
https://doi.org/10.1007/s00145-024-09510-9
J Cryptol (2024) 37:29

Research Article

Bringing Order to Chaos: The Case of Collision-Resistant
Chameleon-Hashes

David Derler
DFINITY, Zurich, Switzerland

david@dfinity.org

Kai Samelin
Hamburg, Germany

kaispapers@gmail.com

Daniel Slamanig
Research Institute CODE, Universität der Bundeswehr München, Munich, Germany

daniel.slamanig@unibw.de

Communicated by Stefano Tessaro

Received 18 July 2022 / Revised 6 May 2024 / Accepted 3 June 2024

Abstract. Chameleon-hash functions, introduced by Krawczyk and Rabin (NDSS’00),
are trapdoor collision-resistant hash functions parametrized by a public key. If the cor-
responding secret key is known, arbitrary collisions for the hash function can be found
efficiently. Chameleon-hash functions have prominent applications in the design of
cryptographic primitives, such as lifting non-adaptively secure signatures to adaptively
secure ones. Recently, this primitive also received a lot of attention as a building block
in more complex cryptographic applications, ranging from editable blockchains to ad-
vanced signature and encryption schemes. We observe that, in latter applications, various
different notions of collision-resistance are used, and it is not always clear if the respec-
tive notion really covers what seems intuitively required by the application. Therefore,
we revisit existing collision-resistance notions in the literature, study their relations, and
by means of selected applications discuss which practical impact different notions of
collision-resistance might have. Moreover, we provide a stronger, and arguably more
desirable, notion of collision-resistance than what is known from the literature (which
we call full collision-resistance). Finally, we present a surprisingly simple, and efficient,
black-box construction of chameleon-hash functions achieving this strong notion of full
collision-resistance.

1. Introduction

A chameleon-hash function (CH) is a trapdoor collision-resistant hash function parametrized
by a public key. If the corresponding secret key is known, arbitrary collisions for the
hash function, i.e., distinct messages m �= m′ yielding the same hash value h, can be
© The Author(s) 2024

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-024-09510-9&domain=pdf

 29 Page 2 of 44 D. Derler et al.

efficiently found. Over the years, they have proven to be a very useful tool in theory, as
well as in practice. Exemplary, CHs have been suggested by Shamir and Tauman [52]
to construct online/offline signatures [21,33,34] (cf. also Sect. 6). Moreover, Shamir
and Tauman in [52] showed that CHs can be used to generically lift non-adaptively
secure signature schemes to adaptively secure ones, which has subsequently been used
for instance by Hohenberger and Waters [43] to obtain short signatures under the RSA
assumption in the standard model. If CHs are tightly secure, they can be used to gener-
ically construct tightly secure signatures [14]. Likewise, CHs are used to generically
construct strong one-time signatures as shown by Mohassel [49], inspired by a concrete
construction by Groth [38]. Zhang [57] shows how to construct IND-CCA secure public-
key encryption from tag-based encryption (TBE) or identity-based encryption (IBE) and
CHs. Bellare and Ristov [11,12] made the interesting discovery that chameleon-hashes
in the sense of Krawczyk and Rabin [46] are equivalent to �-protocols, i.e., three round
public-coin honest-verifier zero-knowledge proofs of knowledge. CHs are also used to
construct sanitizable signatures [4,17,18], i.e., signatures where a designated entity can
modify certain parts of a signed message without invalidating the respective signature
under controlled conditions. Furthermore, CHs have been used by Steinfeld et al. [54]
to extend Schnorr and RSA signatures to the universal designated-verifier setting [53].
Also, different flavors of chameleon-hashing such as (hierarchical) identity-based [6,8]
or policy-based chameleon-hash functions [26,51] have been studied.

In a more applied setting, CHs have shown to be valuable to construct integrity
measurement and remote attestation mechanisms (denoted chameleon attestation) [2],
and are used in vehicular ad-hoc networks (VANETs) [41] or handover authentication in
mobile networks [22]. More recently,CHs have been used as a means to rewrite blocks in
blockchains by replacing the hash function to chain blocks and/or to hash transactions by
chameleon-hashes [5,26], to which we come back in Sect. 6. This brief discussion already
shows that chameleon-hashes are used in a wide spectrum of different applications
requiring different strength of the respective chameleon-hash. Consequently, authors
often introduce some ad-hoc notion of collision-resistance for their applications, or even
ignore that applications might require a stronger notion. Subsequently, we briefly discuss
the different notions which are most commonly found in the literature.

1.1. Formalizing Chameleon-Hashes

The concept of chameleon-hashing dates back to the notion of trapdoor commitments
introduced by Brassard et al. [16] and was firstly coined chameleon-hashing by Krawczyk
and Rabin [46] with an instantiation based on the well-known trapdoor-commitment
scheme by Pedersen [50]. Later, Ateniese and de Medeiros [7] observed that the initial
collision-resistance notion (which we denote W-CollRes) is rather weak (it does not
give the adversary access to any collisions), and, more importantly, it is also satisfied
by chameleon-hashes suffering from the key-exposure problem. Namely, when seeing a
single collision for some hash h, it allows to publicly extract the secret trapdoor. Thus,
any further guarantees are lost. While this is a desirable property for the initial use in
chameleon signatures [46], and is also sufficient for the lifting compiler to adaptively
secure signatures [52] (as no collision is ever revealed), it is too weak for many other
applications. The key-exposure freeness definition by Ateniese and de Medeiros [7] is

Bringing Order to Chaos:... Page 3 of 44 29

for the specific case of public-coin chameleon-hashing (where verifying the chameleon-
hash is essentially re-computing it). To address this, Ateniese et al. [5] introduced a
related notion called enhanced collision-resistance (which we denote E-CollRes) for
the generalized case of secret-coin chameleon-hashing (which is the setting that we
also consider). The latter notion allows the adversary to see collisions, but it is not
allowed to see any collision for the target hash, i.e., the hash corresponding to the
collision it computes. Hence, once a single collision for a hash h is seen, an adversary can
potentially find arbitrary collisions for that particular hash h. Recently, Khalili et al. [45]
have pointed out issues regarding the practicality of the concrete random-oracle model
instantiation,1 proposed by Ateniese et al. in [5], and propose alternative constructions
in the standard model. In another work, Camenisch et al. [18] proposed an alternative
collision-resistance notion which allows the adversary to see arbitrary collisions also
for the target hash, but not for the target message, i.e., the message used in the collision
output by the adversary has never been queried. In other words, once a collision for a
message m is seen, an adversary is allowed to find arbitrary other hashes h′ with the
queried messages. Arguably, this notion seems more realistic as it is better compatible
with practical applications (e.g., one can often make the messages unique by appending
a tag/nonce), and thus we denote it as standard collision-resistance (or S-CollRes).

1.2. Motivation and Contribution

The previous discussion already illustrates that there are many different collision-resistance
notions. While this does not necessarily point to an issue, we observe that it is not always
clear whether the respective notion does really cover what is required by the respective
application. Moreover, it is not clear if the last notion discussed above (S-CollRes) is
already the most desirable notion, or, if even stronger notions are achievable, and do
have practical relevance. Motivated by these observations, we provide the following
contributions:

1.2.1. Relations among Properties

We discuss the different security notions of chameleon-hashes, and rigorously study
relations among them. Most importantly, we, for the first time, clarify the picture of ex-
isting collision-resistance notions by showing implications, and separations, (cf. Figure 1
for an overview). In the course of showing separations, we also provide a construction
of a chameleon-hash satisfying the E-CollRes notion, but which clearly demonstrates
weaknesses of this notion.

1.2.2. Stronger Notion

We find that the strongest existing collision-resistance notions, i.e., E-CollRes and
S-CollRes (which are incomparable), might still be too weak for practical applications,

1The requirement for an invertible encoding into the group introduces an enormous efficiency penalty, and
thus their instantiation is incomplete. Moreover, it was only recently shown that the proposed chameleon-hash
fulfills our stronger definition [23].

 29 Page 4 of 44 D. Derler et al.

Fig. 1. Relations between CH collision-resistance properties .

see, e.g., Sect. 6. In particular, even if S-CollRes is satisfied, the hash values might still
be malleable leaving space for potential real-world attacks. Consequently, we propose a
stronger notion coined full collision-resistance (or F-CollRes for short), which enforces
that the adversary cannot (except with negligible probability) output any new collisions
and covers what one intuitively expects from collision-resistance.

1.2.3. Black-Box Construction

We present a simple, yet elegant, black-box construction of a chameleon-hash func-
tion satisfying this strong F-CollRes notion. Considering the complexity of existing
constructions in [5,45], this is somewhat surprising. To recall, the construction from
Ateniese et al. [5] starts from a public-coin chameleon-hash function that satisfies
W-CollRes, uses an IND-CPA-secure encryption-scheme to encrypt the randomness of
the chameleon-hash and then uses a true-simulation extractable (tSE) NIZK [32],2 which
is, in turn, based on a NIZK and an IND-CCA secure public-key encryption scheme,
to prove that the ciphertext is an encryption of the randomness. The constructions by
Khalili et al. [45], which avoid the aforementioned issues with [5], are based on another
new public-coin chameleon-hash function that satisfies W-CollRes and then either uses
Groth–Sahai NIZK proofs [40] and the IND-CCA secure Cramer–Shoup encryption
scheme [25] or a succinct non-interactive argument of knowledge (SNARK). Both con-
structions by Khalili et al. [45] basically follow the generic template in [5]. In contrast,
our black-box construction of a F-CollRes chameleon-hash is constructed from per-
fectly correct (multi-challenge) IND-CPA secure encryption, e.g., ElGamal encryption,
and a simulation-sound extractable non-interactive zero-knowledge proof (SSE-NIZK),
e.g., applying the compiler of Faust et al. [35] to a Fiat-Shamir transformed �-protocol.
The basic idea is that the chameleon-hash is the encryption c of the message m and the
randomness of the chameleon-hash is a NIZK proof s.t. either c correctly encrypts m
under the pk of CH or one knows the secret key sk corresponding to pk. Interestingly,
already a perfectly binding commitment (without any hiding) is sufficient to achieve the
F-CollRes notion, but instead a multi-challenge IND-CPA secure encryption scheme as
a perfectly binding commitment is used to additionally achieve the indistinguishability
property of the CH, i.e., that fresh and adapted hashes are indistinguishable, a notion
that is considered standard for chameleon-hashes.

2In true-simulation extractability the simulator can only be used for statements inside the language.

Bringing Order to Chaos:... Page 5 of 44 29

1.2.4. Applications

We discuss how our stronger notion allows to strengthen the security of existing applica-
tions. In particular, in Sect. 6 we discuss what problems may be caused by different no-
tions of collision-resistance within recent applications to redactable blockchains [5,26].
Here, either the hash function to chain blocks in a blockchain or the hash functions to
aggregate transactions within single blocks (usually by means of a Merkle-tree) are re-
placed by a chameleon-hash function. Moreover, we take a second look at online/offline
signatures and discuss how chameleon-hashes providing a stronger collision-resistance
notion than the W-CollRes notion used by Shamir and Tauman in [52] allows to re-use
offline signatures and add more robustness at the cost of a more expensive offline phase
and a slightly more costly online phase.

1.3. Differences to the Conference Version

Compared to the conference version published at IACR PKC 2020 [29], this version
in Sect. 3.3 includes a more complete treatment of indistinguishability and in particular
stronger indistinguishability notions and their relations. Moreover, in Sect. 4.1 it includes
examples of existing chameleon-hashes providing the W-CollRes and S-CollRes no-
tions, and, in Sect. 4.2 the full proofs of our construction providing E-CollRes. Finally,
in Sect. 6.2 as an additional application we discuss the use of chameleon-hashes with
stronger collision-resistance notions in online/offline signatures.

1.4. Follow-up Work

Derler et al. in SCN’20 [28] show how to remove the requirement to rely on public-
key encryption from the approach presented in this paper. In particular, they show how
to construct fully collision-resistant chameleon-hashes based on SSE NIZKs and non-
interactive commitment schemes. They then present an instantiation from the discrete
logarithm (DL) problem and a concrete construction from the learning parity with noise
(LPN) problem. Latter yields the first chameleon-hash from post-quantum assumptions
that provides a collision-resistance notion stronger than W-CollRes (as, e.g., the lattice-
based chameleon-hash by Cash et al. from EC’10 [19]). In PKC’24, Li and Liu [47]
introduce a lattice-based F-CollRes chameleon-hash without resorting to random ora-
cles or NIZK proofs by relying on the new notion of tagged chameleon hashes. Very
recently, Bellare, Riepel and Shea [13] initiated the formal study of backdoored hash
functions, which are closely related to chameleon-hashes, and introduce a notion of
F-CollRes for such hash functions.

2. Preliminaries

2.1. Notation

With λ ∈ N we denote our security parameter. All algorithms implicitly take 1λ as
an additional input. We write a ←$ A(x) if the output of a probabilistic algorithm A
with input x is assigned to a and use a ← A(x) if A is deterministic. An algorithm

 29 Page 6 of 44 D. Derler et al.

is efficient, if it runs in probabilistic polynomial time (PPT) in the length of its input.
All algorithms are PPT, if not explicitly mentioned otherwise. If we want to make the
random coins used by an algorithm A explicit, we use the notation a ←$ A(x; ξ). We
write (a; ξ) ←$ A(x), if we need to access the random coins ξ internally drawn by A.
Most algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception.
Returning output ends execution of an algorithm or an oracle. To make the presentation
in the security proofs more compact, we occasionally use (a,⊥) ←$ A(x) to indicate
that the second output is either ignored or not returned by A. If S is a finite set, we write
a ←$ S to denote that a is chosen uniformly at random from S. M denotes a message
space of a scheme, and we generally assume that M is derivable from the scheme’s
public parameters or its public key. For a list we require that there is an injective, and
efficiently reversible, encoding, that maps the list to {0, 1}∗. A function ν : N → R≥0
is negligible, if it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N

such that ν(n) ≤ n−k , ∀n > n0.

