
Expert-based recommendation
systems in the insurance

industry—A complexity theoretical
study

Vanessa Patricia Mindl

Vollständiger Abdruck der von der Fakultät für Wirtschafts- und Organisationswis-
senschaften der Universität der Bundeswehr München zur Erlangung des akademis-
chen Grades eines

Doktors der Wirtschafts- und Sozialwissenschaften (Dr. rer. pol.)

genehmigten Dissertation.

Gutachter:

1.) Prof. Dr. Andreas Brieden

2.) Prof. Dr. Claudius Steinhardt

Die Dissertation wurde am 11.01.2023 bei der Universität der Bundeswehr
München eingereicht und durch die Fakultät für Wirtschafts- und Organisation-
swissenschaften am 05.04.2023 angenommen. Die mündliche Prüfung fand am
15.05.2023 statt.

To my family

Acknowledgements

Nobody said it was easy.
Nobody said it was so hard.

Coldplay—Scientist

As Coldplay writes so well, I was aware that writing a thesis would not be super
easy, the proofs would not be trivial, and most importantly the last few weeks and
months would not resemble a life on a pony farm, however, there were de�nitely
times when you feel like you are climbing a very high mountain in Nepal. I am
therefore very grateful to have been supported by several people whom I would
like to thank at this point.

First and foremost, I would like to thank my doctoral advisor Prof. Dr. Andreas
Brieden, without whom this work would not have been possible. I would especially
like to thank him for his empowering guidance, the stimulating discussions, his
trust and the always friendly and thus supportive working atmosphere.

I would also like to thank my colleagues and friends Saskia, Vienna, Martin and
Matthias, and of course to all my other colleagues at university. They made the
time at university a really joyful and unforgettable time—with lots of laughter and
good conversations while drinking co�ee. With you, even lengthy exam corrections
were fun (and bizzare when you think of the weird texts about chicken pox). And
without you, I would never have heard of the so-called bee swarm law (here a
special thanks to Sebastian). In particular, I want to express my gratitude to Saskia
and Martin for the very helpful input and the supportive words—both in terms of
content and personally. I am so grateful for your time, your words and most of all
your friendship.

Finally, I would like to thank my family, �rst of all my parents, my sister, and my
grandfather—who taught me that you can achieve anything if you pursue a positive
attitude towards life. I am so lucky to have a family so full of love and unlimited
support. Knowing that I have people behind me who love me unconditionally not
only gave me the strength to write this thesis, but also to be the person I am today.

Above all I would like to thank my husband Frank and my kids Emilia, Arthur, and
Rebecca. You are my source of strength, my place of retreat and joy and I could
never have done it without you. I love you.

5

6

Abstract

The insurance industry must constantly adapt to digital trends and technologies
as well as ever-changing customer expectations. For instance, claims processing
should be designed in such a way that it is not only as e�cient as possible, but
also customer-oriented and customer-satis�yng. In this thesis, we propose an
optimization problem—the expert-based recommendation system (EBRS problem)—
that can improve the claims processing by providing appropriate recommendations
to clerks. In a �rst step, we estimate the (yet unknown) quality of a claims processing
by taking into account the implicit knowledge of experts via utilizing adapted
methods of Conjoint Analysis. In a second step, we use this expert knowledge to
�nd suitable recommendations for the EBRS problem. This approach can be utilized
to generate automated recommendations for actions to be taken by clerks to assist
them in their everyday work tasks. The thesis addresses in particular the proof
that the EBRS problem in general belongs to the complexity class of NP-complete
problems. We �nally investigate the EBRS problem in the context of complexity
theory to identify cases for which the problem is solvable in polynomial time.

7

8

Zusammenfassung

Versicherungsunternehmen müssen sich den veränderten Kundenerwartungen im
digitalen Umfeld kontinuierlich anpassen. So gilt es beispielsweise, Schadenprozesse
so zu gestalten, dass diese nicht nur möglichst e�zient, sondern auch kundenorien-
tiert abgewickelt werden. In dieser Arbeit stellen wir ein Optimierungsproblem vor,
das den Schadenbearbeitungsprozess durch geeignete Empfehlungen verbessern
kann. Dazu ermitteln wir in einem ersten Schritt die Qualität eines Schadenbear-
beitungsprozesses unter Berücksichtigung des impliziten Wissens von Expert:innen.
In einem zweiten Schritt nutzen wir dieses Wissen, um geeignete Empfehlungen
für das Optimierungsproblem zu �nden, das wir aufgrund dieser Vorgehensweise
expertenbasiertes Empfehlungssystem, kurz EBRS, nennen. Dieser Ansatz kann
verwendet werden, um automatisierte Handlungsempfehlungen für Personen in der
Schadenbearbeitung zu generieren, die diese bei ihrer Arbeit unterstützen sollen.
Die Dissertation widmet sich insbesondere dem Beweis, dass das EBRS-Problem
im Allgemeinen zur Komplexitätsklasse der NP-vollständigen Probleme gehört.
Anschließend wird das EBRS-Problem komplexitätstheoretisch untersucht, um Fälle
zu identi�zieren, in denen das Problem in polynomieller Zeit lösbar ist.

9

10

Contents

List of Figures 13

1 Overview of this thesis 15

2 Motivation 17
2.1 Expert-based improvement of the quality of claims processing . . . 17

2.1.1 Claims processing in the digital age 18
2.1.2 Expert-based quality . 21
2.1.3 Improving the expected quality of claims 28

2.2 Complexity of problems . 32

3 Definitions and Preliminaries 37
3.1 Statistical methods to determine the quality claims processing . . . 38

3.1.1 Conjoint analysis . 38
3.1.1.1 Selection of attributes and their levels 39
3.1.1.2 Selection of data collection method 41
3.1.1.3 Selection of data collection design 42
3.1.1.4 Selection of data collection presentation 42
3.1.1.5 Evaluation of stimuli 43
3.1.1.6 Estimation of part-worth utilities 44

3.1.2 Clustering with :-medoids 44
3.1.2.1 Gower’s coe�cient 49
3.1.2.2 Validation of the clusters 50

3.2 Introduction to graph theory . 52
3.2.1 Independent set . 56
3.2.2 Matchings . 57

3.3 Complexity theory . 58
3.3.1 Running times of algorithms 59
3.3.2 The complexity class NP . 62
3.3.3 NP-completeness . 67

3.3.3.1 Cook’s theorem 73
3.3.3.2 Methods for proving NP-completeness 75

3.3.4 Further NP-complete problems 78
3.3.4.1 The 3-SAT problem 78
3.3.4.2 The independent set problem 79
3.3.4.3 The perfect matching problem 80

11

Contents

3.3.4.4 The Knapsack problem 80
3.3.4.5 The Subset-Sum problem 82
3.3.4.6 Generalizations of the Knapsack problem 83

3.4 Integer linear programs . 86
3.5 LP relaxation . 90
3.6 Total unimodularity . 92

4 Expert-based recommendation systems 101
4.1 Expert-based quality of claims processing and recommendations . . 101

4.1.1 Procedure to de�ne the quality of claims processing 102
4.1.1.1 Selection of representative stimuli 104
4.1.1.2 Evaluation of stimuli and estimation of quality . . 110

4.1.2 Choice of recommendations 112
4.2 Modelling the EBRS problem and classi�cation of its complexity . . 113

4.2.1 Formulation of the EBRS problem 113
4.2.1.1 De�nition of the constraints 116
4.2.1.2 De�ning the EBRS problem as an ILP 120

4.2.2 Decision version of the EBRS problem 124
4.2.3 Proof of NP-completeness 125

4.3 Complexity-theoretical investigations of the EBRS problem 129
4.3.1 Con�icts between recommendations but no dependencies . 131

4.3.1.1 Case: Pairwise con�icts 131
4.3.1.2 Case: Stellar con�icts 138
4.3.1.3 Case: No solution 143

4.3.2 Dependent but no con�icting recommendations 146
4.3.2.1 Case: No solution 150

4.3.3 No con�icts and no dependencies 152
4.3.3.1 Case: Only bounds 153
4.3.3.2 Case: Limited weighted sum per model 161

5 Outlook and Conclusions 169
5.1 The e�ort—a generalization of the EBRS problem 169
5.2 Conclusion . 172

Bibliography 177

12

List of Figures

2.1 Improved claims processing . 19
2.2 Overlapping interval scale . 27
2.3 Schematic illustration of the EBRS procedure. 31

3.1 Steps of Conjoint Analysis . 40
3.2 Geometric presentation of a graph 54
3.3 Geometric presentation of a path. 55
3.4 Geometric presentation of a cycle. 55
3.5 Example for an independent set. 57
3.6 Examples for graphs with and without perfect matching. 58
3.7 Running times of algorithms. 60
3.8 Example for a Karp’s reduction . 69
3.9 Set diagram of complexity classes 72
3.10 Example of a bipartite graph. 80
3.11 Example of an LP relaxation for a 0-1-ILP. 91
3.12 Example of a polyhedron (a) and a polytop (b). 93
3.13 Example for an intersection between hyperplane and polyhedron . 94
3.14 Example of relation of a bounded polyhedron and its convex hull. . 95

4.1 Sample excerpt of the �rst questionnaire. 108
4.2 Sample excerpt of the second questionnaire. 110
4.3 Example of an EBRS problem as ILP 123
4.4 Example to illustrate the need of setting W8 = 1 for all 8 2 [=]. 129
4.5 Example to illustrate the need of ⇡ = ;. 130
4.6 Example of the EBRS problem with a TU constraint matrix. 133
4.7 Assignment of the rows of the constraint matrix �⇠ to � = (�1, �2) . 137
4.8 Di�erent examples for stellar con�icts. 139
4.9 Example for stellar con�icts. 142
4.10 Example for “No solution” for con�icting recommendations 145
4.11 Example for “No solution” for dependent recommendations 151

13

List of Figures

14

1 Overview of this thesis

The aim of the thesis is to demonstrate the potential of mathematical optimiza-
tion for improving claims processing in insurance companies, taking into account
complexity-theoretical aspects.

In chapter 2 we motivate the goals and aims of our work by framing a very speci�c
problem in the insurance industry—namely the processing of claims. We illustrate
the key questions of this thesis in that speci�c context of claims processing, illus-
trating the relevance of a measurement of “quality” of such claims processing for
improving current traditional best-practice handling via digitalization. We demon-
strate how expert ratings, questionnaire design, conjoint analyses, cluster analyses,
and optimization problems are aligned throughout the present thesis to improve
the expected quality of claims by �nding appropriate recommendations for the
insurance industry.

In chapter 3 we give an overview of the key mathematical concepts underlying
this thesis. We present our questionnaire design, which we use to assess experts
on the quality of claims processing. We developed these questionnaires based on
a :-medoids cluster analysis, which is outlined in this section. To evaluate the
questionnaires, we used conjoint analysis, which is outlined. With an introduction
to graph theory we lay the foundation for the optimization problems underlying
the thesis. Finally, the mathematical concepts of optimization used in this work
are introduced and the complexity class of NP-complete problems is de�ned and
discussed, and examples of NP-complete problems are given.

In chapter 4—the main part of the thesis—we de�ne and describe the expert-based
recommendation system (EBRS problem) with respect to its complexity. A key step in
this process is to estimate the quality of a claims processing, which does not exist in
the dataset: By �rst looking at completed claims ex-post, we do this by drawing on
the implicit knowledge of experts. Thereby, we not only estimate the quality itself,
but also identify speci�c variables in�uencing this quality—which take the role of
potential recommendations for claims processing. To improve the claims processing
for future claims with the help of appropriate recommendations, we predict the
expected quality ex ante in a �rst step with the help of prototypical claims. In a
second step, we �nally formulate the EBRS problem to optimize the expected quality
during claims processing. We study the EBRS problem in complexity-theoretical
terms to �nd cases that are solvable in polynomial time.

15

1 Overview of this thesis

Chapter 5 closes with re�ections on the fact that not only the number of recommen-
dations, but also the e�ort for the claim handler (or even for the insurance company
itself) to actually implement speci�c recommendations may play a role in claims
processing. This leads to the idea of considering the e�ort in the EBRS problem in
addition to the number of recommendations in future work. The thesis concludes
with a summary and this outlook.

16

2 Motivation

In chapter 2 of this thesis, we explain and justify what we mean by the quality of
claims processing in the insurance industry and why it is especially important in
the digital age to take a closer look at it. Afterwards, we motivate the expert-based
recommendation system with which the quality of the claims processing can be
improved. Finally, we explain the importance of considering the complexity of the
so de�ned integer linear program.

Section 2.1 begins with an overview of current ideas on claims processing in the
digital age. From this, the necessity of an expert-based quality of the processing
of claims is motivated. That means, based on the assessments of various experts,
it is necessary to develop quality characteristics that can be used to improve the
claims processing. We further motivate with which methods we utilize these quality
features to add the information of quality to the data set. Subsequently, we motivate
how we generate a recommendation system based on these quality features, with
which we can optimize the previously de�ned expected quality.

The improvement of the expected quality of a claims processing can be formulated
as an integer linear program. In section 2.2 we motivate the need to consider the
complexity-theoretic investigation of di�erent cases of the expert-based recommen-
dation system to see how e�ciently the problem can be solved. To better grasp the
notion of e�ciency, we �rst give an initial de�nition of an e�cient algorithm. We
also brie�y explain the complexity classes P andNP, and their relation. Furthermore,
we motivate the complexity class of NP-complete problems.

2.1 Expert-based improvement of the quality of
claims processing in the insurance industry

In the digital age, a variety of processes are undergoing change. Insurance com-
panies, whose business processes are already based on the handling of data, have
always been part of this change. One of the key areas that can undergo a transfor-
mation in order to optimize processes is claims processing.

17

2 Motivation

2.1.1 Claims processing in the digital age

Due to the possibilities o�ered by the ever-advancing digitalization, the insurance
industry has been in a state of upheaval for several years and is under pressure to
undergo a digital transformation [BKM21]. This pressure is exacerbated by the fact
that the possibilities o�ered by digitalization are creating a competitive landscape in
which so-called FinTechs are also pushing their way in [BCC+18, BKM21]. McKinsey
even formulates this pressure very radically as “attackers are transforming the
competitive landscape and elevating customer expectations” [BCC+18].

For traditional insurers in particular, this represents a major challenge, because—
according to a survey by Bitkom—claims are still primarily processed in paper form
[Ver20]. In the survey, only six percent of the customers stated that they were able
to process the claim purely digitally until payment was made. Yet, especially in the
Corona pandemic, customers have become accustomed to using more and more
digital channels and technologies [BKM21], which is exactly what many FinTech
companies o�er [BCC+18].

Especially in order to attract new customers, but also to retain existing customers,
the possibilities of digitalization are manifold. A particular focus is on claims
settlement, because claims are a kind of moment of truth and o�er the opportunity
to create positive experiences in the relationship between customer and insurer, thus
laying the foundation for improved customer loyalty [KMPF15, BP04]. In addition,
there is great potential for improvement, as too little optimization e�ort has been
made in this area in recent years [BP04, BCC+18]. In claims processing, the methods
of digitalization such as data analytics or arti�cial intelligence o�er innovative
possibilities for interaction between the customer, the insurance company, and
third parties—and can also make the settlement process more customer-speci�c in
particular [BKM21].

In addition to customer satisfaction, improved claims processing can also lead to
higher employee satisfaction and e�ciency [BP04, BCC+18, DAV19]. Increasing the
e�ciency of claims processing is particularly interesting because it can signi�cantly
reduce costs [BCC+18, Gen22]. Furthermore, bothMcKinsey and DAV see the oppor-
tunity to improve e�ectiveness in addition to customer satisfaction and e�ciency
through a well-implemented and customer-oriented digitalization of the claims
processing [BCC+18, DAV19]. For example, the processing accuracy associated with
e�ectiveness can reduce the risk of claims disputes and litigation, as well as fraud,
which in turn also reduces the costs of claims processing [BCC+18, Gen22].

Furthermore, e�ectiveness also has an impact in terms of customer loyalty. As
already mentioned, the quality of an insurer becomes apparent in the event of
a claim. If the e�ectiveness of the claims processing is not satisfactory, 87 % of
customers see this as a reason to change their insurance company [Gen22]. In

18

2.1 Expert-based improvement of the quality of claims processing

summary, an improved claims processing can increase three aspects in particular—
customer satisfaction, e�ciency and e�ectiveness, as illustrated in the following
�gure 2.1.

Cus
tome

r satisfa
ction

Efficiency

Ef
fe
ct
iv
en
es
s

Costs #
Risk of fraud #

Risk of disputes and
ligitation #

Customer loyalty "
Customer orientation "
Personnel capacity "

Figure 2.1: Improved claims processing—adapted from [BCC+18].

The importance of improved claims handling is illustrated by the fact that, according
to Deloitte, nearly 70 % of an insurance company’s expenses are attributable to
claims settlement [Gen22]. However, e�orts to increase the e�ciency of claims
processes are still in their infancy, even though the potential for optimization in the
area of claims settlement, e.g., through situation-based claims settlement or process
optimization, can be easily realized [BP04, BKM21]. Furthermore, if e�ciency is
increased, this also allows personnel capacities to be used more sensibly [DAV19].
This is especially important if a serious accident occurs: in the event that a customer
is involved in such a serious accident, it is essential that the claims handler has
the capacity to take care of this customer on a human and personal level. The
importance of such free capacity is evidenced by the fact that “90 % of a claims
handling is about solving the problem of a customer who has experienced a tragic
incident” [Gen22].

Summarizing all these aspects, it can be stated that digitalization o�ers the oppor-
tunity to implement an e�cient and e�ective claims processing that also provides
the personnel capacities, depending on the case constellation and customer require-
ments, so that human and personal care is made possible [BKM21]. Considering
this, one goal for insurers may be to fully or partially automate the processing of

19

2 Motivation

claims with the help of digital technologies, but also the use of arti�cial intelligence
and data analysis methods. It is therefore not surprising that McKinsey predicts a
50 % increase in automated claims processings by 2030 [Gen21]. Collaboration with
InsurTech, some of which already have or can provide the necessary technologies, is
a good way to achieve this goal. They are therefore not only competitive opponents,
but can also act as suitable digital transformation partners [Cag21].

There is a wide range of digitalization options to make the claims processing
more e�cient—from implementing an app, using the already mentioned arti�cial
intelligence, processing the dataset using Big Data technologies, to sophisticated
telematics tari�s. However, not all of these approaches are e�ective. A very well-
known example of such an aberration are the telematics tari�s in motor vehicle
insurance. For more informtion we refer the interested reader to Morawetz [Mor16]
and Walthes [Wal17b].

Instead, it may make sense to modernize existing procedural structures and improve
interaction with customers and employees [Wal17b].

The improvement of existing procedural structures is precisely the focus of this
thesis. Instead of fundamentally changing the claims processing with new digital
technologies, we rather aim at improving existing claims processing by automati-
cally giving suitable recommendations. A special focus is on customer satisfaction—
which does not exclude e�ciency and e�ectiveness. This depends on the processing
of claims under consideration.

To achieve an improvement of the claims processing, however, we do not focus on
the purely process-related structures. For example, we do not analyze a given dataset
with Big Data technologies as they can be found in [DAV19] in the usual sense. For
successful digitalization of a claims processing, we believe it is imperative to �rst
better understand and formalize the knowledge and experience of experts [BKM21].
This means that we aim at surveying all parties involved in a claims processing
and transfer their knowledge (derived from their answers) to the given data set for
digital use. The inclusion of expert knowledge on the one hand bears potential for
improving the claims processing, while on the other hand it is a challenge that has
not been su�ciently addressed in the discussion to date.

By incorporating the experience and knowledge of the process participants (i.e.,
customers, claim handlers, and managers) from di�erent perspectives, we generate
a “personalized and expert-based digital claims processing” [BKM21]. Our focus is
therefore on increasing expert-based quality of the claims processing. In the next
section, we will clarify what we understand by this term.

20

2.1 Expert-based improvement of the quality of claims processing

2.1.2 Expert-based quality

As we discussed in section 2.1.1, a better settlement of claims may increase the
employees and customers satisfaction. As described in [BKM21], customer satisfac-
tion can be a di�erentiating factor in the increasingly competitive environment if
implemented appropriately. Digitalization now o�ers the opportunity to achieve
true customer satisfaction by, e.g., developing a tailored claims processing, as dis-
cussed further in our recent article [BKM21]. At best, these newly-developed digital
processes help to improve customer orientation and enable human as well as per-
sonalized care in the event of an accident. Thus, the challenge we face in the claims
processing is both (1) to exploit the possibilities of digitalization and (2) to take per-
sonal interests—in addition to interests of the management and the company—into
account, raising the question:

How can personal interests be taken into account?

To better understand personal interests, we should keep in mind that there are
several internal and external parties involved in the processing of claims. Each party
involved pursues di�erent interests depending on their position. For example, a
manager may have a di�erent focus on processing a claim than a clerk or customer.
If all personal interests are met to a certain degree, satisfaction with the overall
handling of the claim is higher. Yet, meeting all personal interests to the same
extent is not possible. Varying views of the di�erent parties may result in certain
actions during claims processing being perceived positive by one party, but negative
by another. Therefore, another challenge we face is to consider the interests of
all parties as good as possible. However, before we can engage in this challenge,
we need to �nd an answer for how to take personal interest into account at all.
As we aim to increase satisfaction of all parties by addressing their interests we
reformulate the question to:

How can satisfaction with the processing of claims be measured?

One plausible answer is to survey the parties involved in the claims settlement
process. In other words, we interview the experts. By experts we mean both the
internal parties, e.g., the manager or the clerk, and the external parties, e.g., the
customers or the car workshops. By interviewing experts we obtain their opinions,
perspectives and expertise which is why we refer to the resulting model as expert-
based.

The di�culty is to ask questions in a way that they cover both the conscious
and the unconscious evaluation criteria, but also to ensure that the answers are
appropriately incorporated into the digital claims processing.

We assume for the rest of this thesis that the more conscious and/or unconscious
criteria are met, the more satis�ed the expert—and the higher their rating of the

21

2 Motivation

quality of the speci�c claims processing. This introduces the concept of rating the
quality—which we operationalize as a valid measure of satisfaction.

To a certain extent, this concept can be compared to “rating a product” that one
wants to purchase as a customer: For example, if we have to choose between
di�erent yoghurts while shopping at a supermarket, we will include both some
attributes of the yoghurts we are consciously aware of in the evaluation, and possibly
also attributes that we are not consciously aware of. In this context, conscious
attributesmay be taste, fat content or whether the yoghurt is organic—while external
packaging may serve as a potential unconscious attribute (which the customer, or
expert may only become aware of when discussing the evaluation afterwards).

Reasonably, the unconscious criteria are not easy to assess, especially in contexts,
where many attributes in�uence the evaluation and the in�uencing attributes them-
selves are not easy to uncover. In fact, we assume both to be the case when rating
claims processing.

One common statistical method to reveal unconscious criteria is the conjoint analysis.
In a conjoint analysis experts do not value every single attribute or attribute level as
it is the case for compositional approaches, such as the self-explicated method. Instead
the whole product—here, the whole claims processing—is evaluated. Hence, the
name conjoint, which stands for CONsidered JOINTly [BEPW18]. Thus, the experts
do not evaluate each individual attribute level, but look at the claim submitted for
evaluation—the so-called stimuli—as a whole. Based on the overall assessment of the
claims processing, the part-worth utilities of each attribute level are then estimated.
The conjoint analysis is therefore a decomposional approach. We describe conjoint
analysis in more detail in section 3.1.1.

Conjoint analysis is used as a generic term for various decompositional procedures
that estimate the structure of experts’ preferences. We will explain the methods we
have used in terms of conjoint analysis in more detail below, and also address the
di�erences to compositional approaches—especially the self-explicated approach.

One advantage of conjoint analysis is that it represents whole claims processings
in the questionnaire and therefore has a greater similarity to a real choice or, in
our case, the real evaluation situation [GHH07]. In our opinion, the importance
of presenting realistic and whole damage cases reveals when considering the goal
of the questionnaire—to measure satisfaction with claims processing, which is
a so far rather unknown and innovative approach [BKM21]. We assume that a
decompositional questionnaire design, by considering holistic damage cases, will
allow experts to better adapt to an approach thatmay have been entirely new to them
so far. This means they are not forced to evaluate each attribute for itself, which
may not be possible to them not only because of the new approach, but also beacuse
their expert view might rather be holistic than isolated. We therefore assume that
they can assess each process unbiased and according to their expert intuition when
evaluating cases rather than attributes. Another advantage of conjoint analysis

22

2.1 Expert-based improvement of the quality of claims processing

is that it prevents us from getting only socially accepted answers [GHH07], and
therefore, getting the real opinion of all expert levels—from the clerk to the manager.
That means, conjoint analysis has a greater chance to detect the real importance
weights for each expert compared to self-explicated approach [GHH07].

To represent holistic and real claims, we apply the pro�le method. It takes into
account all attributes and not only a selection of these, as would be the case, for ex-
ample, with the two-factor method, in which respondents evaluate pairs of attribute.
Unlike to the evaluation of products, where choices between a pair of attributes can
be evaluated validly, in claims processing more attributes and corresponding levels
have to be evaluated. It is therefore not possible to submit all case constellations
resulting from the combination of all attributes and corresponding levels to an
expert for evaluation. Otherwise, the experts would have to assess several hundreds
of theoretical claims, which is beyond human comprehension. That is one reason
for why Green and Srinivasan suggest 30 stimuli as an upper limit [GS78].

In our case, the self-explicated approach would indeed be advantageous, as it
entails a lower cognitive load for respondents in the evaluation process and enables
respondents to evaluate a higher number of attributes and levels [SM18, GHH07].
Especially in the insurance context this is of great importance, as insurance datasets
usually consist of many attributes [Gru18, Wal17a]. Nevertheless, we judge the
advantages of the conjoint analysis to be higher and therefore, we have to guarantee
that this disadvantage is taken into account when creating the questionnaire.

That is why we decided to use a so-called hybrid approach, which is an improvement
of (especially traditional) conjoint analysis. It combines both the compositional
and decompositional approaches and is mainly used in cases where researchers
need to consider more attributes and levels than traditional approaches can handle
[SM18]—which is the challenge we face.

Our questionnaire is inspired by the adaptive conjoint analysis described in more
detail by Steiner and Meißner [SM18]. In our questionnaire design, each expert
directly evaluates the importance of each attribute in a �rst step (i.e., compositional
part) and the entire claims processing with selected combinations of attributes in a
second step (i.e., decompositional part). For the second step, we only consider the
important attributes per expert according to the �rst questionnaire. In this way, we
reduce the spectrum of possible combinations.

Nevertheless, the so-called full design of conjoint analysis, in which an expert is
presented with all combinations of the attributes and levels, is still not possible.
To account for that, we reduce the cases by selecting a subset of stimuli for the
questionnaire in such a way that it represents the full design as well as possible—a
so-called reduced design). In section 4.1.1.1, we discuss in more detail how we used
this improvement to reduce the number of attributes per expert and the method we
used to select appropriate stimuli.

23

2 Motivation

In de�ning the stimuli, another challenges—besides the need to reduce the number
of stimuli—is that the attributes and their levels are not independent and some
constellations do not exist in reality. For example, in the case of mobile insurance,
the constellation of glass damage and total loss is rather unusual (if realistic at
all). An example of dependent attributes would be attorney fees, and a lawyer was
involved in the claims processing, as there should be no attorney’s fees per se unless
an attorney was involved in the claim settlement.

Standard approaches to de�ning the stimuli, such as the pro�le or two-factormethod,
have in common that the stimuli are �ctional cases generated by combinations of the
attributes and their levels. Therefore, it is very likely that unrealistic combinations
are presented to the experts. In such cases, the experts cannot meaningfully evaluate
the stimulus, which is why we have to ensure that the presented stimuli exist in
reality. Therefore, we decided to use real damage cases as stimuli. In combination
with the choice of the pro�le method, this has the advantage that we can simulate a
real claims processing and thus imitate realistic decisions of the experts. We aim to
improve the quality of the claims processing precisely by evaluating such realistic
decisions.

Of course, it is not always possible to represent the entire spectrum in terms of a
full design, i.e., we cannot consider all possible combinations of attribute levels,
depending on the number of attributes and their levels. Instead, we need to ensure
that all (or almost all) attribute levels are considered in the questionnaire so that we
cant estimate at least a part-worth utility per attribute level. The more frequently
an attribute level can be considered in the questionnaire, the better we can obtain a
stable estimate of the associated part-worth utility. These part-worth utilities are
needed to subsequently calculate the total utility—the quality of the process—in the
compositional part [BEPW18, SM18, GHH07].

Another advantage of conjoint analysis is the possibility to reveal interactions
between attributes [GHH07]. This is important because it may provide viable
insights to improve claims processing.

By discussing the results with the experts afterwards, we aim at getting relevant
insights into the evaluation scheme for assessing the quality of a claims process per
expert, which does not yet exist in this way.

In summary, we have chosen to use conjoint analysis—even though a very large
number of attributes have to be considered in our context of claims processing
in the insurance industry, which is why the use of self-explanatory approaches
might be recommended—due to the following reasons: Since conjoint analysis
considers the processing of a claim as a whole, we see a great advantage in the
fact that a real appraisal situation can be simulated and thus hidden drivers and
interaction e�ects, among other things, can be identi�ed [GHH07]. We also assume
that the decompositional approach allows experts to follow their expert intuition,
which facilitates the completely new approach to evaluating the quality of a claims

24

2.1 Expert-based improvement of the quality of claims processing

processing. Conventional conjoint analysis approaches provide �ctitious stimuli
to the respondents, but in the insurance context this can lead to unrealistic claims
that could not be evaluated by the experts. An advantage of the conjoint analysis is
the possibility to take real claims as stimuli. Among other things, we want to use
precisely this advantage of the conjoint analysis to better understand the evaluation
of the quality and to draw insights from it in discussion with the respective expert.

A good overview and introduction to the methods of the conjoint analysis is given by
Steiner and Meißner [SM18], Gustafsson and colleagues [GHH07], or Backhausand
colleagues [BEPW18]. For a detailed description of the conjoint analysis compared
to self-explicated approaches see Gustafsson and colleagues [GHH07], or Steiner
and Meißner [SM18].

As described above, we decided to select real claims from an insurance dataset to
generate stimuli. However, a simple random sample may not yield a good repre-
sentation where each attribute level in the questionnaire is considered [BEPW18].
Therefore, the next question we ask is as follows:

How can representative and real stimuli for each expert be selected from a
given insurance dataset?

The goal we pursue with the questionnaire is to measure the satisfaction per expert
with the quality of the speci�c processing of claims, taking into account all the
di�erent perspectives of the parties involved. In order to gain insights into di�erent
perspectives of the involved parties, we therefore create individualized question-
naires. This gives us the opportunity to see per expert which aspects of the claims
processing are considered important and are weighted positively or negatively in
terms of quality. For example, to consider the customer satisfaction, as described
in section 2.1.1, it is necessary to ask customers—remember that we also consider
them “experts”—what they consider positive about a claims processing.

Asking the experts and individualizing the questionnaires further motivates us to
frame our recommendation system expert-based.

As discussed above, we apply the hybrid approach and therefore have to create two
questionnaires. As stated, the experts are asked to evaluate the importance of each
attribute contained in the dataset in a �rst questionnaire (i.e., the compositional
part of the applied conjoint analysis), which we will discuss in more detail in
section 4.1.1.1.1.

The goal of the second questionnaire is to present stimuli to the experts for evalua-
tion so that we can estimate part-worth utilities for each attribute and the corre-
sponding level. Each stimulus is a whole claim, and to represent the processing of
whole claims, we consider only closed processes. Thus, we look at the processing of
claims ex post.

25

2 Motivation

To select real claims as stimuli, we proceed as follows. Based on the attributes that
seemed important to the respective expert according to the �rst questionnaire, we
aim at selecting those cases that best represent these attributes—in a sense, span
the space of these attributes.

To �nd good representatives of the dataset that cover the entire space of selected
attributes, we use cluster analysis. More precisely, we apply the :-medoids method.
Similar to :-means, it splits the dataset of = observations into : clusters. But
instead of :-means, it uses actual data points as the centers of each cluster—called
medoids. We use these medoids as our representatives. Another reason for applying
:-medoids is that it can be classi�ed as a mixed clustering method, which also
allows to process variables of mixed data type that are usually present in insurance
datasets.

The :-medoids methods measures how similar or dissimilar an observation is to
other observations and assigns the observation to the closest cluster based on this
dissimilarity measure. For real-valued attributes, we could apply a distance measure
such as the Euclidean distance, which is not possible for mixed attributes. Therefore,
we need an appropriate dissimilarity measure that can handle these di�erent scales.
We have chosen to use the Gower’s coe�cient of Kaufman and Rousseeuw [KR05].
For more details to Gower’s distance we refer to section 3.1.2.1.

Based on Gower’s distance :-medoids forms cluster where all observations within
a cluster are rather similar, while the observations of di�erent cluster are rather
dissimilar. That is, we look for observations whose average dissimilarity is minimal
to other observations within a cluster and maximal to observations of other cluster.
Or, to frame it in our context, the claims within a cluster are most similar based on
their attributes and therefore can be expected (in a best case) to be most similar
in their quality, whereas claims from di�erent clusters are most dissimilar in both
attributes and quality. For more detail on :-medoids we refer to section 3.1.2.

In summary, with the :-medoids clustering we identify : medoids and thus have
: representatives of our dataset that ideally span the entire attribute space and
are thus well suited as real stimuli. However, insurance datasets often contain a
large variety of attributes and corresponding attribute levels—even after reducing
the number of the attributes with the �rst questionnaire. Moreover, there may be
asymmetric attributes in the dataset with levels that are sparsely �lled.

Therefore, there may exist attribute levels that do not appear in the second ques-
tionnaire. In order to have enough data to estimate part-worth utilities for all
attribute levels, we therefore implemented a so-called conditional sampling from :
clusters—i.e., we sample another claim from each cluster (besides the medoid), under
the condition that the missing or sparsely populated attribute level is included. In
order not to destroy the “structure” of the clusters, the observation with the missing
attribute level is taken from the cluster that most frequently contains the missing
attribute level. Furthermore, to avoid causing imbalance in the selection of stimuli

26

2.1 Expert-based improvement of the quality of claims processing

by drawing a claim only from some clusters and not from all clusters, we generate
half of the stimuli via :-medoids and the other half by conditional sampling from
the clusters.

We describe the methods for selecting appropriate and real stimuli applying our
conditional sampling approach in more detail in section 4.1.1.1.

The above mentioned sampling procedure is our answer for how to �nd repre-
sentative and real stimuli for the questionnaire. To appropriately account for the
di�erent levels of expertise of each expert group considered, we created personal-
ized questionnaires for each group of experts—in this thesis later on called models.
However, the question of how to measure the experts satisfaction with the claims
processing—the quality—still needs to be answered. For that, we presented each
expert with the personalized stimuli—real closed claims—in the (second) survey. For
each stimulus, they were asked to indicate their satisfaction with the claims pro-
cessing on an interval scale with overlapping intervals, i.e., each expert was asked
to indicate a percentage range of his or her satisfaction with the claims processing.
The overlapping interval scale was presented as shown in �gure 2.2.

0%–
20%

10%–
30%

20%–
40%

30%–
50%

40%–
60%

50%–
70%

60%–
80%

70%–
90%

80%–
100%

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

Figure 2.2: Overlapping interval scale to indicate the experts’ satisfaction with the
claims processing.

On the left side we see the worst case, i. e. an expert rates a claims processing in
a range of 0 % to 20% or, the expert is satis�ed with the claims processing only
to 0% to 20%. If the expert is still not satis�ed with the claims processing, but
from the personal point if view more criteria are met, the claims can be assessed in
satisfaction interval 10 % to 30%. In a best case, the claims processing is rated in
the range 80% to 100%, which means that the expert is completely satis�ed with
the claims processing.

With the interval scale, especially the overlapping interval scale, we enable the
experts to give a tendentious rather than a direct evaluation of the process. Thus,
we give each expert the possibility to rate a claims processing spontaneously and
based on their expert intuition. We consider this important as the explicit evaluation
of the claims processing is new to experts—as already mentioned above.

After all experts have evaluated their stimuli, we can estimate the part-worth utilities
for each attribute level per expert or model. For this, we use the standard conjoint
analysis methods discussed in section 3.1.1 and 4.1.1.2.

27

2 Motivation

2.1.3 Improving the expected quality of claims by finding
appropriate recommendations

As motivated above, we identi�ed the criteria and their corresponding part-worth
utilities that lead to the quality rating of a given claim per expert. With that, we can
estimate a measure of quality for each claim in the whole data set—which is one way
to sophistically generate this missing variable in the dataset. After these steps, we
�nally have a dataset that includes the quality of claims processing. In addition, we
obtained personalized criteria per model, which, if met, lead to higher satisfaction
with the claims processing. Yet, another relevant question is still unanswered.

How can the the quality of the claims process be improved?

In this thesis, we aim to answer this question by deriving appropriate recommenda-
tions that can be used to improve the claims processing.

This improvement of the quality of a claims processing can be formulated as an
optimization problem, i.e., the problem is to optimize the quality of the claims
processing by making appropriate recommendations. We call it expert-based recom-
mendation system or EBRS problem. We motivate the EBRS problem below and refer
to section 4.2 for more information, in particular on the mathematical model.

So far we have worked with completed claims processes or, in other words, we have
considered the claims processes ex post. However, in order to improve the claims
processing, it is necessary to consider them ex ante, as otherwise, it would not be
possible to intervene positively during the claims processing. It is reasonable that,
in a best case, we intervene already at the beginning of the claims processing, i.e.,
directly after the claim noti�cation.

At the beginning of claims processing not all attributes of the dataset are available.
In addition, and perhaps more importantly, there are still a variety of options which
may or may not improve the quality of the process. As we have seen in section 2.1.2,
the criteria for assessing quality are individual and depend on the particular expert.
These criteria, which have not yet occurred, are those that we can in�uence to
ensure the most satisfactory processing of the claim. Thus, these criteria correspond
to the recommendations '8 , 8 2 [=], where = is the number of all recommendations
(independent of the model).

Since not all variables of the claims processing are available, we cannot calculate
the quality, but estimate the expected quality of the claim. For that, we identify
prototypical classes of claims based on the given information at the beginning of
the process using innovative predictive algorithms. These algorithms, which are
based on algorithms of convex optimization, are not subject of this thesis. Brie�y
summarized, we used methods similarly to the prototypical bookings by Brieden
and Gritzmann when generating the prototypical classes of claims [BG20].

28

2.1 Expert-based improvement of the quality of claims processing

The variables available at the beginning of the processing of a claim are used to
predict the expected quality and to identify prototypical claim classes. In addition
and in interaction with the prototypical claim classes they can also be used to
adapt the recommendations to the respective claim type. For example, it might be
useful to distinguish between glass damage and collision damage when making
recommendations (provided the information about the type of damage is available).
Moreover, which recommendations make sense in the respective situation depends
to a large extent on the claims processing of the respective insurance company and
should therefore be clari�ed in cooperation with the experts. Since it depends on
the given situation of the respective insurance company, we will only address this
aspect to a very limited extent in this thesis.

To give an example of the usefulness of adapting the recommendations to the speci�c
situation, let us consider on the one hand a glass damage and on the other hand a
collision damage. In the case of a glass damage, an appropriate recommendation
package may be to handle the claim as quickly as possible and without direct
customer contact (e.g., without a phone call or e-mail contact). This would probably
not be a desirable recommendation package in the case of a collision damage claim
where there are also casualties. Here, it may well make sense—and also be desired
by the customer—to contact the customer personally.

As already mentioned at the beginning of this section, we improve the quality of the
claims processing by formulating an optimization problem called the EBRS problem.
Furthermore, we have illustrated that the criteria of the second questionnaire of the
conjoint analysis for calculating the quality can be considered as recommendations
for improving the quality. As aach expert received a personalized questionnaire for
this purpose, there are also di�erent recommendations per expert. This of course
also a�ects the expected quality.

In order to formulate an optimization problem, we de�ne a so-called processing
index PI 9—representing the expected quality—per model 9 2 [<], where < is the
number of experts interviewed. The goal of the optimization problem is to maximize
the processing index. Here, the processing index aggregates all recommendations
and their associated weights per model—the weights of the recommendations will
be discussed below. In general, there exist di�erent options to aggregate the recom-
mendations, such as, additive or multiplicative methods. In terms of optimizing the
expected quality, we chose additive aggregation of the recommendations.

Adding up all processing indices PI 9 , 9 2 [<], of the models provides a so-called
aggregated processing index PI, which is given as follows.

PI = PI1 + . . . + PI<

Of course, the quality does not depend directly on the criteria, but much more on
the associated weighting when the corresponding recommendation is activated.

29

2 Motivation

Before we explain what we mean by activating, we explain the weights of the
recommendations in more detail. The weighting W8 per recommendation '8 , 8 2 [=],
is largely composed of the part-worth utilities from the conjoint analysis (see
section 2.1.2). This part-worth utility corresponds precisely to the in�uence on the
expected quality when the recommendation is made. In addition to the part-worth
utilities also other informations can be considered in the weighting. For example,
the prioritization of customer satisfaction could be included. We will describe the
weights in more detail in section 4.2.1.

As mentioned above we aim at improving the quality of a claims processing by
making or activating a recommendation. We formulate this (mathematically) by a
so-called activation variable given by the following formula.

G8 =

(
1 if the recommendation is activated
0 if the recommendation is not activated,

for all 8 2 [=], with = is the number of recommendations in total.

In summary, with G8 2 {0, 1} for all 8 2 [=] and by additive aggregation of the
recommendations per model, the objective function of the EBRS problem is given
by

PI =
=’
8=1

W8G8

The EBRS problem is therefore a so-called integer linear program or ILP, which
we explain in detail in section 4.2.1. Furthermore, we refer to [BKM21]. For more
information about ILP’s we refer the interested reader to section 3.4.

The objective of the EBRS problem is to make an appropriate or optimized set of
recommendations so that the quality of the claims processing improves—depending
on the given situation, as discussed above.

In terms of application, the EBRS problem can be formulated as follows.

Remark 2.1.1. The (expected) quality of the claims processing of a potential claim in
the future should be optimized by suitable selection of recommendations. Thus, the
goal is to activate from all possible combinations of recommendations those that
maximize the expected aggregate processing index (PI).

With the EBRS problem, we thus generate an automated recommendation system.
This digital process can support a clerk and thus create new freedom, for example, to
respond more closely to customer needs when necessary (see also section 2.1.1).

In the following �gure 2.3, we will illustrate the EBRS procedure for better under-
standing.

30

2.1 Expert-based improvement of the quality of claims processing

Attributes of car damage

Recommendations

Prototypical
classes
of claims

A

B

C

D

Figure 2.3: Schematic illustration of the EBRS procedure.

Let us assume that a car damage is reported to the insurance company. With the
information available at this point, we can predict the expected quality of the claims
processing per expert by assigning the claim to a prototypical class of claims. This
makes it possible to assess at the outset whether this claim requires special attention.
Using the attributes available at the beginning of the process and the prototypical
classes of claims, we identify those recommendations that are suitable for improving
the quality. Therefore, we identify per model PI 9 , 9 2 [<], a set of appropriate
recommendations for improving the model based expected quality. Based on this
sets of appropriate recommendations (per model), and given certain constraints, a
�nal set of appropriate recommendations can be activated to maximize the expected
aggregated PI. An example of a constraint is an upper limit on the pronunciation of
recommendations. We will discuss constraints in section 4.2.1.1.

In section 4.2, the search for a suitable set of activated recommendations is described
and the model is presented as an optimization problem. Furthermore, a so-called
decision version of the problem is formulated. That is, instead of pronouncing an
activated set of recommendations, the decision problem gives a yes or no answer
if such a set exists. In section 4.2.2 we show that we can transform the decision
version of the EBRS problem to the optimization version and vice versa.

One goal of this thesis is to study the complexity of the EBRS problem for di�erent
cases and restrictions. We address this question in section 4.3. In the following sec-
tion, the terms complexity and e�cient algorithm are introduced and their relevance
to the problem is motivated.

31

2 Motivation

2.2 Complexity of problems

In practical applications, an e�cient algorithm that solves a problem, i.e., an algo-
rithm that runs in acceptable time and consumes an acceptable amount of computer
memory, is obviously desirable. It depends on the particular situation when one can
speak of an algorithm that performs acceptably. If we apply the EBRS problem in
the insurance industry to �nd appropriate recommendations to improve the claims
processing, such an algorithm should solve the given problem within seconds or
minutes. With that a claim handler can take appropriate steps to process the given
claim as soon as it is reported.

In this thesis, we consider the performance of the EBRS problem more generally.
More speci�cally, we consider the worst-case running time of the problem. The
amount of space it requires to compute the problem is not topic of this thesis. The
question we ask is as follows:

Can the EBRS problem be solved by an e�cient algorithm?

To answer this question, we must �rst de�ne what is meant by an e�cient algo-
rithm.

