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Abstract
The evolution of brittle fracture in a material can be conveniently investigated by means of the phase-field technique intro-
ducing a smooth crack density functional. Following Borden et al. (2014), two distinct types of phase-field functional are 
considered: (i) a second-order model and (ii) a fourth-order one. The latter approach involves the bi-Laplacian of the phase 
field and therefore the resulting Galerkin form requires continuously differentiable basis functions: a condition we easily 
fulfill via Isogeometric Analysis. In this work, we provide an extensive comparison of the considered formulations perform-
ing several tests that progressively increase the complexity of the crack patterns. To measure the fracture length necessary 
in our accuracy evaluations, we propose an image-based algorithm that features an automatic skeletonization technique able 
to track complex fracture patterns. In all numerical results, damage irreversibility is handled in a straightforward and rigor-
ous manner using the Projected Successive Over-Relaxation algorithm that is suitable to be adopted for both phase-field 
formulations since it can be used in combination with higher continuity isogeometric discretizations. Based on our results, 
the fourth-order approach provides higher rates of convergence and a greater accuracy. Moreover, we observe that fourth- 
and second-order models exhibit a comparable accuracy when the former methods employ a mesh-size approximately two 
times larger, entailing a substantial reduction of the computational effort.

Keywords  High order phase-field modeling · Isogeometric analysis · Brittle fracture · Linear complementarity problem · 
Projected successive over-relaxation algorithm · Staggered scheme

1  Introduction

The prevention of fracture-induced failure is a major con-
straint in engineering design. The numerical simulation of 
fracture has the potential to offer a decision-making tool 

within the engineering design process, ultimately able to 
reduce the necessity of expensive and time-consuming 
experimental tests. As a consequence, a wide variety of frac-
ture numerical models have been proposed, among which 
the phase-field method has gained a lot of popularity as it 
can elegantly simulate complex crack patterns (including, 
e.g., crack initiation, propagation, merging, and branching) 
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and automatically tracks the fracture path without needing 
remeshing techniques. The corner stone of this method is the 
work of Griffith [1], where fracture is studied from an energy 
point of view: a crack propagates when the energy release 
rate reaches a critical value. Based on this work, Francfort 
et al. [2] proposed a variational model based on energy mini-
mization. After that, Bourdin et al. [3] introduced a phase-
field variable to regularize the sharp interface and it was 
proven [4, 5] that the smooth problem converges to the sharp 
one when the parameter l0 , representing the length scale of 
the regularization, tends to zero. Miehe et al. [6] introduced 
a thermodynamically consistent framework for phase-field 
models of quasi-static crack propagation in elastic solids, 
developing incremental variational principles. In this work, 
the authors also introduced the idea of fracture irreversibil-
ity, imposed by a strain history variable. The idea was to 
apply the irreversibility constraint on the driving force and 
through the Strain History Variable technique. Among other 
strategies to impose the irreversibility constraint, Gerasimov 
and De Lorenzis [7] proposed a method based on a penalty 
technique. The idea is to enrich the dissipated energy func-
tional with an integral term depending on a parameter that 
penalizes negative phase-field increments. The critical point 
of this method is that this penalty parameter needs to be cali-
brated, with such a calibration depending upon the optimal 
phase-field profile. In this work, the Projected Successive 
Over-Relaxation algorithm (PSOR) utilized by Marengo 
et al. [8] to impose irreversibility for low-order phase-field 
brittle fracture formulations is considered in the context of 
high-order formulations. This algorithm relies on an itera-
tive scheme of Gauss–Seidel type for the solution of linear 
systems and takes a suitable projection that allows for a rig-
orous enforcement of the irreversibility of damage, therefore 
providing direct applicability and computational efficiency, 
without needing to calibrate any penalty parameter.

In 2012, Borden et al. [9] extended the brittle quasi-static 
model proposed in [6] to the dynamic case and showed that 
the phase-field method is able to capture branching and coa-
lescence phenomena also in dynamics. Later, Borden et al. 
[10] proposed a fourth-order phase-field problem, for which 
Negri [11] rigorously proved its Γ-convergence. The increased 
regularity of this high-order phase-field profile leads to 
increased accuracy of the strain energy implying that stresses 
will be more accurate with respect to a low-order formulation. 
To discretize within a Galerkin framework this functional that 
involves the bi-Laplacian of the phase-field, at least C1-con-
tinuous shape functions are required. This can be relatively 
easily achieved in the context of Isogeometric Analysis (IgA), 
introduced by Hughes et al. [12] in 2005 with the original 
aim to bridge the gap between Finite Elements Analysis and 
Computer Aided Design. Starting from the pioneering work 
of Borden et al. [10], the phase-field fourth-order model, for 
which IgA represents a natural modeling framework able 

to easily handle its high-order continuity requirements, has 
attracted a lot of attention given its ability to represent the 
crack pattern with a coarser mesh with respect to low-order 
formulations. For example, Nguyen-Thanh et al. [13] applied 
it to polycrystalline materials using a novel approach based 
on the isogeometric meshfree collocation method, while 
Schillinger et al. [14] considered an isogeometric hybrid 
collocation-Galerkin formulation that provides a consistent 
way of weakly enforcing Neumann boundary conditions and 
multi-patch interface constraints. Nguyen et al. [15] focused 
on a phase-field higher-order model using a combination of 
IgA and the Virtual Uncommon-Knot-Inserted Master–Slave 
algorithm, suitable to deal with non-conforming meshes and 
multi-patch problems, to locally refine the area where the 
crack is expected to propagate. Goswami et al. [16] instead 
proposed an adaptive re-meshing technique that uses T-splines 
and features an h-refinement strategy whose activation is 
based on a threshold value of the phase field, while Proserpio 
et al. [17] introduced a multi-patch technique to study higher-
order phase-field methods for shells based on a multistep 
predictor–corrector algorithm for adaptive local refinement 
using LR NURBS.

In this work, we provide an in-depth comparison of low- 
and high-order formulations for phase-field brittle fracture that 
underlines the computational advantages of high-order models 
discretized within an isogeometric framework. To compare the 
two models, a quantitative accuracy study that relies on the 
evaluation of the effective toughness is performed following 
Borden et al. [10]. However, this approach is affected by the 
measurement of the fracture length, whose evaluation is not 
straightforward in the case of complicated phase-field paths, 
such as curved or branched ones. However, we can handle 
such complex patterns using an image-based algorithm featur-
ing an automatic skeletonization technique of the fracture. In 
all numerical tests, irreversibility is rigorously imposed using 
the PSOR algorithm that can be directly combined with the 
isogeometric discretization of the considered high-order func-
tional. All our numerical tests confirm the superior behavior of 
the fourth-order formulation. The structure of the paper is as 
follows. In Sect. 2, we briefly present the considered second- 
and fourth-order phase-field formulations that account for a 
different damaging behavior in tension and compression as 
in [18] focusing on a quasi-static evolution. Then, in Sect. 3 
we introduce the proposed numerical approximation strategy 
focusing on the rigorous solution of the phase-field problem 
using the PSOR algorithm that finds direct application within 
the adopted isogeometric discretization. Section 4 provides 
extensive numerical testing that showcases the advantages 
of the fourth-order formulation over the second-order one. 
Given the evolutionary nature of the phase-field problem, par-
ticular attention is devoted on possible strategies to impose 
a phase-field initial condition, as detailed in Appendix A, 
while an extensive description of the proposed crack tracking 
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image-based algorithm can be found in Appendix B. Finally, 
we draw our conclusions in Sect. 5.