2.2. Building Blocks

We now present the building blocks we require. These include key-verifiable multi-
challenge IND-CPA (mcIND-CPA) secure public-key encryption schemes �, digital
signature schemes �, and non-interactive zero-knowledge proofs �.

2.2.1. Public-Key Encryption Schemes

Subsequently, we define public-key encryption schemes.

Definition 1. (Public-Key Encryption Scheme) A public-key encryption scheme �

consists of five algorithms {PG�,KG�,Enc,Dec,KVf�}, such that:

PG�. The algorithm PG� outputs the public parameters of the scheme:

pp� ←$ PG�(1λ).

It is assumed that pp� is an implicit input to all other algorithms.
KG�. The algorithm KG� outputs the key pair, on input pp�:

(sk�,pk�) ←$ KG�(pp�).

Enc. The algorithm Enc gets as input the public key pk�, and a message m ∈ M to
encrypt. It outputs a ciphertext c:

c ←$ Enc(pk�,m).

Dec. The deterministic algorithm Dec outputs a message m ∈ M ∪ {⊥} on input
sk�, and a ciphertext c:

m ← Dec(sk�, c).

Bringing Order to Chaos:... Page 7 of 44 29

Fig. 2. Multi-Challenge IND-CPA Security.

KVf�. The deterministic algorithm KVf� decides whether a given public key pk�

corresponds to a given secret key sk�:

d ← KVf�(pk�, sk�).

Definition 2. (Correctness) A public key encryption scheme � is called correct, if
for all security parameters λ ∈ N, for all pp� ←$ PG�(1λ), for all (sk�,pk�) ←$
KG�(pp�), for all m ∈ M, for all c ←$ Enc(pk�,m), we have that m = Dec(sk�, c)
and that for all sk�

′ we have that KVf�(pk�, sk�
′) = 1 �⇒ m = Dec(sk�

′, c).

Definition 3. (Multi-Challenge IND-CPA Security) A public-key encryption scheme
� is multi-challenge IND-CPA secure (mcIND-CPA), if for any PPT adversary A there
exists a negligible function ν such that:

∣
∣
∣Pr

[

ExpmcIND-CPA
A,� (λ) = 1

]

− 1/2

∣
∣
∣ ≤ ν(λ).

The corresponding experiment is depicted in Fig. 2.

Bellare et al. have shown, via a hybrid argument, that mcIND-CPA is equivalent to
standard, i.e., “single-message”, IND-CPA [9]. We opted for using mcIND-CPA, because
it allows writing our proofs down more compactly, improving readability.

2.2.2. Digital Signature Schemes

Subsequently, we define signature schemes.

Definition 4. (Digital Signatures) A digital signature scheme � consists of four algo-
rithms {PG�,KG�,Sgn�,Vrf�} such that:

 29 Page 8 of 44 D. Derler et al.

Fig. 3. Unforgeability .

PG� . The algorithm PG� outputs the public parameters

pp� ←$ PG�(1λ).

We assume that pp� is implicit input to all other algorithms.
KG� . The algorithm KG� outputs the public and private key of the signer, where λ is

the security parameter:

(sk�,pk�) ←$ KG�(pp�).

Sgn� . The algorithm Sgn� gets as input the secret key sk� and the message m ∈ M
to sign. It outputs a signature:

σ ←$ Sgn�(sk�,m).

Vrf� . The deterministic algorithm Vrf� outputs a decision bit d ∈ {0, 1}, indicating if
the signature σ is valid, w.r.t. pk� and m:

d ← Vrf�(pk�,m, σ).

Definition 5. (Correctness) A digital signature scheme � is called correct, if for all se-
curity parameters λ ∈ N, for all pp� ←$ PG�(1λ), for all (sk�,pk�) ←$ KG�(pp�),
for all m ∈ M, Vrf�(pk�,m,Sgn�(sk�,m)) = 1 is true.

We require existential unforgeability under adaptively chosen message attacks (eUNF-
CMA security). In a nutshell, unforgeability requires that an adversary A cannot (except
with negligible probability) come up with a signature for a message m∗ for which
the adversary did not see any signature before, even if the adversary A is allowed to
adaptively query for signatures on messages of its own choice.

Bringing Order to Chaos:... Page 9 of 44 29

Definition 6. (Unforgeability) We say a digital signature scheme � scheme is unforge-
able, if for every PPT adversary A, there exists a negligible function ν such that:

Pr
[

ExpeUNF-CMA
A,� (λ) = 1

]

≤ ν(λ).

The corresponding experiment is depicted in Fig. 3.

For Construction 3, we require that the size of signatures is independent of the size of
the signed messages.

2.2.3. Non-Interactive Proof Systems.

Let L be an NP-language with associated witness relation R, i.e., such that L = {x |
∃w : R(x, w) = 1}. A non-interactive proof system allows to prove membership of
some statement x in the language L . More formally, such a system is defined as follows.

Definition 7. (Non-Interactive Proof System) A non-interactive proof system � for
language L consists of three algorithms {PG�,Prf�,Vfy�}, such that:

PG�. The algorithm PG� outputs public parameters of the scheme, where λ is the
security parameter:

crs� ←$ PG�(1λ).

Prf�. The algorithm Prf� outputs the proof π , on input of the CRS crs�, statement x
to be proven, and the corresponding witness w:

π ←$ Prf�(crs�, x, w).

Vfy�. The deterministic algorithm Vfy� verifies the proof π by outputting a bit d ∈
{0, 1}, w.r.t. to some CRS crs� and some statement x :

d ← Vfy�(crs�, x, π).

Definition 8. (Correctness) A non-interactive proof system is called correct, if for all
λ ∈ N, for all crs� ←$ PG�(1λ), for all x ∈ L , for all w such that R(x, w) = 1, for
all π ←$ Prf�(crs�, x, w), it holds that Vfy�(crs�, x, π) = 1.

In the context of (zero-knowledge) proof-systems, correctness is sometimes also referred
to as completeness. In addition, we require two standard security notions for zero-
knowledge proofs of knowledge: zero-knowledge and simulation-sound extractability.
We define them analogously to the definitions given in [27].

Informally speaking, zero-knowledge says that the receiver of the proof π does not
learn anything except the validity of the statement.

 29 Page 10 of 44 D. Derler et al.

Fig. 4. Zero-Knowledge .

Fig. 5. Simulation Sound Extractability .

Definition 9. (Zero-Knowledge) A non-interactive proof system � for language L is
zero-knowledge, if for any PPT adversary A, there exists an PPT simulator SIM =
(SIM1,SIM2) such that there exist negligible functions ν1 and ν2 such that

∣
∣
∣
∣
Pr

[

crs� ←$ PG�(1λ) : A(crs�) = 1] −

Pr
[

(crs�, τ) ←$ SIM1(1
λ) : A(crs�) = 1

]
∣
∣
∣
∣
≤ ν1(λ),

and that

∣
∣
∣Pr

[

ExpZero-Knowledge
A,�,SIM (λ) = 1

]

− 1/2

∣
∣
∣ ≤ ν2(λ),

where the corresponding experiment is depicted in Fig. 4.

Simulation-sound extractability says that every adversary who is able to come up with a
proof π∗ for a statement must know the witness, even when seeing simulated proofs for
adaptively chosen statements potentially not in L . Clearly, this implies that the proofs
output by a simulation-sound extractable proof-systems are non-malleable.

Bringing Order to Chaos:... Page 11 of 44 29

Note that the definition of simulation-sound extractability of [38] is stronger than ours
in the sense that the adversary also gets the trapdoor ζ as input. However, in our context
this weaker notion (previously also used, e.g., in [1,32]) suffices.

Definition 10. (Simulation-Sound Extractability) A zero-knowledge non-interactive
proof system � for language L is said to be simulation-sound extractable, if for any PPT
adversary A, there exists a PPT extractor E = (E1, E2), such that

∣
∣
∣
∣
Pr

[

(crs�, τ) ←$ SIM1(1
λ) : A(crs�, τ) = 1] −

Pr
[

(crs�, τ, ζ) ←$ E1(1
λ) : A(crs�, τ) = 1

]
∣
∣
∣
∣
= 0,

and that there exist a negligible function ν so that

Pr
[

ExpSimSoundExt
A,�,E (λ)

]

= 1 ≤ ν(λ),

where SIM = (SIM1,SIM2) is as in Definition 9 and the corresponding experiment is
depicted in Fig. 5.

3. Chameleon-Hashes, Revisited

In this section, we present the formal framework for chameleon-hashes, their security
properties with a special focus on the collision-resistance notion, and then show relations
and separations between the security properties.

3.1. Framework

We now present the framework for chameleon-hashes. We rely on the most recent com-
prehensive framework by Camenisch et al. [18], which is, in turn, based upon work done
by Ateniese et al. and Brzuska et al. [5,17].

Definition 11. A chameleon-hash CH is a tuple of five PPT algorithms (CHPG,

CHKG,CHash,CHCheck,CHAdapt), such that:

CHPG. The algorithm CHPG, on input a security parameter λ outputs public param-
eters of the scheme:

ppch ←$ CHPG(1λ).

We assume that ppch is implicit input to all other algorithms.
CHKG. The algorithm CHKG, on input the public parameters ppch outputs the private

and public keys of the scheme:

(skch,pkch) ←$ CHKG(ppch).

 29 Page 12 of 44 D. Derler et al.

CHash. The algorithm CHash gets as input the public key pkch, and a message m to
hash. It outputs a hash h, and some randomness r3:

(h, r) ←$ CHash(pkch,m).

CHCheck. The deterministic algorithm CHCheck gets as input the public key pkch, a
messagem, randomness r , and a hash h. It outputs a bit d ∈ {0, 1}, indicating
whether the hash h is valid:

d ← CHCheck(pkch,m, r, h).

CHAdapt. The algorithm CHAdapt on input of a secret key skch, the message m, new
message m′, randomness r , and hash h outputs new randomness r ′:

r ′ ←$ CHAdapt(skch,m,m′, r, h).

Definition 12. (Correctness) A chameleon-hash is called correct, if for all security pa-
rameters λ ∈ N, for all ppch ←$ CHPG(1λ), for all (skch,pkch) ←$ CHKG(ppch),
for all m ∈ M, for all (h, r) ←$ CHash(pkch,m), for all m′ ∈ M, we have
for all r ′ ←$ CHAdapt(skch,m,m′, r, h), that 1 = CHCheck(pkch,m, r, h) =
CHCheck(pkch,m

′, r ′, h).

3.2. Collision-Resistance, Revisited

In this section we revisit existing collision-resistance notions, introduce a stronger
and more desirable notion of collision-resistance dubbed full collision-resistance (or
F-CollRes for short) and discuss how these notions differ. The main idea behind
collision-resistance in general is to argue that an adversary that has no access to the
secret key skch cannot find any collisions, i.e., pairs (m, r) and (m′, r ′) and hash value
h s.t. CHCheck(pkch,m, r, h) = CHCheck(pkch,m

′, r ′, h) = 1. In the weakest case,
the adversary has no access to any other collisions, whereas in stronger notions the ad-
versary is explicitly allowed to obtain collisions for arbitrary hashes via a CHAdapt′
oracle (we indicate these by using boxes). We present all the different notions
in Fig. 6, where we indicate the differences in the winning conditions by using
boxes.

In all the experiments the challenger generates a key pair (skch,pkch) honestly (along
with some public parameters) and the adversary is then initialized with pkch. We now
discuss the differences of the single collision-resistance notions, where in the weakest
case the adversary has no access to an CHAdapt′ oracle (which allows the adversary
to adaptively ask for collisions with messages and hashes of its own choice), but in all
other cases the adversary does. To vertically align the experiments, we insert
boxes for lines which are missing in one experiment but are present in the other.

Weak Collision-Resistance (W-CollRes) [46] The adversary A wins, if it can come
up with a collision for the given public key.

3We note that the randomness r is also sometimes called “check value” [5].

Bringing Order to Chaos:... Page 13 of 44 29

Fig. 6. The ExpX−CollRes
A,CH experiment with X ∈ {W,E,S,F} .

Enhanced Collision-Resistance (E-CollRes) [5] The adversary gets access to a
collision-finding oracle CHAdapt′, which outputs a collision for adversarially cho-
sen hashes, but also keeps track of each queried hash h using the list Q. The
adversary wins, if it comes up with a collision for the given public key for an
adversarially chosen hash h∗ never input to CHAdapt′.
Standard Collision-Resistance (S-CollRes) [18] The adversary gets access to a
collision-finding oracle CHAdapt′, which outputs a collision for the adversarially
chosen hash, but also keeps track of each of the queried messages m and m′, using
the listQ. The adversary wins, if it comes up with a collision for the given public key
for an adversarially chosen h∗ for which the message m∗ output by the adversary
was never queried to the collision-finding oracle.
Full Collision-Resistance (F-CollRes). The adversary gets access to a collision-
finding oracle CHAdapt′, which outputs a collision for the adversarially chosen
hash, but also keeps track of each of the queried hash/message pair (h,m) and
(h,m′), using the list Q. The adversary wins, if it comes up with a hash/message

 29 Page 14 of 44 D. Derler et al.

pair (h∗,m∗), for the given public key, never queried to or output from the collision-
finding oracle.4

Now, we formally define security with respect to all the collision-resistance notions.