In computer science we distinct between polynomial time algorithms and exponen-
tial time algorithm [GJ79]. An exponential time algorithm is thereby de�ned as
follows.

De�nition 2.2.1. Let = � 0 be the length of the input for a given problem and 2 > 0
be a constant. Furthermore, let ?(=) be a polynomial of =. If the computation time
5 : N! R+ of an algorithm � terminates within 2 · |?(=) |, i. e., | 5 (=) |  2 · |? (=) |,
then we speak of a polynomial time algorithm [GJ79, KV06, DPV06]. The complexity
of � is denoted by O(?(=)) [GJ79].

We discuss this in more detail in section 3.3.1.

Any algorithm for which the time complexity cannot be bounded by a polynomial
?(=) is called an exponential time algorithm, although it would be more accurate to
say that it is a non-polynomial time algorithm. An example for a non-polynomial
time algorithm is given by an algorithm with time complexity O(=log =) [GJ79].

Finally, we speak of an e�cient algorithm, if it solves a problem in polynomial time
[KV06]. We group the problems which can be solved by an e�cient algorithm in
the complexity class P. It is important to note that for the classi�cation we are not
looking at the optimization version of the problem, but the decision version, i. e. the
complexity class P consists of decision problems that can be solved (deterministically)
in polynomial time. To remember, a decision problem is de�ned as a problem that
can be posed in such a way that one can answer yes or no to it. For more details we
refer to section 3.3.2.

32

2.2 Complexity of problems

More generally, it is common to compare the complexity of di�erent problems
based on their decision version. This is also the case in this thesis. However, in
case of the EBRS problem there is no di�erence between the optimization and
the decision version of the problem in terms of polynomial time solvability. We
prove this statement in section 4.2.2. In this thesis, we therefore often speak of the
EBRS problem without specifying more precisely whether this is the decision or
optimization version.

Finally, to answer the latter guiding question, the EBRS problem cannot be solved
by an e�cient algorithm and therefore, it is not contained in P. We prove this in
section 4.2.3.

Instead, the EBRS problem is intractible, i. e., “it is so hard that no polynomial time
algorithm can possibly solve it” [GJ79, p. 8]. Or in other words, there exists no
e�cient algorithm to solve the problem. It should be mentioned that in this thesis
we consider intractability only in terms of running time and not whether a solution
can be represented polynomially. Furthermore as already stated, we observe the
worst-case running time to classify a problem according to its complexity. Thus,
regardless of the particular encoding scheme or computer model, an intractable
problem cannot be solved e�ciently [GJ79].

In section 4.2.3 we show that the EBRS problem belongs to the class of decision
problems which can be solved in nondeterministic polynomial time, i. e. we cannot
solve the problem e�ciently, but we can verify in polynomial time whether a given
solution solves the problem. This class of problems is denoted by NP.

The complexity classes P and NP are known by the problem

P
?= NP,

which is unsolved so far. It is one of the famous millennium problems1. The so-
called P vs. NP problem was �rst formulated by Stephen Cook and Leonid Levin2.
However, it has already been shown that P ✓ NP [GLS93]. In this thesis, we assume
that P < NP as it is widely assumed.

In section 4.2.3, we do not only show that EBRS 2 NP, but also that the EBRS
problem is NP-hard. The class of NP-hard problems consists of intractible problems
that can be transformed polynomially to any problem of the classNP. And therefore,
if one could �nd a polynomial solver for any problem of this class, one could solve
all problems. In summary, the EBRS problem is not only included in the complexity
class NP, but also in the complexity class of NP-hard problems. Therefore, we know
that it is an NP-complete problem. This class of problems was �rst introduced by

1For the millennium problems, refer to https://www.claymath.org/millennium-problems
2For the o�cial problem description, see https://www.claymath.org/millennium-problems/
p-vs-np-problem

33

https://www.claymath.org/millennium-problems
https://www.claymath.org/millennium-problems/p-vs-np-problem
https://www.claymath.org/millennium-problems/p-vs-np-problem

2 Motivation

Cook [Coo71]. In his work, he proved the NP-completeness for the �rst problem—
the so-called SAT problem. Based on this result, Karp found a set of NP-complete
problems like the CLIQUE problem or the Knapsack problem [Kar72]. For more
information about the class of NP-complete problems we refer to section 3.3.3.

NP-complete problems standardize all problems of the class NP, because each
problem is a special case of the other. This is due to the polynomial transformation.
A very important representative of this class are integer linear programs—ILPs for
short. Various combinatorial problems (e.g., matching, CLIQUE, etc.) can thus be
reduced to integer programming problems [GLS93]. For more information about
ILPs we refer to section 3.4. In sections 4.2.1.1 and 4.2.1.2 we de�ne the EBRS
problem as an ILP.

In summary, we know that the EBRS problem is NP-complete and therefore cannot
be solved in polynomial time. This would, of course, be advantageous for practical
applications. For example, in our context within the insurance industry, it would
be bene�cial to have a suitable set of recommendations for the processing of one
speci�c claim available within a very short time as soon as a damage is reported.

But, depending on the situation and the inputs and parameters needed to formulate
the EBRS-situation problem, NP-completeness does not preclude the existence of an
e�cient algorithm to solve the problem [DPV06]. As we recall, in complexity theory
we consider the problem more generally and classify its complexity according to its
worst-case running time.

Therefore, a main part of this thesis deals with the search for di�erent cases of the
EBRS-problem which are solvable in polynomial time. In doing so, however, we
�nd that the problem nevertheless remains NP-complete under certain restrictions
on the constraints. This complexity-theoretical study is carried out in section 4.3.

For the following caseswe can prove that the EBRS problem is solvable in polynomial
time.

First, there exists two special cases of the EBRS problem with totally unimodular
matrix of constraints. This special cases are considered in sections 4.3.1.1 and
4.3.1.2. Total unimodularity guarantees that we �nd an integral optimal solution
of the problem in polynomial time by ignoring the integrality constraint—this is a
so-called LP relaxation. We discuss the LP relaxation and the total unimodularity in
sections 3.5 and 3.6.

Second, we �nd a special case of the EBRS problem in which a so-called Greedy
algorithm solves the problem optimally in polynomial time. We discuss this case in
section 4.3.3.1.

Another interesting investigation would be to what extent the EBRS problem can be
solved approximately. That is, whether there exists an algorithm that �nds the best
possible approximation—rather than an optimal solution—of the given problem in
polynomial time. Such an approximation is given, for example, by an LP relaxation

34

2.2 Complexity of problems

mentioned earlier (see section 3.5). This is because, in general, we cannot �nd an
optimal solution for an ILP if we ignore the integrality constraint—except for totally
unimodular constraint matrices.

In this thesis, one focus is on the complexity-theoretic study of the problem, but we
give an outlook on possible approximate algorithms in the sections 5.1 and 5.

35

2 Motivation

36

3 Definitions and Preliminaries

In chapter 3 we de�ne, explain, and describe important methods, terms, statements,
and theorems from statistics, graph theory, and (linear) optimization that we use in
the remainder of this thesis.

In section 3.1 we present the statistical methods to detect attributes or characteristics
with which an expert (consciously or unconsciously) rates the quality of the claims
processing. In subsection 3.1.1 we introduce the conjoint analysis which we use to
add the variable quality to an insurance dataset—a variable that was not previously
included. Furthermore, we will use this method to determine the part-worth utilities,
which indicate the level of in�uence of individual attributes on quality. To construct
the questionnaire for the conjoint analysis, we apply :-medoids clustering. This
allows us to �nd suitable stimuli that are evaluated by the experts. We describe the
:-medoids algorithm in detail in subsection 3.1.2.

In section 3.2 we give a brief introduction to graph theory. We de�ne the terms used
and introduce some special sets of graphs that we need for the complexity-theoretic
investigations of the EBRS problem. Among other things the graph-theoretic terms
allow us to formulate combinatorial optimization problems in a more descriptive
way.

The main part of this thesis focuses on the complexity-theoretic investigation of the
EBRS problem which is NP-complete (see section 4.2.13). In section 3.3 we therefore
present in detail the complexity theory mainly used in this thesis. We start with
the de�nition of the worst-case running time of algorithms in subsection 3.3.1 in
order to classify the EBRS problem according to its e�ciency and to compare it to
other optimization problems.
In subchapters 3.3.2 and 3.3.3 we describe the complexity classes NP as well as NP-
completeness and explain what is meant by intractability. In addition, we discuss
methods to prove that a problem is NP-complete. Finally, in subsection 3.3.4 we
describe other NP-complete problems used in this thesis.

We will formulate the EBRS problem as an integer linear program (ILP) in the
remainder of this thesis. In section 3.4 we therefore give an introduction to ILPs
and furthermore discuss LP relaxations.

For the complexity-theoretic study, we discuss the special feature for ILPs with a
totally unimodular constraint matrix in section 3.6. In such cases, we know that
every solution of the corresponding LP relaxation has an integer solution. To this

37

3 De�nitions and Preliminaries

end, as a �rst step, we de�ne totally unimodular matrices and introduce lemmas
and theorems later used to prove the total unimodularity of a matrix.

3.1 Statistical methods to determine the quality
claims processing

Before we can optimize the quality of the claims processing, we have to work
with experts to de�ne what is meant by quality. Since the consideration of a
claims processing according to its quality is new [BKM21], we need to facilitate the
evaluation of the processing to the experts by (1) a suitable questionnaire design as
well as (2) a method to reveal the conscious and unconscious assessment criteria of
the quality of a claim. In this section, we describe the methods used for that.

Conjoint analysis is a statistical method that consists of several steps that are
designed di�erently according to the given purpose [GHH07]. In the following
section we describe the conjoint analysis as we use it to implement the quality of
the claims processing into an insurance dataset. In order to justify the method used
in each step of the conjoint analysis, we already partially address the di�culties
and advantages that arise in assessing the quality of the claims processing. The
description of the conjoint analysis is mainly based on Gustafsson and colleagues
[GHH07], and Steiner and Meißner [SM18]. In the second part of this section we
decribe the :-medoids algorithm, which we use to select suitable stimuli for the
conjoint analysis.

3.1.1 Conjoint analysis

In subsection 2.1.2 we presented the objective of the EBRS problem—to improve the
quality of an insurance company’s claims processing by optimizing the expert-based
recommendation system. As the name of the optimization problem implies, the re-
commendations we need to improve the quality of the process must �rst be obtained
through appropriate surveys of the experts. Yet, not only the recommendations
have to be assessed, but also the weighting of the individual recommendations.

A suitable framework for such a survey is provided by the conjoint analysis. It is a
suitable tool to measure the preference of each expert with respect to the processing
of a claim [SM18, GHH07]. Here, we use the term “expert” to refer to di�erent
people involved in the claims processing. In order to improve the quality in its
entirety, all opinions of the involved parties have to be asked. Of course, in the
claims processing of an insurance company there exists di�erent perspectives—e.g.,
that of the customer, the claims handler, or the manager. Our goal ist to capture all
these di�erent perspectives individually with the help of a survey.

38

3.1 Statistical methods to determine the quality claims processing

A claims handler requires to meet the di�erent needs of the parties involved so
that all parties are satis�ed at the end of a claims processing. This can be a chal-
lenging task, even more if the parties involved evaluate the processing of the claim
di�erently.

Another challenging task is that each party involved—or each expert—evaluates the
claims processing according to conscious, but also unconscious criteria, some of
which a claims processor cannot know—especially as the criteria may di�er between
experts. Therefore, in order to improve the quality of the claims processing and to
support a claims handler, we need to ensure that both conscious and unconscious
decisions are taken into account and that the di�erent perspectives are considered.
In particular, the uncovering of unconscious decisions is the strength of conjoint
analysis [GLK10, CRB09].

In this section, we de�ne the methods of conjoint analysis and show, how it can
help to improve the quality of the claims processing. We proceed in a similar way to
Gustafsson and colleagues [GHH07], and Steiner and Meißner [SM18], as follows:
By presenting various claims processings to each expert for evaluation in their
entirety, we aim to uncover both unconscious and conscious decisions that led to
the assessment of the quality of the claims processing. Through the conjoint analysis
questionnaire design, we know the decision criteria (per expert) from which we
derive the recommendations for the claims processing (see subsection 4.1.2). For the
weighting of the individual recommendation, we decompose the overall evaluation
of the claims processing into individual estimated utility per decision criterion—the
so-called part-worth utilities. Conjoint analysis is therefore also referred to as a
decompositional approach [SM18, BEPW18].

In general, conjoint analysis can be divided into the following steps, which are
handled di�erently depending on the application [GHH07]. In the course of this
section, we will explain which conjoint analysis methods we have used in each
of these steps and explain them at the respective point. For more information on
the other methods not explained, we refer the interested reader to [GHH07, SM18,
BEPW18, GLK10]. The steps are illustrated in �gure 3.1 which is adapted from
Gustafsson and colleagues [GHH07].

3.1.1.1 Selection of a�ributes and their levels

Unlike in [GHH07], we do not start with the selection of a preference function, but
search for suitable attributes and their levels, as recommended by Vriens [Vri95]
and Backhaus and colleagues [BEPW18]. This seems important for the speci�c
application of conjoint analyses in our context of claims processing because of two
reasons. First, unlike methods used, e.g., in the launch of a new product, we use the
variables of the dataset as attributes for the survey. Secondly, many attributes exist
for a claims processing of an insurance company. Selecting all attributes would

39

3 De�nitions and Preliminaries

Selection of the
preference function

Selection of data
collection method

Selection of data
collection design

Selection of the way the
stimuli are presented

Selection of data
collection procedure

Selection of the method
for evaluation of the

stimuli

Estimation of bene�t
values

Partial bene�t value model, Ideal vector model, Ideal point
model

Pro�les method, Two-factor method, Adaptive conjoint
analysis (ACA)

Full pro�le design, Reduced design

Verbal description, Visual representation

Person-to-person interview, Mail survey, Computer
interview

Metric scales (Rating, Dollar metrics, Constant sum scale) vs.
Non-metric procedures (Ranking, Paired pro�les

comparison)

Estimation method for metric (Least square, Multiple
regression) vs. Non-metric scale level (MONANOVA,

LINMAP, PREFMAP)

Figure 3.1: Steps of Conjoint Analysis—adapted from Gustafsson and colleagues
[GHH07, p. 5].

40

3.1 Statistical methods to determine the quality claims processing

result in too large a set of attributes for a survey, and moreover, it is very likely that
not all variables in the data set are important to the expert. Thus, we need to �nd
an appropriate selection of attributes.

For that, we applied a preceding questionnaire to reduce the number of attributes.
This can be compared to the self-explicated approach that also asks for the relative
importance of each attribute in a �rst step [GHH07]. By applying this self-explicated
approach it is possible for the experts to process a greater number of attributes and
their levels [GHH07, GS90].

The goal of this preceding questionnaire is to assess the experts perceived impor-
tance of each attribute of the dataset. The experts rate each variable of the dataset,
and based on this rating we can reduce the number of attributes for stimuli selection.
We discuss the resulting preceding questionnaire in detail in subsection 4.1.1.1.1.

3.1.1.2 Selection of data collection method

The major challenge in evaluating a claims processing is that the quality of the
process has not had to be evaluated before. The experts are therefore in a somehow
new situation, which needs to be made as simple as possible. On the one hand, the
applied method should ensure that the experts themselves uncover the character-
istics of a good claims processing without being in�uenced by external opinions.
On the other hand, it is also intended to ensure that the data collection process
identi�es the subconscious decisions so that these can be incorporated into the
estimation of the part-worth utilities [GLK10].

Another challenge is that the attributes and their levels are usually considered inde-
pendent. Yet, the independence usually is not given in the evaluation of a damage
processing. This is particularly important when estimating the part-worth utilities.
However, when collecting data, we should make sure that these dependencies are
also re�ected in the stimuli so that they can be evaluated accordingly. It can be
seen that these dependencies cannot be captured when using the one-factor method.
Another classic data collection method is given by the two-factor method, in which
respondents are presented with two attributes to choose from. It is therefore also
called trade-o� analysis. In the case of the insurance data set—where the attributes
are interdependent—a trade-o� is not possible.

Finally, the pro�le method provides the best conditions for taking into account all
these aspects to be considered. In the pro�le method all attributes are considered
simultaneously for evaluation. By taking a holistic view, it is possible that the
dependencies between the attributes are mapped and also unconscious decisions
are more likely to be revealed. Furthermore, it is assumed that the holistic view also
reduces the risk that the experts will be in�uenced in their decisions by external
in�uences (i.e., demonstrating socially desirable response tendencies) [GHH07,
MK08].

41

3 De�nitions and Preliminaries

3.1.1.3 Selection of data collection design

In this step, we have to choose between a full pro�le design and a reduced design
[GHH07, BEPW18, SM18]. In the �rst case, all combinations of attribute manifesta-
tions are included in the questionnaire. However, this bears the risk that data collec-
tion becomes very expensive and overwhelms the respondents [GHH07, BEPW18].
Since especially our insurance dataset contains a lot of attributes (even after re-
duction of the attributes by the preceding questionnaire), only a reduced design is
suitable in our case. A very frequently used reduced design is Addelman’s orthogonal
design [Add62]. It is an established method to be particularly useful for constructing
asymmetric and symmetric main e�ect designs [GHH07]. The orthogonality is
particularly helpful for maintaining attribute independence. But this independence
is not often given in insurance datasets.

Instead, we developed a reduced design method that does not resolve the dependent
structure and represents all combinations of attribute manifestations as well as
possible. We do this by applying the :-medoids algorithm—a clustering method—
which we will discuss in more detail in subsection 3.1.2. In this clustering algorithm,
the requirement of orthogonality is replaced by a search for : clusters that represent
the dataset as well as possible, thus ensuring to some degree that all relevant
combinations are represented. Each cluster center—the medoid—is then selected as
one stimulus. It is important to note that each medoid is a real claim processing with
which we assure the preservation of the dependency structure of the dataset.

3.1.1.4 Selection of data collection presentation and procedure

Deviating from the procedure in [GHH07], we summarized the steps Selection of the
way the stimuli are presented and Selection of data collection procedure in this section.
In this step, the questionnaire designer must choose between how the stimuli are
presented to the respondents, i.e., to choose between a verbal description, or a visual
representation, and how the data will be collected. This can be done, e.g., through a
face-to-face interview or a paper-based survey.

As mentioned above, the experts face the challenge of evaluating the claims pro-
cessing according to its quality. In addition, they face the challenge of having to
evaluate a large number of stimuli in order to do justice to an overall picture of
all possible claim combinations (see also subsection 4.1.1.2), which exceeds the
recommended number of at most 30 stimuli given in the literature [GS78]. This is
one reason why—to avoid overwhelming the experts—we chose an interface they
are familiar with for presenting the stimuli, i.e., the interface they usually use to
process a claim in real-live contexts.

Due to the number of stimuli, the system chosen to present the stimuli, as well as
the challenge of evaluating quality already mentioned, we believe it is plausible to

42

3.1 Statistical methods to determine the quality claims processing

let the experts assess the stimuli at their own pace (and on their own). The experts
could indicate the respective assessment result in a questionnaire.

3.1.1.5 Evaluation of stimuli

There are two di�erent ways to rate the stimuli, using a metric scale or a non-metric
scale. The usual approach is to rate the stimuli using a ranking [BEPW18], where
the outcome is an order of preferences [GHH07]. If a metric scale is preferred, a
rating method should be applied, where each stimulus is evaluated by a numbered
scale. Beside ranking and rating method, there also exists paired pro�l comparisons
like the dollar metric [GHH07, SM18].

The ranking method is not appropriate in our insurance context because there
are di�erent types of claims contained in an insurance dataset—for example, glass
damage and collision damage. In case of a glass damage, we may focus on di�erent
attributes when evaluating quality than in case of a collision damage. Therefore,
the two types of damage cannot be compared in a direct sense of ranking.

For this reason, the experts were not asked to rank the claims in order of satisfaction,
but rather asked to indicate their satisfaction for each of the claims processings on
a percentage scale, e.g., 100 % satis�ed with the processing of a claim or only 0%.
By using a rating scale the expert can express the intensity of satisfaction more
directly.

To facilitate the evaluation process, we used an interval scale, i.e., the experts were
not instructed to evaluate the processing of the claims directly, but to indicate the
interval in which they would locate the claim processing. Furthermore, the intervals
were overlapping. This overlapping interval scale can be justi�ed by the following
reasons. We recall that the evaluation of a claims processing according to its quality
is new for the experts. Therefore, it will be di�cult for (some) experts to directly
indicate the percentage that expresses the satisfaction with the process. Instead, an
expert may be undecided whether to select the option 80 % or 90 %, for example. In
an interval [80 %, 100 %] both options are included. In the next overlapping interval
[70 %, 90 %], the expert can make cutbacks, but isn’t forced to commit to the option
of a rather very high or yet not so high satisfaction rating.

Overall, with overlapping intervals, an expert can make decisions based on rules
of thumb and, more importantly, based on expert intuition. And with the ability
to decide from the gut, we want to favor the evaluation by subconscious decisions.
We describe the evaluation of stimuli in more detail in subsection 4.1.1.2.

43

3 De�nitions and Preliminaries

3.1.1.6 Estimation of part-worth utilities

From the previous step, we know that we have chosen a rating method to evaluate
the stimuli and therefore, our data has metric scale. For metric scale, a regular
dummy regression method is used most frequently. Within that, the most important
estimations techniques are monotonic analysis of variance (MONANOVA), linear
programming technique for multidimensional analysis of preference (LINMAP),
and ordinary least square regression (OLS), [GHH07]. For more information on
MONANOVAwe refer to Backhaus and colleagues [BEPW18]. The LINMAPmethod
is explained by Srinivasan and Shocker [SS73], and Thakkar [Tha21].

We decided to use an OLS regression or multivariate regression, respectively, to
estimate the part-worth utilities considering the dependence of the attributes. When
estimating the part-worth utilities using multivariate regression analysis, we need to
take into account the dependent attributes that may be given. Among other things,
it may be further necessary to consider interaction e�ects given in the insurance
dataset1.

For more information about multivariate regression, multicollinearity and interac-
tion e�ects we refer to Hastie and colleagues [HTF09], Fahrmeir and colleagues
[FKLM13], and Field and colleagues [FMF12]. As estimation techniques for non-
metric scale are not applied in this thesis, we therefore refer to Gustafsson and
colleagues [GHH07], Steiner and Meißner [SM18], and Backhaus and colleagues
[BEPW18].

3.1.2 Clustering with k-medoids

In the last section, we described the method we use to measure the quality of the
claims processing and, based on this, �nd suitable recommendations for improving
the claims processing. We also discussed above that standard orthogonal designs
cannot be applied to measure the satisfaction with a claims processing as the
attributes are not independent. Therefore, we decided to present the participant
real claims, i.e., we selected real damage events from a given insurance dataset.

There are several methods for selecting real claims from a given dataset. The simplest
method would be a random sample, yet, a random sample has the disadvantage
that it does not guarantee the representation of the entire spectrum of possible
combinations of attribute manifestations [GHH07, BEPW18].

Instead, we applied a clustering method with which we cover the entire space of
all possible combinations of attribute manifestations. Or, in other words, �nd :
1The exact description of the estimation method is not part of this thesis, since on the one hand
the focus is on the complexity-theoretical investigation, and on the other hand the exact imple-
mentation of the estimation cannot be mentioned due to data protection and business secret
reasons.

44

3.1 Statistical methods to determine the quality claims processing

representative objects among the observations of the dataset that represents various
aspects of the structure of the dataset—the :-medoids method [KR05].

In this subsection, we introduce cluster analysis in general in a �rst step and explain
the :-medoids algorithm in more detail in a second step. We proceed as described
by Hastie and colleagues [HTF09], Backhaus and colleagues [BEPW18], Hennig
and colleagues [HMMR15], and Kaufman and colleagues [KR05].

Utilizing cluster analysis, we group a collection of observations from a dataset
into subsets or clusters such that the observations within each cluster are more
closely related than the observations associated with di�erent clusters [HTF09].
In other words, observations within a cluster are very similar to each other, while
observations in di�erent clusters are very di�erent from each other. The clustering
method considered here attempts to group observations based on their de�nition
of dissimilarity and not on their similarity. Hence, the degree of dissimilarity is
crucial.

Basically, there are di�erent methods of cluster analysis, which di�er mainly in the
following two aspects [BEPW18].

a) The choice of proximity measure to quantify the similarity or dissimilarity
between the observations, and

b) the choice of classi�cation method, i.e., top-down or bottom-up procedure.

Based on these two aspects, many clustering methods have been developed in
the last years [HMMR15]. For our purpose, we focus on clustering methods that
partition a dataset into : 2 N di�erent clusters by considering that the sum of
squared errors within a cluster is minimal. The number of clusters : is prede�ned.
Therefore, a common approach is :-means clustering, which is described in detail
by Hastie and colleagues [HTF09], and Hennig and colleagues [HMMR15].

Furthermore, we are interested in combinatorial algorithms, i.e., algorithms that
work directly with the observed data without direct reference to an underlying
probability model [HTF09]. In general, a combinatorial algorithm works as follows:
Let 8 2 {1, . . . , =} be observations of a given dataset. In addition, let each observation
8 be uniquely assigned to a cluster : < =, which is characterized by an encoder ⇠,
i.e., : = ⇠ (8). The goal of the combinatorial algorithm is to �nd a particular encoder
⇠⇤(8) for which the dissimilarities between each pair of observations within each
cluster : are minimized and the dissimilarities between each pair of observations
of two di�erent clusters are maximized. How an algorithm satis�es this objective
depends, among other things, on the choice of a dissimilarity measure.

In fact, di�erent dissimilarity measures can lead to di�erent segmentation when
using the same algorithm [HTF09] In a �rst step, we therefore de�ne the dissimilarity
measure rather general and then describe the measure we use in more detail in
subsection 3.1.2.1.

45

3 De�nitions and Preliminaries

We de�ne the dissimilarity measure following Hastie and colleagues [HTF09] as
follows.

De�nition 3.1.1. Let 8 = 1, . . . , = be the observations of a dataset and 9 = 1, . . . , ?
be the attributes of the dataset. With G8 9 the measurements for observation 8 on
attribute 9 are denoted. With

3 (9)880 := 3 9 (G8 9 , G80 9)

the dissimilarity between values of the 9 ’th attribute for observations 8 and 80 is
denoted. Then, by

3880 =
?’
9=1
3 (9)880

the dissimilarity between observations 8 and 80 is de�ned.

For example, a commonly used measure is the squared distance [HTF09]

3 (9)880 = (G8 9 � G80 9)
2,

which is also be used by the :-means algorithm. However, in the case of categorical
data, squared distances are not appropriate [HTF09, MRS+22]. Categorical data
is very likely included in an insurance dataset as, e.g., an insurance dataset may
contain the variables fraud suspicion (yes/no) or person reporting the damage.

As mentioned earlier, the goal of cluster analysis is to divide a dataset into :
appropriate clusters. In addition, to �nd suitable stimuli for the questionnaire, we
look for : (real) representatives of the dataset that best explain the full range of
attribute manifestations. Therefore, a suitable clustering method is the :-medoids
clustering.

We clarify this decision by considering the main di�erences of :-means and :-
medoid clustering. The description of the di�erences follows Hennig and colleagues
[HMMR15].

a) Both algorithms use cluster centers and group all other observations around
this centers. In the case of :-means, the cluster centers are the mean values of
the clusters, i.e., they are usually not real observations but calculated centers.
:-medoids uses real observations of a dataset as cluster centers—the so-called
medoids. We described that we prefer real claim processings to ensure the
preservation of the dependency structure of the attributes and their levels in
subsection 3.1.1. Moreover, by using real claims it is possible to present the
stimuli in the interface used by the insurance company for evaluation.

b) An advantage of the :-medoid over :-means algorithm is that the former is
more robust to outliers [KR05].

46

3.1 Statistical methods to determine the quality claims processing

c) Unlike the :-means algorithm, :-medoid can be used for any dissimilarity mea-
sure derived from the dataset. This is especially important, as an insurance
dataset very likely consists of variables of mixed type. Moreover, it can handle
asymmetric binary attributes like they can occur in insurance datasets. To give
an example, we consider fraud detection again. The case where this variable
indicates fraud is rather rare and has a special meaning in its signi�cance. We
discuss this in more detail in subsection 4.1.1.1.2.

d) A disadvantage of :-medoids is that it is more computationally intensive than
:-means.

Following the idea of a combinatorial algorithm described above, we can describe a
:-medoids clustering by the following algorithm based on Hastie and colleagues
[HTF09], and Hennig and colleagues [HMMR15]. Given the number of clusters :
the algorithm proceeds as follows.

k-Medoids Algorithm.

Algorithm 3.1.2. a) Identi�cation of a set of : medoids: We identify for a given
cluster assignment ⇠ the observation that minimizes the total dissimilarity
from other observations in each cluster, i.e.,

8⇤: = argmin
{8:⇠ (8)=:}

’
⇠ (80)=:

3880 .

The current estimates of the medoids are then de�ned as <: = G8⇤: for all : .

b) Assignment of the remaining = � : observations: For the given current set of
medoids

�
G81 , . . . , G8:

we assign each remaining observation to the closest

cluster center such that the total sum of dissimilarities is minimized, i.e.,

⇠ (8) = argmin
1;:

3
�
G8, G8;

�
= argmin

1;:
388; .

c) Iterate steps 1 and 2 until the assignments do not change.

To �nd an optimal clustering, the choice of the number of clusters, : 2 N, also
plays an important role. We determine the number : based on a validation criterion,
which we describe in more detail in subsection 3.1.2.2. As the : medoids represent
our stimuli for the questionnaire, we also have to consider the number of stimuli
an expert can process in the evaluation without exceeding the cognitive load (see
subsections 2.1.2 and 3.1.1)—in addition to the validation criterion.

Finding a solution is generally hard (see subsections 3.3.2 and 3.3.3). More precisely,
it belongs to the class of combinatorial optimization problems which cannot be

47

3 De�nitions and Preliminaries

solved e�ciently (see subsection 3.3.1) by complete enumeration [HTF09]. We
do not discuss the computational complexity of the :-medoids algorithm in this
thesis, but refer the interested reader to [HTF09, HMMR15, KR05]. There are several
procedures described in the literature to solve the problem of minimizing the sum
of overall dissimilarities. A good overview is given by Hennig and colleagues
[HMMR15].

Kaufman and Rousseeuw invented an algorithm to solve the hard problem of �nding
: representative cluster centers or medoids to minimize the average dissimilarity.
They called this algorithm partitioning around medoids or short PAM algorithm
[KR05, HTF09]. It is a proven and robust algorithm. However, it should be noted
that the PAM algorithm is an approximation algorithm that only �nds a local
minimum [HTF09].

To start the PAM algorithm for a dataset with attributes that are not (all) interval-
scaled, we �rst have to de�ne a dissimilarity matrix. As mentioned above, it is very
likely that an insurance dataset consists of mixed data types, such as binary, nominal,
and metric scale. For example, it may contain information about the amount of
payments, the cost estimate, the person reporting the claim, or, as mentioned earlier,
a reasonable suspicion of fraud. Therefore, we need a dissimilarity measure that
can handle the mixed type attributes. How the dissimilarity matrix is calculated can
be seen in subsection 3.1.2.1. With that a mixed clustering is applied, where mixed
refers to the di�erent scales contained in the dataset.

Finally, we can describe the PAM algorithm by the following two steps, which are
similar to the steps of the :-medoids algorithm. In a �rst step, : representatives
are selected and the remaining observations are assigned to the closest medoid
according to the dissimilarity matrix used. In a second step, each preliminarymedoid
is swapped with an observation that is not a center in this step. The observation
selected for the swap is the one that reduces the average dissimilarity the most.
These two steps are repeated until the algorithm converges, i.e., no new medoid
can be found in each cluster.

The peculiarity of the PAM algorithm is that it tries all the observations in the
cluster as a new medoid with respect to the largest reduction of the value of the
total criterion [HTF09],

min
⇠,{8;}

:
1

:’
;=1

’
⇠ (8)=;

388; .

With that the PAM algorithm optimizes more holistically than the :-medoids al-
gorithm. To �nd an optimal number of clusters : as input to the PAM algorithm,
Rousseeuw introduced a validation criterion—a so-called silhouette width. The sil-
houette width is explained in more detail in subsection 3.1.2.2, while in the following
subsection, we de�ne the dissimilarity measure used—which can also handle mixed
types of variables.

48

3.1 Statistical methods to determine the quality claims processing

3.1.2.1 Gower’s coe�icient

As mentioned above, insurance datasets often contain attributes of mixed types, and
thus we need a dissimilarity measure that can handle these di�erent scales. Kaufman
and Rousseeuw developed a program that computes pairwise dissimilarities between
observations in the dataset. They called this program DAISY [MRS+22, KR05]. It
can be considered a preprocessing step that prepares the dataset for the actual
cluster analysis. The DAISY procedure is implemented in the package cluster in R
[MRS+22].

DAISY can also handle data consisting of interval scales only, but the focus of this
thesis is on mixed type data. To handle data of mixed type, such as nominal, ordinal
or (a)symmetric binary scale, it uses the general dissimilarity coe�cient of Gower,
which was originally invented by Gower [Gow71]. In this subsection, a de�nition of
the Gower coe�cient is given, which is also used in the R as described in [MRS+22].
The following explanations essentially follow Maechler and colleagues [MRS+22],
and Gower [Gow71].

For each attribute 9 2 [?], we de�ne a dissimilarity score 3 (9)880 2 [0, 1], where
3 (9)880 = 1means that observations 8 and 80 are far apart along attribute 9 , and 3 (9)880 = 0
if both observations are close. Here, the score depends on the type of the considered
attribute.

a) Metric type: Let '9 be the range of the attribute 9 . Then,

3 (9)880 =
|G (9)8 � G

(9)
80 |

'9
,

with G (9)8 is the value of observation 8 in attribute 9 .

b) Ordinal type: Assign a rank to the entries of the ordinal attribute 9 , 9 2 [?], with
A (9) = 1, . . . , '(9) . Then, the entry of attribute 9 of observation 8 is normalized
by

I(9)8 =
A (9)8 � 1
'(9) � 1

.

The ordinal attribute can then be treated like an interval-scaled attribute.

c) Nominal type: The dissimilarity score 3 (9)880 simply shows, if the attribute levels
are identical or not, i.e.,

3 (9)880 = 1
{G (9)8 <G (9)

80
}
.

d) (A)symmetric binary type: The di�erence between the symmetric and asymmetric
binary attributes is that in the latter case the result is not equally important (e.g.,
for fraud detection). We de�ne the dissimiarity score equally to the nominal
type as described in [MRS+22].

49

3 De�nitions and Preliminaries

Furthermore, we de�ne a 0-1 weight X(9)880 for each attribute 9 , 9 2 [?] by

X(9)880 =

8>>><
>>>:

0, if one or both observations have a missing value in attribute 9 or,
0, if the attribute is asymmetric binary and both values are zero;
1, otherwise.

In contrast to Gower’s original formula, in [MRS+22] a weight F 9 2 R+ is de�ned
for each attribute 9 . In our case, we do not weight the attributes and set all weights
F 9 = 1 for all 9 2 [?] as in the original form.

With that we can de�ne �nally the dissimilarity score or Gower’s distance, respec-
tively, between observation 8 and 80 by

3880 := 3 (G8, G80) =

Õ?
9=1 F 9X

(9)
880 3

(9)
880Õ?

9=1 F 9X
(9)
880

.

In [Gow71] it is shown that 3880 2 [0, 1] is truly a distance measure.

By computing Gower’s distance 3880 for each pair of observations 8 and 80, 8, 80 2 [=],
the resulting dissimilarity matrix is given by

⇡ =
©≠≠
´

1 312 . . . 31=
...

. . .
...

3=1 . . . 3==�1 1

™ÆÆ
¨
.

The dissimilarity score between 3880 and 3808 is of course the same.

3.1.2.2 Validation of the clusters

In order to have a criterion with which we can check the cohesion and separa-
tion quality of a partitioning technique (as given by the :-medoids algorithm),
Rousseeuw introduced the silhouette width. With the silhouette width, we have
a measure for each observation 8 2 [=] of the dataset that shows whether an
observation “lies well within its cluster” or whether it merely lies somewhere be-
tween the clusters [Rou87]. The de�nition of the silhouette width is based on
[MRS+22, Rou87, KR05].

To compute the silhouette width, we suppose a given clustering in clusters of
the observations of a dataset, i.e., ⇠ (8) = : with : 2 [] and 8 2 [=]. We denote
with ⇠: the set of observations with assignment to cluster : , i.e., all observations
with ⇠ (8) = : . Furthermore, we denote by |⇠: | the number of observations 8
within ⇠: .

We also assume a dissimilarity measure 3, which in our case is de�ned by Gower’s
distance (see subsection 3.1.2.1). It is also possible to compute the silhouette width

50

3.1 Statistical methods to determine the quality claims processing

for a similarity measure, but this is not the subject of this paper and we refer the
interested reader to [Rou87].

The silhouette width B (8) is calculated per observation 8 2 [=].

De�nition 3.1.3. Let 0(8) with

0(8) :=
1

|⇠: | � 1

’
802⇠:
8<80

3880

be the average dissimilarity between observation 8 and all other observations of the
cluster : to which observation 8 belongs. As it is not meaningful to consider the
dissimilarity of an observation with itself, we set 8 < 80 and therefore, divide by
|⇠: | � 1.

We de�ne with 38⇠:̄
the average dissimilarity of observation 8 to all observations of

⇠:̄ , where ⇠:̄ are the remaining clusters to which 8 does not belong to, i.e., 8 < ⇠:̄ .
Speci�cally, 38⇠:̄

is de�ned by

38⇠:̄
:=

1
|⇠:̄ |

’
802⇠:̄

3880 .

With

1(8) := min
⇠:̄<⇠:

38⇠:̄

we de�ne the minimum dissimilarity between 8 and all observations 80 of 8’s nearest
cluster to which 8 doesn’t belong.

Finally, we de�ne by

B(8) :=
1(8) � 0(8)

max(0(8), 1(8))

the silhouette width for observation 8.

The silhouette width is the standardized distance between the average dissimilarity
of observation 8 to other observations within its cluster and the average dissimilarity
of 8 to the observations of its nearest cluster. That is, B(8) indicates how similar 8 is
to other observations of the current cluster compared to observations in the nearest
cluster—or in other words, how well the current cluster represents observation 8.

The range of the silhouette width is �1  B(8)  1 with B(8) almost 1 shows that the
observation is very well clustered. Indeed, it means that the average dissimilarity
within the cluster 0(8) is much smaller than the average dissimilarity to the nearest
cluster 1(8). In case of B(8) is about 0, 0(8) and 1(8) are nearly equal and hence, the

51

3 De�nitions and Preliminaries

observation lies between two clusters. Observations with B(8) near �1 are most
likely misclassi�ed. This means that 0(8) is much larger than 1(8) and therefore,
the observation 8 is closer to the nearest cluster than to ⇠: . We set B(8) = 0, if 8 is
the only observation of the considered cluster ⇠: .

To evaluate the clustering validity we look beside the silhouette plot to the total
average silhouette width over all = observations as well as the average silhouette
width within each cluster. For both, the closer the average silhouette width is to 1,
the better the respective clustering ⇠. Rousseeuw states that the average silhouette
width “might be used to select an appropriate number of clusters” [Rou87]. We
de�ne the total average silhouette width by

B̄ =
1
=

=’
8=1

B(8)

and the clusterwise average of silhouette width by

B̄: =
1

|⇠: |

’
82⇠:

B(8)

for all : 2 [] and with =: is the cardinality of the :’th cluster.

3.2 Introduction to graph theory

In combinatorial optimization many computational problems are based on graphs
[CLRS09], since graphs allow that problems can be “expressed with clarity and
precision in the concise pictorial language” [DPV06, p. 91]. Brie�y, a graph can be
described as a construct of so-called vertices that are connected by so-called edges.

We also illustrate and explain the EBRS-problem and its complexity-theoretic inves-
tigation partly in terms of graphs in this thesis—and we describe other problems
that we use for our studies in the context of graph theory.

In this section, we �rst introduce some basic terms of graph theory, which we will
encounter in the further course of this thesis. Moreover, we de�ne two special
types of graph, which we need to show NP-completeness of the EBRS problem. The
introduction is based on Diesetel [Die17] Gritzmann [Gri13], Kleinberg and Tardos
[KT13], and West [Wes00]. For more detailed information about graph theory we
also refer the interested reader to mentioned literature.

Before we explain and de�ne graphs, we �rst de�ne the set of :-elemental sets.

52

3.2 Introduction to graph theory

De�nition 3.2.1. Let - be a set and 2- the corresponding power set. Then, by
✓
-

:

◆
:=

�
(2 2- : |(| = :

for : 2 N0 the set of :-elemental sets of - is given.

This allows us to de�ne a graph.

De�nition 3.2.2. Let + and ⇢ be �nite sets with + \ ⇢ = ; and let

a : ⇢ !
✓
+

1

◆
[

✓
+

2

◆
[+2

be a map.

a) Let ⌧ := (+ , ⇢ , a). Then ⌧ is called common graph. The elements of + are called
vertices or nodes and the elements of ⇢ are called edges of ⌧.

b) Let 4 2 ⇢ . For a(4) 2
�+
1
�
[

�+
2
�
the edge 4 is undirected, for a(4) 2 +2 the edge

4 is directed.

c) Let E,F 2 + , 4 2 ⇢ . Furthermore, let a(4) 2 {{E}, {(E, E)}} or a(4) 2
{{E,F}, {(E,F), (F, E)}}, then E and 4 are incident. It is also denoted by E 2 4.

d) Let E,F 2 + be incident to an edge 4 2 ⇢ , i.e., E,F 2 4. Then, the vertices are
called ends of the edge.

e) Let 4 2 ⇢ . If a(4) 2 {{E,F}, {(E,F), (F, E)}}, then the two vertices E,F 2 +
are called adjacent,

f) Let 4, 5 2 ⇢ . Two edges 4 < 5 are adjacent, if they have an end in common.

g) Let 4 2 ⇢ . If there exists a vertex E 2 + with a (4) 2 {{E} , (E, E)}, then 4 is
called loop.

We illustrate the de�nition of a graph by the following example.

Example 3.2.3. In this example, we consider a graph ⌧ = (+ , ⇢ , a) with

+ = {E1, E2, E3, E4, E5} and ⇢ = {41, 42, 43, 44, 45, 46, 47, 48} .

Furthermore, we de�ne a map a : ⇢ !
�+
1
�
[

�+
2
�
[+2 for each edge as follows

a(41) := (E1, E2), a(45) := (E5, E3),

a(42) := (E1, E3), a(46) := {E5, E4},

a(43) := (E3, E1), a(47) := {E3, E4},

a(44) := (E2, E5), a(48) := {E4}.

53

3 De�nitions and Preliminaries

E1

E2

E3

E4

48

E5

41

42

43

44

45

47

46

Figure 3.2: Geometric presentation of the graph given in example 3.2.3.

The resulting graph is illustrated in �gure 3.2.

Based on this example we will explain the graph-theoretic terms de�ned above.

The above illustrated graph consists of directed as well as undirected edges and a
loop. The edges 41, 42, 43, 44 and 45 are directed edges. Whereas the edges 46 and
47 are undirected. The edge 48 is an undirected loop. Clearly, a graph consisting
just of directed edges is called directed graph and a graph consisting of undirected
edges is called undirected graph.

To name an example for an incident vertex, lets consider the edge 46. The vertex E5
is incident to this edge. Furthermore, E4 and E5 are the ends of edge 46. We denote
this by E4, E5 2 46. And therefore, E4 and E5 are adjacent vertices. E4 is incident to
47 and with E4 2 46 and E4 2 47 we know that 46 and 47 are adjacent edges.

According to the de�nition and illustrated by the example, the map a assigns each
edge 4 2 ⇢ to the corresponding vertices (uniquely). In this thesis, we omit the
de�nition of the map in the remainder of this thesis and denote the assignment
by (E), {E}, (E,F) or {E,F}, respectively. And with that, we denote a graph by
⌧ = (+ , ⇢)—instead of ⌧ = (+ , ⇢ , a).

In the next paragraph, we de�ne a special type of graph—a so-called path. We
denote a path by % = (+ , ⇢). It consists of vertices and edges of the form

+ = {E0, E1, . . . , E: } and ⇢ = {{E0, E1} , {E1, E2} , . . . , {E:�1, E: }} .

If we look more closely at the set of edges, we can see that a path connects the
vertices E0 and E: over several edges. To better understand the concept of a path,
we illustrate it in the following �gure 3.3.

Note, that by the index : 2 Nwe obtain an ordering of the vertices E0, . . . , E: 2 + .

A path % with additional edge {E: , E0} is called a cycle ⇠ := % + {E: , E0}, i.e., the
“last” vertex of path % is connected with the startvertex E0. For example, if we
consider the path % with + = {E1, E2, E3, E4} and ⇢ = {{E1, E2} , {E2, E3} , {E3, E4}}

54

3.2 Introduction to graph theory

E1

E2 E3

E4

E5

Figure 3.3: Geometric presentation of a path.

in �gure 3.3 and “close” the path with edge {E4, E1}, then we we get a cycle ⇠. We
illustrate this cycle in the following �gure 3.4.