2 � Phase‑field variational formulations

In this section, the considered phase-field formulations are 
shortly summarized. Following [10], we define the reference 
domain Ω ⊂ ℝ

N (where N is the dimension of the problem). 
Dirichlet boundary conditions are applied on 𝜕ΩD ⊆ 𝜕Ω , while 
Neumann boundary conditions are given on 𝜕ΩN ⊆ 𝜕Ω with 
�ΩD ∪ �ΩN = �Ω and �ΩD ∩ �ΩN = � . Therefore, the admis-
sible deformations u belong to the space:

while the phase-field function d , which may be regarded as a 
smooth regularization of the sharp crack, belongs to the set

respectively, for second-order and fourth-order formulations.
Strictly speaking, the phase field d should take values in 

[0, 1] (with d = 0 and d = 1 corresponding to the unbroken and 
fully broken material states, respectively). Here we are choos-
ing instead d ≥ 0 which, a priori, allows for d > 1 . However, in 
the evolution the staggered scheme will select (by optimality) 
a phase-field d taking values in [0, 1]. Therefore, we adopt the 
weaker constraint d ≥ 0 which is more convenient from both 
the mathematical and numerical point of view.

The fact that the evolution of the phase-field d will take 
values in [0, 1] is, roughly speaking, related to the optimal 
profile in Γ-convergence (see below).

2.1 � Energy functionals

We assume small strains, i.e., � = �
su (with �s denoting the 

symmetric part of the gradient operator) and therefore, for 
quasi-static brittle fracture, the total energy functionals (for 
second- and fourth-order formulations) take the form:

Here, Wext(u) ∶= ∫
Ω
b ⋅ u dΩ + ∫

�ΩN
t ⋅ u d�Ω is the usual 

external work functional, where b and t are body and surface 
force densities, respectively. In Eq. (1), E(u, d) is the elastic 
strain energy and is defined as

where, as proposed in [5, 18], �±
0

 are taken, respectively, as

Uu ∶= {u ∈ H1(Ω;ℝN) ∶ u = ū on 𝜕ΩD},

U
ii
d
∶= H1(Ω;[0,+∞)) = {d ∈ H1(Ω) ∶ d ≥ 0} ,

U
iv
d
∶= H2(Ω;[0,+∞)) = {d ∈ H2(Ω) ∶ d ≥ 0} ,

(1)Πii,iv(u, d) ∶= E(u, d) + GcD
ii,iv(d) −W

ext(u).

(2)

E(u, d) ∶= ∫Ω

�(�(u), d) dΩ = ∫Ω

(
�(d) �+

0
(�(u)) + �−

0
(�(u))

)
dΩ,

The volumetric strain �v is defined as �v = � ∶ I , where I is 
the identity tensor and �±

v
∶= ⟨�v⟩± denote its positive and 

negative part, while �d ∶= � −
1

N
�v I is the deviatoric strain; 

K > 0 and 𝜇 > 0 are the bulk and shear moduli, respectively. 
The monotonically decreasing function �(d) = (1 − d)2 + � 
describes the degradation of the stored energy due to 
evolving damage and satisfies the following properties: 
�(0) = 1 + � , �(1) = 0 , and ��(1) = � , while 𝜂 > 0 , with 
� ≈ 0 , circumvents the full degradation of �+

0
 by leaving 

an artificial elastic remainder in the positive part of the free 
energy when d approaches the limit value 1, see, e.g., [6].

In Eq. (1), the term Dii,iv denotes the phase-field energy 
functionals: 

where 0 ≤ l0 << 1 is the internal (phase-field) length, while 
� denotes the gradient and ∇2 the Laplacian operators. In 
the above integrals, the coefficients are chosen in such a way 
that the phase-field energy provides an approximation of the 
(N−1)-dimensional measure of the crack (see, e.g., [11]); the 
product of Dii,iv and the material toughness Gc > 0 gives the 
energy dissipated during fracture propagation.

2.1.1 � Optimal profiles

In this subsection, we briefly recall the optimal profiles of the 
phase field. For second order formulations the optimal pro-
file dii is the minimizer of the energy ∫

ℝ

(
l−1
0
d2 + l0|d�|2

)
dx 

under the assumptions d(0) = 1 and d(x) → 0 as |x| → ∞ . 
The solution (plotted in Fig. 1) is

which is easily computed using the Euler–Lagrange 
equation:

Instead, for the considered fourth-order theory, the optimal 
p rof i l e  i s  ob t a ined  min imis ing  t he  energy 
∫
ℝ

(
l−1
0
d2 +

1

2
l0|d�|2 + 1

16
l3
0
|d��|2

)
dx under the assumptions 

d(0) = 1 , d�(0) = 0 and d(x) → 0 , d�(x) → 0 as |x| → ∞ . The 
closed-form solution is

(3)
�+
0
(�(u)) ∶=

1

2

(
K
(
�+
v

)2
+ �|�d|2

)
, �−

0
(�(u)) ∶=

1

2

(
K
(
�−
v

)2)
.

(4a)D
ii(d) ∶= ∫Ω

1

2l0

(
d2 + l2

0
|�d|2)dΩ ,

(4b)D
iv(d) ∶= ∫Ω

1

2l0

(
d2 +

l2
0

2
|�d|2 + l4

0

16

(
∇2d

)2
)
dΩ ,

dii(x) = exp

(
−|x|
l0

)
,

l2
0
d��(x) − d(x) = 0 for x > 0.
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which is smoother than dii (as it may be noticed in Fig. 1) 
and is computed by means of the Euler–Lagrange equation:

2.2 � Variational formulations within a quasi‑static 
evolution

The evolution t → (u(t), d(t)) ∈ Uu × U
ii,iv

d
 is characterized 

(at least in the steady state regime) by two ingredients: 
equilibrium and power identity (or, equivalently, energy 
conservation).

2.2.1 � Evolution in terms of energy variations

For simplicity we assume that the external forces 
are independent of time. For the displacement field 
u , equilibrium, in terms of energy variations, reads 
�uΠ

ii,iv(u, d)[�u] = 0 for every admissible variation 
�u ∈ {H1(Ω;ℝN) ∶ �u = 0 in �ΩD} . For the phase-field d , 
equilibrium is slightly different, as indeed, by irreversibility 
it is equivalent to �dΠii,iv(u, d)[�d] ≥ 0 for every admissible 
variation �d ≥ 0 . Taking the time derivative of the energy 
(assuming differentiability) the power identity reads

As u̇ = 0 on �ΩD it follows that 𝜕uΠii,iv(u, d)[u̇] = 0 and thus 
the above identity boils down to

div(x) = exp

(
−|2x|
l0

)(
1 +

|2x|
l0

)
,

l4
0
d(iv)(x) − 8l2

0
d��(x) + 16 d(x) = 0 for x > 0.

Π̇ii,iv =
dΠii,iv

dt
(u, d) = 𝜕uΠ

ii,iv(u, d)[u̇] + 𝜕dΠ
ii,iv(u, d)[ḋ] = 0.

In conclusion, (in the steady state regime) the evolution 
t → (u(t), d(t)) is characterized by the following system:

2.2.2 � Evolution in terms of PDEs

Clearly

and thus the equilibrium of u is equivalent to the system of 
PDEs

where the phase-field stress tensor � is given by

For the phase-field it is convenient to distinguish between 
Πii and Πiv . For Πii we have that the variational form is (see 
also [8, §A])

which is the variational form that we solve numerically. Inte-
gration by parts gives

Let us turn to the fourth-order formulation. In this case the 
variational form is

𝜕dΠ
ii,iv(u, d)[ḋ] = 0.

(5)

⎧
⎪⎨⎪⎩

𝜕uΠ
ii,iv(u, d) = 0,

𝜕Πii,iv(u, d) ≥ 0,

𝜕dΠ
ii,iv(u, d)[ḋ] = 0, ḋ ≥ 0.

�uΠii,iv(u, d)[�u] = ∫Ω
���(�(u), d):�(�u) dΩ

− ∫Ω
b ⋅ �u dΩ − ∫�ΩN

t ⋅ �u d�Ω,

(6)

⎧⎪⎨⎪⎩

� ⋅ � + b = 0 in Ω

u = ū on 𝜕ΩD

� ⋅ n = t on 𝜕ΩN ,

� ∶= ���(�(u), d) = �(d) ���
+
0
(�(u))+

���
−
0
(�(u)) = �+ + �−.

