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The Laplace eigenvalue problem on circular sectors has eigenfunctions with corner singularities. Standard 
methods may produce suboptimal approximation results. To address this issue, a novel numerical algorithm that 
enhances standard isogeometric analysis is proposed in this paper by using a single-patch graded mesh renement 
scheme. Numerical tests demonstrate optimal convergence rates for both the eigenvalues and eigenfunctions. 
Furthermore, the results show that smooth splines possess a superior approximation constant compared to their 
0-continuous counterparts for the lower part of the Laplace spectrum. This is an extension of previous ndings 
about excellent spectral approximation properties of smooth splines on rectangular domains to circular sectors. 
In addition, graded meshes prove to be particularly advantageous for an accurate approximation of a limited 
number of eigenvalues. Finally, a hierarchical mesh structure is presented to avoid anisotropic elements in the 
physical domain and to omit redundant degrees of freedom in the vicinity of the singularity. Numerical results 
validate the eectiveness of hierarchical mesh grading for simulating eigenfunctions of low and high regularity.

1. Introduction

The Laplace eigenvalue problem

−Δ =  in Ω

on arbitrary domains Ω ⊂ℝ is of great signicance in numerous areas 
of applied mathematics. Not only is the Laplace spectrum itself crucial 
for many applications, e.g., due to the geometric information it contains 
[1,2], but it also appears during the analysis of other partial dieren-
tial equations which describe everyday physical processes. For instance, 
the wave equation in two spatial dimensions describes the vibration of 
a membrane and its analytical solution can be derived by applying sep-
aration of variables and then solving the resulting Laplace eigenvalue 
problem [3]. For some one-, two- or three-dimensional model domains 
such as lines, rectangles, circular sectors or balls, the exact Laplace 
eigenvalues and eigenfunctions have been determined in the literature 
[4–6]. Yet, for more general domains, an analytical solution is usually 
not known and thus numerical methods are needed.

Isogeometric analysis (IGA) has been proven to provide powerful 
tools for an excellent approximation of the Laplace eigenvalues, espe-
cially in one dimension and for two-dimensional domains of rectangular 
nature [7–15]. However, the Laplace eigenfunctions of the underlying 
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domains are always smooth and the question arises whether the spec-
trum of more complex domains, particularly in the presence of singu-
larities and non-smooth eigenfunctions, can also be approximated well 
with IGA. For this purpose, circular sectors serve as a perfect model 
domain as they contain a typical corner singularity in the center and 
exact solutions of the Laplace eigenvalue problem are known such that 
spectral approximation properties can be veried numerically. In ad-
dition, one of the initial motivations of IGA can be explored during the 
discretization process: the exact representation of the computational do-
main geometry through the use of NURBS basis functions [16]. In this 
way, circular sectors can be parameterized exactly, which is not possible 
with nite elements [17].

Certainly, the corner singularity of circular sectors needs to be ad-
dressed during the numerical solution process to obtain a proper approx-
imation of the Laplace spectrum. Many dierent approaches have been 
proposed in the literature and can be grouped into two categories. Either 
the mesh is locally rened towards the singularity or the approximation 
space is enriched by singular functions [18]. Sometimes, both ideas are 
combined. Within the framework of IGA, a method of the rst category 
has been contributed where the parametric mapping is modied to ob-
tain a grading of the mesh [19]. In a related work, which belongs to 
the rst and second category, this idea has been combined with an en-
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Fig. 1. Circular sectors Ω with angle  and the corresponding boundaries. (a)  = 3
2
. (b)  = 2.

richment of the basis by singular functions [20]. Another method of 
the rst category is graded CutIGA where computational background 
meshes are cut arbitrarily to represent the singularity while retaining op-
timal approximation results [21]. Further possibilities include adaptive 
approaches or trimmed methods, both of which have gained signicant 
attention in the eld of isogeometric analysis recently, see for instance 
the overviews works [22,23].

The existing results about powerful spectral approximation proper-
ties have been achieved using standard single-patch IGA or very closely 
related methods. Therefore, we aim for an approach that is as close as 
possible to the standard method to maintain comparability between our 
results and the existing ones. In this context, we decide to use a method 
of the rst category and we prefer to work with an exact representation 
of circular sectors instead of a trimmed approach. Since we consider a 
model problem where the location of the singularity is known, the lo-
cal renement can be set up a priori and there is no need for adaptive 
strategies which require more computational eort.

From nite element methods, it is well known that mesh grading is 
a simple and powerful tool for local a priori renement towards cor-
ner singularities [24–27]. This idea has already been transferred to IGA 
by using a multi-patch approach [28]. However, the authors require the 
isogeometric mapping to be smooth, at least in the points towards which 
the mesh is locally rened. We contribute a new approach to overcome 
this restriction by using the single-patch polar-like parameterization of 
circular sectors which is singular at the conical point. Due to the sin-
gularity of the geometry mapping, a few basis functions that span the 
standard isogeometric approximation space are singular [29–31]. Ap-
proximation properties in such cases have so far only been shown for 
smooth functions on singularly parameterized triangles in [32]. Our 
contribution presents a numerical extension of this work to singularly 
parameterized circular sectors for a specic class of functions. Precisely, 
we consider numerical approximation properties for the set of eigen-
functions which possibly contains both smooth and singular functions 
depending on the angle of the circular sector.