E1

E2 E3

E4

E5

Figure 3.4: Geometric presentation of a cycle.

A graph is called cyclic, if it contains at least one cycle. In this thesis, we are
especially interested in acyclic graphs, i.e., graphs in which no cycle is contained.

For the de�nition of a path and a cycle, we focused on undirected graphs. But of
course, we could de�ne a path and a cycle for directed graphs similarly. However,
we leave this to the reader.

Finally, we de�ne the so-called (node-arc) incidence matrix of a graph ⌧ = (+ , ⇢)
with the following de�nition.

De�nition 3.2.4. Let ⌧ = (+ , ⇢) be a graph with ordered vertices and edges, i.e.,
+ = {E1, . . . , E=} and ⇢ = {41, . . . , 4<}. We call the matrix (⌧ :=

�
f8, 9

�
82[=]
92[<]

with

f8, 9 :=

8>>>>>>>><
>>>>>>>>:

1, if E8 2 4 9 = {E8, E80} ,

2, if E8 2 4 9 = {E8} ,

�1, if 4 9 is directed and E8 2 4 9 = (E8, E80) ,

1, if 4 9 is directed and E8 2 4 9 = (E80 , E8) ,

0, otherwise,

55

3 De�nitions and Preliminaries

incidence matrix of ⌧.

To clarify the de�nition of the incidence matrix, we again look at the graph from
example 3.2.3 and set up the corresponding incidence matrix. Let the set of vertices
+ = {E1, . . . , E5} and the set of edges ⇢ = {41, . . . , 48} be given. The rows of the
matrix corresponds to the vertices of the graph and the columns pertain to the
edges. The incidence matrix is given by

f8, 9 =

©≠≠≠≠≠
´

�1 �1 1 0 0 0 0 0
1 0 0 �1 0 0 0 0
0 1 �1 0 1 0 1 0
0 0 0 0 0 1 1 2
0 0 0 1 �1 1 0 0

™ÆÆÆÆÆ
¨
.

Besides directed and undirected, as well as cyclic and acyclic graphs, there are many
other di�erent types of graphs depending on their structure. To mention some,
there exist complete graphs, planar graphs, bipartite graphs, and Hamilton cycles
[Die17, Wes00]. We will not discuss all such graphs in this thesis and refer the
interested reader to the mentioned literature.

In the next subsections, we focus on special sets of a graph ⌧ = (+ , ⇢), which
we use in this thesis to prove NP-completeness. In the �rst part, we describe the
independent set of vertices and in the second part we de�ne matching of edges.
Brie�y, both de�nitions can be summarized as a set of independent vertices and a
set of independent edges of a graph ⌧, respectively. The �rst is a subset* of + of
non-adjacent vertices and the latter is the set " of edges that are not adjacent to
each other. We introduce this in more detail and given examples in the following.
These subsections are based on Gritzmann [Gri13], Korte and Vygeb [KV06], and
Diestel [Die17].

3.2.1 Independent set

We start with the independent set, which we need to show that the EBRS problem
is NP-complete (see subsection 4.2.3). An independent set of a graph ⌧ is de�ned
as follows.

De�nition 3.2.5. Given an undirected graph ⌧ = (+ , ⇢), an independent set is a
subset of vertices* ✓ + , such that no two vertices in* are adjacent. An indepen-
dent set is maximal if no vertex can be added without violating independence, and
maximum if it maximizes |* |.

56

3.2 Introduction to graph theory

Figure 3.5: Example for an independent set.

We illustrate this in �gure 3.5.

The maximum independent set of the illustrated graph is given by the blue vertices.
The search for a maximum independent set can be formulated as an optimization
problem. We introduce this problem and show that it is NP-complete in subsec-
tion 3.3.4.2.

3.2.2 Matchings

We now de�ne what is meant by a matching as follows.

De�nition 3.2.6. Given a graph ⌧ = (+ , ⇢) and " ⇢ ⇢ . " is called matching, if

{E1,F1} 2 " ^ {E2,F2} 2 " ^ {E1,F1} \ {E2,F2} < ;
) {E1,F1} = {E2,F2}. (3.1)

By equation (3.1) we de�ne a matching as a set of pairwise edges, which are non-
adjacent to each other. i.e., if a vertex is the endpoint of two edges, not both edges
are contained in the set " (or both edges are the same).

If a vertex is an endpoint of an edge which is contained in the matching " , i.e.,
E 2 4 with 4 2 " , we say that the vertex is covered by the matching " . This is an
important de�nition for the optimization problem we formulate below based on
matching.

In subsection 3.3.4.3 we introduce the so-called Perfect Matching problem. It is a
well-known NP-complete problem from graph theory, which we use to show that a
special case of the EBRS problem is NP-complete (see subsection 4.3.2). To describe
this problem we de�ne perfect matchings as follows.

De�nition 3.2.7. Given a graph ⌧ = (+ , ⇢) and " ⇢ ⇢ . " is called perfect
matching, if all vertices of ⌧ are covered by the set " , i.e.,

E 2
ÿ
42"

4 for all E 2 + .

57

3 De�nitions and Preliminaries

A perfect matching " is therefore a set of edges, for which the edges are non-
adjacent and the vertices are covered by " . We illustrate this by the following
�gure 3.6.

(a) Example for a perfect matching. (b) Example for a graph where no perfect
matching can be found.

Figure 3.6: Examples for graphs with and without perfect matching.

Left, in sub�gure 3.6a, we see a perfect matching, while to the right, in sub�gure 3.6b,
no perfect matching can be found.

As mentioned before, it can be shown that both graph-theoretic problems belong to
the complexity class ofNP-complete problems. Moreover, we use them to prove that
the EBRS-problem and a special form of it are NP-complete. In the next section we
give an introduction to complexity theory, with a particular focus on the complexity
class of NP-complete problems.

3.3 Complexity theory

With complexity theory, we classify problems based how di�cult they are to solve.
The main part of this thesis focuses on the classi�cation of the EBRS problem and
its cases based on its complexity, where the cases di�er by the constraints. We
do not consider all existing complexity classes in this chapter, but focus on the
complexity class NP and the class of NP-complete problems. In subsection 4.2.13,
we prove that the EBRS problem is NP-complete. Furthermore, we only consider
the complexity of problems according to their running time. More information
about the complexity of problems depending on their memory requirements we
refer the interested reader to Keller, Pferschy, and Pisinger [KPP04].

We start with the de�nition of running time in subsection 3.3.1 and further dis-
cuss what is meant by an e�cient algorithm. In subsection 3.3.2 we describe the
complexity class NP and, therefore, de�ne all necessary terms in a �rst step. In
subsection 3.3.3 we de�ne the class of NP-complete problems. Furthermore, we
discuss methods to prove NP-completeness, which we also apply in this thesis.
At the end of this section, we present further NP-complete problems used in this
thesis.

58

3.3 Complexity theory

3.3.1 Running times of algorithms

The performance of an algorithm is of interest when comparing di�erent algorithms
to solve a given problem. The performance of an algorithm is de�ned by its running
time and the memory required to solve the problem [KPP04]. In this thesis, we
focus on the time complexity of an algorithm and are therefore interested in the
running time of the algorithms.

The running time of an algorithm depends on di�erent factors. Yet, complexity
theory is also about comparing and classifying problems according to their di�culty.
Therefore, we need a uniform de�nition of the runtime to be able to compare it for
di�erent algorithms and problems. In this chapter, we give such a de�nition of the
running time, show how we can measure it, and what we understand by an e�cient
algorithm.

Of course, the “faster” an algorithm solves a problem, the better. There exist
several methods to measure the performance of an algorithm. For example, we can
directly measure the running time. But this is dependent of many parameters, the
used computer, the operating system, etc. Dasgupta and colleagues describe the
complexity of characterizing algorithms in such a way as follows: “Accounting for
these architecture-speci�c minutiae is a nightmarishly complex task and yields a
result that does not generalize from one computer to the next” [DPV06, p. 15].

In order to compare the complexity of problems in a more general way, it has proven
useful not to directly consider the required elementary computer steps for the given
scenario, but to use a more general consideration of the running time of problems.
A viable and widely used simpli�cation for comparing di�erent running times is
worst-case analysis [KPP04]. That means, instead of comparing directly the used
elemental computer steps for each instance of a considered problem, we give an
upper bound on the number of elemental computer steps required to solve any
input of the problem [KPP04].

To de�ne the upper bound of the number of elementary computer steps, we have to
count the exact number of necessary operations of an algorithm and therefore need
to consider the implementational details of the algorithm [KPP04]. Depending on
the problem, this can be a challenging task. That is why we de�ne an asymptotic
upper bound for the running time instead. The asymptotic upper bound illustrates
“the order of magnitude of the increase in running time” [KPP04, p. 12] for a given
size of input. This can be illustrated as in �gure 3.7.

In a �rst step, we give a detailed explanation of elementary computer steps
[Gri13].

Remark 3.3.1. Elementary computer steps are de�ned as value assignments, ele-
mentary comparison operations and elementary arithmetic operations. , �, =, and

59

3 De�nitions and Preliminaries

0 5 10 15 20

2,000

4,000

6,000

8,000
3G G3

30G

Figure 3.7: Running times of algorithms.

< are the elementary comparison operations and addition (+), substraction (�),
multiplication (·) and division (÷) are the elementary arithmetic operations.

Furthermore, there exist elementary program commands. They are assginments like
(), BEGIN, END, WHILE, DO, and HALT.

As de�ned by Keller and colleagues the asymptotic upper bound is dependent on
the size of input, size(I), with I is the accepted input of a problem [KPP04]. We
denote the size of the input by =, i.e., = := size(I). Formally, the size of the input
is measured by the number of bits required to represent the input number, i.e., we
consider the coding length. Since in most cases the coding length is proportional to
the input, e.g., the length of an array, we informally use the input size and interpret
= as the input length of the given instance of a problem. The size or input length =
depends on the problem considered. For example, if we are searching an element
in a list, then I is a list with = elements and the input length equals the number of
elements in the list. Or, in case we are multiplying two matrices, the input length
equals the dimensions of the matrices.

The above interpretation is appropriate since in this thesis we consider integer
problems in particular. For more details on the coding length we refer the interested
reader to Gritzmann [Gri13].

Finally, we can de�ne the asymptotic upper bound of the running time. It is usually
described by the so-called O-notation and de�ned as follows [KV06, DPV06].

60

3.3 Complexity theory

De�nition 3.3.2. Let � be an algorithm and I be an input with input length = that
is accepted by the algorithm �. Let 5 , 6 : N ! R+. It is 5 = O(6), if there is a
constant 2 > 0 such that 5 (=)  2 · 6(=).

We pronounce 5 = O(6) by “ 5 grows no faster than 6”, with 5 the running time
of the algorithm at input length = and 6 the asymptotic upper bound. Since this
is a worst-case analysis, � terminates after at most 2 · 6(=) elementary computer
steps for each input I of the algorithm, and we say “� runs in O(6) time”. Another
way to pronounce 5 (=)  2 · 6(=) is that the “running time of � is O(6)”. This
pronounciation is based on Korte and Vygen [KV06].

For a better understanding of the worst-case running time of an algorithm �, we
consider the following example adapted from Keller and colleagues [KPP04].

Example 3.3.3. Given an input length = and a function 6(=) := =2 + = + 5. Then, the
following functions are included in O(6(=)):

5 (=) =

8>>><
>>>:

10=,
= log =,
10 000=2

Instead of considering the whole function 6(=) for the asymptotic upper bound,
it is a permissible simpli�cation to ignore the lower-order terms = and 5 of the
function 6. We then say that the above de�ned functions 5 (=) are included in O(=2).
The permissible simpli�cation is acceptable, since this terms get insigni�cant by
growing input length = [DPV06].

Such permissible simpli�cation are generally used for the asymptotic upper bounds.
There exist further simpli�cation rules, which are summarized by Dasgupta and
colleagues [DPV06].

In the last part of this subsection, we are interested in the de�nition and explanation
of the term e�ciency. In the main part of this thesis we ask whether there exits
an e�cient algorithm for the EBRS problem and its cases that solves the problem
in reasonable time. In this thesis, we speak of an e�cient algorithm if it runs in
polynomial time, i.e., its running time is asymptotically no slower than O(=:) with
: � 2. We de�ne a polynomial time algorithm similar to Korte and Vygen [KV06].

De�nition 3.3.4. Let = be the input length of an algorithm �. An algorithm � runs
in polynomial time, if there is an integer : such that it has a running time of O(=:).

In the de�nition of an e�cient algorithm, we have focused on a speci�c given
algorithm. In the next chapter, we do not consider the complexity of a single
algorithm, but the complexity of decision problems. That is, we consider the

61

3 De�nitions and Preliminaries

algorithmic di�culty of a problem. Or, in other words, we consider the question of
whether there is an algorithm for this problem that can solve it in e�cient time.

We already motivated in section 2.2 that the complexity class P of decision problems
exist. This complexity class consists of problems, for which a polynomial time
algorithm is known. But of course, there exists other problems which are intractible,
i.e., they are so “hard that no polynomial time algorithm can possibly solve it” [GJ79,
p. 8].

In the next two subsections we discuss such decision problems, for which no known
polynomial time algorithm is known, but for which we can verify in polynomial
time, whether a given certi�cate solves the problem. We summarize these decision
problems in the class NP (see subsection 3.3.2). Furthermore, in subsection 3.3.3 we
discuss a class of problems which can be polynomially transformed into a known
problem of class NP, and thus, the problem is as hard as the hardest problem of
class NP. If the considered problem also belongs to the class NP itself, we call this
problems NP-complete.

3.3.2 The complexity class NP

Complexity theory studies computational problems according to their resource
usage, which could be time or storage. In this thesis we focus on the time complexity
of problems. i.e., we are interested in the question whether there exists a polynomial
time algorithm to solve this problem. For more details on the de�nition of an
algorithm and its running time we refer to the previous subsection 3.3.1. Of course,
the acceptability of the computation time depends on the particular application
[Gri13]. Yet, in general, we are looking for an e�cient algorithm to solve the
problems in operations research applications.

We talk about an e�cient algorithm, if it can solve a problem in polynomial time.
That means, its solution algorithm has a worst-case running time of O(=:) on input
length = and for some constant : 2 N [CLRS09]. But of course not all problems
can be solved e�ciently. For example, in subsection 4.2.3 we show that the EBRS
problem cannot be solved in polynomial time—but we can show that EBRS 2 NP.

That leads us to the question of what is special about the class NP.

We know that we cannot solve the problems of the class NP in polynomial time in
general. However, we can verify in polynomial time in the size of the input of the
problem if a given certi�cate is truly the solution of the considered problem.

In the �rst part of this subsection we introduce and de�ne the classNP informally as
well as formally and explain all related terms, such as, language, certi�cate, string,
and input. In the latter part of this subsection we show how to prove that a problem
belongs to the class NP exemplarily. This is based mainly on the work by [Gri13],
and Garey and Johnson [GJ79].

62

3.3 Complexity theory

Let us start with an explanation of the term “problem”, as given by Gritzmann
[Gri13, p. 173]. Formally a problem ⇧ can be seen as a relation, which assigns to an
input all accepted outputs. For a given input I we are searching for an output O, so
that the pair (I,O) is in relation, or (I,O) belongs to ⇧.

The following de�nition explains the basic terms needed for complexity theory and
gives a mathematical de�nition of a problem.

De�nition 3.3.5. a) Let ⌃ be a �nite and nonempty set. Then, ⌃ is called alphabet.

b) A string describes each �nite sequence I := {f1, . . . ,fA} with A 2 N0 consisting
of elements of ⌃. A is the length or size of the string I and is denoted with |I|.

c) Let ⌃⇤ be the set of all �nite strings over ⌃. Each subset ! ⇢ ⌃⇤ is called language
over the alphabet ⌃.

d) Let ⌃1 and ⌃2 be alphabets. Each subset ⇧ of ⌃⇤1 ⇥ ⌃⇤2 de�nes a problem on
⌃⇤1 ⇥ ⌃

⇤

2 . Each string I of ⌃⇤1 is called (theoretical) input of ⇧.

e) Let ⇧ be a problem of ⌃⇤1 ⇥ ⌃
⇤

2 . Then

L := L(⇧) :=
�
I : 9(O 2 ⌃⇤2) : (I,O) 2 ⇧

is called input language of ⇧. The elements of L are also called instances of ⇧.
We also speak of ⇧ accepts the input I 2 L. For I 2 L each string O 2 ⌃⇤2 denotes
with (I,O) 2 ⇧ a solution or output of problem ⇧.

Informally, we can de�ne an instance of a problem as all inputs needed to compute
an output to the problem. With that, we want to guarantee that the input is not
inadmissible.

For the complexity-theoretical investigations, the so-called decision problems are
usually considered. Unlike optimization problems, which asks for a deterministic
solution to the problem, decision problems answers only “yes” and “no” questions.
By considering decision problems we guarantee a certain standardization of the
problems that allows us to compare the complexity of the problems [Gri13]. The
standardization is given by, �rst, considering only problems with a trivial output,
i.e., O 2 ⌃⇤2 = {0, 1}, and second, the input should be appropriate and e�ective—a
so-called instance. The latter requirement and its importance gets clearer, if we get
aware of the di�erence between input and instance.

A problem is de�ned as an arbitrary subset of ⌃⇤1⇥⌃
⇤

2 , for which is not yet guaranteed
that the given input string I 2 ⌃⇤1 is also an input language I 2 L. So the input I is
unlike an instance a theoretical input, which probably contains not all necessary
informations to assign an output.

By the following de�nition we de�ne a decision problem more formally.

63

3 De�nitions and Preliminaries

De�nition 3.3.6 (Decision Problem). Let ⌃ be an alphabet, ⇧ ⇢ ⌃⇤ ⇥ {0, 1},
L := L(⇧) and for all I 2 L the following condition holds

(I, 0) 2 ⇧ , (I, 1) 8 ⇧.

If there exists a polynomial time algorithm, which decides for each I 2 ⌃⇤ whether
I 2 L, ⇧ is called decision problem over ⌃. Each input I with (I, 1) 2 ⇧ is called
yes-instance and all inputs with (I, 0) 2 ⇧ are called no-instance of ⇧.

In the following, we give an example of a well-known decision problem, theCLIQUE
problem, which is a problem known from graph theory.

Example 3.3.7 (CLIQUE problem). Let ⌧ = (+ , ⇢) be an undirected graph with a set
of vertices + and a set of edges ⇢ . With a clique we are searching for a subset of
vertices + 0 ✓ + in ⌧, in which every pair of vertices is connected by an edge. The
size of the clique is the number of vertices contained in the subset. The decision
problem is de�ned as follows.

Problem 3.3.8 (CLIQUE). Given a pair (⌧, :) with ⌧ is an undirected graph and
: 2 N. Does there exist a clique of size at least : in the graph?

The instance of the problem is any pair (⌧, :). The problem assigns “yes” or 1 to
the instance, if ⌧ contains a clique of size : . Otherwise, it assigns “no” or 0. For
more information about clique, we refer to Garey and Johnson [GJ79], Dasgupta
and colleagues [DPV06], and Cormen and colleagues [CLRS09].

With that we have de�ned the basic terms to explain complexity.

To de�ne the class NP we are focusing on nondeterministic algorithms for decision
problems. The term nondeterministic is related to the so-called Turing machine,
more precisely, a nondeterministic Turing machine. We do not want to give a detailed
introduction to Turing machines, but we want to motivate the idea and give an
informal de�nition of a Turing machine based on the work by Garey and Johnson
[GJ79].

We begin with the idea of a deterministic Turing machine. With it, we have a
theoretical and mathematical model for computation with which we can “formalize
the notion of an algorithm” [GJ79, p. 23].With that, we can capture the concept of an
e�cient computable algorithm, not depending on technical characteristics, limits,
and new achievements of real computers [Gri13]. With that, we can measure the
computability of problems in a more general sense.

In short, a (deterministic one-tape) Turing machine can be seen as a strip of tape
split in in�nite sections and a �nite state control. Furthermore, it has a read-write
head with which it can read or write symbols from the alphabet � of or on the tape.
This is done according to a table of rules, which can be found, e.g., by Gritzmann

64

3.3 Complexity theory

[Gri13], or Korte and Vygen [KV06]. Beside some input symbols of a subset ⌃ ⇢ �
there exists some blank symbols 1 2 �\⌃. Furthermore, there exists a �nite set &
of states, including a start-state @0 and two halt-states @. and @# . Finally, there
exists a transition function

X : (&\{@. , @# }) ⇥ �! & ⇥ � ⇥ ⇡

with ⇡ = {�1, 1}. ⇡ is the set of direction of movement of the head. With the
transition function the step by step process of the machine is de�ned.

Now that we have informally de�ned a Turing machine, we describe informally a
nondeterministic Turing machine, which we need to de�ne the class NP. It also
ful�lls the idea of a theoretical and mathematical model for computation.

The di�erence to a deterministic Turing machine is mainly due to the fact that there
are “two distinct stages” [GJ79, p. 30] during computation—a so-called guessing
stage and a checking stage. Summarized, in the �rst stage the algorithm guesses
some certi�cate C for a given instance I. Afterwards the algorithm provides I and C
to the second stage, in which the answer “yes” or “no” is delivered. The algorithm
proceeds deterministically in the checking stage, but for the �rst stage it provides
the certi�cate in a nondeterministic manner. In more detail we can describe the
nondeterministic Turing machine as follows.

It consists of two heads, with which it scans, reads, and writes on the tape. In the
guessing stage the guessing module goes step by step from section to section of
the tape and either write some symbol from � on the tape section being scanned,
and move one section to the left, or stops. Thereby, the guessing module writes
on the tape any string of �⇤ in a totally arbitrary manner—or in a completely
nondeterministic way.

After the guessing module �nishes at state @0, the start state of the �nite state
control—the checking stage—starts. Thereby, it follows the rules of a deterministic
Turing machine. The �nite state control terminates, if it reaches one of the two halt
states, @. or @# . In case of @. the computation is accepted. If the computation is
not accepted or does not halt, the �nite state control stops in @# .

With this description of the functionality of a nondeterministic Turing machine we
can de�ne the class NP informally as follows.

De�nition 3.3.9. The class NP is the class of problems, which can be solved by a
nondeterministic Turing machine.

We call problems of the class NP nondeterministic polynomial problems. We refer the
interested reader for more details to Garey and Johnson [GJ79], Gritzmann [Gri13],
or Korte and Vygen [KV06].

65

3 De�nitions and Preliminaries

In the remainder of this chapter we give a more formal de�nition of this class of
problems, so that we can prove that a problem is in NP. We use this in chapter 4.
For this de�nition we, again, follow Gritzmann [Gri13].

Before we can de�ne the class NP we �rst need to introduce the so-called concate-
nation, used to join strings together.

De�nition 3.3.10. Let ⌃ and � be alphabets and I := (f1, . . . ,f?) as well as
T := (g1, . . . , g@) �nite strings over ⌃⇤ and �⇤, respectively. The operation ? with

I? T := (f1, . . . ,f?, g1, . . . , g@)

is called concatenation.

De�nition 3.3.11 (Complexity class NP). Let ⌃ be an alphabet. The class NP
consists of all decision problems ⇧, for which a decision problem ⇧0 2 P and a
polynomial c exists with the following properties.

a) ⇧0 accepts all inputs I ? C, for which I is an instance of ⇧ and C 2 ⌃⇤ with
|C|  c(I).

b) There exists a C 2 ⌃⇤ with |C|  c(|I|) and (I ? C, 1) 2 ⇧0 if and only if
(I, 1) 2 ⇧.

Each string C 2 ⌃⇤ with |C|  c(|I|) is called potential certi�cate. Each potential
certi�cate C with (I? C, 1) 2 ⇧0 is called certi�cate. ⇧0 is called the checking or
veri�cation problem belonging to ⇧.

In the following we explain the meaning of the de�nition.

We already mentioned that the class NP consist of all problems, which can be
veri�ed in polynomial time. To verify a problem we need a solution. For a given
“solution”—the certi�cat C—we do not ask, if there exists a clique of size :—as it
would be the case for problem ⇧. Instead we ask in the checking problem ⇧0, if the
instance I concatenated with the certi�cat C is a clique of size : . See therefore also
the explanation of the nondeterministic Turing machine.

But as NP is a class of nondeterministic polynomial algorithms also the certi�cat C
should be of polynomial input size. This is guaranteed by |C|  c(|I|), i.e., the size
of C is at most a polynomial of input size |I|.

Furthermore, the checking algorithm should run in polynomial time as already
mentioned above, when describing the checking stage.

We exemplify the concept of the certi�cate the checking problem by the following
example.

66

3.3 Complexity theory

Example 3.3.12. Let us consider again the CLIQUE problem. Let I be an instance
consisting of an arbitrary undirected graph ⌧ = (+ , ⇢) and an integer : 2 N. + is
the set of vertices and ⇢ is the set of edges of the graph ⌧. We already formulate
the decision problem in problem 3.3.8.

The certi�cate C is a subset + 0 ✓ + of size at least : , i.e., |+ 0| � : . The checking
algorithm veri�es for the input (I? C), if the subset of vertices + 0 is truely a clique
of size : .

With that we can show that CLIQUE 2 NP [CLRS09].

Let us therefore assume that there exists a yes instance (I, 1) 2 CLIQUE. Further-
more, a certi�cate C is given with (I ? C, 1) 2 CLIQUE0. I and C are de�ned as
above. We only need to show that there exists a polynomial c such that |C|  c(|I|)
and that the checking algorithm runs in polynomial time.

As the certi�cate C is a subset of vertices of size at least : we can �nd a polynomial
c, such that |C|  c(|I|). The checking algorithm veri�es for each pair D, E 2 + 0, if
the corresponding edge (D, E) belongs to ⇢ . This can be done in polynomial time.

In the next chapter, we de�ne and discuss the class of NP-complete problems. It
is a class of problems, which can be polynomially transformed into each other.
Exactly this property is of interest for the consideration of the millennium problem
P

?= NP.

3.3.3 NP-completeness

As we already described in the motivation of the complexity theory in section 2.2
one of the famous millennium problems is whether

P
?= NP.

It is widely believed that P < NP [CLRS09, Gri13, GJ79], but so far it has not been
proven. However, it can be shown that P ✓ NP. This can be justi�ed by the fact
that if we can solve a problem with a deterministic algorithm in polynomial time,
we can also solve it with a nondeterministic algorithm in polynomial time. This
is because—since there is a deterministic polynomial-time algorithm to solve the
problem—we can ignore the guessing stage of the nondeterministic algorithm and
use this algorithm as the checking stage algorithm instead. For more details see
Garey and Johnson [GJ79], Kleinberg and Tardos [KT13], or Cormen and colleagues
[CLRS09].

In terms of solvability in polynomial time, the class of NP-complete decision prob-
lems is very interesting, as for this class of problems holds: if one of its problems
is solvable in polynomial time, then all problems contained in NP are solvable in
polynomial time [CLRS09].

67

3 De�nitions and Preliminaries

This leads us to the de�nition of the class of NP-complete problems, which can
be informally described as a set of problems contained in NP, and are as hard as
any problem in NP [CLRS09]. Here, the term “hard” does not refer directly to the
di�culty of solving the problem, but rather can be understood as the ability to
compare problems of class NP according to their complexity [Gri13]. We focus in a
�rst step on the term hard.

In order to compare problems of the classNP—as just mentioned—wemust introduce
the terms reducibility and transformation of problems, respectively. Both terms are
used in literature, and their applied de�nition is not always obvious. Therefore, we
de�ne both terms as used in this thesis to avoid misunderstandings.

In short and very simply speaking, we reduce a problem to another by transforming
its instances so that the other problem accepts them as instances as well. Thus,
reducibility aims at transforming a language L1 ✓ ⌃⇤1 to a language L2 ✓ ⌃⇤2 . And in
case we �nd a polynomial-time subroutine for the corresponding decision problem
of !1, we also have a polynomial-time subroutine for !2.

Wewill leave this statement as it is for now and discuss it in more detail later. Instead,
we �rst give a short comparison of terms Cook’s reduction and Karp’s reduction.
Both reduction methods are important methods to compare problems of the class
NP. The description of both methods is based on the work by Garey and Johnson
[GJ79].

In this thesis, we apply Karp’s reduction and give only a brief introduction of Cook’s
reduction, following the works of Garey and Johnson [GJ79], and Gritzmann [Gri13].
Brie�y, Cook’s reduction can be summarized as follows. Cook mentions the term
reducibility for the �rst time in the paper [Coo71]. There he introduced a method
for comparing problems, and called it P-reducibility. In this case, reducibility of
languages is achieved by applying a polynomial-time Turing reduction. That is,
there exists an algorithm that reduces a problem ⇧1 to a problem ⇧2 performing
polynomially many elementary operations on numbers of polynomial size and
polynomially many calls of a so-called oracle [Gri13]. Cook’s reduction can also be
viewed as Turing reductions running in polynomial time.

Karp invented a less cumbersome polynomial transformability and showed that
Cook’s theorem (Theorem 3.3.26) remains true by applying Karp’s reduction instead
of Cook’s reduction [Kar72]. Further, the Karp’s reduction shapes the current de�ni-
tion of NP-completeness [GJ79]. For a more detailed description of the di�erences
of Karp and Cook reduction we refer to Garey and Johnson [GJ79], and Ruiz-Vanoye
and colleagues [RVPOR+11].

The Karp’s reduction can �nally be de�ned as follows [Gri13].

De�nition 3.3.13 (Karp’s reduction). Let ⌃ be an alphabet, ⇧1 and ⇧2 be decision
problems, and j : L(⇧1) ! L(⇧2) be computable by a polynomial-time algorithm.

68

3.3 Complexity theory

If it holds that

(I, 1) 2 ⇧1 , (j(I), 1) 2 ⇧2, (3.2)

then j is a polynomial transformation or Karp’s reduction from ⇧1 to ⇧2. We write
⇧1 % ⇧2.

Thus, we have de�ned Karp’s reduction at the level of decision problems. However,
it is also possible to de�ne it at the level of input languages, as de�ned below.

De�nition 3.3.14. Let L1 ✓ ⌃⇤1 and L2 ✓ ⌃⇤2 be languages and let j : ⌃⇤1 ! ⌃⇤2 . If
j is a function computable in polynomial time, such that for all I with I 2 L1 if and
only if j(I) 2 L2, then j is a polynomial transformation. We write L1 % L2.

Remark 3.3.15. We use de�nition 3.3.13 of Karp’s reduction to show that the EBRS
problem is NP-complete in subsection 4.2.3. But to show the properties of polyno-
mial transformation we consider it su�cient to use the de�nition based on input
languages.

The su�ciency of the de�nition 3.3.14 is justi�ed by the fact that if there exists a
polynomial-time computable function j : ⌃⇤1 ! ⌃⇤2 with which the input language
L1 = L1(⇧1) is reducible to another input language L2 = L2(⇧2) in polynomial time,
then there also exists a polynomial-time computable function j : L1(⇧1) ! L2(⇧2)

with which a problem ⇧1 is reducible to another problem ⇧2 in polynomial time.
We just do not di�er between a yes or no instance.

The de�nition of Karp’s reduction is illustrated in �gure 3.8.

yes

no

Transformation
Algorithm A2

I

I 2 L1

I 8 L1

j(I)
yesj(

I)
2
L 2

noj
(I) 8 L2

A1

Figure 3.8: Example for a Karp’s reduction—adapted from Cormen and colleagues
[CLRS09, p. 1069].

The following lemma illustrates a property of polynomial transformations.

69

3 De�nitions and Preliminaries

Lemma 3.3.16. If ⇧1 % ⇧2, then ⇧2 2 P implies ⇧1 2 P.

We follow Garey and Johnson [GJ79], as well as Cormen and colleagues [CLRS09]
to prove lemma 3.3.16

Proof. Let ⌃1 and ⌃2 be alphabets of L1 and L2, respectively. Let j be a polynomial
transformation from L1 to L2 and by Aj we denote the polynomial time algorithm
that computes j. Furthermore, with A2 we de�ne a polynomial algorithm that
decides if an instance is in L2. To prove the lemma we show, that there exists
a polynomial time algorithm A1 that decides a�liation to L1 by composing the
algorithms Aj and A2.

For this, we �rst transform an input I 2 ⌃⇤1 to an input j(I) 2 ⌃⇤2 by applying the
algorithm Aj. Afterwards we apply the algorithm A2 to determine if j(I) 2 L2.
The transformation procedure is illustrated in �gure 3.8. There it also can be seen
that algorithm A1 uses the output of A2 and Aj to generate its own output. And
this holds because of the assumption L1 % L2 and therefore, I 2 L1 , j(I) 2 L2.

As both applied algorithms Aj and A2 run in polynomial time, also A1 runs in
polynomial time. This can be easily seen by de�ning with ?j and ?2 polynomial
functions bounding the running time of Aj and A2, respectively. I.e., it is |j(I) | 
?j (|I|) and |j2(I) |  ?2(|I|).

With that and based on the description of the algorithm above, its running time is
O(?j (|I|) + ?2(?j (|I|))) and therefore, the algorithm is bounded by a polynomial
of the input size |I|. ⇤

Remark 3.3.17. Equivalently it can be shown, that ⇧2 8 P implies ⇧1 8 P, if
⇧1 % ⇧2 [GJ79].

With the de�nition of polynomial transformation, we can de�ne the class of NP-
hard problems—the class of problems, which are as “hard” as all problems in NP
according to their complexity.

De�nition 3.3.18 (NP-hard). A decision problem ⇧1 is NP-hard if ⇧2 % ⇧1 for
all ⇧2 2 NP.

Notice, NP-hard problems do not need to be contained in NP itself.

As we mentioned at the beginning of this subsection, the di�erence with NP-
complete problems is that NP-complete problems are as “hard” as any problem
of NP, in addition to being in NP. This �nally leads us to the de�nition of NP-
completeness.

De�nition 3.3.19 (NP-complete). A decision problem ⇧ is called NP-complete if

70

3.3 Complexity theory

a) ⇧ 2 NP, and

b) ⇧ is NP-hard.

It would be a great e�ort to prove NP-completeness for a decision problem ⇧ by
showing ⇧0 % ⇧, for all ⇧0 2 NP. By the following lemma we show that the
polynomial transformation is transitive. Thus, it is su�cient to prove the NP-
completeness of a problem by reducing a single known NP-complete problem to
it. The following lemma is based on Garey and Johnson [GJ79], and Kleinberg and
Tardos [KT13].

Lemma 3.3.20. If ⇧1 % ⇧2 and ⇧2 % ⇧3, then ⇧1 % ⇧3.

Proof. Let ⌃1, ⌃2, and ⌃3 be alphabets and ⇧1 ⇢ ⌃1 ⇥ {0, 1}, ⇧2 ⇢ ⌃2 ⇥ {0, 1} and
⇧3 ⇢ ⌃3 ⇥ {0, 1} corresponding decision problems. Furthermore, let L1 = L1(⇧1),
L2 = L2(⇧2) and L3 = L3(⇧3) be input languages. To prove that ⇧1 % ⇧2 it is
su�cient to show L1 % L2 (see remark 3.3.15).

Let j1 : ⌃⇤1 ! ⌃⇤2 and j2 : ⌃
⇤

2 ! ⌃⇤3 be polynomial transformations. j1 transforms
L1 to L2 and j2 transforms L2 to L3. We de�ne by j3 : ⌃⇤1 ! ⌃⇤3 with j3(I) =
j2(j1(I)) for all I 2 ⌃⇤1 a transformation from L1 to L3. To prove L1 % L3, we need
to show the following.

a) j3 truly transforms an instance I 2 L1 to an instance j3(I) 2 L3.

b) j3 is computable by a polynomial time algorithm.

To prove a) we show with the de�nition of j3 that

j3(I) = j2(j1(I)) 2 L3 , I 2 L1. (3.3)

Therefore, we assume ⇧1 % ⇧2 and ⇧2 % ⇧3. With that, we know that all
instances I with I 2 L1 are polynomially transformed to j1(I) 2 L2 and all input lan-
guages j1(I) 2 L2 are polynomially transformed to j2(j1(I)) 2 L3. And therefore,
equation (3.3) follows.

With that, there also exists polynomial time algorithmsA2 andA3 that recognize if
j1(I) 2 L2 and j2(j1(I)) 2 L3, respectively. Moreover,Aj1 andAj2 are polynomial
time algorithms that computes j2 and j1.

Due to the de�nition of j3 the algorithm for j3 is a composition of A2, Aj1 , A3,
and Aj2 . A composition of a polynomial time algorithm is still a polynomial time
algorithm. Let ?j1 , ?j2 , and ?3 be polynomial functions bounding the running
times ofAj1 ,Aj2 , andA3 based on the input size |I|. Then, |j3(I) |  ?j2 (?j1 (|I|)).
And the running time of the algorithm composed like A3 is

O(?j1 (|I|) + ?j2 (|I|) + ?3(?j2 (?j1 (|I|))))

and with that an algorithm that runs in polynomial time. ⇤

71

3 De�nitions and Preliminaries

The transitivity of polynomial transformation leads us to the following lemma,
which “simpli�es” the de�nition of NP-completeness.

Lemma 3.3.21. ⇧1 is NP-complete if

a) ⇧1 2 NP and

b) ⇧2 % ⇧1 for a (known) NP-complete language ⇧2.

Proof. With⇧2 is aNP-complete problem, we know that all⇧3 2 NP are polynomial
transformable to ⇧2, i.e., ⇧3 % ⇧2 for all ⇧3 2 NP. With the transitivity of
polynomial transformation (see lemma 3.3.20) any ⇧3 is reducible to ⇧, which
shows the NP-hardness of ⇧. ⇤

In a next step, we will brie�y illustrate why the class of NP-complete problems is
relevant. To this end, let us mention, as we did at the beginning of this subsection,
that the class of NP-complete problems is of interest in the discussion of P = NP.
This is because this class of problems holds the following property.

The class of NP-complete problems consists of a set of decision problems (a subset
of the class of NP) that no one knows how to solve e�ciently, but if there were
a polynomial time solution for even a single NP-complete problem, then every
problem in NP would be solvable in polynomial time. But also, if any problem in
NP is demonstrably intractible, then so are all NP-complete problems. This is due to
lemma 3.3.16 and the transitivity of polynomial transformations (see lemma 3.3.20.
We illustrate this in �gure 3.9, which also maps the role of the class of NP-hard
problems.

P

NP

NP-complete

NP-hard

(a) P < NP

P = NP
(= NP-complete)

NP-hard

(b) P = NP

Figure 3.9: Set diagram of (possible) relations between the complexity classes P, NP,
and the sets of NP-hard and NP-complete problems.

72

3.3 Complexity theory

We summarize this special characteristic of NP-complete problems with the follow-
ing theorem, which is adapted from Cormen and colleagues [CLRS09].

Theorem 3.3.22. If any NP-complete problem is solvable in polynomial time, then
P = NP. Equivalently, if any problem in NP is not polynomial-time solvable, then no
NP-complete problem is solvable in polynomial time.

As already mentioned the theorem can be proven by applying lemma 3.3.20 and
lemma 3.3.16.

Proof. We prove the �rst statement of the theorem, �rst. We assume that ⇧ 2 P
and also that ⇧ is NP-complete. With ⇧ is NP-complete, it is also NP-hard and,
therefore, ⇧0 % ⇧ for any ⇧0 2 NP. As we assume that also ⇧ 2 P, it holds by
applying lemma 3.3.16 that ⇧0 2 P. And if this holds for any problem ⇧0 2 NP, then
it holds for all ⇧0 2 NP due to lemma 3.3.20.

The second statement is the contrapositive of the �rst statement and, therefore, none
of the NP-complete problems can be solvable in polynomial time, because, if any
problem ⇧0 2 NP is polynomial-time solvable, we can apply the �rst statement. ⇤

The �rst statement of the theorem can be assigned to the right side of �gure 3.9.
The second statement of the theorem corresponds to the left side and we can see
that the sets of NP-complete problems and problems in the class P are disjoint.

3.3.3.1 Cook’s theorem

In the last subsection we de�ned and discussed the class of NP-complete problems
and learned the relevance of the NP-complete problems. Moreover, to prove that a
problem belongs to the class ofNP-complete problems, we showed that it is su�cient
to reduce an already known NP-complete problem to it. This naturally raises the
question of an initial problem for which NP-completeness has been shown.

Cook showed that there is one problem called (Boolean) Satis�ability problem, or
short SAT, that is NP-complete. It is a decision problem of Boolean logic and uses
the following terms with which it an be described.

De�nition 3.3.23. Let - = {G1, . . . , G=} be a set of Boolean variables and let
C : - ! {true, false} be the corresponding truth assignment for - .

The literals over - are de�ned by extending C to the set ! := G [{Ḡ : G 2 -}, i.e., it
contains not only G, but also Ḡ—the so-called negotiation of G. The interpretation of
the literals is given in the following way:

C (Ḡ) = true if C (G) = false, and C (Ḡ) = false if C (G) = true.

73

3 De�nitions and Preliminaries

We brie�y denote the corresponding literals of G by G and Ḡ. Furthermore, a literal
G is true if and only if the variable G is true.

A clause ⇠ is a set of literals over - , which is connected by a disjunction of those
literals. A clause is satis�ed by a truth assignment if and only if at least one of the
contained literals is true. And with that the clause evaluates to true.

A collection C = {⇠1, . . . ,⇠<} of clauses is a conjunction of clauses, i.e., ⇠1 ^ ⇠2 ^

. . . ^ ⇠< . It is satis�ed if and only if there exists a truth assignment for - that
satis�es all clauses ⇠9 2 C for all 9 = 1, . . . ,< and therefore, the conjunction of
clauses evaluates to true.

An example for a clause ⇠ is given by (G1 _ G2 _ Ḡ3) . Finally, the SAT problem can
be formulated as follows.

Problem 3.3.24 (SAT). Let =,< 2 N. For a set - := {G1, . . . , G=} of boolean variables
and a collection C := {⇠1, . . . ,⇠<} of clauses over - , is there a satisfying truth
assignment for C, so that it evaluates to true?

We demonstrate the SAT problem by the following example.

Example 3.3.25. Let - = {G1, G2, G3, G4} be a set of Boolean variables, and let (G1 _
Ḡ2), (Ḡ1 _ G3) and (Ḡ2 _ G3) be three clauses. For the collection

C = (G1 _ Ḡ3) ^ (Ḡ1 _ G2) ^ (Ḡ2 _ G3)

the truth assignment C that sets all variables as “true” satis�es the collection.

Another example is given by the collection

C
0 = (G1 _ G2 _ Ḡ3) ^ (G1 _ Ḡ3 _ G4) ^ (Ḡ1 _ Ḡ2 _ Ḡ4).

The truth assignment C0 that sets all variables equal to “false” satis�es the collection.

Finally, we state the theorem of Cook, with now gives a �rst known NP-complete
problem.

Theorem 3.3.26 (Cook’s theorem). SAT is NP-complete.

In this thesis, we do not prove Cook’s theorem and instead refer the interested
reader to the work of Cook himself [Coo71], Garey and Johnsin [GJ79], and Korte
and Vygen [KV06]. A good description of the basic idea of the proof can also be
found in the work of Kleinberg and Tardos [KT13].

74

3.3 Complexity theory

3.3.3.2 Methods for proving NP-completeness

There exists more than one method to prove NP-completeness [GJ79]. In this thesis,
we focus on two widely used methods—reduction and restriction. In a �rst step,
we show how NP-completeness is proven by reductions. More precisely, we prove
NP-completeness by Karp’s reductions. As we mostly use Karp’s reductions in
this thesis, we illustrate the technique of Karp’s reduction by proving that the
CLIQUE problem is NP-complete. In a second step, we describe the technique of
restrictions.

3.3.3.2.1 Reduction. The basic idea of showing NP-hardness by applying Karp’s
reduction and the lemma 3.3.21 is to prove by contradiction that the problem must
be NP-hard. Otherwise, every problem in NP would be solvable in polynomial time
(see theorem 3.3.22). This can be summarized as follows.

Let ⇧ be a problem whose complexity is unknown and for which we want to show
that it is NP-hard. Furthermore, there exists a known NP-complete problem ⇧0. By
applying Karp’s reduction we show that ⇧0 % ⇧ and therefore, ⇧0 is not “harder”
than ⇧. So if we assume that there exists a polynomial-time algorithm which
solves ⇧, then we would also have a polynomial-time algorithm that solves ⇧0
(see lemma 3.3.16). Since there is a polynomial transformation between the two
problems (denoted by %) and ⇧0 is a known NP-complete problem, we can prove
by contradiction that ⇧ must also be a NP-hard problem. By lemma 3.3.20 we know
that it is su�cient to show ⇧0 % ⇧ for any known NP-complete problem ⇧.

