
https://doi.org/10.1007/s00145-023-09486-y
J Cryptol (2024)37:8

Research Article

(Inner-Product) Functional Encryption with Updatable
Ciphertexts∗

Valerio Cini
NTT Research, Sunnyvale, CA, USA

valerio.cini@ntt-research.com

Sebastian Ramacher
AIT Austrian Institute of Technology, Vienna, Austria

sebastian.ramacher@ait.ac.at

Daniel Slamanig
Research Institute CODE, Universität der Bundeswehr München, Munich, Germany

daniel.slamanig@ait.ac.at

Christoph Striecks
AIT Austrian Institute of Technology, Vienna, Austria

daniel.slamanig@unibw.de

Erkan Tairi
TU Wien, Vienna, Austria
erkan.tairi@tuwien.ac.at

Communicated by David Pointcheval and Nigel Smart

Received 27 September 2022 / Revised 28 October 2023 / Accepted 30 October 2023
Online publication 15 December 2023

Abstract. We propose a novel variant of functional encryption which supports cipher-
text updates, dubbed ciphertext-updatable functional encryption. Such a feature further
broadens the practical applicability of the functional encryption paradigm and allows for
fine-grained access control even after a ciphertext is generated. Updating ciphertexts is
carried out via so-called update tokens which a dedicated party can use to convert cipher-
texts. However, allowing update tokens requires some care for the security definition.
Our contribution is threefold:

(a) We define our new primitive with a security notion in the indistinguishability setting. Within
CUFE, functional decryption keys and ciphertexts are labeled with tags such that only if the
tags of the decryption key and the ciphertext match, then decryption succeeds. Furthermore,
we allow ciphertexts to switch their tags to any other tag via update tokens. Such tokens are
generated by the holder of the main secret key and can only be used in the desired direction.

∗This paper was reviewed by Romain Gay, Ki Nguyen and an anonymous reviewer.

© The Author(s) 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09486-y&domain=pdf

8 Page 2 of 40 V. Cini et al.

(b) We present a generic construction of CUFE for any functionality as well as predicates
different from equality testing on tags which relies on the existence of indistinguishability
obfuscation (iO).

(c) We present a practical construction of CUFE for the inner-product functionality from stan-
dard assumptions (i.e., LWE) in the random-oracle model. On the technical level, we build
on the recent functional encryption schemes with fine-grained access control and linear
operations on encrypted data (Abdalla et al., AC’20) and introduce an additional ciphertext
updatability feature. Proving security for such a construction turned out to be non-trivial,
particularly when revealing keys for the updated challenge ciphertext is allowed. Overall,
such construction enriches the set of known inner-product functional encryption schemes
with the additional updatability feature of ciphertexts.

1. Introduction

Functional encryption [19,52,55] is an exciting encryption paradigm that allows fine-
grained access control over encrypted data. In contrast to conventional encryption, which
is all-or-nothing, in functional encryption (FE) there is a main secret keymsk that allows
to generate constrained functional decryption keys. More precisely, every decryption
key sk f is associated with a function f and given an encryption Enc(mpk, x) of some
message x under the main public key mpk, the decryption with sk f only reveals f (x),
but nothing more about x .1

Since its introduction, FE has been subject to intense study which can broadly be cat-
egorized into two areas. Firstly, works that consider general functionalities and thereby
mostly focusing on feasibility results. This typically results in constructions beyond
practical interest, as they rely on indistinguishability obfuscation (iO) or need to impose
severe restrictions on the number of keys given to an adversary. Secondly, works that
restrict the power by only supporting limited classes of functions that are of particular
interest for practical applications, i.e., linear and quadratic functions. Here, the main
focus is then on concrete and efficient constructions. One such approach that attracted
a lot of research are FE schemes for the inner-product functionality (IPFE), i.e., keys
are associated with vectors �y, messages are vectors �x and decryption reveals 〈�x, �y〉.
Initially proposed by Abdalla et al. [2], a line of work improved the security guarantees
[3,13,15,16,24], extended it to the multi-input [8,12] as well as the decentralized setting
[4–6,22,46]. Although this functionality is very simple, it has already shown to be useful
in privacy-preserving machine learning [49], money-laundering detection [31], search
in encrypted data streams [18], video data analytics,2 or data marketplaces [43].
Limitations of large-scale deployment of FE A problem for the practical adoption of FE
is that every issued functional decryption key inherently leaks some information. For
the inner-product functionality and thus IPFE, this is particularly problematic. Specifi-
cally, if n is the dimension of the vectors, then obtaining n decryption keys in general
allows to recover the full plaintext. Consequently, as soon as IPFE is deployed in some
larger-scale setting, this represents a severe limitation. To mitigate this problem and
make IPFE more practical, Abdalla, Catalano, Gay, and Ursu [9] recently introduced

1Unless mentioned otherwise, we will always assume public-key functional encryption.
2https://research.kudelskisecurity.com/2021/02/02/benchmarking-privacy-preserving-motion-

detection/.

https://research.kudelskisecurity.com/2021/02/02/benchmarking-privacy-preserving-motion-detection/
https://research.kudelskisecurity.com/2021/02/02/benchmarking-privacy-preserving-motion-detection/

(Inner-Product) Functional Encryption... Page 3 of 40 8

the notion of IPFE with fine-grained access control providing strong security guaran-
tees.3 Loosely speaking, the idea is that ciphertexts are produced with respect to an
access policy (e.g., expressed by monotone span programs) and decryption keys are
in addition to being bound to a function also associated with an attribute. Decryption
then only works if the attribute in the key satisfies the access policy in the ciphertext. It
is important to stress that when aiming for reasonable security which allows collusion
of functional decryption keys, this approach is non-trivial as a naive composition of
IPFE with attribute-based encryption (ABE) or identity-based encryption (IBE) suffers
from simple mix-and-match attacks. Abdalla et al. provide pairing-based attribute-based
constructions covering monotone span programs (AB-IPFE) and lattice-based identity-
based constructions (IB-IPFE). Nguyen et al. [51] propose more efficient pairing-based
constructions and investigate the approach of Abdalla et al. in a multi-client setting.
Recently, Lai et al. [45] as well as Pal and Dutta [53] also present lattice-based AB-IPFE
constructions.

This concept of Abdalla et al. firstly mitigates the leakage problem of plain IPFE,
as now this inherent limitation on the number of issued functional decryption key only
applies per identity in IB-IPFE (or attribute policy in AB-IPFE). This can be viewed as
partitioning the keys such that the aforementioned limitation applies to each of these
partitions, making it much more scalable. Secondly, it more closely reflects the situation
in large-scale systems where even in the case of FE, one wants to enforce a more
fine-grained control over who is allowed to learn some particular information of the
encrypted plaintexts. Thirdly, this concept overcomes the problem of a trivial approach,
i.e., encrypting data separately under an IPFE public key for each recipient, which would
result in a linear blow-up of the ciphertexts.
Motivation towards more flexibility in fine-grained access control Abdalla et al. [9] make
an important step towards applicability of FE in large-scale systems. But it still seems
limited when it comes to dynamic aspects. For instance, the medical example used in [9]
envisions that doctors in a hospital may be able to compute on a different set of encrypted
data than employees of a health insurance company. What happens if the access to data
for the insurance company should be expanded? This would either mean to encrypt all
the data anew under the policy that is satisfied by the insurance company or to issue
additional keys to the insurance company. While in this medical setting this might still
be manageable, there are other examples where this seems hard to achieve.

Let us therefore consider the emerging domain of data marketplaces.4 These are
platforms that allow customers to buy access to data or statistical analysis on data offered
by a potentially huge set of data owners via data brokers. The available data sets can
range from business intelligence and research, demographic or health, firmographic, and
market data to public data. (IP)FE seems to be an interesting tool for this application.
But while the use of IPFE (in a multi-client setting) has recently been proposed in [43] to
realize a privacy-aware data marketplace, it does so in a way that reveals the evaluations
in plain to the data brokers. Now, one could imagine using the approach in [9] to let data

3There is more related work such as [14,27,30,40,41,58] as discussed in [9], but those schemes either
provide less functionality or weaker security.

4https://research.aimultiple.com/data-marketplace, https://datarade.ai/platform-categories/personal-
data-marketplaces.

https://research.aimultiple.com/data-marketplace
https://datarade.ai/platform-categories/personal-data-marketplaces
https://datarade.ai/platform-categories/personal-data-marketplaces

8 Page 4 of 40 V. Cini et al.

owners encrypt their data under certain policies (or identities), whereas data buyers are
given functional keys (with respect to a certain identity or attribute) and data brokers
basically only distribute the data (and possibly perform some aggregation tasks). Still,
it seems cumbersome to have a fine-grained control over what buyers can access if the
access policies are fixed in the ciphertexts.

We now envision that in addition to having a fine-grained control, we allow the data
brokers to update the policies (attributes/identities) in existing ciphertexts in order to add
more flexibility. Let us now focus on the specific case of policies being represented via
the equality predicate, and thus ciphertexts and function keys are labeled and decryption
yields the function of the message if both labels match. We call those labels tags and
one can also think of these labels as identities (as done in [9]). Data brokers should have
the capability to update ciphertexts in a way that they can change the tags in ciphertexts
using some additional information (called an update token), but they should not learn
the function evaluations and thus the privacy of the data of the owners is guaranteed. To
keep a fine-grained control over ciphertext updates in such a broker scenario, we want
to restrict the updates of a ciphertext to a single update and the token to only work in one
direction, i.e., from tag t to t ′ but not vice versa. Thus, already updated ciphertexts cannot
be updated anymore. While it is possible to consider schemes that support multiple
updates and/or bidirectional tokens, we believe that this is rather dangerous in such
applications. For instance, this could allow moving ciphertexts to tags for which they
were not intended, e.g., from a tag t to t ′ and then to t ′′ via two updates, whereas it might
be not intended that it is possible to move all ciphertexts from t to t ′′, but rather only
ones under t to t ′ and ones under t ′ to t ′′.

We note that this functionality goes beyond what is provided by IPFE with fine-grained
access control due to Abdalla et al. [9], as in their work ciphertexts are not updatable, i.e.,
they do not straightforwardly provide the possibilities that a tag (identity) in a ciphertext
can be changed. But as we will see, the work in [9] can serve as a starting point for
our lattice-based construction. We note that a trivial construction based upon [9] that
encrypts a message multiple times under different tags (identities) in parallel fails to
provide the desired functionality. In particular, it does not allow to dynamically decide
to which tag a ciphertext can be updated as the desired tags would have to be known at
the time of producing the ciphertext, something that we want to avoid in our approach
to solve the above problem! Consequently, we are looking for a solution where we can
potentially switch a ciphertext to any tag from a large (i.e., exponential) tag space.

Since currently (IP)FE schemes that achieve the desired properties are absent in the
cryptographic literature, in this work we ask:

Can we define and construct (IP)FE schemes with fine-grained access control and
ciphertext updatability?

1.1. Our Contribution

We answer the above question affirmatively via our threefold contribution

(a) We define a new primitive dubbed ciphertext-updatable functional encryption
(CUFE) along with a security notion in the indistinguishability setting. Within
CUFE, functional decryption keys and ciphertexts are labeled with tags such that

(Inner-Product) Functional Encryption... Page 5 of 40 8

only if the tag in the decryption key and ciphertext match, then decryption suc-
ceeds. Furthermore, we allow fresh ciphertexts to update its tag t to any other tag
t ′ via so-called update tokens. An update token from t to t ′ is generated by the
holder of the main secret and can only be used in the desired direction, i.e., from
t to t ′. In a nutshell, the distinguishing feature is that we allow changing the tag
after a ciphertext was generated (which is not known to be achieved by existing
work).

(b) We present a generic construction of CUFE for any functionality and more pow-
erful predicates than equality testing on tags, which relies on the existence of
indistinguishability obfuscation (iO).

(c) We present a practical construction of CUFE for the inner-product functionality
from standard assumptions (i.e., the learning-with-errors (LWE) assumption) in
the random-oracle model. Proving security for such a construction turned out to be
non-trivial, particularly when revealing keys for the updated challenge ciphertext is
allowed. In general, this further enriches the approach presented in line of Abdalla
et al. [9] with the updatability feature of ciphertexts. Notably, our construction
relies on lattice-based assumptions which are plausibly post-quantum.

Defining ciphertext updatability for FE CUFE can be seen as tag-based FE scheme with
tag space T . As in FE, key generation outputs a main public-secret key pair (mpk,msk),
where the decryption keys sk f,t for some function f ∈ F and tag t ∈ T are derived
from msk. In CUFE, however, msk is also used to derive update tokens �t→t ′ . Now,
encryption takes some tag t and message x and outputs a ciphertext Ct . Then, using
�t→t ′ , any honest-but-curious party5 can take the update token to update Ct to Ct ′
without learning anything about the encrypted message. Correctness guarantees that
if the tags of the function key and the ciphertext match, and only a single update has
happened, then decryption succeeds and outputs f (x).

Defining security needs some care as we want that tokens can update ciphertexts only
toward the tag specified in the update token and updated ciphertext should not be allowed
to be further updated. That is, a token �t→t ′ can only switch tags from t to t ′ and not vice
versa. As in the work of Abdalla et al. [9], the adversary is allowed to query decryption
keys for any functionality f such that the function evaluation on the challenge ciphertext
yields f (x0) = f (x1), for adversarially chosen messages x0, x1, if the policy is fulfilled.
In our constructions, we restrict the policy to the equality test on tags of the functional
decryption key and the ciphertext (we discuss extensions in Sect. 4.3) which ensures a
simple access control for our envisioned applications.

Concerning updated ciphertexts, we have the following situation. Since the concept
of update tokens is not foreseen in conventional forms of FE, we need to consider
additional aspects for our security notions. We have to deal with the fact that tokens can
potentially not only be used to update ciphertexts from some tag t to another tag t ′, but
could also be used to invert a ciphertext update. This is partly reminiscent of providing
adequate and strong security guarantees in proxy re-encryption (PRE) [26,28]. Having
those in mind, we define an indistinguishability-based notion IND-CUFE-CPA, which

5An honest-but-curious party is assumed to correctly perform the update but will not learn any information
about the hidden messages.

8 Page 6 of 40 V. Cini et al.

guarantees that an adversary cannot distinguish ciphertexts for a certain challenge target
tag and adversarially chosen messages.

More concretely, as outlined in our motivation, we only want to allow updating the
tags of ciphertexts once and only in one direction. In order to capture these properties,
we provide the adversary in addition to a key generation oracle (as in plain FE) access
to additional oracles. Firstly, we allow the adversary to adaptively query corrupted and
honest update tokens as well as also provide encryption and honest-ciphertext-update
oracles. Furthermore, we want to naturally allow the adversary to see decryption keys
for honestly updated challenge ciphertexts.

We show that we can prove our CUFE construction from LWE secure in such a model
for the inner-product functionality. Indeed, the tricky part in the proof is to allow the ad-
versary to retrieve functional decryption keys for honestly updated challenge ciphertexts
(i.e., it does not see the update token, but has access to an update oracle; see below for
detailed discussion). We note that our iO-based construction satisfies the security model
for any functionality (see below).
CUFE for any function from iO. The starting point of our construction is the (semi-
adaptively secure) FE construction due to Waters [57], which relies on indistinguisha-
bility obfuscation (iO) and the punctured programming approach. The main ingredient
of Waters’ construction is a primitive called puncturable deterministic encryption (PDE),
which can be constructed from puncturable PRFs using the hidden trigger mechanism
of Sahai and Waters [56]. A PDE scheme is a symmetric and deterministic encryption
scheme, which additionally has a feature that given a key kpde and a pair of messages
m0,m1, it produces a punctured key km0,m1

pde that can decrypt all ciphertexts except for

those encrypting either m0 or m1.6 Using PDE one can construct a (semi-adaptively
secure) FE scheme as follows: The setup algorithm samples a puncturable PRF key kprf
for function F , which it sets as the main secret key, and generates an obfuscation of the
program PInit, which it sets as the main public key. The program PInit takes as input a
randomness r , computes a point p = PRG(r), derives a PDE key as kpde = F(kprf, p),
and outputs the pair (p, kpde). The encryption algorithm can then use the obfuscated
program PInit to encrypt a message m by first sampling a randomness r , running the
obfuscated program on r to receive (p, kpde), and finally, computing the ciphertext as
C := (p, c := Encpde(kpde,m)). The functional secret key sk f , for a function f , is
also created as an obfuscation of a program PKey, which has f hardcoded. This pro-
gram takes as input a ciphertext C := (p, c), uses p to derive the key kpde, decrypts c
using kpde to obtain the message m, and finally, outputs f (m). Hence, the decryption
algorithm simply involves running the obfuscated program PKey on the ciphertext.

