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Using interpretable boosting 
algorithms for modeling 
environmental and agricultural 
data
Fabian Obster 1,2*, Christian Heumann 2, Heidi Bohle 3 & Paul Pechan 3*

We describe how interpretable boosting algorithms based on ridge-regularized generalized linear 
models can be used to analyze high-dimensional environmental data. We illustrate this by using 
environmental, social, human and biophysical data to predict the financial vulnerability of farmers in 
Chile and Tunisia against climate hazards. We show how group structures can be considered and how 
interactions can be found in high-dimensional datasets using a novel 2-step boosting approach. The 
advantages and efficacy of the proposed method are shown and discussed. Results indicate that the 
presence of interaction effects only improves predictive power when included in two-step boosting. 
The most important variable in predicting all types of vulnerabilities are natural assets. Other 
important variables are the type of irrigation, economic assets and the presence of crop damage of 
near farms.

In this work, we show how interpretable boosting algorithms can be used to predict financial vulnerabilities 
against multiple hazards based on environmental factors but also based on human, social, and biophysical factors 
as well as their interactions. For finding interactions we propose a new method based on two-step boosting, 
which is still interpretable and blends together with component-wise boosting. Interpretability tools like variable 
importance, effect sizes, and partial effects are utilized to better understand the underlying factors that may cause 
these vulnerabilities against climatic changes.

Model-based boosting algorithms have been used in environmental sciences for multiple purposes. For 
example for quantifying several soil parameters based on soil samples1, predicting the financial wellbeing of 
farmers based on environmental factors2, and predicting the number of zoo visitors based on climatic variables3. 
Also non-interpretable boosting algorithms based on classification or regression trees like Adaboost4 have 
been used for environmental predictions based on environmental data because of their high predictive power. 
Applications include landslide susceptibility5 and predicting the presence of juvenile sea-trouts based on 
environmental factors6.

Through the proposed boosting models we want to achieve the following goals:

•	 Predictive Power The model should not only have a good fit for the analyzed data but also for unseen data 
from the same domain assuming a similar distribution of the variables.

•	 Interpretability We are interested in the question of which variables are associated with the outcome. But we 
also want to know how the associations look like. In the agronomic case, we want to derive actions to reduce 
vulnerability against adverse environmental changes. This is only possible if the effect of adaptive measures is 
known. Only if the associations are known, one can state causal hypotheses and test them with new specific 
experiments. We also want the effects to be modeled as simply as possible while retaining the power of the 
model. Linear effects should be prioritized over nonlinear effects and over interaction effects. Black-Boxes 
should be avoided in this case.

•	 Sparsity We consider high dimensional data sets where the number of variables p is relatively large compared 
to the number of observations n or even possibly higher if we consider the case with interactions. Out of the 
many possible variables, we want to know which ones are actually associated with the outcome and which 
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ones are not. Therefore, the model should perform variable selection to enforce sparsity. The goal is to find 
the smallest subset of variables that still has high predictive power. Sparsity also increases interpretability 
because the scientist and stakeholders only have to look at the truly relevant variables and can disregard the 
unimportant ones. In the vulnerability setting this could mean that farmers focus on selected variables like 
the type of irrigation systems rather than not selected variables like financial adaptive measures.

•	 Complexity The model should be as complex as necessary and as simple as possible. Complexity is the 
characteristic that balances all previously stated points. Out of two explanations with the same predictive 
power the model should pick the one that is simpler. By simpler, we mean sparser, more interpretable, and 
without interactions. On the other hand, we do not want to neglect important complexities like non-linearity 
and interactions. It is important to identify if some variables are modified by others. There could also be 
non-hierarchical interactions, where a variable has by itself no effect on the outcome, but may have a positive 
effect in one subset of the data and a negative one in the other. One example could be, that in one region a 
high variety of crops has a positive effect on vulnerability and in another region a negative effect.

•	 Group structure The variables in the data can be clustered into groups. “Climate change experience” is one 
example and contains the binary variables “increasing temperature”, “increasing drought”, “increasing extreme 
weather” and “decreasing rain”. The question is whether the outcome is influenced by each or only by some 
of the individual variables or if they act as a group due to the similarity. Group structures also increase 
interpretability, because it is often easier for humans to comprehend the overall effect of an abstract concept 
than to look at all its facets.

There are many approaches to deal with each of the above specifications. For example, sparsity can be achieved 
through Lasso Regression7 or boosted Lasso8, predictiveness can be achieved through a big variety of models 
and group structures can be incorporated with the sparse group lasso9.