Moreover, if we can prove that ⇧ 2 NP, then ⇧ is NP-complete. The strategy
of proving NP-completeness is also shown in the work of Kleinberg and Tardos
[KT13].

To exemplarily prove NP-completeness, we use the already discussed CLIQUE
problem. To show that CLIQUE is NP-complete, we use SAT—the �rst NP-complete
problem proven (see subsection 3.3.3.1).

Theorem 3.3.27. CLIQUE is NP-complete.

Proof. In subsection 3.3.2 we have already shown that CLIQUE 2 NP. Therefore, it
is su�cient if we prove the NP-hardness of CLIQUE. We apply Karp’s reduction
(see de�nition 3.3.13) and lemma 3.3.21.

We assume that there exists a polynomial-time subroutine for CLIQUE. We now
prove that

SAT % CLIQUE .

75

3 De�nitions and Preliminaries

Let a collection C of size < 2 N0 be given, which is an instance of the SAT problem.
Thus, the collection is given by C = {⇠1, . . . ,⇠<} over a set of boolean variables
- = {G1, . . . , G=}. We de�ne by I 98 the literal of the boolean variable G8 , 8 2 [=],
contained in clause ⇠9 . Each clause ⇠9 = {I 91, . . . , I 9C}, with [C] ✓ [=], consists of
literals I 98 connected by a disjunction.

We transform this given input to an instance for the CLIQUE problem by the
following transformation.

For every clause ⇠9 we interpret all C literals as vertices of a graph ⌧ = (+ , ⇢). The
edges {E 98, E 9 080} of the graph are constructed between each pair of vertices E 98 and
E 9 080 of ⌧ except one of the following two conditions is satis�ed.

a) Vertices belonging to the same clause are not connected, {E 98, E 9 080} 8 ⇢ , 9 =
9 0.

b) Two literals are complementary to each other and, therefore, cannot be satis�ed
simultaneously, {E 98, E 9 080} 8 ⇢ , I 9 080 = Ī 98 .

Here, the integer : 2 N0 of the instance of CLIQUE is given by < 2 N0.

The considered transformation is computable in polynomial time. This is because
the transformation of each literal of each clause to a vertex can be performed in
O(C · <) time. Further, the construction of the edges taking into account the two
conditions takes O(<2

) time.

In a last step we show the correctness of the reduction. For this we prove the
following claim.

Claim: Let < 2 N0 and C be a collection of SAT. A graph ⌧ = (+ , ⇢) has a clique
of size at least : = < if and only if C is satis�able.

“(”: Let C be satis�able. Then there exists an assignment C (G1), . . . , C (G=) for
- so that all clauses ⇠9 2 C are satis�ed. As each clause is a disjunction
of its literals, it is su�cient if one of the contained literals {I 91, . . . , I 9C} is
satis�ed. Therefore, we choose one satis�ed literal per clause and denote the
selection with I⇤1, . . . , I

⇤
< . E1, . . . , E< are the corresponding vertices in ⌧ to

the satis�ed literals we selected according to our transformation.

We show that this is a clique of size : = <.

By construction of ⌧, every pair of E1, . . . , E< has a connecting edge. As
only one literal per clause is selected, and if all truth assignments of the
selected literals are ful�lled, no complement can be contained in the selection.
Otherwise, this would be a contradiction to our selection of satis�ed literals
I⇤1, . . . , I

⇤
< .

76

3.3 Complexity theory

“)”: Let ⌧ be a clique of size at least : = <. Furthermore, we assume that
E1, . . . , E@ be a clique of size @ � < in ⌧. With that also E1, . . . , E< form a
clique of ⌧. By transformation there exists no edge, which connects two
vertices within a clause. Therefore, every vertex E 9 of the considered clique
corresponds to a literal I⇤9 from exactly one clause⇠9 . Moreover, we know per
assumption that E1, . . . , E< is a clique. And as there exists no edge between to
complementary literals according to the transformation, the corresponding
literals I⇤9 and I

⇤

9 0 of any pair E 9 and E 9 0 2 {E1, . . . , E<} can be satis�ed
simultaneously.

To show that a collection C of SAT is satis�able, we need a satisfying assign-
ment for - . It is su�cient that the literals I⇤1, . . . , I

⇤
< are satis�ed, and the

remaining Boolean variables are assigned arbitrarily. As per construction
every clause ⇠9 for all 9 = 1, . . . ,< contains a literal I 9 , which is satis�ed.
And with that, also C is satis�ed.

With this, we proven that CLIQUE is NP-hard, and since CLIQUE 2 NP, we have
also shown the NP-completeness of CLIQUE. ⇤

By this reduction method, Karp proven NP-completeness for a lot of problems
[Kar72]. Therefore he reduced the SAT problem to 21 problems by applying his
invented Karp’s reduction—among others the Knapsack problem, the CLIQUE prob-
lem and 0-1 integer problem. For a description of the Knapsack problem we refer
to subsection 3.3.4. A description of the 0-1 integer problem can be found in sec-
tion 3.4.

As we mentioned at the beginning of this subsection there exists a second method
to prove NP-hardness—restriction.

3.3.3.2.2 Restriction. In the case of restriction, it is su�cient to show that a
given problem ⇧ 2 NP contains a problem ⇧0 as a special case, which is a known
NP-complete problem. To show that a problem can be restricted to a known NP-
complete problem ⇧0, we need to specify the restrictions that must be applied to ⇧.
By this given restrictions, the resulting instance must be identical to an instance
of ⇧0. However, it is not necessary that “the restricted problem and the known
NP-complete problem [are] exact duplicates of one another, but rather that there
[is] an obvious one-to-one correspondence between their instances that preserves
yes and no answers” [GJ79, p. 63].

For example, another way to show NP-completeness of SAT is to �nd a known
NP-complete problem that is a restricted special case of SAT.

A famous NP-complete special case of SAT is the 3-SAT problem. The 3-SAT
problem is de�ned similarly to SAT, but each clause consists of exactly three literals.

77

3 De�nitions and Preliminaries

Hence, the restriction applied to SAT is simply a SAT problem where each clause is
restricted to exactly three literals.

The following corollary summarizes the method of restriction, but from a di�erent
perspective.

Corollary 3.3.28. A problem ⇧ 2 NP, which is a generalization of an NP-complete
problem ⇧0, is NP-complete.

Proof. We know that ⇧ 2 NP and with that it can be solved in nondeterministic
polynomial time. Furthermore, we know that for restricted constraints the problem
is NP-complete. We denote the restricted version of the problem by ⇧0.

Let us assume that ⇧ can be solved in polynomial time. We can transform an
instance of ⇧0 into an instance of ⇧ by restricting the constraint accordingly. This
can be done in polynomial time since it is a one-to-one transformation. And with
that, we would have also a polynomial time algorithm to solve ⇧0. However, this is
contrary to⇧0 isNP-complete. Therefore, it is at least as hard as⇧0 to solve, in terms
of Karp’s reduction. And with that, we have shown that ⇧ is NP-complete. ⇤

3.3.4 Further NP-complete problems

In this subsection, we present other NP-complete problems that we will use in the
rest of this thesis. The goal is not to explain these problems in detail, but rather
to present the basic ideas of these problems. Therefore, we will not prove the
NP-completeness of these problems, but refer to appropriate literature.

3.3.4.1 The 3-SAT problem

In subsection 3.3.3 we have already introduced the SAT problem. The SAT problem
searches for a satisfaction of a truth assignment for a collection of clauses. It is
the �rst problem for which NP-completeness was proven by Cook’s theorem (see
theorem 3.3.26). In recent years, it has been studied whether the SAT-problem can
be solved in polynomial time if the literals per clause are constrained. And indeed it
was proven that by restricting the literals per clause to two, the so-called 2-SAT 2 P
[GJ79].

In this subsection, we consider the 3-SAT problem. Similar to the 2-SAT problem,
the literals per clause are restricted, but in this case there exist three literals per
clause. More precisely, for a given set of Boolean variables - := {G1, . . . , G=}, we
de�ne a collection C := {⇠1, . . . ,⇠<} in which each clause ⇠9 is a set of exactly
three literals, i.e., |⇠9 | = 3 for all 9 2 [<]. Then, the 3-SAT problem is as follows.

78

3.3 Complexity theory

Problem 3.3.29 (3-SAT). Let =,< 2 N. For a set - := {G1, . . . , G=} of Boolean
variables and a collection C := {⇠1, . . . ,⇠<} of clauses over - with |⇠9 | = 3 for all
9 2 [<], is there a satisfying truth assignment for C, so that it evaluates to true?

The collection C
0 in example 3.3.25 is a 3-SAT problem.

By reducing the SAT problem to 3-SAT, we can show that it is NP-complete. The
proof is given by Geary and Johnson [GJ79, p. 48]. Therefore, without proof, we
state the following proposition.

Proposition 3.3.30. 3-SAT is NP-complete.

For more information about the 3-SAT problem, we refer the interested reader to
Geary and Johnson [GJ79], and Kleinberg and Tardos [KT13].

3.3.4.2 The independent set problem

In this subsection we introduce the independent set problem or IS problem, which
we use to prove that the EBRS problem is NP-complete (see subsection 4.2.3).

Before formulating the IS problem, we brie�y review the de�nition of independent
set as de�ned in subsection 3.2.1. An independent set is a term from graph theory
and describes a set of vertices * ✓ + in which no two vertices are adjacent. An
independent set is maximal, if no further vertex can be added to*. If furthermore,
|* | is maximal, the independent set is maximum.

The decision problem is formulated as follows, based on the work by Kleinberg and
Tardos [KT13].

Problem 3.3.31. Given an undirected graph ⌧ and an integer : , does ⌧ contain an
independent set of size at least :?

The IS problem is NP-complete, too. Kleinberg and Tardos give a prove by reducing
3-SAT to the IS problem, i.e., 3-SAT % IS [KT13, p. 460].

Proposition 3.3.32. IS is NP-complete.

We �nd more informations about the IS problem in the work of Geary and Johnson
[GJ79], Kleinberg and Tardos [KT13] and Dasgupta and colleagues [DPV06].

79

3 De�nitions and Preliminaries

3.3.4.3 The perfect matching problem

We introduced the perfect matching in subsection 3.2.1. Given a graph⌧ = (+ , ⇢), it
is a set" ⇢ ⇢ of edges that covers all vertices E 2 + . Finding a perfect matching in a
graph is an NP-complete problem called perfect matching problem or PM problem.

The perfect matching problem is given as follows.

Problem 3.3.33 (PMP). Given an undirected graph⌧ = (+ , ⇢) and an integer : 2 N0,
does there exists a subset " ✓ ⇢ with cardinality of " is at least : , such that " is
a perfect matching?

As already mentioned the PM problem is NP-complete.

Proposition 3.3.34. PM is NP-complete.

As in previous subsections, we will not prove the proposition, but refer to the
work of Plaisted and Zaks [PZ80]. They show that the perfect matching problem
restricted to bipartite graphs is NP-complete by reducing 3-SAT to it. Here, the set
of vertices of a bipartite graph can be partitioned into two sets of vertices* ⇢ +
and*0 ⇢ + such that* *0 = ; and both sets are independent, i.e., vertices in the
same partition must not be adjacent [Die17]. Moreover, each edge has its end in
di�erent classes and, thus, for each edge 4 2 ⇢ one vertex of the edge is in* and
the other is in*0. Figure 3.10 shows such a bipartite graph.

* *0

Figure 3.10: Example of a bipartite graph.

Since the restricted PM problem is NP-complete, also the generalization of PM is
NP-complete.

3.3.4.4 The Knapsack problem

A very well studied problem is the Knapsack problem or KP problem. Brie�y, the
objective of the problem is to pack a Knapsack with items 8 = 1, . . . , = of value
?8 without exceeding a Knapsack capacity 2. It is a maximization problem and,
therefore, the higher the total value of the packed items, the better.

80

3.3 Complexity theory

Of course, in practical applications the problem is not restricted to packing a Knap-
sack. Kellerer and colleagues introduce the Knapsack problem as a general binary
decision problem [KPP04], i.e., there exists a binary variable G8 for 8 2 [=] with
G8 = 1 denotes the choice of a �rst alternative, and G8 = 0 the choice of a second
alternative. Each decision is accompanied by a value ?8 for all items. Yet, if we
choose the �rst alternative, i.e., G8 = 1, we also have to take into account a weight or
resource F8 . If we choose the second alternative instead, we do not have to consider
any weight. Thus, we have to check the feasibility of each particular selection of
alternatives. The feasibility is expressed by the capacity 2 and can be calculated
as “a linear combination of coe�cients for binary decision” [KPP04]. We write the
feasibility check as

=’
8=1

F8G8  2.

For example, real-world decision making processes that can be formulated as a
Knapsack problem are the selection of investments and portfolios, or the least
wasteful way to cut raw materials.

In this thesis we always refer to the 0-1 Knapsack problem when talking about the
Knapsack problem. i.e., we consider the binary variable

G8 =

(
1, if item 8 is packed,
0, otherwise.

We already mentioned that the feasiblity check of the Knapsack problem is a linear
comination. In total, the optimization version of the Knapsack problem is given
by:

Program 3.3.35 (KP program).

max
=’
8=1

?8G8

s.t.
=’
8=1

F8G8  2

G8 2 {0, 1} 8 2 [=] .

We assume w.l.o.g. that ?8,F8 , and 2 are positive integers. Furthermore, we assume
that

=’
8=1

F8 > 2 and F8 � 2 88 2 [=] .

81

3 De�nitions and Preliminaries

Otherwise, we could solve the problem trivially. For if
Õ=
8=1 F8G8  2, we solve

the KP problem by setting G8 = 1 for all 8 2 [=]. And if F8 > 2, we simply set the
corresponding binary variable equal to zero, i.e., G8 = 0, 8 2 [=]. The cases where ?8 ,
F8 , or 2 are no positive integers are discussed by Martello and Toth [MT07].

Finally, the decision version of the Knapsack problem is formulated as follows.

Problem 3.3.36. Given an integer : 2 N0, can the value of the packed items sum up
to a value of at least : without exceeding the Knapsack capacity?

We show by the following proposition that the KP problem is NP-complete [DPV06,
KPP04, MT07].

Proposition 3.3.37. KP is NP-complete.

For the proof we refer to Karp [Kar72].

3.3.4.5 The Subset-Sum problem

A special case of the Knapsack problem is the SUBSET-SUM problem. In itself, it is
very similar to the KP problem, but instead of value ?8 , we are also observing the
weights F8 in the maximization, i.e., ?8 = F8 for all 8 2 [=], or in other words, when
pro�t and weight are strongly correlated. It is formulated as follows.

Program 3.3.38.

max
=’
8=1

F8G8

s.t.
=’
8=1

F8G8  2

G8 2 {0, 1} 8 2 [=]

Similar to the KP problem we assume w.l.o.g. that F8 and 2 are positive integers
and

=’
8=1

F8 > 2 and F8 < 2 88 2 [=] .

In practical applications the SUBSET-SUM is applied in situations when a quanti-
tative target should be reached under the constraint that upward deviations are
avoided and downward deviations are minimized [MT07]. Therefore, we reformu-
late the SUBSET-SUM problem by considering a set of positive integers (and an

82

3.3 Complexity theory

integer target C > 0. The problem is then given by �nding a subset (0 ⇢ (for which
the contained positive integers sum up to exactly C.

We therefore de�ne the problem as follows [CLRS09].

Problem 3.3.39 (SUBSET-SUM). Given an instance ((, C). Does there exists a subset
(0 ✓ (such that

Õ
B2(0 B = C?

The reformulation can be justi�ed by the fact that we interpret the product of a
binary variable G8 with its weight F8 for all 8 2 [=] as a positive number, and all
positive numbers yield the set (. The set of all accepted items 8, i.e., all items with
G8 = 1, is de�ned as the set (0. Illustratively, we can consider the set (0 as our
Knapsack. Since the KP problem is a maximization problem with an upper bound,
we would pack as much items into the Knapsack, such that it is as close to the
Knapsack capacity 2 as possible. For the SUBSET-SUM problem we restrict the set
of feasible solutions of the KP problem to those which �t the upper bound exactly,
i.e.,

Õ
B2(0 B = C.

To explain the SUBSET-SUM problem more clearly, we give the following exam-
ple.

Example 3.3.40. Let (= {3, 4, 10, 12, 14, 28, 30, 37, 45} and C = 50. Then, (0 =
{3, 10, 37}.

Both versions of the SUBSET-SUM problem are NP-complete. For the proof of the
following proposition, we refer to Cormen and colleagues [CLRS09], who prove
NP-completeness based on the second version of the SUBSET-SUM problem as
described in problem 3.3.39. Since this is a restriction of the �rst, one has shown
NP-completeness for both problems.

Proposition 3.3.41. SUBSET-SUM is NP-complete.

More details on the SUBSET-SUM problem can be found in the work of Corman
and colleagues [CLRS09], and Martello and Toth [MT07].

3.3.4.6 Generalizations of the Knapsack problem

In this subsection we present two generalizations of the already discussed KP
problem. One is the Precedence-constrained Knapsack problem or PCKP problem and
the other is the Knapsack problem with con�ict graph or KCG problem.

We start with the PCKP problem and follow You and Yamada [YY07], as well as
Samphaiboon and Yamada [SY00] for the description. In the PCKP problem the

83

3 De�nitions and Preliminaries

Knapsack problem is generalized by partially ordered items through a set of prece-
dence relations. This can be illustrated by the requirement that we cannot pack an
item until all preceding items have been included in the Knapsack.

In short, the PCKP problem is motivated graph theoretically by expressing the
dependencies in terms of edges connecting two vertices. In more detail this can be
described as follows.

Let ⌧ = (+ , ⇢) be an undirected graph with vertex set + = {1, . . . , =} and edge set
⇢ ✓ + ⇥ + , where = := |+ | and < := |⇢ |. We interpret the vertex set as the set of
items that can be packed into a Knapsack until a capacity 2 is reached. Similar to
the Knapsack problem, each item has a value ?8 and a weight F8 , 8 2 + . And, w.l.o.g.
we assume that 2, ?8 , and F8 are positive integers for all 8 2 [=].

As we mentioned the edge set ⇢ represents the dependencies between the items or
the precedence relation [YY07], respectively. Therefore, we de�ne the set as

⇢ = {(8, 9) 2 ⇢ : item 9 can be accepted only if item 8 is already packed}
= {(8, 9) 2 ⇢ : item 8 precedes item 9}. (3.4)

To guarantee well-de�ned precedence relations, we suppose that there exists no
cyclic graph ⌧ (see section 3.2). Furthermore, we assume that

F8  2 88 2 + and
=’
8=1

F8 � 2

to exclude trivial solutions (see also the KP problem).

Finally, the PCKP problem is given by:

Program 3.3.42 (PCKP).

max
=’
8=1

?8G8

s. t.
=’
8=1

F8G8  2

G8 � G 9 8(8, 9) 2 ⇢

G8 2 {0, 1} 88 2 +

with

G8 =

(
1, if item 8 is accepted or packed, respectively,
0, otherwise,

for all 8 2 [=].

By the next problem we give the decision version of the PCKP problem.

84

3.3 Complexity theory

Problem 3.3.43. Given an integer : 2 #0, can the value of the packed item sum
up to a value of at least : , without exceeding the Knapsack capacity and under
consideration of the precedence relations between the items?

As the PCKP problem is a generalization of theKP problem, it isNP-hard. Otherwise,
we would also have a polynomial time solver for the Knapsack problem. Rather, it
can be shown that PCKP is NP-complete.

Proposition 3.3.44. PCKP is NP-complete.

A proof of this proposition is given by Garey and Johnson [GJ79].

As the name suggests, the KCG problem is also illustrated and explained in graph
theoretic terms. In the KCG problem, we consider a packing problem with items
that may not be packed together in a Knapsack.

Similar to the PCKP problem we consider the items as vertices (which are uniquely
assigned). The con�icts between the items are represented by the edges of the
corresponding undirected graph ⌧ = (+ , ⇢), i.e., the edge 4 9 = {8, 80} 2 ⇢ with
8, 80 2 + indicates that items 8 and 80 cannot be packed together. The graph is de�ned
as above. Furthermore, each item has a pro�t ?8 and a weight F8 for all 8 2 [=].

Finally, the KCG problem can be formulated as follows.

Program 3.3.45.

max
=’
8=1

?8G8

s. t.
=’
8=1

F8G8  2

G8 + G80  1 8(8, 80) 2 ⇢

G8 2 {0, 1} 8 2 [=]

Similarly to the PCKP problem, the decision version of the KCG problem can be
formulated. Instead of taking into account the precedence relation between the
items we must consider the con�icts between the items. Therefore, the decision
version is as follows.

Problem 3.3.46. Given an integer : 2 #0, can the value of the packed item sum
up to a value of at least : without exceeding the Knapsack capacity, and under
consideration of the con�icts between the items?

In addition, KCG is a generalization of the KP problem and, therefore, it is NP-hard.
Furthermore, we state the NP-completeness by the following proposition.

85

3 De�nitions and Preliminaries

Proposition 3.3.47. KCG is NP-complete.

For more information about the KCG problem we refer to the work of Pferschy and
Schauer [PS16], and Yamada and colleagues [YKW02].

3.4 Integer linear programs

In the last subsections, we have focused on the decision version of problems. The
standardized decision problems whose solution requires a “yes” or “no” answer
(see de�nition 3.3.6), allowed us to determine their complexity according to their
running time. In this section, we change the perspective on the problems considered
in, for example, subsection 3.3.4. Instead of the decision version, we now consider
their optimization version, i.e., we search for an e�cient algorithm to solve the
problem deterministically and obtain a speci�c solution G⇤ 2 Z= of the problem. In
this thesis, we consider a special form of optimization problems—the integer linear
optimization problems or integer linear programming (ILP). In our case, they are even
restricted to a binary solution, i.e., G⇤ 2 {0, 1}=.

Since the focus of this thesis is rather on the complexity-theoretic investigation, we
only give a short overview and de�nition of ILPs and refer the interested reader to
the work of Schrijver [Sch98], Dantzig and Thapa [DT97], Korte and Vygen [KV06],
or Gritzmann [Gri13]. The descriptions in this section are based on those geiven by
Korte and Vygen [KV06].

In a �rst step, we de�ne linear problems and introduce ILPs based on the following
de�nition.

De�nition 3.4.1. Let <, = 2 N. For an instance of the lineare problem—the so-
called linear program (LP)—the task is to �nd a column vector G 2 R= such that 2)G
is maximum under the constraint �G  1. The instance of such a problem is given
by a matrix of constraints � 2 R<⇥=, column vectors 1 2 R< , and a row vector
2 2 R=.

A vector G 2 R= is called feasible solution, if it satis�es the constraint �G  1. The
set of all feasible solutions of the LP is given by

% := {G : �G  1, G 2 R=}.

If no (bounded) set of feasible solutions can be found, either % = ; holds for the
LP, or there exists a G 2 R= with �G  1 and 2)G > U for all U 2 R. The problem is
infeasible in case of % = ; and unbounded for the latter case. If a feasible solution is
maximal it is called optimum solution.

86

3.4 Integer linear programs

Remark 3.4.2. We write the linear program as

max{2)G : �G  1}.

In this thesis, we focus exclusively on maximization problems. At this point, how-
ever, we want to brie�y mention that a maximization problem can easily be trans-
formed into a minimization problem by multiplying it by -1. This leads to the
following remark.

Remark 3.4.3. By de�ning the maximization problem we also de�ned the minimiza-
tion problem as

max
G2%

2)G = �min
G2%

(�2)) G.

Linear programs can be solved in polynomial time. This was shown in 1979 by
Leonid Khachiyan who discovered the so-called ellipsoid algorithm which runs in
polynomial time and solves linear programs [Kha80, KV06, GLS93]. Grötschel and
colleagues stated that Khachiyan’s result caused “great excitement in the world
of mathematical programming” [GLS93, p. 64], which is understandable since it
shows that LPs are in the complexity class P. Speci�cally, Khachiyan formulated
the following theorem.

Theorem 3.4.4 (Khachiyan, 1979). There exists a polynomial-time algorithm for
LPs (with rational input), and this algorithm �nds an optimum solution if there exists
one.

We will not discuss the ellipsoid algorithm and the proof of this theorem in this
thesis and instead refer the interested reader to the works of Korte and Vygen
[KV06], Grötschel and colleagues [GLS93], and Khachiyan [Kha80].

In the second part of this section, we now want to de�ne integer linear programs.
In subsection 3.3.4 we have already discussed ILPs, such as the Independent Set
or Knapsack Problem. However, we have not yet identi�ed them as ILPs. For the
de�nition of ILPs, we follow Gritzmann [Gri13].

De�nition 3.4.5 (ILP). Let a linear program max{2)G : �G  1} as de�ned in
de�nition 3.4.1 be given. If G 2 Z=, then the program is an integer linear programm
(ILP). An ILP with G 2 {0, 1}= is called a 0-1 integer linear problem (0-1-ILP).

Remark 3.4.6. In preparation for the EBRS problem discussed later, both the matrix
� and the vector 1 are integer, i.e., � 2 Z=⇥= and 1 2 Z< . Therefore, an ILP or a
0-1-ILP with integer � and 1 is de�ned in the remainder of this thesis.

87

3 De�nitions and Preliminaries

Similar as for the LP, we de�ne the set of feasible solutions of an ILP by

%� := {G : �G  1, G 2 Z=} .

Unlike LPs, ILPs are now, in general, no longer solvable in polynomial time. That
is, by the restriction of G 2 Z=, no solution can be found in polynomial time. Even
more, an ILP is NP-complete.

Theorem 3.4.7. An ILP is (in general) NP-complete.

A proof of the theorem is given by Karp [Kar72]. A 0-1 integer linear program is
still NP-complete, which we prove by the following lemma.

Lemma 3.4.8. 0-1-ILP is NP-complete.

Proof. We prove this lemma by showing that the 3-SAT problem de�ned in prob-
lem 3.3.29 can be reduced to 0-1-ILP in the sense of Karp. To show that the ILP
is NP-complete, we prove that it is contained in the complexity class NP and that
3-SAT % 0-1-ILP.

a) “0-1-ILP 2 NP”:
Let I = (<, =, �, 1, 2) be an instance of 0-1-ILP, for which a certi�cate C—
a vector G 2 {0, 1}=—is given. Furthermore, let the instance concatenated
with the certi�cate C be a solution to the checking problem 0-1-ILP0 so that
(I?C, 1) 2 0-1- ILP. In other words, the certi�cate C is a vector G 2 {0, 1}= such
that �G  1 is satis�ed and 2)G is maximal under this condition. The veri�cation
of the solution (I? C, 1) can be done in polynomial time. �G can be computed
in O(=<) and the satisfaction of the constraint �G  1 can be checked in O(<)
by element-wise comparison. Thus, 0-1-ILP can be veri�ed in polynomial time
and hence 0-1-ILP 2 NP.

b) “3-SAT % 0-1-ILP”:
This statement is proven similarly as in the work by Karp [Kar72]. Let C :=
{⇠1, . . . ,⇠<} be a collection of clauses with |⇠9 | = 3 for all 9 2 [<] over a set
- := {G1, . . . , G=} of Boolean variables. A collection C is transformed into an
instance of 0-1-ILP by the following transformation rules.

In a �rst step each true variable (G8 = true) is transformed to I8 = 1 and each false
variable (G8 = false) is transformed to I8 = 0 for all 8 2 [=]. This transformation
can be done in O(=). We construct the matrix � by de�ning each entry 0 98 of
the matrix by

0 98 :=

8>>><
>>>:

�1 if I8 2 ⇠9 ,
1 if Ī8 2 ⇠9 ,
0 otherwise,

88

3.4 Integer linear programs

with 8 2 [=] and 9 2 [<]. Therefore, � 2 {�1, 0, 1}=⇥< .

For each clause ⇠9 we de�ne the constraint 1 9 as follows.

1 9 :=
=’
8=1

max(0, 0 98) � 1 (3.5)

Thus 1 9 can be described as the sum of all negated literals in ⇠9 minus one. This
transformation runs in O(=<) and is therefore a polynomial time transformation.

To show that the transformation is correct we prove the following claim.

Claim: There exists a vector I 2 {0, 1}= that satis�es the constraint �I  1 if
and only if there exists a truth assignment of the collection C.

We denote by (�I) 9 , 9 2 [<], the 9 ’th row of �I.

To prove the claim, we consider the inequality �I  1 row by row and discuss
it in comparison with a truth assignment of a collection C.

In this proof we consider the 3-SAT problem, i.e., there exists exact three literals
per clause. To assign “yes” to a clause at least one literal must be true.

By our transformation rules discussed above we de�ned 1 9 for all rows 9 2 [<]
as the sum of all negated literals in ⇠9 minus one. Moreover, if there exists
a negated literal Ī8 in a clause ⇠9 , then we denote it with 1 according to the
transformation rule. Non-negated literals are not counted.

The -1 in the de�nition of 1 9 determines that at least one literal must be true
(I8 = 1) or false (I8 = 0) for the inequality (�I) 9  1 9 to be satis�ed. Whether
the literal must be true or false depends on the number of negated literals in a
clause.

Then, it holds for all 9 2 [<]

(�I) 9  1 9 , at least one literal is satis�ed per clause.

And if at least one literal is satis�ed per clause, then by de�nition clause ⇠9 is
also satis�ed. And since all clauses ⇠9 , 9 2 [<], are satis�ed, the collection C is
also satis�ed. Therefore,

�I  1 , G is an assignment satisfying C.

⇤

To illustrate the transformation rule in the proof, in particular the de�nition of 1 9 ,
9 2 [<], (see formula (3.5)), we give the following example.

89

3 De�nitions and Preliminaries

Example 3.4.9. Let a collection of clauses C = {⇠1, . . . ,⇠4} over a set of Boolean
variables - := {G1, . . . , G5} be given. We are searching for a truth assignment for

(G1 _ G2 _ G4) ^ (G1 _ Ḡ2 _ Ḡ3) ^ (Ḡ2 _ Ḡ3 _ Ḡ5) ^ (Ḡ2 _ G4 _ G5).

We transform the given instance into an instance of a 0-1-ILPwith constraint �I  1
by transformation rules de�ned in the proof of theorem 3.4.7 as follows.

©≠≠≠
´

�1 �1 0 �1 0
�1 1 1 0 0
0 1 1 0 1
0 1 0 �1 �1

™ÆÆÆ
¨
·

©≠≠≠≠≠
´

I1
I2
I3
I4
I5

™ÆÆÆÆÆ
¨


©≠≠≠
´

�1
1
2
0

™ÆÆÆ
¨

G1 = true, G2 = true, G3 = false, G4 = true, and G5 = false is a solution to C. Applying
the transformation rules, we obtain I1 = 1, I2 = 1, I3 = 0, I4 = 1, and I5 = 0, which
is a solution of the corresponding 0-1-ILP.

As mentioned, we will give now a brief and exemplary overview of the functionality
of the de�nition of 1.

For this purpose, we consider the clause ⇠1 and the corresponding linear inequality
�I1 � I2 � I4  �1. For 11 = �1 to be satis�ed, I1, I2, or I4 must be equal to 1
because I8 2 {0, 1} for all 8 2 [=], and, thus, one of the Boolean variables G1, G2, or
G4 must also be true. Thus, both ⇠1 and the associated inequality are satis�ed.

Similarly, we can argue for clause ⇠3 = (Ḡ2 _ Ḡ3 _ Ḡ5). It is satis�ed if at least one
G8 2 ⇠3 is false, which is also re�ected in the corresponding inequality, which is
satis�ed if one I8 = 0, 8 2 {2, 3, 5}.

We leave the consideration of the remaining two clauses to the reader at this point.
In general, it can be said that by the de�nition of 1 the clauses are ful�lled, if and
only if the associated inequalities are ful�lled.

3.5 LP relaxation

As proven in the previous chapter ILPs are in general NP-complete, and hence there
exists, in general, no e�cient algorithm that solves a problem of this type under
the assumption P < NP. In this subsection, we brie�y introduce a way to solve an
ILP approximately using the knowledge that an LP can be solved in polynomial
time. For a more detailed introduction to the so-called LP relaxations we refer the
interested reader to the works of Cormen and colleagues [CLRS09], and Matousek
and Gärtner [MG07].

As the name LP relaxation implies, we simplify an ILP by neglecting the integrality
constraint and solving an LP instead. This method gives us more information that

90

3.5 LP relaxation

we can use to approximate a solution for the ILP. In case of 0-1-ILP the approach is
similar. We remove the G8 2 {0, 1} constraint and replace it with 0  G8  1. We,
thus, transform the integer constraints into linear constraints for all 8 2 [=] and
convert a NP-hard problem into a related problem that is solvable in polynomial
time by this relaxation technique.

More formally, the LP relaxation of an ILP

max
�
2)G : G 2 Z= ^ �G  1

is given by the program

max
�
2)G : G 2 R= ^ �G  1

.

Here, an instance of the program is given by a constraint matrix � 2 Z<⇥=, vectors
1 2 Z< , and 2 2 Z=, as well as constants <, = 2 N.

Figure 3.11 illustrates the concept of an LP relaxation for a 0-1-ILP.

G1

G2

G3

!% Optimum

Figure 3.11: Example of an LP relaxation for a 0-1-ILP.

The 0-1-ILP is represented by the red dots in the �gure. The LP relaxation searches
for an optimal solution within the cube de�ned by the constraints 0  G8  1 for all
8 2 [=]—represented by the blue lines. In the example given, an optimal solution
of the LP relaxation is found at the point G⇤ = (1, 0,75, 0,5). It is not an integer
solution, but it gives some indication of a good integer solution (except G⇤3).

LP relaxations will also be important for the next section. There we consider 0-1-
ILPs with totally unimodular matrices �. The peculiarity of problems with totally
unimodular matrices is that an optimal solution of the LP relaxation is integer and
therefore also an optimal solution of the original ILP.

91

3 De�nitions and Preliminaries

3.6 Total unimodularity

In subsection 3.4 we discussed and proved that integer linear programs (ILPs) are in
general not solvable in polynomial time. But as mentioned in subsection 3.5, in the
case of a totally unimodular constraint matrix � 2 Z<⇥=, an ILP can be considered
equivalent to its LP relaxation. More precisely, in case of a totally unimodular
matrix � 2 Z=⇥< and an integer 1 2 Z< an ILP can be solved in polynomial time.
This statement is based on a theorem of Ho�man and Kruskal (see theorem 3.6.14).
They showed that an ILP over a totally unimodular constraint matrix � 2 Z<⇥=
guarantees an integer solution, if 1 2 Z< .

Brie�y and simplistically, an LP relaxation can be de�ned as the omission of the
integrality condition G 2 Z= (or G 2 {0, 1}=). For more details on LP relaxation we
refer to subsection 3.5 above.

In subsection 4.3.1.1 we will show for a special case of the EBRS problem that its
constraint matrix is totally unimodular. And by Ho�man and Kruskal’s theorem, we
thus know that this special case of the EBRS problem can be solved in polynomial
time.

In this section we de�ne total unimodularity and discuss methods to prove that a
matrix is totally unimodular. To de�ne total unimodularity, we explain in a �rst
step (integer) polyhedra as well as convex hulls. At the end of this section we will
prove the theorem of Ho�man and Kruskal. In this chapter we mainly follow the
explanations of Korte and Vygen [KV06].

We start with the de�nition of a polyhedron, a special geometric structure of the
set of feasible solutions % = {G : �G  1, G 2 R=} of an LP.

De�nition 3.6.1. Let % ⇢ R=. % is called polyhedron if and only if there exists

=,< 2 N0 ^ � 2 R
<⇥=
^ 1 2 R<

with

% = {G : �G  1, G 2 R=}. (3.6)

% is called polytop if and only if % is a polyhedron and % is bounded.

From the de�nition of the polyhedron in formula (3.6) we can see that �nitely many
inequalities—the constraints—are de�ned by �G  1. A set of feasible solutions
for max{2)G : G 2 R= ^ �G  1} can therefore be interpreted as the intersection
of �nitely many halfspaces [KV06]. We illustrate the de�nition in �gure 3.12. On
the left, we can see an example for a polyhedron, whereas on the right a polytop is
mapped.

92

3.6 Total unimodularity

(a) Example of a polyhedron. (b) Example of a polytop.

Figure 3.12: Example of a polyhedron (a) and a polytop (b).

Looking at �gure 3.12, we see that a unique optimal solution to the LP problem
max{2)G : �G  1} is given if G is a vertex of the corresponding polyhedron or
polytope %—depending on the optimization direction. In this example, it is given
by the red dots.

We can also �nd the solution of an LP of the form max{2)G : �G  1} using a
di�erent approach. This di�erent approach may help us better understand the
concept of totally unimodular matrices and the resulting possibility of neglecting
the integrality constraint when solving an ILP. We will discuss this approach rather
informal and refer for more details to the work of Schrijver [Sch03]. For this di�erent
approach, we �rst informally de�ne hyperplanes. In Euclidean space of dimension
=, a hyperplane can be described as a subspace of dimension = � 1. For example, a
hyperplane of a 3-dimensional Euclidean space is a 2-dimensional plane. We can
describe a hyperplane with a linear equation of the form 2)G = _ with _ 2 R and
non-trivial vector 2 2 R=. That is,

� :=
�
G : 2)G = _

.

In general, the goal of an LP is to maximize the linear program 2)G under consid-
eration of the constraints, which are given by the polyhedron %. For this other
approach, we consider the linear program 2)G as a hyperplane.

In descriptive terms, we can think of �nding a solution to the ILP by shifting the
hyperplane until the constraints are satis�ed and at the same time 2)G has taken a
value as high as possible. This is the case when we �nd an intersection between
hyperplane and polyhedron.

The following example, shown in �gure 3.13, will serve to better understand this
approach.

Example 3.6.2. Let _ 2 R be a constant. Informally, let us think of a hyperplane
� which is moved until it touches the polyhedron % of feasible solutions at a
vertex G⇤. And suppose further that the vertex satis�es 2)G⇤  _. Then we know

93

3 De�nitions and Preliminaries

that the hyperplane � intersects with the polyhedron % at vertex G⇤ and it holds
% \ � = {G⇤}. If G⇤ maximizes 2)G⇤, then this would be a unique optimal solution.
These considerations are represented in �gure 3.13.

G ⇤ = % \ �

�

% ⇢ R2

%

Figure 3.13: Example for a solution G⇤ found by an intersection between hyperplane
and polyhedron.

Depending on the constant _ 2 R, a unique vertex cannot always be found. If the
hyperplane is shifted according to the optimization direction and it “touches” the
polytope not at a single vertex but at an edge of the polytope, then the intersection
% \ � contains in�nitely many G. In such situations, there are in�nitely many
solutions to the problem.

The following lemma summarizes the observations just outlined. We refer for the
proof to the work of Schrijver [Sch03].

Lemma 3.6.3. Let % ⇢ R= be a polyhedron and let G 2 % be a vertex of the polyhedron.
Then the following properties of the vertex are equivalent.

a) There exists a hyperplane � = {G : 2)G = _} such that 2)G  _ for all G 2 % and
% \ � = {G}.

b) There are = constraints 0)8 G  1 9 valid for %, which are tight at E, i.e., 0)8 E = 1 9
for 8 = 1, . . . , =, and 01, . . . , 0= are linear independent.

We then know that the hyperplane � a�ects the polyhedron % at vertex G⇤ and
% \ � = {G⇤}. Instead, we refer the interested reader to the works of Matousek
Gärtner [MG07], Kleinberg and Tardos [KT13], Korte and Vygen [KV06], Gritzmann
[Gri13], and Dasgupta and colleagues [DPV06], who all give a good introduction to
this topic.

As we have now seen, a solution of an LP can be described as a boundary point
between a hyperplane and a polyhedron. If it were now true for the polyhedron
that it has a so-called integer hull, i.e., that an edge or vertex is integer, then G⇤ with

94

3.6 Total unimodularity

% \ � = {G⇤} would automatically be integer. So we could neglect the integrality
constraint of an ILP. This is exactly the advantage of totally unimodular constraint
matrices of an ILP. We explain this concept in more detail in the following.

A feasible solution of an ILP or a 0-1-ILP would be an integer vector G 2 Z= or
G 2 {0, 1}, respectively. With that the set of feasible solutions would be given by

%� = {G : �G  1, G 2 Z=} or %� = {G : �G  1, G 2 {0, 1}=}.

To connect with LP relaxation of max{2) : G 2 Z= ^ �G  1} with � 2 Z<⇥=,
1 2 Z< and 2 2 Z=, we de�ne the set of feasible solutions of an ILP as an integer
hull of a polyhedron %.

De�nition 3.6.4. Let % ⇢ R=. A convex hull conv(%) of % is given by

conv(%) :=
Ÿ

{⇠ : % ⇢ ⇠ ⇢ R= ^ ⇠ is convex}.

A convex hull

%� := {G : �G  1}� = conv(Z= \ %)

of integer vectors � 2 Z=⇥< , 1 2 Z< , and G 2 Z= of the polyhedron % is called
integer hull.

The following �gure 3.14 shows the relation of a bounded polyhedron and its convex
hull, and is adopted from the work of Korte and Vygen [KV06].

�

%�

%

(a) Example of a polyhedron di�erent
from the integer hull.

�

%�

%

(b) Example of an integer polyhedron.

Figure 3.14: Example of relation of a bounded polyhedron and its convex hull.

In sub�gure 3.14a the polyhedron % and its integer hull %� are di�erent from
each other. And, thus, the boundary point of the hyperplane with % and of the

95

3 De�nitions and Preliminaries

hyperplane with %� are not the same (% \ � < %� \ �). But as we can see in
sub�gure 3.14b, if the polyhedron is integer, that is, the polyhedron is equal the
convex hull, % = %� , then the boundary point of % and %� with the hyperplane is
the same, i e. % \ � = %� \ � = {G⇤}.

As we focus in this thesis on the EBRS problem and its complexity theoretical study,
we do not discuss the relation of % and %� in detail, but refer the interested reader
to the work of Korte and Vygen [KV06], Schrijver [Sch03], or Gritzmann [Gri13].

We determine when a polyhedron is integer by the following de�nition, which is
adapted from Korte and Vygen [KV06].

De�nition 3.6.5. A polyhedron % is integer, if % = %� .

As we have already discussed, if % = %� holds, each vertex of the polyhedron % is
an integer vector and therefore the solution of an LP problem {2)G : �G  1} is
integer if 2 2 Z=. This was �rst proven by a theorem of Ho�man [Hof74], as well
as Edmonds and Giles [EG77].

We want to use this property of integer polyhedra and see in subsection 4.3.1.1
that there is a special case of the EBRS problem for which % = %� , where % is the
polyhedron of the LP relaxation of the EBRS problem. Therefore, we use a theorem
of Ho�man and Kruskal (see theorem 3.6.14) which states that in case of integer
1 the solution of the polyhedron {G : �G  1, G � 0} is integral if and only if the
constraint matrix � 2 Z=⇥< is total unimodularity.

In the next part of this section, we de�ne totally unimodular matrices and describe
methods for proving total unimodularity. A matrix � is total unimodular if it
satis�es the following de�nition.

De�nition 3.6.6. A matrix � is totally unimodular (TU) if for each quadratic
submatrix* ✓ � the determinant det(*) 2 {�1, 0, 1}.

Showing that a matrix is totally unimodular by checking for each submatrix* ✓ �
whether its determinant is equal to �1, 0, or 1 is quite computationally intensive.
Therefore, we introduce theorems, lemmas, and remarks with which the proof
of total unimodularity is easier. They give an overview of the conditions under
which the property of total unimodularity is preserved and how we can show
that matrix � 2 Z<⇥= is totally unimodular. Moreover, they support the proof of
theorem 3.6.14.

The following remark results from the calculation rules for determinants [MPS14,
Rad66].

Remark 3.6.7. Let � 2 {�1, 0, 1}<⇥= be TU. Then every matrix �̂ arising out of the
the following transformations of � remains TU.

96

3.6 Total unimodularity

a) Deleting or adding a row or column.

b) Multiplying a row or column with �1.

c) Permuting the rows and columns.

The following matrices remain TU under the following transformations.

Lemma 3.6.8. Let � 2 Z<⇥=. With �̂ one of the following matrices is denoted

�) ,��, (�, ⇢<),

✓
�
��

◆
,

✓
�
⇢=

◆
.

Then � is TU if and only if �̂ is TU.

We de�ne ⇢< and ⇢= as unit matrices of rank(⇢<) = < and rank(⇢=) = =, respec-
tively.