(7)
�dΠii(u, d)[�d] = ∫Ω

−2(1 − d)�+
0 (�(u))�d dΩ

+
Gc

l0 ∫Ω

(

d �d + l20 ∇d ∇�d
)

dΩ,

(8)

�dΠii(u, d)[�d] = ∫Ω
−2(1 − d)�+

0 (�(u))�d dΩ

+
Gc

l0 ∫Ω

(

d − l20 ∇
2d
)

�d dΩ

+ Gc l0 ∫�ΩN

(�d ⋅ n)�d d�Ω.
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Fig. 1   Second-order versus fourth-order phase-field 1D profiles
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which corresponds to the variational form that we solve 
numerically. Integrating by parts we get

3 � Numerical discretization strategy

Due to the irreversibility of the fracture phenomenon, the 
problem is path dependent and its solution requires a time 
integration of the mechanical model enforcing irreversibility 
in time.

3.1 � Time discretization

First, let us consider a discretization of the time interval. 
Given u

n−1 and d
n−1 at time t

n−1 , we seek u
n
 and d

n
 , such that

Introducing the increment Δd as independent variable, we 
get the variational inequality:

By linearity of �dΠii,iv with respect to Δd , we can further 
write

which will be the linear complementary problem to be 
solved numerically, see (18).

(9)

�dΠ
iv(u, d)[�d] = ∫Ω

−2(1 − d)�+
0
(�(u))�d dΩ

+
Gc

l0 ∫Ω

(
d �d +

l2
0

2
∇d∇�d +

l4
0

16
∇2d∇2�d

)
dΩ,

(10)

�dΠiv(u, d)[�d] = ∫Ω
−2(1 − d)�+

0 (�(u))�d dΩ

+
Gc

l0 ∫Ω

(

d −
l20
2
∇2d +

l40
16

∇4d

)

�d dΩ

+
Gc l0
2 ∫�Ω

(((

�d −
l20
8
�
(

∇2d
)

)

⋅ n
)

�d +
l20
8
∇2d(��d ⋅ n)

)

d�Ω.

(11)

⎧⎪⎨⎪⎩

�uΠ
ii,iv(un, dn) = 0,

�dΠ
ii,iv(un, dn) ≥ 0,

�dΠ
ii,iv(un, dn)[dn − dn−1] = 0, dn ≥ dn−1.

(12)
{

�dΠ
ii,iv(un, dn−1 + Δdn) ≥ 0,

�dΠ
ii,iv(un, dn−1 + Δdn)[Δdn] = 0, Δdn ≥ 0.

(12 bis)

{
�dΠ

ii,iv(un,Δdn) + �dΠ
ii,iv(un, dn−1) ≥ 0 ,

(�dΠ
ii,iv(un,Δdn) + �dΠ

ii,iv(un, dn−1))[Δdn] = 0 , Δdn ≥ 0 .

System (11) is conveniently solved in a staggered 
manner, namely considering sequences of minimization 
problems, such that the energy of the system is alterna-
tively minimized with respect to the displacement and the 
phase-field variable. First of all, we define the solution 
spaces Uu and Uii,iv

d
:

and

Therefore, we introduce the auxiliary sequences ui and di 
defined recursively by the following staggered scheme: [3]:

where i = 1, 2, ..,m is the i-th staggered iteration up to con-
vergence, and then we set un = um and dn = dm . Further 
details on the staggered scheme are given in Appendix C.

3.2 � Spatial discretization with a focus 
on the the phase‑field problem

For simplicity of notation, we disregard both the time vari-
able and the staggered iteration index (i.e., we drop sub-
scripts (.)n or superscripts (.)i ), thereby focusing our discus-
sion on the spatial discretization. Adopting the Galerkin 
approach, we consider the approximate solution spaces 
U
h
u
⊆ Uu and Uh

d
⊆ U

ii,iv

d
 and the approximate trial spaces 

V
h
𝛿u

⊆ V𝛿u ( V�u ∶= {�un ∈ H1(Ω;ℝnd ) ∶ �un = 0 on �ΩD} ) 
and (Vii,iv

𝛿d
)h ⊆ V

ii,iv

𝛿d
 (   ii

d : = {�dn ∈ H1(Ω):�dn ≥ �dn−1},
 iv
d : = {�dn ∈ H2(Ω):�dn ≥ �dn−1}).
While the solution of the balance of linear momentum 

equation (6) for both the investigated phase-field formula-
tions requires H1-minimum regularity, the discretization 
of the variational inequality (12) demands basis func-
tions with different minimum continuity requirements, 
namely H1 for the second-order formulation and H2 for 
the fourth-order one. Thus, given these high-order con-
tinuity requirements, IgA represents a natural modeling 
framework to compare the considered formulations. 
To this end, we consider the same dicretization choice, 
namely quadratic C1-continuous B-splines or non-uniform 
rational B-splines (NURBS) for both second-order and 
fourth-order phase-field approaches.

U
u
∶= {un ∈ H1(Ω;ℝN) ∶ un = ūn on 𝜕ΩD},

 ii
d : = {dn ∈ H1(Ω):dn ≥ dn−1}

 iv
d : = {dn ∈ H2(Ω):dn ≥ dn−1}.

(13)

{
ui ∈ argmin{Πii,iv(ui, di−1) ∶ ui ∈ Uu, } ,

di ∈ argmin{Πii,iv(ui, di) ∶ di ∈ U
ii,iv

d
with di ≥ dn−1} ,
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3.2.1 � Bivariate NURBS discretization

Without loss of generality, we restrict our attention to bivari-
ate NURBS as all results provided in the numerical sec-
tion comprise plane strain examples. For more details on 
the construction and properties of these functions, we refer 
interested readers to [12, 19, 20] and references therein.

The physical domain Ω ⊂ ℝ
2 is the image of the 

parametric domain Ω̃ = [0 1]2 through the mapping 
F ∶ � ∈ Ω̃ → x ∈ Ω , such that every point � = (�1, �2) is 
mapped onto its physical image x . Then, to characterize 
IgA multivariate shape functions, we introduce a compact 
notation, such that the vector-index i = {i1, i2} describes 
the actual position of the bivariate basis function in the 
tensor-product structure and p = {p1, p2} is the vector of 
polynomial degrees. Therefore, bidimensional geometries 
S(�) are constructed combining bivariate NURBS basis 
functions Ri,p with the control point vector P̂i and read

Consequently, starting from Eq. (14) we proceed to intro-
duce the approximate global displacement uh and phase-field 
variable dh , as well as the virtual displacements �uh and 
phase field �dh as

where with superscripts (.)u and (.)d we highlight the dis-
placement and phase-field discretizations, such that 
Rd
i,p

= Ri,p , while

Then, as our aim is to provide an extensive comparison 
of the phase-field second- and fourth-order formulations 
described in Sect. 2, the two models differ only in the mini-
mization of the fracture surface density functional (), while 
the displacement problem within a staggered iteration (11) 
is the same. Therefore, we focus our spatial discretization 
description on the phase-field problem only. To evaluate the 
positive part of the free energy density, we also introduce the 
approximate strain as

where, adopting Voigt’s notation, Bu
i,p

 is the compatibility 
matrix defined as

(14)S(�) =
∑
i

Ri,p(�)P̂i.

(15)

u ≈ uh =
∑
i

Ru
i,p

ûi, 𝛿u ≈ 𝛿uh =
∑
i

Ru
i,p

𝛿ûi,

d ≈ dh =
∑
i

Rd
i,p

d̂i, 𝛿d ≈ 𝛿dh =
∑
i

Rd
i,p

𝛿d̂i,

Ru
i,p

=

[
Ri,p 0

0 Ri,p

]
.

