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Abstract

A resource-efficient use of concrete as a construction material can be achieved by adapt-

ing the individual shape of a component under consideration to the stresses that occur

and by arranging composite construction materials (e.g., reinforcing steel, prestressing

steel, or structural steel) in suitable areas of the component. Due to the advancing digita-

lization in the construction industry, for example in the context of Building Information

Modeling, computer-aided 3D modeling methods are increasingly being used in the plan-

ning of structures. These allow engineers to design components in free form. In rein-

forced concrete, prestressed concrete, and composite construction, the design of such

components is currently still associated with great effort. In the context of the develop-

ment of a practical method for the calculation of free-form concrete components, this

paper presents a CAD-integrated method for the calculation of cross-section values.

Cross-section values are required as an essential calculation basis when real,

three-dimensional structural components are treated using simplified calculation theories,

such as the beam theory. In this paper, the mathematical and numerical fundamentals of

a method for the calculation of cross-section values of free-form concrete, reinforced

concrete, prestressed concrete, and compound components are presented. The calcula-

tion method is based on flat geometric regions described by Non-uniform Rational B-

Spline tensor product surfaces, which can be extracted from solid models, for example.
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1 | INTRODUCTION

Due to the advancing digitalization in the construction industry,

methods of 3D geometric modeling can be increasingly applied in the

planning of structures. One example is the creation of three-dimensional

digital images of structures in the context of Building Information

Modeling.1 For the mathematical description of the component geome-

try, free-form modeling methods using Non-uniform Rational B-Splines
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(NURBS) can be applied.1–5 These offer the designer the possibility to

design reinforced concrete, prestressed concrete, and composite com-

ponents geometrically freely, to dimension them according to the com-

ponent loads, and to use construction materials in a resource-efficient

way.1,6–9 However, these advantages are currently in opposition to an

increased effort for the calculation and dimensioning of these compo-

nents. The necessary creation of structural analysis models as beam, bar,

or shell structures must be carried out manually for each design step or

after each geometric adjustment of the component.10 A new method is

currently investigated that will allow the automated derivation of analy-

sis models from NURBS solid models of (reinforced) concrete mem-

bers.11,12 Using the example of a reinforced concrete beam in free form,

the main steps of this procedure are shown in Figure 1. In the first step,

cross-sections are automatically extracted as planar NURBS surfaces at

the points of the NURBS solid model relevant for model generation.

Afterwards, cross-section values of these extracted surfaces that are rel-

evant for model formation are calculated and passed on to an algorithm

for generating the analysis model. This is then used for the calculation

and design of the component at cross-section level and, in a final step, is

to generate digital images of reinforcement cages. The continuous use

of NURBS solid models with integrated analysis models ensures a com-

plete availability of the digital image of the component–from planning

to production. In this paper, the necessary procedure for the calculation

of cross-section values based on planar NURBS surfaces is presented.13

In Section 2 of this paper, the state of science and technology in

computational calculation of cross-section values is summarized.

Thereafter, the basics of the free-form description of plane surfaces

by means of NURBS (Section 3) as well as the calculation of essential

cross-section values (Section 4) are presented. In the two following

Sections 5 and 6, the calculation results of the method are validated

on two examples and presented on another example. Section 7 sum-

marizes the main contents of the paper and provides an outlook on

future research objectives.

For the implementation and presentation of the method presented

here, the authors developed a software in the programming language

Python including common program packages. A publication of the soft-

ware is planned after completion of the research and development work.