The outline of this paper is as follows. In Section 2 we introduce 
the model problem, derive an analytical solution and investigate crucial 
regularity properties of the eigenfunctions. Section 3 contains a short 
overview about the basics of splines and NURBS and the corresponding 
notation which is then used in Section 4 to explain single-patch iso-
geometric mesh grading for circular sectors. In Section 5 we provide 
numerical results showing that the proposed method guarantees opti-
mal convergence rates for the Laplace eigenpairs and hence is a powerful 
approach to solve the considered model problem. Moreover, we demon-
strate that smooth splines are particularly useful on graded meshes for 
computing multiple eigenvalues and consider a combination with a hier-
archical renement scheme. In Section 6, we nally conclude our main 
ndings and list some ideas for further research.

In the sequel, the symbol  is used for a generic positive constant, 
which may be dierent at each occurrence and is always independent 
of the mesh parameter ℎ.

2. The Laplace eigenvalue problem on circular sectors

The main subject of this paper is the Laplace eigenvalue problem on 
circular sectors. Therefore, we provide the fundamental equations and 
boundary conditions, describe the analytical solutions and point out key 
regularity properties of the resulting eigenfunctions in this section.

2.1. The model problem

We consider the Laplace eigenvalue problem

−Δ =  in Ω ,

 = 0 on Γ , (2.1)



= 0 on Γ ,

where the model domain Ω = {( cos,  sin) ∈ ℝ2 ∶ 0 <  < 1, 0 <
 < } is a circular sector of angle  ∈ (0, 2]. The Dirichlet bound-
ary Γ = {(cos, sin) ∶ 0 ≤  ≤ } consists of the circular edge and 
the Neumann boundary Γ = {( cos,  sin) ∶ 0 ≤  < 1,  ∈ {0, }}
is given by the angle legs. We illustrate the model domain and its bound-
ary for  = 3

2 and  = 2 in Fig. 1.
From a physical point of view, the model problem (2.1) describes 

the vibrations of a membrane stretched over a circular sector. The mem-
brane is assumed to be xed at the circular Dirichlet boundary Γ . For 
 = 2, we can think of a circular drum with a straight crack which is 
represented by the two angle legs. In this context, it is natural to choose 
Neumann boundary conditions on Γ . For the sake of simplicity, we 
stick to this choice of boundary conditions and do not discuss further 
combinations although our choice is not essential for the main ndings 
of this paper.

2.2. Analytical solution

The analytical solution of our model problem (2.1) is well known and 
there is a vast amount of literature about it. According to Rayleigh, the 
theory of vibrations of a circular membrane has rst been introduced 
by Clebsch [4,5]. Later, Rayleigh himself deduced the eigenmodes of 
circular sectors. We can not provide an exhaustive list here, but mention 
a few other works in which the problem has also been discussed [33,34]. 
In this section, we recapitulate the main ndings. We adopt the notation 
used in the book [6, Chapter 10.2], where the vibrations of a circular 
membrane are derived in detail.

Let  be the Bessel function to the order  of the rst kind and 
 , be the -th root of  for  ∈ ℕ. Then, the exact eigenfunctions 
can be expressed in polar coordinates by

 ,(,) =  ,  ( , ) cos( ) (2.2)
with  , ∈ ℝ and  =  

 for  ∈ ℕ0. Throughout the paper, we set 
 , = 1 for all  ∈ ℕ0 and  ∈ℕ for the sake of simplicity and we call 
the functions (2.2) the Laplace eigenfunctions or eigenmodes of circular 
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sectors. The corresponding Laplace eigenvalues and eigenfrequencies of 
circular sectors are given by

 , = 2
 ,

and  , =


 , =  , , (2.3)

respectively. Ordering the eigenvalues and eigenfrequencies in ascend-
ing order, we denote them by  and  =


 for  = 1, 2, … , respec-

tively. The zeros of Bessel functions and their asymptotic behavior have 
been investigated extensively in the literature [34–39]. In particular, the 
sequences of eigenvalues ()∈ℕ and eigenfrequencies ()∈ℕ satisfy

0 < 1 ≤ 2 ≤…→∞ and 0 < 1 ≤ 2 ≤…→∞ . (2.4)

2.3. Regularity of the eigenfunctions

In this section, we delve into the regularity analysis of the Laplace 
eigenfunctions of circular sectors. To begin, we point out a useful rep-
resentation of the considered eigenmodes.

Remark 2.1. The eigenfunctions (2.2) can be written in separated vari-
ables as a product

 ,(,) = ()Φ() (2.5)

of a smooth function Φ() = cos( ) satisfying ‖‖‖Φ()‖‖‖∞(Ω)
≤ 

 for 
all  ∈ ℕ0, and a Bessel function () =  ( , ), which contains all 
the information about the regularity of the eigenfunctions. Typically, 
the solutions of boundary value problems on circular sectors are given 
by a sum of such products. Thus, the product form (2.5) is a particular 
property of the considered eigenvalue problem (2.1).