(16)�h =
∑
i

Bu
i,p

ûi,

To treat the surface terms in Eqs. (7) and (9), we need to 
further detail the phase-field gradient and Laplacian approxi-
mations as well their virtual counterparts as

where Bd
i,p

 is the matrix of the shape function derivatives

while Cd
i,p

 is the second-derivative shape functions vector 
that reads

3.3 � Symmetric linear complementarity problem

In this work, we focus on the rigorous solution of the problem 
that arises from the constrained minimisation of the total energy 
with respect to the phase-field variable, which once spatially dis-
cretized turns into a Symmetric Linear Complementarity Prob-
lem (SLCP) that can be handled in a straightforward manner 
via the PSOR [21], also in the case of the considered high-order 
formulation. The irreversibility is enforced on the phase-field 
increment, and, therefore, we rewrite this relation highlighting 
its dependence upon Δd for a fixed staggered iteration i:

where the current phase-field solution at the control points is 
d̂
i
= Δd̂

i
+ d̂n−1 , the phase-field solution d̂n−1 is known from 

the previous step n − 1 , and the displacement ûi is fixed. The 

Bu
i,p

=

⎡
⎢⎢⎢⎢⎣

�Ri,p

�x1
0

0
�Ri,p

�x2
�Ri,p

�x2

�Ri,p

�x1

⎤
⎥⎥⎥⎥⎦
.

(17)

�d ≈ �dh =
∑
i

Bd
i,p

d̂i, �𝛿d ≈ �𝛿dh =
∑
i

Bd
i,p

𝛿d̂i,

∇2d ≈ ∇2dh =
∑
i

Cd
i,p

d̂i, ∇2𝛿d ≈ ∇2𝛿dh =
∑
i

Cd
i,p

𝛿d̂i,

Bd
i,p

=

⎡⎢⎢⎣

�Ri,p

�x1
0

0
�Ri,p

�x2

⎤⎥⎥⎦
,

Cd
i,p

=
[
�2Ri,p

�x2
1

+
�2Ri,p

�x2
2

]
.

(18)

[Δd̂i]T �dΠii,iv(ûi, d̂n−1 + Δd̂i)

= (Δd̂i)T
[

�dΠii,iv(ûi,Δd̂i)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Qi
ii,iv(û

i, d̂n−1)Δd̂
i
+ qiii,iv(û

i, d̂n−1)

+ �dΠii,iv(ûi, d̂n−1)
]

= (Δd̂i)T
[

Qi
ii,iv(û

i, d̂n−1)Δd̂
i
+ q̃iii,iv(û

i, d̂n−1)
]

,



Engineering with Computers	

vector-quantity in the squared brackets is the sum of a lin-
ear term in Δd̂

i
 (i.e., Qi

ii,iv
 is constant) and a constant vector 

q̃i
ii,iv

 . In Eq. (18), the ii, iv-subscript denotes once again the 
matrix/vector discretized quantities Qi

ii,iv
 and q̃i

ii,iv
 that will be 

detailed below, according to the order of the adopted phase-
field theory. The constitutive matrix Qi

ii,iv
 and the vector q̃i

ii,iv
 

read, respectively

where the free energy matrix � and the vector � , obtained 
from the spatial discretization of the elastic energy func-
tional (2), are

The discretized positive part of the free energy density in (2) 
can be introduced as

where Pv and Pd read, respectively:

while H+(x) = max(0, x) is the positive Heaviside function 
acting on the trace of the discretized strain tensor (16). The 
constant dissipation matrix �ii,iv in Eq. (19)1 that is obtained 
from the spatial discretization of the phase-field energies 
(7), (9) is detailed according to the considered phase-field 
ii, iv-order theory as

Then, regardless the order of the considered theory the rigor-
ous solution of the constrained phase-field problem turns to 
be equivalent to the SLCP:

(19)Qi
ii,iv

∶= �(ûi) + Gc �ii,iv, q̃i
ii,iv

∶= Qi
ii,iv

d̂n − �(ûi),

(20)

(

�(ûi)
)

ij: = ∫Ω
2�+

0 (û
i)Ri,p Rj,p dΩ,

(

�(ûi)
)

i: = ∫Ω
2�+

0 (û
i)Ri,p dΩ.

𝜓+
0
(ûi) =

1

2
�T
h

(
H+(�h ∶ I)K Pv + 𝜇 Pd

)
�h,

(21)Pv =

⎡⎢⎢⎣

1 1 0

1 1 0

0 0 0

⎤⎥⎥⎦
, Pd =

⎡⎢⎢⎣

4∕3 − 2∕3 0

−2∕3 4∕3 0

0 0 1

⎤⎥⎥⎦
,

(22)

(
�ii

)
ij
∶= ∫Ω

(
l−1
0

Ri,p Rj,p + l0 Bd
i,p
Bd
j,p

)
dΩ,

(
�iv

)
ij
∶= ∫Ω

(
l−1
0

Ri,p Rj,p +
l0

2
Bd
i,p
Bd
j,p

+
l3
0

16
Cd

i,p
Cd

j,p

)
dΩ.

(23)

⎧⎪⎨⎪⎩

(Δd̂
i
)T
�
Qi

ii,iv
Δd̂

i
+ q̃i

ii,iv

�
= 0�

Qi
ii,iv

Δd̂
i
+ q̃i

ii,iv

� ≥ 0, Δd̂
i ≥ 0,

where the first equality, i.e., the complementarity condition, 
defines the discretized form of the phase-field activation 
condition, the first inequality defines the region of linear 
elastic regime, and the second inequality enforces the irre-
versibility condition [8].

4 � Numerical results

The aim of this section is to provide an exhaustive compar-
ison in terms of accuracy between the considered second- 
and fourth-order models. To this end, we first study two 
tests providing a straight-line fracture pattern (hereafter 
referred to as “simple" crack pattern): the double canti-
lever beam (DCB) [10, 16] and the single edge notched 
(SEN) tensile test [6]. To carry out an in-depth study of 
the accuracy, as in [10], tests with more complex crack 
patterns and geometries are also considered, i.e., the SEN 
shear test [9, 16], the asymmetric double pre-notch [22], 
and the quarter of annulus. Following [10], the accuracy 
evaluation is based on an estimate of the fracture length, 
which we compute using an image-based algorithm (see 
Appendix B) that we test for progressively more complex 
crack patterns. Given the evolutionary nature of the phase-
field problem, particular attention is devoted to the impo-
sition of the initial crack-field condition. Specifically, we 
represent this physical discontinuity with an initial pre-
field, that we compare with a state of the art method, such 
as the H0 method proposed in [9]. In Appendix A, we 
investigate the role of the phase-field initial condition at 
the control points or of the interpolated phase-field (IPF) 
variable approach, which we test against a well established 
literature benchmark, i.e., the centre-cracked plate test 
[23].

4.1 � Double cantilever beam

The double cantilever beam test is often used to study 
accuracy [10]. The specimen is characterized by a 
square geometry of side equal to 1 mm, internal length 
l0 = 0.015 mm, material toughness Gc = 0.01 kN/mm, and 
Young Modulus and Poisson’s ratio E = 100 kN/mm2 and 
� = 0.25 , respectively. A quasi-static displacement-con-
trolled loading history is considered, characterized by 7 
loading steps: starting from u0 = 0.01 mm, we use an incre-
ment Δu = 5 ⋅ 10−3 mm up to the maximum displacement 
umax = 0.04 mm. A 7.5 ⋅ 10−3 mm pre-field is imposed with 
the H0 method, while geometry and boundary conditions 
are summarized in Fig. 2.

To compare the accuracy between the second- and 
fourth-order models we consider several uniform meshes 
of mesh-size determined as a function of the internal 
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length l0 , namely h = {l0, l0∕2, l0∕4, l0∕6} . More details 
on mesh-relevant quantities are summarized in Tab. 1. All 
analyses are performed with quadratic shape functions 
with C1-continuity.

Following [10], for each mesh, the change in dissipated 
energy ΔD and the change in crack length Δa between the 
loading steps i and j is computed. The effective toughness 
is evaluated as

(24)GEff
c

=
ΔD

Δa
=

Dj −Di

aj − ai
.

For this test, the differences ΔD and Δa are evaluated by 
taking into account the first and last loading steps: i = 1 and 
j = 7. Then, to assess the accuracy, the relative error on the 
toughness is computed as

All results related to the error evaluations for this test are 
summarized in Tables 2 and 3, whereas Fig. 3 shows the 
accuracy trend for the second- and fourth-order functionals. 
It can be observed that the fourth-order model is always 
more accurate than the second-order one when comparing 
the two problems with the same mesh size. Moreover, it can 
be observed that the second- and fourth-order models have 
comparable accuracy when the latter formulation comprises 
a mesh-size two times larger.