In this work we focus on how these goals can be met using boosting algorithms, namely componentwise 
boosting (mb), componentwise boosting with interactions (mb int), sparse group boosting (sgb), and two-step 
boosting for interactions (2-boost). We compare their predictive power, effect sizes, and the relative importance 
of variables/groups. In the following, we describe the used methods for the analysis and discuss how they help 
to achieve the stated goals using modifications of the generic boosting algorithm.

Methods
Introduction of the data.  Randomly selected cherry and peach farmers in the selected regions of Tunisia 
and Chile. In order to be selected for the survey, farmers had to own the farm, manage and work on the farm 
and derive the majority of their income from their farming activities. A total of 801 face-to-face interviews were 
subsequently conducted with farmers who fulfilled the selection criteria—401 peach farmers in Tunisia (201 in 
Mornag and 200 in Regueb regions) and 400 cherry farmers in Chile (200 in Rengo and 200 in Chillán regions). 
Mornag, Tunisia (longitude: 10.28805, latitude: 36.68529, altitude: 110 m), hereafter referred to as Northern 
Tunisia, is located approximately 20 km east of the capital Tunis. Regueb (longitude: 9.78654, latitude: 34.85932; 
altitude: 230 m), Tunisia, hereafter referred to as Central Tunisia, is located approximately 230 km south of 
Tunis. Rengo (longitude: −70.86744 , latitude: −34.40237 , altitude: 570 m), Chile, hereafter referred to as Central 
Chile, is located approximately 110 km south of Santiago de Chile. Chillán (longitude: −72.10233 , latitude: 
−36.60626 , altitude: 120–150 m), Chile, hereafter referred to as Southern Chile, is located approximately 380 km 
south of Santiago de Chile. The approximately one-hour-long interviews were carried out with farmers directly 
on their farms. The interviews were carried out after harvest completion in the fall of 2018 by Elka Consulting 
in Tunisia and in the spring 2019 by Qualitas AgroConsultores in Chile. All methods were carried out in 
accordance with relevant guidelines and regulations. Informed consent for the data collection was provided by 
the survey participants. No personality-identifiable data was collected, assuring full anonymity. Department 
of Communication and Media Research, University of Munich had been consulted about the participation of 
human subjects in the survey research. Guidance was sought from our institute about the survey implementation 
and data use that included participation of human subjects. Experimental protocol was approved by University 
of Munich. A descriptive description of the data10 and further mixed methods analysis on vulnerability11 with 
similar data was performed.

Code availability.  The R code of the analysis can be found at https://​github.​com/​Fabia​nObst​er/​boost​ingEc​
ology.

Independent variables.  The analyzed variables can be clustered into groups, including

•	 Climate experience group (Increasing temperature, decreasing rain, increasing drought, increasing extreme 
weather)

•	 Natural asset group (geographical regions)
•	 Social asset group (reliance on/use of information, trust in information sources, community, science or 

religion)
•	 Human asset group (age, gender, education)
•	 Biophysical asset group (farm size, water management systems used on the farm, diversity of crops used, 

adaptive measures)
•	 Economic asset group (farm debt, farm performance, reliance on orchard income)
•	 Goals group (Keep tradition alive, work independently)

https://github.com/FabianObster/boostingEcology
https://github.com/FabianObster/boostingEcology
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•	 Harm group (Climate threatens farm, Optimism)
•	 Spatial group (Crop damage near farms, Crop damage of farms in Country)

An overview of all variables and the belonging groups can be found in Tables 4 and 5. There, also the number of 
farmers in each category can be found (Tables 1, 2).

Outcome variables.  The outcome variables measure financial vulnerability against the 5 climate hazards, 
increasing winter temperatures, increasing summer temperatures, decreasing rainfall, increasing drought, and 
increasing extreme weather based on self-assessment of the farmers. For each of the hazards, a binary variable 
indicating if a farmer is vulnerable to the hazard is defined as the outcome variable. The main category includes 
farmers, who are not financially vulnerable and the reference category includes farmers who are financially 
vulnerable. The number of farmers in each category can be found in Table 3.

Interaction variables.  22 variables were used as variables that may have an interaction effect with the 
other variables on the outcome. The interaction variables include regions as well as socio-demografic variables 
amongst others and are indicated in bold in Tables 4 and 5. Together with all other variables, this yields 1366 
interaction terms and over 4000 possible model parameters to estimate. Since there are 801 farmers in the data, 

Table 1.   AUC values for the sparse group boosting (sgb), component-wise boosting (mb), parallel boosting 
with interaction (mb int) and two-step boosting with interactions (2-boost) for all vulnerability outcomes 
evaluated on the test data.