In order to introduce tags for the ciphertexts, a first step is to extend the PDE to its tag-
based variant that we dubbed puncturable tag-based deterministic encryption (PTDE).
It works analogously to PDE, except that the ciphertexts are associated with tags and
puncturing happens not only at a pair of messages m0,m1, but also at a tag t . Hence, a
punctured key kt,m0,m1

ptde can decrypt all ciphertexts except for those encrypting either m0
or m1 under the tag t . Now, the challenging part is to update the ciphertexts. In order
to restrict that an updated ciphertext cannot be updated anymore, we use two different
puncturable PRF keys as part of the main secret key, kprf,o for the original ciphertexts

6Recall that in a deterministic encryption scheme there are only two such ciphertexts.

(Inner-Product) Functional Encryption... Page 7 of 40 8

and kprf,u for the updated ciphertext. Analogous to the aforedescribed construction of
Waters [57], these PRF keys are used to derive PTDE keys in our case. For the update
operation, we now need to switch the ciphertexts encrypted under the key kptde (derived
from kprf,o) and tag t to a new ciphertext under the key k′

ptde (derived from kprf,u) and tag
t ′. In order to do this we introduce a third program, called PUpdate, which given as input
a ciphertext Ct (under a tag t) and a randomness r , first decrypts the input ciphertext Ct ,
and then, re-encrypts it deterministically under the new key k′

ptde and tag t ′ to produce
the updated ciphertext C ′

t . Due to the deterministic nature of the used cryptographic
primitives, such as PTDE and puncturable PRF, we can rely solely on (plain) iO for the
update operation, instead of requiring probabilistic iO [25].
CUFE for inner-products from standard assumptions The starting point for the construc-
tion from standard assumptions is the identity-based inner-product functional encryption
scheme from the LWE assumption by Abdalla et al. [9]. Their construction essentially
combines the LWE-based inner-product FE scheme from Agrawal et al. [15]—we will
refer to this scheme as ALS—with a LWE-based IBE scheme, e.g., the IBEs from [37] or
[1]. The latter is especially of interest for us: Starting from a public keyA, it is possible to
derive an identity-specific matrixAid for some identity id. ThisAid describes a trapdoor
function for which it is hard to compute a short preimage. Yet, given the trapdoor for A,
which is stored as part of the main secret key, it is possible to derive skid as trapdoor for
Aid . Notably, skid is a matrix which can be projected to functional decryption keys for
inner-products 〈·, �y〉, hence giving skid,�y .

While this idea incidentally gives rise to a tag-based inner-product FE construction,
producing update tokens to transform ciphertexts from the source to the target tag is
non-obvious. We want to note, however, that this is one of the core challenges that is
solved by proxy re-encryption in the public-key encryption setting. It is, however, non-
trivial to combine a proxy re-encryption scheme with a functional encryption scheme
without running into issues with collusion. Indeed, consider a black-box approach that
combines both worlds by encrypting the FE ciphertext with a PRE. Now, consider two
colluding users t and t ′ who have functional secret keys for distinct f and f ′. Now, if a
ciphertext is re-encrypted to t , they can use their PRE secret key to remove the PRE layer.
Then, both t and t ′ can evaluate their functions by simply sharing the decapsulated FE
ciphertext. Therefore, a CUFE scheme requires tighter intertwining of the two concepts
to prevent mix-and-match-style and other attacks.

Still, ideas found in lattice-based proxy re-encryption constructions help us to turn
ALS combined with tag-based keys into a secure CUFE. We quickly revisit the construc-
tion by Fan and Liu [33] of a tag-based proxy re-encryption scheme. Their idea is to set
up the user-specific matrices from a global public matrix A. Given such a fixed matrix
A, the matrix for a user u is then set to be Au = [A|Au,1|Au,2] where Au,i = −ARu,i
with Ru,i , for i = 1, 2 contained in the secret key. Encryption follows a dual-Regev
approach [37] based on the user dependent matrix Au and a random freshly sampled tag
t ∈ T . Re-encryption keys from user u to user u′ are generated by sampling matrices
X01,X02,X11,X12 using Ru,1,Ru,2 such that

[A| − Au,1 + h(1)G| − Au,2 + B]
⎡
⎣
I X0,1 X0,2
0 X1,1 X1,2
0 0 I

⎤
⎦ = [A| − Au′,1 + h(2)G| − Au′,2 + B]

8 Page 8 of 40 V. Cini et al.

for any matrix B. In their construction, h is a map used to describe the “ciphertext level”
(either freshly generated, h(1) or updated, h(2)), whereas B stems from a function
producing matrices on input of a tag and the map h. Using as tag space T a large set
with “unit differences” property, as introduced in [47], i.e., for any for any ti , t j ∈ T ,
ti 	= t j , one has h(ti − t j) = h(ti) − h(t j) ∈ Z

n×n
q is invertible, Fan and Liu prove

their construction secure in the standard model. Their proof strategy crucially relies
on the “unit differences” property together with the fact that the scheme is tag-based:
The “challenge” tag, i.e., the tag associated with the challenge ciphertext, is randomly
sampled at the beginning of the security game, and the public parameter is produced by
embedding such “challenge” tag in them. This allows the reduction to correctly answer
any allowed adversary’s query, while at the same time embedding an LWE instance in
the challenge ciphertext.

The setting of CUFE is, however, vastly different in nature as ciphertexts are not
equipped with levels, there are no per-user public keys, and tags have a different meaning,
and in particular, they are not randomly sampled at encryption time, but are specified by
the encryptor. Yet, this method to set up the matrices such that one can update dual-Regev
style ciphertexts from one matrix to another is helpful to construct the update tokens.
Additionally, with dual-Regev inspired ciphertexts we are also able to set up keys as
matrices in such a way that we are able to first sample a tag-specific trapdoor from the
main secret key which is then projected to a functional secret key. Consequently, our
construction intertwines the functional encryption features from ALS with tag-based
ciphertext updates in a non-black-box manner.

As the construction is not black-box, neither is the proof. First, we move to the random-
oracle model in order to embed the challenge tag in the public parameters, even though
in our setting such tag is specified by the encryptor, by crucially exploiting the fact that
the reduction can guess the challenge tag among the random-oracle queries made by
the adversary. Given such modification, the main technical challenge in the proof comes
from having to produce updates of the challenge ciphertext and function keys for the
respective target tags. Embedding an ALS instance (as done for the challenge identity in
[9]) for each of these tags does not work as the different instances should be related in
order to simulate the derived matrices of these tags correctly. On the other hand, using
a single ALS instance to simulate function keys for multiple tags leads, if done in the
trivial way, to producing function keys related to each other, and thus again to a view
for the adversary distinguishable from the expected one. However, this drawback can be
overcome by “re-randomizing” the function keys in a way that it “hides” the function key
provided by the ALS challenger (similarly to Lai et al. [45]). In this way, the adversary’s
view is indistinguishable from that in the real experiment. We remark that since the
reduction needs to perform guesses in order to correctly produce public parameters and
answer adversary’s queries, one has to make sure that the probability space over which
the reduction needs to guess has at most polynomial size. In particular, such constraint
will allow us to prove the lattice-based scheme secure, but only against adversary that
can request at most a bounded number of update tokens per tag and honest updates of
the challenge ciphertext. We discuss more in detail these restrictions in Sect. 5. On the
other hand, while this is certainly a limitation in general, for the concrete applications
we envision, one can always set parameters so that such bounds are large enough to
accommodate requirements of real world scenarios.

(Inner-Product) Functional Encryption... Page 9 of 40 8

1.2. Related Work

While we are not aware of any previous work that tries to achieve the desired goals
via ciphertext updatability, a related concept is that of controlled functional encryption
(C-FE) [50]. This approach enhances FE with an authority that needs to be involved
in the decryption process and thus allows a fine-grained control over which ciphertexts
can be decrypted by a holder of a functional key. Consequently, the access control is
enforced by the authority and by dynamically changing which user is allowed to de-
crypt which ciphertexts one can view this as achieving similar goals as with ciphertext
updatability. However, the major difference is that C-FE requires an interactive decryp-
tion procedure between the user and authority and thus requires the authority to be
online and available all the time. This would potentially hinder scalability in large-scale
systems. In contrast, our approach is oblivious to the users. Furthermore, the require-
ment of an always online authority that needs to be fully trusted might be problematic
and undesirable. This trust issue has recently been addressed by distributing the trust
in the authority via the concept of Multi-Authority C-FE [11], however, this incurs
further communication overhead. Another related (but conceptually different) line of
work is updating policies in ABE [34,42]. In general, these works combine ciphertext-
policy ABE with PRE in order to update the policy associated with the ciphertext.
However, these works neither consider (IP)FE schemes nor are sufficient for our en-
visioned applications. Our work can be seen as a combination of IBE/ABE with FE
augmented by updatability, and, hence, updatability needs to consider and tie both parts
together.

2. Preliminaries

Notation For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter.
For a finite set S, we denote by s ← S the process of sampling s uniformly from S.
Let y ← A(λ, x) be the process of running an algorithm A on input (λ, x) with access
to uniformly random coins and assigning the result to y. (We may omit to mention
the λ-input explicitly and assume that all algorithms take λ as input.) To make the
random coins r explicit, we write A(λ, x; r). We use ⊥ to indicate that an algorithm
terminates with an error and AB when A has oracle access to B, where B may return
� as a distinguished special symbol. We say an algorithm A is probabilistic polynomial
time (PPT) if the running time of A is polynomial in λ. Given �x ∈ Z

n , we denote

by ‖�x‖ its Euclidean norm, i.e., for �x = (xi)i∈[n], we have ‖�x‖ :=
√∑n

i=1 x
2
i . For a

matrix R, by R̃, we denote the result of applying Gram–Schmidt orthogonalization to
the columns of R. By ‖R‖, we will denote the Euclidean norm of the longest column
of R, and by s1(R) its spectral norm, i.e., the largest singular value of R. A function f
is negligible if its absolute value is smaller than the inverse of any polynomial (i.e., if
∀c∃k0∀λ ≥ k0 : | f (λ)| < 1/λc). We may write q = q(λ) if we mean that the value q
depends polynomially on λ. Given two different distributions X and Y over a countable
domain D, we denote their statistical distance as SD(X,Y) = 1

2

∑
d∈D |X (d) − Y (d)|

and say that X and Y are SD(X,Y) close.

8 Page 10 of 40 V. Cini et al.

2.1. Pseudorandom Generators

We recall the definition of a (Boolean) pseudorandom generator (PRG).

Definition 1. (Pseudorandom Generator) A stretch-m(·) pseudorandom generator is a
(Boolean) function PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to m(n)-bit outputs
(also known as the stretch) that is computable by a uniform PPT machine, and for any
non-uniform PPT adversary A, there exists a negligible function negl, such that, for all
n ∈ N, the following holds

∣∣∣∣ Pr
r←{0,1}n

[
A(PRG(r)) = 1

] − Pr
z←{0,1}m [A(z) = 1]

∣∣∣∣ = negl(λ).

2.2. Puncturable Pseudorandom Functions

Puncturable pseudorandom functions (PRFs), introduced by Sahai and Waters [56], are
PRFs for which a key can be given out, such that it allows evaluation of the PRF on all
inputs, except for a designated polynomial-size set of inputs.

Definition 2. (Puncturable PRFs [56]) A puncturable family of PRFs PRF is given by
a triple of algorithms (Gen, F,Puncture) and a pair of computable functions n = n(λ)

and m = m(λ), satisfying the following conditions: Functionality preserved under
puncturing For every PPT adversary A that outputs a set S ⊆ {0, 1}n , such that for all
x ∈ {0, 1}n where x 	∈ S, we have that:

Pr
[
F(k, x) = F(kS, x) | k ← PRF.GenF (1λ), kS ← PRF.PunctureF (k, S)

]
= 1.

Pseudorandom at punctured points. For every PPT adversary (A1, A2), where A1 out-
puts a set S ⊆ {0, 1}n and a state σ , consider an experiment that samples k ←
PRF.GenF (1λ) and kS ← PRF.PunctureF (k, S), then we have

∣∣∣Pr
[
A2(σ, kS, S, F(k, S)) = 1

]
− Pr

[
A2(σ, kS, S,Um·|S|) = 1

]∣∣∣ = negl(λ),

where F(k, S) denotes the concatenation of F(k, x1), . . . , F(k, xk), such that S =
{x1, . . . , xk} is the enumeration of the elements of S in lexicographic order and U�

denotes the uniform distribution over � bits.

The GGM tree-based PRF construction [36] from one-way functions yields a punc-
turable PRF where the punctured key sizes are polynomial in the size of the set S [20].

In this work, we also make use of injective families of PRFs [56,57]:

Definition 3. A statistically injective (puncturable) PRF family with failure probability
ε(·) is a family of (puncturable) PRFs PRF, such that with probability 1 − ε(λ) over the
random choice of key k ← PRF.GenF (1λ), we have that F(k, ·) is injective.

If the failure probability function ε(·) is not specified, then we assume that ε(·) is a
negligible function in the security parameter λ. Sahai and Waters [56] showed that as-

(Inner-Product) Functional Encryption... Page 11 of 40 8

suming the existence of one-way functions there exists statistically injective puncturable
PRF family with failure probability 2−ε(λ).

2.3. Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation.

Definition 4. (Indistinguishability Obfuscator [35]) A PPT algorithm iO is an indis-
tinguishability obfuscator (iO) for a circuit class {Cλ}λ∈N if it satisfies the following
conditions:
Functionality For any security parameter λ ∈ N, any circuit C ∈ Cλ, and any input x ,
we have that

Pr
[
C ′(x) = C(x) | C ′ ← iO(C)

] = 1.

Indistinguishability For any PPT distinguisherD and for any pair of circuitsC0,C1 ∈ Cλ,
such that for any input x , C0(x) = C1(x) and |C0| = |C1|, it holds that

| Pr [D(iO(C0)) = 1] − Pr [D(iO(C1)) = 1] | ≤ negl(λ).

We further say that iO is subexponentially secure if for any PPT D the above advantage
is smaller than 2−λε

for some 0 < ε < 1.

3. Ciphertext-Updatable Functional Encryption

We present our definitional framework of ciphertext-updatable functional encryption
(CUFE). CUFE is a tag-based functional encryption (FE) scheme defined on function-
ality F : X → Y and tag space T . Key generation outputs a main public-secret key pair
(mpk,msk), where from msk, the function keys sk f,t for some function f ∈ F and tag
t ∈ T can be derived. Encryption is done according to some tag t ∈ T and message
x ∈ X . Now, if the tag of the function key and the ciphertext match, then decryption
succeeds and outputs f (x). Furthermore, we want to allow switching of tags, i.e., from
t to t ′, in a ciphertext once, which is carried out via tokens �t→t ′ . Such a token can be
used to update a ciphertext Ct to a ciphertext Ct ′ under the tag t ′ specified in the token
but not vice versa, i.e., from t ′ to t .