More specifically, the second-order formulation with four 
elements in the internal length and the fourth-order one with 
two elements showcase a comparable relative toughness error 
(see Tables 2-3). This allows us to compare the two methods 

(25)Error =
G

Eff
c − Gc

Gc

=
ΔG

Eff
c

Gc

.

Fig. 2   Top row: geometry and boundary conditions for the DCB test. Bottom row: from left to right, first and last loading step crack pattern, 
respectively, for the second-order functional considering h = l

0
∕4

Table 1   Mesh features

h Elements Control points
[mm] (–) (–)

l
0

4624 4900
l
0
∕2 18,496 19,044

l
0
∕4 72,900 73,984

l
0
∕6 160,000 161,604
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for the same accuracy and appreciate a substantial reduction 
of the total computational time guaranteed by the fourth-order 
model. In fact, for the second-order functional with h = l0∕4 , 
the elapsed time for the analysis is 20 h 20 min against the 
fourth-order one with h = l0∕2 that completes the analysis in 
3 h 32 min, which corresponds to a 80–85% time saving1 and 
a 30% saving in the number of iterations. In Tabs. 2 and 3, we 
also evaluate the convergence rate [10] as

(26)Conv. rate =
log

(
(ΔG

eff
c )k+1

)
− log

(
(ΔG

eff
c )k

)

log
(
hk+1

)
− log

(
hk
) ,

where, with two subsequent meshes hk and hk+1 , we consider 

the corresponding absolute errors log
(
(ΔG

eff
c )k

)
 and 

log
(
(ΔG

eff
c )k+1

)
 , respectively, that are computed as the dif-

ference between the effective toughness and the material 
toughness (24) (i.e., ΔGEff

c = G
Eff
c − Gc ). From Tabs. 2–3 it 

can be seen that for this test the fourth-order model con-
verges nearly two times faster than the second-order one.

4.2 � SEN tensile test

In the SEN tensile test, the specimen presents a square 
geometry with a side of 1 mm. The considered material 
properties are: internal length l0 = 0.015 mm, material 
toughness Gc = 2.7 ⋅ 10−3 kN/mm, Young modulus E = 210 
kN/mm2 , and Poisson ratio � = 0.3 . The displacement-based 
loading history is characterized by a maximum displacement 
umax = 6 ⋅ 10−3 mm with a steady increment Δu = 3 ⋅ 10−4 
mm. This test considers a pre-crack of length equal to half 
the specimen side and is modeled by a pre-field imposed as 
an IPF as described in Appendix A. The load and boundary 
conditions are summarized in Fig. 4. In this study, two dif-
ferent mesh sizes are considered: h = l0∕2 corresponding 
to 18,496 elements and 19,044 control points, and h = l0∕4 
corresponding to 72,900 elements and 73,984 control points. 
The analyses are performed with quadratic shape functions 
with C1-continuity. The tests compare accuracy, cumulative 
computational time, and peak reactions of the considered 
second- and fourth-order formulations. As it can be seen 
in Fig. 5, the main difference from the DCB test is that in 
this case the final fracture length is equal to the side of the 
sample. This allows to have a reference value in the accuracy 
analysis, since the developed fracture length is always half of 
the sample side. As for the DCB test, the variation of fracture 

Table 2   DCB test: second-order 
model accuracy evaluation

h a
0

Δa G
Eff
c ΔG

Eff
c

Conv. rate Error

[mm] [mm] [mm] [kN/mm] [kN/mm] [–] [%]

l
0

0.1397 0.5000 0.0183 0.0083 – 82.9
l
0
∕2 0.1654 0.5441 0.0145 0.0045 0.883 45.1

l
0
∕4 0.1833 0.5704 0.0123 0.0023 0.968 23.2

l
0
∕6 0.1922 0.5750 0.0116 0.0016 0.895 16.4

Table 3   DCB test: fourth-order 
model accuracy evaluation

h a
0

Δa G
Eff
c ΔG

Eff
c

Conv. rate Error

[mm] [mm] [mm] [kN/mm] [kN/mm] [–] [%]

l
0

0.1544 0.5000 0.0175 0.0075 – 74.6
l
0
∕2 0.1801 0.5588 0.0129 0.0029 1.371 28.9

l
0
∕4 0.1944 0.5778 0.0110 0.0010 1.536 10.1

l
0
∕6 0.1987 0.5800 0.0105 0.0005 1.709 5.42

4 6 8 10 12 14
10-3

10-1

100

Fig. 3   DCB test. Comparison of accuracy at different mesh sizes

1  All tests were run on a PC with an Intel CORE i7 11th generation 
processor, 24 GB RAM, Windows 10.
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Fig. 4   SEN tensile test. Top row: geometry and boundary conditions. Bottom row: from left to right, reaction and dissipated energy curves 
obtained comparing the second-order formulation using h = l

0
∕4 and the fourth-order one with h = l

0
∕2

(a) Step 1 : initial condition (b) Step 18 : fracture propa-
gation in the domain

(c) Step 21 : total breakage
of the specimen

Fig. 5   SEN tensile test. Crack pattern of three different loading steps for the second-order functional considering h = l
0
∕4
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length and dissipated energy are evaluated between the first 
and the last loading steps, and the fourth-order model is 
always more accurate than the second-order one. The results 
in Tables 4 and 5 allow us to compare the two models for 
different mesh sizes. If we compare the fourth-order with 
h = l0∕2 and the second-order with h = l0∕4 , we notice that 
the fourth-order is more accurate than the second-one and 
the peak reactions are comparable (see Fig. 4). In terms of 
total time required by the analysis, the fourth-order model 
considering h = l0∕2 is more than four times faster than the 
second-order one with h = l0∕4 . Moreover, the convergence 
rate of the fourth-order functional is for this test approxi-
mately three times greater than that of the second-order one.

4.3 � SEN shear test

The accuracy study proposed in [10] considers tests with lin-
ear crack patterns only. In order to provide a comprehensive 
comparison of the considered models we turn our attention 
to the SEN shear test [7, 9, 16] which provides a more chal-
lenging crack pattern evolution (see Fig. 7).

The challenge in this case is the measurement of the crack 
length, which we propose to carry out by an image-based 
algorithm, as detailed in Appendix B. The sample considered 
in this test presents a square geometry with a side of 1 mm 
and the material properties are: internal length l0 = 0.01 
mm, material toughness Gc = 2.7 ⋅ 10−3 kN/mm, Young 
modulus E = 210 kN/mm2 , and Poisson ration � = 0.3 . A 
quasi-static displacement-control loading history is applied. 
It consists of 21 loading steps, with a minimum displace-
ment umin = 6 ⋅ 10−3mm, a steady increment Δu = 3 ⋅ 10−4 
mm and a maximum displacement umax = 12 ⋅ 10−3 mm. The 
initial pre-crack is located at y = 0 and x ∈ [0, 0.5] mm and 
is modeled with the technique of the interpolated phase-field 
variable pre-crack imposition (see Appendix A). The loading 
and boundary conditions are summarized in Fig. 6 (top row).

As for the SEN tensile test, two different mesh sizes are 
considered: h = l0∕2 with 40,401 elements and 41,209 con-
trol points and h = l0∕4 with 160,801 elements and 162,409 

control points. Quadratic shape functions of C1-continuity 
are used.

As already mentioned, for this test with a non straight 
crack pattern, the measurement of the crack length is not 
trivial. To do that, we use the imaged-based algorithm (see 
Appendix B) that allows us to easily track the curved crack 
pattern and, hence, to calculate the effective toughness and 
assess its accuracy. The effectiveness of the algorithm has 
been first validated by considering simple geometric figures 
whose a priori lengths are known, such as: a circle of unit 
radius, a horizontal segment, and a segment inclined of �
/4. For all cases, a good estimate of the object length was 
obtained. The results of the SEN shear test are summarized 
in Tables 6–7.