Proof. a) �̂ = �) :
This results from the calculation rules for determinants. If for each quadratic
submatrix * ✓ � it holds det(*) 2 {�1, 0, 1} than also for each quadratic
submatrix*) ✓ �) , as det(*) = det(*)). And therefore, det(�) = det(�)).

b) �̂ = ��:
This results also directly from the calculations rules for determinants.

c) �̂ = (�, ⇢<)
From the calculation rules for determinants we know further that each permuta-
tion of two rows or columns of a matrix multiplies the determinant with �1. So
by only changing the sign of any quadratic submatrix of ⇠ ✓ (�, ⇢<) we can
permute the rows of ⇠ such that it takes the form

⇠ =
✓
⌫ 0
⇡ ⇢:

◆

with :  < and ⌫ is any quadratic submatrix of �. And with that det(⇠) =
det(⌫).

d) �̂ =
�
�
��

�
:

By the calculation rules of determinants we know that by multiplying any row
(or column) with �1 also the determinant is multiplied with �1. And furthermore
we know, that duplicating rows (or columns) results in a determinant equal to
zero. And by applying both rules it is already shown that

�
�
��

�
is TU.

e) �̂ =
� �
⇢=

�
:

In this case, we can compute any square matrix ⇠ ✓
� �
⇢=

�
by developing the

determinant according to the rows of the unit matrix and get det(⇠) 2 {�1, 0, 1}.

⇤

97

3 De�nitions and Preliminaries

The following theorem proven by Heller and Tompkins [HT57] gives a su�cient
condition to show that a matrix is totally unimodular. We refer for the proof also to
the work of Heller and Tompkins [HT57].

Lemma 3.6.9. Let � be an < ⇥ = matrix whose rows can be partitioned into two
disjoint sets �1 and �2. Then the following four conditions together are su�cient for �
to be TU.

a) � 2 {�1, 0, 1}<⇥=.

b) Every column of � contains at most two non-zero entries.

c) If two non-zero entries in a column of � have the same sign, then the rows of one is
in �1, and the other in �2.

d) If two non-zero entries in a column of � have opposite signs, then the rows of both
are in �1, or both in �2.

We conclude from this lemma the following remark.

Remark 3.6.10. If � 2 Z<⇥= is TU, then � 2 {�1, 0, 1}<⇥=.

The following theorem gives a very useful criterion with which the total unimodu-
larity of a matrix can be shown.

Theorem 3.6.11. Let � = (01, . . . , 0<)) 2 Z<⇥=. � is TU if and only if for each
nonempty index set � ⇢ [<] there exists a partition (�1, �2) of � with’

82�1

08 �
’
82�2

08 2 {�1, 0, 1}=. (3.7)

We refer for the proof of this theorem to the work of Korte and Vygen [KV06], and
Ghouila-Houri [GH62].

Finally, before stating and partially proving the theorem of Ho�man and Kruskal,
we �rst de�ne unimodular matrices as follows.

De�nition 3.6.12. Let � 2 Z=⇥= with | det(�) | = 1. Then we call � unimodular.

The following remark follows directly from the de�nition of totally unimodular and
unimodular matrices [Gri13].

Remark 3.6.13. Let � 2 Z<⇥= be TU and rank(�) = =. Then, � is also unimodular.

Finally, the theorem of Ho�man and Kruskal is as follows.

98

3.6 Total unimodularity

Theorem 3.6.14 (Ho�man & Kruskal, 1956)). An integer matrix � is TU if and
only if the polyhedron {G : �G  1, G � 0} is integer for each integer vector 1.

For our purposes, “)” of the theorem is of relevance. Therefore, we don’t prove
“(” and instead refer to the work of Korte and Vygen [KV06].

Proof. The proof is adapted from the work of Korte and Vygen [KV06].

“)”: Assume that the matrix � is TU. Let 1 2 Z< and let G be any vertex of %.

With � TU we know that
� �
⇢=

�
is TU according to lemma 3.6.8.

With G is a vertex of %, we know with lemma 3.6.3 that G is the solution of
�0G = 10 for some subsystem �0G  10 of

� �
�⇢=

�
G 

�
1
0
�
. Thereby, �0 is a

non-singular = ⇥ = matrix, i.e., rank(�0) = =. With �0 being nonsingular and
TU, | det(�0) | = 1.

By Cramer’s rule, the solution is given by

G = (�0)�110 =
(�0)ad

det(�0)
10.

In a last step, we need to show that G 2 Z=.

Let (008, 9)8, 92[=] = �
0. We de�ne the adjoint of �0 as follows

(�0)ad = (008, 9)
ad
8, 92[=] with

(008, 9)
ad := (�1)8+ 9 det(00: ,;):2[=]\{8}

;2[=]\{ 9}
for 8, 9 2 {1, . . . , =} .

With �0 ⇢
� �
�⇢=

�
is TU and by the de�nition of the adjoint of �0, it is

(�0)ad 2 {�1, 0, 1}=⇥=. And, therefore, with | det(�0) | = 1 and 10 2 Z= it
follows that

G =
(�0)ad

det(�0)
10 2 Z=.

Thus G is integer.

⇤

The following theorem of Schrijver gives us the important insight that the total
unimodularity of a matrix can be shown in polynomial time. And thus, in case of a
totally unimodular constraint matrix, we can indeed �nd a solution to the associated
problem in polynomial time. We refer for the proof to Schrijver [Sch03].

Theorem 3.6.15. Let � 2 Z=⇥< . Showing that � is totally unimodular can be done
in polynomial time.

99

3 De�nitions and Preliminaries

100

4 Expert-based recommendation
systems

In chapter 4 of this thesis, we de�ne the expert-based recommendation system (EBRS
problem) and discuss its complexity according to its running time both in general
and for di�erent cases.

The EBRS problem is an optimization problem that optimizes a claims processing
of an insurance company. We have already discussed the importance of improving
the claims processing in section 2.1. To optimize a claims processing, we must �rst
de�ne the quality of the process. We address this issue in section 4.1 and explain the
approach we used to select appropriate recommendations.

In section 4.2, we formulate the EBRS problem as an optimization problem, but also
give the decision version of the problem. Finally, we prove that the EBRS problem
is NP-complete.

In section 4.3 we discuss di�erent cases of the EBRS-problem in terms of their
complexity. We de�ne the di�erent cases by changing the constraints of the problem,
neglecting some of them or restricting them further. Depending on the change of
the constraint, the complexity of the case changes. One main goal of this thesis is
to �nd cases of the EBRS-problem for which a solution can be found in polynomial
time.

4.1 Expert-based quality of claims processing and
identification of recommendations

In order to improve the quality of claims processing, we �rst need to clarify what
we mean by quality in this context—and how we assess it. That is, in order to be
able to set up an optimization problem that improves quality, we must �rst of all
�nd very clear characteristics with which we can deterministically measure the
quality of a claims processing.

Furthermore, we want to optimize the quality by incorporating the di�erent perspec-
tives of people—from now on called experts regardless of their speci�c role—involved
in the claims processing. The inclusion of di�erent perspectives create the term

101

4 Expert-based recommendation systems

expert-based by asking the experts about their satisfaction with speci�cally selected
claims processing.

Each participant in such a claims processing naturally evaluates it di�erently—and
based on di�erent criteria. Therefore, di�erent characteristics of the processing
of claims are important to each participant—depending on their point of view—
which makes this consideration important to improve quality. Our goal is to derive
recommendations for an insurance company from these characteristics.

Of course, it is also possible that two or more respondents make the same recom-
mendation. Yet, the weighting of their recommendation may be di�erent for each
expert. Recognizing such di�erent weighting of recommendations will be discussed
in subsection 4.2.1.1.

In a �rst step, we de�ne the quality of a speci�c processing of claims taking into
account the di�erent perspectives, opinions and experiences of the experts involved.
In this thesis, we assume that a priori there exists no given variable in a dataset
containing information about such quality. Instead, we need to apply a statistical
method designed to “measure how repsondents trade-o� various alternatives and
their respective attribute levels” [SM18, p. 3]—the so-called conjoint analysis (as
described in detail in subsection 3.1.1). The basic idea of the conjoint analysis is
that an expert evaluates the whole claim in terms of her or his satisfaction with it,
rather than evaluating the attributes of a claim separately.

To specify the quality of the claims processing the experts evaluate prototypical
claims. Based on this evaluation it is possible to calculate the so-called part-worth
utilities of the attributes and attributes levels, respectively. Furthermore, as the
conjoint analysis is a decompositional approach, we use this part-worth utilities to
estimate the quality of each claims processing in a dataset.

We describe the procedure of the conjoint analysis to add the information about
the quality of the claims processing to the dataset in subsection 4.1.1. Furthermore,
we discuss the corresponding experimental design to create the so-called stimuli
for the questionnaire as well as the evaluation of the stimuli.

Thus, we know that the quality depends on the evaluation of the attributes and
the corresponding levels. One plausibel way to improve quality is to change the
levels of the attributes with regard to the experts’ estimations. So by evaluating
the prototypical claims, the experts also indirectly created a repertoire for �nding
recommendations. We describe this in detail in the section 4.1.2.

4.1.1 Procedure to define the quality of claims processing

Assessing the quality of a claims processing or satisfaction with the processing
of a claim is very individual—and often unconscious criteria are the drivers for
experts’ satisfaction. To detect such unconscious drivers the conjoint analysis

102

4.1 Expert-based quality of claims processing and recommendations

is a valid method due to the holistic assessment of the claims processing (see
subsection 2.1.2).

In general, the procedure of the conjoint analysis can be divided in seven steps—as
described in subsection 3.1.1, as well as by Gustafsson and colleagues [GHH07].

a) Selection of the preference function,

b) Selection of representative stimuli,

ba) Selection of data collection method,

bb) Selection of data collection design,

c) Presentation of the stimuli,

d) Selection of data collection procedure,

e) Evaluation of the stimuli,

f) Calculation of the part-worth utilities.

We do not focus on a detailed description of each step of the conjoint analysis
procedure in this thesis. Instead, we focus on the problem that typical experimental
designs are not suitable for �nding appropriate stimuli for evaluation in our context
because of the large number of attributes in insurance datasets. It is therefore a
challenge to map the entire space of attributes and their levels through the stimuli.

Thus, an appropriate selection of attributes and their levels can be challenging,
and may result in a further step of conjoint analysis [BEPW18, Vri95]—relevant
to reduce the number of attributes that should be considered for generating the
stimuli per expert.

Another challenge is that typical experimental designs such as Addelman’s orthog-
onal design [Add62], which maps the entire space of attributes, generate stimuli
that do not exist in reality. Even more, by applying such standard methods there
would exist stimuli which are inconsistent. This is due to the fact, that typical
experimental designs assume the independence of the attributes and their levels
[BEPW18]. Yet, in case of insurance datasets some variables are highly dependent.
Thus, we developed a method with which real (and not �ctional) damage cases are
selected for evaluation. More speci�cally, we are looking for prototypical claims that
best represent the entire space of damage cases. Therefore, we applied the so-called
:-medoids clustering (see subsection 3.1.2), which allows us to �nd representative
observations of the dataset that we can utilize as stimuli.

Before describing the individual steps for creating suitable stimuli, we would like
to recall the ex post consideration of the claims. Of course, an expert can only
evaluate the whole claims processing once it has been completed. Therefore, we
only consider closed claims in the following.

103

4 Expert-based recommendation systems

We describe the implementation of quality into the dataset step by step in the
following subsections. First, we describe the selection of the representative stimuli
by applying the :-medoids method and all related intermediate steps. In a next step,
we brie�y describe the method by which the stimuli are evaluated by the experts.
In the last subsection, we �nally describe how the quality of the claims processing
is estimated.

4.1.1.1 Selection of representative stimuli

Considering typical data collection methods (e.g., the pro�le or two-factor method),
the number of stimuli to be rated by the experts fastly increases. For example, in
case of the pro�le method and a complete design, seven attributes with two attribute
levels each would generate 128 stimuli. The evaluation of such a large amount of
stimuli is di�cult—even for an expert—and usually introduces enormous cognitive
load that may extend his or her cognitive capacity. In case of insurance datasets
even more variables must be considered, leading to the necessity of a reduced design,
i.e., a subset of all possible stimuli.

Another point to consider is reducing information overload by presenting too many
attributes in the questionnaire. In the literature di�erent amounts of attributes
are recommended [GHH07]. Green and Shrinivasan suggest that when using the
pro�le method, no more than six attributes should be used simultaneously in a
questionnaire [GS78], while Malhotra recommends that respondents be able to
process ten attributes without excessive strain [Mal82].

We further need to consider that there exist interaction e�ects between di�erent
variables of the dataset, and some constellations do not represent real claims as
already described in subsection 2.1.3. However, standard experimental design ap-
proaches assume that the variables in the dataset are independent, and, furthermore,
do not take into account that not all constellations do exist.

We choose to face these di�culties by using prototypical claims as stimuli, which we
derive from the dataset by applying :-medoids clusterings. Furthermore, to reduce
the information overload we decided that the experts evaluate not only real damage
cases but also—in the best case—evaluate this prototypical cases in the interface they
are familiar with. With the help of the interface we generate an authentic assessment
situation. By using the familiar interface we assume that the experts know the
positions of the attributes that are important to them—on an intuitive and completely
automated level of implicit action schemata [Swe10]. To further strengthen the
focus on the important attributes, we implemented a preceding questionnaire asking
the experts to rate each variable in the dataset according to its importance. This
approach is consistent with Green and Srinivasan’s recommendation to focus on
attributes that are important to the respective person, as this allows them to process

104

4.1 Expert-based quality of claims processing and recommendations

a greater number of attributes and their manifestations [GHH07]. We will describe
this questionnaire in detail later in this section.

Presenting the stimuli on the interface familiar to the experts has another advan-
tage. It allows us to avoid that the experts are in�uenced by other factors of the
survey design. A representation that is unfamiliar to the experts may, in some
circumstances, cause the experts to focus on features that they might otherwise not
consider. A possible reason could be, for example, a more prominent position than
in the interface used.

In addition, using the interface that most of the experts work with on a daily basis
can help the experts to indicate satisfaction with the claims processing based more
on expert intuition feeling.

As a last advantage to mention, we assume that the familiar interface helps the
experts to evaluate more stimuli without cognitive overload, since they do not have
to get used to a di�erent interface, i.e., we utilize the company’s original interface
to reduce extraneous cognitive load during the assessment situation [Swe10].

A disadvantage of presenting the stimuli in the familiar interface is that other
attributes may be included in the evaluation of the damage cases than those that
where rated as important in the �rst questionnaire. However, the result of the
conjoint analysis—the calculation of the part-worth utilities for each considered
attribute and its level to estimate the quality of a future claim—is not in�uenced,
because all relevant attributes are considered according to the decompositional
approach. However, it a�ects the selection of stimuli that are based on the previous
questionnaire. If the attributes do not match between the �rst questionnaire and
those considered in the familiar interface, this may have an impact on the second
questionnaire. Namely, the expert may not be presented with all the attributes that
are actually important to her or him. For example, if an expert rates glass damage
and corresponding processing speed as important in the previous questionnaire, but
not workshop binding, he or she will need to rate more stimuli focusing on glass
and speed attributes. If, during the evaluation process of the second questionnaire
in the familiar interface, she or he recognizes that workshop binding is important to
her or him, then there may be too few or no such cases in the stimuli presented.

To �nd prototypical claims we apply the :-medoids clustering, a special clustering
method that searches foremphrepresentative observations of the dataset—the so
called medoids. In our case the medoids are real damage cases that represent “the
structure of the data” [MRS+22, p. 47].

As with all clustering methods, the goal of :-medoids is to �nd subgroups, or
clusters, in a dataset [JWHT13]. In case of :-medoids the cluster algorithm works
by searching : observations, for which the distances or dissimilarities within a
cluster are as small or similar as possible and the distances or dissimilarities to
other clusters are as di�erent as possible. The “center” of each cluster is in case
of this clustering method the so-called medoid—a real and non-�ctional claim. For

105

4 Expert-based recommendation systems

more details we refer to chapter 3.1.2. The observations are assigned to the cluster
that is closest or most similar to them. One question we want to address now is as
follows.

How does this help us �nd representative stimuli?

With the clustering method we want to identify subgroups of typical damage cases.
With the medoid, we have a typical claim representing each of the : clusters—and,
therefore, each medoid is used as a stimulus.

One challenge is to choose an appropriate number of : 2 N so that the stimuli
represent the full range of claims in the dataset as well as possible. In doing so, we
need to consider the following facts.

First, we need to check the validation criteria for the :-medoids method. The
quality with which the medoids reproduce the damage cases that arise in reality
depends, among other things, on the choice of : . We choose to consider the average
silhouette width for di�erent : to select an appropriate : 2 N.

Since there are many attributes in insurance datasets, it would normally be a good
choice to select : > 100 stimuli to represent the entire dataset. But as discussed in
the beginning of this chapter, it is not purposeful to present such a large number of
stimuli to the experts for evaluation, as it would simply overwhelm them. Therefore,
we need to balance between a good representation of the dataset and the limits
based on the cognitive capacity of the working memory of the experts [Swe10].

Another point to consider refers to the potential existence of sparsely populated
and binary asymmetric variables in the dataset that would not be present in the
questionnaire if : is chosen too small. Since new claims may appear that have
these missing attribute levels (i.e., those attribute levels not considered in the
questionnaire), we should ensure that these attribute levels are also valued, as
otherwise, we will not be able to estimate a part-worth utility for these attribute
levels.

To take into account all facts for selecting an appropriate number of medoids,
we have on the one hand the already mentioned preceding questionnaire, with
which we can reduce the attributes to a subset of attributes, which are important
based on the rating of respective expert. We describe this questionnaire in detail in
subsection 4.1.1.1.1. On the other hand, to account for sparse levels of the attributes
that are important to the experts according to the preceding questionnaire, we
decided to select only half of the stimuli using the :-medoids method: We selected
: medoids as stimuli—and another : stimuli were sampled from each cluster under
the condition that the missing attribute level is included in the sample (assuming
that we need 2: of stimuli). More speci�cally, we sample another : stimuli from the
: clusters, but not completely at random, but subject to the condition that a missing
attribute level is included. To increase the chances of drawing a missing attribute

106

4.1 Expert-based quality of claims processing and recommendations

level and to account for cluster structure, we draw a sample from the clusters where
the missing attribute level occurs more frequent.

In summary, we select two observations per cluster. The �rst, by applying the
:-medoids method and the second by selecting another sample from each cluster
under the condition that sparse attribute levels are included. We call these method
conditional sampling from : clusters. We discuss the selection of medoids in more
detail later in this chapter.

In the next paragraphs we describe each step for selecting representative stimuli in
more detail.

4.1.1.1.1 Expert-based selection of important a�ributes The goal is to �nd
a representative sample of the insurance dataset for which the experts have to
rate the quality of the claims processing. As already discussed usual questionnaire
design algorithms cannot be applied to our dataset so that we decided to reduce
the dataset for evaluation by �nding representative medoids. But also with the
:-medoid method we face the problem, that the number of attributes is too large,
and the number of medoids of an adequate and validated :-medoids clustering is
higher than an expert could possibly process. In our case the number of medoids
would be higher than 100, i.e., : > 100. Therefore, we further reduce the number of
variables by simply asking each expert, which variables have the most impact on
the claims processing based on her or his opinion.

In contrast to decompositional approaches, we evaluate the attributes directly
with the preceding questionnaire. The direct measurement of the importance of
each variable is comparable to asking experts for importance weights as used in
compositional preference measurement [SM18]. Overall, we apply a so-called hybrid
approach combining the advantages of both—decompositional and compositional—
methods [GHH07, SM18], utilizing speci�cally the advantage of the compositional
approach to handle a large number of attributes [GHH07].

In contrast to the evaluation of the importance weights in a range of [0, 1], we use
the preceding questionnaire more as a selection criteria to choose those attributes
that are important to the expert. Furthermore, with this questionnaire we gain �rst
insights into the possible di�erent perspectives of the experts. That is, with this
method we personalize the second questionnaire based on this �rst selection of
important attributes.

To �nd the most important variables, we ask each expert to rate each variable
according to its impact on the quality of the claims processing in the dataset. For
this purpose, for each variable in the dataset, each expert indicates whether the
impact is very low, low, high or very high. Here, we deliberately chose an even
number of choices. Thus, the experts are forced to choose between a (rather) high
or a (rather) low in�uence of the variable on the quality. Depending on the number

107

4 Expert-based recommendation systems

of attributes in the insurance dataset under consideration, we then consider for the
second questionnaire those variables that have a high and/or very high in�uence
on quality of the claims processing (see �g. 4.1).

Expertenbefragung: Schadenabwicklung in Kraft-Haft und Kraft-Kasko

Information zum Schadenprozess Kraft-Haft Kraft-Kasko

irr
el

ev
an

t

eh
er

ge
rin

ge
Re

le
va

nz

eh
er

gr
öß

er
e

Re
le

va
nz

gr
oß

e
Re

le
va

nz

irr
el

ev
an

t

eh
er

ge
rin

ge
Re

le
va

nz

eh
er

gr
öß

er
e

Re
le

va
nz

gr
oß

e
Re

le
va

nz

Dauer der Abwicklung (für den Fall eines bereits abgeschlossenen oder
stornierten Schadenfalles) � � � � � � � �

Status der Bearbeitung (z.B. geschlossen, offen, storniert, ...) � � � � � � � �
Ist es ein Geschäftsjahres- oder ein Vorjahresschaden? (GJ/VJ). � � � � � � � �
Summe der Zahlungen des letzten Stichtags (Stand zum letzten Monats-
ende, Vorgängereintrag; �, wenn kein Vorgängereintrag existent) � � � � � � � �

Höhe der Reserve des letzten Stichtags (Stand zum letzten Monatsende,
Vorgängereintrag; �, wenn kein Vorgängereintrag existent) � � � � � � � �

Höhe der Minusreserve/erwarteten Rückzahlung des letzten Stichtags
(Stand zum letzten Monatsende, Vorgängereintrag; �, wenn kein Vorgän-
gereintrag existent)

� � � � � � � �

Höhe des Aufwands zum letzten Stichtag (Stand zum letzten Monatsende,
Vorgängereintrag; �, wenn kein Vorgängereintrag existent) � � � � � � � �

Länge der Zeitspanne zwischen der Schadenmeldung und dem Erstel-
lungszeitpunkt des Schadens � � � � � � � �

Detaillierter Stand der Schadenbearbeitung (z.B. Schaden aufgenommen,
Schaden wird geprüft, Schadenbearbeitung abgeschlossen) � � � � � � � �

Zeitspanne zwischen der letzten Änderung des detaillierten Stand der
Schadenbearbeitung und dem aktuellen Stichtag � � � � � � � �

Wurde Schadenfall in Spezialabteilung abgegeben? (J/N) � � � � � � � �

V. Mindl, A. Brieden �

Figure 4.1: Sample excerpt of the �rst questionnaire.

4.1.1.1.2 Conditional sampling from k clusters Based on the chosen-to-be-
important variables of the preceding questionnaire, we will �nd : representative
observations in the dataset per expert using the :-medoids algorithm. As discussed
at the beginning of this chapter, we decided to select only half of the medoids as
stimuli and select the other half from the clusters taking into account the sparse
attribute levels that may not yet be included in the second questionnaire.

To apply :-medoids, we have to calculate a metric in a �rst step. In most insur-
ance datasets there exist mixed types of variables. Therefore, typical clustering
methods such as the :-means algorithm, which uses Euclidean distance as a met-
ric, cannot be applied to this type of datasets. This is another reason why we
need a mixed clustering method for such datasets besides the arguments given in
subsection 2.1.2.

The :-medoids algorithm can use a metric that allows us to measure whether ob-
servations are very similar or di�erent from each other based on dissimilarities
between them. We use, therefore, a generalization of Gower’s formula. The metric
is also called Gower’s coe�cient [Gow71] and is described in more detail in subsec-
tion 3.1.2.1. The range of Gower’s coe�cient is de�ned by 3880 := 3 (G8, G80) 2 [0, 1]
for all observations G8 and G80 with 8, 80 2 [=]. Gower’s coe�cient identi�es with
3880 = 0 identical observations G8 and G80 and with 3880 = 1 maximal dissimilar
observations G8 and G80 .

With Gower’s coe�cient we can now apply the :-medoids algorithm to partition the
data into : clusters aroundmedoids. To do this, we use a partitioning around medoids
or the PAM-algorithm for short, which is described in detail in subsection 3.1.2
[MRS+22, KR05, HTF09]. In summary, the PAM-algorithm consists of two phases.

108

4.1 Expert-based quality of claims processing and recommendations

In the �rst phase—the so called build phase—: medoids are selected and each
observation is assigned to its nearest medoid due to the calculated metric—here
Gower’s coe�cient. In the second phase—the so called swap phase—a new medoid
is searched for each cluster, for which the average dissimilarity coe�cient decreases
the most. This two phases are repeated until the algorithm converges, i.e., no
medoid is exchanged in any cluster.

To �nd an appropriate number : 2 N and thus : �nal medoids that represent the
dataset as well as possible, we have to trade o� between a good segregation of the
clusters, the right number of stimuli to match the cognitive capacity of the experts
(i.e., preventing cognitive overload), and a representation of all attribute levels that
are sparsely �lled or asymmetric binary. Therefore, we considered the following
validation criteria.

In a �rst step, we looked at some cluster informations. We checked among other
things the cardinality of the : clusters, to see if there exists outliers or very small
clusters compared with other cluster sizes. Furthermore, we looked at the maximal
and average dissimilarity between the observations and the medoids within each
cluster. Since 3880 2 [0, 1] for all 8, 80 2 [=], where 3880 = 0 represents identical
observations G8 and G80 , lower average dissimilarity indicates better cluster �t. The
same is true for the so-called diameter, a coe�cient that measures the maximal
dissimilarity between two observations of the cluster. A last check of the cluster
information is the so-called separation, i.e., the minimal dissimilarity between an
observation of the cluster and an observation of another cluster. Here, of course, a
high value is preferred.

Another validation check is done by looking at the so-called silhouette width. For a
detailed description we refer to subsection 3.1.2.2. Brie�y, considering the silhouette
width for each observation G8 , 8 2 [=], of the dataset, we measure how similar it is
to its own cluster (cohesion) compared to other clusters (separation). Thus, it shows
how well the individual observations were classi�ed. A high value indicates good
clustering, while a low value indicates that the clustering may have too many or
too few clusters. To evaluate the goodness of clustering based on the silhouette
width, we considered the average silhouette width and the silhouette plot.

In our case, we obtain the best average silhouette width for 2: � 100 medoids, even
for the dataset that was restricted and personalized based on the �rst questionnaire.
But rating more than 100 stimuli is a very di�cult task and would simply overwhelm
the experts. If we remember the goal of this cluster analysis, we do not want to
�nd a perfect clustering, but a good representation of the dataset, so that we can
estimate the part-worth utility for each attribute and corresponding attribute level.
Thus, it is not required, that the valuation criteria are “best”. They should just give
a directive for the goodness of the segregation of the clusters. To comply with this
directives we decided to set the number of stimuli to a maximum in the sense of
meeting the cognitive load of the experts and set 2: = 50.

109

4 Expert-based recommendation systems

Because of this decision we face the problem that not all attribute levels of the
sparse attributes are included in the second questionnaire. For our case, we decided
to select : = 25 medoids and and take additional stimuli from each corresponding
: = 25 cluster. In this sample, we must ensure that the claims submitted in the
second questionnaire are as diverse as possible. We call this method conditional
sampling from clusters.

Our applied approach clearly has advantages, which we have already described.
But it also has disadvantages, which are discussed below.

To reduce the number of attributes of large insurance datasets, we implemented
a preceding questionnaire and personalized the stimuli selection. However, the
advantage of reducing the number of attributes also has the disadvantage that this
restriction means that we no longer map all possible claims and, in the worst case,
focus only on a small subset of claims. Furthermore, in general, due to the size of
the dataset and the fact that the full pro�le method is not used, there is always the
risk that some case constellations are not recorded and thus an interaction e�ect
cannot be estimated.

4.1.1.2 Evaluation of stimuli and estimation of quality

Above, we presented arguments that led to the decision that 50 prototypical claims
had to be evaluated by the experts. In this subsection, we now describe the as-
sessment process in detail, i.e., how these prototypical claims are presented to the
experts, and how they are asked about their satisfaction with the processing of the
claim. Based on this assessment, we then estimate the quality of the claims process-
ing. In order to get an assessment of the experts that is as realistic as possible, we
presented these prototypical claims in the familiar interface the experts are used to,
or in other words, we simulated a real claims processing. We discuss the advantages
of the utilization of the interface in subsection 4.1.1.1.

For the evaluation of the stimuli, we present each expert with her or his personalized
selection of claims. In addition, we only consider closed claims processings. An
excerpt of the questionnaire used is given in �gure 4.2.

Expertenbefragung II: Experte 8

Kasko (Expertengruppe �)
Schadenfälle �–��

Zu wie viel Prozent ist Ihrer persönlichen Meinung
nach der Schadenverlauf zufriedenstellend?

Nr. Geschäftsjahr Schadensnr. Vertrag M.Datum S.Datum �%–
��%

��%–
��%

��%–
��%

��%–
��%

��%–
6�%

��%–
��%

6�%–
8�%

��%–
��%

8�%–
���%

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
6 �8 �8��6� �������8��� ��.��.�8 ��.��.�8 � � � � � � � � �
� �8 ������ ����������6 ��.�6.�8 ��.�6.�8 � � � � � � � � �
8 �� ������ ������6���8 �8.��.�� ��.��.�� � � � � � � � � �
� �� ����� ��������8�� �8.��.�� ��.��.�8 � � � � � � � � �
�� �� ����� ������88��� ��.��.�� ��.��.�8 � � � � � � � � �
�� �8 �����8 ������8���� ��.�6.�8 �8.�6.�8 � � � � � � � � �
�� �8 �����6 ����������� ��.�6.�8 ��.�6.�8 � � � � � � � � �
�� �� �6��� �����866��� �8.��.�� ��.�6.�8 � � � � � � � � �
�� �8 �8��66 ����8������ ��.�8.�8 ��.�8.�8 � � � � � � � � �
�� �8 �����8 ��������6�� ��.��.�8 ��.��.�8 � � � � � � � � �
�6 �8 ���6�� ��������6�6 ��.�6.�8 ��.��.�8 � � � � � � � � �
�� �8 ������ ����8������ ��.��.�8 �8.��.�8 � � � � � � � � �
�8 �8 ��6��� �����8����� ��.�8.�8 �8.�6.�8 � � � � � � � � �
�� �8 �8��6� ����������8 �8.��.�8 �8.��.�8 � � � � � � � � �
�� �� 8���� ����������� ��.��.�� ��.��.�� � � � � � � � � �
�� �� ���88 �������8��� ��.��.�� ��.��.�� � � � � � � � � �
�� �8 ��8��� �������6��� ��.��.�8 ��.��.�8 � � � � � � � � �
�� �8 ������ ����8��8��� ��.�6.�8 ��.�6.�8 � � � � � � � � �
�� �� ����� ��������6�� �6.��.�� ��.��.�� � � � � � � � � �
�� �8 ����6� �����8����� �8.��.�8 ��.��.�8 � � � � � � � � �

Prof. Dr. A. Brieden, V. Mindl �

Figure 4.2: Sample excerpt of the second questionnaire.

110

4.1 Expert-based quality of claims processing and recommendations

It is challenging to rate claims processing by directly indicating the percentage
of satisfaction on a scale of 0 % to 100%, so surveyors are asked to state their
satisfaction in an interval. That is, we ask experts to indicate their satisfaction on
an interval scale, with overlapping intervals. For example, suppose that an expert is
very satis�ed with a claims processing. Instead of rating satisfaction at 95 % (which
the expert may not be able to specify as accurately), the expert may indicate a
trend by rating satisfaction at 80-100%. The overlapping interval scales and the
accompanying indication of a tendency instead of a direct rating can be helpful for
the expert especially if she or he is undecided between two intervals. The intervals
are de�ned as in the above right corner of �gure 4.2.

To better understand the advantage of overlapping intervals, suppose that an expert
is undecided whether the submitted claim has been processed to her or his full
satisfaction, or whether she or he is only very satis�ed. In this case the expert
could choose the interval 80 % to 100 %. In another case, an expert again rates the
processing of a claim as very good, but tends to say that not everything went quite
optimal. With the overlapping intervals, the expert now has the opportunity to
weigh up. In doing so, the expert’s thoughts might be as follows. If she or he chooses
the interval 80 % to 100 %, it contains the best possible score—the 100 %. If this does
not feel intuitively right to the expert, he or she would take the interval 70 % to
90 %, which contains at least a satisfaction of 90 %.

We apply multivariate regression to estimate a part-worth utility for each attribute
level within a model de�ned by the expert. Therefore, we transform each interval of
the overlapping interval scale to its mean value. For example, we de�ne the interval
0 % to 20 % as 10 %—or 0.1, respectively.

Since this work mainly focuses on the complexity-theoretic investigation of the
expert-based recommendation system de�ned later, we refer the interested reader
to the work of Backhaus and colleagues [BEPW18], Gustafsson and colleagues
[GHH07], and Steiner and Meißner [SM18] for more information on part-worth
utilities. For more details on multivariate regression, we recommend Hastie and
colleagues [HTF09], Fahrmeier and colleagues [FKLM13], or again Backhaus and
colleagues [BEPW18].

Finally, by applying the part-worth utilities to the rest of the dataset, we can estimate
the corresponding quality of the claims processing for each completed claim. Since
we used multivariate regression to estimate the part-worth utilities, the calculation
of quality is simply done by substituting the attribute values of an unknown claim
into the regression equation. With that we have added the missing target variable
of the optimization in the whole dataset—the quality of the claims processing.

In the further course of this thesis, we now turn our attention to the question of
which recommendations can have a positive in�uence on the claims processing.
And with that we change the perspective—from ex post to ex ante.

111

4 Expert-based recommendation systems

4.1.2 Choice of recommendations

In the last subsection, we focused on implementing the quality of the claims pro-
cessing in the dataset. We therefore considered the processing ex post and used
a customized conjoint analysis to add a variable with quality information to the
insurance dataset.

Experts were surveyed as part of the conjoint analysis. They were asked to indicate
attributes of claims processing that were important to them and to rate each attribute
according to its (positive or negative) in�uence on claims processing. Based on these
evaluated attributes, we were able to calculate the quality of the claims processing.
For the calculation we used multivariate regression analysis. The recommendations
we intend to use to optimize future claims processings are now more or less derived
from these attributes we asked about in the ex post observation.

Yet, not all attributes are suitable recommendations. Or they should only be pro-
nounced in an adapted form. One reason for this is that some recommendations are
not implementable in a particular situation. An example of this would be that we
can only refer to a workshop a�liation if this is contractually agreed.

In order to make meaningful recommendations, the recommendation system should
take such conditions into account. Therefore, we need to identify all those recom-
mendations that should only be made under certain conditions.

In the following, we list other possible reasons for making a recommendation condi-
tionally: One reason could be economic restrictions on making a recommendation
that must be taken into account. For example, consider recommending a fraud
audit. This may involve high costs, and therefore may only be advisable in certain
situations. Making a recommendation also may mean consuming human resources,
which are limited. Thus, it may make sense to identify those recommendations that
cannot be considered (to full extent) due to the current sta�ng situation.

Therefore, in general, it is highly recommended to discuss the recommendations
and their conditions in close consultation with the experts. This ensures that the
recommendation system makes sensible and implementable recommendations.

In summary, the selection of recommendations is highly dependent on the given
situation and, therefore, the involvement of experts in the selection process is of
great importance. During such discussions, we not only gain insights into which
attributes are suitable as recommendations, but also whether or to what extend they
can be realized. It is important to note that the goal is not to reduce the number of
recommendations, but to identify all potential and realizable recommendations.

112

4.2 Modelling the EBRS problem and classi�cation of its complexity

4.2 Modelling the EBRS problem and classification
of its complexity

In the latter section, we de�ned the quality of the claims processing with the help of
appropriate expert interviews and expanded the dataset to include this information.
We also identi�ed recommendations to improve a future claims processing with
respect to the de�ned quality.

Up to now, we have considered each expert and the corresponding model separately.
However, the goal is of course to optimize a claims processing considering all
expert opinions with regard to the quality of processing. Therefore, in a �rst
step, we aggregate all individual expert models. In this way, we obtain a pool of
recommendations that take into account all the di�erent perspectives, and that we
use to provide optimal expert-based recommendations to improve the expected
quality of claims processing. Here, expert-based actually means that all expert
opinions are included. We call the resulting optimization problem an expert-based
recommendation system (EBRS), which is formulated in subsection 4.2.1.

The main goal of this thesis is to study the time complexity of the EBRS-problem,
i.e., we are interested in the time taken by an algorithm in general to solve the EBRS-
problem. For this reason, we consider the decision version of the EBRS-problem,
which we formulate in subsection 4.2.2.

Finally, in chapter 4.2.3 we prove that the EBRS problem is NP-complete. This
means that the problem cannot be solved in polynomial time, but given a solution,
we can verify in polynomial time if it is a solution to the EBRS problem.

4.2.1 Formulation of the EBRS problem

We have discussed the motivation, the advantages, and the positive e�ects of the
expert-based recommendation system in detail in subsection 2.1.3. In addition,
we gave an application-oriented formulation (see remark 2.1.1). Now we will
specify this formulation, give an overview of all required parameters, and de�ne
the optimization problem including the de�nition of the constraints.

Therefore, we brie�y summarize the results of the last chapters.

Several experts are interviewed and the interview of each expert generates a sepa-
rate model. In each model, the expected quality is predicted by �nding prototypical
classes of claims based on the attributes available at the beginning of the claims
processing. Therefore, we used innovative algorithms of convex optimization—see
subsection 2.1.3, and the work of Brieden and Gritzmann [BG20]. Furthermore
we identi�ed those attributes, which de�ne the quality of claims processing per
model by asking the experts. These attributes are interpreted as recommendations

113

4 Expert-based recommendation systems

to improve the claims processing (see subsection 4.1.2). To make meaningful recom-
mendations, it might be necessary to restrict the set of recommendations per expert
and per prototypical class of claim. For example, a glass claim can be processed
much faster than a collision claim. This should be taken into account when making
a recommendation on processing speed.

Every single model estimates the expected quality of the corresponding expert. And
therefore, for every model we de�ne a processing index PI 9 , 9 = 1, . . . ,<, where
< 2 N is the total number of models considered. We use the processing index
to identify the recommendations and parameters of each model to generate the
quality of the claims processing. Therefore, PI 9 denotes the model of expert 9 in
the following. Before de�ning the EBRS problem, we introduce the input variables
and parameters of the problem.

By '8 , 8 = 1, . . . , =, we denote the 8-th recommendation and = 2 N is the total number
of overall recommendations. (:= {'1, . . . , '=} de�nes the set of recommendations
in total independent of the considered model and thus, = := |(| 2 N. Each model
PI 9 consists of a set of recommendations (9 ✓ (8 9 2 [<]. Of course, it is possible
that a recommendation is contained in several models. This is the case, when some
experts value the claims processing with the same attribute(s). Therefore, it holds
that (= (1 [. . . [(< .

With W8 , 8 2 [=], we denote the parameters of each recommendation '8 . The
parameters W8, 8 2 [=] are the weighting of each recommendation and measure the
impact of the recommendation '8 on the expected quality, when it is recommended.
The weighting of each recommendation is derived from the part-worth utilities,
with which we assign quality to the dataset per expert. The weighting can have a
positive as well as a negative impact.

Finally, we de�ne a so-called activation variable G8 2 {0, 1} for every recommenda-
tion '8 , 8 2 [=], by

G8 :=

(
1 if recommendation '8 is activated, and
0 if recommendation '8 is not activated.

As mentioned earlier, for the optimization we aggregate the di�erent models PI 9 so
that the aggregated expected quality PI is improved. To aggregate the single models
to an overall model, di�erent methods exist, e.g., the additive or multiplicative
method. In this thesis we choose the additive method for two reasons.

a) Our recommendation system starts with the reporting of the claim. Therefore,
we consider the claims processing ex ante and estimate the expected quality for
each model PI 9 , 9 2 [<], by the expected value

E[PI 9] =
’
'82(9

W8G8

114

4.2 Modelling the EBRS problem and classi�cation of its complexity

for all 8 2 [=] and 9 2 [<]. With G8 2 [0, 1] this equals the de�nition of the
expected value.

In this case, G8 2 [0, 1] can be interpreted as the probabilities of occurrence for
each recommendation '8 in each prototypical class of claim. It can be simply
calculated by looking at the frequency of activation of this recommendation.

b) In the main part of this thesis, we will study the complexity of the EBRS problem.
The goal of the EBRS problem is to activate a selection of recommendations
from all possible combinations of recommendations that maximizes the expected
aggregated quality. As the activation variable is binary, i.e., G8 2 {0, 1} for all
8 2 [=], we formulate the EBRS problem as an integer linear program (ILP) that
is generally NP-complete (see subsection 4.2.13).

It should be further noted that the additive model can be transformed into the
multiplicative model by, e. g., logarithmizing. However, we will not discuss this
further.

As mentioned earlier, it is possible for a recommendation to be contained in two
or more models. This also has an impact on the weighting of the corresponding
recommendation, because it is not only dependent on the respective rating and
the resulting part-worth utility of a single model (or expert). If we activate a
recommendation that is included in two or more models, it is obvious that it is also
recommended in each of the other models. In case of the additive method, this
results in

W8 :=
’

92{ 9 |'82(9 }

W8 9

for all '8 2 (.

In the remainder of the subsection, we de�ne the EBRS model step by step.

If we consider the last stated arguments for the additive model, we already pointed
out the basic idea of the EBRS problem: Maximizing the aggregated expected quality
by activating an appropriate set of recommendations. The aggregated expected
quality is de�ned by

E[PI] :=
=’
8=1

W8G8 .

The EBRS problem without consideration of further constraints is given by

Program 4.2.1.

max
=’
8=1

W8G8

s.t. G8 2 {0, 1} 88 2 [=]

115

4 Expert-based recommendation systems

Before discussing the constraints of the model in detail, we �rst take a closer look
at the weights of the recommendations W8 , 8 2 [=].

We de�ned the weighting W8 , 8 2 [=], as the weighting of each attribute level based
on the part-worth utilities. Yet—as mentioned in subsection 2.1.3—another relevant
weighting that should be considered is the relevance of the expert models. This
allows us to weight a single model or group of models higher than other models, e.g.,
we could emphasize the customer satisfaction. Thus, the weighting of relevance
does not belong to an individual recommendation, but to the model PI 9 for all
9 2 [<]. To include such weighting in the parameters W8 of each model PI 9 , we
proceed as follows.

We denote with F 9 2 [0, 1] the weighting of relevance of each model PI 9 , 9 2 [<],
where F 9 = 0 means that expert 9 should not be considered in the optimization
and F 9 = 1 stands for an exclusive consideration of PI 9 . By including a relevance
weighting the de�nition of the parameters changes to

W8 :=
’

92{ 9 |'82(9 }

F 9W8 9 88 2 [=] .

Before de�ning the constraints in the following subsection, we establish two as-
sumptions for the optimization problem.

Remark 4.2.2. Without loss of generality there exist no con�icts and dependencies
between the recommendations within a model PI 9 , 9 2 [<].

This is not a restriction of the EBRS problem, because in case of con�icts or depen-
dencies within a model we have the possibility to split the model into further models
without in�uencing the result of the optimization problem. However, excluding
these cases from the beginning has the advantage that we do not need to consider
them in the further process of the thesis.

Remark 4.2.3. Without loss of generality, there exists no model PI 9 with (9 = ; for
all 9 2 [<].

With that we exclude all models PI 9 , 9 = 1, . . . ,<, for which no recommendation
exists, i.e., (9 = ;. Again, this is not a restriction on the EBRS problem, because
w.l.o.g. we can simply delete empty models.

4.2.1.1 Definition of the constraints

The goal of the EBRS problem is to maximize the aggregated expected quality PI
of the claims processing by making appropriate recommendations. Depending
on the situation in which the optimization algorithm is to be applied, various
constraints must be taken into account. In this subsection, we will discuss these

116

4.2 Modelling the EBRS problem and classi�cation of its complexity

various constraints in general and illustrate them with appropriate examples. Since
these are general constraints, we make no claim to completeness.

For the �rst constraint, we recognize that a clerk can only process a certain number
of recommendations. Therefore, there are cases where the clerk cannot process all
= recommendations of the recommendation system. Apart from that, processing
all recommendations would not be in the spirit of an e�cient claims processing
(see subsection 2.1.1). Instead, an e�cient and streamlined claims processing can
free up a claims handler to focus more on claims and customers that require more
attention. For example, a glass damage should require little (or no) attention and
e�ort compared to a collision damage with casualties, as 90 % of the claims handlers
time is to look after tragic damage cases and the capacity of the clerk is limited
[Gen22].

By limiting the number of activated recommendations (especially for less serious
claims) in consultation with the insurer’s expert, we reduce the workload per claim
of the claims handler while still ensuring that the parties involved are satis�ed with
the claims processing. Therefore, we de�ne with D 2 N0 the maximum number of
activated recommendations per claim.

In some cases it might be meaningful to implement a lower bound to the activation
of the recommendations, e.g., to guarantee a prede�ned quality target. Therefore,
we de�ne with ; 2 N0 the minimum number of activated recommendations per
claim.

De�ning the lower and upper bounds, we formulate the �rst constraint of the EBRS
problem by

Constraint 4.2.4.