Definition 13. (X Collision-Resistance) A chameleon-hash CH offers X collision-
resistance with X ∈ {W,E,S,F}, if for any PPT adversary A there exists a negligible
function ν such that

Pr[ExpX−CollRes
A,CH (λ) = 1] ≤ ν(λ),

where the corresponding experiment is depicted in Fig. 6.
3.2.1. Discussion of the Notions

W-CollRes is the notion introduced in the first work on chameleon-hashes by Krawczyk
and Rabin [46] and essentially represents the binding notion of a trapdoor-commitment
scheme. Note that due to not giving access to a collision-finding oracle it gives no
guarantees whatsoever if the adversary sees a single collision for any hash computed
for the given public key.5 The E-CollRes notion has been introduced by Ateniese et al.
[5] and we note that there exists a definition in the setting of public-coin chameleon-
hashes, i.e., where the CHCheck algorithm simply re-runs the CHash, which is called
key-exposure freeness [7,20]. It captures requirements similar to the ones captured by
E − CollRes, but it is not directly comparable as we are considering the more general
secret-coin setting. We note that the E-CollRes notion allows the adversary to come
up with arbitrary collisions for hashes it has seen a collision for. The S − CollRes
notion has been introduced by Camenisch et al. [18], and it captures all of the intuitive
requirements of real-world applications of chameleon-hashes. Yet, it still allows the hash
itself to be malleable which might still be problematic in certain applications. Finally,
our new F-CollRes notion enforces that the adversary cannot (except with negligible
probability) output any new collisions and seems to be the most desirable notion for
collision-resistance.

3.3. Indistinguishability, Revisited

In a nutshell, indistinguishability requires that an adversary cannot decide whether ran-
domness was obtained through CHash or CHAdapt.

We present the respective formal security games in Fig. 7. We highlight differences
by using boxes, and missing parts using boxes.

4In the case (h′∗,m′∗) is the new hash/message pair, simply switch names.
5A slightly stronger notion has been proposed by Zhang in [57] where the adversary sees a hash on a

random message and is then given a single collision on a message of its choice. We do not cover this notion
here as it seems to be tailored to the specific applications in [57] and all notions stronger than W-CollRes
considered here cover more general cases.

Bringing Order to Chaos:... Page 15 of 44 29

3.3.1. (Normal) Indistinguishability (N-Ind)

Normal Indistinguishability (we sometimes refer to this notion simply as “Indistin-
guishability”, as this is the standard name in the literature) requires that the randomness
r does not reveal if it was obtained through CHash or CHAdapt.

Upon setup, the challenger generates a key pair (skch,pkch) for CH (along with
some public parameters ppch), and draws a bit b ←$ {0, 1}. The challenger initializes
the adversary with the pkch and gives the adversary access to a HashOrAdapt oracle,
which allows the adversary to submit two messages m, m′. Depending on the bit b, the
challenger then either hashes m′ directly (b = 0), or first hashes m, and then adapts m to
m′ (b = 1). The resulting hash/randomness pair (h, r) (or (h′, r ′′) resp.) is the oracle’s
output to the adversary. The adversary’s objective is to guess the bit b. Note that all keys
are generated honestly. The adversary gets access to a collision-finding oracleCHAdapt
for arbitrary hashes, meaning that the adversary may also input hashes generated by the
HashOrAdapt-oracle.

Samelin and Slamanig recently introduced full indistinguishability [51], which, in
turn, generalizes the notion of strong indistinguishability by Derler et al. [26]. In their
notion, the adversary is even allowed to generate the keys which are used for hashing and
adapting (in the strong version, the adversary only knows all keys, but cannot generate
them). See below for more information. Finally, we introduce an additional notion,
dubbed enhanced indistinguishability, where the adversary not only receives the secret
key generated, but the randomness r used for generation. This notion may be useful in
context where randomness leaks to the adversary.

3.3.2. Strong Indistinguishability (S-Ind)

Strong indistinguishability requires that a randomness r does not reveal whether it was
generated using CHash or CHAdapt, even if the adversary A additionally receives the
generated secret key. This also means that the collision-finding oracle can be dropped,
as the adversary can find collisions on its own.

3.3.3. Enhanced Indistinguishability (E-Ind)

Enhanced indistinguishability requires that a randomness r does not reveal whether it
was generated usingCHash orCHAdapt, even if the adversaryA knows the randomness
ξ used to generate the secret key. Again, this also means that the collision-finding oracle
can be dropped, as the adversary can find collisions on its own.

3.3.4. Full Indistinguishability (F-Ind)

Full indistinguishability requires that a randomness r does not reveal whether it was
generated using CHash or CHAdapt, even if the adversary A controls all values, but
the public parameters.6 Once more, this also means that the collision-finding oracle can
be dropped, as the adversary can find collisions on its own.

6Lifting this definition to also cover those parameters is straightforward.

 29 Page 16 of 44 D. Derler et al.

Fig. 7. The ExpX−Ind
A,CH experiment with X ∈ {N,S,E,F} (Color Figure online) .

Definition 14. (X Indistinguishability) A chameleon-hash CH offersX indistinguisha-
bility withX ∈ {N,S,E,F}, if for any PPT adversaryA there exists a negligible function
ν such that

∣
∣
∣Pr[ExpX−Ind

A,CH (λ) = 1] − 1/2

∣
∣
∣ ≤ ν(λ).

The corresponding experiments are depicted in Fig. 7.

We only consider normal indistinguishability as fundamental for chameleon-hashes,
but examine stronger notions to achieve a more complete picture of the relations. We
also stress that there may be scenarios where some sort of indistinguishability is not
required or even hindering.

Bringing Order to Chaos:... Page 17 of 44 29

Fig. 8. Uniqueness .

3.4. Uniqueness

Camenisch et al. [18] defined a property called uniqueness. Uniqueness requires that for
each hash/message pair, exactly one randomness can be found, even if the adversary A
controls all values, but the public parameters.7

Definition 15. (Uniqueness) A chameleon-hash CH is unique, if for any PPT adver-
sary A there exists a negligible function ν such that

Pr[ExpUniquenessA,CH (λ) = 1] ≤ ν(λ).

The corresponding experiment is depicted in Fig. 8.

We do not consider uniqueness as a fundamental property, as there are only very few
applications requiring this notion [18,51]. However, to obtain a more complete picture
with respect to the relations of the security properties, we also investigate uniqueness.

4. Relationships between Properties of Chameleon-Hashes

Below we show relations and separations between the security properties of chameleon-
hashes. Before doing so, we recall in Sect. 4.1 examples of chameleon-hashes providing
the W-CollRes and S-CollRes notions, respectively.

4.1. Existing Constructions of Chameleon-Hashes

4.1.1. Instantiation of a Weakly Collision-Resistant CH

We recall the initial CH construction by Krawczyk and Rabin [46] in Construction 1.
Note that a collision-resistant hash function is applied to the message prior to chameleon-

hashing to extend the domain, which is a standard technique. Seeing a collision (if not
resulting from the collision-resistant hash function) allows to extract the skch by com-
puting x ← (H(m)−H(m′))/(r ′−r) mod q.

4.1.2. Instantiation of a Standard Collision-Resistant CH

We recall a construction by Camenisch et al. from [18] in Construction 2. Before we do
so, we recall some background on the setup the scheme requires: Let (N , p, q, e, d) ←$

7Lifting this definition to also cover those parameters is straightforward.

 29 Page 18 of 44 D. Derler et al.

CHPG(1λ) : Outputs the public parameters (G, g, q, H), where (G, g, q) ← GGen(1λ) is a group G of
prime order q generated by g and H : {0, 1}∗ → Z

∗
q is a hash function chosen uniformly at random

from a family of collision-resistant hash functions.
CHKG(ppch) : Parse ppch as (G, g, q, H) and return (skch,pkch) ← (x, gx), where

x ←$ Z
∗
q .

CHash(pkch,m) : Return (h, r), where

r ←$ Z
∗
q , and h ← gH(m)pkrch.

CHCheck(pkch,m, h, r) : Return 1 if the following holds, and 0 otherwise:

h = gH(m)pkrch.

CHAdapt(skch,m,m′, h, r) : Output ⊥, if CHCheck(pkch,m, h, r) �= 1. Otherwise return r ′, where

r ′ ← H(m)+xr−H(m′)
x .

Construction 1: DL-based chameleon-hash

RSAKG(1λ) be an instance generator which returns an RSA modulus N = pq, where
p and q are distinct primes, e > 1 is an integer co-prime to ϕ(n), and de ≡ 1 mod ϕ(n).
The scheme requires that RSAKG always outputs moduli of the same bit-length, based
on λ, and that the one-more RSA assumption holds [10].

CHPG(1λ) : Output the public parameters ppch ← (1λ, e), where e is prime and e > N ′ with N ′ =
maxξ {N ∈ N : (N , ·, ·, ·, ·) ←$ RSAKG(1λ; ξ)}.

CHKG(ppch) : Run (N , p, q, ·, ·) ←$ RSAKG(1λ), choose a hash function H : {0, 1}∗ → Z
∗
N (modeled

as a random-oracle), compute d s.t. ed ≡ 1 mod ϕ(N), set skch ←$ d, pkch ←$ (N , H), and return
(skch,pkch).

CHash(pkch,m) : Parse pkch = (N , H) and a message m, choose r ←$ Z
∗
N , compute h ← H(m)re

mod N , and output (h, r).
CHCheck(pkch,m, h, r) : Parse pkch = (N , H), compute h′ ← H(m)re mod N , and output 1 if h′ = h

and 0 otherwise.
CHAdapt(skch,m,m′, h, r) : Output ⊥, if CHCheck(pkch,m, h, r) �= 1. Otherwise, let x ← H(m),

x ′ ← H(m′), y ← xre mod N and return r ′ ← (y(x ′−1))d mod N .

Construction 2: RSA-based Chameleon-Hash

4.2. Collision-Resistance Properties

We start by analyzing how the various collision-resistance notions are related.

Theorem 1. Standard collision-resistance is strictly stronger than weak collision-
resistance.

Bringing Order to Chaos:... Page 19 of 44 29

Proof. We first prove that standard collision-resistance implies weak collision-resistance.
Then we give a counterexample showing that the other direction of the implication does
not hold.

S − CollRes �⇒ W − CollRes: Assume A to be an adversary who breaks weak
collision-resistance. We now construct an adversary B which breaks standard
collision-resistance. In particular, B proceeds as follows. It receives ppch and
pkch from its own challenger, and uses both to initialize A. Whenever A outputs
a winning tuple (m∗, r∗,m′∗, r ′∗, h∗), B returns that tuple to its own challenger.
As the collision-finding oracle was never queried, that tuple also makesB win the
standard collision-resistance game with the same probability A wins the weak
collision-resistance game.

W − CollRes ��⇒ S − CollRes: The CH by Krawczyk and Rabin [46] provides
a counterexample: it is weakly collision-resistant, but does not offer standard
collision-resistance. Observe that it is possible to trivially extract the secret key
from a collision. That collision is obtained from the collision-finding oracle in
the standard collision-resistance game (cf. Section 4.1 for more details). �

Theorem 2. Enhanced collision-resistance is strictly stronger than weak collision-
resistance.

Proof. The proof is identical to the one of Theorem 1. �

Theorem 3. Full collision-resistance is strictly stronger than standard collision-
resistance.

Proof. We first prove that full collision-resistance implies standard collision-resistance
and then give a counterexample showing that the other direction of the implication does
not hold.

F − CollRes �⇒ S − CollRes: Assume A to be an adversary who breaks stan-
dard collision-resistance. Now we construct an adversary B which breaks full
collision-resistance. In particular, B proceeds as follows. It receives ppch and
pkch from its own challenger, and uses both to initialize A. All queries to the
collision-finding oracle are relayed to B’s own oracle. Whenever A outputs a
winning tuple (m∗, r∗,m′∗, r ′∗, h∗), B returns that tuple to its own challenger.
As m∗ �= m′∗ must be true, and m∗ was never queried to A’s collision-finding or-
acle, this also means that (h∗,m∗) was never queried to B’s oracle, thus meeting
the winning condition.

S − CollRes ��⇒ F − CollRes : The scheme by Camenisch et al. [18] (See Con-
struction 2) provides a counterexample: it offers standard collision-resistance,
but does not offer full collision-resistance. In particular, their construction is
re-randomizable (cf. Section 4.1 for more details).

In more detail, to show that this construction is not fully collision-resistant, consider
the following strategy: Receive pkch = (N , H) and ppch = e. Compute (h, r) ←$
CHash(pkch,m), with m random. Then, ask for an adaption (h, r,m) to (h, r ′,m′), for

 29 Page 20 of 44 D. Derler et al.

some random m′ �= m. Then, compute h∗ ← h2e mod N , r∗
1 ← 2r mod N , and

r∗
2 ← 2r ′ mod N . Because no collision for h∗ was computed, this construction cannot

be fully collision-resistant. Note, this works, as H(m)(2r)e ≡ h2e (mod N) for any
input. Also note that the attack above also breaks enhanced collision-resistance (we will
later use this to derive a corollary). �

Theorem 4. Full collision-resistance is strictly stronger than enhanced collision-
resistance.

Before we provide the proof of Theorem 4, we provide a novel construction of a
chameleon-hash satisfying the E-CollRes notion that is used to separate the notions
F-CollRes and E-CollRes.