In addition, in this case, it can be observed that the fourth-
order functional considering h = l0∕2 showcases a relative 
error in term of Gc comparable to the second-order func-
tional with h = l0∕4 . Another consideration concerns the 
peak reaction: it can be seen in Fig. 6 that the second-order 
formulation with the finest mesh and the fourth-order one 
considering the coarsest mesh have the same peak value. 
Moreover the fourth-order case presents a rate of conver-
gence that is twice the one provided by the second-order for-
mulation. Furthermore, the fourth-order formulation allows 
for a four time faster analysis in terms of computational time 
and for a 30% reduction of the number of iterations.

4.4 � Quarter of annulus test

In this section, we study the accuracy of the analysis of a 
quarter of annulus. This provides a good test to compare 
the considered second- and fourth-order formulations in 
the case of a non-trivial geometry. The internal length is 
l0 = 0.02 mm, the toughness Gc = 2.7 ⋅ 10−3 kN/mm, the 
Young modulus E = 210 kN/mm2 , and the Poisson ratio 
� = 0.3 . The sample features an internal radius Ri = 1 mm 
and an external radius Re = 2 mm and considers simply 
supported constraints, positioned at x ∈ [Ri, Re], y = 0 

Table 4   SEN tensile test: 
second-order model accuracy 
evaluation

h G
Eff
c ΔG

Eff
c

Conv. rate Error Rn Time spent

[mm] [kN/mm] [kN/mm] [-] [%] [kN] [h:min]

l
0
∕2 3.395 ⋅ 10−3 6.947 ⋅ 10−4 - 25.7 0.652 08:45

l
0
∕4 3.275 ⋅ 10−3 5.749 ⋅ 10−4 0.273 21.3 0.640 33:41

Table 5   SEN tensile test: 
fourth-order model accuracy 
evaluation

h G
Eff
c ΔG

Eff
c

Conv. rate Error Rn Time spent

[mm] [kN/mm] [kN/mm] [-] [%] [kN] [h:min]

l
0
∕2 3.034 ⋅ 10−3 3.341 ⋅ 10−4 – 12.4 0.622 07:45

l
0
∕4 2.914 ⋅ 10−3 2.139 ⋅ 10−4 0.643 7.90 0.593 24:10
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Fig. 6   SEN shear test. Top row: geometry and boundary conditions. Bottom row: from left to right, reaction and dissipated energy curves 
obtained comparing the second-order formulation using h = l

0
∕4 and the fourth-order one with h = l

0
∕2

(a) Step 1 : initial condition (b) Step 16 : nucleation step (c) Step 21 : last loading
step

Fig. 7   SEN shear test. Crack pattern for three different loading steps for second-order functional considering h = l
0
∕4
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and x = 0, y ∈ [Ri, Re] . We impose a quasi-static displace-
ment-based loading history that applies one shear load at 
x ∈ [Ri, Re], y = 0 , in the direction of positive x and the 
other one at x = 0, y ∈ [Ri, Re] , in the direction of positive 
y. The loading history consists of 20 loading steps, with a 
steady increment Δu = 10−3 mm and a maximum displace-
ment umax = 1.9 ⋅ 10−2 mm. A pre-field phase-field point is 
imposed along the �∕4 inclined radius of the specimen using 
the H0 method [9].

The load setting and boundary conditions are summarized 
in Fig. 8, while the mesh is uniform over the body domain 
and in this study we consider four different mesh sizes as 
summarized in detail in Table 8.

To compute the effective toughness (24), we take into 
account the nucleation step and the step corresponding to the 
complete specimen rupture. Consequently, also in this case 
the fracture length coincides with the difference between 
the internal and external radii (see Fig. 9) as our geometry, 
boundary, and loading conditions are symmetric. We also 
highlight in Fig. 9 that the cracks obtained with a fourth-
order formulation are wider than in the case of the second-
order model because the comparison is made with different 
meshes: for the second-order, we use 4 elements to resolve 
the parameter l0 (namely we consider the classical rule of 
thumb present in the literature), whereas for the fourth-order 
model 2 elements are considered, resulting in a comparable 
level of accuracy but in a wider crack.

From Tables 9 and 10 it can be observed that also in this 
case the fourth-order model is more accurate than the sec-
ond-order one for the same mesh-size. It can be observed in 
Fig. 10 that the fourth-order model with mesh-size h = l0∕4 
showcases a comparable accuracy with respect to the sec-
ond-order model with mesh h = l0∕8 and for both tests the 
peak reactions are similar. If we compare the total elapsed 
times (normalized with respect to the analysis time of the 
corresponding second-order model, that features h = l0∕8 ), 
we observe that the fourth-order model allows to save ∼ 83 
% of the required computational time with respect to the 
second-order one.

In addition, for this test, we have that for the same mesh 
the fourth-order model is always more accurate than the 
second-order one and that the two models show compara-
ble accuracy with meshes twice as coarse, for the fourth-
order model, with significant savings in computational time, 
memory, and engineering quantities of interest, such as peak 
reactions.

Remark: If the pre-field is not introduced, the fracture 
nucleates along the constrained boundary. Then, two impor-
tant considerations follow: (i) due to the symmetry condi-
tions, it is more convenient for phase field to nucleate at the 
boundary, (ii) the fracture energy at the edge is relative to the 
detachment of the constrained boundary from the domain, 
so that a different Gc between the domain and the fixed edge 
should be considered. Another possible way to force the 
phase field to propagate inside the domain (and not along 
the constrained boundary) is to insert a band of width l0 in 
which we impose that the phase field is zero. This is equiva-
lent to imposing that the material is not damaged along the 
constrained edge.

4.5 � Asymmetric double pre‑notch test

This benchmark considered in [22] is more challenging 
because the crack pattern is characterized by two fractures 
that do not touch each other due to the occurrence of coales-
cence phenomena. The sample features a square geometry 
with a side of 1 mm. The internal length is l0 = 0.0075 mm, 
toughness Gc = 2.7 ⋅ 10−3 kN/mm, Young modulus E = 210 
kN/mm2 , and Poisson ratio � = 0.3 . The displacement-con-
trol loading history is characterized by a maximum displace-
ment umax = 6 ⋅ 10−3 mm and features a non-uniform load 
increment: Δu = 10−4 mm from u = 0 mm to u = 4 ⋅ 10−3 
mm and then Δu = 10−5 mm until the end. The analyses are 
performed with quadratic C1-continuous shape functions and 
locally refined (tensor-product) meshes. Namely, for the sec-
ond-order functional with h = l0∕4 , the minimum element 
size is 0.00125 mm in the area where the fracture propa-
gates (see Fig. 11) and maximum element size of 0.0125 

Table 6   SEN shear test: second-
order model accuracy evaluation

h Δa G
Eff
c ΔG

Eff
c

Conv. rate Error Rn Time spent

[mm] [mm] [kN/mm] [kN/mm] [-] [%] [kN] [h:min]

l
0
∕2 2.731 ⋅ 10−1 4.043 ⋅ 10−3 1.343 ⋅ 10−4 – 49.5 0.499 11:52

l
0
∕4 3.011 ⋅ 10−1 3.666 ⋅ 10−3 9.664 ⋅ 10−4 0.475 35.8 0.428 63:19

Table 7   SEN shear test: fourth-
order model accuracy evaluation

h Δa G
Eff
c ΔG

Eff
c

Conv. rate Error Rn Time spent

[mm] [mm] [kN/mm] [kN/mm] [-] [%] [kN] [h:min]

l
0
∕2 3.142 ⋅ 10−1 3.578 ⋅ 10−3 8.781 ⋅ 10−4 – 32.5 0.428 16:28

l
0
∕4 3.571 ⋅ 10−1 3.191 ⋅ 10−3 4.908 ⋅ 10−4 0.839 18.2 0.406 74:47
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Fig. 8   Quarter of Annulus test. Top row: geometry and boundary conditions. Bottom row: from left to right, reaction and dissipated energy 
curves obtained comparing the second-order formulation using h = l

0
∕8 and the fourth-order one with h = l

0
∕4

Fig. 9   Quarter of annulus test, 
total breakage crack pattern

(a) Second-order, h = l0/4 (b) Fourth-order, h = l0/2
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mm away from the propagation area. Instead, for the fourth-
order functional with h = l0∕2 the minimum element size is 
0.0025 mm in the area where the fracture propagates while 

maximum element size is equal to 0.025 mm away from the 
propagation area.

