics: The Challenge of Complexity to Ways
of Thinking About Organisations, The Challenge of Complexity to Ways of Thinking About Organisations.

Star, S.L. and Greisemer, J.R. (1989), “Institutional Ecology, ‘Translations’ and Boundary Objects: Amateurs and
Professionals in Berekeley’s Museum of Verebrate Zoology”, Social Studies of Science, Vol. 19 No. 3, pp.
387–420.

Star, S.L. and Griesemer, J.R. (1989), “Institutional Ecology, ‘Translations’ and Boundary Objects: Amateurs and
Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39”, Social Studies of Science, available
at:https://doi.org/10.1177/030631289019003001.

Stelzmann, E. (2012), “Contextualizing Agile Systems Engineering”, No. May, pp. 17–22.

Steward, D. V. (1981), “Design Structure System: a Method for Managing the Design of Complex Systems.”, IEEE
Transactions on Engineering Management, Vol. EM-28 No. 3, pp. 71–74.

Stojanov, I., Turetken, O. and Trienekens, J.J.M. (2015), “A Maturity Model for Scaling Agile Development”,
2015 41st Euromicro Conference on Software Engineering and Advanced Applications, IEEE, pp. 446–453.

Stray, V., Moe, N.B. and Hoda, R. (2018), “Autonomous agile teams: Challenges and directions for future
research”, Proceedings of the 19th International Conference on Agile Software Development: Companion,
ACM, New York, NY, USA, pp. 1–5.

Strode, D. (2014), “Measuring Coordination in Agile Software Development”, Management, p. 2.

Strode, D.E. (2005), The Agile Methods: An Analytical Comparison of Five Agile Methods and an Investigation of
Their Target Environment, Massey University, Palmerston North, New Zealand.

Strode, D.E. (2016), “A dependency taxonomy for agile software development projects”, Information Systems
Frontiers, Vol. 18 No. 1, pp. 23–46.

Strode, D.E., Hope, B., Huff, S.L. and Link, S. (2011), “Coordination effectiveness in an agile software
development context”, PACIS 2011 - 15th Pacific Asia Conference on Information Systems: Quality
Research in Pacific.

Strode, D.E., Huff, S.L., Hope, B. and Link, S. (2012), “Coordination in co-located agile software development
projects”, Journal of Systems and Software, Vol. 85 No. 6, pp. 1222–1238.

Susman, G.I. (1983), “Action research: a sociotechnical systems perspective”, Beyond Method: Strategies for
Social Research, Sage Beverly Hills, CA, Vol. 95, p. 113.

Sutherland, J. and Frohman, R. (2011), “Hitting the Wall: What to Do When High Performing Scrum Teams
Overwhelm Operations and Infrastructure”, 2011 44th Hawaii International Conference on System
Sciences, IEEE, pp. 1–6.

Takeuchi, H. and Nonaka, I. (1986), “The New New Product Development Game”, Harvard Business Review, Vol.
64 No. 1, pp. 137–146.

Takeuchi, H., Rigby, D. and Sutherland, J. (2016), “Embracing Agile”, Harvard Business Review.

Taylor, F.W. (1916), “The principles of scientific management”, Bulletin of the Taylor Society. Reprinted in
Shafritz, J.M., & Ott, J.S. (Eds), Classic Organization Theory., Wadsworth Publishing Company, Belmont,
CA, pp. 66–79.

7-152

Thomke, S. and Fujimoto, T. (2000), “The Effect of ‘Front-Loading’ Problem-Solving on Product Development
Performance”, Journal of Product Innovation Management, available at:https://doi.org/10.1111/1540-
5885.1720128.

Thomke, S. and Reinertsen, D. (1998), “Agile Product Development: Managing Development Flexibility in
Uncertain Environments”, California Review Management, Vol. 41.

Thompson, J.D. (1967), Organizations in Action: Social Science Bases of Administrative Theory., McGraw-Hill.

Thompson, J.D., Zald, M.N. and Scott, W.R. (2017), Organizations in Action, Organizations in Action: Social
Science Bases of Administrative Theory, Routledge, available at:https://doi.org/10.4324/9781315125930.