4.2.1. Construction

Our CH presented below provides E-CollRes, but allows to efficiently find arbitrary
collisions for a given hash, once a single collision was seen. However, it is not possible
to find collisions for any other hash. The main idea is to encrypt a message m using
a mcIND-CPA secure encryption scheme � and use the ciphertext as the hash. The
randomness r of the chameleon-hash is the public key pk�

′ of a freshly sampled key-
pair (sk�

′,pk�
′) of �, the encryption c′ of a signature σ under pk�

′ and a SSE NIZK
π for the following language:

L:={(pk�,pk�, h,m) | ∃ (σ, ξ) :
h = Enc(pk�,m; ξ) ∨ Vrf�(pk�, h, σ) = 1}. (1)

Informally, this language requires the prover to show that it either knows the randomness
ξ attesting that h is a well-formed encryption of m, or a valid signature σ for h. The
basic idea of the construction is that when computing a hash, the witness ξ is used. The
randomness includes an encryption of the signature (initially one on 0) under the public
key pk�

′. Note that the trick is that for adaption one computes a signature σ for h, uses
σ as a witness, and includes an encryption of σ under pk�

′ in the randomness. Clearly,
now seeing a single collision allows to compute arbitrary collisions for the hash h.

This CH can be instantiated by instantiating � as structure-preserving signatures
(SPS) in type-III bilinear groups (assuming SXDH), e.g., Groth’s SPS [39]. Thus, �

can be ElGamal [37] in one of the base-groups. The algorithm KVf� is simply checking
whether gsk� = gx = pk�, while for �, a suitable instantiation is a Fiat-Shamir
transformed �-protocol in the random-oracle model [36], which also works very well
with ElGamal encryption and Groth’s signature scheme.

Subsequently, we use frameboxes and � to highlight the changes we make in the
algorithms throughout a sequence of games (and we only show the changes).

Bringing Order to Chaos:... Page 21 of 44 29

CHPG(1λ) : Fix a public-key encryption scheme �, a signature scheme �, and a compatible NIZK proof
system for language L in (1). Return ppch = (pp�,pp�, crs�), where

pp� ←$ PG�(1λ), pp� ←$ PG�(1λ), and crs� ←$ PG�(1λ).

CHKG(ppch) : Return (skch,pkch) = ((sk�, sk�), (ppch, pk�, pk�, σ0)), where

(sk�, pk�) ←$ KG�(pp�), (sk�, pk�) ←$ KG�(pp�), and σ0 ←$ Sgn�(sk�, 0).

0 is considered some special invalid hash value for CH.
CHash(pkch,m) : Parse pkch as ((pp�, crs�), pk�), and return (h, r) = (c, (π, c′,pk�

′)), where

(c; ξ) ←$ Enc(pk�,m), (sk�
′, pk�

′) ←$ KG�(pp�), c′ ←$ Enc(pk�
′, σ0), and

π ←$ Prf�(crs�, (pk�, pk�, c,m), (⊥, ξ))

CHCheck(pkch,m, r, h) : Parse pkch as ((pp�, crs�), pk�) and r as (π, c′, pk�
′), and return 1 if the

following holds, and 0 otherwise:

m ∈ M ∧ Vfy�(crs�, (pk�, pk�, h,m), π) = 1.

CHAdapt(skch,m,m′, r, h) : Parse skch as sk�. Verify that m′ ∈ M, CHCheck(pkch,m, r, h) = 1, and

return ⊥ if not. Otherwise, return r ′ = (π ′, c′′,pk�
′), where

σ ←$ Sgn�(sk�, h), c′′ ←$ Enc(pk�
′, σ), and

π ′ ←$ Prf�(crs�, (pk�, pk�, h,m′), (σ, ⊥)).

Construction 3: Enhanced Collision-Resistant Chameleon-Hash

Theorem 5. If �, �, and � are correct, then Construction 3 is correct.

Correctness follows from inspection and the (perfect) correctness of the used primitives.
While indistinguishability is technically not needed for proving the separation we are

after in this section, we nevertheless prove it here for completeness.

Theorem 6. If� is mcIND-CPA secure and� is zero-knowledge, then Construction 3
is indistinguishable (N-Ind).

Proof. To prove indistinguishability, we use a sequence of games:

Game 0: The original indistinguishability game.
Game 1: As Game 0, but we modify the algorithms CHPG, CHash, and CHAdapt

used within the game as follows:

 29 Page 22 of 44 D. Derler et al.

CHPG′(1λ) :

crs� ←$ PG�(1λ) � (crs�, τ) ←$ SIM1(1λ) .

CHash′(pkch,m) :

π ←$ Prf�(crs�, (pk�,pk�, h,m), (⊥, ξ)) � π ←$ SIM2(crs�, τ, (pk�, pk�, h,m))

CHAdapt′(skch,m,m′, r, h) :

π ′ ←$ Prf�(crs�, (pk�,pk�, h,m′), (σ,⊥)) � π ′ ←$ SIM2(crs�, τ, (pk�,pk�, h,m′)).

Transi tion − Game 0 → Game 1 : We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on a
zero-knowledge challenger Czk, either produces the distribution in Game 0 or
Game 1, respectively. In particular, assume the following changes:

CHPG′′(1λ) :

(crs�, τ) ←$ SIM1(1λ) � crs� ←$ Czk .

CHash′′(pkch,m) :

π ←$ SIM2(crs�, τ, (pk�, pk�, h,m)) � π ←$ Czk .Pb((pk�,pk�, h,m), (⊥, ξ)) .

CHAdapt′′(skch,m,m′, r, h) :

π ′ ←$ SIM2(crs�, τ, (pk�,pk�, h,m′)) � π ′ ←$ Czk .Pb((pk�,pk�, h,m′), (σ,⊥)) .

Clearly, if the challenger’s internal bit is 0 we simulate the distribution in Game 0,
whereas we simulate the distribution in Game 1 otherwise. We have that | Pr[S0] −
Pr[S1]| ≤ νzk(λ).
Game 2: As Game 1, but we further modify the CHash algorithm as follows:

CHash′′′(pkch,m) :

(c; ξ) ←$ Enc(pk�,m) � (c; ξ) ←$ Enc(pk�, 0) .

Transi tion − Game 1 → Game 2 : We bound the probability for an adversary to
distinguish between two consecutive games by introducing a hybrid game which
uses a mcIND-CPA challenger to interpolate between two consecutive games:

Bringing Order to Chaos:... Page 23 of 44 29

CHKG(ppch)′ : Return (skch, pkch) = ((⊥, sk�), (ppch, pk�, pk�, σ0)), where

(sk�, pk�) ←$ KG�(pp�) � pk� ←$ Cmc−cpa ,

(sk�,pk�) ←$ KG�(pp�), and σ0 ←$ Sgn�(sk�, 0).

0 is considered some special invalid hash value for CH.
CHash′′′′(pkch,m) :

(c; ξ) ←$ Enc(pk�, 0) � (c;⊥) ←$ Cmc−cpa.Enc′(m, 0) .

Now, depending on the challenger’s bit, we either simulate Game 1 or Game 2. Thus
we have that | Pr[S1] − Pr[S2]| ≤ νmc−cpa(λ)

Game3i (1 ≤ i ≤ q) : As Game 3i−1 (resp. Game 2 if i = 0) but we modify the
HashOrAdapt as follows. We let q be an upper bound on the queries to the
HashOrAdapt oracle. Up to query number i , we do the following:

HashOrAdapt′′′′(skch,m,m′, b) : In CHash

c′ ←$ Enc(pk�
′, σ0) � c′ ←$ Enc(pk�

′, 0) .

and in CHAdapt

c′ ←$ Enc(pk�
′, σ) � c′ ←$ Enc(pk�

′, 0) .

For every query after query i we simulate HashOrAdapt as in Game 2.

Transition - Game3i → Game3i+1(resp. Game 2 → 31) : We bound the probability
for an adversary to distinguish between two consecutive games by introducing a
hybrid game which interpolates between to subsequent games. Then, up to query
number i − 1, we do the following:

HashOrAdapt′′′′(skch,m,m′, b) : In CHash

c′ ←$ Enc(pk�
′, σ0) � c′ ←$ Enc(pk�

′, 0) .

and in CHAdapt

c′ ←$ Enc(pk�
′, σ) � c′ ←$ Enc(pk�

′, 0) .

In query number i we do the following:

 29 Page 24 of 44 D. Derler et al.

HashOrAdapt′′′′′(skch,m,m′, b) :

(sk�
′,pk�

′) ←$ KG�(pp�) � (⊥, pk�
′) ←$ Cmc−cpa .

In CHash

c′ ←$ Enc(pk�
′, 0) � c′ ←$ Cmc−cpa.Enc′(σ0, 0) .

and in CHAdapt

c′ ←$ Enc(pk�
′, 0) � c′ ←$ Cmc−cpa.Enc′(σ, 0) .

For every query after query i we simulate HashOrAdapt as in Game 2. Now, de-
pending on the challenger’s bit, we either simulate Game i or Game i + 1. Thus, we
have that | Pr[S2]− Pr[S3q]| ≤ q · νmc−cpa(λ), where q is the overall number of queries
to HashOrAdapt.8

Now, the indistinguishability game is independent of the bit b, proving indistinguisha-
bility. �

Theorem 7. If � is perfectly correct, � is unforgeable, and � is zero-knowledge as
well as simulation-sound extractable, then Construction 3 provides enhanced collision-
resistance.

Proof. To prove enhanced collision-resistance, we use a sequence of games.

Game 0: The original enhanced collision-resistance game.
Game 1: As Game 0, but we modify the CHPG and the CHAdapt as follows:

CHPG′(1λ) :

crs� ←$ PG�(1λ) � (crs�, τ) ←$ SIM1(1λ) .

CHAdapt′(skch,m,m′, r, h) :

π ′ ←$ Prf�(crs�, (pk�,pk�, h,m′), (σ,⊥)) � π ′ ←$ SIM2(crs�, τ, (pk�,pk�, h,m′)).

Transition - Game0 → Game 1 : We bound the probability for an adversary to detect
this game change by presenting a hybrid game, which, depending on a zero-
knowledge challenger Czk, either produces the distribution in Game 0 or Game
1, respectively.

8Note, if unrolled, using the bounds of Bellare et al. [9], | Pr[S2] − Pr[S3q]| ≤ 2q · νcpa(λ) follows.

Bringing Order to Chaos:... Page 25 of 44 29

CHPG′′(1λ) :

(crs�, τ) ←$ SIM1(1λ) � crs� ←$ Czk .

CHAdapt′′(skch,m,m′, r, h) :

π ′ ←$ SIM2(crs�, τ, (pk�,pk�, h,m′)) � π ′ ←$ Czk .Pb((pk�,pk�, h,m′), σ) .

Clearly, if the challenger’s internal bit is 0, we simulate the distribution in Game 0,
whereas we simulate the distribution in Game 1 otherwise. We have that | Pr[S0] −
Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHPG algorithm as follows:

CHPG′′′(1λ) :

(crs�, τ) ←$ SIM1(1λ) � (crs�, τ, ζ) ←$ E1(1λ) .

Transi tion − Game 1 → Game 2 : Under simulation-sound extractability, Game 1
and Game 2 are indistinguishable. That is, | Pr[S1] − Pr[S2]| = 0.

Game 3: As Game 2, but we keep a list Q of all hashes h previously submitted to the
collision-finding oracle which are accepted by the CHCheck algorithm.

Transi tion − Game 2 → Game 3 : This change is conceptual, and thus, we have
| Pr[S2] − Pr[S3]| = 0.

Game 4: As Game 3, but for every valid collision (m∗, r∗,m′∗, r ′∗, h∗) output by the
adversary we observe that either (h∗,m∗, r∗) or (h∗,m′∗, r ′∗) must be a “fresh”
collision, i.e., h∗ /∈ Q. We assume, without loss of generality, that (m′∗, r ′∗) is
the “fresh” collision. We run (sk′, σ ′) ←$ E2(crs�, ζ, (pk�, h∗,m′∗), r ′∗) and
abort if the extraction fails. We call this event E1.

Transi tion−Game 3 → Game 4 : Game 3 and Game 4 proceed identically, unless E1
occurs. Assume, toward contradiction, that event E1 occurs with non-negligible
probability. We now construct an adversaryB which breaks the simulation-sound
extractability property of the NIZK proof system with non-negligible probability.
We engage with a simulation-sound extractability challenger Csse and modify
the algorithms as follows:

CHPG′′′′(1λ) :

(crs�, τ, ζ) ←$ E1(1λ) � crs� ←$ Csse .

CHAdapt′′′(skch,m,m′, r, h) :

π ′ ←$ SIM2(crs�, τ, (pk�, pk�, h,m′)) � π ′ ←$ Csse.SIM((pk�, pk�, h,m′)) .

In the end, we output ((pk�, h∗,m′∗), r ′∗) to the challenger. This shows that we have
| Pr[S3] − Pr[S4]| ≤ νsse(λ).

 29 Page 26 of 44 D. Derler et al.

Reduction to eUNF-CMA: We are now ready to construct an adversary B which breaks
the unforgeability of the underlying �. Our adversary B proceeds as follows. It
receives pp� and pk� from its own challenger. To generate σ0, B simply queries
its signature oracle to obtain it on the message 0. It embeds them straightforwardly
inside ppch and pkch to initialize A. For adaption, a new signature σ ′ must be
generated and encrypted. Those signatures are also obtained by querying the
signature oracle. Now we know that we have extracted two witnesses (sk, σ)

as well as (sk′′, σ ′′) where one attests membership of (pk�, h∗,m′∗) in L , and
one attests membership of (pk�, h∗,m′′) for some fresh h∗ in L . By the perfect
correctness of the signature scheme, we know that at most one of them must
be signature for h∗. However, as the signature was never queried, (h∗, σ) (or
(h∗, σ ′′) resp.) must be a validating signature, breaking the unforgeability of the
used �. Now, we have that Pr[S4] ≤ νeunf−cma(λ). This concludes the proof. �

We are now ready to present the proof of Theorem 4.