AUC sgb AUC mb AUC 2-boost AUC mb int Outcome vulnerability

0.656 0.619 0.608 0.587 Summer temperature

0.707 0.708 0.713 0.705 Winter temperature

0.852 0.852 0.852 0.500 Decreasing rainfall

0.768 0.768 0.768 0.500 Drought

0.776 0.778 0.783 0.773 Extreme weather

Table 2.   Comparison of the number of selected interaction terms based on two-step estimation (2-boost) and 
the parallel estimation (mb int) and the percentage of selected interactions (1-Sparsity) of the 1366 interaction 
terms.

Model Number selected interaction terms 1-Sparsity in percent Outcome vulnerability

mb int 13 0.95 Summer temperature

2-boost 0 0 Summer temperature

mb int 38 2.78 Winter temperature

2-boost 12 0.88 Winter temperature

mb int 48 3.51 Decreasing rainfall

2-boost 1 0.07 Decreasing rainfall

mb int 27 1.98 Drought

2-boost 16 1.17 Drought

mb int 32 2.34 Extreme weather

2-boost 10 0.73 Extreme weather

Table 3.   Overview over outcome variables. Financial vulnerability against climate hazards. The “n” column 
gives the number of farmers who are not financially vulnerable to each of the hazards.

Variable Category n

No summer temperature vulnerability Yes 358

No winter temperature vulnerability Yes 579

No decreasing rainfall vulnerability Yes 451

No drought vulnerability Yes 492

No extreme weather vulnerability Yes 453
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finding interactions results in a “p > n” problem, where the number of variables in the design matrix is greater 
than the number of observations.

Table 4.   Overview over variables and groups. The 22 variables used as interaction variables (potential 
moderators) are bold. The number of observations within each category of each variable is in the n column. 
For binary variables, only one category is presented and the remaining category is “no” if the shown category is 
“yes” and “low” if the shown category is “high”.

Variable name Category n Group name

Agronomic measures Yes 647 Biophysical asset group

Economic measures Yes 464 Biophysical asset group

Use of river irrigation Yes 138 Biophysical asset group

Use of well irrigation Yes 231 Biophysical asset group

Farm size Yes 283 Biophysical asset group

Orchard size Yes 318 Biophysical asset group

More than one variety grown Yes 508 Biophysical asset group

Other products Yes 571 Biophysical asset group

Technological measures Yes 721 Biophysical asset group

Increasing temperature Yes 629 Climate experience group

Decreasing rainfall Yes 659 Climate experience group

Increasing drought Yes 671 Climate experience group

Increasing extreme weather Yes 542 Climate experience group

Income invested > 80 Percent Yes 137 Economic asset group

Income invested <40 percent Yes 358 Economic asset group

High financial wellbeing Yes 346 Economic asset group

Low financial wellbeing Yes 148 Economic asset group

Farm debt load High 96 Economic asset group

Dependent on farm Yes 528 Economic asset group

Family farm engagement Yes 203 Economic asset group

Adaptive measures efficacy High 490 Efficacy group

Work independent Yes 635 Goals group

Keep tradition alive Yes 460 Goals group

Provide good living environment Yes 466 Goals group

Be in profitable business Yes 320 Goals group

Climate change is harmful Yes 258 Harm group

High optimism Yes 446 Harm group

High certainty Yes 470 Harm group

Climate threatens farm Yes 629 Harm group

Climate risks > benefits Yes 648 Harm group

Climate change acceptance Yes 676 Human asset group

Human cause climate change Yes 685 Human asset group

Climate extremes Yes 755 Human asset group

Age > 50 Yes 438 Human asset group

Gender F 121 Human asset group

Gender M 680 Human asset group

Education Yes 459 Human asset group

Years of farm possession Yes 577 Human asset group

Prior ownership (family) Yes 399 Human asset group

Years of farm managing Yes 437 Human asset group

Natural assets CentralChile 200 Natural asset group

Natural assets CentralTunisia 200 Natural asset group

Natural assets NorthernTunisia 201 Natural asset group

Natural assets SouthernChile 200 Natural asset group

Adapive measures near farms 1 424 Norms group

Adapive measures near farms 2 151 Norms group

Adapive measures near farms 3 226 Norms group

High optimism Yes 446 Perception group
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General setup, model formulation and evaluation.  All analyses were performed with R12 and the 
boosting models were fitted with the package “mboost”13.