Tripathi, N., Rodríguez, P., Ahmad, M.O. and Oivo, M. (2015), “Scaling Kanban for Software Development in a
Multisite Organization: Challenges and Potential Solutions”, Agile Processes in Software Engineering and
Extreme Programming, pp. 178–190.

Tseng, Y.H. and Lin, C.T. (2011), “Enhancing enterprise agility by deploying agile drivers, capabilities and
providers”, Information Sciences, available at:https://doi.org/10.1016/j.ins.2011.04.034.

Tyflopoulos, E., Flem, D.T., Steinert, M. and Olsen, A. (2018), “State of the art of generative design and topology
optimization and potential research needs”, pp. 1–15.

Ueding, B. (2014), Automobilindustrie: Flop-Risiken Anhand von Praxisbeispielen, Diplomica Verlag.

Ulrich, K.T. and Eppinger, S.D. (2015), Product Design and Development, 6th ed., New York.

Uludag, O., Kleehaus, M., Caprano, C. and Matthes, F. (2018), “Identifying and structuring challenges in large-
scale agile development based on a structured literature review”, Proceedings - 2018 IEEE 22nd
International Enterprise Distributed Object Computing Conference, EDOC 2018, pp. 191–197.

VDI 2206. (2004), “VDI 2206”, VDI-Gesellschaft Produkt- und Prozessgestaltung.

Ven, A.H. Van De, Delbecq, A.L. and Koenig, R. (1976), “Determinants of Coordination Modes within
Organizations”, American Sociological Review, Vol. 41 No. 2, p. 322.

Venkatesh, V., Thong, J.Y.L., Chan, F.K.Y., Hoehle, H. and Spohrer, K. (2020), “How agile software development
methods reduce work exhaustion: Insights on role perceptions and organizational skills”, Information
Systems Journal, Vol. 30 No. 4, pp. 733–761.

VersionOne. (2020), 14th Annual STATE OF AGILE REPORT, Annual Report for the STATE OF AGILE, available at:
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report%0Ahttps://stateofagile.com/#.

Vidgen, R. and Wang, X. (2009), “Coevolving Systems and the Organization of Agile Software Development”,
Information Systems Research, Vol. 20 No. 3, pp. 355–376.

van Vliet, H. (2008), Software Engineering: Principles and Practices, 13th ed., John Wiley & Sons, Hoboken, NJ.

Walls, J.G., Widmeyer, G.R. and El Sawy, O.A. (1992), “Building an information system design theory for vigilant
EIS”, Information Systems Research, INFORMS, Vol. 3 No. 1, pp. 36–59.

Wang, X., Conboy, K. and Pikkarainen, M. (2012), “Assimilation of agile practices in use”, Information Systems
Journal, available at:https://doi.org/10.1111/j.1365-2575.2011.00393.x.

Weber, S. (2015), Agile in Automotive - State of Practice 2015.

Wedeniwski, S. (2015), Mobilitätsrevolution in Der Automobilindustrie, Springer.

Wegner, D.M. (1995), “A Computer Network Model of Human Transactive Memory”, Social Cognition, available
at:https://doi.org/10.1521/soco.1995.13.3.319.

Wells, D. (2021), “When should Extreme Programming be Used?”, available at:
http://www.extremeprogramming.org/when.html.

Williams, L. and Cockburn, A. (2003), “Agile software development: it’s about feedback and change”, IEEE
Computer, Vol. 36 No. 6, pp. 39–43.

7-153

Wittenbaum, G.M. and Stasser, G. (1996), “Management of information in small groups.”, Sage Publications,
Inc.

Wood, S., Michaelides, G. and Thomson, C. (2013), “Successful extreme programming: Fidelity to the
methodology or good teamworking?”, Information and Software Technology, Vol. 55 No. 4, pp. 660–672.

Xu, P. (2009), “Coordination In Large Agile Projects”, Review of Business Information Systems (RBIS), Vol. 13 No.
4, pp. 29–44.