; 
=’
8=1

G8  D

Besides the lower and upper bound for the number of all activated recommendations,
we also consider lower and upper bounds for the activation of the recommendations
per model PI 9 , 9 2 [<]. With D 9 2 N0 and ; 9 2 N0 we de�ne the maximum and
minimum number of activated recommendations per PI 9 for all 9 2 [<], respectively.
D 9 and ; 9 allow us to control which expert opinions regarding quality should be
considered more.

One example of this is the many reasons to focus more on customer satisfaction, as
described in detail in subsection 2.1.1. Let PI 9 be the model of customers. By de�ning
a lower bound ; 9 , the optimization problem must activate at least ; 9 of customer
recommendations. Depending on the settings of the other models, this may lead to
a stronger consideration of customer preferences in the claims processing.

117

4 Expert-based recommendation systems

Another example for de�ning lower bounds per model is the requirement that at
least one recommendation per model should be considered in the optimization. In
this case we de�ne ; 9 := 1 for all 9 2 [<].

Likewise, it is possible—if necessary—to limit the number of activated recommen-
dations to a maximum of one recommendation per model by setting D 9 := 1 for
all 9 2 [<]. In combination with the overall lower bound we can, e.g., force the
optimization algorithm to choose exactly one recommendation per model, so that
the individual satisfaction with the process is considered evenly.

Thus, the second constraint we want to consider in the EBRS problem is the upper
and lower bound on the number of activations per model PI 9 , which is given by

Constraint 4.2.5.

; 9 
’
'82(9

G8  D 9 8 9 2 [<] .

There can be con�icts and dependencies between the recommendations, which we
have to take into account by means of the constraint. Therefore, we de�ne the
following additional constraints.

We start with con�icts. Two recommendations are in con�ict with each other if
processing the one recommendation would mean that processing the other is not
possible. An illustrative example is given by the recommendations “Call the cus-
tomer.” and “Contact the customer digitally during the whole process.”, which cannot
be processed simultaneously in a single claims processing. Therefore, by de�ning
an appropriate constraint we guarantee, that only one of these recommendations is
activated in the optimization problem, and the recommendation system is consistent
in the given recommendations.

Note, that there could exists recommendations, which are contained in di�erent
models and have the same meaning, but impact the quality of the claims processing
di�erently (which can be seen from the sign of the corresponding weighting). We
treat such recommendations as a single recommendation. For example, '8 9 = “Call
the customer.” and '8 9 0 = “Do not call the customer.” are treated as one recommen-
dation '8 = “Call the customer.”. The di�erence is, that '8 9 0 has a negative impact,
if '8 is activated. In this thesis we consider such cases not as con�icting recom-
mendations, but de�ne the weighting so that this con�ict is taken into account
W8 = W8 9 + W8 9 0 with W8 9 > 0 and W8 9 0 < 0.

Finally, we de�ne the set of con�icts between all considered recommendations by

⇠ :=
⇢
{'8, '80} 2

✓
(

2

◆ ��� '8 and '80 in con�ict, 8, 80 2 [=]

�
(4.1)

with '8 2 (and 2 := |⇠ | 2 N0 is the number of overall con�icts. By

118

4.2 Modelling the EBRS problem and classi�cation of its complexity

Constraint 4.2.6.

G8 + G80  1 8{'8, '80} 2 ⇠

the optimization algorithm can activate only one recommendation of each con�ict-
ing pair of recommendations.

Besides con�icts, there may also be dependencies between the recommendations.
We speak of a dependency, if the activation of one recommendation implies the
activation of another recommendation.

For example, let us assume that the insurance company works with a mobil app
for damage announcements, which has the opportunity to upload pictures from
the accident. Furthermore, we assume that the mobil app is newly invented by the
insurance company and, therefore, the managers want to praise it to the customers.
The recommendation system can pick up this new policy by adding the recommen-
dation '8 = “Point out the usage of the mobile app to the customer.” to the system.
The quality management claims that the customers should use also the functionality
to taking pictures from the accident scene directly after the accident happens as
it helps to prevent frauds. Therefore, the second recommendation '9 = “Ask the
customer to upload pictures from the accident.” is added to the system. Of course, the
activation of '9 requires that '8 is already activated. Thus, these recommendations
are dependent.

As we can see, the activation of dependent recommendations has a direction, i.e., it
is possible that the activation of recommendation '8 implicates the activation of
'80 , but not the other way round. Therefore, the set of positive dependencies between
all considered recommendations '8 2 (is de�ned by

⇡ := {('8, '80) 2 (⇥ (| '08 requires '8, 8, 8
0
2 [=]}. (4.2)

With this de�nition we represent mutual dependent recommendations by de�ning
two tuples ('8, '80) 2 ⇡ and ('80 , '8) 2 ⇡, i.e., '8 automatically activates '80 and
the other way round.

De�ning dependencies via a tuple (i.e., with direction) leads to the following con-
straint.

Constraint 4.2.7.

G8  G80 8('8, '80) 2 ⇡ .

Since the con�icts and dependencies between the recommendations depend on
the companies and the actuarial framework or situation, we want to reiterate the
importance of involving the experts in the process.

119

4 Expert-based recommendation systems

Another point that should be noted and discussed with the experts are con�icts
of interest between customers and insurance company stakeholders during claims
processing. If detected and implemented accordingly in the recommendation system,
they can be handled fairly [MF20, Tho19]. The involvement of experts is again
important here. Con�icts of interest depend heavily on the goals and framework
conditions of the insurance company as well as the situation at hand. If implemented
well, the recommendation system can even support the clerk in managing such
con�icts of interest in the best possible way.

Finally, another advantage of including expert knowledge is that corporate policy
can be taken into account within the recommendation system.

In summary, the EBRS problem can be formulated mathematically by the following
linear integer programming formulation or ILP.

Program 4.2.8 (EBRS).

max
=’
8=1

W8G8,

s.t. ; 
=’
8=1

G8  D

; 9 
’
'82(9

G8  D 9 8 9 2 [<]

G8 + G80  1 8{'8, '80} 2 ⇠

G8  G80 8('8, '80) 2 ⇡

G8 2 {0, 1} 88 2 [=]

In a last step, we formulate the EBRS problem in terms of an optimization version as
follows.

Problem 4.2.9. Maximize the weighted sum over all activation variables G1, . . . , G= by
activating a suitable set of recommendations under consideration of the constraints
described above.

4.2.1.2 Defining the EBRS problem as an ILP

In the last subsection we formulated the optimization version of the EBRS problem
and de�ned the ILP by program 4.2.8. With G8 2 {0, 1} for all 8 2 [=], it is more
precisely even a 0-1-ILP (see de�nition 3.4.5). We will reformulate this ILP in this
subsection and rede�ne it with the use of matrices. For this purpose, we apply the
de�nitions of ILP’s described in section 3.4.

120

4.2 Modelling the EBRS problem and classi�cation of its complexity

In case a solution exists, we can �nd an optimal solution of the EBRS problem, if we
activate the recommendations accordingly. Activating a recommendation is done
by setting G8 = 1 for 8 = 1, . . . , =, and otherwise, it is G8 = 0. Therefore, an optimal
solution vector is given by

G⇤ =
©≠≠
´

G⇤1
...
G⇤=

™ÆÆ
¨
2 {0, 1}=.

In matrix form, the EBRS problem is de�ned as

max{2)G : �G  1},

where the instances are given as follows. We begin with the weights belonging to
the recommendations and de�ne them by

2) := (W1, . . . , W=)
)
2 R=. (4.3)

So we search the optimal solution value by maximizing 2)G under consideration of
the constraints �G  1, which is given by

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

1 . . . 1
�1 . . . �1

0D1
...
0D<
0;1
...
0;<
0⇠1
...
0⇠
|⇠ |

0⇡1
...
0⇡
|⇡ |

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

·
©≠≠
´

G1
...
G=

™ÆÆ
¨


©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

D
;
D1
...
D<
;1
...
;<
1
...
1
0
...
0

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

(4.4)

with � 2 {�1, 0, 1}(2+2<+|⇠ |+|⇡ |)⇥= and 1 2 Z2+2<+|⇠ |+|⇡ | as D, ;, D1, . . . , D<, ;1, . . . , ;< 2
N0. The matrix � is structured as follows.

The �rst and second row of � result in the inequalities for the lower and upper
bound for all recommendations of the system

=’
8=1

G8  D and
=’
8=1

G8 � ;,

121

4 Expert-based recommendation systems

respectively. 0D1 , . . . , 0
D
< 2 {0, 1}= and 0;1, . . . , 0

;
< 2 {0, 1}= are the column vectors,

which assign those activations variables G8, 8 2 [=] to the corresponding model
PI 9 , for which '8 2 (9 . The activation of these column vectors is restricted by the
corresponding upper bound D 9 and lower bound ; 9 , 9 2 [<], respectively. It holds

0D98 :=

(
1, if G8 is contained in model PI 9 , i.e., '8 2 (9 ,
0, otherwise,

for all 8 2 [=] and 9 2 [<]. The same holds for 0;1, . . . , 0
;
< 2 {0, 1}=, but instead of

0D98 = 1 it is 0;98 = �1.

Each column vectors 0⇠1 , . . . , 0
⇠
|⇠ |
2 {0, 1}= represents a pair of recommendations,

which are in con�ict to each other. In total there exists |⇠ | pairs of con�icting
recommendations with ⇠ de�ned as the set of con�icts—see equation (4.1). For all
8 2 [=] and : = 1, . . . , |⇠ | the column vectors are given by

0⇠:8 :=

(
1, if {'8, '80} 2 ⇠,
0, otherwise.

With this de�nition exactly two entries of each column vector 0⇠:8 are equal to 1.
Similarly, the column vectors 0⇡1 , . . . , 0

⇡
|⇡ |
2 {�1, 0, 1}= are de�ned. We therefore

reformulate the inequalities corresponding to the dependent recommendations
from G8  G80 to G8 � G80  0 for all ('8, '80) 2 ⇡. Naturally, each pair of dependent
recommendations ('8, '80) 2 ⇡ is represented by a column vector 038 and

0⇡38 :=

8>>><
>>>:

1, if recommendation '80 requires '8,
�1, if recommendation '8 requires '80 ,
0, otherwise,

for all 8 2 [=] and 3 = 1, . . . , |⇡ |. This de�nition is based on the set of dependent
recommendations ⇡—see equation (4.2).

The set of feasible solution is given by the polytope

% := {G : G 2 {0, 1}= ^ �G  1}

where �, 1, and 2) as in the equations (4.4) and (4.3).

For a better understanding of the matrix � we give the following example.

Example 4.2.10. Let three models PI1, PI2, and PI3 be given and, thus, < = 3.
Furthermore, nine recommendations G1, . . . , G9 are given, which are distributed
to the models by (1 = {G1, G2, G3}, (2 = {G4, G5} and (3 = {G6, G7, G8, G9}. This
distribution is shown in �gure 4.3.

122

4.2 Modelling the EBRS problem and classi�cation of its complexity

Each G8 has a weight W8 � 0 for all 8 = 1, . . . , 9 and the overall lower bound and
upper bound are given by ; = 3 and D = 4, respectively. There exist two pairs
of con�icting recommendations given by the set of con�icting recommendations
⇠ = {{'3, '8}, {'5, '7}} with |⇠ | = 2. And additionally, there exist two pairs
of dependent recommendations given by the set of dependent recommendations
⇡ = {('6, '4), ('4, '2)} with |⇡ | = 2.

Then the set of feasible solutions of the 0-1 integer linear program max{2)G :
�G  1} with 2) = (W1, . . . , W9) is given by all G 2 {0, 1}9 satisfying the following
inequalities (with zeros omitted).

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

1 1 1 1 1 1 1 1 1
�1 �1 �1 �1 �1 �1 �1 �1 �1
1 1 1

1 1
1 1 1 1

�1 �1 �1
�1 �1

�1 �1 �1 �1
1 1

1 1
�1 1

�1 1

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨| {z }

�2{�1,0,1}(2+2·3+|⇠ |+|⇡ |)⇥=

·
©≠≠
´

G1
...
G9

™ÆÆ
¨


©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

4
3
2
1
3
1
1
1
1
1
0
0

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨|{z}

12Z2+2·3+|⇠ |+|⇡ |

.

PI1

'1
'2

'3

;1 = 1
D1 = 2

PI2

'4

'5

;2 = 1
D2 = 1

PI3

'6

'7
'9

'8
;3 = 1
D3 = 3 con�icts

dependencies

Figure 4.3: Example of an EBRS problem as ILP as given in example 4.2.10.

123

4 Expert-based recommendation systems

4.2.2 Decision version of the EBRS problem

We have formulated the optimization version of the EBRS-problem in the last
subsections. In the remainder of this thesis, instead of dealing with the algorithmic
computability of the problem, we will be concerned with the time complexity of the
decision version of the EBRS-problem. To this end, we will show in the next chapter
that the EBRS problem is NP-complete.

To prove theNP-completeness we �rst formulate the decision version of the problem.
However, as we will see at the end of this chapter, we can use the decision and
optimization versions of the problem synonymously when considering solvability
in polynomial time.

The decision version of the EBRS problem is given as follows.

Problem 4.2.11. Given an integer : 2 N0, can the weighted sum over all activation
variables G1, . . . , G= sum up to a value of at least : by activating a set of appropriate
recommendations under consideration of the constraints?

The way the decision version is formulated, the problem searches for the answer
yes or no. That is, a solution of the decision problem is an assignment of a truth
value to each corresponding instance of the problem.

An instance of the EBRS problem is given by an integer : 2 N0, a set of activation
variables {G1, . . . , G=}, where = 2 N is the number of all recommendations of
the system, the corresponding weights W1 . . . , W= and all inputs needed to de�ne
the constraints. The problem assigns “true” to the instance if it can activate an
appropriate set of recommendations under consideration of the constraints, so
that the weighted sum over all activation variables sum up to a value of at least : .
Otherwise it assigns “false”. For more details we refer to section 3.3.

With the following corollary, we show that there is no signi�cant di�erence between
formulating the EBRS problem in its decision version and in its optimization version
in terms of solvability in polynomial time.

Corollary 4.2.12. In terms of polynomial-time solvability, there is no di�erence be-
tween the optimization version (problem 4.2.9) and the decision version (problem 4.2.11)
of the EBRS problem.

Proof. We show the statement of the corollary by proving that given a solution of
the optimization version, we automatically have a solution of the decision version
and vice versa.

In a �rst step, we assume that we have a method for solving the optimization version
and the weighted sum over all activation variables is maximal when a given set of
recommendations is activated. Moreover,

Õ=
8=1 W8G8 = : by activating this given set

124

4.2 Modelling the EBRS problem and classi�cation of its complexity

of recommendations. And thus, for any : , we then automatically have a solution
to the decision version of the problem. This is because the decision version of the
problem seeks for a yes or no answer to the question of whether the weighted sum
over all activation variables yields a value of at least : when activating a set of
appropriate recommendations.

For the reverse direction, we assume that we can solve the decision version for any
: . If we now take the largest : for which we get the answer “yes”, we, thus, also
know the maximum number to which the weighted sum adds up. More precisely,
for a given set of recommendations (= {'1, . . . , '=} with corresponding activation
variables G1, . . . , G= we solve the decision version of the problem for each : until
we �nd the maximal number of : for which the answer is yes. This can be done in
O(log =) using binary search [DPV06, KT13].

We would like to mention that the solution for the optimization version generated in
this way may not be unique, since the weighted sum may add up to : by activating
di�erent sets of activation variables. However, this does not a�ect the correctness
of the proof. ⇤

In the remainder of this thesis, we speak synonymously of the optimization version
and the decision version of the problem and simply call them problem. However,
for the complexity proofs we mostly use the decision version and explicitly state
when we consider the optimization version.

4.2.3 Proof of NP-completeness

Now that we have formulated the EBRS problem, we are interested in whether and
how “easy” it is to solve. Here, “easy to solve” implies the following question.

Is the EBRS problem solvable in polynomial time?

In this subsection we will prove that the EBRS problem is NP-complete, i.e., the
problem is in the complexity class NP and NP-hard.

Problems ⇧ in the complexity class NP, i.e., ⇧ 2 NP, describe a class of problems,
for which a solution can be veri�ed “easily”. That implies that we can verify in
polynomial time whether an existing certi�cate is the solution to our problem. Yet,
this class of problems typically cannot be solved in polynomial time.

Since NP-complete problems are also NP-hard, any problem ⇧0 2 NP is polyno-
mially reducible to the considered NP-complete problem, i.e., ⇧0 % ⇧ for all
⇧0 2 NP—see de�nition 3.3.18.

In summary, NP-complete problems have the special property that in the case of an
existing polynomial time solution for a single NP-complete problem, there exists a

125

4 Expert-based recommendation systems

polynomial time solution for all problems in NP. We motivated this in section 2.2.
For more details on the complexity of a problem, we refer to section 3.3.

To prove the NP-hardness of the EBRS problem, we do not show ⇧0 % ⇧ for all
⇧0 2 NP, but apply lemma 3.3.21. According to this lemma, it su�ces to prove
that a problem ⇧ is NP-hard if there exits a known NP-complete problem ⇧0 with
⇧0 % ⇧. We describe this in detail in subsection 3.3.3.

With the proof of the following theorem we show the NP-completeness of the EBRS
problem.

Theorem 4.2.13. The decision problem EBRS is NP-complete.

Proof. To prove that the EBRS problem is NP-complete, we we need to show that
(a) EBRS 2 NP, and (b) EBRS is NP-hard, according to lemma 3.3.21.

a) “EBRS 2 NP”:
Let I be a yes instance of the decision problem EBRS for which a certi�cate
C is given, such that the input I concatenated with certi�cate C is a solution
of the associated checking problem EBRS0, i.e., (I ? C, 1) 2 EBRS0. C consists
of a natural number F 2 N of activated recommendations '81 , . . . , '8F with
G81 = . . . = G8F = 1 and their corresponding weights W81 , . . . , W8F 2 R+0 with
8 2 [=] and {81, . . . , 8F} ✓ [=] such that the weighted sum over all activation
variables sum up to a target value : at least, i.e.,

=’
8=1

W8G8 � : .

We write the checking problem EBRS0 in matrix notation. Then C is a solution
vector (G1, . . . , G=)) 2 {0, 1} of the EBRS problem, for which for an appropriate
subset {81, . . . , 8F} ✓ [=] the corresponding activation variables G81 , . . . , G8F are
set to one.

We can �nd a polynomial c such that |C|  c(|I|) as C is a vector with binary
entries. Furthermore, the algorithm to check wether C is a solution to the given
EBRS problem needs to perform simple matrix operations, and therefore run in
polynomial time. Thus, one can �nd a polynomial time veri�er, and therefore
EBRS 2 NP.

b) “EBRS is NP-hard”:
It su�ces to show that there exists an NP-complete problem ⇧ with ⇧ % EBRS,
i.e., by applying a Karp reduction. More speci�cally, we transform a given
instance of ⇧ into a single instance of EBRS with the same answer [KT13].

126

4.2 Modelling the EBRS problem and classi�cation of its complexity

As an NP-complete problem we choose the independent set (IS) problem. For
more informations about the IS problem we refer to de�ntion 3.2.5 and prob-
lem 3.3.31. We need to show that

IS % EBRS .

Therefore, we assume that a polynomial time subroutine exists for EBRS. In
order to solve the IS problem (using the EBRS subroutine), any input of the IS
problem must be transformed �rst.

Let an arbitrary undirected graph ⌧ = (+ , ⇢) with = = |+ | nodes and 2 = |⇢ |
edges be given as input of the IS problem. Furthermore, let an integer : 2 N0 be
given (see problem 3.3.31).

The transformation interprets every node E8 2 + as a recommendation '8 2 (
for all 8 2 [=]. Each edge 4 9 2 ⇢ , 9 2 [2], with a(4 9) = {E8, E80} 2 ⇢ is
transformed to a con�ict between two recommendations '8 and '80 , and with
that {'8, '80} 2 ⇠. Thus |⇠ | = 2.

Let � be any set of nodes of ⌧ with : = |� | 2 N0. The transformation interprets
E8 2 � as an activation of the recommendation '8 by setting G8 = 1. If E8 8 � than
the corresponding recommendation '8 is not activated and G8 = 0.

Furthermore, any model of the EBRS problem PI 9 , 9 2 [<], consists of exactly
one node and recommendation, respectively, and so |(1 |, . . . , |(= | = 1with< = =.
To ensure that an IS is found by the subroutine of EBRS, the weight of each
recommendation is set to one and hence W8 = 1 for all 8 2 [=]. In addition, there
exist no dependencies between the recommendations and hence ⇡ = ;. The
lower bounds are set to zero, i.e., ; = 0 and ;8 = 0 for all 9 2 [8], respectively.
Thus it is allowed to recommend any action. The upper bound is set to D = =
for all recommendations and D8 = 1 for all 8 2 [=], since there exists exactly one
recommendation per model PI 9 , 9 2 [<].

With the following claim we prove the correctness of the reduction.

Claim: Let : 2 N0 (with :  =). A graph ⌧ = (+ , ⇢) has an independent set of
size at least : if and only if the sum over all recommendations is at least : under
consideration of the constraints.

Note: By proving this claim, we show that if the EBRS problem yields an output
“yes” for the transformed input by activating : recommendations, then there
exists an IS of size : , and vice versa.

“)”: Let � be an independent set of graph ⌧ with size at least : , i.e., |� | � : .
Under this assumption, we need to show that, taking into account the
constraints, the sum over all activation variables is also at least : .

When E8 2 � , then '8 2 � and with '8 2 � the recommendation is
activated, i.e., G8 = 1 for all '8 2 � (see transformation). Since there

127

4 Expert-based recommendation systems

are no adjacent nodes in the independent set � , there is also no con�ict
between the activated recommendations. Due to ⇡ = ; no contradiction
can occur in the subroutine. i.e., it is ensured that the subroutine is not
forced to activate a recommendation that would lead to a violation of the
constraints. With W8 = 1 the sum over all activation variables is truly : or
higher.

And thus a solution for the subroutine is found, since the sum over all
activation variables is indeed at least : considering all given constraints.

“(”: Assume that the sum over all activation variables is at least : under consid-
eration of the given constraints. We show that under this assumption there
exists an independent set � of at least : vertices for an undirected graph
⌧ = (+ , ⇢) with (in total) = = |+ | nodes E8 , 8 2 [=] and 2 = |⇠ | = |⇢ |
edges 4 9 , 9 2 [2].

Let � consist of all activated recommendations '8 . � is an independent
set as due to the constraints no con�ict exists between two activated
recommendations. This implies that no edge exists between any two
nodes contained in the set � .

As the sum over all activation variables is at least : , set � has at least
cardinality |� | � : . This is true because with W8 = 1 for all 8 2 [=] the
recommendations are equally weighted and with ⇡ = ; no dependencies
have to be considered. Thus, all activated variables sum up to at least
: only if at least : recommendations are activated. Therefore, � is an
independent set of size at least : .

It remains to show that the transformation is computable in polynomial time.

Every node is interpreted as a recommendation and, thus, all nodes E8 2 + are
transformed to '8 2 (and it is |+ | = |(| = =. This is a one-to-one translation,
which is computable in polynomial time. Every edge 4 9 2 ⇢ with 9 2 [2]
of the graph ⌧ is transformed to a con�ict between two recommendations.
That means, every edge 4 9 with a(4 9) = {E8, E80} is a con�ict between the
recommendations '8 and '80 . And so, the number of edges is identical to the
number of con�icts (|⇢ | = |⇠ |), which is also a one-to-one translation that can be
computed in polynomial time. Therefore, the total transformation is computable
in polynomial time.

Thus, using Karp’s reduction, we have proved that EBRS is an NP-hard decision
problem.

With EBRS 2 NP and EBRS being an NP-hard problem we �nally proved that the
decision problem EBRS is NP-complete. ⇤

128

4.3 Complexity-theoretical investigations of the EBRS problem

To better understand the setting of the input parameters ⇡ = ; and W8 = 1 for all
8 2 [=] in the proof, we discuss the following two �gures. For this purpose, we
choose two rather simpli�ed examples.

The �rst �gure 4.4 is intended to illustrate that the choice of W8 = 1 for all 8 2 [=] is
necessary. Without setting the weighting equal to one, in this example the solution
algorithm chooses to recommend '1 instead of '2 and '3, which would be the
optimal solution of the IS problem.

'1 with
W1 = 9

'2 with
W2 = 2

'3 with
W3 = 2

Optimal
solution
for MIS

But: max PI
chooses '1,
because

9 > 2 + 2

Figure 4.4: Example to illustrate the need of setting W8 = 1 for all 8 2 [=] in the
NP-completeness proof of the EBRS problem.

In the second �gure 4.5 we illustrate the special case where no solution can be
found due to an unfortunate constellation of dependencies. In the example, the
maximum independent set is given by � = {'1, '2}. However, the EBRS algorithm
cannot activate both '1 and '2, since is has to activate '3 when '1 is activated.
By assuming ⇡ = ; we exclude such cases and a maximal independent set can be
found by the polynomial time subroutine of the EBRS problem.

Nonetheless, the NP-completeness of the general EBRS problem—without the re-
striction of W8 , 8 2 [=] and ⇡ = ;—is still proven. To support this statement we refer
to corollary 3.3.28.

4.3 Complexity-theoretical investigations of the
EBRS problem

After de�ning the EBRS problem and proving that it is NP-complete we now focus
on the complexity-theoretical study of the problem. In theorem 4.2.13 we have
shown that the EBRS problem is NP-complete. To prove the theorem, we restricted
the constraints and consequently there were no dependencies between the recom-
mendations (i.e., ⇡ = ;) and all weights were set to one (i.e., W1 = . . . = W= = 1).

129

4 Expert-based recommendation systems

'1

'2

'3

 Positive disjunctive constraint
Con�ict

Figure 4.5: Example to illustrate the need of ⇡ = ; in the NP-completeness proof
of the EBRS problem.

In addition, there is only one recommendation per model PI. The corresponding
optimization problem has the following form.

Program 4.3.1.

max
=’
8=1

G8

s.t. ; 
=’
8=1

G8  D

G8 + G80  1 8 {'8, '80} 2 ⇠

G8 2 {0, 1} 88 2 [=]

However, there exist other restrictions on the constraints of the EBRS problem. In
the remainder of this thesis, we discuss di�erent cases of constraint restrictions and
evaluate whether the EBRS problem can be solved in polynomial time under these
restricted constraints. For a practical application it is of course of great advantage
if the correspondingly adapted EBRS problem could be solved in polynomial time.
Therefore, in the further course of this section we ask the following question.

Are there cases of restricted constraints on the EBRS problem for which
the problem is “easier” to solve?

Depending on the situation under consideration, there are a variety of restrictions
on the constraints. Because of this variety, we do not claim comprehensiveness of
all possible cases in this thesis.

For the proof of theorem 4.2.13, we have already restricted the constraints to consider
only recommendations with con�icts. Therefore, as a �rst step, we observe the

130

4.3 Complexity-theoretical investigations of the EBRS problem

cases with con�icting but independent recommendations, i.e., ⇠ < ; and ⇡ = ;.
We discuss this cases in subsection 4.3.1. In subsection 4.3.2, we study the cases of
the EBRS problem with dependent but not con�icting recommendations. Finally,
we examine the cases with independent recommendations without con�icts in
subsection 4.3.3.

4.3.1 Existence of conflicts between recommendations but no
dependencies

As already mentioned, we showed in the proof of theorem 4.2.13 that the EBRS
problem without the constraint of dependent recommendations is NP-complete.
In this chapter, we look for cases of the EBRS problem for which the problem is
“easier” to solve, assuming that there are no dependent recommendations. i.e., it is
⇡ = ; and ⇠ < ;. We refer to the EBRS problem under these constraints as EBRSC.
We have identi�ed three cases of EBRSC, which we present below.

4.3.1.1 Case: Pairwise conflicts

We start with a special case of the EBRSC problem, for which we consider the
optimization version of the problem. More precisely, we consider the EBRSC
problem as a 0-1-ILP max{2) : �G  1} for which a set of feasible solutions
% = {G : G 2 {0, 1}= ^ �G  1} is given, as described in subsection 4.2.1.2.

For this particular case, we can prove that the constraint matrix

� 2 {�1, 0, 1}(2+2<+|⇠ |+|⇡ |)⇥=

is totally unimodular. We de�ned total unimodularity in section 3.6. There, we also
showed the theorem of Ho�man and Kruskal 3.6.14, which states that for a totally
unimodular constraint matrix � the corresponding polyhedron % is integer if 1 is
integer. That is, the polyhedron % corresponds to its integer hull, i.e., % = %� , and
we can ignore the constraint G 2 {0, 1}=. Thus, the 0-1-ILP coincides with its LP
relaxation and can therefore be solved in polynomial time.

This special case is de�ned by a set of con�icting recommendations ⇠ containing
only pairwise con�icts, i.e., a recommendation con�icts with at most one other
recommendation. Assuming that there are no con�icts between recommendations
of the same model PI 9 , no pair of con�icting recommendations does belong to the
same model PI 9 for all 9 2 [<] (see remark 4.2.2). Moreover, according to ⇡ = ;,
there are no recommendations included in more than one model.

We illustrate the observed situation with the following example.

131

4 Expert-based recommendation systems

Example 4.3.2. In the example, we consider nine recommendations '1, . . . , '9 with
activation variables G1 . . . , G= 2 {0, 1} distributed among three models PI1, PI2 and
PI3, < = 3, as shown in �gure 4.6. Here, the blue lines indicate the con�icts between
the recommendations. The red line is an example of a con�ict that is not allowed
in this special case. Each model consists of three recommendations and the set of
con�icts is given by ⇠ = {{'2, '4}, {'3, '7}, {'6, '9}}.

The corresponding constraint matrix � is given as follows, with the zeros omitted.

� =

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

1 1 1 1 1 1 1 1 1
�1 �1 �1 �1 �1 �1 �1 �1 �1
1 1 1

1 1 1
1 1 1

�1 �1 �1
�1 �1 �1

�1 �1 �1
1 1

1 1
1 1

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

2 {�1, 0, 1}(2+2<+|⇠ |)⇥=

Here, the �rst to rows of the matrix � correspond to the constraint that the total sum
of activated recommendations is limited by the lower bound ; and the upper bound
D. The next 2< rows, i.e., 03, . . . , 08, correspond to the constraints that the total sum
permodel PI1, PI2, and PI3 is limited by the lower bounds ; 9 and upper bounds D 9 , 9 2
[<], respectively. The last |⇠ | = 3 rows refer to the con�icting recommendations
and the corresponding contraint that only one con�icting recommendation can be
activated.

Furthermore, it is

(028)82[=] = � (018)82[=]
(068)82[=] = � (038)82[=]
(078)82[=] = � (048)82[=]
(088)82[=] = � (058)82[=] .

132

4.3 Complexity-theoretical investigations of the EBRS problem

PI1

'1
'2

'3

PI2

'4
'5

'6

PI3

'7

'8

'9

con�icts

Figure 4.6: Example of the EBRS problem with a totally unimodular constraint
matrix—with the red line an example of a con�ict that is not allowed in
this special case.

More generally, the constraint matrices for this special case are given as follows

� =

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

1 . . . 1
�1 . . . �1

0D1
...
0D<
0;1
...
0;<
0⇠1
...
0⇠
|⇠ |

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

=
©≠≠≠
´

1=
�1=
�0

�⇠

™ÆÆÆ
¨
2 {�1, 0, 1}(2(<+1)+|⇠ |)⇥=

where 0D1 , . . . , 0
D
< 2 {0, 1}= and 0;1, . . . , 0

;
< 2 {�1, 0}= are the row vectors of the

matrix. They assign the variables G8 to the corresponding model PI 9 , 9 2 [<].
0⇠1 , . . . , 0

⇠
|⇠ |
2 {0, 1}= are the row vectors, each corresponding to a pair of con�icts

according to the de�nition of ⇠. For more details on the de�nition of these vectors
we refer to section 3.6.

133

4 Expert-based recommendation systems

We combine the row vectors into matrices in the following way.

�0 =

©≠≠≠≠≠≠≠≠≠
´

0D1
...
0D<
0;1
...
0;<

™ÆÆÆÆÆÆÆÆÆ
¨

2 {�1, 0, 1}2<⇥= and �⇠ =
©≠≠
´

0⇠1
...
0⇠
|⇠ |

™ÆÆ
¨
2 {0, 1}|⇠ |⇥=

The corresponding vector 1 is given by

1 = (D, ;, D1, . . . , D<, ;1 . . . , ;<, 1, . . . , 1)) 2 Z(2(<+1)+|⇠ |)⇥=.

As we can see 1 is integer with D, ;, D1, . . . , D<, ;1, . . . , ;< 2 N0. Therefore, it only
remains to show that � is TU.

Before proving that � is totally unimodular, we give a brief description of the matrix
�. We denote with (= {'1, . . . , '=} the set of all given recommendations and
with (1, . . . , (< the set of recommendations per model PI 9 , 9 2 [<]. With ⇡ = ;
we know that (1, . . . , (< build a partition of (. Thus, the vectors 0D1 , . . . , 0

D
< as

well as 0;1, . . . , 0
;
< are linear independent and, moreover, by summing the vectors

0D1 , . . . , 0
D
< as well as 0;1, . . . , 0

;
< we obtain a vector consisting only of 1’s and �1’s,

respectively. However, 0D1 is linear dependent on 0
;
1, 0

D
2 is linear dependent on 0

;
2,

and so on.

�⇠ is a submatrix, which represents the con�icts between the recommendations.
Its rows have at most two non-zero entries. Furthermore, as a recommendation
can at most be in con�ict with one other recommendation, the rows of �⇠ , i.e.,
0⇠1 , . . . , 0

⇠
|⇠ |
, are linear independent.

Proposition 4.3.3. � is totally unimodular.

Proof. To show total unimodularity, we need to prove that det(*) 2 {�1, 0, 1} for
each quadratic submatrix * 2 {�1, 0, 1}:⇥: of � with : = |� | and � ✓ {1, . . . , 2 +
2< + |⇠ |}. For : = 1 this is directly implied by

� = (0 98) 92(2+2<+|⇠ |)
82[=]

2 {�1, 0, 1}(2+2<+|⇠ |)⇥=.

Therefore, let : > 1. W.l.o.g., we assume that : rows are selected from the matrix �
and build a new quadratic submatrix* 2 {�1, 0, 1}:⇥: . We discuss the following
four cases to prove that det(*) 2 {�1, 0, 1}, for all possible case constellations
arising from drawing : rows from the constraint matrix �.

134

4.3 Complexity-theoretical investigations of the EBRS problem

a) All : rows are drawn from the submatrix �0, i.e., the sample consists of rows
that assign the recommendations to their lower and upper bounds per model
PI 9 , 9 2 [<].

Let ⌫ 2 {�1, 0, 1}:⇥= be a submatrix of �0. As (1, . . . , (< is a partition of (we
know, that each recommendation is assigned to exactly one model PI 9 . Thus,
in each column of �0 there exist at most two non-zero entries and all non-zero
entries of �0 are either 1 or �1. With these conditions, we can �nd a partition
(�1, �2) of � , |� | = : as shown below.

In case 0D9 and 0
;
9 for 9 2 [2<] are drawn, we know that the determinant is zero,

as the vectors are linear dependent. By de�nition of �0, it is the only case where
the submatrix ⌫ has two non-zero entries per column. Otherwise, there is only
one non-zero entry, which is 1 or �1. Moreover, we know that 0D1 , . . . , 0

D
< as well

as 0;1, . . . , 0
;
< are linear independent and therefore, there are no overlapping

non-zero entries in the columns. Due to linear independence, it is possible to
assign one of these rows to an index set �1 or �2 without a�ecting the assignment
of the other rows. With this knowledge and due to the fact that at most one
entry per column is non-zero, we can arbitrarily assign each row to �1 or �2.
Thus ⌫ is totally unimodular by lemma 3.6.9 and all quadratic submatrices* of
⌫ have determinants equal to �1, 0, and 1.

If : = 2< and thus all rows are drawn from the matrix �0, we have the special
situationwith linear dependent row vectors. The determinant of linear dependent
vectors is zero.

b) In this case, we assume that all : rows are drawn from the submatrix �⇠ , i.e., the
submatrix containing all pairs of con�icting recommendations. And therefore
we know that all columns are linear independent. The columns of matrix �⇠
contain at most one non-zero entry and all entries are either 0 or 1. Therefore,
we can �nd a partition (�1, �2) of � by distributing the rows arbitrarily. Thus
we can apply lemma 3.6.9 and have shown that �⇠ is totally unimodular. And
therefore, the determinant of each quadratic submatrix * of �⇠ equals �1, 0,
or 1.

c) None of the : rows drawn contains the rows (018)82[=] = 1= or (028)82[=] = �1=,
i.e., neither row is selected, which refers to the constraint that the total sum of
all recommendations is bounded by a lower or upper bound, respectively.

Similar to the �rst case, if 0D9 and 0
;
9 with 9 2 [2<] are drawn from � for any

square submatrix* 2 {�1, 0, 1}:⇥: , then the determinant of* is zero.

We consider in the following the submatrix ⌫ 2 {�1, 0, 1}:⇥= drawn from � as
described in this case. For the remaining cases it holds, that the columns of ⌫
have at most two non-zero entries. To apply lemma 3.6.9, we need to show that
there is a partition (�1, �2) of � .

135

4 Expert-based recommendation systems

W.l.o.g., we assign all rows of �⇠ to the index set �1, since all rows of �⇠ are
linear independent. We now only need to assign the rows of the matrix �0 to
an index set. Since in this case the rows (018)82[=] = 1= and (028)82[=] = �1= are
excluded, the rows of the remaining matrix �0 are either linear independent
or the columns with two non-zero entries have the values 1 or �1, but in such
a way that one row consists only of 1 and the other only of �1. For better
understanding, we give the following example for the case of columns with two
non-zero entries.

©≠≠≠
´

1 1
�1 �1

1 1 1
�1 �1 �1

™ÆÆÆ
¨

And therefore it is possible, that we assign all rows of �0 with 1’s to �2 and with
�1’s to �1. In summary, the assumptions of lemma 3.6.9 are ful�lled and thus, ⌫
is total unimodular, i.e., the determinant of each square submatrices of ⌫ is �1,
0, or 1.

d) In the last case, it is also possible to draw from the �rst two rows (018)82[=] = 1=
and (028)82[=] = �1= of the matrix �.

If both rows are drawn from the matrix �, we know that the determinant is zero
because they are linear dependent. Therefore, we exclude all cases where both
rows are drawn. In addition, we also exclude all cases discussed above

Let ⌫ 2 {�1, 0, 1}:⇥= be the drawn submatrix of �. After excluding the cases
just mentioned, all columns of ⌫ have at most three non-zero entries. We can
distinguish between two cases—in the �rst one (018)82[=] = 1= is drawn, and in
the second one (028)82[=] = �1= is drawn. For both cases we show that we can
�nd a partition (�1, �2) of � such that equation 3.7 holds.

da) Let (018)82[=] = 1= be drawn �rst. W.l.o.g. let 118 = 018 for all 8 2 [=].
Furthermore, let the index of (118)82[=] be assigned to �1, i.e., 1 2 �1. Then,
all rows drawn from �0 can be assigned to the partition by the following
rules.

daa) All rows of ⌫ drawn from rows 0D1 , . . . , 0
D
< of � are assigned to

partition �2.

dab) All rows of ⌫ drawn from rows 0;1, . . . , 0
;
< of � are assigned to

partition �1.

Finally, we have to assign the rows drawn from �⇠ to the partition. For
this purpose, we consider the following �gure 4.7. First, however, it should
be noted that because of the remark 3.6.7, we can permute the columns and
rows of the matrix ⌫ arbitrarily, so that we have the structure chosen in
the �gure. Again, we omit the zeros in the �gure.

136

4.3 Complexity-theoretical investigations of the EBRS problem

1 . . . 1

1 . . . 1
1 . . . 1

. . .

�1 . . .�1
�1 . . .�1

. . .

�1

�2

�1

(018)82 [=]

128...
1:D8

from 0D
1 ... 0D

<

1:D+1,8
...

1:; 8

from 0;
1 ... 0;

<

⌫⇠

Figure 4.7: Assignment of the rows of the constraint matrix �⇠ to �1 or �2 of the
partition � = (�1, �2). For the matrix ⌫⇠ , the non-zero turquoise part can
be assigned to either �1 or �2, since the row sum is already zero due to
the assignment of 0D1 , . . . , 0

D
< to �2 and the assignment of 0;1, . . . , 0

;
< to

�1. The rows of the pink part of ⌫⇠ that are non-zero must be assigned
to �2 since (018)82[=] has already been assigned to �1.

By ⌫⇠ 2 {0, 1}:⇠⇥= we denote the submatrix of ⌫ generated by drawing
any number :⇠ of rows of �⇠ .

Any non-zero entry of ⌫⇠ is 1. Furthermore, the �rst row of the matrix
(018)82[=]—which contains only 1’s—and all drawn rows from 0D1 , . . . , 0

D
<—

which also contain 1’s and 0’s—are assigned to �1 and �2, respectively. So
the turquoise part of the matrix ⌫⇠ can be assigned to either �1 or �2 and the
equation (3.7) is still satis�ed. All rows of ⌫⇠ with non-zero entries in the
pink part must be assigned to �2. It remains to prove that the assignment
of all rows with non-zero entries in the pink part to �2 is possible.

Suppose thatwe cannot assign one of these rows to �2. Let w.l.o.g. (1:⇠ 8)82[=]
be this row, which is the last row of ⌫⇠ . Each row of ⌫⇠ consists of two
non-zero entries, both equal to 1. It would not be possible to assign this row
to �2, if an entry—the one not included in the pink area—must be assigned
to �1. This is the case if there exists a second row vector of ⌫⇠—suppose it
is w.l.o.g. (1 (:⇠�1)8)82[=]—for which

1:⇠ 8 = 1(:⇠�1)8 = 1, 8 2 [=] .

This can only be the case if there exists a second con�ict for recommendation
'8 . Yet, such a case is excluded for the special case considered in this
subsection.

137

4 Expert-based recommendation systems

db) Finally, let (028)82[=] = �1= be drawn. The proof is similar to the case just
discussed. However, the assignment di�ers in the following way.
W. l. o. g we assign (028)82[=] to the index set �1. The rows drawn from �0

are assigned to the partition by the following rules.

dba) All rows of ⌫ drawn from rows 0D1 , . . . , 0
D
< of � are assigned to

partition �1.

dbb) All rows of ⌫ drawn from rows 0;1, . . . , 0
;
< of � are assigned to

partition �2.

To satisfy equation (3.7) of theorem 3.6.11, the rows of ⌫⇠ having non-zero
entries in the columns of the pink area must be assigned to �1. The proof
that the assignment of all rows with non-zero entries in the pink part is
possible follows the proof of part da).

By proving both cases, we showed that theorem 3.6.11 is ful�lled for all subma-
trices ⌫ 2 {�1, 0, 1}:⇥= with : = |� | and � ⇢ [<].

Hence, we have proved the total unimodularity of �. ⇤

With the total unimodularity of �, we know that the EBRSC problem is equivalent
to its LP relaxation for the case where only pairwise con�icts exist between the
recommendations, and therefore can be solved in polynomial time.

4.3.1.2 Case: Stellar conflicts

We continue to consider the EBRSC problem in this subsection. That is, dependen-
cies between recommendations do not exist, but con�icts do. By further restricting
the set of con�icts ⇠ to allow only pairwise con�icts between the recommendations,
we showed in the last subsection that the associated constraint matrix � of the
associated 0-1-ILP’smax{2) : �G  1} of the EBRSC problem is totally unimodular.
With � totally unimodular and since 1 is integer, the EBRSC problem is equivalent
to its LP relaxation. To obtain the LP relaxation, we omit the G 2 {0, 1}= constraint
of the EBRSC problem and can treat the EBRSC problem as an LP. Thus, we �nd
a solution in polynomial time (if one exists) and this solution is also a solution of
the 0-1-ILP of the EBRSC problem. For more information about the ILP we refer to
section 3.4 and subsection 4.3.1.1.

In this case, we observe another special set of con�icts that is totally unimodular.
Again, we observe pairwise con�icts, but in this case one of this recommendations
can be in con�ict with more than one recommendation. However, the reverse is not
true, i.e., the other recommendations con�ict only with the one recommendation.
The one recommendation which is in con�ict with others is called center of star,

138

4.3 Complexity-theoretical investigations of the EBRS problem

while the recommendations with which the center of the star is in con�ict are called
spikes of the star. We call this special structure of con�icts stellar con�icts.

We illustrate the given situation of the con�ict in �gure 4.8. The blue points
represent the center of the stars, while the black ones are the spikes. Since there are
no con�icts within a model, each recommendation belongs to a di�erent model.

(a) Four-pointed stellar con-
�ict.

(b) Three-pointed stellar
con�ict.

(c) Two-pointed stellar con-
�ict.