Since all outcome variables are binary, we use the Ridge penalized negative log-likelihood of the binomial 
distribution as a loss function and a logit link, which yields

Before performing any analysis the data was split into 70 percent training data and 30 percent test data, which 
was only used for the final evaluation. Variable importance and partial effects were computed using the whole 
data after the predictive analysis. Model evaluation was based on the area under the receiver operator curve 
(ROC) and computed using the test data. The area under the ROC (AUC) takes both the true positive and the 
false positive rate into account by considering all possible thresholds of predicted probabilities computed by a 
prediction model. While the AUC is often used for discriminatory performance, it is also limited by not assessing 
calibration and in the presence of strong class imbalances.

In the analysis, we use multiple boosting models for multiple purposes. All boosting models were fitted 
with the R package “mboost”14. For early stopping, the stopping parameter was determined using a 10-fold 
cross-validation performed at every boosting step. The first and most simple one is component-wise model-
based boosting (mb) with ridge-regularized linear effects of all variables, such that the degrees of freedom are 
all equal to one. This model allows us to perform variable selection and allows for a comparison between all 
variables regarding their relative importance. For the second model, we used sparse group boosting with a mixing 
parameter α = 0.5 , which balances group selection and individual variable selection. This way it is possible to 
see if variables are important on their own for the outcome, or if they rather act as groups of variables.

h(β ,Xi) = P(yi == 1) =
1

1+ exp (−XT
i β)

,

l(y, h) = −

[
n∑

i=1

yi log (h(β ,Xi))+ (1− yi) log (1− h(β ,Xi))

]
+ ��β�22.

Table 5.   Overview over variables and groups continued. The 22 variables used as interaction variables 
(potential moderators) are bold. The number of observations within each category of each variable is in the n 
column. For binary variables, only one category is presented and the remaining category is “no” if the shown 
category is “yes” and “low” if the shown category is “high”.

Variable Category n Group

Use of newspapers Yes 95 Social asset group

Use of farming journals Yes 161 Social asset group

Use of TV Yes 415 Social asset group

Use of radio Yes 219 Social asset group

Use of internet Yes 319 Social asset group

Use of extension workers Yes 346 Social asset group

Use of government workers Yes 166 Social asset group

Use of neighbours Yes 313 Social asset group

Use of industry Yes 192 Social asset group

Use of farm associations Yes 97 Social asset group

Trust in newspapers Yes 174 Social asset group

Trust in farming journals Yes 291 Social asset group

Trust in TV Yes 329 Social asset group

Trust in radio Yes 241 Social asset group

Trust in internet Yes 319 Social asset group

Trust in extension workers Yes 433 Social asset group

Trust in government workers Yes 268 Social asset group

Trust in neighbours Yes 319 Social asset group

Trust in industry Yes 215 Social asset group

Trust in farm associations Yes 184 Social asset group

Trust in government institutions Yes 312 Social asset group

Trust in other farmers Yes 351 Social asset group

Trust in religion Yes 317 Social asset group

Trust in fate Yes 360 Social asset group

Crop damage near farms Yes 643 Spatial group

Crop damage farms in Country Yes 673 Spatial group

Climate change occurs Yes 592 Spatial group
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To find interactions in the data we use two approaches. The first one is the standard approach by defining 
linear effects and interaction effects at the same time in each iteration. Then the model can decide weather it 
selects the main effects or the interaction effects. In the second approach we use a two-stage boosting model. 
As the first step we use the already fitted mb model, which only uses individual linear base-learners. The second 
step uses solely interactions. This way linear base-learners are prioritized over interaction base-learners since 
they are fitted first.

This remaining part of the methods section is more technical and may be skipped by the application-oriented 
reader.

Generic boosting algorithm.  We will start with the general formulation of the boosting algorithm which 
can also be described as a functional gradient descent algorithm. The goal is to find a function f ∗ that minimizes 
some Loss function l(y, f). Here, we only consider differentiable convex loss functions. The loss function has two 
arguments. The first argument y ∈ {1, ..., n} is the outcome variable with n observations. The second argument f 
is a real-valued function f : Rn×p �→ R , which is a function of the data X ∈ R

n×p.
Another way of fitting sparse regression models is through the method of boosting. The fitting strategy is 

to consecutively improve a given model by adding a base-learner to it. Throughout this article, we refer to a 
base-learner as a subset of columns of the design matrix associated with a real-valued function. To enforce 
sparsity, each base-learner only considers a subset of the variables at each step15. In the case of component-wise 
L
2 boosting, each variable will be a base-learner. In the case of a one-dimensional B-Spline, a base-learner is the 

design matrix representing the basis functions of the B-Spline. The goal of boosting in general is to find a real 
valued function that minimizes a typically differentiable and convex loss function l(·, ·) . Here we will consider 
the negative log-likelihood as a loss function to estimate f ∗ as

General functional gradient descent Algorithm16. 