Definition 5. A CUFE scheme CUFE for functionality F : X → Y with message
space X and tag space T is a tuple of the PPT algorithms:

Setup(λ,F) : on input security parameter λ ∈ N and a class of functions F , the setup
algorithm outputs a main public-secret key pair (mpk,msk).

KeyGen(msk, f, t) : on inputmsk, function f ∈ F , and tag t ∈ T , the key generation
algorithm outputs a function key sk f,t .

TokGen(msk, t, t ′) : on input msk and tags t, t ′ ∈ T , the token generation algorithm
outputs an update token �t→t ′ .

8 Page 12 of 40 V. Cini et al.

Enc(mpk, x, t) : on input mpk, message x ∈ X , and tag t ∈ T , the encryption
algorithm outputs a ciphertext Ct for x .

Update(�t→t ′,Ct) : on input an update token �t→t ′ and ciphertext Ct , the update
algorithm outputs an updated ciphertext UCt ′ or ⊥.

Dec(sk f,t ′,Ct/UCt)
11 : 7 on input function key sk f,t ′ and a ciphertext (either a non-

updated oneCt or an updated oneUCt), the decryption algorithm outputs f (x) ∈ Y
if t ′ = t , else outputs ⊥.

Correctness for CUFE Correctness essentially guarantees that if the tag in a function
key and in an (updated) ciphertext match, then decryption succeeds.

More concretely, a CUFE scheme CUFE is correct if for all λ ∈ N, for any F : X →
Y , for any (mpk,msk) ← Setup(λ,F), for any f ∈ F , for any t ∈ T , for any
sk f,t ← KeyGen(msk, f, t), for any x ∈ X , for any Ct ← Enc(mpk, x, t), we
have that Dec(sk f,t ,Ct) = f (x) holds, and for any t ′ ∈ T \ {t}, for any �t→t ′ ←
TokGen(msk, t, t ′), for any UCt ′ ← Update(�t→t ′,Ct), we have that Dec(sk f,t ′,
UCt ′) = f (x) holds.

Remark 1. Notice that the correctness of the CUFE scheme only guarantees that non-
updated ciphertexts for tag t can be updated to tag t ′ using the update token �t→t ′ and
still be decrypted correctly. Looking ahead to the CPA security notion, this will be the
only possible use of the update token. Any other successful use (e.g., updating ciphertexts
in the reverse direction or updating already updated ciphertexts) will allow the adversary
to win the security experiment (see below). Hence, a secure CUFE construction implies
that the update token can only be used to update a non-updated ciphertext to an updated
one (assuming the tags match), but not vice versa and not multiple times (i.e., to “update”
an already updated ciphertext is not possible as this would penalize CUFE security).

Intuition of ourCPA security notions forCUFE Updating ciphertexts via tokens is closely
related to the realm of proxy re-encryption (PRE) [10,17] and, indeed, we start from
the recent PRE state-of-the-art security model by Cohen [26] and carefully adapt such a
model to our needs in the chosen-plaintext-attack indistinguishability setting. Moreover,
due to the updatability of ciphertexts and thus the concept of update tokens not being
present in plain FE, we need to require additional aspects for our security guarantees.
Such tokens could potentially be used to also switch function keys or even invert up-
dated ciphertexts. In that vein, we define an indistinguishability-based notion, we dub
IND-CUFE-CPA, which guarantees that an adversary cannot distinguish ciphertexts for
a certain target tag t∗ and adversarially chosen messages (x∗

0 , x∗
1).

We only want to allow updating the tags of ciphertexts via the token, only in one
direction, and only from non-updated to updated ciphertexts. In order to capture these
properties, we provide the adversary in addition to KeyGen (as in plain FE) access
to four more oracles. Two of those additional oracles are related to the generation of
tokens and the other two are needed to ensure security related to updatability of honestly
generated ciphertexts.

7The decryption algorithms takes either a non-updated ciphertext or an updated one but not both. We
assume that one can retrieve the information on the update status from the ciphertexts efficiently.

(Inner-Product) Functional Encryption... Page 13 of 40 8

Concerning the oracles for the token generation, we allow the adversary to adaptively
query corrupted tokens viaCorTokGen and honest tokens viaHonTokGen. The former
mirrors attacks where the adversary gets complete control over tokens while the latter
allows the adversary to query the generation of an honest token without access to the
token itself.

Moreover, we also provide Enc′ and HonUpdate oracles. Thereby, Enc′ allows
generating honest ciphertexts (under mpk) and HonUpdate allows updating ciphertexts
which have been honestly8 generated via Enc′ without revealing the update token to the
adversary. See that viaHonTokGen, the adversary can query an honest token generation
and the experiment can use such a token for the honest update.

The validity of the adversary is checked in the end of the security game. Essentially,
the adversary is valid if and only if:

(a) the adversary cannot trivially distinguish the challenge ciphertext,
(b) the adversary has not received update tokens towards t for the challenge ciphertexts

where it has queried function keys under t with f (x∗
0) 	= f (x∗

1),
(c) the adversary has only queried updated challenge ciphertexts for which it has

function keys that satisfy f (x∗
0) = f (x∗

1).

If the adversary is valid and it has correctly guessed which message was encrypted in
the challenge ciphertext, the adversary wins the game.
IND-CUFE-CPA security We say that a CUFE scheme is IND-CUFE-CPA-secure if
any PPT adversary succeeds in the following experiment only with probability negligibly
larger than 1/2. The experiment starts by computing the initial main public and secret
key pair (mpk,msk) ← Setup(λ,F), initializes empty sets K, C, UC, HT , CT to track
keys, ciphertexts, updated ciphertexts, honest and corrupted tokens, respectively, as well
as initializes the counters c, uc, ht, ct for ciphertexts, updated ciphertexts, honest tokens
and corrupted tokens, respectively.

At some point, the adversary outputs target tag and messages (t∗, x∗
0 , x∗

1). Next, the
experiment tosses a coin b, computes C∗ ← Enc(mpk, x∗

b , t
∗), adds (0,C∗, t∗) to C,

and gives C∗ to the adversary. The adversary eventually outputs a guess b′, where the
experiment returns 1 if b′ = b and the adversary is valid. In the adaptive security game
the adversary has full access to all oracles from the beginning, whereas in the selective
security game the adversary only gets access to the oracles after committing to the target
tag t∗ and challenge messages (x∗

0 , x∗
1). Figure 1 depicts the experiment.

Definition 6. (IND-CUFE-CPA security) A CUFE schemeCUFE is IND-CUFE-CPA-
secure iff for any valid PPT adversary A the advantage function

Advind-cufe-cpa
CUFE,A (λ,F) :=

∣∣∣Pr
[
Expind-cufe-cpa

CUFE,A (λ,F) = 1
]

− 1/2
∣∣∣ ,

is negligible in λ, where Expind-cufe-cpa
CUFE,A is defined in Fig. 1.

8We require honestly generated ciphertexts as input to HonUpdate which we track in the model. This is
reminiscent of Cohen’s work [26] which details the necessities of such a restriction.

8 Page 14 of 40 V. Cini et al.

Experiment Expind-cufe-cpaCUFE,A (λ, F)
(mpk, msk) ← Setup(λ, F)
K := ∅, C := UC := ∅, HT := CT := ∅, c := uc := 1, ht := ct := 1
(t∗, x∗

0, x
∗
1, st) ← AO1(mpk)

b ← {0, 1}
C∗ ← Enc(mpk, xb, t

∗)
C := C ∪ {(0, C∗, t∗)}
b′ ← AO(C∗, st)
if A is not valid, then return b′′ ← {0, 1}
if b′ = b, then return 1 else return 0

Oracles O
KeyGen′(f, t): If f /∈ F or t /∈ T , then return ⊥. Compute skf,t ← KeyGen(msk, f, t), set K := K ∪ {(f, t)} and
return skf,t.

HonTokGen(t, t′): If t′ /∈ T , t /∈ T , or (·, t, t′) ∈ CT , then return ⊥. Compute Δt→t′ ← TokGen(msk, t, t′) and
set HT := HT ∪ {(ht, t, t′, Δt→t′)}, ht := ht+ 1.

CorTokGen(t, t′): If t′ /∈ T , t /∈ T , or (·, t, t′, ·) ∈ HT , then return ⊥. Compute Δt→t′ ← TokGen(msk, t, t′), set
CT := CT ∪ {(ct, t, t′)}, ct := ct+ 1, and return Δt→t′ .

Enc′(x, t): Compute Ct ← Enc(mpk, x, t), set C := C ∪ {(c, Ct, t)} and c := c+ 1, and return Ct.
HonUpdate(t, t′, i, j): If (i, ·, t) /∈ C or (·, t, t′) ∈ CT , then return ⊥. If (j, t, t′, ·) /∈ HT , compute Δt→t′ ←
TokGen(msk, t, t′) and set HT := HT ∪ {ht, t, t′, Δt→t′}, ht := ht + 1; otherwise, retrieve (j, t, t′, Δt→t′)
from HT . Retrieve (i, Ct, t) from C and compute UCt′ ← Update(Δt→t′ , Ct). Set UC := UC ∪ {(uc, i, t′)},
uc := uc+ 1, and return UCt′ .

Validity of A
An adversary A is valid if and only if:
a) there is no (f, t∗) ∈ K with f(x∗

0) �= f(x∗
1) (i.e., the adversary cannot trivially distinguish the challenge

ciphertext),
b) there is no (f, t) ∈ K with f(x∗

0) �= f(x∗
1) and (·, t∗, t) ∈ CT (i.e., the adversary has not received update

tokens towards t for the challenge ciphertexts where it has queried function keys under t with f(x∗
0) �= f(x∗

1)),
c) there is no (·, 0, t′) ∈ UC for which (f, t′) ∈ K exists with f(x∗

0) �= f(x∗
1) (i.e., the adversary has only queried

updated challenge ciphertexts for which it has function keys that satisfy f(x∗
0) = f(x∗

1)).

Fig. 1. The IND-CUFE-CPA security notion for CUFE. If O1 = ⊥, then we call the experiment semi-
adaptive, and if O1 = O, then we call it adaptive. If O1 = ⊥ and mpk is not initially given to A, then we call
the experiment selective .

Remark 2. We model the experiment semi-adaptive (i.e., the target tag and messages
are chosen by the adversary before it has access to oracles, but after it has seen the
main public key) as well as adaptive (i.e., the adversary has access to the oracles before
specifying target tag and messages). Note that in Fig. 1, we cover this by settingO1 = ⊥,
i.e., the adversary has no access to oracles in the first phase, orO1 = O, i.e., the adversary
has access to the oracles throughout both phases, respectively. We note that it would also
be possible to define the experiment in a weaker selective setting or either choosing only
the tag or the messages in a semi-adaptive sense. This is straightforward to model and
we omit it for the sake of simplicity. Moreover, we note that to move from a selective
to an adaptive setting, one can utilize the standard technique of complexity leveraging
if one is willing to accept that message and/or tag spaces are polynomially bounded in
the security parameter.

4. Generic Construction of CUFE and Extensions

In this section, we present a generic construction of CUFE for any function from indis-
tinguishability obfuscation that provides semi-adaptive IND-CUFE-CPA security. For

(Inner-Product) Functional Encryption... Page 15 of 40 8

the sake of consistency, we opt to present it for the equality predicate on tags and then
extend the expressiveness of predicates beyond the equality testing on tags. We show
that due to the way our construction is built, it easily supports any predicate that can
be represented as a circuit of arbitrary polynomial size. Moreover, we conjecture that
one can obtain adaptive FE security either using the black-box transformation of Ananth
et al. [7] along with applying complexity leveraging over the tag space or by directly
extending the adaptively secure FE construction of Waters [57] to the CUFE setting.

4.1. Puncturable Tag-Based Deterministic Encryption

Our generic construction relies on a primitive called puncturable tag-based deterministic
encryption (PTDE), which can be seen as a tag-based variant of puncturable deterministic
encryption (PDE) introduced by Waters [57].

Definition 7. (Puncturable Tag-Based Deterministic Encryption) A puncturable tag-
based deterministic encryption (PTDE) scheme � with message space M and tag space
T consists of the following algorithms: (possibly) randomized algorithms Setup and
Puncture, along with deterministic algorithms Enc and Dec.

– Setup(1λ), on input a security parameter 1λ, outputs a key k.
– Enc(k, t,m), on input a key k, a tag t ∈ T and a message m, outputs a ciphertext
c.

– Dec(k, t, c), on input a key k, a tag t ∈ T and a ciphertext c, outputs a message
m ∈ M ∪ {⊥}.

– Puncture(k, t,m0,m1), on input a key k, a tag t ∈ T and a pair of messages
m0,m1 ∈ M, outputs a new key kt,m0,m1 (the superscript is used to indicate the
tag and messages where the key is punctured).

Correctness We say that a PTDE scheme � is correct if there exists a negligible function
negl, such that for all λ ∈ N, for all t ∈ T , for all pairs of messages m0,m1 ∈ M, for
all k ← �.Setup(1λ) and kt,m0,m1 ← �.Puncture(k, t,m0,m1), for all m 	= m0,m1,
it holds that

Pr
[
�.Dec(kt,m0,m1 , �.Enc(k, t,m)) 	= m

] = negl(λ).

Moreover, we have that for all m (including m0,m1),

Pr
[
�.Dec(k, �.Enc(k, t,m)) 	= m

] = negl(λ).

Next, we recall the notion of (selective) indistinguishability security for PTDE.

8 Page 16 of 40 V. Cini et al.

Definition 8. (Indistinguishability Security for PTDE) A PTDE scheme � is indistin-
guishability secure, if for all PPT adversaries A it holds that

Adv�,A(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k ← �.Setup(1λ),

(t,m0,m1) ← A(1λ),

kt,m0,m1 ← �.Puncture(k, t,m0,m1)

b ← {0, 1}
c0 ← �.Enc(k, t,mb), c1 ← �.Enc(k, t,m1−b)

b∗ ← A(kt,m0,m1 , c0, c1) :
b = b∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

is negligible.

Remark 3. Our definition allows for a key to be punctured at two messages and a tag,
which extends the original PDE definition given in [57] with a tag puncturing. We note
that this differs from puncturable tag-based encryption given by Chvojka et al. [23],
which allows puncturing only at tags instead and constitutes a randomized encryption
scheme.

4.1.1. Construction of PTDE

We extend the PDE construction given by Waters [57] to additionally consider tags. Our
PTDE scheme has message space M = {0, 1}λ and tag space T = {0, 1}�. We make
use of two (puncturable) PRF families, where the first one is an injective puncturable
PRF F1 that takes inputs from λ bits to � = �(λ) bits, and the second one F2 takes inputs
from � bits to λ bits. The construction is as follows.

– Setup(1λ): Sample keys k1 ← PRF.GenF1(1
λ) and k2 ← PRF.GenF2(1

λ), and
output k := (k1, k2).

– Enc(k := (k1, k2), t,m): Deterministically compute and output a ciphertext

c := (c1 = F1(k1,m), c2 = F2(k2, c1 ⊕ t) ⊕ m).

– Dec(k := (k1, k2), t, c := (c1, c2)): Compute m′ = F2(k2, c1 ⊕ t) ⊕ c2. If
F1(k1,m′) = c1, then output m′, otherwise output ⊥.

– Puncture(k := (k1, k2), t,m0,m1): Computed = F1(k1,m0) and e=F1(k1,m1).
Compute km0,m1

1 ← PRF.PunctureF1(k1, {m0,m1}) and kt2 ← PRF.PunctureF2

(k2, {d ⊕ t, e ⊕ t}), and output kt,m0,m1 := (km0,m1
1 , kt2).