Proof. We first prove that full collision-resistance implies enhanced collision-resistance
and then give a counterexample showing that the other direction of the implication does
not hold.

F − CollRes �⇒ E − CollRes: Assume A to be an adversary who breaks the en-
hanced collision-resistance. We can then construct an adversary B which breaks
the full collision-resistance. In particular, B proceeds as follows. It receives ppch
and pkch from its own challenger, and uses both to initialize A. All queries to
the collision-finding oracle are relayed to B’s own oracle. Whenever A outputs
a winning tuple (m∗, r∗,m′∗, r ′∗, h∗), B returns that tuple to its own challenger.
As m∗ �= m′∗ must be true, and h∗ was never queried to A’s collision-finding or-
acle, this also means that (h∗,m∗) was never queried to B’s oracle, thus meeting
the winning condition.

E − CollRes ��⇒ F − CollRes : The scheme presented in Construction 3 gives a
counterexample: it allows finding arbitrarily many collisions for a given hash
h, if it sees a single one, but for no other h′ �= h. In more detail, to show
that this construction is not fully collision-resistant, consider the following strat-
egy. Receive pkch = (pk�,pk�) and ppch = (pp�, crs�,pp�). Compute
(h, r) ←$ CHash(pkch,m), with m random. Also store the secret key sk�

′.
Then, ask for an adaption (h, r,m) to (h, r ′,m′), where r ′ = (π, c′′,pk�

′), for
some random m′. Then, compute σ ← Dec(sk�

′, c′′). Then arbitrary colli-
sions for h are generated by executing CHAdapt in a similar way the owner of
pkch does for finding collisions, due to the knowledge of σ for h. Because such
collisions can only be generated for already seen collisions w.r.t. h, enhanced
collision-resistance holds, but full collision-resistance does not. Also note that
standard collision-resistance does not hold for Construction 3 for the same reason
(we will later use this to derive a corollary). �

Bringing Order to Chaos:... Page 27 of 44 29

Theorem 8. Enhanced collision-resistance and standard collision-resistance together
imply full collision-resistance.

Proof. The theorem above is proven using a sequence of games.

Game 0: The original full collision-resistance game.
Game 1: As Game 0, we abort, if the adversary A outputs (m∗, r∗,m′∗, r ′∗, h∗) such

that the winning conditions are met, but h∗ was never queried to the collision-
finding oracle.

Transi tion − Game 0 → Game 1 : If this is the case, we build an adversary B which
breaks the enhanced collision-resistance of the underlying scheme. Namely, B
receives pkch and uses it to initialize A. Every adaption query by A is answered
by B using its own oracle. Once A outputs (m∗, r∗,m′∗, r ′∗, h∗), B returns
(m∗, r∗,m′∗, r ′∗, h∗) to its own challenger. As h∗ was never seen, B wins its
own game. | Pr[S0] − Pr[S1]| ≤ νenh−collres(λ) follows.

Game 2: As Game 1, we abort, if the adversaryA outputs (m∗, r∗,m′∗, r ′∗, h∗) such that
the winning conditions are met, but m∗ was never queried to the collision-finding
oracle.

Transi tion − Game 1 → Game 2 : If this is the case, we build an adversary B which
breaks the standard collision-resistance of the underlying scheme. Namely, B
receives pkch and uses it to initialize A. Every adaption query by A is answered
by B using its own oracle. Once A outputs (m∗, r∗,m′∗, r ′∗, h∗), B returns
(m∗, r∗,m′∗, r ′∗, h∗) to its own challenger. As m∗ was never seen, B wins its
own game. | Pr[S1] − Pr[S2]| ≤ νst−collres(λ) follows.

In Game 2, the adversary can no longer win the full collision-resistance game. This
proves the theorem. �

The corollary below follows from the constructions used in the proofs of Theorem 3
and Theorem 4, which provide standard collision-resistance but not enhanced collision-
resistance, and vice versa.

Corollary 1. Standard collision-resistance and enhanced collision-resistance are in-
dependent.

4.3. Relations Between Indistinguishability Notions.

We formally prove that full indistinguishability is strictly stronger than enhanced in-
distinguishability. Enhanced indistinguishability is strictly stronger than strong indistin-
guishability, which, in turn, is strictly stronger than indistinguishability (cf. Figure 9 for
an overview).

Theorem 9. Full Indistinguishability is strictly stronger thanEnhanced Indistinguisha-
bility.

 29 Page 28 of 44 D. Derler et al.

Fig. 9. Relations between CH indistinguishability properties .

Proof. We first prove that full indistinguishability implies enhanced indistinguishabil-
ity and then give a counterexample showing that the other direction of the implication
does not hold.

F − Ind �⇒ E − Ind: Assume A to be an adversary who wins the full indistin-
guishability game with some probability (non-negligibly) larger than 1/2. Now,
we construct an adversary B which wins the enhanced indistinguishability game
with the same probability. In particular, B proceeds as follows. It receives ppch
from its own challenger, generates (skch,pkch; ξ) honestly, and uses ppch and ξ

to initialize A. All queries to the collision-finding oracle are answered by query-
ing B’s own oracle (with the honestly generated keys). Whenever A outputs a
bit a, B returns that bit to its own challenger. As the simulation is perfect, B’s
winning probability equals the one of A.

E − Ind ��⇒ F − Ind : Let CH:=(CHPG,CHKG,CHash,CHCheck,CHAdapt)
be a fully indistinguishable chameleon-hash. We define a chameleon-hashCH′:=(

CHPG′,CHKG′,CHash′,CHCheck′,CHAdapt′), which internally uses CH
as presented in Construction 4.

The basic idea is that in case particular random coins ξ are drawn, at each
adaption, the message in question is augmented with a bit indicating that an
adaption happened. As this particular randomness (ξ = 0) is never drawn with
overwhelming probability, knowing the randomness does not help – being able
to choose it, however, makes creating a distinguisher trivial.

CHPG′(1λ) : Return ppch ←$ CHPG(1λ).

CHKG′(ppch) : Draw ξ ←$ {0, 1}λ. Let (skch, pk′
ch) ←$ CHKG(ppch). Return (skch, (pk′

ch, 1)), if

ξ = 0, and (skch, (pk′
ch, 0)) otherwise.

CHash(pkch,m) : Parse pkch as (pk′
ch, x). Return (h, (r, 0)), where (h, r) ←$ CHash(pk′

ch, (m, 0)).

CHCheck(pkch,m, r, h) : Parse r as (r ′, x) and pkch as (pk′
ch, y). Return CHCheck(pk′

ch, (m, x), r ′, h).

CHAdapt(skch,m,m′, r, h) : Parse r as (r ′, x) and pkch as (pk′
ch, y). If y = 1, let r ′′ ←$ CHAdapt(skch,

(m, x), (m′, 1), r ′, h). Return (r ′′, 1). Otherwise, let r ′′ ←$ CHAdapt(skch, (m, 0), (m′, 0), r ′, h).
Return (r ′′, 0).

Construction 4: E − Ind ��⇒ F − Ind

Clearly, if all parties generate their keys honestly (and thus a 0 is appended to the
public key with overwhelming probability), the last bit appended to the randomness is
always 0 after adaption, is never appended at hashing, and is independent of the message
hashed. If, however, the adversary can choose randomness ξ , it can generate a pkch with
an appended 1, thus making adaption append a 1, while hashing still appends a 0. This
trivially breaks full indistinguishability. �

Bringing Order to Chaos:... Page 29 of 44 29

Theorem 10. Enhanced Indistinguishability is strictly stronger than Strong Indistin-
guishability.

Proof. We first prove that enhanced indistinguishability implies strong indistinguisha-
bility and then give a counterexample showing that the other direction of the implication
does not hold.

E − Ind �⇒ S − Ind: Assume A to be an adversary who wins the strong indis-
tinguishability game with non-negligible probability. Using A we construct
an adversary B which wins the enhanced indistinguishability game with the
same probability: B receives ppch and r from its own challenger, generating
(skch,pkch) ←$ CHKG(ppch; ξ). It uses (skch,pkch) to initialize A. All
queries to the collision-finding oracle are answered by querying B’s own or-
acle. Whenever A outputs a bit a, B returns that bit to its own challenger. As the
simulation is perfect, B’s winning probability equals the one of A.

S − Ind ��⇒ E − Ind : Let CH:=(CHPG,CHKG,CHash,CHCheck,CHAdapt)
be chameleon-hash with enhanced indistinguishability. We define a chameleon-
hash CH′:=(CHPG′,CHKG′,CHash′,CHCheck′,CHAdapt′), which inter-
nally uses CH as presented in Construction 5.

The basic idea is that at key generation a key pair (sk�,pk�) for an encryption
scheme is generated. The secret key sk� is discarded and thus not part of skch.
At each hashing, the message is also encrypted using the public key pk� and the
ciphertext is attached to the randomness. Assuming the security of the encryption
scheme, this does not leak any information about the message (and notice that no
decryption oracle is provided, thus IND-CPA suffices), even if the secret key skch
is known. If, however, the random coins used to generate the key material become
known, an adversary can simply generate sk� and decrypt the ciphertexts and
compare the content with the message in question.

CHPG′(1λ) : Let ppch ←$ CHPG(1λ) and pp� ←$ PG�(1λ). Return (ppch,pp�).
CHKG′(ppch) : Let (sk�,pk�) ←$ KG�(pp�), and (skch,pk′

ch) ←$ CHKG(ppch). Return

(skch, (pk′
ch,pk�)).

CHash(pkch,m) : Parsepkch as (pk′
ch, pk�). Let c ←$ Enc(pk�,m). Compute (h, r) ←$ CHash(pk′

ch,

(m, c)). Return (h, (r, c)).
CHCheck(pkch,m, r, h) : Parse pkch as (pk′

ch, pk�), and r as (r ′, c). Return CHCheck(pk′
ch,

(m, c), r ′, h).
CHAdapt(skch,m,m′, r, h) : Parse r as (r ′, c), compute r ′′ ←$ CHAdapt(skch, (m, c), (m′, c), r ′, h) and

return (r ′′, c).

Construction 5: S − Ind ��⇒ E − Ind

Clearly, in the S − Ind experiment, sk� is discarded at key generation and is thus not
given to the adversary. If, however, the adversary knows the randomness used to generate
the keys, it can re-create sk�. Consequently, E − Ind is trivially broken by decrypting
c contained in r . �

 29 Page 30 of 44 D. Derler et al.

Theorem 11. Strong Indistinguishability is strictly stronger than (Normal) Indistin-
guishability.

Proof. We first prove that full indistinguishability implies indistinguishability and then
give a counterexample showing that the other direction of the implication does not hold.

S − Ind �⇒ Ind: Assume A to be an adversary who wins the indistinguishability
game with non-negligible probability. Using A we construct an adversary B
which wins the strong indistinguishability game with the same probability: B
receives ppch from its own challenger, receiving (skch,pkch), and uses ppch
and pkch to initialize A. All queries to the collision-finding oracle are answered
by querying B’s own oracle. Whenever A outputs a bit a, B returns that bit to its
own challenger. As the simulation is perfect, B’s winning probability equals the
one of A.

Ind ��⇒ S − Ind : Our scheme given in Construction 9 provides a suitable coun-
terexample. In particular, due to the used encryption, knowledge of the se-
cret key allows extracting the original message m. In more detail, to show
that this construction is not strongly indistinguishable, consider the following
strategy. The key pair (skch,pkch) is generated by the challenger, but (accord-
ing to the game) known to the adversary. Obtain a challenge tuple (h, r) ←$
HashOrAdapt(pkch, skch,m,m′), where m �= m′ are random messages. Then,
let m′′ ← Dec(skch, h). If m = m′′, return 0. Otherwise, return 1. Clearly, this
strategy always allows learning the challenger’s bit. �

4.4. Additional Separations

We now prove some additional separations. We note that indistinguishability is strictly
weaker than full indistinguishability (as formally shown in Sect. 3.3).

Theorem 12. Even full indistinguishability and uniqueness together do not imply weak
collision-resistance.

Proof. Consider the contrived construction given in Construction 6. The basic idea is
to only make one randomness valid for all messages.

CHPG(1λ) : Return ∅.
CHKG(ppch) : Return ∅.
CHash(pkch,m) : Return (∅, ∅).
CHCheck(pkch,m, r, h) : Return 1, if h = ∅ ∧ pkch = ∅ ∧ r = ∅. Return 0.

CHAdapt(skch,m,m′, r, h) : Return ∅, if h = ∅ ∧ pkch = ∅ ∧ r = ∅. Return ⊥.

Construction 6: Contrived Construction 1

Clearly, this construction is fully indistinguishable and unique. Finding collisions,
however, is a trivial task. �

Bringing Order to Chaos:... Page 31 of 44 29

Theorem 13. Even full collision-resistance and uniqueness together do not imply in-
distinguishability.

Proof. Assume CH:=(CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a fully
collision-resistant, unique, and fully indistinguishable chameleon-hash. In Construc-
tion 7, we construct a CH′ which offers full collision-resistance and uniqueness, but
is not indistinguishable. The basic idea is to manipulate the hash to contain additional
information about whether an adaption took place by appending the message itself.

CHPG′(1λ) : Return CHPG(1λ).
CHKG′(ppch) : Return CHKG(ppch).
CHash(pkch,m) : Let (h, r) ←$ CHash(pkch, (m,m)). Return ((h,m), r).