2 | STATE OF SCIENCE AND TECHNOLOGY

The fundamentals for a computational calculation of cross-section values

of arbitrarily shaped and compound cross-sections were introduced by

Fleßner14 in 1962 and are still used today in calculation programs

(e.g., INCA2, Dlubal RSECTION, SOFiSTiK, or InfoCAD). This procedure

is based on a linearization of the cross-section boundary (polygons),

which is encircled for the integration of the surface values, see

Figure 2A).14 Lauer15 and Marín16 extended these mathematical

approaches so that moments of area of arbitrary order could be calcu-

lated. Witfeld showed in his publication in 198217 that the use of peri-

odic cubic splines for the description of the cross-section boundaries and

integration of the surface values leads to advantages in modeling and

accuracy, see Figure 2B). Niggl worked with an algorithm for dimensional

reduction in numerical calculations with three-dimensional finite ele-

ments18 as part of his dissertation. The numerical solution of the Saint-

Venant torsion problem using the Finite Element Method (FEM) was pre-

sented by Koczyk and Weese,19 Gruttmann et al.,20 Høgsberg and

Krenk,21 and Pilkey,22 among others. A method for calculating the shear

center and the torsional constant was introduced hereby. Sapountzakis

and Mokos used the boundary element method for the calculation of

the torsional characteristics of composite members.23

The method presented in this paper has the advantage over the

state of the art in that no discretization of the cross-section boundary

elements as polygons is required to calculate the cross-section values.

The calculation is performed using solely the geometric description of

the component cross-section by means of NURBS surfaces.

3 | DESCRIPTION OF PLANE SURFACES
USING NURBS

3.1 | General

Today, the application of NURBS is considered an industry standard

in the field of computer graphics. It enables the efficient modeling

of spatial curves, surfaces, and solids, both in free form and for

F IGURE 1 Development of a
method for the automated
derivation of structural analysis
models for free-form structural
concrete, prestressed concrete,
and compound components in
the context of a continuously
digital process chain for design

and production.
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standard analytical shapes (e.g., rectangles, circles), as well as the

consistent exchange of geometric data. Geometrically complex

objects can be composed of partial objects (patches).4 NURBS are a

generalization of so-called Bézier Splines (B-Splines) and belong to

the category of approximating methods for the mathematical

description of geometric objects.5 In contrast to B-Splines, NURBS

also allow the description of rational functions. This is necessary, for

example, for the modeling of circles or cylinders.4 NURBS offer sig-

nificant advantages for modeling geometric objects in free form,

such as comprehensive possibilities for (local) geometric adjust-

ment.4,5 In particular, the properties of the NURBS basis functions

should be emphasized, which allow the use of arbitrary continuous

functions and the simple computation of local derivatives. These

properties are also increasingly used in Isogeometric Analysis

(IGA).24 In the subsequent sections, the fundamentals of surface

modeling using NURBS are summarized. In Table 1, relevant param-

eters and variables are introduced. For a comprehensive description

of surface modeling using NURBS, the reader is referred to Cohen

et al.2 and Piegl and Tiller.4

3.2 | NURBS surfaces

General, spatial surfaces are defined by the double tensor product

according to Equation (1) when using NURBS. For this purpose, a

two-dimensional parameter space enclosing the geometry is

first introduced with parameters ξ and η (see Figure 3A). B-Spline

basis functions N and M of number n and m and of degree p and q

are spanned over this parameter space (see Figure 3B,C),

converted into NURBS basis functions (see Section 3.3), and multi-

plied by previously defined control points P. See the black markings

in Figure 3D). Using Equation (1), any point s�ℝ3 of the surface

can be calculated in the Cartesian coordinate system given a pair of

parameters ξ and η:4 By an example, this procedure is shown

in Figure 3 (star symbols) for ξ¼0,25 and η¼0,75. Using Equations (2)