Figure 4.8: Di�erent examples for stellar con�icts.

For the case of stellar con�icts, we further exclude the consideration of any lower
and upper bounds. In summary, in this particular case, the only constraints that
have to be considered are stellar con�icts.

We can show that the corresponding constraint matrix �⇠ 2 {0, 1}|⇠ |⇥= consisting
only of stellar con�icts is totally unimodular. With |⇠ | we denote the number of
con�icts.

Before we prove that �⇠ is totally unimodular, we give an example of �⇠ , which
contains two stellar con�icts—the four-pointed star in sub�gure 4.8a as well as the
three-pointed star in sub�gure 4.8b. The corresponding constraint matrix is given
as follows.

�⇠ =

©≠≠≠≠≠≠≠≠≠
´

1 1
1 1
1 1
1 1

1 1
1 1
1 1

™ÆÆÆÆÆÆÆÆÆ
¨

For the proof of the following proposition, we observe the transpose of the matrix

139

4 Expert-based recommendation systems

�⇠ , i.e., for the example we get

(�⇠)) =

©≠≠≠≠≠≠≠≠≠≠≠≠≠
´

1 1 1 1
1

1
1

1
1 1 1
1

1
1

™ÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

. (4.5)

This is admissible since we know by lemma 3.6.8 that � TU if and only if �) TU.
Here, the centers of the stars are given by the �rst and sixth row in the example
matrix (4.5). Furthermore, each of the two lines contains the same number of 1’s as
there are stellar con�icts or corresponding number of spikes of the star. We will
now prove that �⇠ is totally unimodular.

Proposition 4.3.4. �⇠ is totally unimodular.

Proof. To prove that �⇠ is TU we use lemma 3.6.9 and lemma 3.6.8.

We consider in the following (�⇠)) 2 {0, 1}=⇥|⇠ | . By de�nition of the set of con�icts
⇠ = {{'8, '80 2

�(
2
�
| '8 and '80 in con�ict, 8, 80 2 [=]}}—see equation (4.1)—there

are exactly two non-zero entries in each row of �⇠ . And therefore, the columns of
(�⇠)) has two non-zero entries.

We apply lemma 3.6.9 to show that (�⇠)) is TU. Therefore, we need to �nd a
partition (�1, �2) of the index set � , such that for all columns of (�⇠)) with two
non-zero entries with the same sign, we can assign one row to the index set �1 and
the other to index set �2 (see third condition of lemma 3.6.9).

W.l.o.g. we assign each row of the matrix that belongs to a center of a star to �1, and
each row that belongs to a spike of a star to �2.

The so de�ned partition (�1, �2) satis�es the third condition of lemma 3.6.9, which
can be justi�ed as follows.

According to the de�nition of the stellar con�icts, there exist centers, i.e., recom-
mendations '8 , 8 2 [=], which are in con�ict with some other recommendations,
and there exists spikes, which are only in con�ict with the corresponding center.
We denote by '⇤8 the centers of the stellar con�icts.

Let 28 , 8 2 [=], be the number of recommendations, with which center '⇤8 is in
con�ict with. According to the de�nition of the set of con�icts, we further know that
the 8’th row of the matrix (�⇠)) that belongs to the recommendation '⇤8 contains
28 1’s. The remaining rows belong to spikes.

140

4.3 Complexity-theoretical investigations of the EBRS problem

Furthermore, we know that each row of a spike contains exactly one non-zero entry.
With the de�nition of stellar con�icts and the set of con�icts ⇠, there is no row
of the matrix (�⇠)) that contains no non-zero or more than two non-zero entries.
Moreover, all rows belonging to a spike of a star are linear independent, i.e., the
rows have no overlapping 1’s in the columns.

W.l.o.g., we assigned all rows of the constraint matrix belonging to the spikes of the
stars to �2. So, if we sum up all rows assigned to �2 per stellar con�ict, the resulting
vector contains 28 non-zero entries. Because of the pairwise con�icts, these 1’s are
exactly in the same place as the non-zero entries of the corresponding row of the
constraint matrix with the assignment of the recommendations to the center of the
star.

This becomes more apparent when we look at matrix (4.5) again. The �rst row is
the center of a star and the rows two through �ve are the corresponding spikes
of the star. We can see that each column of these rows exists of either two ones
or just zeros. In addition, we can see that we can split the rows so that the row
corresponding to the center can be assigned to �1 and the rows corresponding to
the spikes can be assigned to �2.

In a similar way we can assign other centers of stars and corresponding spikes. With
that we showed that a partition (�1, �2) exists, which satis�es the third condition of
lemma 3.6.9.

Therefore, (�⇠)) is TU. By remark 3.6.8 we also proved that �⇠ is TU. ⇤

Thus, we have proven that in the case of star-shaped con�icts, the matrix of con-
straints is totally unimodular and therefore, the EBRSC problemwith stellar con�icts
is equivalent to its LP relaxation. However, if we add the constraints of an upper
and/or lower bound, the total unimodularity of the constraint matrix � does not
hold anymore. We illustrate this with the following example.

Example 4.3.5. Let eight models PI 9 , 9 2 [<], with < := 8, each containing exactly
one recommendation '8 , 8 2 [=], and = := < = 8 be given. Furthermore, let the
�rst four recommendations be in con�ict to each other—with con�icts taking stellar
shape. Here, let recommendation '1 be the center of the star and '2, '3, and '4 its
spikes. Let the recommendations '5 and '6 be in con�ict with each other, and let
recommendations '7 and '8 not be in con�ict with other recommendations. Each
recommendation '8 can be activated via an activation variable G8 , 8 2 [=], with
G8 2 {0, 1} for all 8 2 [=]. We illustrate the above described models in �gure 4.9.

Beside the con�icts, there exists an upper bound D := 4 and a lower bound ; := 2.
Then, the set of feasible solutions is given by all G 2 {0, 1}8 that satisfy �G  1,

141

4 Expert-based recommendation systems

'1

'2
'3

'4

'5

'6

'7
'8

con�icts

Figure 4.9: Example for stellar con�icts.

more speci�c

©≠≠≠≠≠≠≠
´

1 1 1 1 1 1 1 1
�1 �1 �1 �1 �1 �1 �1 �1
1 1
1 1
1 1

1 1

™ÆÆÆÆÆÆÆ
¨

©≠≠
´

G1
...
G8

™ÆÆ
¨


©≠≠≠≠≠≠
´

4
2
1
...
1

™ÆÆÆÆÆÆ
¨
,

with � 2 {�1, 0, 1}6⇥8 and 1 2 {1, 2, 4}6.

To show that � is not TU, we use the statement of theorem 3.6.11. For this purpose,
we assume that an nonempty set � = {2, 3, 4} ⇢ [<] is given. � would be TU, if we
can �nd a partition (�1, �2) of � , such that equation (3.7) holds.

We can split � as follows.

�1 = {2} and �2 = {3, 4}
�1 = {3} and �2 = {2, 4}
�1 = {4} and �2 = {2, 3}

We omit the cases where we just swap the assignment to the partitions by renaming
�1 to �2 and vice versa. This would lead to the same result of the equation (3.7), but
with a di�erent sign.

None of the above de�ned partitions satisfy

 ’
82�1

08

!)
�

 ’
82�2

08

!)
2 {�1, 0, 1}8.

142

4.3 Complexity-theoretical investigations of the EBRS problem

For example, taking �1 = {2} and �2 = {3, 4} we get

©≠≠≠≠≠≠≠≠≠≠≠
´

�1
�1
�1
�1
�1
�1
�1
�1

™ÆÆÆÆÆÆÆÆÆÆÆ
¨

�

©≠≠≠≠≠≠≠≠≠≠≠
´

2
1
1
0
0
0
0
0

™ÆÆÆÆÆÆÆÆÆÆÆ
¨

=

©≠≠≠≠≠≠≠≠≠≠≠
´

�3
�2
�2
�1
�1
�1
�1
�1

™ÆÆÆÆÆÆÆÆÆÆÆ
¨

8 {�1, 0, 1}8.

Thus, we cannot �nd a partition (�1, �2) for the above de�ned non-empty index set
� = {2, 3, 4} ⇢ [<], so that equation (3.7) is satis�ed. And thus, it is shown that
the constraint matrix � in general is not TU if one de�nes an upper and/or lower
bound in the constraints besides the stellar con�icts.

Without the total unimodularity, an integer solution is not guaranteed when apply-
ing a solving algorithm to the LP relaxation.

The question remains open whether the EBRSC problem with stellar con�icts and
lower ; and/or upper bound D is in the complexity class P orNP. We will not discuss
this question in this thesis.

4.3.1.3 Case: No solution

The last case of the EBRSC problem considers scenarios, for which no solution can
be found. In these scenarios a special combination of con�icts and lower bounds
has the e�ect that two con�icting recommendations are pronounced, which violates
the con�ict constraint and, therefore, no feasible solution is given. This particular
case occurs in the following scenario.

In general, it is not possible to choose arbitrary combinations of activated recom-
mendations when two or more recommendations are in con�ict. This is because as
soon as there is a con�ict between two recommendations, we have to decide which
one to activate. This is expressed by the already known constraint

G8 + G80  1 8{'8, '80} 2 ⇠ .

Here, the recommendations '8 and '80 are in con�ict with 8, 80 2 [=], G8 , and G80
are the corresponding activation variables and ⇠ is the set of con�icts de�ned by
equation (4.1). Let (9 and (9 0 further be the sets of recommendations of the models
PI 9 and PI 9 0 , respectively—i.e., (9 contains the recommendations of model PI 9 and
(9 0 contains the recommendations of model PI 9 0 .

In the de�ned scenario, we consider two or more models PI 9⇤ , 9⇤ 2 [<⇤] ⇢ [<] and
|<⇤ | > 2, for which the lower bound is given by ; 9⇤ := |(9⇤ |. Thus, it is required that
all recommendations of the models PI 9⇤ should be activated.

143

4 Expert-based recommendation systems

Furthermore, for at least two models PI 9⇤ and PI 9 0⇤ , 9⇤, 9 0⇤ 2 [<⇤], for which all
recommendations are to be activated, there exists at least one pair of recommenda-
tions {'8, '80} with '8 2 (9⇤ and '80 2 (9 0⇤ that is in con�ict, i.e., {'8, '80} 2 ⇠. We
should therefore activate either '8 or '80 .

However, according to the de�nition of the corresponding lower bounds, both '8
as well as '80 must be activated to meet the requirement of the lower bounds ; 9⇤
and ; 9 0⇤ , respectively. Thus, we cannot satisfy the requirements of both constraints.
And with that, we cannot �nd a feasible solution of the corresponding EBRSC
problem.

For a better understanding we consider the following example.

Example 4.3.6. Suppose that three experts from an insurance company were
interviewed—an accounting clerk 9 = 1, a manager 9 = 2, and a customer 9 = 3.
Each of these three experts is assigned a model—PI1, PI2, and PI3. And therefore,
< := 3.

Based on the interviews, we found ten recommendations (= {'1, . . . , '10} and so
= := 10. The recommendations are distributed among the three models as follows

(1 = {'1, '2, '3, '4}, (2 = {'5, '6, '7}, (3 = {'8, '9, '10}.

Furthermore, the set of con�icts is given by

⇠ = {{'1, '5}, {'6, '8}, {'4, '9}}.

They are no upper limits de�ned in the example.

In order to increase customer satisfaction while not losing sight of the company’s
goals, the lower limits per model are set to

;1 := 1, ;2 := |(2 | = 3, and ;3 := |(3 | = 3.

The scenario outlined above is illustrated in the following �gure 4.10.

To satisfy the lower bounds, we need to activate all recommendations of the models
PI2 and PI3, which also implies the activation of recommendations '6 and '8. But
these are in con�ict and therefore, according to the con�ict constraint, either '6
or '8 can be activated. Thus, an algorithm cannot �nd a feasible solution for this
scenario.

The following lemma shows that there exists no solution, if the scenario of this use
case is given.

Lemma 4.3.7. Let two or more models PI 9⇤ , 9⇤ 2 [<⇤] ⇢ [<] and |<⇤ | > 2 be given,
where the lower bounds are de�ned by ; 9⇤ = |(9⇤ | and ; 9 0⇤ = |(9 0⇤ | for 9⇤, 9 0⇤ 2 [<⇤] ⇢
[<] and <⇤ > 2. If there exists a con�ict {'8, '80} 2 ⇠ with '8 2 PI 9⇤ and '80 2 PI 9 0⇤ ,
then, no solution to the problem exists.

144

4.3 Complexity-theoretical investigations of the EBRS problem

;1 = 1

PI1

'1

'2

'3

'4

;2 = 3

PI2

'5
'6

'7

;3 = 3

PI3

'8

'9 '10

Figure 4.10: Example for the case “No solution” for con�icting recommendations.

Proof. Let w.l.o.g. PI 9⇤ and PI 9 0⇤ be twomodels, for which ;⇤ 9 := |(9⇤ | and ; 9 0⇤ := |(9 0⇤ |
hold. Furthermore, there exists a con�ict {'8, '80} 2 ⇠ with '8 2 PI 9⇤ and '80 2 PI 9 0⇤ .

To satisfy the lower bounds ; 9⇤ = |(⇤ 9 | and ; 9 0⇤ = |(9 0⇤ | all recommendations of PI 9⇤
and PI 9 0⇤ are activated, i.e., G8 = 1 for all '8 2 (9⇤ and G80 = 1 for all '80 2 (9 0⇤ . Thus,
the inequality of the con�ict constraint is no longer satis�ed, because it is

G8 + G80 = 2 > 1 8'8 2 (9⇤ , '80 2 (9 0⇤ .

However, if we meet the the inequality G8 + G80  1 for all con�icting pairs of
recommendations {'8, '80} 2 ⇠, we cannot activate all '8 2 (9⇤ or '80 2 (9 0⇤ . So
the constraint belonging to the lower bounds cannot be satis�ed.

Thus, no solution to the problem exists. ⇤

For the complexity theoretical investigation this case is noteworthy as we can prove
in �nite time that no solution exists. We show that by the following corollary.

Corollary 4.3.8. The assumptions of lemma 4.3.7 can be checked in polynomial time.

Proof. To prove the corollary, we describe a pseudo-algorithm that can be used to
check whether the assumptions for the scenario are met. Further, we show that the
running time of this pseudo-algorithm is polynomial.

The pseudo algorithm consists of the following two steps.

145

4 Expert-based recommendation systems

a) In a �rst step the algorithm has to check if there exist at least two models PI 9 and
PI 9 0 , for which ; 9 = |(9 | and ; 9 0 = |(9 0 |. Therefore, the algorithm has to compare
for all < models, if ; 9 = |(9 | for all 9 2 [<].

To do so, the algorithm must �rst count all recommendations contained in each
set (9 , 9 2 [<]. Since each set (9 contains at most = recommendations—in a
worst case this can be done in O(=).

For each model, secondly, the algorithm must check whether ; 9 = |(9 |. ; 9 as well
as |(9 | are natural numbers, and by =̂ we denote the longest number of digits of
; 9 and |(9 |, respectively, for all 9 2 [<]. In a worst case it takes O(=̂) to check,
if both natural numbers are eqal.

In case it is ; 9 = |(9 | the algorithm must remember it and continue counting
in the background. If the count is greater than or equal to two, the checking
algorithm proceeds, otherwise it stops.

The algorithm for this step has, in the worst case, a running time of O(= + =̂ + 1).

b) Let w.l.o.g. PI 9 and PI 9 0 be two models for which ; 9 = |(9 | and ; 9 0 = |(9 0 | holds.
For all sets of con�icting pairs of recommendations, the algorithm checks if there
exists a pair {'8, '80} 2 ⇠ for which '8 2 (9 and '80 2 (9 0 or vice versa. Both
sets of recommendations (9 and (9 0 contain at most = elements.

Let 2 := |⇠ | 2 N. Then the algorithm must check for each recommendation per
con�icting pair {'8, '80} 2 ⇠, if it is contained in (9 or (9 0 . Thus, the algorithm
of step b) runs in O(4 · 2 · =) = O(2 · =).

We have<models and for each model we have to run the above steps. Therefore, the
total running time of the algorithm isO(<·((=+=̂+1)+2·=)) = O(<·((2+1)·=+=̂+1)).
So the running time of the pseudo algorithm is polynomial. ⇤

Of course, this scenario described above is one of many where the combination of
lower bounds and con�icting recommendations leads to an intractable problem,
all of which we will not list in this thesis. However, they are of great importance,
especially in the practical context. When choosing lower bounds, we need to make
sure that a feasible solution is still possible. In this case, we can also prove this in
polynomial time

4.3.2 Existence of dependent but no conflicting
recommendations

In the proof of theorem 4.2.13 we showed that the EBRS problem is NP-complete.
To prove the NP-completeness we reduced the EBRS problem and excluded the
consideration of dependent recommendations, i.e., the set of dependent recom-
mendations was empty—⇡ = ;. In the latter subsection, we considered the EBRS

146

4.3 Complexity-theoretical investigations of the EBRS problem

problem taking into account only con�icting recommendations and looked for cases
of the so-called EBRSC problem that can be solved in polynomial time.

In this subsection, we again look for cases of the EBRS problem that can be solved in
polynomial time, considering dependencies between the recommendations but not
con�icts. The goal of this subsection can be formulated as the following question.

Is the EBRS problem still NP-complete when there are dependent
recommendations but no con�icts between them?

Dependent recommendations occur when experts recommend the same action or
when recommendations from di�erent models in�uence each other. The following
example is intended to illustrate the concept of dependent recommendations in the
context of insurance theory.

Example 4.3.9. We consider the processing of a motor vehicle claim where in special
situations one expert—a clerk—recommends an estimate for repairing the car and
another expert—a business manager— proposes to review all bills, estimates, and
the charge of an expert in general. The recommendation of the business manager
can, of course, only be activated, if there exists a bill, an estimate, or a charge of an
expert.

Given that such a special situation occurs, the recommendation of the clerk is
activated, and by activating the recommendation also the recommendation of the
business manager has to be activated, i.e., the estimate should be reviewed. The
manager’s recommendation is thus dependent on the recommendation of the clerk.

In the insurance context, cases where several experts recommend the same action
seem very likely—making the complexity-theoretical consideration of a recommen-
dation system with dependent recommendations relevant. In particular, it would be
bene�cial to show that the EBRS problem without con�icts but with dependencies
can be solved in polynomial time. However, we will prove that EBRS 2 NP. This
is even true in the case when experts recommend the same actions, i.e., when a
recommendation is included in two or more models.

In order to better distinguish di�erent cases of the EBRS problem, we refer to the
EBRS problem with dependent but not con�icting recommendations as the EBRSD
problem. By proving the following theorem the NP-completeness is shown.

Theorem 4.3.10. The decision problem EBRSD is NP-complete for ⇡ < ; and ⇠ = ;.

Proof. To prove NP-completeness, we have to show that a) EBRSD 2 NP, and b)
EBRSD is NP-hard.

147

4 Expert-based recommendation systems

a) “EBRSD 2 NP”:
We already showed that EBRS 2 NP in theorem 4.2.13. So we found a polyno-
mial time veri�er for the problem, i.e., we can verify in polynomial time if a
given certi�cate C is a solution to EBRS. Without the constraint of con�icting
recommendations, EBRSD is a restriction to EBRS and, therefore, we can also
�nd a polynomial time veri�er for EBRSD. Thus, EBRSD 2 NP.

b) “EBRSD is NP-hard”:
Similar to theorem 4.2.13 we use Karp reduction to show NP-hardness. For more
details on Karp reduction, we refer to de�nition 3.3.13. We therefore will polyno-
mially reduce the perfect matching problem PM to EBRSD, i.e., PM % EBRSD.
We have discussed the perfect matching problem in subsection 3.3.4.3. To prove
that such a polynomial reduction exists, we will �nd a function that transforms
a given instance of PM to a single instance of EBRSD in polynomial time and
prove that both instances result in the same answer.

As an input of the PM problem an undirected graph⌧ = (+ , ⇢) with< := |+ | and
= := |⇢ | and an integer : 2 N0 is given (see problem 3.3.33). The transformation
interprets every vertex E 9 2 + as a model PI 9 for all 9 2 [<]. Each edge
48 2 ⇢ with E(48) = {E 9 , E 9 0} 2 ⇢ is transformed to a recommendation '8 2 (
for all 8 2 [=]. Therefore, the set of recommendations is (= {'1, . . . , '=} and
|(| = |⇢ |. There exist subsets (1 . . . , (< ✓ (and each set (9 , 9 2 [<], consists of
the edges that are linked to the corresponding vertices E1, . . . , E< . We interpret
the connection of the vertices E 9 and E 9 0 by the edge 48 = E(48) = {E 9 , E 9 0} as a
recommendation '8 which is contained in PI 9 as well as in PI 9 0 . Thus, we have
'8 2 (9 \ (9 0 and (9 as well as (9 0 are the sets of recommendations of PI 9 and
PI 9 0 , respectively.

Let " be a matching of size |" | = : . Then, 48 2 " is interpreted as an activation
of the recommendation '8 by setting the activation variable G8 = 1. If 48 8 "
than the corresponding recommendation '8 is not activated and G8 = 0.

To guarantee that a perfect match is found the upper bounds D 9 and the lower
bounds ; 9 of every model PI 9 , 9 2 [<], are de�ned to be equal to one. Further-
more, the weight of every recommendation is equal to one, which is why W8 = 1
for all 8 2 [=].

The dependencies are given by activating the same recommendation of di�erent
models. That means, if we activate recommendation '8 we have to activate '8
in PI 9 as well as in PI 9 0 if the corresponding edge 48 connects the vertices E 9 and
E 9 0 , and the dependency set is given by

⇡ = {'8 2 (|'8 2 (9 \ (9 0 < ; for 8 2 [=] and 9 , 9 0 2 [<]}.

Finally, no upper D and no lower bound ; is de�ned.

148

4.3 Complexity-theoretical investigations of the EBRS problem

Similar to the proof of theorem 4.2.13, the transformation is computable in
polynomial time, since it consists of one-to-one translations. Because each
vertex E 9 of the undirected graph is transformed to a model PI 9 for all 9 2 [<]
and each edge 48 is interpreted as a recommendation '8 for all 8 2 [=] (and
= := |⇢ | = |(|).

We show the correctness of this transformation by proving the following claim.
The claim also shows that an instance of PM and an instance of EBRSD have the
same answer by applying the assumed subroutine for EBRSD.

Claim: Let : 2 N0 (with :  =). An undirected graph ⌧ = (+ , ⇢) has a perfect
matching " of size at least : if and only if the sum over all activation variables
of the corresponding recommendations is at least : under consideration of the
given dependencies and the lower and upper bounds.

“)” Let " be a perfect matching of graph ⌧ with size at least : , i.e., |" | � : .
Using this assumption, we show that the sum over all activation variables
is also at least : under consideration of the constraints.

Every edge 48 is transformed to a recommendation '8 for all 8 2 [=]
and we know if 48 2 " than the corresponding recommendation '8 is
activated, and G8 = 1 according to the transformation. No two edges in "
share a common vertex, which means that at most one recommendation
per model PI 9 is activated and, therefore, the constraints D 9 = 1 for all
9 2 [<] are satis�ed. As " is a perfect match all vertices in the graph are
linked to an edge of the matching and, thus, at least one recommendation
is activated in every model PI 9 and the constraints ; 9 = 1 are met for all
9 2 [<]. With 48 2 " the recommendation '8 2 (9 \ (9 0 < ; is activated
and the dependency constraint is satis�ed, too. Finally, with W8 = 1 for all
8 2 [=] the sum over all activation variables is truly : or higher.

“(”: We assume that the sum over all activation variables is at least : and the
constraints are met. Under this assumption we prove that there exists a
perfect matching" of at least : edges for an undirected graph⌧ = (+ , ⇢)
with = = |⇢ | edges 48 , 8 2 [=], and < = |+ | vertices E 9 , 9 2 [<].

Let " consist of all activated recommendations '8 . With the activation of
'8 the activation variable G8 is set to one in the models PI 9 and PI 9 0 due to
the dependencies. Because of D 9 = 1 for all 9 2 [<], at most one variable
can be set to one per model PI 9 , 9 2 [<]. So no other recommendation
can be activated in PI 9 or PI 9 0 , respectively. Therefore, as every model
corresponds to a vertex of the undirected graph no other edge is contained
in " , which is linked to the vertex E 9 or E 9 0 . Since the lower bound ; 9 = 1
for all 9 2 [<], each vertex E 9 is guaranteed to have an adjacent edge.
Thus, the set " is a perfect match.

149

4 Expert-based recommendation systems

As the sum over all activation variables is at least : and W8 = 1 for all
8 2 [=], " has cardinality |" | � : . Therefore, " is a perfect match of
size at least : .

In summary, it is shown that the EBRSD problem is NP-complete. ⇤

Wenow know that the EBRSD problem isNP-complete in general. Since we consider
this case of the EBRS problem to be very likely, the question now is whether we
can �nd cases where the EBRSD problem is solvable in polynomial time. As already
mentioned, we could not �nd such cases in the context of this work. However, we
think that further analysis could be quite interesting.

In the following subsection, we show that there are cases of the EBRSD problem
for which no feasible solution exists—similar to the EBRSC problem.

4.3.2.1 Case: No solution

Similar to subsection 4.3.1.3, we also can �nd scenarios with dependent recommen-
dations, for which in combination with lower and upper bounds no feasible solution
can be found. Above all, these scenarios show that care must be taken when setting
upper and lower bounds to ensure that they �t the given interdependencies between
recommendations. By pronouncing a dependent recommendation, one or more
other recommendations are activated, so an upper or lower bound may need to be
adjusted accordingly. Otherwise, a constraint may not be met.

We give an example for such a scenario, but do not intend to list all possible scenarios
for which no feasible solution exists. Similar to the case of con�icting recommenda-
tions, also in the case of dependent recommendations we can check in polynomial
time if the lower and upper bounds are not set such that the algorithm cannot �nd
a feasible solution—and refer to the proof of corollary 4.3.8 in subsection 4.3.1.3.
Similar to that corollary, we can show that there is no feasible solution in the EBRSC
problem.

One possible scenario, in which no feasible solution can be found, is given by two
models, for which dependent recommendations exist. Let PI1 and PI2 be such two
models and let

⇡0 = {('8, '80) 2 (1 ⇥ (2 | '
0

8 requires '8 with 8, 8
0
2 [=]} (4.6)

be the set of dependent recommendations between PI1 and PI2. More precisely, ⇡0 is
a set of directed recommendations, in which some recommendations of PI2 require
recommendations of PI1. Furthermore, let 30 := |⇡0| 2 N0 be the number of depen-
dent recommendations between PI1 and PI2. ⇡0 is de�ned by pairwise dependencies
between recommendations. And therefore, if we activate one recommendation of a
pair, we also activate the other one. So in case of activation of 30 recommendations

150

4.3 Complexity-theoretical investigations of the EBRS problem

(one of each pair), all corresponding recommendations are activated, too. And with
that there are 2 · 30 recommendations activated.

For the scenario we further de�ne that w.l.o.g. all recommendations of PI1 should
be activated and therefore, ;1 = |(1 |.

We cannot �nd a feasible solution, if the overall upper bound is de�ned by

D < 2 · 30 + (;1 � 3
0
) = ;1 + 30.

Of course, a similar scenario can be de�ned with interacting recommendations. The
following example illustrates a scenario where no feasible solution exists.

Example 4.3.11. In this example our goal is to increase the customer satisfaction
and, therefore, all recommendations of the customers should be pronounced. Let PI1
be the model of the customers with four recommendations (1 = {'1, '2, '3, '4}.
To increase the customer satisfaction we want to force that all recommendations
of PI1 are activated and, therefore, ;1 = 4. Let there be a second model PI2 with six
recommendations (2 = {'5, . . . , '10}. Furthermore, the set of dependent recom-
mendations is given by

⇡0 = {('2, '5), ('3, '6), ('4, '7)}.

To keep the claims processing manageable for the clerk, we de�ne an overall upper
bound with D = 6 < 4+ 3 = ;1 + 30. The de�ned scenario can be illustrated as shown
in �gure 4.11.

PI1 (customer)

;1 = 4

PI2
D = 6

dependency

Figure 4.11: Example for the case “No solution” for dependent recommendations.

By activating all recommendations of PI1 as it is demanded by ;1 = 4, we activate
the recommendations '1, . . . , '7, i.e., seven recommendations. We can activate no
less than these seven recommendations, because in addition to ; 9 = 4, we must also
consider the dependencies to the recommendations of the model PI2, and, therefore,
'5, '6, and '7 have to be activated. Yet, this is in contradiction to D = 6. Thus, no
feasible solution can be found.

151

4 Expert-based recommendation systems

Similar to this example, we can show that for the more general scenario no feasible
solution exists.

Lemma 4.3.12. Let PI1 and PI2 be two models, for which a set of dependent recom-
mendations exists. The set of dependent recommendations is de�ned by equation (4.6)
with 30 := |⇡0|. Furthermore, w.l.o.g. the lower bound for model PI1 is de�ned by
;1 := |(1 |, where (1 is the set of recommendations of model PI1. For the total upper
bound D 2 N0 it holds that D < 2 · ;1 + 30. Then, there exists no feasible solution.

Proof. With ;1 = |(1 | we have to activate all recommendations of model PI1. With
the de�nition of ⇡0, there are 30 recommendations in PI2 that depend on 30 rec-
ommendations in PI1. With that, we have to activate ; 9 + 30 recommendations, i.e.,Õ=
8=1 G8 = ; 9 + 3

0. With D 2 N0 and D < ;1 + 30, we know that D  ;1 + 30 � 1. But
=’
8=1

G8 = ; 9 + 30 > ; 9 + 30 � 1 � D

which is a contradiction to the constraint
Õ=
8=1 G8  D. And therefore, we cannot

�nd a feasible solution to the de�ned scenario. ⇤

4.3.3 No conflicts and no dependencies

In this last subsection of the complexity-theoretical investigation, we turn to the case
in which there are neither con�icts nor dependencies between the recommendations.
Since no con�icts or dependencies have to be taken care of when activating the
recommendations, but only the compliance with lower and upper bounds has to be
considered, the conjecture is that such cases of the EBRS problem can be solved in
polynomial time.

In fact, we can show that for the EBRS problem with constraints consisting only
of lower and upper bounds, there exists a polynomial time algorithm to solve the
problem. We discuss it in subsection 4.3.3.1.

However, we also want to discuss another case of the EBRS problem, where a
weighted sum of all activation variables per model cannot exceed a certain upper
bound. Such a constraint is useful and necessary if, for example, the in�uence of
the recommendations on the quality of the claims processing should be evenly
distributed among all models. In which we add a weighting of the activation
variables into our model, the considered problem is no longer solvable in polynomial
time, but NP-complete.

In subsection 4.3.3.1, we start with the discussion about the polynomial-time solution
algorithm for the case where—without weighting—the upper and lower bounds
must be satis�ed. Following that, we describe the special case of a limited weighted
sum per model PI 9 , 9 2 [<] in subsection 4.3.3.2.

152

4.3 Complexity-theoretical investigations of the EBRS problem

4.3.3.1 Case: Only bounds

In the special case of the EBRS problem discussed here, there are no dependencies
or con�icts between recommendations that constrain the maximization of quality,
only lower and upper bounds. Therefore, we call it Only Bounds or OB problem.

Beside there are no dependencies between di�erent recommendations '8 and '80 ,
we also assume that no recommendation is included in more than one model, i.e., if
'8 2 (9 than '8 8 {(1, . . . , (9�1, (9+1, . . . , (<}.

We prove, that there exists a polynomial time algorithm to solve the OB problem.

In a �rst step, we set up the program of the OB problem. We just mentioned that the
OB problem is a restricted version of the EBRS problem without consideration of
dependent or con�icting recommendations. Therefore, the program is given by

Program 4.3.13 (OB).

max
=’
8=1

W8G8

s.t. ; 
=’
8=1

G8  D

; 9 
’
'82(9

G8  D 9 8 9 2 [<]

G8 2 {0, 1} 88 2 [=]

with W8 2 R for 8 2 [=] and ;, D, ; 9 , D 9 2 N for 9 2 [<].

In a second step, we describe the algorithm for solving the program. As already
mentioned, there are no dependent recommendations and also no recommendations
that exist in more than one model. Therefore, the sets of recommendations per
model (1, . . . , (< build a partition of (, i.e., (= (1[. . .[(< and (1\ . . .\(< = ;.

The algorithm which solves theOB program is a so-called Greedy algorithm. We will
brie�y explain what is generally meant by Greedy algorithms in the following.

Greedy algorithm is a general term for algorithms described by Dasgupta and
colleagues [DPV06, p. 139] as follows.

“Greedy algorithms build up a solution piece by piece, always choosing
the next piece that o�ers the most obvious and immediate bene�t.”

In other words, the Greedy algorithm chooses in each step the best choice without
considering any step before or after this step. This of course does not guarantee a
global optimal solution in general. But there are problems for which such a global
optimal solution exists. For example, a famous class of problems, for which the

153

4 Expert-based recommendation systems

Greedy algorithm �nds a global optimal solution are problems with the property of
a so-called matroid. This was proven by Rado [Rad57] and Edmonds [Edm71]. We
will not discuss this in this thesis, but refer the interested reader for more details on
Greedy algorithms and matroids to the works of Korte and Vygen [KV06], Dasgupta
and colleagues [DPV06], Kleinberg and Tardos [KT13], and Cormen and collegaues
[CLRS09].

The Greedy algorithm to solve the OB problem is given as follows.

Greedy Algorithm.

Algorithm 4.3.14. a) Sort the weights W1, . . . , W= of the recommendations in
descending order (independent of the model they are contained in) and
number the recommendations, the activation variables, as well as the weights
according to the new sorting by creating a second index : 2 N. With : = 1
denotes the recommendation with the highest weight and : = = denotes the
recommendation with the lowest weight. If two or more recommendations
have the same weight, choose the order arbitrarily.

b) Meet the demands of the lower bounds ;1, . . . , ;< of the models by activating
the recommendations in descending order of the corresponding weights
accordingly.

c) For : 2 [=] iterate the following steps, starting by : = 1.

ca) If G8,: = 1, go a step cf). Otherwise:

cb) Activate recommendation '8,: , i.e., G8,: = 1.

cc) Find model PI 9 , 9 2 [<], to which '8,: belongs.

cd) Check, if the sum over the activated recommendations is greater or
equal to the total lower bound ;. If not, go to step cf).

ce) Check, if W8,: � 0. Otherwise, stop the process.

cf) Check, if the sum over all activated recommendations of model PI 9 (see
step cc)) is lower or equal to the upper bound D 9 of the corresponding
model PI 9 , 9 2 [<]. If the upper bound is not satis�ed, deactivate
recommendation '8,: , i.e., G8,: = 0 and go to step ch). Otherwise:

cg) Check, if the the sum over all activated recommendations is lower or
equal to the overall upper bound D. If D is exceeded, deactivate '8,: and
stop the process. Otherwise:

ch) Activate G8,:+1 and go to step ca). If : = = stop the process.

We know, that there exist no dependencies and no con�icts between the recom-

154

4.3 Complexity-theoretical investigations of the EBRS problem

mendations and, furthermore, (1, . . . , (< is a partition of (. So we do not have
to consider any lower and upper bounds from other models when activating a
recommendation. Moreover, as OB is a maximization problem, an algorithm would
activate as much positive weighted recommendations until an upper bound is
reached. Of course, if the algorithm has to choose between a higher weighted rec-
ommendation and a lower weighted recommendation, it would choose the higher
weighted recommendation. So for example, in case no upper bounds exist and
W8 � 0 for all 8 2 [=], an algorithm would activate all recommendations.

If we consider all this aspects together, the application of a Greedy algorithm to
solve the OB problem seems appropriate. In the following, we will justify the
appropriateness and describe in more details each step of the algorithm de�ned
above.

It is plausible to sort the weights of the recommendations in descending order for
solving the maximization problem. This allows us to generate an algorithm that
works through the maximization step by step until an upper bound is reached.

Since (1, . . . , (< is a partition of (we can sort the weights without considering
the assignment to the models. We apply the sorting algorithm and label the now
re-sorted weights, associated recommendations, and activation variables with a
new index : 2 N in order to still know the original index 8 2 [=], and, thus, the
assignment to the respective model.

In case there exists only upper bounds in the OB problem, an algorithm would
activate as much positive weighted recommendations as possible until the upper
bounds of the models are exceeded or until the weighted sum over all recommen-
dations does not increase anymore, as W8,: < 0. So the di�culty of solving this
problem is given by the compliance with the lower bounds, especially when we
have to consider them at every step where a recommendation is activated. There-
fore, we satisfy the lower bounds of the models ;1, . . . , ;< in the second step of the
algorithm. This means that we no longer have to take them into account during
further processing.

Since we already have activated recommendations, we need to iterate the activation
of additional recommendations step by step considering the overall lower bound ;,
the upper bounds of the models D1, . . . , D< , as well as the overall upper bound D.
Therefore, we create a loop that proceeds according to the index : 2 [=] with the
following steps.

In a �rst step, we need to check if the recommendation is already activated, i.e.,
we check whether G8,: = 1. If this is true, the activation was necessary to satisfy a
lower bound ; 9 and we can proceed immediately to the next step : + 1. Otherwise,
we activate recommendation '8,: by setting G8,: = 1 and check in the further steps
whether we violate any of the other bounds by activating it. Therefore, we �rst
look for the corresponding model PI 9 by searching for the model set (09 to which
'8,: belongs (see step cc) of the algorithm).

155

4 Expert-based recommendation systems

The next steps cd) and ce) ensure that recommendations with negative weight are
only activated if this is necessary due to the total lower bound. Otherwise, the
algorithm excludes this by checking whether the activation of this recommendation
actually increases the total weighted sum.

We check in step cf) of the algorithm whether the sum over all activated recom-
mendation of the model PI 9 is lower or equal to the upper bound D 9 of the model
PI 9 to which '8,: belongs. If the upper bound is exceeded, we need to deactivate
the recommendation, i.e., set G8,: = 0, otherwise, the solution is not feasible.

In step cg) of the algorithm, we check whether the total upper bounds are satis�ed.
If D is exceeded, we deactivate the recommendation and the process stops.

In lemma 4.3.16 we show that this indeed leads to a global optimal solution. To
better understand the operation and procedure of the algorithm, we �rst give the
following example.

Example 4.3.15. Let the set of recommendations (= {'1, . . . , '12} and the models
PI1, . . . , PI4 be given. Let the sets of recommendations per models be given by

(1 = {'1, '2},

(2 = {'3, '4, '5},

(3 = {'6, '7, '8, '9},

(4 = {'10, '11, '12}.

The corresponding weights of the recommendations are de�ned as follows.

W1 = �5, W5 = 4, W9 = 1,
W2 = 10, W6 = 10, W10 = 7,
W3 = �10, W7 = 11, W11 = 5,
W4 = 5, W8 = �5, W12 = �1.

For the models the following lower and upper bounds are given.

;1 = 2, D1 = 2,
;2 = 0, D2 = 1,
;3 = 1, D3 = 3,
;4 = 0, D4 = 2.

Finally, the overall lower bound is given by ; = 3 and the upper bound is de�ned by
D = 7.

We follow the instructions of algorithm 4.3.14.

156

4.3 Complexity-theoretical investigations of the EBRS problem

a) We obtain the following descending list of recommendations (including the
running index :). In parentheses we additionally give the associated weight.

'7 = '7,1(11), '11 = '11,5(5), '12 = '12,9(�1),
'6 = '6,2(10), '4 = '4,6(5), '1 = '1,10(�5),
'2 = '2,3(10), '5 = '5,7(4), '8 = '8,11(�5),
'10 = '10,4(7), '9 = '9,8(1), '3 = '3,12(�10).

b) We satisfy the demands of the lower bounds ;1, . . . , ;4 and activate the recom-
mendations '7,1, '2,3 and '1,10, i.e., G7,1 = G2,3 = G1,10 = 1.

c) We repeat the following steps ca) to cf) of algorithm 4.3.14 until the process
stops. We do not describe each step, but give an example of the �rst two iteration
steps of the loop.

Iteration step 1:

ca) As G7,1 = 1, proceed with : = 2 beginning again with step ca).

Iteration step 2:

ca) G6,2 = 0.

cb) Activate '6,2, i.e., G6,2 = 1.

cc) Search the corresponding model. With '6,2 2 (3 the model is PI3.

cd) With ; = 3 and G7,1 = G2,3 = G1,10 = 1 the total lower bound is satis�ed.
Therefore, we go to step ce) of the algorithm.

ce) It is W6,2 = 10 > 0 and, thus, the activation of recommendation '6,2 increases
the in�uence on the quality.

cf) Check the upper bound of model PI3, i.e.,
Õ
'80 ,:0 2(

0

3
G80,: 0 = 2 < 3 = D3.

cg) Check the overall upper bound, i.e.,
Õ=
8=1 G80,: 0 = 4 < 7 = D.

ch) The process does not stop and recommendation '2,3 is selected.

d) The process stops after six steps and activates the recommendations '7,1, '2,3,
'1,10, '6,2, '10,4, '11,5, and '4,6. Finally, the quality is

12’
8=1

W8G8,: = 42.

With the following lemma we show that the algorithm 4.3.14 actually maximizes
the program 4.3.13.

157

4 Expert-based recommendation systems

Lemma 4.3.16. The algorithm 4.3.14 runs in polynomial time and provides an optimal
solution to program 4.3.13.

Before we prove lemma 4.3.16, we give a short introduction to the so-calledMergesort
algorithm, which is used in the proof of the lemma. We do not describe the algorithm
in detail and refer the interested reader to the work of Dasgupta and colleagues
[DPV06] for more details on Mergesort.

Mergesort is one of the Divide and Conquer algorithms. In short, the algorithm
divides the sorting problem into subproblems (in case of Mergesort into subprob-
lems containing just one element) and solve the subproblems. Subsequently, two
subproblems are merged together, so that the resulting array (data elements of the
same data type—here a list of weights) is still sorted. This procedure is repeated
until the input array is �nally sorted.

We now prove lemma 4.3.16.

Proof. In a �rst step, we prove that the algorithm runs in polynomial time.

In the context of this thesis, we consider it su�cient to illustrate the necessary steps
of the prove. Further, it is not the goal of this chapter to �nd an e�cient algorithm,
but to show that a polynomial algorithm exists.

The steps of the algorithm 4.3.14 are as follows.

a) Sorting the weights of the recommendations in descending order and number the
sorted recommendations, the activation variables, as well as the weights by a new
index : 2 N:

When applying, e.g., theMergesort algorithm to sort the weights, this can be done
in time complexity O(= log =). Adding a new (second) index to each element of
the list of recommendations, is done in time complexity O(=) with = = |(|. In
total, this step runs in O(= + = log =).

b) Meet the demands of the lower bounds of the models ;1, . . . , ;< :

We denote by (0 the set of sorted recommendations and by

(09 := {'801,: 01 , . . . , '80= 9 ,:
0
= 9
}

the set of sorted recommendations of model PI 9 . The number of recommenda-
tions in the sorted model set (09 is given by = 9 := |(09 |.

For each 9 2 [<] the algorithm activates the �rst ; 9 2 N0 recommendations of
the sorted list (09 . Therefore, it needs to look up and activate the �rst ; 9 elements
of the list. With ; 9 2 N0 a constant, this takes O(; 9) = O(1) time.

Overall, the time complexity of this step is O(<), since the algorithm must
perform this step < times.

158

4.3 Complexity-theoretical investigations of the EBRS problem

c) Iterate over all recommendations '8,: for 8, : 2 [=] to �nd those recommendations
that need to be activated such that the overall lower bound as well as all upper
bounds are met:

The third step of the algorithm describes a loop. For each : 2 [=], the algorithm
goes through the following steps.

ca) Check, if G8,: = 1:

Checking G8,: = 0 or G8,: = 1 can be done in O(1).

cb) Activate G8,: :

To activate G8,: the algorithm assigns 1 to it—which can be done in O(1).

cc) Find the model to which '8,: belongs to:

The algorithm has to check for each set of recommendations of the cor-
responding model (9 , 9 2 [<], if '8,: belongs to it. In a worst case, all <
model sets have to be checked. In addition, each entry of the model set (09
has to be checked. But as (1, . . . , (< and also (01, . . . , (

0
< is a partition of

((the assignment to the models was not changed), the algorithm has to
check at most = entries. Therefore, the algorithm is O(< · =).

cd) Check, if the total lower bound ; is already satis�ed:

For that, the algorithm has to calculate
Õ=
8,: G8,: and compare the result to

the total lower bound ;. The calculation of the sum and the comparison
with ; takes O(= + 1) time.

ce) Check, if the corresponding weight is negative:

It can be checked in O(1), if W8,:  0.

cf) Check, if the upper bound D 9 , 9 2 [<], is met:

With step cc) we know the index of the model 9 2 [<] to which the
activated recommendation '8,: belongs. We sum the activation variables
of (09 , and (9 respectively, i.e., we calculate

’
'80 ,:0 2(

0

9

G80,: 0 ,

and compare the result to D 9 . The calculation of the sum takes O(=) in a
worst case, since G8,: 2 {0, 1}. The comparison takes O(1). In total, this
step is done in O(= + 1).