CHCheck(pkch,m, r, h) : Parse h as (h′, m̂). Return CHCheck(pkch, (m, m̂, r, h′).
CHAdapt(skch,m,m′, r, h) : Parse h as (h′, m̂). Return CHAdapt(skch, (m, m̂), (m′, m̂), r ′, h′)).

Construction 7: Contrived Construction 2

Clearly, CH′ is still fully collision-resistant and unique, but looking at the appended
messages allows deciding whether an adaption has occurred. �

Theorem 14. Even full collision-resistance and full indistinguishability together do
not imply uniqueness.

Proof. Assume CH:=(CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a fully
collision-resistant, unique, and fully indistinguishable chameleon-hash. We construct
CH′ as given in Construction 8. The basic idea is to append a random bit to the random-
ness r which is ignored during verification.

CHPG′(1λ) : Return CHPG(1λ).
CHKG′(ppch) : Return CHKG(ppch).
CHash(pkch,m) : Let (h, r) ←$ CHash(pkch,m). Return (h, (r, 0)).

CHCheck(pkch,m, r, h) : Parse r as (r ′, x). Return CHCheck(pkch,m, r ′, h).

CHAdapt(skch,m,m′, r, h) : Parse r as (r ′, x). Return CHAdapt(skch,m,m′, r ′, h)).

Construction 8: Contrived Construction 3

Clearly, CH′ is still fully collision-resistant and fully indistinguishable, but changing
the bit in the randomness r is trivial, breaking uniqueness. �

5. Fully Collision-Resistant Chameleon-Hashes

We are now ready to present our black-box construction of fully collision-resistant
chameleon-hashes.

 29 Page 32 of 44 D. Derler et al.

5.1. Construction

The main idea of our construction is to encrypt a messagem using an mcIND-CPA secure
encryption scheme and use the ciphertext as the hash, i.e., it is very close to our “con-
trived” construction providing enhanced collision-resistance given in Construction 3.
However, it has some important, and subtle, differences.

Namely, the randomness r is a SSE NIZK attesting membership of a tuple containing
the public key used for encryption, the hash, as well as the hashed message in the
following NP-language:

L:={(pk�, h,m) | ∃ (sk�, ξ) : h = Enc(pk�,m; ξ) ∨ KVf�(pk�, sk�) = 1}.
(2)

Informally, this language requires the prover to demonstrate that it either knows the
randomness ξ attesting that h is a well-formed encryption of m under the CH key pk�,
or it knows a secret key sk� corresponding to pk�, instead of encrypting a signature
and proving the verification relation. Our construction of a fully collision-resistant CH
is presented as Construction 9. We note that compared to Ateniese et al. [5] we cannot
use true-simulation extractable NIZKs (tSE-NIZKs) [32] and need SSE NIZKs.

CHPG(1λ) : Fix a public-key encryption scheme � and a compatible NIZK proof system for language L in
(2). Return ppch = (pp�, crs�), where

pp� ←$ PG�(1λ), and crs� ←$ PG�(1λ).

CHKG(ppch) : Return (skch,pkch) = (sk�, (ppch,pk�)), where

(sk�, pk�) ←$ KG�(pp�).

CHash(pkch,m) : Parse pkch as ((pp�, crs�), pk�), and return (h, r) = (c, π), where

(c; ξ) ←$ Enc(pk�,m), and π ←$ Prf�(crs�, (pk�, h,m), (⊥, ξ)).

CHCheck(pkch,m, r, h) : Parse pkch as ((pp�, crs�), pk�), and r as π . Return 1, if the following holds,
and 0 otherwise:

m ∈ M ∧ Vfy�(crs�, (pk�, h,m), π) = 1.

CHAdapt(skch,m,m′, r, h) : Parse skch as sk�. Verify whetherm′ ∈ M, andCHCheck(pkch,m, r, h) =
1. Return ⊥, if not. Otherwise, return r ′ = π ′, where

π ′ ←$ Prf�(crs�, (pk�, h,m′), (sk�, ⊥)).

Construction 9: Our Construction of a Fully Collision-Resistant CH

Bringing Order to Chaos:... Page 33 of 44 29

5.2. Security

Subsequently, we prove the security of our CH in Construction 9.

Theorem 15. If � is correct and � is complete, then CH in Construction 9 is correct.

Correctness follows from inspection and the (perfect) correctness of the used primitives.

Theorem 16. If � is mcIND-CPA secure, and � is zero-knowledge, then CH in Con-
struction 9 is indistinguishable (N-Ind).

In the proof, we use frameboxes and � to highlight the changes we make in the
algorithms throughout a sequence of games (and we only show the changes).

Proof. To prove indistinguishability, we use a sequence of games:

Game 0: The original indistinguishability game.
Game 1: As Game 0, but we modify the algorithms CHPG, CHash, and CHAdapt

used inside the game:

CHPG′(1λ) :

crs� ←$ PG�(1λ) � (crs�, τ) ←$ SIM1(1λ) .

CHash′(pkch,m) :

π ←$ Prf�(crs�, (pk�, h,m), (⊥, ξ)) � π ←$ SIM2(crs�, τ, (pk�, h,m))

CHAdapt′(skch,m,m′, r, h) :

π ′ ←$ Prf�(crs�, (pk�, h,m′), (sk�,⊥)) � π ′ ←$ SIM2(crs�, τ, (pk�, h,m′)).

Transi tion − Game 0 → Game 1 : We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on a
zero-knowledge challenger Czk, either produces the distribution in Game 0 or
Game 1, respectively. In particular, assume that we use the following changes:

CHPG′′(1λ) :

(crs�, τ) ←$ SIM1(1λ) � crs� ←$ Czk .

CHash′′(pkch,m) :

π ←$ SIM2(crs�, τ, (pk�, h,m)) � π ←$ Czk .Pb((pk�, h,m), (⊥, ξ)) .

CHAdapt′′(skch,m,m′, r, h) :

π ′ ←$ SIM2(crs�, τ, (pk�, h,m′)) � π ′ ←$ Czk .Pb((pk�, h,m′), (sk�, ⊥)) .

 29 Page 34 of 44 D. Derler et al.

Clearly, if the challenger’s internal bit is 0, we simulate the distribution in Game 0,
whereas we simulate the distribution in Game 1 otherwise. We have that | Pr[S0] −
Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHash algorithm as follows:

CHash′′′(pkch,m) :

(c; ξ) ←$ Enc(pk�,m) � (c; ξ) ←$ Enc(pk�, 0) .

Transi tion−Game 1 → Game 2 : We bound the probability for an adversary to distin-
guish between two consecutive games by introducing a hybrid game which uses
a multi-challenge IND-CPA challenger to interpolate between two consecutive
games.

CHKG(ppch)′′ : Return (⊥,pkch) = (⊥, (ppch, pk�)), where

(sk�,pk�) ←$ KG�(pp�) � pk� ←$ Cmc−cpa .

CHash′′′′(pkch,m) :

(c; ξ) ←$ Enc(pk�, 0) � (c;⊥) ←$ Cmc−cpa.Enc′(m, 0) .

Now, depending on the challenger’s bit, we either simulate Game 1 or Game 2. Thus
we have that | Pr[S1] − Pr[S2i]| ≤ νmc−cpa(λ)

Now, the indistinguishability game is independent of the bit b, proving indistinguisha-
bility. �

Theorem 17. If� is perfectly correct andmcIND-CPAsecure and� is zero-knowledge
as well as simulation-sound extractable, then CH in Construction 9 is fully collision-
resistant.

Proof. To prove full collision-resistance, we use a sequence of games.

Game 0: The original full collision-resistance game.
Game 1: As Game 0, but we modify theCHPG and theCHAdapt algorithm as follows:

CHPG′(1λ) :

crs� ←$ PG�(1λ) � (crs�, τ) ←$ SIM1(1λ) .

CHAdapt′(skch,m,m′, r, h) :

π ′ ←$ Prf�(crs�, (pk�, h,m′), (sk�,⊥)) � π ′ ←$ SIM2(crs�, τ, (pk�, h,m′)).

Transi tion − Game 0 → Game 1 : We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on a

Bringing Order to Chaos:... Page 35 of 44 29

zero-knowledge challenger Czk, either produces the distribution in Game 0 or
Game 1, respectively.

CHPG′′(1λ) :

(crs�, τ) ←$ SIM1(1λ) � crs� ←$ Czk .

CHAdapt′′(skch,m,m′, r, h) :

π ′ ←$ SIM2(crs�, τ, (pk�, h,m′)) � π ′ ←$ Czk .Pb((pk�, h,m′), sk�) .

Clearly, if the challenger’s internal bit is 0 we simulate the distribution in Game 0,
whereas we simulate the distribution in Game 1 otherwise. We have that | Pr[S0] −
Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHPG algorithm as follows:

CHPG′′′(1λ) :

(crs�, τ) ←$ SIM1(1λ) � (crs�, τ, ζ) ←$ E1(1λ) .

Transi tion − Game 1 → Game 2 : Under simulation-sound extractability, Game 1
and Game 2 are indistinguishable. That is, | Pr[S1] − Pr[S2]| = 0.

Game 3: As Game 2, but we keep a list Q of all tuples (h, r,m) previously submitted
to the collision-finding oracle which are accepted by the CHCheck algorithm,
where h was never submitted to the collision-finding oracle before.

Transi tion − Game 2 → Game 3 : This change is conceptual, i.e., | Pr[S2] − Pr[S3]|
= 0.

Game 4: As Game 3, but for every valid collision (m∗, r∗,m′∗, r ′∗, h∗) output by the
adversary we observe that either (m∗, r∗) or (m′∗, r ′∗) must be a “fresh” collision,
i.e., one that was never output by the collision-finding oracle. We assume, without
loss of generality, that (m′∗, r ′∗) is the “fresh” collision. We run (sk′, ξ ′) ←$
E2(crs�, ζ, (pk�, h∗,m′∗), r ′∗) and abort if the extraction fails. We call this
event E1.

Transi tion−Game 3 → Game 4 : Game 3 and Game 4 proceed identically, unless E1
occurs. Assume, toward contradiction, that event E1 occurs with non-negligible
probability. We now construct an adversaryB which breaks the simulation-sound
extractability property of the NIZK proof system with non-negligible probability.
We engage with a simulation-sound extractability challenger Csse and modify
the algorithms as follows:

 29 Page 36 of 44 D. Derler et al.

CHPG′′′′(1λ) :

(crs�, τ, ζ) ←$ E1(1λ) � crs� ←$ Csse .

CHAdapt′′′(skch,m,m′, r, h) :

π ′ ←$ SIM2(crs�, τ, (pk�, h,m′)) � π ′ ←$ Csse.SIM(pk�, h,m′) .

In the end we output ((pk�, h∗,m′∗), r ′∗) to the challenger. This shows that we have
| Pr[S3] − Pr[S4]| ≤ νsse(λ).

Game 5: As Game 4, but we observe that if (m∗, r∗) does not correspond to a fresh
collision for h∗ in the above sense, then we will have an entry (h∗, r,m) ∈
Q where (m, r) is a “fresh” collision, i.e., one computed by the adversary.
We run the extractor for the fresh collision, i.e., either obtain (sk′′, ξ ′′) ←$
E2(crs�, ζ, (pk�, h∗,m∗), r∗) or (sk′′, ξ ′′) ←$ E2(crs�, ζ, (pk�, h∗,m), r),
respectively. In case the extraction fails, we abort. We call the abort event E2.

Transi tion−Game 4 → Game 5 : Analogously to the transition between Game 3 and
Game 4, we argue that Game 4 and Game 5 proceed identically unless E2 occurs
which is why we do not restate the reduction to simulation-sound extractability
here. We have that | Pr[S4] − Pr[S5]| ≤ νsse(λ).

Reduction to mcIND-CPA: We are now ready to construct an adversary B which breaks
the mcIND-CPA security of the underlying �. Our adversary B proceeds as fol-
lows. It receives pp� and pk� from its own challenger. It embeds them straight-
forwardly as ppch and pkch to initialize A. Now we know that we have ex-
tracted two witnesses (sk, ξ) as well as (sk′′, ξ ′′) where one attests membership
of (pk�, h∗,m′∗) in L and one attests membership of (pk�, h∗,m′′) for some
m′′ �= m′∗ in L . By the perfect correctness of the encryption scheme, we know
that at most one of them can be consistent with the ciphertext contained in h∗,
which implies that either sk or sk′′ will be the key for the underlying encryption
scheme (which of them we figure out by using KVf�). With knowledge of the
key,B trivially breaks the mcIND-CPA security of the underlying � by randomly
sending two distinct messages to its own challenger (for encryption), simply de-
crypting the returned ciphertext, and answering with the correct bit. We have that
Pr[S5] ≤ νmc−cpa(λ). This concludes the proof. �

5.3. Concrete Instantiation

A suitable instantiation for � is ElGamal [37]. The algorithm KVf� is simply checking
whether gsk� = gx = pk�. Note that for � we only need to extract a bounded number
of times (i.e., twice). To this end one may use Fiat-Shamir transformed �-protocols for
DLOG relations in the random-oracle model [36] when additionally applying the com-
piler by Faust et al. [35]. In particular, Faust et al. show that such proofs are simulation-
sound extractable when additionally including the statement x upon hashing in the

Bringing Order to Chaos:... Page 37 of 44 29

challenge computation and if the �-protocol provides a property called quasi-unique
responses. The latter is straightforward for the statements which need to be proven in
our context. See, e.g., [30], for a detailed discussion of this transformation.