and (3), the two partial first derivatives of the surface can be

calculated using the first derivatives of the NURBS basis functions.4,24

The determinant of the Jacobian matrix is calculated using

Equation (4).25

S ξ,ηð Þ¼
Xn
i¼1

Xm
j¼1

Ri,j,p,q ξ,ηð ÞPi,j ð1Þ

d
dξ

S ξ,ηð Þ¼
Xn
i¼1

Xm
j¼1

d
dξ

Ri,j,p,q ξ,ηð ÞPi,j ð2Þ

d
dη

S ξ,ηð Þ¼
Xn
i¼1

Xm
j¼1

d
dη

Ri,j,p,q ξ,ηð ÞPi,j ð3Þ

det Jð Þ¼ d
dξ

S ξ,ηð Þ� d
dη

S ξð ,ηÞ
����

���� ð4Þ

3.3 | Control points, NURBS basis functions, and
knot vectors

As input parameters of a NURBS surface description according to

Equations (1)–(3), a net of control points Pi,j �ℝ4 in the Cartesian

(physical) coordinate system as well as a polynomial degree p and q

for both parameter directions ξ and η must be specified. The number

of required control points is then n≥ pþ1ð Þ and m≥ qþ1ð Þ. Each con-

trol point must also be assigned a “weight” wi,j �ℝ. To generate the

NURBS basis functions according to Equations (6)–(8), two knot vec-

tors Ξ and Η are to be defined according to Equations (5).3,4 The

parameter values therein always have to be defined in ascending

order and usually start at 0 and end at 1. Further information on the

calculation of partial derivatives of NURBS basis functions can be

found, for example, in Piegl and Tiller4 or Cottrell et al.24

(A) (B)

F IGURE 2 Geometric
description of flat regions for the
calculation of cross-section
values: (A) using polygonal
boundaries14; (B) using cubic
splines.17

TABLE 1 Parameters and variables for the definition of NURBS

surfaces.

Parameter/
variable Description

x,y,z Cartesian coordinates

P NURBS control net

w Weight of a NURBS control point

S NURBS surface

ξ,η Parameters for the definition of a surface

Ξ,Η Knot vectors

p,q Polynomial degree of the NURBS basis functions

n,m Number of the NURBS basis functions

i, j,k, l Control variables

N, M B-Spline basis functions

R NURBS basis function

Abbreviation: NURBS, Non-uniform Rational B-Splines.
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Ξ¼ 0,…,0|fflffl{zfflffl}
pþ1

,ξpþ1,…,ξn�p�1,1,…,1|fflffl{zfflffl}
pþ1

8<
:

9=
; ð5Þ

(analogously valid for Η with q instead of p and m instead of n)

Ni,0 ξð Þ¼ 1, if ξ� ξi, ξiþ1½½
0, otherwise:

�
ð6Þ

Ni,p ξð Þ¼ ξ�ξi
ξiþp�ξi

�Ni,p�1 ξð Þþ ξiþpþ1�ξ

ξiþpþ1�ξiþ1
�Niþ1,p�1 ξð Þ ð7Þ

(analogously valid for M with η instead of ξ, q instead of p and m

instead of n)

Ri,j,p,q ξ,ηð Þ¼
Xn
i¼1

Xm
j¼1

Ni,p ξð ÞMj,q ηð Þwi,jPn
k¼1

Pm
l¼1Nk,p ξð ÞMl,q ηð Þwk,l

ð8Þ

(A)

(C) (D)

(B)

F IGURE 3 Representation of
a NURBS surface with p¼1 and
q¼2. (A) Parameter space; (B)
NURBS basis functions for ξ; (C)
NURBS basis functions for η; and
(D) Physical space with geometry
of the surface.

F IGURE 4 Flat geometric region Ω composed of subregions Ωa

with local coordinate system.
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4 | CHARACTERISTIC VALUES OF
ARBITRARILY SHAPED CROSS-SECTIONS

4.1 | Definitions

For the description of cross-sections and cross-section parts, a local,

two-dimensional, Cartesian coordinate system is introduced, whose

y-axis points to the right and whose z-axis points downwards, see

Figure 4. In the context of this paper, only flat surfaces are treated

(x¼0). The geometric area of the total cross-section is denoted by Ω,

that of partial cross-sections is denoted by Ωa for a � 1,na½ �, where na

reflects the maximum number of partial cross-sections.17 Each of

these partial cross-sections may be assigned a different material.

When describing partial sections Ωa according to Figure 4,

Ωa,c ≔ concrete, Ωa,s ≔ reinforcement, Ωa,p ≔prestressing steel,

Ωa,d ≔duct, Ωa,h ≔hole or Ωa,cp ≔ composite material is valid.

For the cross-section values considered, the formula symbols and

units according to Table 2 apply. The notation for the static moments

(Sy or Sz) and for the area moments of inertia and the product of iner-

tia (Iy, Iz and Iyz) are replaced by area moments of higher degree fol-

lowing15 for reasons of easier distinguishability.