The correctness for the non-punctured keys follows by observation, and correctness
for key kt,m0,m1 on all messagesm 	= m0,m1 holds as long as F1(k1,m) 	= F1(k1,m0) or
F1(k1,m1), which holds because F1 is injective. The security follows straightforwardly
from the (punctured) PRF security of F1 and F2 and is established with the following
theorem.

Theorem 1. Let F1 and F2 be secure puncturable pseudorandom functions. Then, our
construction is (selectively) indistinguishable secure PTDE scheme.

(Inner-Product) Functional Encryption... Page 17 of 40 8

Proof. The security proof follows via a sequence of hybrid games. Hereafter, let
Gamei ≈ Gamei+1 denote |Pr[Gamei = 1] − Pr[Gamei+1 = 1]| ≤ negl(λ).

– Game0 : This corresponds to the honest execution of the (selective) indistinguisha-
bility game of PTDE.

– Game1 : This is identical to Game0 with the exception that the challenger ran-
domly chooses cb1, c1−b

1 (when computing the challenge ciphertext) instead of
computing cb1 = F1(k1,mb) and c1−b

1 = F1(k1,m1−b).
– Game2 : This is identical to Game1 with the exception that the challenger ran-

domly chooses cb2, c1−b
2 (when computing the challenge ciphertext) instead of

computing cb2 = F2(k2, cb1 ⊕ t) and c1−b
2 = F2(k2, c

1−b
2 ⊕ t).

Lemma 1. If F1 is a selectively secure puncturable PRF, then it holds that Game0 ≈
Game1.

Proof. We describe a PPT reduction algorithm B that plays the selective puncturable
tag-based deterministic encryption (PTDE) security game. B receives (t,m0,m1) from
A and proceeds as in Game0, except that it samples a bit b ∈ {0, 1}, submits mb,m1−b

to the punctured PRF challenger. B receives back a punctured PRF key kmb,m1−b
prf and

challenge values z0, z1. B sets kptde := (kmb,m1−b
prf , kprf,2), c0 := (zb, F2(kprf,2, zb ⊕

t) ⊕ mb) and c1 := (z1−b, F2(kprf,2, z1−b ⊕ t) ⊕ m1−b) and returns (kptde, c0, c1) to
A. If A wins, i.e., b′ = b, then B outputs 1 to indicate that z0 = F1(kprf,1,m0) and
z1 = F1(kprf,1,m1), for some PRF key kprf,1, and otherwise, it outputs 0 to indicate that
z0, z1 were random values.

We observe that if z0, z1 are generated as z0 = F1(kprf,1,m0) and z1 = F1(kprf,1,m1),
then B gives the view of Game0 to A. Otherwise, if z0 and z1 were chosen randomly,
then the view is of Game1. Therefore, if A can distinguish between the two games with
non-negligible advantage, then B must also have non-negligible advantage against the
puncturable PRF security game. �

Lemma 2. If F2 is a selectively secure puncturable PRF, then it holds that Game1 ≈
Game2.

Proof. The proof of this lemma follows analogously to that of Lemma 1. �

We note that since cb1, c1−b
1 , cb2, c1−b

2 are all chosen uniformly at random in Game2,
we have that the challenge ciphertexts cb := (cb1, cb2), for b ∈ {0, 1}, information-
theoretically hide the bit b. This final information-theoretic argument depends on the fact
that the distribution of PRF.PunctureF1(kprf,1, {m0,m1}) is the same as
PRF.PunctureF1(kprf,1, {m1,m0}). This concludes the proof of Theorem 1. �

8 Page 18 of 40 V. Cini et al.

4.2. Generic CUFE from iO for any Function

The generic construction is inspired by the punctured programming approach to construct
functional encryption from indistinguishability obfuscation, given by Waters [57]. More
precisely, the construction makes use of indistinguishability obfuscation iO, puncturable
tag-based deterministic encryption (PTDE) scheme �, puncturable pseudorandom func-
tion F and pseudorandom generator PRG. The construction is described below (where
the parts in blue in programs PInit:2, PKey:2 and PUpdate:2 highlight the changes with
respect to programs PInit:1, PKey:1 and PUpdate:1):

– Setup(1λ,F): Compute the following:

1. Sample kprf,o ← PRF.GenF (1λ) and kprf,u ← PRF.GenF (1λ).
2. Compute an obfuscation Ppp ← iO(PInit:1[kprf,o]) for the program PInit:1

[kprf,o]9.

Output the main public/secret key pair (mpk := Ppp, msk := (kprf,o, kprf,u)).
– KeyGen(msk := (kprf,o, kprf,u), f, t): Compute an obfuscation Pf,t ← iO

(PKey:1[kprf,o, kprf,u, f, t]) for the program PKey:1[kprf,o, kprf,u, f, t].10 Output
the secret key sk f,t := Pf,t .

– TokGen(msk := (kprf,o, kprfu), t, t
′): Compute an obfuscation Pt→t ′ ← iO

(PUpdate:1[kprf,o, kprf,u, t, t ′]) for the program PUpdate:1[kprf,o, kprf,u, t, t ′]11.
Output the update token �t→t ′ := Pt→t ′ .

– Enc(mpk := Ppp,m, t): Compute the following:

1. Sample a random r ∈ {0, 1}λ.
2. Run the obfuscated program (p, kptde) ← Ppp(r).
3. Compute c ← �.Enc(kptde, t,m).

Output the ciphertext Ct := (p, c).
– Update(�t→t ′ := Pt→t ′ ,Ct): Compute the following:

1. Sample a random r ∈ {0, 1}λ.
2. Run the obfuscated program Ct ′ ← Pt→t ′(Ct , r).

Output the updated ciphertext Ct ′ .12

– Dec(sk f,t := Pf,t ,Ct): Run the obfuscated program f (m) ← Pf,t (Ct) and output
f (m).

Correctness The correctness of our construction follows straightforwardly from the cor-
rectness of the puncturable tag-based deterministic encryption scheme �, puncturable
pseudorandom function F , pseudorandom generator PRG, obfuscator iO, and the de-
scription of the programs PInit:1, PKey:1 and PUpdate:1.

9The program is padded to the size equal to max{|PInit:1[kprf,o]|, |PInit:2[k p∗
prf,o]|}.

10The program is padded to the size equal to max{|PKey:1[kprf,o, kprf,u , f, t]|, |PKey:2[k p∗
prf,o, kprf,u , f, t,

p∗, c0, c1, v f , k
′
ptde]|}.

11The program is padded to the size equal to max{|PUpdate:1[kprf,o, kprf,u , t, t ′]|, |PUpdate:2[k p∗
prf,o, kprf,u ,

t, t ′, p∗, c0, c1, c′0, c′1, k′
ptde]|}.

12We assume that it is easy to distinguish between updated and fresh ciphertext. This is without loss of
generality as we can simply append a bit to the ciphertexts to achieve this distinguishability.

(Inner-Product) Functional Encryption... Page 19 of 40 8

PInit:1

Constants: PRF key kprf,o
Inputs: r ∈ {0, 1}λ

1. Compute p = PRG(r).
2. Compute kptde = F(kprf,o, p).
3. Output (p, kptde).

PInit:2

Constants: Punctured PRF key k p
∗

prf,o

Inputs: r ∈ {0, 1}λ
1. Compute p = PRG(r).
2. Compute kptde = F(k p

∗
prf,o, p).

3. Output (p, k).

PKey:1

Constants: PRF keys kprf,o, kprf,u , function description f ∈ F , tag t
Inputs: Ct := (p, c)

1. If Ct is updated ciphertext, set kprf := kprf,u , else set kprf := kprf,o.
2. Compute kptde = F(kprf, p).
3. Output f (�.Dec(kptde, t, c)).

PKey:2

Constants: (Punctured) PRF keys k p
∗

prf,o, kprf,u , function description f ∈ F , tag

t , point p∗ ∈ {0, 1}2λ, PTDE ciphertexts c0, c1, value v f , punctured PTDE key

k∗
ptde := k

t∗,m∗
0,m∗

1
ptde

Inputs: Ct := (p, c)

1. If p = p∗ and c 	= c0, c1, output f (�.Dec(k∗
ptde, t, c)).

2. If p = p∗ and (c = c0 or c = c1), output v f .

3. If Ct is updated ciphertext, set kprf := kprf,u , else set kprf := k p
∗

prf,o.
4. Otherwise compute kptde = F(kprf, p) and output f (�.Dec(kptde, t, c)).

PUpdate:1

Constants: PRF keys kprf,o, kprf,u , tags t, t ′ ∈ T
Inputs: Ct := (p, c), r ∈ {0, 1}λ

1. Compute kptde ← F(kprf,o, p).
2. Compute m ← �.Dec(kptde, t, c).
3. Compute p′ ← PRG(r).
4. Compute k′

ptde ← F(kprf,u, p′).
5. Compute c′ ← �.Enc(k′

ptde, t
′,m).

6. Output Ct ′ := (p′, c′).

8 Page 20 of 40 V. Cini et al.

PUpdate:2

Constants: (Punctured) PRF keys k p
∗

prf,o, kprf,u , tags t, t ′ ∈ T , point p∗ ∈ {0, 1}2λ,

PTDE ciphertexts c0, c1, c′
0, c

′
1, punctured PTDE key k∗

ptde := k
t∗,m∗

0,m∗
1

ptde

Inputs: Ct := (p, c), r ∈ {0, 1}λ
1. If p = p∗ and c = cb, output Ct ′ := (p, c′

b).
2. If p = p∗ and c 	= c0, c1

• Compute m ← �.Dec(k∗
ptde, t, c).

3. Else

• Compute kptde = F(k p
∗

prf,o, p).
• Compute m ← �.Dec(kptde, t, c).

4. Compute p′ ← PRG(r).
5. Compute k′

ptde ← F(kprf,u, p′)
6. Compute c′ ← �.Enc(k′

ptde, t
′,m).

7. Output Ct ′ := (p′, c′).

Next, we present the proof of IND-CUFE-CPA security of our generic construction.

Theorem 2. Let� be a puncturable tag-based deterministic encryption scheme, F be a
secure puncturable pseudorandom function,PRG be a secure pseudorandom generator,
iO be an indistinguishability obfuscator for the circuit class Cλ. Then, our generic
construction is a semi-adaptively IND-CUFE-CPA-secure CUFE scheme.

Proof. The proof is organized in a sequence of hybrid games, where initially the
challenger encrypts mb for a random bit b ∈ {0, 1}, and we gradually (in multiple
steps) change the encryption into an encryption of m0, which is independent of the
bit b. We first define the sequence of games, and then, show (based on the secu-
rity of different primitives) that any PPT adversary’s advantage in each game must
be negligibly close to the previous game. Hereafter, let Gamei ≈ Gamei+1 denote
|Pr[Gamei = 1] − Pr[Gamei+1 = 1]| ≤ negl(λ).

– Game0: This corresponds to the honest execution of the semi-adaptive variant
of the indistinguishability game given in Sect. 3. More precisely, the adversary is
given the main public key mpk, then the adversary selects a challenge tag t∗ and
a challenge message pair m∗

0,m
∗
1, and the challenger choses a bit b ∈ {0, 1} and

encrypts m∗
b in the challenge ciphertext.

– Game1: This is identical to Game0 with the exception that the challenger choses
a random p∗ ∈ {0, 1}2λ during the computation of the challenge ciphertext, instead
of choosing a random r∗ ∈ {0, 1}λ and computing p∗ ← PRG(r∗).

– Game2: This is identical to Game1 with the exception that the challenger com-
putes the punctured key k p

∗
prf,o ← PRF.PunctureF (kprf,o, p∗) and sets Ppp ←

iO(PInit:2[k p∗
prf,o]).

– Game3: This is identical to Game2 with the exception that for answering each
secret key query (f, t) ∈ (F × T), the challenger does the following: Compute

(Inner-Product) Functional Encryption... Page 21 of 40 8

k′
ptde ← �.Puncture(k∗

ptde, t
∗,m∗

0,m
∗
1), for k∗

ptde ← F(kprf,o, p∗), compute
c′

0 ← �.Enc(k∗
ptde, t,m

∗
0), c

′
1 ← �.Enc(k∗

ptde, t,m
∗
1), and v f = f (m∗

0) =
f (m∗

1). Then, let c0, c1 consist of c′
0, c

′
1 in lexicographic order,13 and the challenger

responds with Pf,t ← iO(PKey:2[k p∗
prf,o, kprf,u, f, t, p∗, c0, c1, v f , k′

ptde]).
– Game4: This is identical to Game3 with the exception that for answering each

token generation query (t, t ′) ∈ (T × T), the challenger does the following:
Compute k′

ptde ← �.Puncture(k∗
ptde, t

∗,m∗
0,m

∗
1), for k∗

ptde ← F(kprf,o, p∗),
compute c0 ← �.Enc(k∗

ptde, t,m
∗
0), c1 ← �.Enc(k∗

ptde, t,m
∗
1), and c′

0 ←
�.Enc(k′′

ptde, t
′,m∗

0), c
′
1 ← �.Enc(k′′

ptde, t
′,m∗

1), for k′′
ptde ← F(kprf,u, r) and

random r ∈ {0, 1}λ. Then, sort and order c0, c1, c′
0, c

′
1 lexicographically,14 and re-

spond with Pt→t ′ ← iO(PUpdate:2[k p∗
prf,o, kprf,u, , t, t

′, p∗, c0, c1, c′
0, c

′
1, k

′
ptde]).

– Game5: This is identical toGame4 with the exception that the challenger samples
a random k∗

ptde instead of computing it as k∗
ptde ← F(kprf,o, p∗).

– Game6: This is identical toGame5 with the exception that the challenger encrypts
m∗

0, i.e., the challenger computes c∗ ← �.Enc(k∗
ptde, t

∗,m∗
0) and outputs (p∗, c∗).

�

Lemma 3. If PRG is a secure pseudorandom generator, then it holds that Game0 ≈
Game1.

Proof. We describe a PPT reduction algorithm B that plays the PRG security game.
First, B creates the main public/secret key pair (mpk,msk) (as in Game0). Next, B
receives a PRG challenge p ∈ {0, 1}2λ. Then, B runs the adversary A and executes the
CUFE security game (as described in Game0), with the exception that when computing
the challenge ciphertext it sets p∗ := p. We note that since B generates everything else
itself (as in Game0, it has all the necessary information to answer the oracle queries of
A). Lastly, if A wins, i.e., b′ = b, then B outputs 1 to indicate that p was in the image
of PRG, and otherwise, it outputs 0 to indicate that p was chosen randomly.

We observe that if the PRG challenger generated p = PRG(r), for some r ∈ {0, 1}λ,
then B gives the view of Game0 to A. Otherwise, if p was chosen randomly, then the
view is of Game1. Therefore, if A can distinguish between the two games with non-
negligible advantage, then B must also have non-negligible advantage against the PRG
security game. �

Lemma 4. If iO is an indistinguishability obfuscator for the circuit class Cλ, then it
holds that Game1 ≈ Game2.

Proof. We construct a distinguisher B for iO. B proceeds as in Game1, with the
exception that it computes the punctured PRF key k p

∗
prf,o ← PRF.PunctureF (kprf,o, p∗)

13If c′0 < c′1, then c0 = c′0, c1 = c′1, otherwise, c0 = c′1, c1 = c′0.
14Here we sort c0 and c1 lexicographically and then we order c′0 and c′1 according to this sort, i.e., if

c0 ← �.Enc(kptdet,mb), then c′0 ← �.Enc(k′
ptde, t ′,mb).

8 Page 22 of 40 V. Cini et al.

and generates the two circuits C0 = PInit:1[kprf,o] and C1 = PInit:2[k p∗
prf,o]. B submits

C0,C1 to the iO challenger and receives back a program P , which it sets as mpk :=
Ppp := P , and returns it to the CUFE adversary A. The rest of the execution is identical
to Game1. If A wins, i.e., b′ = b, then B outputs 0 to indicate that P was an obfuscation
of C0, and otherwise, it outputs 1 to indicate that P was an obfuscation of C1.