159

4 Expert-based recommendation systems

cg) Check, if D is exceeded:

In a �rst step, calculate the sum

=’
80=1

G80,: 0 .

Similar to step cd) the calculation of the sum and the comparison takes
O(= + 1).

ch) Select the activation variable of recommendation '8,:+1:

As we have a sorted list, we select the next element of the list with index
: + 1. This can be done in O(1) time.

In total, the running time of the loop is asymptotically

O(= · (1 + 1 + < · = + (= + 1) + 1 + (= + 1) + (= + 1) + 1)) = O((< + 3)=2 + 9=)
= O((< + 1)=2 + =).

In total, the algorithm consist of steps, which run in polynomial time and therefore,
the whole algorithm runs in polynomial time. In a worst case, the running time of
the algorithm is O((< + 1)=2 + 2= + = log = + <).

In a second step, we prove that the algorithm �nds an optimal solution.

Given the recommendations are already sorted in descending order, we exclude
w.l.o.g. the case where the recommendations '81,: , . . . , '8? ,:+? with ? ⇢ = have
equal weights, i.e., W81,: = . . . = W8? ,:+? , and the algorithm stops within steps
: , . . . , : + ?. In this case there would be no unique solution, because if the weights
are equal, the algorithm will sort the corresponding recommendations arbitrarily
(see step a) of the algorithm 4.3.14). We can exclude such cases in our consideration,
since they do not a�ect the quality

Õ=
8=1 W8G8 of the procedure.

The OB program is a (linear) maximization problem and therefore, the goal of the
algorithm is to activate as much recommendations with positive weight W8 > 0,
8 2 [=], as possible. Without restrictions by the lower and upper bounds, it would
activate all recommendations with positive weight—note that there exists no con�ict
or dependencies. However, due to the lower bounds per model ;1, . . . , ;< and the
total lower bound ;, the algorithm may be forced to activate recommendations with
negative weights W8  0, 8 2 [=] as well (see also example 4.3.15), and the upper
bounds limit the activation of all positively weighted recommendations.

A maximal solution of the algorithm is found if the recommendations with the
highest (positive) weighting are activated—taking into account all upper and lower
bounds.

160

4.3 Complexity-theoretical investigations of the EBRS problem

Therefore, the Greedy algorithm considered checks at each step whether it can
activate a recommendation with positive weight, i.e., W8,: > 0, or whether it has to
activate a recommendation with negative weight to satisfy a lower bound. Since the
Greedy algorithm proceeds stepwise, by sorting the recommendations in descending
order of their weights, we guarantee that the recommendations with the highest
positive weights are activated �rst.

In the second step of algorithm 4.3.14, we activate all recommendations per model in
descending order to satisfy the requirement of lower bounds ;1, . . . , ;< . By sorting,
we ensure that the recommendations with the highest positive weights per model
PI 9 are activated. Of course, it is possible that in order to satisfy the lower bounds,
the algorithm must activate a recommendation with negative weighting.

In the next steps of the loop, the algorithm checks in each step whether the total
lower bound ; is already satis�ed (i.e., ; recommendations are activated). Only if
; is not satis�ed, the algorithm does not check whether the currently considered
recommendation '8,: has a weight greater than zero, i.e., W8,: > 0. That is, only to
satisfy the lower bounds, it is allowed to activate recommendations with negative
weights.

In case ; is ful�lled, the algorithm activates recommendations until

a) D or D 9 , 9 2 [<], is reached, or

b) W8,:  0 for 8, : 2 [=].

If D is reached or the considered recommendation has weighting W8,:  0, the
algorithm stops. Otherwise, it continues.

Thus, we have shown that activating the recommendation with the highest weight
leads to an optimal solution unless a constraint is violated. ⇤

4.3.3.2 Case: Limited weighted sum per model PI j , j 2 [m]

In a real-world application, it may be reasonable to limit the weighted sum of
activated recommendations per model rather than just limiting the number of
recommendations per model—if the goal is to improve, e.g., the quality of the
claims processing across all models equally. In that case, even if the number of
recommendations per model are quite similar, there can be still a great di�erence
in the impact on the quality. Another example of the need to consider a weighted
sum is to increase the satisfaction of one group of experts—e.g., customers—more
than other expert groups. Since the impact on quality improvement depends on
the weight W8 of a recommendation '8 , 8 2 [=], it may be necessary to consider the
weighing and not only the number of activated recommendations. In the last case
of our complexity-theoretical study, we only consider the constraint of an upper
bound, but we can convert the constraint into a lower bound by multiplying it

161

4 Expert-based recommendation systems

by �1. Given that, the recommendation system must then ful�ll a certain level of
satisfaction if ’

'82(9

W8G8 � ;
W
9

holds for 8 2 [=] and 9 2 [<]. By ;W9 2 R
+

0 we denote correspondingly the lower
bounds adjusted to the weighted sum.

We de�ne the limited weighted sum per model PI 9 by’
'82(9

W8G8  D
W
9 8 9 2 [<] .

Thereby, W8 are the weights of recommendation '8 , 8 2 [=], and DW9 2 R
+

0 is the upper
bound of each weighted sum

Õ
'82(9

W8G8 .

To show that considering a constrained weighted sum of recommendations per
model rather than a constraint on the number of activations can be useful, we give
the following example.

Example 4.3.17. Let two models PI1 and PI2 be given with (1 = {'1, '2, '3, '4} and
(2 = {'5, '6, '7}, and the corresponding weights W1 = 10, W2 = 9, W3 = 15, W4 = 5,
W5 = 1, W6 = 4, and W7 = 5. With that, it is < := 2 and = := 7.

First, we consider the case in which the upper bounds per model are equivalent, i.e.,
D1 = 1 and D2 = 1. The corresponding program is given by

max
7’
8=1

W8G8

s.t.
’
'82(9

G8  1 8 9 2 [<]

G8 2 {0, 1} 88 2 [=] .

In order for W)G to be maximal under the given constraints, the recommendations
'3 and '7 are activated. With that we have

Õ7
8=1 W8G8 = 15 + 5 = 20.

To maximize the weighted sum under consideration of a limit for that weighted
sum

Õ
'82(9

W8G8 we observe the following program:

max
7’
8=1

W8G8

s.t.
’
'82(9

W8G8  D
W
9 8 9 2 [<]

G8 2 {0, 1} 88 2 [=]

162

4.3 Complexity-theoretical investigations of the EBRS problem

with DW1 = DW2 = 10 the weighted upper bounds. Then, by activating '1, '5, '6
and '7 the program under consideration of the constraints is maximum. We getÕ7
8=1 W8G8 = 10 + 10 = 20.

In both cases the quality W)G is the same after maximizing it, but the impact of
each model on the quality is di�erent. In the �rst case, the most impact—measured
by W8—is given by model PI1. However, the impact on the quality in the second
case is equal. Since the quality, i.e.,

Õ
'82(9

W8G8 , measures the satisfaction of the
corresponding expert group, this makes a signi�cant di�erence in the output.

The EBRS problem with limited weighted sum of activated recommendations per
model PI 9 , 9 2 [<] is given by the following linear integer programming formula-
tion. We call it Limited weighted sum problem or LWS problem.

Program 4.3.18 (LWS).

max
=’
8=1

W8G8

s.t.
’
'82(9

W8G8  D
W
9 8 9 2 [<]

G8 2 {0, 1} 88 2 [=]

Before we prove that the LWS problem is NP-complete, we formulate the decision
version of it as follows.

Problem 4.3.19. Given an integer : 2 N0. Can the weighted sum over all activation
variables G1, . . . , G= sum up to a value of at least : by activating a set of appropriate
recommendations, so that the weighted sum of activated recommendations per
model PI 9 , 9 2 [<] does not exceed a prede�ned value DW9 ?

The LWS problem is quite similar to the famous Knapsack problem described in
subsection 3.3.4.4. Even more, with F8 = ?8 for all 8 2 [=], it is similar to the
Subset Sum problem (SUBSET-SUM) problem. Note that the SUBSET-SUM problem
is described in subsection 3.3.4.5.

Therefore, we prove in the following the NP-completeness of the LWS problem by
showing that the LWS problem is a generalization of the SUBSET-SUM problem.
We de�ne the SUBSET-SUM problem similar to Martello and Toth [MT07] and thus
similar to the Knapsack problem with ?8 = F8 for all 8 2 [=].

Proposition 4.3.20. The LWS problem is NP-complete.

163

4 Expert-based recommendation systems

Proof. To show that the LWS problem is NP-complete, we apply a method other
than Karp reduction. This method is described in subsection 3.3.3.2. To show NP-
completeness, we need to prove the two statements a) LWS 2 NP, and b) LWS is a
generalization of SUBSET-SUM.

a) “LWS 2 NP”:
Similar to the proof of theorem 4.2.13 we can show that LWS 2 NP.

b) “LWS is a generalization of SUBSET-SUM”:
Let us assume that there exists a polynomial time subroutine for the LWS prob-
lem.

Given an instance of SUBSET-SUMwith a set of positive integers (= {B1, . . . , B=}
and a target value or knapsack capacity 2 2 Z+, we �nd a transformation with
which the given instance of SUBSET-SUM is transformed to the LWS problem
in the following way.

The set of positive integers (= {B1, . . . , B=} is interpreted as a set of recommen-
dations (= {'1, . . . , '=}. By program 3.3.38 we know that B8 = F8 · G8 for all
8 2 [=], where F8 � 0 is the weight of item 8 for all 8 2 [=]. G8 is de�ned by

G8 =

(
1 if item 8 is selected or “packed”,
0 otherwise.

Therefore, the weight F8 � 0 is interpreted as the weight W8 � 0 for all 8 2 [=]
and G8 is interpreted as

G8 =

(
1 if recommendation '8 is activated or selected,
0 otherwise.

As SUBSET-SUM does not di�erentiate between di�erent models, let < := 1.
With that, there exists only one upper bound DW1 = DW := 2 � 0, where 2 is the
capacity of the knapsack.

We de�ne a set of activated or selected recommendations (0 ✓ (, i.e., a recom-
mendation '8 2 (0, if G8 = 1 for 8 2 [=], and with that (9=1 := (0. That is, instead
of looking at the assignment to a model PI 9=1—we consider only one model—we
interpret the activation as a selection of packed items or in the sense of LWS
problem as a selection of activated recommendations.

This is a polynomial time transformation as in each step, we reinterpret the
instance of SUBSET-SUM to an instance of LWS.

We now prove that a solution of the LWS problem for an instance of
SUBSET-SUM is truly a solution of the SUBSET-SUM problem.

164

4.3 Complexity-theoretical investigations of the EBRS problem

Let < = 1 and (0 ✓ (be a set of activated recommendations, for which
’
'82(0

W8G8  D
W

holds. Since
Õ=
8=1 W8G8 should be maximized, we activate as many recommenda-

tions so that the total weight is closest to DW without exceeding. That is, the set
of activated recommendations (0 contains those recommendations, for which
the sum

Õ
'82(0 W8G8 is nearest to D

W , but does not exceeds the upper bound. With
the above de�ned transformation this is a solution to the SUBSET-SUM problem
and we have therefore found a subset (0 ✓ (, such that the sum of packed items
of (is closest to its knapsack capacity 2, without exceeding it.

⇤

We know from the literature and as already mentioned above that the SUBSET-SUM
problem can be seen as a special case of the Knapsack problem [MT07, CLRS09].
Also in case of the LWS problem we �nd a generalization, for which we can show
that the Knapsack problem can be reduced to it. With that it is stillNP-hard. We can
motivate this generalization of the LWS problem by the following consideration.

We already discussed in subsection 4.2.1.1 that an upper bound for activated rec-
ommendations is reasonable, as a clerk can only process a certain number of rec-
ommendations. Yet, not only the number of activated recommendations can be a
limiting factor. Among other things, also costs, time and the request of support
of other divisions or external companies—e. g. in case of fraud detection—play an
important role in the processing of a claim. Of course these “resources” are not
unlimited and it can therefore be reasonable to include this limiting aspect in the
optimization of the LWS problem. We denote all possible limiting resources as e�ort
48 � 0 for all 8 2 [=]. We will use the term e�ort to refer to all resources that can be
expended during a claims processing.

When a recommendation '8 2 (, 8 2 [=], is activated, this is directly associated to
an e�ort 48 . When activating a recommendation we have to make sure—regardless
of how we de�ne “e�ort”—that a previously de�ned overall upper bound D4 is not
exceeded. Of course, it is 48 � 0 for all 8 2 [=]. Furthermore, we assume that the
upper bound is a natural number, i.e., D4 2 N0. We discuss the e�ort and especially
the de�nition of the upper bound in more detail in section 5.1.

According to these considerations we can now set up the following program.

165

4 Expert-based recommendation systems

Program 4.3.21 (LWSE).

max
=’
8=1

W8G8

s.t.
=’
8=1

48G8  D
4

G8 2 {0, 1} 88 2 [=]

So that the problem cannot be solved trivially, we assume that

48  D
4

88 2 [=], and
=’
81

48 > D
4 .

As in the EBRS program (see program 4.2.8) in general as well as in the cases
discussed above, we want to maximize the quality of the claims processing

Õ=
8=1 W8G8

by activating appropriate recommendations. Since the resources we can use during
a claims processing are limited, it may be reasonable to take into account the e�ort
involved in making a recommendation. To express this limitation, we de�ne an
overall upper bound D4 2 N0. The constraint is thus de�ned by

=’
8=1

48G8  D
4 .

This is somehow similar to the Knapsack problem (see program 3.3.35). We can
interpret the overall upper bound D4 as the knapsack capacity 2. The weight limit for
the knapsack in our case is the limit of the resources we can use. Themaximization of
the value of the packed items in the knapsack can be interpreted as the maximization
of the quality of the claims processing by activating appropriate recommendations.
In both cases we activate a recommendation—or pack an item, respectively—by
setting G8 = 1, and G8 = 0 otherwise for 8 2 [=].

Or, to put it more �guratively, we put our recommendation into the knapsack of
activated recommendations and want to �ll this knapsack as valuable as possible
without exceeding the knapsack capacity or knapsack resources, respectively.

The big di�erence between both programs is, that the weights W8 2 R are not positive
integers like the values ?8 of the KP program. Nevertheless, we can show that the
LWSE problem is NP-hard by reducing the KP problem to the LWSE problem. We
will not prove the NP-hardness of the LWSE problem as the proof is similar to the
proof of proposition 4.3.20. Instead, we draft the proof.

If we assume, that there exists a polynomial time algorithm to solve the LWSE
problem than we would also have a polynomial time solver for the KP program

166

4.3 Complexity-theoretical investigations of the EBRS problem

by simply restrict W8 to W8 � 0 for all 8 2 [=]. Beside the transformed weights W8 ,
8 2 [=] the polynomial time solver accepts the rest of the instance of the KP problem
without transformation. Of course, this can be done in polynomial time, which
shows the NP-hardness.

To show LWSE 2 NP we can proceed similarly as in the proof of the theorem 4.2.13.
Finally, we state the following proposition without proof.

Proposition 4.3.22. The LWSE problem is NP-complete.

In practice, there are cases where dependent and/or con�icting recommendations
exist in addition to the constraint of limited resources—as discussed in the LWSE
problem. Furthermore, it also might be reasonable to limit the resources per model
PI 9 by a lower bound ;49 , 9 2 [<]. Consider, for example, an insurance company
that is more willing to invest greater resources in customer satisfaction than in the
satisfaction of other experts’ needs.

We will not discuss this generalization of the LWSE problem in detail in this thesis,
but will describe its assumptions in an outlook in section 5.1.

167

4 Expert-based recommendation systems

168

5 Outlook and Conclusions

We will end this thesis with an outlook on the utility and necessity of considering
“e�ort” in maximizing the EBRS problem. We have already introduced the basic
idea in subsection 4.3.3.2. In the LWSE problem, we considered only lower and
upper bounds in the constraints of the problem. We now deepen and extend this
idea to a generalized form that also considers dependencies and con�icts between
recommendations. Thus, we extend the EBRS problem to include the idea of an
e�ort in section 5.1. In the �nal section 5.2, we summarize the results of this work
and provide suggestions for further analysis on this topic.

5.1 The e�ort—a generalization of the EBRS
problem

Making a recommendation involves a certain amount of e�ort, which can vary
depending on the recommendation. In the context of claims processing in the
insurance industry, the term e�ort can be understood primarily in terms of cost and
time, whereby other aspects of e�ort are also possible and reasonable.

In case of costs, this primarily refers to claims adjustment expenses, which are de-
�ned by Wagner [Wag17] as costs incurred by an insurance company in connection
with the claims processing. Among them are internal costs (e.g., sta� and material
costs) as well as external costs, arising when engaging third parties such as external
consultants or lawyers. Depending on the recommendation, such costs arise when
the recommendation is activated. For example, by activating the recommendation
“Engage an external consultant”, the insurance company has to pay the consultant.
Of course, there are sta� costs with any claims processing. The more time a claim
handler needs to process the recommendation, the higher the personnel costs.

As further discussed in subsection 2.1.1, customer satisfaction plays a central role
in the digitalization of the insurance industry. According to Köneke and colleagues
[KMPF15], customers rate a claims processing as more satisfactory if the payout
amount is appropriate, and if the time to payout is as short as possible. Of course,
this depends on the severity of the accident. In case of a tragic accident, a customer
will most likely want personal and human attention, whereas in the case of glass
damage, they will most likely want a fast payout that can be handled without

169

5 Outlook and Conclusions

personal contact. We have the ability to map this through the recommendations of
the customer model. However, for some insurance companies, it may as well be
important to consider the time taken to process a recommendation as (part of) the
e�ort in the optimizing of problem EBRS.

The general rule here is that the more recommendations—and the more time-
consuming each recommendation—the longer the processing time.

In terms of e�ciency, there is an interaction between time and cost. As discussed in
subsection 2.1.1, the longer the claims processing takes, the higher the costs. That
is why including time—beside costs—as a limiting factor in the optimization within
the term e�ort (instead of considering it via a recommendation) seems plausible,
and may ensure e�cient claims processing.

Yet, the term e�ort is not limited to time and cost. Depending on the objective and
the situation of the insurance company under consideration, there may be other
factors that need to be taken into account as limiting factors.

We de�ne the e�ort of each recommendation of the EBRS problem as

48 � 0 for all 8 2 [=] .

As we mentioned earlier, there is an upper limit to the amount of e�ort an insurance
company can expend. To re�ect this amount of e�ort in the program, the upper
limit must be adjusted. Instead of placing an upper limit on the number of recom-
mendations D 2 N0, we now de�ne the upper limit as a maximum amount of money
that a company is willing to spend or a maximum duration for the processing of a
claim, for example. Therefore, the upper limit is de�ned by

D4 � 0.

We assume, w.l.o.g., that

48  D
4 for all 8 2 [=], and

=’
81

48 > D
4 .

Otherwise, the problem could be solved trivially.

We call the so-de�ned problem Limited weighted sum problem under consideration
of e�ort (LWSE) as already mentioned in subsection 4.3.3.2, where we have already
shown that the LWSE problem is NP-complete by reducing the Knapsack problem
to it.

In this section, we show that there exist further generalizations of the LWSE problem
that may be important to represent a real claims processing of an insurance company.
We will also brie�y show that the generalizations of the Knapsack problem can also
be reduced to these further generalizations of the LWSE problem.

170

5.1 The e�ort—a generalization of the EBRS problem

Figuratively speaking, this can be justi�ed in the way that instead of packing
a knapsack with items, we now pack a recommendation set by activating the
recommendations accordingly. The items—now recommendations—have both a
value and a weight, the latter being the e�ort in the LWSE problem.

For the LWSE problem in subsection 4.3.3.2, we excluded dependencies and con�icts
between recommendations. However, the case that neither con�icts nor depen-
dencies exist seems unlikely. If we take into account the opinions of customers,
managers and clerks in the respective models, for example, it seems very likely that
there exist pairs of recommendations that are in con�ict with each other—thinking
about the amount of payments, the speed of the process, or of the repair of a car
in the authorized workshop, etc. In addition, there also may exist dependencies
between the recommendations.

In the remainder of this section, we consider the LWSE program extended by
con�icts and dependencies. We call it generalized LWSE problem, or shortly g-
LWSE. It is de�ned as follows.

Program 5.1.1 (g-LWSE).

max
=’
8=1

W8G8

s.t.
=’
8=1

48G8  D
4

G8 + G80  1 8{'8, '80} 2 ⇠

G8  G80 8 ('8, '80) 2 ⇡

G8 2 {0, 1} 88 2 [=]

with W8 2 R for all 8 2 [=], D4 � 0 and 48 � 0 for all 8 2 [=]. The sets of con�icts ⇠
and dependencies ⇡ are de�ned as in equations (4.1) and (4.2), respectively, which
can be found in subsection 4.2.1.1.

We assume (without further proof) that the g-LWSE problem is also NP-complete.
On the one hand, our assumption is con�rmed by the fact that the Knapsack problem
can be reduced to the LWSE problem, which is the g-LWSE problem without the
constraints of dependent and con�icting recommendations (see subsection 4.3.3.2).
On the other hand, it is strengthened by the fact that the g-LWSE problem is
similar to the following generalizations of the Knapsack problem—the Precedence-
constrained Knapsack Problem (PCKP) and the Knapsack problem with con�ict graph
(KCG). Here, the PCKP problem is an extension of the KP problem to include
dependencies, and the KCG problem is an extension of the KP problem to include
con�icts. For more details on both models, we refer to subsection 3.3.4.6. The PCKP
as well as the KCG problem are both NP-complete. Assuming that the parameters W,
4, and D4 of the g-LWSE problem are positive integers, the transformation between

171

5 Outlook and Conclusions

the g-LWSE problem and the PCKP problem, or the KCG problem is more or less a
one-to-one transformation.

Beside the fact that we can prove theNP-completeness of the g-LWSE problem with
the PCKP and theKCG problem, it is also noteworthy that approximation algorithms
are known for both models. Pferschy and Schauer discussed a polynomial-time
approximation scheme (PTAS) and a fully polynomial-time approximation scheme
(FPTAS) in this context [PS16].

Since the g-LWSE problem is very similar to the PCKP and the KCG problem, we
conjecture that we can transfer the approximation algorithm of the PCKP or theKCG
problem to our g-LWSE problem to some extent. It would therefore be reasonable
to check whether a so-called approximation-preserving reduction (or APX reduction)
to the g-LWSE problem exists. An APX reduction can be described in simpli�ed
terms as follows. Suppose that a solution algorithm exists (at least approximately)
for an optimization problem ⇧0. Now, if an instance of an optimization problem
⇧0 can be reduced to an instance of an optimization problem ⇧0, and the solution
of problem ⇧0 can be recovered to problem ⇧ to some extent, then we say that an
APX reduction exists between the two problems. APX reductions are not part of
this thesis, but bear great potential for (approximately) solving NP-hard problems.
We refer the interested reader for more informations on approximation-preserving
reductions to the works of Crescenzi [Cre97], Ausiello and colleagues [AMSC+99],
and Woeginger [Woe05].

It could therefore be of further interest to investigate whether and to what extent
APX reductions exist for the g-LWSE problem.

In summary, the g-LWSE problem may be of interest if the e�ort of a claims pro-
cessing should be taken into account. This can also impact the e�ciency as well as
the e�ectiveness of the processing of claims when considered in the optimization.

5.2 Conclusion

Digitalization o�ers new opportunities in a wide range of industries, including the
insurance industry. Digitalization can also be understood as helping to improve
processes with the help of appropriate recommendations. More and more data
becomes available through various digital tools. Analyzing these data in a meaning-
ful way may help to better understand processes and to uncover opportunities to
optimize these processes. This can be done using appropriate statistical methods
of data analysis. Above that, we wanted to add an additional source of knowledge
when analyzing processes in this thesis—experts. The experience and knowledge
of experts are indispensable and extend the knowledge that can be obtained only
with the help of data. If one includes the expert knowledge in the optimization

172

5.2 Conclusion

of a process, one even has the possibility to make individual implicit and isolated
knowledge of experts explicit and generally available.

Here, we considered the claims processing in the insurance industry. However, the
method developed throughout this thesis can of course also be applied to other
areas of an insurance company—as well as to other industries, or in general to other
�elds of reserach where decisions have to be done incorporating data and expert
knowledge.

A �rst goal of this thesis was to set up an optimization problem to improve the
quality of a claims processing. A novel approach we took in this thesis was to de�ne
(and estimate) the not-yet-known quality of a claims processing. As a �rst step, we
needed to include the target variable of our optimization problem in the dataset.
We achieved this by surveying experts using appropriate statistical methods—in
our case we applied the conjoint analysis. Based on this expert survey, we could
set up an optimization problem, which is why we called the optimization problem
expert-based recommendation system or EBRS, for short.

To determine the quality of a claims process, we focused at completed claims. This
means that we looked at the processes ex post, �rstly. In this way, we obtained
an assessment not only of the quality of the claims processing, but also of various
perspectives—from the customer (or claimant) to the claims processor, and the
manager. At the same time, �nding an appropriate selection of claims processes
is somewhat challenging. On the one hand, we needed to make sure that the full
spectrum of di�erent scenarios in the claims processing is covered. On the other
hand, we had to be careful not to overwhelm the experts with too many cases. To
cover both aspects, we developed the so-called conditional sampling from : clusters,
which is based on the :-medoids method.

Using thismethod, we found a suitable selection of so-called stimuli and surveyed the
experts with them. The conjoint analysis now provided us with suitable statistical
methods to estimate the quality of the claims processing based on the survey results.
In addition, we were able to identify the estimation parameters as recommendations.
We described the methods used to determine the quality of the claims processing
and identify appropriate recommendations in section 4.1.

With quality implemented in the dataset, and the recognition of appropriate rec-
ommendations, it was possible to set up the EBRS problem. In section 4.2, we
formulated the problem and de�ned the constraints.

The second goal of this thesis was to study the optimization problem in terms
of complexity theory. We �rst showed that the EBRS problem is in general NP-
complete. Thus, it is not solvable in polynomial time in general. We proved this
in subsection 4.2.3. However, we have worked out cases for which a polynomial
solution algorithm can be found throughout this thesis.

173

5 Outlook and Conclusions

We divided our complexity-theoretic investigation into the following parts. In
subsection 4.3.1, �rstly—and similar to the NP-completeness proof—we focused
on cases where there are no dependencies between recommendations. That is, we
have excluded the possibility that the activation of one recommendation requires
the activation of another or several other recommendations. Instead, there are
only con�icts between recommendations. That is, when one recommendation is
activated, another recommendation (or several) can no longer be activated. Here, we
could show for two special cases that a polynomial solution algorithm can be found.
In the �rst special case, there are only pairwise con�icts, and in the second special
case, one recommendation can con�ict with several other recommendations, but the
other recommendations in each case con�ict only with that one recommendation.
If we draw this structure by connecting the con�icting recommendations with a
stroke (or edge in graph-theoretic terms), these con�icting recommendations appear
like a star. Hence the name stellar con�icts.

The situation is di�erent when we consider cases where there are dependencies but
no con�icts. We proved in subsection 4.3.2 that the EBRS-problem is NP-complete
even in this case. However, we have not yet been able to �nd a special case in which
the EBRS-problem restricted to dependent but no con�ictual recommendations can
be solved polynomially. Further research is needed in this regard.

For both the EBRS-problem with con�icting recommendations and the EBRS-
problem with dependent recommendations, we found cases for which no solutions
can be found. We also showed that we can identify these special cases in polynomial
time.

Finally, in subsection 4.3.3 we discussed the case where neither con�icts nor depen-
dencies need to be considered in solving the EBRS problem. For this special case,
we found a polynomial solution algorithm for the EBRS-problem.

In both, subsection 4.3.3.2 and section 5.1, we also considered cases where we ex-
tended the EBRS-problem by a so-called e�ort. Considering e�ort seems reasonable
to us because, among other things, making a recommendation involves cost and
time to process that recommendation. With the activation, resources—in our case,
those of the insurance company, which are generally not available in unlimited
quantities—are consumed.

However, even without considering con�icts and dependencies between the recom-
mendations in the constraints, the considered problem is NP-complete if the EBRS-
problem is extended by the e�ort 48 � 0, 8 2 [=]. We proved the NP-completness of
the so-called Limited weighted sum problems or LWS problems in subsection 4.3.3.2.
In doing so, we reduced it to the well-known Knapsack problem or KP-problem.
In section 5.1, we recognized again (now including dependencies and con�icts be-
tween the recommendations) the similarity between the EBRS-problem extended by
e�ort—called now g-LWSE-problem—and the generalizations of the KP-problem.

174

5.2 Conclusion

Focusing on this similarity, we formulated the question whether we can �nd an APX
reduction for the g-LWSE-problem—especially since there are such investigations
also for the generalizations of the KP-problem [PS16]. In the spirit of coping with
NP-completeness, it is worthwhile to �nd out whether we can still solve the problem
approximately well. Moreover, APX reduction may be of interest not only for the
g-LWSE problem, but also for the EBRS problem.

We conclude this thesis with one last relevant question, which we recommend to
be investigated in further work. In our complexity-theoretic investigations, we
found that there is no polynomial solution algorithm for the EBRS problem once
dependent recommendations must be considered in the solution. Here, it would be
worth investigating if our conjecture is con�rmed—or if there is a special case with
dependent recommendations that can be solved in polynomial time.

If the conjecture that the EBRS problem with dependent recommendations is not
polynomially solvable—even with further restrictions—is con�rmed, further e�orts
to �nd approximate solutions would be worth pursuing.

175

5 Outlook and Conclusions

176

Bibliography

[Add62] Sidney Addelman, Orthogonal main-e�ect plans for asymmetrical fac-
torial experiments, Technometrics 4 (1962), no. 1, 21–46.

[AMSC+99] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi,
Giorgio Gambosi, Marco Protasi, and Viggo Kann, Complexity and
approximation, Springer Berlin Heidelberg, 1999.

[BCC+18] Pia Brüggemann, Tanguy Catlin, Jonas Chinczewski, Johannes-Tobias
Lorenz, and Samantha Prymaka, Claims in the digital age: How insur-
ers can get started, https://www.mckinsey.com/industries/�nancial-
services/our-insights/claims-in-the-digital-age, 2018.

[BEPW18] Klaus Backhaus, Bernd Erichson, Wul� Plinke, and Rolf Weiber, Mul-
tivariate analysemethoden, Springer Berlin Heidelberg, 2018.

[BG20] Andreas Brieden and Peter Gritzmann, Predicting show rates in air
cargo transport, 2020 International Conference on Arti�cial Intelli-
gence and Data Analytics for Air Transportation (AIDA-AT), IEEE,
2020.

[BKM21] Andreas Brieden, Christian Krams, and Vanessa Mindl, Innovatives
Schadenmanagement für das digitale Zeitalter, Zeitschrift für Ver-
sicherungswesen 72 (2021), no. 4, 102–104.

[BP04] Johannes Berger and Bernd Postai, Ertragssteigerung durch besseres
Schadenmanagement, Versicherungswirtschaft 10 (2004), 759–762.

[Cag21] Derin Cag, Insurtech �rms: Are they a threat to insurance com-
panies?, https://insurtechdigital.com/insurtech/insurtech-�rms-are-
they-threat-insurance-companies, 12 2021.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein, Introduction to algorithms, 3 ed., MIT Press, 2009.

[Coo71] Stephen A. Cook, The complexity of theorem-proving procedures, Pro-
ceedings of the third annual ACM symposium on Theory of comput-
ing - STOC '71, ACM Press, 1971.

[CRB09] Eugene M. Caruso, Dobromir A. Rahnev, and Mahzarin R. Banaji,
Using conjoint analysis to detect discrimination: Revealing covert pref-
erences from overt choices, Social Cognition 27 (2009), no. 1, 128–137.

177

Bibliography

[Cre97] P. Crescenzi, A short guide to approximation preserving reductions,
Proceedings of Computational Complexity. Twelfth Annual IEEE
Conference, IEEE Comput. Soc, 1997.

[DAV19] DAV Arbeitsgruppe Tari�erungsmethodik, Aktuarieller Umgang mit
Big Data in der Schadenversicherung, Deutsche Aktuarvereinigung
e.V., 5 2019.

[Die17] Reinhard Diestel, Graph theory, Springer Berlin Heidelberg, 2017.

[DPV06] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, Algorithms,
McGraw-Hill Education, 2006.

[DT97] George B. Dantzig and Mukund N. Thapa, Linear programming,
Springer, 1997.

[Edm71] Jack Edmonds, Matroids and the greedy algorithm, Mathematical Pro-
gramming 1 (1971), no. 1, 127–136.

[EG77] Jack Edmonds and Rick Giles, A min-max relation for submodular
functions on graphs, Studies in Integer Programming (P. L. Hammer,
E. L. Johnson, B. H. Korte, and G. L. Nemhauser, eds.), North-Holland,
1977, pp. 185–204.

[FKLM13] Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, and Brian Marx, Re-
gression, Springer Berlin Heidelberg, 2013.

[FMF12] A. Field, J. Miles, and Z. Field, Discovering statistics using r, Sage, 2012.

[Gen21] Görkem Gençer, 3 ways ai enables e�cient claims processing in insur-
ance, https://research.aimultiple.com/insurance-claims-ai/, 12 2021.

[Gen22] , Top 7 technologies that improve claims processing in 2022,
https://research.aimultiple.com/claims-processing, 7 2022.

[GH62] A. Ghouila-Houri, Caract�erisation des matrices totalement unimodu-
laires, Comptes Rendus Hebdomadaires des S�eances de l’Acad�emie
des Sciences 154 (1962), 1192–1194.

[GHH07] Anders Gustafsson, Andreas Herrmann, and Frank Huber (eds.), Con-
joint measurement, Springer Berlin Heidelberg, 2007.

[GJ79] Michael R. Garey and David S. Johnson, Computers & intractability: A
guide to the theory of np-completeness, W. H. Freeman and Company,
1979.

[GLK10] Keith Go�n, Fred Lemke, and Ursula Koners, Identifying hidden needs,
Palgrave Macmillan UK, 2010.

[GLS93] Martin Grötschel, László Lovász, and Alexander Schrijver, Geometric
algorithms and combinatorial optimization, Springer, 1993.

178

Bibliography

[Gow71] J. C. Gower, A general coe�cient of similarity and some of its properties,
Biometrics 27 (1971), no. 4, 857.

[Gri13] Peter Gritzmann, Grundlagen der mathematischen optimierung,
Springer, 2013.

[Gru18] Volker Gruhn, Versicherungen: Von Natur aus für Künstliche Intelligenz
geeignet, Wirtschaftsinformatik & Management 4 (2018), 104–110.

[GS78] Paul E. Green and V. Srinivasan, Conjoint analysis in consumer research:
Issues and outlook, Journal of Consumer Research 5 (1978), no. 2, 103.

[GS90] , Conjoint analysis in marketing: New developments with im-
plications for research and practice, Journal of Marketing 54 (1990),
no. 4, 3–19.

[HMMR15] Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci
(eds.), Handbook of cluster analysis, Chapman and Hall, dec 2015.

[Hof74] A. J. Ho�man, A generalization of max �ow—min cut, Mathematical
Programming 6 (1974), no. 1, 352–359.

[HT57] I. Heller and C. B. Tompkins, An extension of a theorem of dantzig’s,
Linear Inequalities and Related Systems. (AM-38) (Harold William
Kuhn and Albert William Tucker, eds.), Princeton University Press,
dec 1957, pp. 247–254.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements
of statistical learning, Springer New York, 2009.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani,
An introduction to statistical learning, Springer, 2013.

[Kar72] Richard M. Karp, Reducibility among combinatorial problems, Com-
plexity of Computer Computations, Springer, 1972, pp. 85–103.

[Kha80] L.G. Khachiyan, Polynomial algorithms in linear programming, USSR
Computational Mathematics and Mathematical Physics 20 (1980),
no. 1, 53–72.

[KMPF15] Vanessa Köneke, Horst Müller-Peters, and Detlef Fetchenhauer, Be-
treuung im Schadensfall – Negativen Erfahrungen und Racheakten
vorbeugen, Versicherungsbetrug verstehen und verhindern, Springer,
2015, pp. 377–397.

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger, Knapsack problems,
Springer, 2004.

[KR05] Leonard Kaufman and Peter J. Rousseeuw, Finding groups in data: An
introduction to cluster analysis, Wiley, 2005.

179

Bibliography

[KT13] J. Kleinberg and E. Tardos, Algorithm design, Pearson Education Lim-
ited, 2013.

[KV06] Bernhard Korte and Jens Vygen, Combinatorial optimization, Springer,
2006.

[Mal82] Naresh K. Malhotra, Structural reliability and stability of nonmetric
conjoint analysis, Journal of Marketing Research 19 (1982), no. 2,
199–207.

[MF20] Sushma MacGeoch and Deirdre Fenton, Professional indem-
nity claims management: con�icts of interest, Online Articles
and Brie�ngs by Womble Bond Dickinson, https://www.
womblebonddickinson.com/uk/insights/articles-and-brie�ngs/
professional-indemnity-claims-management-con�icts-interest, 05
2020.

[MG07] J. Matousek and B. Gärtner, Understanding and using linear program-
ming, Springer, 2007.

[MK08] Jerko Markovina and Damir Kovacic, The importance of apple at-
tributes: A comparison of self-explicated and conjoint analysis results,
12th EAAE Congress ”People, Food and Environments: Global Trends
and European Strategies”, Gent (Belgium), 26–29 August 2008, Euro-
pean Association of Agricultural Economists, 2008.

[Mor16] Marco Morawetz, Der telematische Irrweg der Kfz-Versicherung, Ver-
sicherungswirtschaft (2016), 1–8.

[MPS14] AnnaMakarewicz, Piotr Pikuta, and Dominik Szałkowski, Properties of
the determinant of a rectangular matrix, Annales UMCS, Mathematica
68 (2014), no. 1, 31–41.

[MRS+22] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and
Kurt Hornik, cluster: Cluster analysis basics and extensions, 2022, R
package version 2.1.4.

[MT07] S. Martello and P. Toth, Knapsack problems: Algorithms and computer
implementations, Wiley, 2007.

[PS16] Ulrich Pferschy and Joachim Schauer, Approximation of knapsack
problems with con�ict and forcing graphs, Journal of Combinatorial
Optimization 33 (2016), no. 4, 1300–1323.

[PZ80] David A. Plaisted and Samuel Zaks, An NP-complete matching problem,
Discrete Applied Mathematics 2 (1980), no. 1, 65–72.

[Rad57] R. Rado, Note on independence functions, Proceedings of the London
Mathematical Society s3-7 (1957), no. 1, 300–320.

180

https://www.womblebonddickinson.com/uk/insights/articles-and-briefings/professional-indemnity-claims-management-conflicts-interest
https://www.womblebonddickinson.com/uk/insights/articles-and-briefings/professional-indemnity-claims-management-conflicts-interest
https://www.womblebonddickinson.com/uk/insights/articles-and-briefings/professional-indemnity-claims-management-conflicts-interest

Bibliography

[Rad66] M. Radi, A de�nition of determinant of rectangular matrix, Glasnik
Mate-maticki 1 (1966), no. 21, 17–22.

[Rou87] Peter J. Rousseeuw, Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis, Journal of Computational and Ap-
plied Mathematics 20 (1987), 53–65.

[RVPOR+11] Jorge A. Ruiz-Vanoye, Joaquín Pérez-Ortega, Rodolfo A. Pazos R.,
Ocotlán Díaz-Parra, Juan Frausto-Solís, Hector J. Fraire Huacuja,
Laura Cruz-Reyes, and José A. Martínez F., Survey of polynomial trans-
formations between NP-complete problems, Journal of Computational
and Applied Mathematics 235 (2011), no. 16, 4851–4865.

[Sch98] Alexander Schrijver, Theory of linear and integer programming, Wiley,
1998.

[Sch03] , Combinatorial optimization. polyhedra and e�ciency,
Springer, 2003.

[SM18] M. Steiner andM.Meißner, A user’s guide to the galaxy of conjoint anal-
ysis and compositional preference measurement, Journal of Research
and Management 40 (2018), no. 2, 3–25.

[SS73] V. Srinivasan and Allan D. Shocker, Linear programming techniques
for multidimensional analysis of preferences, Psychometrika 38 (1973),
no. 3, 337–369.

[Swe10] John Sweller, Element interactivity and intrinsic, extraneous, and ger-
mane cognitive load, Educational Psychology Review 22 (2010), no. 2,
123–138.

[SY00] N. Samphaiboon and Y. Yamada, Heuristic and exact algorithms for
the precedence-constrained knapsack problem, Journal of Optimization
Theory and Applications 105 (2000), no. 3, 659–676.

[Tha21] Jitesh J. Thakkar, Multi-criteria decision making, Springer Singapore,
2021.

[Tho19] Timothy Thornton, Jr., Claims handling con�icts, Online Ar-
ticle by the American Bar Association TIPS Insurance Insti-
tute, https://graydu�ylaw.com/wp-content/uploads/2019/05/TIPS_
Insurance_Institute_Con�icts_Panel_Paper.pdf, 4 2019.

[Ver20] Versicherungsbote, Schadenbearbeitung der Ver-
sicherer: Fast keiner kommt ohne Papier aus,
https://www.versicherungsbote.de/id/4892661/Schadenbearbeitung-
Versicherer-Digitalisierung, 2020.

[Vri95] M. Vriens, Conjoint analysis in marketing: developments in stimulus
representation and segmentation methods, Ph.D. thesis, Capelle, 1995.

181

https://grayduffylaw.com/wp-content/uploads/2019/05/TIPS_Insurance_Institute_Conflicts_Panel_Paper.pdf
https://grayduffylaw.com/wp-content/uploads/2019/05/TIPS_Insurance_Institute_Conflicts_Panel_Paper.pdf

Bibliography

[Wag17] Fred Wagner (ed.), Gabler Versicherungslexikon, 2 ed., Springer, 2017.

[Wal17a] Frank Walthes, Der digitale Aufbruch steckt voller Chancen, 2017.

[Wal17b] , Kundenorientierung: Die Reise lohnt sich, 2017.

[Wes00] D. West, Introduction to graph theory, 2 ed., Prentice-Hall, 2000.

[Woe05] Gerhard J. Woeginger, Combinatorial approximation algorithms: a
comparative review, Operations Research Letters 33 (2005), no. 2, 210–
215.

[YKW02] T. Yamada, S. Kataoka, and K.Watanabe,Heuristic and exact algorithms
for the disjunctively constrained knapsack problem, IPSJ Journal 43
(2002), no. 9, 2864–2870.

[YY07] Byungjun You and Takeo Yamada, A pegging approach to the
precedence-constrained knapsack problem, European Journal of Opera-
tional Research 183 (2007), no. 2, 618–632.

182

6

6

	List of Figures
	Overview of this thesis
	Motivation
	Expert-based improvement of the quality of claims processing
	Claims processing in the digital age
	Expert-based quality
	Improving the expected quality of claims

	Complexity of problems

	Definitions and Preliminaries
	Statistical methods to determine the quality claims processing
	Conjoint analysis
	Selection of attributes and their levels
	Selection of data collection method
	Selection of data collection design
	Selection of data collection presentation
	Evaluation of stimuli
	Estimation of part-worth utilities

	Clustering with k-medoids
	Gower's coefficient
	Validation of the clusters

	Introduction to graph theory
	Independent set
	Matchings

	Complexity theory
	Running times of algorithms
	The complexity class NP
	NP-completeness
	Cook's theorem
	Methods for proving NP-completeness

	Further NP-complete problems
	The 3-SAT problem
	The independent set problem
	The perfect matching problem
	The Knapsack problem
	The Subset-Sum problem
	Generalizations of the Knapsack problem

	Integer linear programs
	LP relaxation
	Total unimodularity

	Expert-based recommendation systems
	Expert-based quality of claims processing and recommendations
	Procedure to define the quality of claims processing
	Selection of representative stimuli
	Evaluation of stimuli and estimation of quality

	Choice of recommendations

	Modelling the EBRS problem and classification of its complexity
	Formulation of the EBRS problem
	Definition of the constraints
	Defining the `3́9`42`"̇613A``45`47`"603AEBRS problem as an `3́9`42`"̇613A``45`47`"603AILP

	Decision version of the EBRS problem
	Proof of NP-completeness

	Complexity-theoretical investigations of the `3́9`42`"̇613A``45`47`"603AEBRS problem
	Conflicts between recommendations but no dependencies
	Case: Pairwise conflicts
	Case: Stellar conflicts
	Case: No solution

	Dependent but no conflicting recommendations
	Case: No solution

	No conflicts and no dependencies
	Case: Only bounds
	Case: Limited weighted sum per model

	Outlook and Conclusions
	The effort—a generalization of the `3́9`42`"̇613A``45`47`"603AEBRS problem
	Conclusion

	Bibliography