In the following, the mathematical and numerical fundamentals for

the calculation of the cross-sectional values of arbitrarily shaped and

composite surfaces (by means of NURBS) are summarized, taking into

account the definitions already presented. These are based on the

Gauss's theorem for the plane surface and the numerical solution of the

Saint-Venant torsion problem and are independent of the selected posi-

tion of the cross-section in the reference coordinate system.14,17,26

Characteristic values, which are marked with a tilde, refer to the origin

of the preselected, local coordinate system and must be transformed

afterwards to the center of gravity of the total cross-section.

4.2 | Gross, net, and ideal cross-section values

When calculating cross-section values of reinforced concrete, pre-

stressed concrete, and composite components, a distinction is made

between gross, net, and ideal cross-section values in the cases listed

below, see Table 3.26 Gross cross-section values describe the entire

structural member without taking into account included reinforcing

steel, prestressing steel, or ungrouted ducts. When calculating net

cross-section values, ungrouted ducts are subtracted (pretension

with subsequent bond). Ideal cross-section values take into account

the different material properties of concrete, reinforcing steel, pre-

stressing steel as well as other existing composite construction

materials such as steel or wood.26 For the calculation of ideal cross-

section values, a reference value of elastic deformation properties

(Young's modulus or G-modulus) αa,ref and βa,ref must be defined for

each different construction material (index a) according to Equa-

tions (9) and (10).22 Usually, the Young's modulus and the G-modulus

of the dominant construction material are used as reference values.22

Rigid bond between different construction materials is assumed for

the cross-section.

TABLE 2 Definition of the general
cross-section values in the local
coordinate system according to Figure 4.

Description Notation Unit

Moment of area of arbitrary order Ayχ zψ m2þmax χ,ψð Þ� �
Zeroth moment of area (area) A m2

� �
First moments of area (static moments) Ay Az m3

� �
Second moments of area (area moments of inertia) Ayy Ayz Azz m4

� �
Third moments of area Ayyy Ayyz Ayzz Azzz m5

� �
Coordinates of the center of gravity sy sz mð Þ
Principal bending angle φ0

�ð Þ
Principal moments of inertia Aξξ Aηη m4

� �
Torsional constant Axx m4

� �
Coordinates of the shear center smy smz mð Þ

TABLE 3 Distinction between gross, net, and ideal cross-section

values and their respective usage.

Notation Application

Gross (Index, g) • General reinforced concrete

components.

• Prestressed concrete components

(for design purposes).

Net (Index, n) • Prestressed concrete components

during states of construction with

ungrouted ducts (prestressing with

subsequent bond).

Ideal (Index, i) • Reinforced concrete components

with high accuracy requirements

(e.g. for deformation calculations).

• Prestressed concrete components

(prestressing with instant bond).

• Prestressed concrete components

with grouted ducts (prestressing

with subsequent bond).

• Composite components.
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αa,ref ¼ Ea

Eref
ð9Þ

βa,ref ¼
Ga

Gref
ð10Þ

When calculating cross-section values of reinforced concrete,

prestressed concrete, and composite structures, a distinction must

also be made between the uncracked state (“State I”) and the cracked

state (“State II”).26 The calculation method presented here is applica-

ble to both cases.15

4.3 | Moments of area

The moments of area of degree χ,ψ are calculated for the total cross-

section according to Equation (11).14–17 Generally, these are the

moments of area of zeroth to third degree already listed in Table 2.

Third-degree moments of area are not directly required for linear-elastic

calculations of internal forces, strains, or stresses and are therefore often

not well-known. However, they are used for the integration of non-

linearly distributed cross-sectional stresses. These can occur, for exam-

ple, in the compression zone of reinforced concrete members subjected

to bending loads and serve as input variables for the iterative determina-

tion of the force equilibrium at the cracked cross-section.15 For cross-

section components Ωa,d (duct) and Ωa,h (hole), a negative sign is to be

placed in front of the integral in Equation (11).