We observe that if the iO challenger generated P as an obfuscation ofC0, then B gives
the view of Game1 to A. Otherwise, if P was generated as an obfuscation of C1, then
the view is that of Game2. Moreover, the programs are functionally equivalent with all
but negligible probability, because p∗ lies outside the image of PRG with probability at
least 1 − 2λ. Therefore, if A can distinguish between the two games with non-negligible
advantage, then B must also have non-negligible advantage against the iO security game
for the circuit class Cλ. �

Lemma 5. If iO is an indistinguishability obfuscator for the circuit class Cλ, then it
holds that Game2 ≈ Game3.

Proof. To prove this lemma, we consider a hybrid argument. Let Qk = Qk(λ) denote
the number of secret key queries issued by the CUFE adversary A. For i ∈ [0, Qk], we
define Game2,i to be equivalent to Game2 with the exception that the first i secret key
queries are handled as in Game3 and the last Qk − i are handled as in Game2. Note
that Game2,0 is the same as Game2 and Game2,Qk is the same as Game3. Hence, to
prove security we need to establish that no adversary can distinguish between Game2,i

and Game2,i+1, for i ∈ [0, Qk − 1], with non-negligible advantage.
We construct a distinguisher B for iO. B proceeds as in Game2, except that the

first i secret key queries are answered as in Game3. For query i + 1, B computes
k′
ptde ← �.Puncture(k∗

ptde, t
∗,m∗

0,m
∗
1), for k∗

ptde ← F(kprf,o, p∗), computes c′
0 ←

�.Enc(k∗
ptde, t,m

∗
0), c

′
1 ← �.Enc(k∗

ptde, t,m
∗
1), and v f = f (m∗

0) = f (m∗
1), where

f and t are the queried function and tag, respectively. Then, let c0, c1 consist of c′
0, c

′
1

in lexicographic order, B generates the two circuits C0 = PKey:1[kprf,o, kprf,u, f, t]
and C1 = PKey:2[k p∗

prf,o, kprf,u, f, t, p∗, c0, c1, v f , k′
ptde]. B submits C0,C1 to the iO

challenger and receives back a program P , which it sets as sk f,t := Pf,t := P , and
returns it to the CUFE adversary A as the query answer. If A wins, i.e., b′ = b, then
B outputs 0 to indicate that P was an obfuscation of C0, and otherwise, it outputs 1 to
indicate that P was an obfuscation of C1.

We observe that if the iO challenger generated P as an obfuscation of C0, then B
gives the view of Game2,i to A. Otherwise, if P was generated as an obfuscation of C1,
then the view is that of Game2,i+1. Moreover, the programs are functionally equivalent
with all but negligible probability, because the only difference in the programs is that the
response is hardwired for the two inputs (i.e., for the challenge ciphertexts). Therefore,
if A can distinguish between the two games with non-negligible advantage, then B must
also have non-negligible advantage against the iO security game for the circuit class
Cλ. �

Lemma 6. If iO is an indistinguishability obfuscator for the circuit class Cλ, then it
holds that Game3 ≈ Game4.

(Inner-Product) Functional Encryption... Page 23 of 40 8

Proof. To prove this lemma, we consider a hybrid argument. Let Qt denote the total
number of token generation queries issued by the CUFE adversary A, where Qt =
Qht +Qct , such that Qht = Qht (λ) and Qct = Qct (λ) denote the number of honest and
corrupted token generation queries, respectively. For i ∈ [0, Qt], we define Game3,i to
be equivalent to Game3 with the exception that the first i token generation queries are
handled as inGame4 and the last Qt −i are handled as inGame3. Note thatGame3,0 is
the same as Game3 and Game3,Qt is the same as Game4. Hence, to prove security we
need to establish that no adversary can distinguish between Game3,i and Game3,i+1,
for i ∈ [0, Qt − 1], with non-negligible advantage.

We construct a distinguisher B for iO. B proceeds as in Game3, except that the
first i token generation queries are answered as in Game4. For query i + 1, B com-
putes k′

ptde ← �.Puncture(k∗
ptde, t

∗,m∗
0,m

∗
1), for k∗

ptde ← F(kprf,o, p∗), computes
c0 ← �.Enc(k∗

ptde, t,m
∗
0), c1 ← �.Enc(k∗

ptde, t,m
∗
1), and c′

0 ← �.Enc(k′′
ptde, t

′,
m∗

0), c
′
1 ← �.Enc(k′′

ptde, t
′,m∗

1), for k′′
ptde ← F(kprf,u, r) and random r ∈ {0, 1}λ,

where t, t ′ are the queried tags. Then, B sorts and orders c0, c1, c′
0, c

′
1 lexicograph-

ically. B generates the two circuits C0 = PUpdate:1[kprf,o, kprf,u, t, t ′], and C1 =
PUpdate:2[k p∗

prf,o, kprf,u, t, t
′, p∗, c0, c1, c′

0, c
′
1, k

′
ptde]. B submits C0,C1 to the iO chal-

lenger and receives back a program P , which it sets as �t→t ′ := Pt→t ′ := P . If the
query was a corrupted token generation query, then B sends �t→t ′ to the CUFE adver-
sary A as the query answer, and otherwise, it stores it locally. If A wins, i.e., b′ = b,
then B outputs 0 to indicate that P was an obfuscation of C0, and otherwise, it outputs
1 to indicate that P was an obfuscation of C1.

We observe that if the iO challenger generated P as an obfuscation of C0, then B
gives the view of Game3,i to A. Otherwise, if P was generated as an obfuscation of
C1, then the view is of Game3,i+1. Moreover, the programs are functionally equivalent
with all but negligible probability, because the only difference in the programs is that the
response is hardwired for the two inputs (i.e., for the challenge ciphertexts). Therefore,
if A can distinguish between the two games with non-negligible advantage, then B must
also have non-negligible advantage against the iO security game for the circuit class
Cλ. �

Lemma 7. If F is a selectively secure puncturable PRF, then it holds that Game4 ≈
Game5.

Proof. We describe a PPT reduction algorithm B that plays the selective puncturable
PRF security game. B proceeds as in Game4 in its interaction with the CUFE adversary
A, except that it chooses a random p∗ ∈ {0, 1}2λ and submits it to the punctured PRF
challenger. B receives back a punctured PRF key k p

∗
prf and a challenge value z. B sets

k∗
ptde := z and uses the punctured PRF key k p

∗
prf to compute the challenge ciphertext and

answer the oracle queries of A as in Game4. If A wins, i.e., b′ = b, then B outputs 1
to indicate that z = F(kprf, p∗), for some PRF key kprf, and otherwise, it outputs 0 to
indicate that z was a random value.

We observe that if z is generated as F(kprf, p∗), then B gives the view of Game4 to
A. Otherwise, if z was chosen randomly, then the view is that of Game5. Therefore, if

8 Page 24 of 40 V. Cini et al.

A can distinguish between the two games with non-negligible advantage, then B must
also have non-negligible advantage against the puncturable PRF security game. �

Lemma 8. If � is a selectively secure puncturable tag-based deterministic encryption
scheme, then it holds that Game5 ≈ Game6.

Proof. We note that the only difference between Game5 and Game6 is that in Game6
the CUFE challenger always encrypts m∗

0, whereas in Game5 the encrypted message
could be m∗

0 or m∗
1, depending on the coin flip b. Moreover, when b = 0, the views

of these two games are identical. Hence, if there is any difference in adversary A’s
advantage in guessing b between Game5 and Game6 it must be solely conditioned on
b = 1.

We describe a PPT reduction algorithm B that plays the selective puncturable tag-
based deterministic encryption (PTDE) security game. B proceeds as in Game5, except
that it submits the challenge messages m∗

0,m
∗
1 and tag t∗ (given by A) to the PTDE

challenger, which replies with a punctured PTDE key k′
ptde ← �.Puncture

(k∗
ptde, t

∗,m∗
0,m

∗
1) and two ciphertexts c′

0, c
′
1. B sets the challenge CUFE ciphertext

to Ct∗ := (p∗, c∗ := c′
0).

Let c0, c1 consist of c′
0, c

′
1 in lexicographic order. Then, for answering each secret key

query (of the form (f, t)), B computes v f = f (m∗
0) = f (m∗

1), and uses the punctured

PTDE key k′
ptde to construct Pf,t := PKey:2[k p∗

prf,o, kprf,u, f, t, p∗, c0, c1, v f , k′
ptde].

Similarly, for answering each token generation query (of the form (t, t ′)), B guesses a
γ ∈ {0, 1}, computes c′′

γ ← �.Enc(k′′
ptde, t

′,m∗
γ), c′

1−γ ← �.Enc(k′′
ptde, t

′,m∗
1−γ), for

k′′
ptde ← F(kprf,u, r) and random r ∈ {0, 1}λ. Then, B uses the previously computed val-

ues and the punctured PTDE key k′
ptde to construct Pt→t ′ := PUpdate:2[k p∗

prf,o, kprf,u, t,

t ′, p∗, c0, c1, c′′
0 , c′′

1 , k′
ptde] and answer the token generation query. We note here that the

guessed γ incurs a 1/2 security loss. Encryption queries are answered in a straightfor-
ward way using the program PInit:2[k p∗

prf,o].
Lastly, if A wins, i.e., b′ = b, then B outputs 1 to indicate that c∗ := c′

0 was an
encryption of m∗

1, and otherwise, it outputs 0 to indicate that c∗ := c′
0 was an encryption

of m∗
0.

We observe that if c∗ := c′
0 is generated as �.Enc(k∗

ptde,m1), then B gives the
view of Game5 (conditioned on b = 1) to A. Otherwise, if c∗ := c′

0 is generated
as �.Enc(k∗

ptde,m0), then the view is of Game6. Therefore, if A can distinguish
between the two games with non-negligible advantage, then B must also have non-
negligible advantage against the puncturable tag-based deterministic encryption security
game. �

This concludes the proof of Theorem 2.

(Inner-Product) Functional Encryption... Page 25 of 40 8

4.3. Extending Supported Predicates

For our generic construction, it is easily possible to extend it from supporting the equality
test predicate (i.e., tags) to more powerful predicates, i.e., an access control mechanism
known from ABE in the terminology of [9].

Let us follow the notation of Gorbunov et al. [38], who construct ABE for any circuit
of arbitrary polynomial size. Thus, let ind be an � bit public index (used for encryp-
tion) and P a Boolean predicate (associated with secret keys) and decryption should
only work if P(ind) = 1. Now, we can simply associate function keys with more
expressive predicates P (encode them into PKey) instead of tags and use as public
tags for the PTDE scheme the public index ind (i.e., the attributes). In the decryp-
tion circuit Pf,P, one simply checks if for label ind and hard-coded P it holds that
P(ind) = 1.

Switching the public index in a ciphertext from ind to some ind′, i.e., change the
attributes in the ciphertext, can simply be done by viewing the public indices as the
tags in the current solution. Now, this represents a generalization of our generic con-
struction where we only have the equality predicate Pt (t̂) = 1 if and only if t =
t̂ .

5. Lattice-Based CUFE Construction for Inner Products

After recalling the syntax and properties of the main sampling algorithms used in lattice-
based constructions, we will build a CUFE scheme for inner-products from the LWE
assumption in the random-oracle model in this section. For a further exposition of lattice
preliminaries, we refer the reader to Appendix A.2.

5.1. Lattice Definitions and Algorithms

For any matrix A ∈ Z
n×m
q , we define the orthogonal q-ary lattice of A as
⊥

q (A) :=
{�u ∈ Z

m : A�u = �0 mod q}.
The normal Gaussian distribution of mean 0 and variance σ 2 is the distribution on R

with probability density function 1
σ
√

2π

1
ex2/(2σ2)

. The lattice Gaussian distribution with

support a lattice
 ⊆ Z
m , standard deviation σ and centered at �c ∈ Z

m , is defined as:

for all �y ∈
 : D
,σ,�c(�y) = e−π‖�y−�c‖2/σ 2

∑
�x∈
 e−π‖�x−�c‖2/σ 2

The following algorithms will be used in lattice construction, and their properties needed
in the security proof.

Lemma 9. ([37] Preimage Sampleable Functions) For any prime q = poly(n), any
m ≥ 5n log q, and any s ≥ m2.5ω(

√
logm), it holds that there exist PPT algorithms

TrapGen, SampleD, SamplePre such that:

1. TrapGen computes (A,T) ← TrapGen(1n, 1m), whereA ∈ Z
n×m
q is statistically

close to uniform and T ⊂
⊥
q (A) is a basis with ‖T̃‖ ≤ m2.5. The matrix A (and

q) is public, while the good basis T is the trapdoor.

8 Page 26 of 40 V. Cini et al.

Setup(1λ, n):
A ←$Zn×m

qALS

Z ←$ DZm×�,ρALS

D ← AZ
mpk ← (A,D)
msk ← Z
Return (mpk,msk)

KeyGen(Z, �y ∈ Y):
Return (�y, sk� y:= Z · �y)

Enc(mpk, �x ∈ X):
�s ←$Zn

qALS

�e1 ←$ DZm,σALS

�e2 ←$ DZ�,σALS

ct1 = A��s + �e1
ct2 = D��s + �e2 +

⌊
q
K

⌋
· �x

Return (ct1, ct2)

Dec(ct1, ct2, sk� y, �y ∈ Y):
μ′ = �y� · ct2 − sk�

� y· ct1
Return argminμ∈{0,...,K+1}

∣∣⌊ q
K

⌋
· μ′ − μ

∣∣

Fig. 2. Inner-product functional encryption scheme ALS, with parameters as in [9] .

2. SampleD samples matrices Z′ from DZm×m ,s ,
3. The trapdoor inversion algorithmSamplePre(A,T,D, s), forD ∈ Z

n×m
q , outputs

a matrix Z ∈ Z
m×m such that AZ = D.

In addition, it holds that the following distributions D1, D2 are statistically close:

D1 = (A,Z,D), s.t. (A,T) ← TrapGen(1n, 1m),D ← Z
n×m
q ,

Z ← SamplePre(A,T,D, s),

D2 = (A,Z′,AZ′), where A ← Z
n×m
q ,Z′ ← DZm×m ,s .

Theorem 3. ([1] SampleLeft) Let q > 2, full rank A,B ∈ Z
n×m
q with m > n, a basis

TA of
⊥
q (A), a matrix D ∈ Z

n×m
q and σ > ‖T̃A‖ · ω(

√
logm). Then there exists PPT

algorithm. SampleLeft(A,TA,B,D, σ) that outputs a matrix X ∈ Z
2m×m, distributed

statistically close to D
D
q (A|B),σ .

5.2. Lattice Construction

We are building on the work of Abdalla et al. [9], who gave the first constructions, one in
the standard model (SM) and one in the random-oracle model (ROM), of a lattice-based
identity-based IPFE scheme, and proved their security15 under the LWEq,α,n assumption
(Definition 10). Their constructions are in turn based on the IPFE scheme of Agrawal et
al. [15], ALS, described in Fig. 2.

In our construction, we start from the ROM scheme of Abdalla et al. [9] and enhanced
their design in order to allow distinguishing fresh and updated ciphertexts. To prove its
security, we rely on the programmability of random oracles H1, H2, H3 : T → Z

n×m
q ,

where T is the tag space. Notice that programmability of random oracles is required in
the security proof to simulate the new supported functionality, i.e., updating ciphertexts.
Thus, even though our construction is only proved secure in the ROM, it also supports a
richer class of functionalities than previous works. Our lattice-based CUFE construction
is described in Fig. 3. Dimensions of matrices involved in the construction are presented
in Table 1.