1.	 Define base-learners of the structure h : Rn×p → R

2.	 Initialize m = 0 and f̂ (0) ≡ 0 or f̂ (0) ≡ y
3.	 Set m = m+ 1 and compute the negative gradient ∂

∂f l(y, f ) and evaluate it at f̂ [m−1] . Doing this yields the 
pseudo-residuals u1, ..., un with 

 for all i = 1, ..., n
4.	 Fit the base-learner h with the response (u[m]

1 , ..., u[m]
n ) to the data. This yields ĥ[m] , which is an approximation 

of the negative gradient
5.	 Update 

 here η can be seen as learning rate with η ∈]0, 1[
6.	 Repeat steps 3,4 and 5 until m = M

Boosted ridge regression.  The loss function l(·, ·) can be set to any function. In the case of interpretable 
boosting, the negative log-likelihood is a reasonable choice. The log-likelihood can also be modified using a 
Ridge penalty. By introducing the hyperparameter � > 0 , one can modify the loss function l. Let h be a function 
of a parameter vector β ∈ R

p and the design matrix X ∈ R
n×p , then

is the Ridge penalized loss function. By increasing � , the parameter vector β can be shrunken towards zero. 
Closely related to � are the degrees of freedom. Let S be the approximated generalized ridge hat matrix as 
in Proposition 3 in17. We remark that in the special case of ordinary least squares ridge regression we have 
S = X(XTX + �I)−1XT . Generally, the degrees of freedom can be defined as

It is recommended to set the regularization parameter for each base-learner, such that the degrees of freedom 
are equal for all base-learners. Thus, the regularization parameter enables using complex base-learners like 
polynomial effects and simple effects like linear effects at the same time. Since the more complex base-learners 
are regularized more than the simpler ones it is possible to prioritize simple and more interpretable base-learners 
over complex ones, introducing an inductive bias towards interpretability, as we demanded in the problem 
statement.

Component‑wise and group component‑wise boosting.  In step 4 of the general functional gradient 
descent algorithm, the function h is applied. Instead of just one function, one can also use a set of R functions 

f ∗(·) = argmin
f (·)

E[l(y, f )].

u
[m]
i =

∂

∂f
l(yi , f )|f=f̂ [m−1] ,

f̂ [m] = f̂ [m−1] + η · ĥ[m]

lRige(u, h) = l(u, h)+ ��β�22

df(�)) = tr(2S− (S)TS)).
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{(hr)r≤R} . Then the update in step 5 is only performed with the function that has the lowest loss function applied 
to the data, meaning r∗ = argmin r≤RE[l(u, hr)] . In the case of component-wise boosting, for each variable 
in the dataset, a function is used that is only a function of this variable and not the others. This way in each 
step only one variable is selected. Then through early-stopping, or setting M relatively smaller compared to the 
number of variables in the dataset, a sparse overall model can be fitted. This addresses the sparsity requirement 
in the problem statement section. In the case of grouped variables, one can also define base-learners as groups 
of variables, which are a function of only the variables belonging to one group. These could be all item variables 
that belong to a specific construct like in sociological data18 or all climate change-related variables in agricultural 
and environmental data2. This allows group variable selection, where only a subset of groups is selected, yielding 
a group/construct-centric analysis rather than on an individual-variable basis. This way, the group structure can 
be taken into account.

Sparse group boosting.  It is also possible to use individual and group-based base-learners at the same 
time. Then at each step, either an individual variable or a group of variables is selected. Using a similar idea as in 
the sparse group lasso9, the sparse group boosting can be defined19. We do this again by modifying the degrees 
of freedom. Each variable will get its own base-learner, and each group of variables will get one base-learner, 
containing all variables of the group. Let G be the number of groups and pg the number of variables in group g. 
Then, for the degrees of freedom of an individual base-learner x(g)j ∈ R

n×1 we will use

For the group base-learner we use

The mixing parameter α ∈ [0, 1] allows to change the prioritization of groups versus individual variables in the 
selection process. If df(�) = 0 means � → ∞ , α = 1 yields component-wise boosting, and α = 0 yields group 
boosting.