~Ayχzψ ¼
Xna
a¼1

αa,ref

ð ð
Ωa

yχ zψ dΩa ð11Þ

4.4 | Location of the center of gravity

The location of the center of gravity of the total cross section with

respect to the origin of the chosen local coordinate system, is calcu-

lated according to Equations (12) and (13).14–17

sy ¼
~Ay

A
ð12Þ

sz ¼
~Az

A
ð13Þ

4.5 | Center of gravity transformation

If the coordinates of the calculated center of gravity sy and sz do not

coincide with the origin of the chosen local coordinate system, a

transformation of the cross-section values according to Equation (14)

is required.14–17

Ayχzψ ¼ ~Ayχzψ �A � sχy � sψz ð14Þ

4.6 | Principal bending angle and principal
moments of inertia

If a product of inertia is existent (Ayz ≠0), the principal moments of

inertia Aξξ and Aηη differ from the area moments of inertia Ayy and Azz

in their direction of action and magnitude. The principal bending angle

and the corresponding principal moments of inertia are calculated by

Equations (15)–(17).14–17

tan 2φ0ð Þ¼ 2 �Ayz

Ayy�Azz
ð15Þ

Aξξ ¼AyyþAzz

2
þ Ayy�Azz

2
� cos 2φ0ð Þ�Ayz � sin 2φ0ð Þ

� �
ð16Þ

Aηη ¼AyyþAzz

2
� Ayy�Azz

2
� cos 2φ0ð Þ�Ayz � sin 2φ0ð Þ

� �
ð17Þ

4.7 | Warping function

The calculation of the torsional constant Axx as well as the location of

the shear center smy and smz of arbitrarily shaped cross-sectional areas

requires the solution of Laplace's equation (Saint-Venant torsion) of

the warping function ω according to Equation (18), respecting the

condition for the boundary of the cross-section given by

Equation (19).19,20,22 In the following, the basic steps for the numeri-

cal calculation of the warping function ω by means of IGA, that is,

using the NURBS basis functions, are presented.

First, analogous to the “classical” FEM, a weak form of the bound-

ary value problem is described according to Equations (18) and (19)

using the calculus of variations. The test and weighting functions gener-

ated in this process have the NURBS basis functions of the geometric

description as their basis and are partitioned into finite subsets

(elements) of the entire solution space (Bubnov–Galerkin method).24,25

The element-wise approximation of the sought warping function is then

described by Equation (20). Analogous to the “classical” FEM, stiffness

matrices and load vectors can now be generated for each element.

These are given in Equations (21) and (22) for the numerical calculation

of the warping function.22 After the assembly of the global stiffness

matrix and the global load vector from the element-wise contributions,

the linear system of equations, see Equation (23), can be solved and the

discrete values of the warping function can be determined.24 For this

purpose, an arbitrary degree of freedom has to be provided with a

restraint (Dirichlet boundary condition).19 Also in IGA, adequate refine-

ment of the calculation is essential for the accuracy of the result. For

this purpose, methods for increasing the degree of the basis functions

(p-method) as well as for mesh refinement of the surface (h-method) are

available. These can also be used in combination (hp-method).24 The

definition of elements in the context of IGA is given in Section 4.9. Fur-

ther theoretical background and practical hints for the implementation

100 ZIMMERT and BRAML

 2625073x, 2024, 5-6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cend.202300010 by U

niversitat der B
undesw

ehr M
unchen, W

iley O
nline Library on [06/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



and application of IGA can be found, for example, in Cottrell et al.24 and

Hughes.25

Δω¼r2ω¼ ∂2ω

∂y2
þ ∂2ω

∂z2
¼0 inΩð Þ ð18Þ

∂ω

∂y
� z

	 

nyþ ∂ω

∂z
þy

	 

nz ¼0 at the boundary of ∂Ωð Þ ð19Þ

with n defined as the unit normal vector of the cross-section

boundary.