15We refer the reader to Appendix A.1 for a formal definition.

(Inner-Product) Functional Encryption... Page 27 of 40 8

Table 1. Matrices, vectors, and respective dimensions used in the construction .

A Z
n×m
q Xt,t ′ Z

m×m

TA Z
m×m Yt,t ′ Z

m×m

Bt,1 Z
n×m
q �s Z

n
q

Bt,2 Z
n×m
q �e1 Z

m

Dt Z
n×m
q �e2 Z

m

�t→t ′,1 Z
2m×2m �e3 Z

m

�t→t ′,2 Z
2m×m S {±1}m×m

ctt,1,1 Z
2m
q

�f1 Z
2m

ctt,1,2 Z
m
q

�f2 Z
m

ctt,2,1 Z
2m
q

�f Z
m

ctt,2,2 Z
m
q �x {0, . . . , P}m

Zt,1 Z
2m×m �y {0, . . . , V }m

Zt,2 Z
2m×m 〈�y, �x〉 {0, . . . ,mPV }

Setup(1λ, n):
(A,TA) ← TrapGen(1n, 1m)
Return (mpk := A,msk := (A,TA))

KeyGen((A,TA), �y ∈ Y, t):
for � = 1, 2 : Zt,� ← SampleLeft(A,TA, H�(t), H3(t), ρ�)
Return (�y, {sk �,t,y� := Zt,� · �y}�=1,2)

TokGen((A,TA), t, t′):
Bt,1 := H1(t), Bt′,2 := H2(t′), Dt := H3(t), Dt′ := H3(t′), Yt,t′ ←$ DZm×m,ρ

Xt,t′ ← SamplePre(A,TA,Bt′,2 − Bt,1Yt,t′ , ρ)

Δt→t′,1 :=
[
Im Xt,t′

0 Yt,t′

]

Δt→t′,2 ← SampleLeft(A,TA,Bt,1,Dt′ − Dt, ρ)
Return (Δt→t′,1, Δt→t′,2)

Enc(mpk, �x ∈ X , t):
Bt,1 := H1(t), Dt := H3(t)
�s ←$Zn

q , �e1, �e2 ←$ DZm,σ, �e3 ←$ DZm,μ, S ←$ {±1}m×m

ctt,1,1 := H�
t,1�s + �f with Ht,1 := (A|Bt,1), �f := (Im|S)� · �e1

ctt,1,2 := D�
t �s + �e2 + �e3 +

⌊
q
K

⌋
· �x

Return (ctt,1,1, ctt,1,2)

Update(Δt→t′,1, Δt→t′,2, ctt,1,1, ctt,1,2):

Bt′,2 := H2(t′), Dt′ := H3(t′), �r ←$Zn
q , �f1 ←$ DZ2m,τ , �f2 ←$ DZm,τ

ctt′,2,1 := Δ�
t→t′,1ctt,1,1 +H�

t′,2�r + �f1 with Ht′,2 = (A|Bt′,2)
ctt′,2,2 := ctt,1,2 + Δ�

t→t′,2ctt,1,1 +D�
t′�r + �f2

Return (ctt′,2,1, ctt′,2,2)

Dec(ctt,�,1, ctt,�,2, �y, {sk �,t,y� }�=1,2):
μ′ ← �y� · ctt,�,2 − sk�

�,t,y� · ctt,�,1

Return argminμ∈{0,...,K+1}
∣∣⌊ q

K

⌋
· μ − μ′∣∣

Fig. 3. Lattice-based Ciphertext-Updatable IPFE scheme .

The first component of the ciphertext, ctt,1,1, depends on the tag t but not on the
message. The second component, ctt,1,2, on the other hand, depends on the message �x
to be encrypted. The two components are intertwined by the shared randomness �s ∈ Z

n
q .

8 Page 28 of 40 V. Cini et al.

In order to update ciphertexts, it is therefore necessary to update the two parts of a given
ciphertext to the prescribed new tag, while preserving the common randomness, the
underlying plaintext, and, at the same time, without increasing the error term too much.
Latter would prevent correct decryption of updated ciphertexts. This can be done using
techniques inspired by [21,33]. Moreover, since the randomness is given by uniform
vector in Z

n
q and the encryption scheme is additively homomorphic, ciphertexts can be

easily re-randomized.
To update a ciphertext from t to t ′, we want to produce a 2m × 2m matrix �t→t ′,1

over Z and a 2m × m matrix �t→t ′,2 over Z, with �t→t ′,2 ← DZ2m×m ,ρ . �t→t ′,1 has
the form

�t→t ′,1 :=
[
Im Xt,t ′
0 Yt,t ′

]
,

with Xt,t ′ ,Yt,t ′ ← DZm×m ,ρ . �t→t ′,1 and �t→t ′,2 are additionally conditioned on

Ht,1 · �t→t ′,1 = Ht ′,2, and Ht,1 · �t→t ′,2 = Dt ′ − Dt .

In the real game the matrix �t→t ′,1 and �t→t ′,2 will be produced using the trapdoor
TA, i.e., Yt,t ′ will be sampled from DZm×m ,ρ , Xt,t ′ using SamplePre(A,TA,Bt ′,2 −
Bt,1Yt,t ′ , ρ), whereHt ′,2 = (A|Bt ′,2), and�t→t ′,2 usingSampleLeft(A,TA,Bt,1,Dt ′−
Dt , ρ).

Vice versa, in the security proof, we will leverage on the programmability of the
random oracles H1, H2, and H3: whenever the source tag t equals the challenge tag t∗,
Xt,t ′ ,Yt,t ′ , and�t→t ′,2 will be sampled from the appropriate distributions, H2(t ′) = Bt ′,2
will be set to equal AXt,t ′ + Bt,1Yt,t ′ , and H3(t ′) = Dt ′ to Ht,1 · �t→t ′,2 + Dt . For all
other pair of tags, t, t ′, the token (�t→t ′,1,�t→t ′,2) is produced using the trapdoor of
H1(t) = Bt,1: The matrix Bt,1 will be produced using the TrapGen algorithm, and the
update token will be produced using such trapdoor.

To update a ciphertext (ctt,1,1, ctt,2,2), given the appropriate token (�t→t ′,1,�t→t ′,2),
fresh randomness �r ← Z

n
q and noises �f1 ← DZ2m ,τ , �f2 ← DZm ,τ are sampled and the

new ciphertext (ctt ′,2,1, ctt ′,2,2) is computed as

ctt ′,2,1 := ��
t→t ′,1ctt,1,1 + H�

t ′,2�r + �f1,

ctt ′,2,2 := ctt,1,2 + ��
t→t ′,2ctt,1,1 + D�

t ′ �r + �f2.

The functional secret keys, {skt,�,�y}�=1,2, can be produced as follows:

1. for the challenge tag t∗: for � = 1, using the ALS challenger, and for � = 2, using
the trapdoor of Bt∗,2.

2. for tags, t 	= t∗, for which no update token of the form (�t∗→t,1,�t∗→t,2) was
queried but to which the challenge ciphertext was updated: using the trapdoor of
Bt,1, or again the ALS challenger for � = 2.

3. for all other tags: using the trapdoor of Bt,� for � = 1, 2.

Parameters and Correctness In our construction, ciphertexts encode vectors �x ∈
{0, . . . , P}m under a tag t . Secret keys correspond to a tag t and a vector �y ∈ {0, . . . , V }m .

(Inner-Product) Functional Encryption... Page 29 of 40 8

When tags match, our scheme decrypts the bounded inner-product 〈�x, �y〉 ∈ {0, . . . , K },
where K = mPV . Moreover, our scheme parameters must satisfy the following bounds:

– m ≥ 6n log q (required by TrapGen),
– αq > 2

√
n (required by hardness of LWE).

– ρ = ρ1 = ρALS ≥ m2.5 · ω(
√

logm) (required by SamplePre),
– ρ2 ≥ mρ · λω(1) (required in the security proof for the indistinguishability of

function keys),
– σ = σALS,
– NoiseGen: the spectral norm of St∗ can be upper bounded (by using the Frobenius

norm) by m. Using Lemma 15, s1(Zt∗) ≤ 3Cρ
√
m, which implies μ ≥ 3Cρm1.5,

– τ ≥ √
m(σ + μ + 2

√
2ρσm1.5C ′)λω(1) (require in the security proof for the in-

distinguishability of updated honest ciphertexts) and τ ≥ (σ
√
m + σρ2m1.5 +√

2m2σρ2C ′)λω(1) (for the indistinguishability of updates of the challenge cipher-
text). Thus, we set τ ≥ max{√m(σ + μ + 2

√
2ρσm1.5C ′), (σ

√
m + σρ2m1.5 +√

2m2σρ2C ′)} · λω(1),
– q > 2KVm(σ + μ + τ + 12

√
2C ′m2.5ρ2(ρσ + τ)) (required for successful

decryption of updated ciphertexts),

Lemma 10. (Correctness) For q > 2KVm(σ + μ + τ + 12
√

2C ′m2.5ρ2(ρσ + τ)),
the decryption of (updated) ciphertexts from the scheme in Fig. 3 is, w.h.p., correct.

Proof. The correct decryption of fresh ciphertexts follows directly from the correctness
of the Abdalla et al. [9] construction. On the other hand, an updated ciphertext has the
following form:

ctt ′,2,1 := ��
t→t ′,1ctt,1,1 + H�

t ′,2�r + �f1
= H�

t ′,2(�s + �r) + ��
t→t ′,1 �f + �f1, and

ctt ′,2,2 := ctt,1,2 + ��
t→t ′,2ctt,1,1 + D�

t ′ �r + �f2
= D�

t ′ (�s + �r) + �e2 + �e3 + ��
t→t ′,2 �f + �f2 +

⌊ q

K

⌋
· �x .

Therefore, during decryption of updated ciphertexts, one obtains:

μ′ = �y� · ctt,2,2 − sk�
t,2,�y · ctt,2,1

=
⌊ q

K

⌋
〈�y, �x〉 + �y�(�e2 + �e3 + ��

t→t ′,2 �f + �f2) − �y�Z�
t ′,2(�

�
t→t ′,1 �f + �f1)︸ ︷︷ ︸

error terms

,

where we have used the fact that Ht ′,2 · Zt ′,2 = Dt ′ . This decrypts correctly as long as
the error terms obtained

�y�(�e2 + �e3 + ��
t→t ′,2 �f + �f2 − Z�

t ′,2(�
�
t→t ′,1 �f + �f1)),

are small compared to q/K . Since �t,t ′,1 ∈ Z
2m×2m , and �t,t ′,2,Zt ′,2 ∈ Z

2m×m are
sampled via theSamplePre algorithm with parameter ρ and ρ2, respectively, by Lemma

8 Page 30 of 40 V. Cini et al.

11, we know that ‖Zt ′,2‖ ≤ 2m · ρ2, ‖�t→t ′,1‖ ≤ 2m · ρ, and ‖�t→t ′,2‖ ≤ √
2 · m · ρ,

as long as ρ, ρ2 ≥ m2.5ω(
√

log n). Using again Lemma 11 and Lemma 14, we can
also deduce that ‖�e1‖, ‖�e2‖ ≤ σ

√
m, ‖�e3‖ ≤ μ

√
m, ‖ �f ‖ ≤ C ′σ

√
2m and ‖ �f1‖ ≤

τ
√

2m,‖ �f2‖ ≤ τ
√
m, as long as σ,μ, τ ≥ ω(

√
log n). Therefore, ‖��

t→t ′,1
�f ‖ ≤

2
√

2C ′m2ρσ , ‖��
t→t ′,2

�f ‖ ≤ 2C ′m2ρσ , and ‖Z�
t ′,2(�

�
t→t ′,1

�f + �f1)‖ ≤ 2mρ2

(2
√

2C ′m2ρσ + √
2mτ). Since, ‖�y‖ ≤ V

√
m, the final error term is upper bounded

by V
√
m · (σ√

m + μ
√
m + 2C ′m2ρσ + τ

√
m + 2mρ2(2

√
2C ′m2ρσ + √

2mτ)). For
decryption to succeed, we want that the error term is smaller than q

2K , which implies:

q > 2KV
√
m · (σ

√
m + μ

√
m + 2C ′m2ρσ + τ

√
m + 2mρ2(2

√
2C ′m2ρσ + √

2mτ))

> 2KVm(σ + μ + τ + 12
√

2C ′m2.5ρ2(ρσ + τ)). �

Security Proof We now show that the adaptive security of our CUFE construction follows
from the security of the ALS scheme. In order to do so, we, however, have to make the
following restrictions regarding the validity of the adversary in the IND-CUFE-CPA
experiment:

1. If (·, t∗, t ′) ∈ CT , then there is no (f, t ′) ∈ K,
2. For any t ∈ T , the number ofCorTokGen oracle queries, on input (t, ·), is bounded

by a constant,16

3. The number of HonUpdate oracle queries, on input (·, ·, 0, ·), is bounded by a
constant.

The first restriction is due to limitations in our current proof techniques: Given t ′ ∈ T ,
t ′ 	= t∗, the reduction can either simulate �t∗→t ′ , or sk f,t ′ , for any arbitrary f . Since
CorTokGen requires generating �t∗→t ′ , the reduction would not be able to simulate
sk f,t ′ as well. The last two restrictions are instead due to the security loss that the guessing
strategy would otherwise lead to as the target tags of tokens, where the source tag is the
challenge one, and challenge update queries made have to be guessed in advance. Since
the proof is in the ROM, these guesses are not over the entire tag space T , which can be
unbounded, but over the indices of the RO queries, which are bounded by a polynomial
in the security parameter as the adversary needs to be efficient. As long as the number
of CorTokGen-oracle queries per given source tag, and HonUpdate-oracle queries
on input the challenge ciphertext, is constant, the security loss will be polynomially
bounded. We will make this assumption in Theorem 4. This result can also be rephrased
in the following terms: If one maintains a “recording graph” that has a node for each tag
queried to the RO, and whose edges are derived from the tokens and challenge updates
issued to the adversary, then the loss is given by nδ , where n is the number of nodes in
the graph, and δ is the outer degree of the graph. This result is similar to the one obtained
by Fuchsbauer et al. [32], who show how to generically obtain proxy re-encryption
(PRE) schemes secure against adversaries that can adaptively corrupt users from PRE
schemes secure against adversaries that cannot make adaptive user corruptions. They
do so by reducing the simulation in the security proof to a pebbling game on the graph
“underlying” the security game [39]. We believe that any improvement to the results of

16observe that this limitation is only per tag

(Inner-Product) Functional Encryption... Page 31 of 40 8

Fuchsbauer et al. [32] and Jafargholi et al. [39] could also offer useful insights on how
to overcome the current limitation of our construction.

Theorem 4. (Security) Let λ be the security parameter. Fix parameters q, n, m, α, σ ,
ρ, ρ1, ρ2, μ, and τ as above. Then, under the above restrictions on the adversary, the
CUFE scheme described in Fig 3 is adaptive IND-CUFE-CPA-secure if the ALS-IPFE
scheme [15] is AD-IND secure.

Proof. We proceed in a series of hybrids, consider A to be a PPT adversary, and λ to be
the security parameter. We denote by AdvGamei (A) the advantage of A in Game i . Let
Qh be the number of random-oracle queries made by the adversary, Qt be the maximum
number of TokGen-oracle queries of the form (t, ti) for any fixed tag t , and Qu be the
maximum number of Update-oracle queries on input the challenge ciphertext. We will
assume, without loss of generality, that any adversary making key generation queries
of the form (�y, t), update queries of the form (t, t ′, ·, ·), or token generation queries
of the form (t, t ′) will first query the random oracle H on t and t ′. (We can make this
assumption because for every adversary A, we can compile it into an adversary A′ that
exhibits this behavior.)
Game0. This is the original IND-CUFE-CPA game.
Game1. This is the same as previous game, except that we guess the tag t∗ which will
be used for the challenge messages. Instead of guessing directly t∗ among the set of
tags T , which would incur an exponential loss, we guess the index of the random-oracle
query in which the adversary queries H to get Ht∗,1 and Dt∗ . If the guess is incorrect,
we abort. This results in a 1

Qh
security loss.