	1 Introduction
	1.1 Problem outline, motivation, and relevance of research
	1.2 Agility in automotive design
	1.3 Research strategy
	1.4 Research contribution
	1.5 Structure of the thesis

	2 State of the Art
	2.1 Agility in product design
	2.1.1 Agility as an attribute
	2.1.1.1 History of Agility
	2.1.1.2 Definition of agility
	2.1.1.3 Core concepts of agility
	2.1.1.4 Change in design contexts
	2.1.1.5 Sweet Spot conditions for agility
	2.1.1.6 Benefits of agility

	2.1.2 Agility as a construct
	2.1.2.1 Manifesto of Agile Software Development and agile methods
	2.1.2.2 Scrum framework
	2.1.2.3 Extreme Programming XP framework
	2.1.2.4 Large scale agile methods

	2.2 Product development theory
	2.2.1 Linear and iterative process models
	2.2.2 Categorization of agile product development

	2.3 Automotive product development
	2.3.1 Agility in mechatronic product design
	2.3.2 Agility in scaled design contexts

	2.4 Coordination theory in product design
	2.4.1 Coordination in organization research
	2.4.2 Coordination in team and multiteam systems
	2.4.3 Coordination mechanisms
	2.4.4 Coordination determinants
	2.4.5 Coordination outcome
	2.4.6 Coordination strategy

	3 Research approach
	3.1 Research design
	3.1.1 Research questions
	3.1.2 Theoretical lens coordination theory
	3.1.3 Research fields
	3.1.4 Research overview

	3.2 Design Research
	3.2.1 Research paradigm
	3.2.2 Design Research paradigm
	3.2.3 Relevance and rigor in Design Research

	3.3 Research methodology
	3.3.1 Action Research method
	3.3.1.1 Selection of pilot projects
	3.3.1.2 Data collection

	3.3.2 Structured and narrative literature reviews
	3.3.3 Complementary data collection

	4 Coordination perspective of agile product design
	4.1 Coordination reference model
	4.2 Agile coordination strategies
	4.2.1 Analysis Scrum coordination strategy
	4.2.1.1 Applied coordination modes
	4.2.1.2 Connection and balance between coordination modes
	4.2.1.3 Deduced Scrum coordination strategy

	4.2.2 Analysis eXtreme Programming XP coordination strategy
	4.2.2.1 Applied coordination modes
	4.2.2.2 Connection and balance between coordination modes
	4.2.2.3 Deduced XP coordination strategy

	4.2.3 Findings in response to research question one

	4.3 Inter team coordination in second generation large-scale agile methods
	4.3.1 LeSS - inter team coordination modes and mechanisms
	4.3.2 Essential SAFe - inter team coordination modes and mechanisms

	5 Results
	5.1 Agile pilot projects in automotive design
	5.2 Bottom-up data breakdown
	5.2.1 Distribution and relevance of experienced problems

	5.3 Top-down data breakdown: Constraints of physicality and scale
	5.4 Problem space integration

	6 Discussion
	6.1 Functionality of agile coordination strategies in automotive design
	6.1.1 Coordination determinants in automotive design
	6.1.2 Functionality of agile coordination modes and mechanisms in automotive design
	6.1.3 Self-adjustment of agile coordination strategies in automotive design
	6.1.4 Suitability of agile coordination strategies in automotive
	6.1.5 Findings in response to research question two

	6.2 Scenarios to enable agile coordination strategies in automotive design
	6.2.1 Inter team coordination in agile coordination strategies
	6.2.1.1 Agile inter team coordination mechanisms in scaled software development
	6.2.1.2 Agile inter team coordination mechanisms in automotive design
	6.2.1.3 Applicability agile inter team coordination mechanisms in automotive design
	6.2.1.4 Connectivity between agile inter team coordination mechanisms

	6.2.2 Technological enablement of agile coordination strategies
	6.2.3 Product architecture influence on agile coordination strategies
	6.2.4 Findings in response to research question three

	7 Conclusion
	7.1 Response to the research questions
	7.2 Research contribution
	7.3 Research limitations
	7.4 Further work
	7.5 Closing summary

	Acronyms
	List of figures
	List of tables
	References