ωa
e ξ,ηð Þ¼

Xnae
i¼1

Xma
e

j¼1

Re
i,j,p,q,a ξ,ηð Þωe

i,j,a ¼Re
a ξ,ηð Þωe

a ð20Þ

kea ¼ βa,ref �
ð ð

Ωa
e

∂RT

∂y
∂R
∂y

þ ∂RT

∂z
∂R
∂z

 !
dΩa

e ð21Þ

pe ¼ βa,ref �
ð ð

Ωa
e

∂R
∂z

�y� ∂R
∂y

� z
	 


dΩa
e ð22Þ

Kω¼P ð23Þ

4.8 | Shear center and torsional constant

The result of the numerical calculation are discrete values of the basic

warping function ω, which are converted into values of an adjusted

unit warping function ω by Equation (24). Using this, the coordinates

of the shear center (with respect to the coordinate origin) can be cal-

culated according to Equations (25)–(28). Subsequently the values of

the principal warping function ~ω can be calculated by means of Equa-

tion (29). The torsional constant is calculated via the principal warping

function according to Equation (30).19,20,22

ω¼ω�1
A
�
Xna
a¼1

βa,ref
Xne,a
e¼1

ð ð
Ωa

e

ωa
e dΩ

a
e ð24Þ

Aωy ¼
Xna
a¼1

βa,ref
Xne,a
e¼1

ð ð
Ωa

e

ωe
a y dΩ

a
e ð25Þ

Aωz ¼
Xna
a¼1

βa,ref
Xne,a
e¼1

ð ð
Ωa

e

ωa
e zdΩ

a
e ð26Þ

smy ¼Aωy �Ayz�Aωz �Ayy

Ayy �Azz�Ayz
2

ð27Þ

smz ¼Aωy �Azz�Aωz �Ayz

Ayy �Azz�Ayz
2

ð28Þ

~ω¼ωþ smy � z� smz �y ð29Þ

Axx ¼AzzþAyy�ωT Kω ð30Þ

4.9 | Numerical integration

The integrals appearing in Equations (11), (21), (22), and (24)–(26) for the

calculation of the cross-section values can be calculated within numerical

accuracy using Gauss quadrature.25 This is also true in the case where

NURBS basis functions are used for geometric description.4,24 For this

purpose, first the two knot vectors Ξ and Η, which describe the NURBS

basis functions of the respective cross-section parts, must be subdi-

vided into elements Ene (number: ne) with the spans ξi ,ξiþ1½ � and

ηi,ηiþ1

� �
. Note that ξiþ1 > ξi and ηiþ1 > ηi:

24 This step is exemplified in

Equations (31) and (32), respectively. Within the parameter intervals

of each element defined in this way, ngp,ξ ¼ pþ1ð Þ and ngp,η ¼ qþ1ð Þ
Gaussian points are defined. Thus, the number of required Gaussian

points depends on the degree of the chosen basis functions for the

geometric description and is ngp ¼ ngp,ξ �ngp,η. The number of Gaussian

points determines their location in the uniform parameter space

~ξgp � �1,1½ � and ~ηgp � �1,1½ � as well as their weights αgp,ξ and αgp,η. A

detailed description of how to compute the location of the Gaussian

points as well as their associated weights can be found in, for exam-

ple, Hughes25 or Stroud and Secrest.27 ~ξgp and ~ηgp must now be trans-

formed to the parameter space of the respective element using

Equation (33).25,27 At these points, the values of the function to be inte-

grated are then calculated and multiplied by associated weights αgp,ξ

and αgp,η, and the determinant of the Jacobian matrix, see Equation (4).

Finally these are added to the total value of the respective cross-

sectional part, see Equation (34). The use of the Gauss quadrature

achieves sufficiently accurate results in the integration of NURBS sur-

faces for the application presented here.24 The location and the

weights of the Gaussian points for the numerical integration of the

surface according to Figure 3 are exemplarily shown in Figure 5.

Ξ¼ 0,0,0:5,1|fflfflfflffl{zfflfflfflffl}
E1 j E2½ �

,1

8><
>:

9>=
>; ð31Þ

Η¼ 0,0,0,0:5,1|fflfflfflffl{zfflfflfflffl}
E1 j E2½ �

,1,1

8><
>:

9>=
>; ð32Þ

ξgp ¼
ξiþ1�ξið Þ

2
�~ξgpþ

ξiþ1þ ξið Þ
2

ð33Þ

(Analogously valid for ηgp).