Game2. This is the same as previous game, except that we guess for which tags t ′ the
adversary will query an update token of the form (�t∗→t ′,1,�t∗→t ′,2). If the guess was
incorrect, we abort. As above, instead of guessing directly the tag t ′ among the set of
tags T , which would incur an exponential loss, we guess the indices of the random-
oracle query in which the adversary queries H to get Ht ′,2 and Dt ′ . This will result in a(Qh−1

Qt

)−1
security loss.

Game3. This is the same as previous game, except that we guess for which tags t ′ the
adversary will query the Update-oracle on input the challenge ciphertext. As above,
instead of guessing directly the tag t ′ among the set of tags T , which would incur
in an exponential loss, we guess the indices of the random-oracle query in which the
adversary queries H to get Ht ′,2 and Dt ′ . If the guess is incorrect, we abort. This results

in a
(Qh−Qt−1

Qu

)−1
security loss.

From now on, let H = {t1, · · · , tQh} be the list of random-oracle queries made by the
adversary. Let i∗ ∈ [Qh] be the index of the query corresponding to the challenge tag,
i.e., ti∗ = t∗. Let QT be the list of indices {ik}k≤Qt for which the adversary will query
an update token from the challenge tag t∗, and let QU be the list of indices { jk}k≤Qu for
which the adversary will query the Update-oracle for a ciphertext encrypted under the
challenge tag t∗.
Game4. This is the same as previous game, except for the following modifications. For
each of ik ∈ QT , we sample Xt∗,tik ,Yt∗,tik ← DZm×m ,ρ , and �t∗→t,2 ← DZ2m×m ,ρ .
Then, we set H2(tik) := Btik ,2 := AXt∗,tik + Bt∗,1Yt∗,tik and H3(tik) := Dtik

=

8 Page 32 of 40 V. Cini et al.

Ht∗,1�t∗→t,2 +Dt∗ . When the adversary queries the CorTokGen oracle on input (t, t ′)
we return

�t∗→t,1 :=
[
Im Xt∗,tik
0 Yt∗,tik

]
and �t∗→t,2,

to the adversary. The rest of the game is as before. By Lemma 9, each of the token
(�t∗→t,1,�t∗→t,2) is distributed statistically close to the previous game.
Game5. This is the same as previous game, except for the following modifications. For all
i ∈ [Qh], i 	= i∗, we sample (Bti ,1,TBti ,1

) ← TrapGen(1n, 1m) and set H1(ti) := Bti ,1.
Whenever the adversary makes a query to the CorTokGen oracle of the form (ti , t), we
reply using TBti ,1

instead of TA:

– sampleXti ,t ← DZm×m ,ρ , runYt ′,t ← SamplePre(Bti ,1,TBti ,1
,Bt,2−AXti ,t , ρ),

along with Rti→t,2 ← SampleLeft(Bti ,1,TBti ,1
,A,Dt − Dti , ρ). Return

�ti→t,1 :=
[
Im Xt ′,t
0 Yt ′,t

]
and �ti→t,2 :=

[
0 Im
Im 0

]
· Rti→t,2.

The rest of the game is as before. Notice that, by the invariance under permutation of
the Gaussian distribution, we have that �ti→t,2 ← DZ2m×m ,ρ . Moreover,

Hti ,1�ti→t,2 = (A|Bti ,1)

[
0 Im
Im 0

]
· Rti→t,2 = (Bti ,1|A)Rti→t,2 = Dt − Dti ,

as expected. Applying again Lemma 9, we also obtain that the distribution ofCorTokGen-
oracle’s replies is statistically close to that of Game4.
Game6. This is the same as previous game, except for the following modifications. Now,
for all i 	∈ {i1, . . . , iQt} ∪ { j1, . . . , jQu}, we sample (Bti ,2,TBti ,2

) ← TrapGen(1n, 1m)

and set H2(ti) := Bti ,2. Whenever the adversary makes a query to the KeyGen′ oracle
of the form (ti , �y), with i 	∈ {i1, . . . , iQt} ∪ { j1, . . . , jQu} ∪ {i∗}, we reply using TBti ,1

and TBti ,2
instead of TA (recall that TBti ,1

was already introduced in the previous game
for all i 	= i∗):

– for � = 1, 2, run SampleLeft(Bti ,�,TBti ,�
,A,Dti , ρ�) to obtain Rti ,�. Return

Zti ,� :=
[
0 Im
Im 0

]
· Rti ,�.

The rest of the game is as before. Notice that, by the invariance under permutation of
the Gaussian distribution, we have that Zti ,� ← DZ2m×2m ,ρ�

. Moreover,

Hti ,�iZti ,�i = (A|Bti ,�i)

[
0 Im
Im 0

]
Rti ,�i = (Bti ,�i |A)Rti ,�i = D,

as expected. Therefore, the distribution KeyGen′-oracle’s replies is, by Lemma 9, sta-
tistically close to that of Game5.

(Inner-Product) Functional Encryption... Page 33 of 40 8

Game7. This is the same as previous game, except for the following modifications. We
modify how Enc′- and HonUpdate-oracles are handled for ciphertexts different from
the challenge one. Every time the adversary makes a query to the Enc′-oracle of the
form (�x, t), we return (ctt,1,1, ctt,1,2) ← Enc(mpk, t, �x), add (c,Ct , t, �x) to C, and
increment c. Whenever the adversary makes a query to the HonUpdate-oracle of the
form (t, t ′, i, ·), we check if (·, t, t ′, ·) is in HT and if (i, ·, t, �x) is in C for some �x ∈ Z

m
q .

If so, we sample �r ← Z
n
q , �g1 ← DZ2m ,τ , �g2 ← DZm ,τ , and return (ctt ′,2,1, ctt ′,2,2),

where

ctt ′,2,1 := H�
t ′,2�r + �g1, ctt ′,2,2 := D�

t ′ �r + �g2 +
⌊ q

K

⌋
· �x,

otherwise we return ⊥. By the Smudging Lemma 12, since the parameter of the Gaussian
distribution from which �f1 and �f2 are sampled is superpolynomially bigger than the norm
of ��

t→t ′,1
�f and �e2 + �e3 + ��

t→t ′,2
�f , we get that

SD
(
DZn ,τ ,DZ,τ,��

t→t ′,1 �f
)

,SD
(
DZn ,τ ,DZ,τ,�e2+�e3+��

t→t ′,2 �f
)

≤ 1

λω(1)
,

where we used again Lemma 9 to bound the norm of ��
t→t ′,1

�f and �e2 + �e3 +��
t→t ′,2

�f .
Therefore, the distribution ofEnc′- andHonUpdate-oracle’s replies is statistically close
to that of Game6.
Game8. The only queries for which we still need the main secret key TA are the
HonUpdate-oracle queries on input the challenge ciphertext, and the functional se-
cret key queries for the challenge tag t∗ (with � = 1) and the tags t jk with { jk}k≤Qu (for
� = 2). We now perform a reduction to the security of the ALS [15] encryption scheme.
We reduce to the AD-IND security of ALS. We first obtain from the challenger public
keys AALS, DALS. Now, equipped with the knowledge of t∗, we define Game8 to be the
same as Game7, except for the following changes:

• The matrix A is replaced with AALS instead of being generated with TrapGen.
• We sample St∗ ← {±1}m×m and Zt∗ ← DZm×m ,ρ1 , program H1(t∗) := ASt∗ and

set H3(t∗) := Dt∗ := DALS + ASt∗Zt∗ .
• Similarly, for each k ∈ [Qu], we sample St jk ← {±1}m×m and Rt jk

,Zt jk
←

DZm×m ,ρ2 , program H2(t jk) := ASt jk and set H3(t jk) := Dt jk
= DALS + ARt jk

+
ASt jkZt jk• For key queries of the form (t, �y), we forward �y to the challenger of the AD-IND
security of ALS, which replies with sk�y = ZALS · �y, where ZALS is the main secret
key of the ALS scheme. If t = t∗, we set

skt∗,1,�y :=
(

sk�y
Zt∗ �y

)
,

and using TBt∗,2 we compute skt∗,2,�y . If t = t jk for some k ∈ [Qu], then we set

skt jk ,2,�y :=
(
sk�y + Rt jk

�y
Zt∗ �y

)
,

8 Page 34 of 40 V. Cini et al.

and using TBt jk
,1 we compute skt jk ,1,�y . One forwards both to the adversary.

• When the adversary finally submits a challenge (�x0, �x1), we forward it to the ALS
challenger, which replies with ct = (ctALS

1 , ctALS
2). We compute

ctt∗,1 = (ctALS
1 |(St∗)� · ctALS

1),

ctt∗,2 = ctALS
2 + (Rt∗ + St∗Zt∗)

� · ctALS
1 + NoiseGen((Rt∗ + St∗Zt∗)

�, s),

forward (ctt∗,1, ctt∗,2) back to the adversary. (The properties of the algorithm
NoiseGen are recalled in Lemma 13 from Appendix A.2.)17

• Whenever the adversary queries the HonUpdate oracle on input the challenge
ciphertext (ctt∗,1, ctt∗,2) and target tag t jk , we compute

ctt jk ,1 = (ctALS
1 |(St jk)� · ctALS

1) + H�
t jk ,2�r + �g1,

ctt jk ,2 = ctALS
2 + (Rt jk

+ St jkZt jk
)� · ctALS

1 + D�
t jk

�r + �g2,

and forward it to the adversary.

In this game, the advantage of the adversary is upper bounded by the advantage of
breaking the ALS scheme, i.e., that AdvGame8(A) ≤ AdvALS(A). It remains to show
that Game8 is indistinguishable from Game7. We show that the update of the challenge
ciphertext and function keys for tag t jk , with k ∈ [Qu], are statistically close to those
obtained in Game7. An identical argument to that used in [9] proves the same for the
challenge tag t∗. We start by considering the function keys. Since the parameter of
the Gaussian distribution from which Rt jk

is sampled is superpolynomially bigger than
the norm of ZALS, by the Smudging Lemma 12 we have that sk�y + Rt jk

is distributed
statistically close to DZm×m ,ρ2 . Moreover, we have that

Ht jk ,2 · skt jk ,2,�y = (A|ASt jk)
(
sk�y + Rt jk

�y
Zt jk

�y
)

= Ask�y + ARt jk
�y + ASt jkZt jk

�y = Dt jk
�y,

as expected. As far as the update of the challenge ciphertext is concerned, as before,
since the parameter of the distribution from which �g2 is drawn is superpolynomially
bigger than the norm of the other error terms in the expression of ctt jk ,2, again by the
Smudging Lemma 12, we obtain that the distribution of the ciphertext so obtained is
statistically close to that of Game7.

Putting everything together, we obtain that

Advind-cufe-cpa
CUFE,A (λ,Y) ≤ Qh

(
Qh − 1

Qt

)(
Qh − Qt − 1

Qu

)
· AdvALS(A) + negl(n)

≤ Q (Qt+Qu+1)
h · AdvALS(A) + negl(λ). �

17Notice that it is possible to rely on the Smudging Lemma here as well. To simplify the proof we use the
properties of NoiseGen, as done by [9], and directly refer to their security proof.

(Inner-Product) Functional Encryption... Page 35 of 40 8

6. Conclusion

In this work, we proposed ciphertext-updatable functional encryption (CUFE), a variant
of functional encryption which allows switching ciphertexts produced with respect to
one tag to one under another tag using an update token for this tag pair. We have pro-
vided practical motivation for such a primitive and then defined an (adaptive) security
notion in the indistinguishability setting for CUFE. We presented two constructions,
where the first construction is a generic construction of CUFE for any functionality,
which can also be extended to predicates other than the equality testing on tags. This
construction is based on indistinguishability obfuscation (iO) and is proven to achieve
semi-adaptive security. The second construction is a (plausibly) post-quantum CUFE
for the inner-product functionality that relies on standard assumptions from lattices. The
lattice-based construction achieves the stronger adaptive security notion, albeit with
certain restrictions on the validity of the adversary and bound on the number of oracle
queries. We leave several questions as interesting open problems. Firstly, to construct
a CUFE scheme that satisfies our adaptive security model without any further restric-
tions or bound on the number of oracle queries. Secondly, to construct practical CUFE
schemes for a richer class of functionalities, e.g., quadratic functions, which can further
broaden the scope of application. Thirdly, we consider it an interesting direction to study
multi-input as well as multi-client extensions of CUFE similarly as it has been done for
IB- and AB-IPFE in [9] and [51], respectively.

Acknowledgements

We want to thank the anonymous reviewers for their helpful comments and suggestions.
In particular, we want to thank one anonymous reviewer from the Journal of Cryptology
to point out a problem with our initial generic CUFE construction. This work has received
funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement n◦ 871473 (KRAKEN), by the Austrian Science Fund (FWF) and
netidee SCIENCE via grant P31621-N38 (PROFET) and FWF via grant W1255-N23.
The work of Valerio Cini and Daniel Slamanig was done while both were with AIT
Austrian Institute of Technology.

Funding Open access funding provided by Austrian Science Fund (FWF).

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

8 Page 36 of 40 V. Cini et al.

Appendix

A. Additional Preliminaries

A.1. Functional Encryption with Adaptive Security

We recall the adaptive variant for the security of functional encryption here.

Definition 9. For every functional encryption scheme FE for functionality F : X → Y , every security
parameter λ, every PPT adversary A, we define the following experiment:

Experiment Expind−cpa
FE,A (λ,F)

(mpk,msk) ← Setup(λ,F)

(x∗
0 , x∗

1 , st) ← AOKeyGen(·)
(mpk, st)

b ← {0, 1}
C∗ ← Enc(mpk, xb)

b′ ← AOKeyGen(·)
(C∗, st)

if b = b′ then return 1 else return 0

where OKeyGen(·) is an oracle that on input f ∈ F , outputs KeyGen(msk, f). Additionally, if A ever calls
the oracle OKeyGen(·) on an input f ∈ F , the challenge queries x∗

0 , x∗
1 must satisfy f (x∗

0) = f (x∗
1). A

functional encryption scheme FE is AD-IND secure if for every PPT adversary A the advantage function

Advind−cpa
FE,A (λ,F) :=

∣∣∣Pr
[
Expind−cpa

FE,A (λ,F) = 1
]

− 1/2
∣∣∣ ,

is negligible in λ.

A.2. Lattice Preliminaries

Definition 10. ([54] Learning with errors) Let q be a prime, χ be a public distribution over Zq and �s be
uniformly random over Zn

q . Moreover, �s is constant across calls to oracles O�s , or O$, defined below:

– Oracle O�s outputs samples (�a, 〈�a, �s〉 + e) where �a ← Z
n
q and e ← χ are fresh and independently

sampled,
– Oracle O$ outputs uniformly random elements of Zn

q × Zq .

Define another oracle O, which across all calls, is either O�s or O$. The learning with errors LWEq,χ,n
problem is to distinguish with non-negligible probability, given access to oracle O, whether it corresponds to
O�s or O$.

Lemma 11. ([37,48] Gaussian Tail Bound) For any n-dimensional lattice
, �c ∈ span(
), real ε ∈ (0, 1),
and s ≥ ηε(
):

Pr
�x←D
,s,�c

[‖�x − �c‖ > s
√
n] ≤ 1 + ε

1 − ε

1

2n
.