Two‑step boosting.  In the generic boosting algorithm, a single set of functions is applied sequentially to 
the data. While there is variable selection within the set of functions, the set itself does not change during the 
boosting procedure. We describe a modification of the general that allows more flexibility, namely a two-step 
version of boosting. A similar idea of two-step boosting, called hierarchical boosting has been used in genetic 
research20 in transfer learning21, and also deep learning applications22. In most cases, hierarchical boosting is 
used, if the outcome variable consists of a hierarchical class structure23. In contrast to the data analyzed in 
the literature, the data we analyze here does not contain hierarchical class structures. Hence, we do not use 
hierarchical boosting as in most cases presented in the literature, but for hierarchical and non-hierarchical 
interaction detection.

We formulate and generalize the two-step boosting. Let K be the number of steps and for every step k ≤ K 
let Hk be the set of base-learners.

K‑step boosting algorithm. 

1.	 Set K as the number of steps
2.	 For every step k ≤ K  define the set of base-learners Hk to be used and set Mk to the number of boosting 

iterations
3.	 Initialize m0 = 0 and f̂ (0) ≡ 0 or f̂ (0)
4.	 For k ≤ K repeat:
5.	 For mk ≤ Mk perform steps 2-6 of the general boosting algorithm
6.	 Set Initialization mk = 0 and u[0] = u[Mk−1]

One may ask why it is necessary to run multiple boosting algorithms after each other if it is possible to just use 
more base-learners in parallel in the original method. Previous research has shown high predictive powers 
in some combinations of steps. However, as described in the problem statement for us predictive power is 
only one part of the requirements and not necessarily desirable if it comes at the cost of interpretability and 
understanding of the data. Also, the sequential nature of the algorithm reduces computational improvements 
through parallelization, as not all base-learners can be fitted in the same boosting iteration in parallel. The k-step 
boosting algorithm can also be seen as a special case of the general boosting algorithm, where the base-learners 
themselves are boosting algorithms.

Variable importance.  For each of the previously described boosting methods, it is possible to compute a 
variable importance measure. In each step, the log-likelihood is computed, which means that one can compute 
the reduction of log-likelihood attributed to the base-learner being selected in the step. After the fitting for each 
base-learner the total reduction of likelihood can be computed. This way, one can compute the percentage of 
reduction in the negative log-likelihood attributed to each base-learner, regardless of the type of base-learner. 
The variable importance allows us to compare the relative importance of variables compared to each other and 

df
(
�
(g)
j

)
=

1

pg
· α.

df
(
�̃
(g)

)
=

1

pg
· (1− α).
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is distinct from the concept of significance or p values which tests a hypothesis of a parameter not being zero 
based on a set of assumptions. Hence a variable can be important in boosting while not being significant base on 
classical regression and vice versa.

Partial effect and effect sizes.  For boosted generalized linear models, partial effects can be computed13. 
Similar to classical logistic regression, odds ratios for all base-learners can be computed by first summing up 
all linear predictors for one base-learner. These odds ratios can then be interpreted similarly to effect sizes in 
logistic regression. Based on the linear predictor one can also compute predicted probabilities for categories 
of variables if all other base-learners are set to average values. This way partial effects can be plotted, both for 
individual variable base-learners and for interaction-base-learners. Thus model-based boosting models are by 
themselves interpretable compared to other machine learning models where only post-hoc explanations can be 
derived. One can also track which variable was selected in each boosting iteration and thus understand how the 
model works internally.

Applications
Predictability.  Referring to Table 1 and Fig. 1 we can see that the AUC values are comparable between the 
boosting models except for the interaction model with parallel estimation. Averaging the AUC values across 
the five vulnerabilities, sgb yields 0.752, mb and 2-boost yield 0.745, and mb int 0.613. For precipitation and 
drought vulnerability, the parallel estimation of interactions resulted in no variables being selected and therefore 
the AUC takes a value of 0.5. In 2-boost, also no variables were selected in the second estimation resulting in 
the same model as mb, which had the highest AUC for these outcome vulnerabilities. For summer temperature 
vulnerability, sgb had the highest AUC, and for winter temperature and extreme weather 2-boost had the highest 
AUC. Comparing the predictability of the individual vulnerabilities with each other, we see, that vulnerability 
against decreasing rainfall can be predicted better with the given variables, followed by vulnerability against 
increasing extreme weather, decreasing drought, increasing winter temperature, and summer temperature.