ð ð
Ωa

f x,yð ÞdΩa ¼
Xne,a
ea¼1

ξiþ1�ξi
2

Xngp,e,a
1

f ξgp,e,a,ηgp,e,a
� � �αgp,ξ,e,a �αgp,η,e,a �det Jð Þ

ð34Þ

5 | VALIDATION OF CALCULATION
RESULTS

In the following, the results of the presented method for calculating

cross-section values are validated using two examples with available
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analytical (approximate) solutions. The composite cross-section Ω

considered in both cases consists of two partial surfaces Ω1 and Ω2

with the respective dimensions according to Figure 6.

Example 1 describes two connected rectangles with control points

according to Figure 6A) as well as p= q=3 and Ξ = Η =

[0,0,0,0,1,1,1,1] in each case. Example 2 describes two concentrically

arranged circles with radii according to Figure 6B). The modeling of

circular surfaces using NURBS is discussed in detail in Piegl and Tiller.4

In both examples, a concrete of grade C20/25 is assigned to subarea

Ω1 as the construction material and a concrete of grade C50/60 is

assigned to subarea Ω2. With reference to the concrete of grade

C50/60, the reference values of the material properties are:

α1,ref ¼ β1,ref ¼0,803746 and α2,ref ¼ β2,ref ¼1,00. The analytical solu-

tions for the moments of area and the location of the center of gravity

are available in tabular form in the literature, see, for example, Pilkey28

and are therefore not listed separately here. A formula for the

approximate calculation of the torsional constant is given for Example

1 in Equation (35) and for Example 2 in Equation (36).22,29 In Table 4,

the results of the presented calculation method are compared with

the analytical solutions. A very good match of the results can be

observed with a maximum difference of 1.6%. This is due to the fact

that Equation (36) is an approximate formula.

Axx,Ω,1 ¼1
3
� α1,ref �bΩ1 þbΩ2ð Þ �h3�3,361 � h

4

16
�1þα1,ref2

1þα1,ref
ð35Þ

Axx,Ω,2 ¼ 1þ2 � α1,ref�1ð Þ
α1,refþ1

�Axx,Ω2

Axx,Ω0

� �
�Axx,Ω0 ð36Þ

with: bΩ1 ,bΩ2 as the width of the respective cross-sectional part; h as

the height of the cross-section; and Axx,Ω0 as the torsional constant of

a fictitious, homogeneous total cross-section.

F IGURE 5 Location and
weights of the Gaussian
quadrature points (green stars) for
the integration of the NURBS
surface of Figure 3.

(A) (B)

F IGURE 6 Geometry of the
compound cross-sections for the
validation of results:
(A) rectangular cross-section;
(B) circular cross-section.
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6 | EXAMPLE

In the following, the presented calculation method for cross-section

values is applied to an example. The characteristic values of the cross-

section in the midspan of a prestressed concrete girder are calculated.

This girder, already shown in Figure 1, was modeled as a

shape-optimized component following Rath et al.30 The cross-section

shown in Figure 7 consists of seven partial surfaces: Ω1,c, Ω2,c, Ω3,c,

and Ω4,c describe the concrete body and Ω5,p, Ω6,p, Ω7,p the prestres-

sing steel cross-section with a respective cross-sectional area of

Ap=150 mm2. The control points for modeling these subareas are

given in Figure 7, and the knot vectors and the degrees of the NURBS

basis functions are listed below. To avoid clutter, for the tendons, only

their location is given in Figure 7. The modeling of circular surfaces

using NURBS is described thoroughly in Piegl and Tiller.4

The calculated ideal cross-section values are given in Figure 8. In addi-

tion, the warping function calculated using IGA is shown qualitatively

in Figure 9. For its calculation, the NURBS basis functions of the geo-

metric description were increased to the degree p¼ q¼3 (p-method).

No further mesh refinement was applied.