This test presents two non-aligned pre-cracks. They are 
positioned at ± 0.03 mm with respect to the x-axis and they 
are 0.2 mm long. To reduce the computational effort, the 
geometry is scaled down with respect to the one proposed 
by Molnar et al. [22]. Geometry and boundary conditions 
are then summarized in Fig. 11.

In Fig. 12, we compare the crack patterns corresponding 
to the final step for the second- and fourth-order function-
als. It can be seen that the fourth-order model captures the 
coalescence phenomenon well even when considering a 
mesh size h that is twice the one of the second-order model, 
resulting in a wider crack. We highlight that this leads to a 
computational effort that is significantly reduced; in fact the 
fourth-order analysis with the coarsest mesh requires only 
4 h 37 min while the second-order simulation with the fin-
est mesh and comparable expected level of accuracy needs 
22 h 01 min, entailing an 80% reduction in term of total time 
required by the analysis for the fourth-order model.

5 � Conclusions

In this work, we provide an exhaustive comparison of a sec-
ond- and a fourth-order formulations for phase-field brittle 
fracture. The investigated fourth-order model presents a higher 
order differential operator that can be discretized in a straight-
forward manner relying on the highly continuous properties of 
IgA shape functions, highlighting once again the flexibility of 
IgA in the context of modeling high order PDEs. We consider 
several benchmarks, with different level of complexity in terms 
of geometry and fracture patterns and compare the accuracy of 
the two considered formulations for different mesh sizes. For 
the same mesh, the fourth-order model is always more accurate 
than the second-order one, while we observe a comparable 
accuracy with meshes typically twice coarser for the fourth-
order model. This turns into a remarkable reduction in terms 
of total computational time required by the overall analysis. 
Inspired by the native field of application of Mumford–Shah 
functional, to compute the effective toughness in the error 
measure assessment, we propose to evaluate the crack length 
by means of an image-based algorithm that allows to measure 
the fracture length also for complex patterns. Furthermore, we 
investigate a different strategy to impose the initial pre-field 
that gives higher accuracy results with respect to a state-of-the-
art method. As the examined fourth-order formulation, once 
spatially discretized, turns out to be a SLCP, we propose to 
handle the irreversibility condition in a straightforward and 
rigorous manner using the PSOR scheme [8]. Among future 
works, we plan to consider the combination of the fourth-order 
phase-field formulation with other types of structures such as 
Kirchhoff–Love shells, also requiring C1-continuity, as well as 

Table 8   Mesh features

h Elements Control points
[mm] [–] [–]

l
0
∕2 10,000 10,404

l
0
∕4 40,000 40,804

l
0
∕6 90,000 91,204

l
0
∕8 160,000 161,604

Table 9   Quarter of annulus: second-order model accuracy evaluation

h G
Eff
c ΔG

Eff
c

Conv. rate Error Time

[mm] [kN/mm] [kN/mm] [-] [%] [h: min]

l
0
∕2 5.427 ⋅ 10−3 2.727 ⋅ 10−3 – 100.0 01:39

l
0
∕4 3.988 ⋅ 10−3 1.288 ⋅ 10−3 1.082 47.7 04:43

l
0
∕6 3.544 ⋅ 10−3 8.440 ⋅ 10−3 1.042 31.3 13:14

l
0
∕8 3.283 ⋅ 10−3 5.830 ⋅ 10−3 1.286 21.6 36:19

Table 10   Quarter of annulus: fourth-order model accuracy evaluation

h G
Eff
c ΔG

Eff
c

Conv. rate Error Time

[mm] [kN/mm] [kN/mm] [-] [%] [h: min]

l
0
∕2 4.735 ⋅ 10−3 2.035 ⋅ 10−3 – 75.4 01:28

l
0
∕4 3.488 ⋅ 10−3 7.881 ⋅ 10−3 1.368 29.2 06:32

l
0
∕6 3.147 ⋅ 10−3 4.470 ⋅ 10−3 1.399 16.6 09:28

l
0
∕8 2.936 ⋅ 10−3 2.360 ⋅ 10−3 2.220 9.00 29:31

3 4 5 6 7 8 9 10
10-3

10-1

100

Fig. 10   Quarter of Annulus test. Relative error versus mesh size 
h ∈ {l

0
∕2, l

0
∕4, l

0
∕6, l

0
∕8}
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to investigate the influence of the higher-order term in dynamic 
problems. Furthermore, we will analyze higher-order formula-
tions in the context of the AT1 model, where the aim will be 
to combine the computational advantage given by high-order 
formulations with the properties of the AT1 model, that, in 
contrast to AT2, introduces an elastic limit in the material.

Finally, among further developments we highlight the 
extension of this simulation framework to THB-splines adap-
tivity and multi-patch geometries [24].

Appendix A: Techniques to impose an initial 
phase‑field pre‑field condition

Pre‑field imposition via History variable

We briefly recall the H0 method proposed in [9] that is our 
starting point to impose an optimal initial phase-field solu-
tion at the control points d̂0 . Therefore, the initial strain 

history field H0 readapted for the adopted phase-field vari-
able convention (i.e., d = 0 undamaged material and d = 1 
fully broken material) is

where �(x, l) is the distance function from x to the discrete 
crack l we intend to model. Thus, the value of B in Eq. (27) 
can be derived substituting H0 into Euler equation for � = 0 
(see Appendix A in Borden et al. [9] for further details) 
obtaining:

and, thereby neglecting the high-order term ∇2d , we obtain 
the following simplified expression:

(27)H0 = B

{
Gc

2 l0
(1 −

𝜌(x,l)

𝛽
) 𝜌(x, l) ≤ 𝛽

0 𝜌(x, l) > 𝛽,

(28)−l0∇
2d + d =

2l0

Gc

(1 − d)H0,

Fig. 11   Asymmetric double 
pre-notch [22]. Left: geometry 
and boundary conditions. Right: 
local refinement strategy

Fig. 12   Asymmetric double 
pre-notch. Crack pattern cor-
responding to the final loading 
step

(a) Second-order, h = l0/4 (b) Fourth-order, h = l0/2
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Then, it follows that

where we have defined c depending on the considered prob-
lem mesh size h. Namely, for a bivariate problem, if 
h =

l0

nell0

≈ 10−k (i.e., nell0 is the number of elements that 

resolves l0 and k ∈ ℕ ), we take c = 1 − 10−(k+1) . For exam-
ple, if nell0 = 4 and l0 = 0.01 mm, we have that 
h =

0.01

4
= 2.5 ⋅ 10−3 mm and therefore k = 3 and 

c = 1 − 10−(4) = 0.9999 . Now that H0 is defined, we high-
light in Eq. (27) that the distance � is limited by the param-
eter � which is set to be equal to the mesh size h (namely, in 
the considered SEN cases in Section (4) we “activate” one 
row of elements). Thus, to obtain the optimal initial phase-
field solution at the control points d̂0 , we substitute �+ with 
H0 definition (27) into Eq. (7) for the second-order and Eq. 
(9) for the fourth-order which turn out to be in both cases 
linear systems in d̂0 once spatially discretized. The computed 
value of d̂0 becomes then the staggered phase-field initial con-
dition at step 0 (see point 2 in Algorithm 2 in Appendix C).

Pre‑field imposition on the interpolated phase‑field 
variable

All the analyses considered in this work are carried out 
within an IgA framework. Therefore an initial phase-field 
solution corresponding to a pre-crack should be imposed 

(29)d =
2l0

Gc

(1 − d)H0 = (1 − d)B.