Importance of individual variables and groups.  Comparing the variable importance of the sparse 
group boosting (sgb) and componentwise boosting (mb) in Fig.  2, it becomes apparent, that while there is 
some overlap, also some variables differ. The single most important variable for all outcomes is “Natural assets” 
indicating the four regions of the farm. However, the relative importance of the natural assets is higher for sgb 
than for mb for all five vulnerabilities. Groups seem to be more important in explaining increasing temperature 
vulnerability than the other vulnerabilities, as the economic asset group is the second most important variable 
for summer temperature vulnerability and the goals group is the second most important variable for winter 
temperature vulnerability. The spatial group is the third most important variable for decreasing rainfall 
vulnerability but the relative importance is minor compared to the most important variable.

Figure 1.   ROC-curves for the sparse group boosting (sgb), component-wise boosting (mb), parallel boosting 
with interaction (mb int) and two-step boosting with interactions (2-boost) for all vulnerability outcomes 
evaluated on the test data.
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Importance of interactions.  In the predictability section, we have already seen some differences between 
the two-step and the parallel estimation for interaction effects. For predictions, only models trained on the 
training data were used for model evaluation on the test data. For the variable importance in Fig. 3 and Sparsity 
in Table 2 the whole data was used. The parallel estimation selected only interaction effects and no main effects 
(individual variables), whereas the two-step estimation selected both.

Referring to Table 2 it becomes apparent that the selection of variables differs substantially. Overall, the 
two-step estimation in 2-boost yields much fewer interactions. For summer temperature vulnerability, no 
interaction term was selected, whereas for the parallel estimation, 13 interaction effects were selected. For 
decreasing rainfall vulnerability the differences are also substantial. The two-step estimation selected only one 
interaction, namely the one between Agronomic measures and trust in TV was selected and mb int selected 
48. For drought vulnerability, the difference was the smallest with 27 interactions for the parallel and 16 for the 
two-step estimation. The percentage of selected interactions was four out of five times below one percent for 
2-boost and for mb int it was above one percent four out of five times.

Not only does the sparsity differ, but also the selected interactions themselves. Referring to Fig. 3, for winter 
temperature vulnerability the two interactions “Natural assets”-“Be profitable business” and “Country”-“Farm 
debt load” have high relative importance based on both models. But apart from those two, there is almost no 
overlap. For example for decreasing rainfall vulnerability, the only selected interaction between “Agronomic 
measures”-“Trust in TV” has a relative importance of 1 based on 2-boost and is not selected based on mb int, 
which in turn selected 48 other interactions.

In Figs. 4, 5, 6, 7 and 8 we plotted the four most important interaction effects for each of the vulnerabilities 
found in mb int and 2-boost based on a classical logistic regression only using one interaction term at a time. 
There, the probability of no vulnerability is plotted based on the joint categories of the interaction. This is done 
once for the data in Chile, Tunisia, and the whole data. Exemplary, we interpret the two common interaction 
effects “Natural assets”-“Be profitable business” and “Country”-“Farm debt load” for winter temperature 
vulnerability, which was selected by both models. In the northern region of Chile, having compared to not 
having the goal of being a profitable business is associated with a higher probability of not being vulnerable to 
increasing winter temperatures. In the southern Region of Chile, the association is reversed, meaning that having 
compared to not having the goal of being a profitable business is associated with a lower probability of not being 
vulnerable against increasing winter temperatures. In Tunisia, in both regions, the association of having the goal 
of being a profitable business is negative but more negative in the Southern region compared to the Northern 

Figure 2.   Comparison of variable importance based on component-wise boosting (mb) and sparse group 
boosting (sgb) for each vulnerability. The ordering of variables is based on the sum of relative importance for 
both models. only variables with a relative contribution of at least one percent and at most 15 variables per 
model are shown.
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region. Based on the interaction term “Country”-“Farm debt load”, high farm debt load has a positive association 
with the probability of not being vulnerable to increasing winter temperature, where the association is negative 
in Tunisia. The positive association in Chile is stronger in the northern region and the negative association in 
Tunisia is stronger in the southern region.