ΞΩ1,c ¼ΞΩ2,c ¼ΞΩ3,c ¼ΞΩ4,c ¼ 0,0,1,1½ �

ΗΩ1,c ¼ΗΩ3,c ¼ 0,0,1,1½ �; ΗΩ2,c ¼ΗΩ4,c ¼ 0,0,0,1,1,1½ �

pΩ1,c
¼ pΩ2,c

¼ pΩ3,c
¼ pΩ4,c

¼1

qΩ1,c
¼ qΩ3,c

¼1; qΩ2,c
¼ qΩ4,c

¼2:

TABLE 4 Comparison of the numerical and analytical solution for the values of the cross-sections according to Figure 6.

Cross-section value

Numerical solution

Example 1jExample 2

Analytical solution

Example 1jExample 2

Difference

Example 1jExample 2 Unit

A 0.480375j2.987731 0.480375j2.987455 0%j< 0.01% ðm2Þ
Ay ¼Az ¼Ayz 0j0 0j0 0%j0% ðm3Þ
Ayy 0.038333j0.775836 0.038333j0.775765 0%j<0.01% ðm4Þ
Azz 0.010007j0.775836 0.010007j0.775765 0%j<0.01% ðm4Þ
sy 0.516342j1.0 0.516342j1.0 0%j0% ðmÞ
sz 0.25j1.0 0.25j1.0 0%j0% ðmÞ
Axx 0.027607j1.551635 0.028050j1.549433 1.6%j0.14% ðm4Þ
smy 0.516342j0.999995 0.516342j1.0 0%j<0.01% ðmÞ
smz 0.25j0.999995 0.25j1.0 0%j<0.01% ðmÞ

F IGURE 7 Cross-section at the mid-span of the prestressed
girder according to Figure 1; geometry in green; control net in black.

F IGURE 8 Ideal cross-section values at the mid-span of the
prestressed girder according to Figure 1.
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7 | CONCLUSIONS AND OUTLOOK

In this paper, the fundamentals for the calculation of cross-section

values of free-form reinforced concrete, prestressed concrete, and

composite components are presented. The cross-sections are

described by NURBS surfaces. The element-wise integration of the

moments of area and other geometric values is easily possible using

Gauss quadrature. The calculation of the torsional values is performed

by a numerical approximation using IGA. In a further step, conver-

gence studies shall be carried out so that rules for a generally suffi-

cient refinement of this numerical calculation can be determined. The

calculation results of the method implemented by the authors in

the programming language Python were validated on two examples

with analytical solutions. The application was demonstrated on

another example. It is expected that due to new manufacturing tech-

niques, such as concrete 3D printing, the description of free forms will

play an important role in the future.12 For the procedure presented in

Section 1 for the structural analysis and design of such components,

the following further steps are necessary.

• Automatic calculation of the location as well as the geometry of finite

elements (bars or beams) from NURBS solids.11 This can be achieved,

for example, by means of an interpolation of previously calculated

center of gravity coordinates by NURBS curves, see Figure 1.4

• Calculation of stiffness matrices of the generated finite elements

using locally calculated cross-section values and preselected con-

struction material properties.25

• Generation of load vectors from actions and calculation of defor-

mations using IGA.24

• Investigation of the limits of validity of the applied beam theory for

different geometric shapes by means of comparison with solid

models.

• Calculation of internal forces using IGA.24

• Cross-sectional design for biaxial bending with longitudinal force

as well as torsion and biaxial shear force loading using cross-

sections extracted locally as NURBS surfaces.15 The calculation of

cross-sectional stresses required for this purpose is exemplified in

Figure 10 (biaxial bending with longitudinal force) and Figure 11

(torsion).22

• Generation of digital images of reinforcement cages as NURBS

solids using cross-section-related design results.

• Optimization of structural components with respect to the usage

of construction materials.

F IGURE 9 Warping function (qualitative representation) of the
cross-section at the mid-span of the prestressed girder according to
Figure 1.

F IGURE 10 Cross-section stresses (qualitative representation) as
result of biaxial bending with longitudinal force at the mid-span of the
prestressed beam according to Figure 1.

F IGURE 11 Cross-section stresses (qualitative representation) as
result of torsion at the mid-span of the prestressed beam according to
Figure 1.
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