For the sake of completeness and to demonstrate how efficiently our approach can
be instantiated, we provide this concrete instantiation as Construction 10. Therefore,
let (G, g, q) ←$ GGen(1λ) be an instance generator which returns a prime-order, and
multiplicatively written, groupGwhere the DDH problem is hard, along with a generator
g such that 〈g〉 = G. Note that an SSE NIZK for the required L in (3) can easily be
obtained as an equality proof of two discrete logarithms together with an or composition
of a proof of a discrete logarithm [24] of Fiat-Shamir transformed �-protocols discussed
above.

L:={(y, h,m) | ∃ (x, ξ) : h = (gξ ,m · yξ) ∨ y = gx }. (3)

CHPG(1λ) : Outputs the public parameters ppch = (G, g, q, H), where (G, g, q) ←$ GGen(1λ) is a
group G of prime order q generated by g, and H : {0, 1}∗ → Zq is a hash function (which we assume
to behave like a random oracle and to be implicitly available to all algorithms below).

CHKG(ppch) : Return (skch,pkch) = (x, y), where x ←$ Zq and y ← gx .

CHash(pkch,m) : Parse pkch as y, choose (ξ, k1, e2, s2) ←$ Z
4
q , set u1,1 ← gk1 , u1,2 ← yk1 , u2 ←

gs2 · y−e2 , e ← H((y, h,m), (u1,1, u1,2, u2)) and e1 ← e − e2 mod q. Then compute s1 ← k1 +
e1ξ mod q and finally, return (h, r) = (c, π), where

c ← (c1, c2) = (gξ ,m · yξ) , and π ← (e1, e2, s1, s2).

CHCheck(pkch,m, r, h) : Parsepkch as y and r as (e1, e2, s1, s2), and h as (c1, c2). Return 1 if the following
holds, and 0 otherwise:

m ∈ G ∧ e1 + e2 = H((y, h,m), (gs1 · c−e1
1 , ys1 · (c2/m)−e1 , gs2 · y−e2)).

CHAdapt(skch,m,m′, r, h) : Parse skch as x , and h as (c1, c2). Verify whether m′ ∈ G, and

CHCheck(pkch,m, r, h) = 1. Return ⊥ if not. Otherwise, choose (k2, e1, s1) ←$ Z
3
q , set

u1,1 ← gs1 · c−e1
1 , u1,2 ← ys1 · (c2/m′)−e1 , u2 ← gk2 , e ← H((y, h,m′), (u1,1, u1,2, u2)),

and e2 ← e − e1 mod q. Finally compute s2 ← k2 + e2x mod q, and return r ′ = π ′, where

π ′ ← (e1, e2, s1, s2).

Construction 10: Concrete instantiation of a Fully Collision-Resistant CH

5.4. Comparison

Subsequently, in Table 1 we compare existing constructions of chameleon-hashes pro-
viding the W-CollRes, E-CollRes and S-CollRes notions with instantiations of our
approach (in the random oracle and standard model) providing the stronger F-CollRes
notion. Here E denotes an exponentiation in the respective algebraic structure, “?” de-
notes that it is unclear how efficient this can be realized due to requirement of an invertible

 29 Page 38 of 44 D. Derler et al.

Table 1. Comparison of different chameleon-hash functions.

Scheme CR |h| |h|bit |r | |r |bit CHash CHAdapt Ass. Model

[46] W 1G 256 1Zq 256 2EG 0EG DLOG SM
[5] (1) E 1G 256 12G+7Zq 4876 17EG ? DDH ROM
[5] (2) E 1G1 382 6G1+13G2 12211 51EG1 ? SXDH SM
[45] (1) E 1G1 382 9G1+4G2 6490 25EG1 1EZq SXDH SM
[45] (2) E 1G1 382 3G1 1164 6EG1 1EZq PKoE SM
[18] S 1ZN 3072 1ZN 3072 1EZN 1EZN OM-RSA ROM

Ours F 2G 514 4Zq 1024 6EG 5EG DDH ROM
Ours F 2G1 764 ≈ 1-2k G1/2 – – – SXDH SM

| · |bit refers to the bit size of the respective value which is currently believed to provide 128 bit security. We
use 256bit elliptic curves for standard known order groups (|G| = 257, |Zq | = 256), 3072bit RSA modulus
for the RSA setting (|ZN | = 3072), and 381bit BLS12 curves for the SXDH setting (|G1| = 382, |G2| =
763, |Zq | = 256)

onto mapping into the used group (cf. the discussion in [45]). SM and RO denote the
standard and the random oracle model, respectively.

Furthermore, DDH, SXDH, PKoE, and OM-RSA denote the decisional Diffie–Hellman,
the symmetric DDH, the power knowledge of exponent [42], and the one-more RSA
inversion [10] assumptions. We also stress that for constructions relying on SXDH, for
typical instantiations of type-III bilinear groups, we have that |G2| = 2(|G1| − 1) + 1
(where | · | denotes the size of the representation of a group element). Regarding our con-
struction in the standard model, e.g., using SSE NIZKs based on Groth–Sahai NIZKs,
one can use the compiler in [27] to efficiently achieve simulation-sound extractability.
We, however, note that a naive instantiation of our template in the standard model would
still require to include bit-wise proofs of the parts of the witness which are in Zq , which
would, all in all, require a number of group elements in the order of 1k−2k (a very rough
estimate; thus we also omit the remaining costs which is indicated by “−” in Table 1).
It seems that switching to a variant of ElGamal in the target group (and maybe some
other tweaks) would help to work around the requirement of having bit-wise proofs.
While we are not able to provide a more efficient instantiation, we hope that future work
will be able to do so. Finally, we note that we omit comparing our scheme given in
Construction 3 as it is contrived and its sole purpose is to prove a separation result.

6. Applications

In this section we discuss (stronger) collision-resistance notions of chameleon-hashes
in context of two applications, namely redactable blockchains as well as online/offline
signatures.

6.1. Redactable Blockchains

While one of the major goals of blockchains is their immutability and in particular their
use as an immutable append-only log, recently, starting with the work of Ateniese et al.

Bringing Order to Chaos:... Page 39 of 44 29

[5], there has been an increasing interest in blockchains that allow some controlled after-
the-fact modification of their content. This is motivated by illegal content that was shown
to be included into the Bitcoin blockchain [48], which represents a significant challenge
for law enforcement agencies [55], as well as legislations like the European General Data
Protection Regulation (GDPR) and the associated “right to be forgotten”. Solutions to
this problem may either be for the permissioned- or permissionless-blockchain setting
and cryptographic in nature [5,26,51] or non-cryptographic, where in the latter case it
is based on the consensus layer of the blockchain [31].

We are considering the former and focus on block-level rewriting (change entire
blocks) of blockchains instead of transaction-level rewriting (change single transactions
within a block) in a permissionless setting (such as Bitcoin), as this illustrates the problem
with much wider implications. In the following we are using the notation used in [5], and
describe a block as triple of the form B = 〈s, x,ctr〉, where s ∈ {0, 1}λ, x ∈ {0, 1}∗
and ctr ∈ N and a block is valid if

validblockD
q (B) := (H(ctr,G(s, x)) < D) ∧ (ctr < q) = 1.

Here, H : {0, 1}∗ → {0, 1}2λ and G : {0, 1}∗ → {0, 1}2λ are collision-resistant hash
functions, and the parameters D ∈ N and q ∈ N are the difficulty level of the block and
the maximum number of hash queries that a user is allowed to make in any given round of
the protocol, respectively. The chaining of blocks is now done by requiring that when at-
taching a (valid) block B ′ = 〈s′, x ′,ctr’〉 we have that s′ = H(ctr,G(s, x)). Now to
make blocks redactable, one changes the description of blocks to B = 〈s, x,ctr, (h, r)〉
where the new component is a chameleon-hash (h, r) and the validation predicate
changes to

validblockD
q (B) :=(H(ctr, h) < D) ∧ CHCheck(pkch, (s, x), r, h) = 1 ∧

(ctr < q) = 1.

Chaining is now done by requiring that when attaching a (valid) block B ′ = 〈s′, x ′,ctr’〉
we have that s′ = H(ctr, h). Observe that now computing a collision in the chameleon-
hash gives very much power as it basically allows to rewrite the entire history of the
blockchain.

Ateniese et al. in [5] discuss different ways to control this power to actually compute
collisions (i.e., run CHAdapt) where (1) either skch may be available to some fully
trusted single party only, or (2) skch is generated using a multi-party computation (MPC)
protocol and CHAdapt is also performed in a distributed way by some set of parties.
We will discuss the implications of different collision-resistance notions to this setting,
which is independent of which of these two approaches is going to be used.

We recall that Ateniese et al. [5], who introduced this application, rely on E-CollRes
and Derler et al. in more recent work in [26] rely on S-CollRes. Now, note that in such
a permissionless setting as discussed above, where everybody is allowed to participate,
it is reasonable to assume that an adversary sees the collisions computed for any blocks
over some time in the system (as they will be broadcasted). Now let us discuss the single
notions:

 29 Page 40 of 44 D. Derler et al.

Weak Collision-Resistance (W-CollRes) A chameleon-hash providing this notion
of collision-resistance provides absolutely no guarantees, as after seeing a sin-
gle collision all guarantees are lost. A prime example is the Pedersen CH due to
Krawczyk and Rabin [46] (cf. Sect. 4.1),
where a single seen collision exposes the secret key skch to everybody. Clearly, this
has significant consequences in the above scenario as then everybody can arbitrarily
alter the blockchain.
Enhanced Collision-Resistance (E-CollRes) Recall that an adversary, when attack-
ing some hash h∗, must have never input h∗ to CHAdapt′. Now, this means that if
an adversary targets a specific hash and then happens to see a collision for this hash
(for some reason), suddenly all guarantees are lost and arbitrary collisions could
be computed. Note that our construction in Sect. 4 clearly demonstrates potential
problems with CHs only satisfying this notion. This still represents a significant
problem with this application.
Standard Collision-Resistance (S-CollRes) Recall, that an adversary is only re-
stricted to not query message m∗ (which is associated with the computed collision
h∗) was never queried to the collision-finding oracle. While this still might be prob-
lematic in the redactable blockchain setting, messages can very likely be made
unique by perpending a large enough random tag/nonce (note that in this could eas-
ily be done in the block format of, e.g., the Bitcoin block structure). So, this notion
seems suitable if the aforementioned constrained may, under certain circumstances,
be guaranteed to be met, but is far away from being ideal.
Full Collision-Resistance (F-CollRes) We recall that, here, only the collision
(h∗,m∗) was not generated by the collision-finding oracle, but there is no other
restriction whatsoever. Consequently, this collision-resistance notion seems the
“right” notion as no issues on higher levels need to be considered and very strong
guarantees are already provided by the notion itself.

6.2. Online/Offline Signatures

Online/offline signatures (OOS) [33,34] are signatures which run in two phases, a poten-
tially computationally expensive offline phase and a more efficient online phase. Latter
clearly should be more efficient than the full signing algorithm. Thus, if the online phase
is then run by a resource constrained signer, this allows such signers to compute signa-
tures even if it might be too expensive to run the full signing algorithm of the respective
signature scheme.

6.2.1. Hash-sign-switch OOS

In [52], Shamir and Tauman introduced the so called hash-sign-switch paradigm for
OOS. Here, the key pair of any signature scheme is extended by the key pair of a
chameleon-hash. The offline phase represents computing a signature on a chameleon-
hash value h of a random message m′ (the hash part). The online phase then represents
computing a collision for h with the message m to be signed (the switch part). Shamir
and Tauman in [52] propose (among an instantiation based on factoring) the use of the
W-CollRes by Krawczyk and Rabin [46]. Note that this requires that for every offline
signature, a new signature for a fresh chameleon-hash needs to be computed. Otherwise,

Bringing Order to Chaos:... Page 41 of 44 29

due to the key-exposure of the chameleon-hash the so obtained OOS gets insecure, i.e.,
one can forge signatures for arbitrary messages after seeing two signatures.

6.2.2. Key-exposure in OOS

Chen et al. in [21] observe that this key-exposure problem in OOS following this “hash-
sign-switch” paradigm might impose a huge storage overhead due to the number of
precomputed signatures in the offline phase. They then suggest to fix this problem by
introducing a special double-trapdoor hash family based on the discrete logarithm as-
sumption combined with a one-time trapdoor/hash key pair for each message signing.
Although this removes a part of the problem, this is still not entirely generic and imposes
an additional overhead.

We want to stress, that besides the storage overhead pointed out by Chen et al. [21],
constructing such OOS using a chameleon-hash providing only W-CollRes might be
even more problematic when it comes to what we informally call robustness. Imagine
that due to a fault or some behavior triggered by an adversary, one of the signatures
precomputed in the offline phase gets reused in the online phase. Then, the OOS is
immediately completely broken. Note that this is somewhat reminiscent of the problem of
secret key leakage when reusing the randomness in Schnorr-type signatures as repeatedly
seen in case of ECDSA in practice (cf. [44]).

6.2.3. F-CollRes CH in OOS

Now, when instantiating OOS on the “hash-sign-switch” paradigm based on aF-CollRes
chameleon-hash instead, this immediately resolves the above robustness issue and yields
a completely generic solution. More so, in the offline phase only a single signature needs
to be precomputed, which can be reused for all online signing operations while allowing
the adversary to query signatures for arbitrary messages. Clearly, when it comes to
concrete efficiency, it needs to be guaranteed that the online part remains more efficient
than the signing operation of the underlying signature scheme. Taking for instance the
concrete instantiation in Sect. 5.3, precomputing all the message-independent values of
the Adapt algorithm except for u2 (which is critical to robustness) in the offline phase,
then the online phase requires two exponentiations. So while this does not yield a benefit
when building OOS on Schnorr-type signatures, it will so for instance when using the
BLS signature scheme [15] (where an estimate of signing including the hashing to the
curve [56] requires a cost of strictly more than two exponentiations).9

Relying on a F-CollRes chameleon-hash thus provides a fully generic construction
of OOS with this robustness feature (in contrast to [21] which is based on the discrete
logarithm assumption), and using the recent results in [28] even immediately yields a
construction from post-quantum assumptions.