Discussion
The results indicate that the vulnerability of farmers in Chile and Tunisia against climate hazards can be predicted 
with the interpretable boosting algorithms and their variations by the variables and groups of variables used 
in the analysis. All models performed variable selection. The highest predictive power measured in AUC 
was achieved for vulnerability against decreasing rainfall and the lowest for summer temperature increases 
regardless of the type of boosting approach. For predicting summer temperature vulnerability the sparse group 
boosting outperformed all other models indicating that there may be underlying latent variables that cause 
the effects rather than the individual variables. The group variable importance mainly points to economic and 

Figure 3.   Variable importance of interaction terms in two-step estimation (2-boost) and parallel estimation 
(2-boost) for each vulnerabilities. The ordering of variables is based on the sum of relative importance for both 
models Only variables with a relative contribution of at least two percent and at most 15 variables per model are 
shown.
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biophysical assets including adaptive measures which may be an underlying determinant for summer temperature 
vulnerability. The variable importance strongly points to Natural assets consisting of the four different regions 
in Chile and Tunisia, which are a main determinant of all types of vulnerability. This indicates strong within 
and between country differences. The interaction analyses also confirm the importance of regionality, as some 
effects are strongly modulated by Country and North-South comparisons. The modulated effect of debt load by 
region may be an indication of economic differences between regions and closeness to bigger cities or could be 
a result of the different climatic zones.

Even though there are strong interaction effects present in the data as seen in the univariate interaction 
analysis, it is not a simple task to transfer their presence into higher predictive power in a high-dimensional 
setting. This becomes apparent since the model including interactions base-learners additionally to the main 
effects performed worse than the same model without interactions in all cases. One of the reasons is probably 
overfitting, as the number of parameters to estimate exceeds the number of variables by a factor of over four. 
The result was that the interaction model did not include any main effects and only interactions. We believe that 
this issue of overfitting becomes more systematic in high-dimensional data than purely random because there 

Figure 4.   Probability of not being vulnerable against increasing summer temperature based on the categories 
of the four most important interaction effects found in mb int and 2-boost. Probabilities are based on classical 
logistic regression only using one interaction term at a time. The results are once stratified by country (Chile, 
Tunisia) and once estimated on the whole data.
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if there are p variables in the dataset, then there are O(p2) possible interaction terms. So, with increasing p, the 
chance of selecting an interaction term over a main effect increases with regardless of the actual effect sizes. This 
implicit interaction selection bias could be addressed successfully by the proposed two-step boosting approach. 
The two-step boosting yielded higher predictive power and a higher degree of sparsity with fewer interactions 
being present in the resulting model. This leads us to believe that this approach is superior to the “classical” 
parallel estimation by including interaction terms in the main model formula in boosting. The only drawback 
we see is, that one has to estimate two models instead of just one which slightly increased the programming 
effort and reduces the potential for further parallelization as the models are fitted sequentially and not in parallel. 
However, it is common practice and in line with the principle of sparsity to always fit one model that contains 
only individual variables if one wants to do an interaction analysis24. In this case, the two-step boosting is also 
computationally more efficient because one can build upon the first model and avoid having to refit the main 
effect.

Figure 5.   Probability of not being vulnerable against increasing winter temperature based on the categories 
of the four most important interaction effects found in mb int and 2-boost. Probabilities are based on classical 
logistic regression only using one interaction term at a time. The results are once stratified by country (Chile, 
Tunisia) and once estimated on the whole data.
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In environmental research, consistently finding associations in high-dimensional datasets requires new 
methods to advance knowledge. These new methods allow more flexibility but often come at the cost of classical 
statistical inference, including p values and estimations of standard errors as in the case of boosting25.

Figure 6.   Probability of not being vulnerable against decreasing rainfall based on the categories of the four 
most important interaction effects found in mb int and 2-boost. Probabilities are based on classical logistic 
regression only using one interaction term at a time. The results are once stratified by country (Chile, Tunisia) 
and once estimated on the whole data.
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Often, there are multiple plausible explanations for a phenomenon. The here proposed methods can enable 
direct comparison of a large number of explanations, estimating their explanatory importance for the outcome. 
This approach can accelerate understanding, particularly for newer phenomena like climate change, by gathering 
all variables that may be associated with the outcome and sampling observations for them. Starting with a 
relatively small sample size, one can estimate the relative importance of hypotheses and prioritize future research 
based on the results.

Using an apriori interpretable method, such as those previously described, provides the great advantage 
of being able to assess the predictability of a given set of explanations for an outcome. In contrast, post-hoc 
interpretability tools applied to a black box provide only a simplified explanation of how black-box predictions 
may be derived, without being able to assess how good the explanations themselves are at predicting the outcome.

Figure 7.   Probability of not being vulnerable against drought based on the categories of the four most 
important interaction effects found in mb int and 2-boost. Probabilities are based on classical logistic regression 
only using one interaction term at a time. The results are once stratified by country (Chile, Tunisia) and once 
estimated on the whole data.
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Data availability
The dataset used and analysed during the current study is available from the corresponding author on reasonable 
request.
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