Moreover, for any ω(
√

log n) function, there is a negligible ε(n) such that: ηε(Z) ≤ ω(
√

log n). In particular,
when sampling integers, we have that for any ε ∈ (0, 1

2), any s ≥ ηε(Z), and any t ≥ ω(
√

log n):

Pr
x←DZ,s,c

[|x − c| > s · t] ≤ negl(n).

Lemma 12. (Smudging Lemma) Let n ∈ N. For any real σ > ω(
√

log n), and any �c ∈ Z
n, it holds

SD(DZn ,σ ,DZn ,σ,�c) ≤ ‖�c‖/σ .

(Inner-Product) Functional Encryption... Page 37 of 40 8

Noise Re-randomization. The following procedure of NoiseGen(R, s) for noise re-randomization, was
described in [44]. NoiseGen(R, s): given a matrix R ∈ Z

m×t , and s ∈ R
+ such that s2 > s1(RR�), it first

samples �e1 := R�e + (s2Im − RR�)
1
2 �e′, where Im ∈ Z

m×m denotes the identity matrix, and �e ← Dt
σ , and

�e′ ← Dm√
2σ

are independent spherical continuous Gaussian noises. Then, it samples �e2 ← D
Zm−�e1,s

√
2σ

,

and return �e1 + �e2 ∈ Z
m
q . We have the following lemma.

Lemma 13. ([44] Noise Distribution) Let R ← Z
m×t and s ≥ s1(R). The following distributions are

statistically close: Distribution 1: �e ← DZt ,σ , and �e′ ← NoiseGen(R, s). Output R�e + �e′. Distribution 2:
Output �e ← DZm ,2 sσ .

Lemma 14. ([1] Bounding Norm of a {±1}k×m Matrix) Let R be a matrix chosen uniformly at random
from {±1}k×m. There exists a universal constant C ′, for which:

Pr
[
‖R‖ ≥ C ′√k + m

]
<

1

ek+m
.

Lemma 15. ([29] Bounding Spectral Norm of a Gaussian Matrix) Let Z ∈ R
n×m be a sub-Gaussian

random matrix with parameter ρ. There exists a universal constant C such that for any t ≥ 0, we have
s1(Z) ≤ C · ρ(

√
n + √

m + t) except with probability at most 2
eπ t2

.

References

[1] S. Agrawal, D. Boneh, and X. Boyen, Efficient lattice (H)IBE in the standard model, in H. Gilbert,
editors, EUROCRYPT 2010, volume 6110 of LNCS, (Springer, Heidelberg, 2010), pp. 553–572.

[2] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, Simple functional encryption schemes for inner
products, in J. Katz, editors, PKC 2015, vol. 9020, (Springer, Heidelberg, 2015) pp. 733–751

[3] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, Better security for functional encryption for
inner product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. https://eprint.iacr.org/
2016/011

[4] M. Abdalla, F. Benhamouda, and R. Gay, From single-input to multi-client inner-product functional
encryption, in S. D. Galbraith and S. Moriai, editors, ASIACRYPT 2019, Part III, LNCS. vol. 11923,
(Springer, Heidelberg, 2019) pp. 552–582.

[5] M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner, Decentralizing inner-product functional
encryption, in D. Lin and K. Sako, editors, PKC 2019, Part II, LNCS. vol. 11443, (Springer, Heidelberg,
2019) pp. 128–157.

[6] M. Abdalla, F. Bourse, H. Marival, D. Pointcheval, A. Soleimanian, and H. Waldner, Multi-client inner-
product functional encryption in the random-oracle model, in C. Galdi and V. Kolesnikov, editors, SCN
20, LNCS. vol. 12238, (Springer, Heidelberg, 2020) pp. 525–545.

[7] P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan, From selective to adaptive security in functional
encryption, in R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, LNCS vol. 9216,
(Springer, Heidelberg, 2015) pp. 657–677

[8] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu, Multi-input functional encryption for inner prod-
ucts: Function-hiding realizations and constructions without pairings, in H. Shacham and A. Boldyreva,
editors, CRYPTO 2018, Part I, LNCS vol. 10991, (Springer, Heidelberg, 2018) pp. 597–627

[9] M. Abdalla, D. Catalano, R. Gay, and B. Ursu, Inner-product functional encryption with fine-grained ac-
cess control, in S. Moriai and H. Wang, editors, ASIACRYPT 2020, Part III, LNCS vol. 12493, (Springer,
Heidelberg, 2020) pp. 467–497

[10] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, Improved proxy re-encryption schemes with appli-
cations to secure distributed storage. ACM Trans. Inform. Syst. Secur. 9(1), 1–30 (2006). https://doi.org/
10.1145/1127345.1127346

[11] M. Ambrona, D. Fiore, and C. Soriente. Controlled functional encryption revisited: multi-authority
extensions and efficient schemes for quadratic functions. PoPETs, 2021(1):21–42, 2021.

https://eprint.iacr.org/2016/011
https://eprint.iacr.org/2016/011
https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1145/1127345.1127346

8 Page 38 of 40 V. Cini et al.

[12] M. Abdalla, R. Gay, M. Raykova, and H. Wee, Multi-input inner-product functional encryption from
pairings, in J.-S. Coron and J. B. Nielsen, editors,EUROCRYPT2017,Part I, LNCS vol. 10210, (Springer,
Heidelberg, 2017) pp. 601–626

[13] M. Abdalla, J. Gong, and H. Wee. Functional encryption for attribute-weighted sums from k-Lin. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 685–716. Springer, Heidelberg, 2020.

[14] P. Ananth, A. Jain, and A. Sahai, Indistinguishability obfuscation without multilinear maps: iO from
LWE, bilinear maps, and weak pseudorandomness. Cryptology ePrint Archive, Report 2018/615, 2018.
https://eprint.iacr.org/2018/615

[15] S. Agrawal, B. Libert, and D. Stehlé, Fully secure functional encryption for inner products, from standard
assumptions, in M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, LNCS vol. 9816, (Springer,
Heidelberg, 2016) pp. 333–362

[16] F. Benhamouda, F. Bourse, and H. Lipmaa, CCA-secure inner-product functional encryption from pro-
jective hash functions, in S. Fehr, editors, PKC 2017, Part II, LNCS vol. 10175, (Springer, Heidelberg,
2017) pp. 36–66

[17] M. Blaze, G. Bleumer, and M. Strauss, Divertible protocols and atomic proxy cryptography, in K. Nyberg,
editors, EUROCRYPT’98, LNCS vol. 1403, (Springer, Heidelberg, 1998) pp. 127–144

[18] É. Bouscatié, G. Castagnos, and O. Sanders, Pattern matching in encrypted stream from inner product
encryption. Cryptology ePrint Archive, Report 2022/1527, 2022. https://eprint.iacr.org/2022/1527

[19] D. Boneh, A. Sahai, and B. Waters, Functional encryption: definitions and challenges, in Y. Ishai, editors,
TCC 2011, LNCS vol. 6597, (Springer, Heidelberg, 2011) pp. 253–273

[20] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In K. Sako and P.
Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer, Heidelberg,
2013.

[21] N. Chandran, M. Chase, F. H. Liu, R. Nishimaki, and K. Xagawa. Re-encryption, functional re-
encryption, and multi-hop re-encryption: A framework for achieving obfuscation-based security and
instantiations from lattices. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 95–
112. Springer, Heidelberg, 2014.

[22] J. Chotard, E. D. Sans, R. Gay, D. H. Phan, and D. Pointcheval, Decentralized multi-client functional
encryption for inner product, in T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018, Part II, LNCS
vol. 11273, (Springer, Heidelberg, 2018) pp. 703–732

[23] P. Chvojka, T. Jager, and S. A. Kakvi, Offline witness encryption with semi-adaptive security, in M.
Conti, J. Zhou, E. Casalicchio, and A. Spognardi, editors, ACNS 20, Part I, LNCS vol. 12146, (Springer,
Heidelberg, 2020) pp. 231–250

[24] G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner product functional
encryption modulo p. In Thomas Peyrin and Steven Galbraith, editors,ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 733–764. Springer, Heidelberg, 2018.

[25] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan, Obfuscation of probabilistic circuits and applica-
tions, in Y.Dodis and J. B. Nielsen, editors, TCC 2015, Part II, LNCS vol. 9015, (Springer, Heidelberg,
2015) pp. 468–497

[26] A. Cohen. What about bob? The inadequacy of CPA security for proxy reencryption. In D. Lin and K.
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 287–316. Springer, Heidelberg, 2019.

[27] Y. Chen, L. Zhang, and S. -M. Yiu, Practical attribute based inner product functional encryption from
simple assumptions. Cryptology ePrint Archive, Report 2019/846, 2019. https://eprint.iacr.org/2019/
846

[28] D. Derler, S. Krenn, T. Lorünser, S. Ramacher, D. Slamanig, and C. Striecks. Revisiting proxy re-
encryption: Forward secrecy, improved security, and applications. In M. Abdalla and R. Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 219–250. Springer, Heidelberg, 2018.

[29] L. Ducas and D. Micciancio. Improved short lattice signatures in the standard model. In J. A. Garay and
R. Gennaro, editors,CRYPTO 2014, Part I, volume 8616 of LNCS, pages 335–352. Springer, Heidelberg,
2014.

[30] E. D. Sans and D. Pointcheval. Unbounded inner-product functional encryption with succinct keys. In
R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung, editors, ACNS 19, volume 11464 of LNCS,
pages 426–441. Springer, Heidelberg, June 2019.

https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2022/1527
https://eprint.iacr.org/2019/846
https://eprint.iacr.org/2019/846

(Inner-Product) Functional Encryption... Page 39 of 40 8

[31] P. de Perthuis and D. Pointcheval, Two-client inner-product functional encryption with an application
to money-laundering detection, in H. Yin, A. Stavrou, C. Cremers, and E. Shi, editors, ACM CCS 2022,
(ACM Press, USA 2022) pp. 725–737

[32] G. Fuchsbauer, C. Kamath, K. Klein, and K. Pietrzak. Adaptively secure proxy re-encryption. In Dongdai
Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 317–346. Springer,
Heidelberg, 2019.

[33] X. Fan and F. -H. Liu. Proxy re-encryption and re-signatures from lattices. In Robert H. Deng, Valérie
Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages
363–382. Springer, Heidelberg, June 2019.

[34] S. Fugkeaw and H. Sato, Updating policies in cp-abe-based access control: an optimized and secure
service, in M. Aiello, E. B. Johnsen, S. Dustdar, and I. Georgievski, editors, ESOCC 2016, LCNS vol.
9846, (Springer, Cham, 2016) pp. 3–17

[35] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, Candidate indistinguishability
obfuscation and functional encryption for all circuits, in 54th FOCS, (IEEE Computer Society Press,
2013) pp. 40–49

[36] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions (extended abstract), in
25th FOCS, (IEEE Computer Society Press, 1984) pp. 464–479

[37] C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic con-
structions, in R. E. Ladner and C. Dwork, editors, 40th ACM STOC, (ACM Press, 2008) pp. 197–206

[38] S. Gorbunov, V. Vaikuntanathan, and H. Wee, Attribute-based encryption for circuits, in D. Boneh, T.
Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, (ACM Press, 2013) pp. 545–554

[39] Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and D. Wichs. Be adaptive, avoid
overcommitting. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 133–163. Springer, Heidelberg, 2017.

[40] A. Jain, H. Lin, C. Matt, and A. Sahai. How to leverage hardness of constant-degree expanding poly-
nomials overa R to build iO. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, 2019.

[41] A. Jain, H. Lin, and A. Sahai, Simplifying constructions and assumptions for iO. Cryptology ePrint
Archive, Report 2019/1252, 2019. https://eprint.iacr.org/2019/1252.

[42] Y. Kawai. Outsourcing the re-encryption key generation: flexible ciphertext-policy attribute-based proxy
re-encryption. In J. López and Y. Wu, editors, ISPEC 2015, LNCS vol. 9065, (Springer, 2015) pp. 301–
315

[43] V. Koutsos, D. Papadopoulos, D. Chatzopoulos, S. Tarkoma, and P. Hui, Agora: a privacy-aware data
marketplace, in ICDCS, (IEEE, 2020) pp. 1211–1212

[44] S. Katsumata and S. Yamada, Partitioning via non-linear polynomial functions: more compact IBEs
from ideal lattices and bilinear maps, in J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II,
LNCS vol. 10032, (Springer, Heidelberg, 2016) pp. 682–712

[45] Q. Lai, F. -H. Liu, and Z. Wang, New lattice two-stage sampling technique and its applications to
functional encryption—stronger security and smaller ciphertexts, in A. Canteaut and F. -X. Standaert,
editors, EUROCRYPT 2021, Part I, LNCS vol. 12696, (Springer, Heidelberg, 2021) pp. 498–527

[46] B. Libert and R. Titiu, Multi-client functional encryption for linear functions in the standard model from
LWE, in S. D. Galbraith and S. Moriai, editors, ASIACRYPT 2019, Part III, LNCS vol. 11923, (Springer,
Heidelberg, 2019) pp. 520–551

[47] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval
and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Heidelberg, 2012.

[48] D. Micciancio and O. Regev, Worst-case to average-case reductions based on Gaussian measures, in
45th FOCS, (IEEE Computer Society Press, 2004) pp. 372–381

[49] T. Marc, M. Stopar, J. Hartman, M. Bizjak, and J. Modic, Privacy-enhanced machine learning with
functional encryption, in K. Sako, S. Schneider, and P.Y. A. Ryan, editors, ESORICS 2019, Part I, LNCS
vol. 11735, (Springer, Heidelberg, 2019) pp. 3–21

[50] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J. -P. Hubaux, and C. A. Gunter, Controlled
functional encryption, in G. J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, (ACM Press, 2014)
pp. 1280–1291

https://eprint.iacr.org/2019/1252

8 Page 40 of 40 V. Cini et al.

[51] K. Nguyen, D. H. Phan, and D. Pointcheval. Multi-client functional encryption with fine-grained access
control. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS,
pages 95–125. Springer, Heidelberg, 2022.

[52] A. O’Neill, Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010. https://eprint.iacr.org/2010/556

[53] T. Pal and R. Dutta. Attribute-based access control for inner product functional encryption from LWE. In
Patrick Longa and Carla Ràfols, editors, LATINCRYPT 2021, volume 12912 of LNCS, pages 127–148.
Springer, Heidelberg, 2021.

[54] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in H. N. Gabow and
R. Fagin, editors, 37th ACM STOC, (ACM Press, 2005) pp. 84–93

[55] A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, 2005.

[56] A. Sahai and B. Waters, How to use indistinguishability obfuscation: deniable encryption, and more, in
D. B. Shmoys, editor, 46th ACM STOC, (ACM Press, 2014) pp. 475–484

[57] B. Waters, A punctured programming approach to adaptively secure functional encryption, in R. Gennaro
and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, LNCS vol. 9216, (Springer, Heidelberg, 2015)
pp. 678–697

[58] H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 206–233. Springer, Heidelberg, 2017.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://eprint.iacr.org/2010/556

	(Inner-Product) Functional Encryption with Updatable Ciphertexts
	1. Introduction
	1.1. Our Contribution
	1.2. Related Work
	2. Preliminaries
	2.1. Pseudorandom Generators
	2.2. Puncturable Pseudorandom Functions
	2.3. Indistinguishability Obfuscation

	3. Ciphertext-Updatable Functional Encryption

	4. Generic Construction of CUFE and Extensions
	4.1. Puncturable Tag-Based Deterministic Encryption
	4.1.1. Construction of PTDE

	4.2. Generic CUFE from iO for any Function
	4.3. Extending Supported Predicates

	5. Lattice-Based CUFE Construction for Inner Products
	5.1. Lattice Definitions and Algorithms
	5.2. Lattice Construction

	6. Conclusion
	Acknowledgements
	A. Additional Preliminaries
	A.1. Functional Encryption with Adaptive Security
	A.2. Lattice Preliminaries
	References