9We note that even without any precomputation for the chameleon-hash and only using pre-computation
tables for the static generator g1 and public key y of 16 G1 elements each (as used in libraries such as RELIC
[3]) and multi-base scalar multiplications this amounts to the cost of three exponentiations. Finally, one could
even reduce the cost to a single exponentiation, but then one needs to ensure that the precomputed u2 value
never gets reused.

 29 Page 42 of 44 D. Derler et al.

Acknowledgements

We want to thank the anonymous reviewers for their helpful feedback. The work of D.S.
was done while with AIT Austrian Institute of Technology. This work was supported
by the EU’s Horizon 2020 ECSEL Joint Undertaking under grant agreement n◦783119
(Secredas), from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement n◦871473 (Kraken) and by the Austrian Science Fund
(FWF) and netidee SCIENCE under grant agreement P31621-N38 (Profet).

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] M. Abe, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo, Tagged one-time signatures: Tight security
and optimal tag size, in PKC. (2013), pp. 312–331

[2] S. Alsouri, Ö. Dagdelen, S. Katzenbeisser, Group-based attestation: Enhancing privacy and management
in remote attestation, in Trust. (2010), pp. 63–77

[3] D.F. Aranha, C.P.L. Gouvêa, T. Markmann, R.S. Wahby, K. Liao, RELIC is an Efficient LIbrary for
Cryptography. https://github.com/relic-toolkit/relic

[4] G. Ateniese, D.H. Chou, B. de Medeiros, G. Tsudik, Sanitizable signatures, in ESORICS. (2005), pp.
159–177

[5] G. Ateniese, B. Magri, D. Venturi, E.R. Andrade, Redactable blockchain - or - rewriting history in bitcoin
and friends, in EuroS&P. (2017), pp. 111–126

[6] G. Ateniese, B. de Medeiros, Identity-based chameleon hash and applications, In FC. (2004), pp. 164–
180

[7] G. Ateniese, B. de Medeiros, On the key exposure problem in chameleon hashes, in SCN. (2004), pp.
165–179

[8] F. Bao, R.H. Deng, X. Ding, J. Lai, Y. Zhao, Hierarchical identity-based chameleon hash and its appli-
cations, in ACNS. (2011), pp. 201–219

[9] M. Bellare, A. Boldyreva, S. Micali, Public-key encryption in a multi-user setting: Security proofs and
improvements, in Eurocrypt. (2000), pp. 259–274

[10] M. Bellare, C. Namprempre, D. Pointcheval, M. Semanko, The one-more-rsa-inversion problems and
the security of chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)

[11] M. Bellare, T. Ristov, Hash functions from sigma protocols and improvements to VSH, in Asiacrypt.
(2008), pp. 125–142

[12] M. Bellare, T. Ristov, A characterization of chameleon hash functions and new, efficient designs. J.
Cryptol. 27(4), 799–823 (2014)

[13] M. Bellare, D. Riepel, L. Shea, Highly-effective backdoors for hash functions and beyond. Cryptology
ePrint Archive, Paper 2024/536 (2024). https://eprint.iacr.org/2024/536

[14] O. Blazy, S.A. Kakvi, E. Kiltz, J. Pan, Tightly-secure signatures from chameleon hash functions, in PKC.
(2015), pp. 256–279

http://creativecommons.org/licenses/by/4.0/
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2024/536

Bringing Order to Chaos:... Page 43 of 44 29

[15] D. Boneh, B. Lynn, H. Shacham, Short signatures from the weil pairing, in C. Boyd, editors, Advances
in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory and Application of
Cryptology and Information Security,GoldCoast, Australia,December 9-13, 2001, Proceedings. Lecture
Notes in Computer Science, vol. 2248 (Springer, 2001), pp. 514–532

[16] G. Brassard, D. Chaum, C. Crépeau, Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci.
37(2), 156–189 (1988)

[17] C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page, J. Schelbert, D. Schröder, F. Volk,
Security of sanitizable signatures revisited, in PKC. (2009), pp. 317–336

[18] J. Camenisch, D. Derler, S. Krenn, H.C. Pöhls, K. Samelin, D. Slamanig, Chameleon-hashes with
ephemeral trapdoors - and applications to invisible sanitizable signatures, in PKC. (2017), pp. 152–182

[19] D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, Bonsai trees, or how to delegate a lattice basis, in Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. (2010),
pp. 523–552

[20] X. Chen, F. Zhang, K. Kim, Chameleon hashing without key exposure, in ISC. (2004), pp. 87–98
[21] X. Chen, F. Zhang, W. Susilo, Y. Mu, Efficient generic on-line/off-line signatures without key exposure,

in ACNS. (2007), pp. 18–30
[22] J. Choi, S. Jung, A handover authentication using credentials based on chameleon hashing. IEEE Com-

mun. Lett. 14(1), 54–56 (2010)
[23] A. Cingolani, Bitcoin as an Ideal Redactable Transaction Ledger. Master’s thesis, Sapienza University

of Rome (2020)
[24] R. Cramer, I. Damgård, B. Schoenmakers, Proofs of partial knowledge and simplified design of witness

hiding protocols, in Crypto. (1994), pp. 174–187
[25] R. Cramer, V. Shoup, A practical public key cryptosystem provably secure against adaptive chosen

ciphertext attack, in Crypto. (1998), pp. 13–25
[26] D. Derler, K. Samelin, D. Slamanig, C. Striecks, Fine-grained and controlled rewriting in blockchains:

Chameleon-hashing gone attribute-based, in NDSS (2019)
[27] D. Derler, D. Slamanig, Key-homomorphic signatures: definitions and applications to multiparty signa-

tures and non-interactive zero-knowledge. Des. Codes Cryptogr. 87(6), 1373–1413 (2019)
[28] D. Derler, S. Krenn, K. Samelin, D. Slamanig, Fully collision-resistant chameleon-hashes from simpler

and post-quantum assumptions, in C. Galdi, V. Kolesnikov, editors, Security and Cryptography for
Networks - 12th InternationalConference, SCN2020, Amalfi, Italy, September 14-16, 2020, Proceedings.
Lecture Notes in Computer Science, vol. 12238 (Springer, 2020), pp. 427–447

[29] D. Derler, K. Samelin, D. Slamanig, Bringing order to chaos: The case of collision-resistant chameleon-
hashes, in A. Kiayias, M. Kohlweiss, P. Wallden, V. Zikas, editors, Public-Key Cryptography - PKC
2020. (2020), pp. 462–492

[30] D. Derler, D. Slamanig, Highly-efficient fully-anonymous dynamic group signatures, in AsiaCCS.
(2018), pp. 551–565

[31] D. Deuber, B. Magri, S.A.K. Thyagarajan Redactable blockchain in the permissionless setting, in IEEE
S&P. (2019), pp. 124–138

[32] Y. Dodis, K. Haralambiev, A. López-Alt, D. Wichs Efficient public-key cryptography in the presence of
key leakage, in Asiacrypt. (2010), pp. 613–631

[33] S. Even, O. Goldreich, S. Micali, On-line/off-line digital signatures. J. Cryptol. 9(1), 35–67 (1996)
[34] S. Even, O. Goldreich, S. Micali, On-line/off-line digital schemes, in G. Brassard, editors , Advances in

Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 1989, Proceedings. Lecture Notes in Computer Science, vol. 435 (Springer, 1989),
pp. 263–275

[35] S. Faust, M. Kohlweiss, G.A. Marson, D. Venturi, On the non-malleability of the fiat-shamir transform,
in Indocrypt. (2012), pp. 60–79

[36] A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification and signature problems,
in Crypto. (1986), pp. 186–194

[37] T.E. Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms, in Crypto.
(1984), pp. 10–18

[38] J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in
Asiacrypt. (2006), pp. 444–459

 29 Page 44 of 44 D. Derler et al.

[39] J. Groth, Efficient fully structure-preserving signatures for large messages, in Asiacrypt. (2015), pp.
239–259

[40] J. Groth, A. Sahai, Efficient non-interactive proof systems for bilinear groups, in Eurocrypt. (2008), pp.
415–432

[41] S. Guo, D. Zeng, Y. Xiang, Chameleon hashing for secure and privacy-preserving vehicular communi-
cations. IEEE Trans. Parallel Distrib. Syst. 25(11) (2014)

[42] S. Hada, T. Tanaka, On the existence of 3-round zero-knowledge protocols, in Crypto. (1998), pp.
408–423

[43] S. Hohenberger, B. Waters, Short and stateless signatures from the RSA assumption, in Crypto. (2009),
pp. 654–670

[44] J. Jancar, V. Sedlacek, P. Svenda, M. Sýs, Minerva: The curse of ECDSA nonces systematic analysis of
lattice attacks on noisy leakage of bit-length of ECDSA nonces. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(4), 281–308 (2020). https://doi.org/10.13154/tches.v2020.i4.281-308

[45] M. Khalili, M. Dakhilalian, W. Susilo, Efficient chameleon hash functions in the enhanced collision
resistant model. Inf. Sci. 510, 155–164 (2020)

[46] H. Krawczyk, T. Rabin, Chameleon signatures, in NDSS. (2000), pp. 143–154
[47] Y. Li, S. Liu, Tagged chameleon hash from lattices and application to redactable blockchain. Cryptology

ePrint Archive, Paper 2023/774 (to appear at PKC 2024) (2023). https://eprint.iacr.org/2023/774
[48] R. Matzutt, J. Hiller, M. Henze, J.H. Ziegeldorf, D. Müllmann, O. Hohlfeld, K. Wehrle, A quantitative

analysis of the impact of arbitrary blockchain content on bitcoin, in FC. (2018), pp. 420–438
[49] P. Mohassel, One-time signatures and chameleon hash functions, in SAC. (2010), pp. 302–319
[50] T.P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in Crypto.

(1991), pp. 129–140
[51] K. Samelin, D. Slamanig, Policy-based sanitizable signatures, in CT-RSA. (2020), pp. 538–563
[52] A. Shamir, Y. Tauman, Improved online/offline signature schemes, in Crypto. (2001), pp. 355–367
[53] R. Steinfeld, L. Bull, H. Wang, J. Pieprzyk, Universal designated-verifier signatures, inAsiacrypt. (2003),

pp. 523–542
[54] R. Steinfeld, H. Wang, J. Pieprzyk, Efficient extension of standard schnorr/rsa signatures into universal

designated-verifier signatures, in PKC. (2004), pp. 86–100
[55] G. Tziakouris, Cryptocurrencies - A forensic challenge or opportunity for law enforcement? an INTER-

POL perspective. IEEE S&P 16(4) (2018)
[56] R.S. Wahby, D. Boneh, Fast and simple constant-time hashing to the BLS12-381 elliptic curve. IACR

Trans. Cryptogr. Hardw. Embed. Syst. 20(4), 154–179 (2019). https://doi.org/10.13154/tches.v2019.i4.
154-179

[57] R. Zhang, Tweaking TBE/IBE to PKE transforms with chameleon hash functions, in ACNS. (2007), pp.
323–339

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.13154/tches.v2020.i4.281-308
https://eprint.iacr.org/2023/774
https://doi.org/10.13154/tches.v2019.i4.154-179
https://doi.org/10.13154/tches.v2019.i4.154-179

	Bringing Order to Chaos: The Case of Collision-Resistant Chameleon-Hashes
	1. Introduction
	1.1. Formalizing Chameleon-Hashes
	1.2. Motivation and Contribution
	1.2.1. Relations among Properties
	1.2.2. Stronger Notion
	1.2.3. Black-Box Construction
	1.2.4. Applications

	1.3. Differences to the Conference Version
	1.4. Follow-up Work

	2. Preliminaries
	2.1. Notation
	2.2. Building Blocks
	2.2.1. Public-Key Encryption Schemes
	2.2.2. Digital Signature Schemes
	2.2.3. Non-Interactive Proof Systems.

	3. Chameleon-Hashes, Revisited
	3.1. Framework
	3.2. Collision-Resistance, Revisited
	3.2.1. Discussion of the Notions

	3.3. Indistinguishability, Revisited
	3.3.1. (Normal) Indistinguishability (N-Ind)
	3.3.2. Strong Indistinguishability (S-Ind)
	3.3.3. Enhanced Indistinguishability (E-Ind)
	3.3.4. Full Indistinguishability (F-Ind)

	3.4. Uniqueness

	4. Relationships between Properties of Chameleon-Hashes
	4.1. Existing Constructions of Chameleon-Hashes
	4.1.1. Instantiation of a Weakly Collision-Resistant CH
	4.1.2. Instantiation of a Standard Collision-Resistant CH

	4.2. Collision-Resistance Properties
	4.2.1. Construction

	4.3. Relations Between Indistinguishability Notions.
	4.4. Additional Separations

	5. Fully Collision-Resistant Chameleon-Hashes
	5.1. Construction
	5.2. Security
	5.3. Concrete Instantiation
	5.4. Comparison

	6. Applications
	6.1. Redactable Blockchains
	6.2. Online/Offline Signatures
	6.2.1. Hash-sign-switch OOS
	6.2.2. Key-exposure in OOS
	6.2.3. F-CollRes CH in OOS

	Acknowledgements
	References