(30)B =
c

1 − c
,

on the interpolated phase-field variable rather than at the 
control points. Thus, we impose the pre-field inside the 
domain through an L2-projection. The projection is carried 
out by means of a matrix (M)ij = ∫

Ω
Ri,p Rj,p dΩ and a vector (

Fd

)
i
= ∫

Ω
Ri,p c dΩ , where c is the value of the phase-field 

variable at the Gauss-point that we imposed equal to 0.9999 
(i.e., actual value corresponding to fully broken material state) 
near the discontinuity and 0 elsewhere. It follows that the pre-
field d̂0 is computed as the solution of the linear system:

Then, we test the introduced IPF technique against the 
H0 method considering the Centre-Cracked Plate test [23]. 
For this benchmark, we consider the second-order phase-
field model introduced in Eq. (7). The sample has a rectan-
gular geometry of 20x200 mm with an initial crack length 
a0 = 10 mm located at y = 0 and presents internal length 
l0 = 0.5 mm [16], toughness Gc = 7 ⋅ 10−6 kN/mm, Young 
modulus E = 7 ⋅ 104 kN/mm2 , and Poisson ratio � = 0.22 . 
The displacement-control load history is characterized 
by a maximum displacement umax = 12 ⋅ 10−3 mm and an 
adaptive load increment as follows: Δu = 2.5 ⋅ 10−4 mm 
from umin until u = 10−1 mm and Δu = 2.5 ⋅ 10−5 mm from 
u = 10−1 mm until the final loading step. All analyses for 
this benchmark are performed with quadratic C1-continuous 
shape functions, a uniform mesh of 64,000 elements and 
65,764 control points.

As we can observe from Fig. 13 and Table 11, the IPF 
exhibits a relative error that in this case is 1/50 of the one 
obtained with the H0 method, thereby providing a good 
alternative to the H0 technique.

(31)M ⋅ d̂0 = Fd.

Fig. 13   From left to right: 
geometry and boundary condi-
tions for the Centre-Cracked 
Plate Test, IPF versus H

0
 meth-

ods for second-order phase-field 
modeled with C1-continuous 
shape functions
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Appendix B: Image‑based algorithm 
to measure the crack length of complex 
patterns

As pointed out in Eq. (24), the evaluation of the crack length 
has a crucial role to study the accuracy of the investigated 
formulations. Therefore, inspired by the native field of appli-
cation of Mumford–Shah functional [25], i.e., image seg-
mentation, we propose an algorithm to assess the fracture 
length by means of an imaging technique.

The algorithm detailed in Algorithm 1 is implemented in 
MATLAB. In this case the input file has extension “*.fig” and 
presents the same pixel numbers in x and y direction. From 
the input file (1), a matrix containing the figure information 
is obtained. From this variable, the image background, related 
to the blue that represents the entire material, is set as black 
and then a greyscale figure is obtained (2) by averaging the 
three color channels R, G, and B. Thanks to this procedure, a 
unique intensity value related to the grey level of each pixel 
is obtained. This value is between 0 and 1: 0 corresponds, 
with the conventions introduced in the previous sections, to 
the unbroken material, while 1 represents the fully damaged 
material state. This greyscale figure is the starting point for 
the binarization process of the figure (3). This is done by con-
sidering a threshold, that allows us to set equal to 1 all the 
pixels that have a value higher than the established threshold. 
In this way, we can identify an object composed by pixels 
that only have a value equal to 1 representing the fracture: 
the higher the threshold value, the smaller the thickness of 
the obtained binary object. Performing several tests, it was 
observed that to get a faithful representation of the fracture, 
this threshold should be chosen between values 0.7 and 0.85. 
From the binarized object we can obtain the skeleton of the 
fracture (4) relying on the the so-called skeletonization algo-
rithm that extrapolates the skeleton of a 2D figure identified 
by curve. The last two steps consist of measuring the line and 
converting it to millimeters (for the units of measure chosen 
in our tests). The length of the line is calculated as half the 
perimeter of the skeleton. We emphasize the importance of 
considering half the length, because the MATLAB function 
“regionprops” [26] calculates the perimeter of the object, 
which is twice the length of the line. Finally, the obtained 
measurement is converted from pixels to, e.g., millimeters.

Algorithm 1   Image-based algorithm to measure the crack 
length of complex patterns

Input: High resolution crack pattern contour plot
1: Convert input image into an RGB matrix (imRGB)
2: Convert the RGB figure into a gray scale image imGS

3: imGS = mean(imRGB,3)
4: Binarize the image using a threshold for the gray scale (THG)
5: imGS > THG → imBIN = imGS

6: Compute the so called “skeleton object”
7: sk = bwskel(imBIN)
8: Compute the perimeter of the object
9: rp = regionprops(sk, ’Perimeter’)

10: Compute the length of the fracture in [px]
11: a = 0.5 · rp.Perimeter
12: Convert crack length a from [px] into [L] (e.g., [mm])
Output: Length of fracture a in [mm]

The pixel length side is calculated by means of a 
proportion depending on the resolution of the utilized 
monitor. For example in the considered SEN shear test 
[7], displayed in Fig.  14, 1  mm is equivalent to 762 
pixels considering a 15.6" monitor with a resolution of 
1920 × 1080 pixels. Furthermore we highlight in Fig. 14 
that this technique can easily capture complicated frac-
ture patterns, namely cracks that feature changes in slope 
and curves with an error of four pixels in the origin of 
the axes, correspond to 1.31 ⋅ 10−3 mm.

Appendix C: Staggered algorithm features

The adopted staggered algorithm is sketched more spe-
cifically in Algorithm 2 for a fixed loading step n ≥ 1 : 
first, we tackle the non-linearity given by the energy 
split employing a classical Newton–Raphson scheme that 
checks the L2-norm of the discretized balance of linear 
momentum �uΠ . Therefore, for every jth Newton–Raph-
son iteration we control

where ���NR,u = 10−9 kJ, according to [27], until conver-
gence and then, if criterion (32) is met, we set ui = uj . 
Conversely, to handle the nonlinearity stemming from the 
constrained minimization problem, we utilize the PSOR 
algorithm [5, 21], as addressed in Sect. 3.3, after the spa-
tial discretization of the system of equations. To control the 
convergence of the algorithm, we check the L∞-norm of the 
variation of the phase-field increment at the control points 
between two subsequent iterations k − 1 and k:

(32)Res
j

NR,u
= ‖𝜕uΠ(uj, di−1)‖L2 < ���NR,u,

Resk
PSOR,Δd

= ‖Δdk − Δdk−1‖L∞ < ���PSOR,Δd,

Table 11   Pre-field imposition comparison in Centre-Cracked Plate 
test

Method Peak reaction Error
[kN] [%]

H
0
 [9] 6.63 ⋅ 10−2 2.87

IPF 6.83 ⋅ 10−2 0.06
Analytical [23] 6.83 ⋅ 10−2 –
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where ���PSOR,Δd = 10−4 [8], thereby setting Δdi = Δdk 
and updating the new staggered i-th phase-field solution 
di = dn−1 + Δdi . Since the adopted staggered algorithm is 
structured so that we first solve the balance of linear momen-
tum, after the solution of the phase-field problem our exit 

criterion controls that the L2 - norm of the out-of-balance 
work is lower than a prescribed tolerance, namely:

where ���stag = 10−7 kJ (see [27]).

Resstag = ‖𝜕uΠ(ui, di)[Δui]‖L2 < ���stag,

Algorithm 2   Staggered iteration algorithm for n ≥ 1

Input: load solution (un−1, dn−1) from step n− 1 and boundary conditions ūn, tn at
current step n

1: initialize i = 0
2: set (u0, d0) := (un−1, dn−1)
3: while Resstag ≥ TOLstag do
4: i → i+ 1
5: given di−1 = dn−1 +∆di−1, find ui solving ∂uΠ(ui,di−1) = 0
6: given ui, find ∆di solving ∂dΠii,iv(ui, di)[∆di] = 0 with ∂dΠii,iv(ui,di) ≥ 0,

∆di ≥ 0
7: compute Resstag = ‖∂uΠ(ui,di)[∆ui]‖L2

8: end while
9: (un, dn) → (ui,di)

Output: (un, dn)
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Fig. 14   Fracture skeleton 
(yellow line) superimposed to 
the original binarized image 
(see top-left figure). From the 
top-right figure following the 
reported numbering order: 
details of the initial zone, point 
of curvature, and final part of 
the fracture, respectively
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