Motivated by Remark 2.1, we introduce some general properties of 
Bessel functions to investigate the regularity of the Laplace eigenfunc-
tions (2.2). A useful asymptotic representation for small arguments of 
Bessel functions of the rst kind to any order  ∉ {−1, −2, −3, … } is 
given by Abramowitz and Stegun [35, Formula 9.1.7, p. 360],

() ∼
1

Γ( + 1)


2


for → 0 . (2.6)

As  =   for  ∈ ℕ0, the formula (2.6) yields that every eigenfunction 
 , for  ∈ ℕ0,  ∈ ℕ satises

 ,(,) =  ( , ) cos( ) ∼ 1
Γ( + 1)

 , 

2


cos( )

=  for → 0 . (2.7)
Hence, the Laplace eigenfunctions of circular sectors behave like the 
functions  ↦  in the vicinity of the conical point, which is crucial to 
assess their regularity.

Furthermore, we have an integral representation of Bessel functions 
of the rst kind to any order  with Re() > − 1

2 [35, Chapter 9.1],

() =



2



1∕2 Γ

 + 1

2




∫
0

cos( cos) sin2  d .

Thus, for  ∈ℝ with  > 0, it is

() ≤



2



1∕2 Γ

 + 1

2




∫
0

sin
2  d = () (2.8)

with () ∶=


1
2



1∕2 Γ

 + 1

2




∫
0

sin
2  d. Combined with the asymp-

totic behavior (2.7), we obtain

 ,(,)
 =

 ( , ) cos( ) ≤ () ( , ) cos( )
≤   (2.9)

in Ω for all  ∈ ℕ0 and  ∈ ℕ.
Next, we consider the gradient ∇ =



1

, 
2


of an eigenfunction 

 =  , for  ∈ ℕ0,  ∈ ℕ with 1 and 2 being Cartesian coordinates 
in ℝ2. The eigenmodes can be dierentiated using the recursion relation 
for Bessel functions [6, Chapter 10.5],

 ′
() =



()− +1() . (2.10)

By changing to polar coordinates and setting  =  ,, it follows

|∇| ≤ 





+
1








= 

⎛
⎜⎜⎜⎝





 ( )




cos( )


+ 1


 ( )  sin( )

⎞
⎟⎟⎟⎠

= 


 


 ( )−  +1( )

cos( )


+ 1


 ( )  sin( )


(2.11)

≤ 
2


 ( )+  +1( )



≤ 
2


() + ()+1



≤  −1 (2.12)
with  = (, ), where we use the bound (2.8) of the considered 
Bessel functions and  ≤ 1. We repeat the same argumentation for the 
higher derivatives

 = ||
1

1 2
2

for multi-indices  =


1
2


∈ ℕ2

0

and obtain


 ,
 ≤ −|| in Ω (2.13)

for all  ∈ ℕ0,  ∈ ℕ and  ∈ ℕ2
0, where || = 1 + 2.

We are now able to determine the Sobolev regularity of the eigen-
modes in the following lemma. Let (Ω) for  ∈ ℕ0 be the classical 
Sobolev spaces and 2(Ω) = 0(Ω). For general  ≥ 0 with  ∉ ℕ0 the 
notation (Ω) is used for the Sobolev-Slobodeckij spaces.

Lemma 2.2. Let  ∈ ℕ0 and  ∈ ℕ. Then, the Laplace eigenfunctions of 
circular sectors (2.2) satisfy

 , ∈(Ω) for all  ≥ 0 with  <  + 1 .

Proof. Estimate (2.13) shows that the eigenfunction  , and its 
derivatives can be controlled by the function  ↦  and its derivatives. 
It is well known that  ↦  is in (Ω) for all  ≥ 0 with  −  > −1, 
that is, for  <  + 1. □

In general, the regularity result in Lemma 2.2 is not sharp. For in-
stance, consider  = 0. Then, it is 0 = 0 and thus Lemma 2.2 only yields 
that 0 , ∈ (Ω) for all  < 1. Indeed, the eigenfunctions 0 , are of 
a dierent nature in the sense that

 ,(0,0) =


1 if  = 0 ,
0 if  > 0 .

Nevertheless, it is clear that the functions 0 , are at least in 1(Ω), 
since they are solutions of the weak form of our model problem (2.1), 
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which will be discussed more detailed in Section 2.5. In fact, Lemma 2.2
is sharp for all eigenmodes  , with  ∉ ℕ0, as the following lemma 
shows.

Lemma 2.3. Let  ∈ ℕ0 and  ∈ℕ. The Laplace eigenfunctions of circular 
sectors (2.2) satisfy

 , ∈(Ω) for all  ≥ 0

if and only if  =  
 ∈ ℕ0. For  ∉ ℕ0, the regularity result shown in 

Lemma 2.2 is sharp.

Proof. First, let  =  
 ∉ ℕ0. Exploiting the asymptotic representation 

(2.7), we observe that  , behaves like  ↦  for  → 0. Consequently, 
it is  , ∉(Ω) for all  ≥  + 1 and Lemma 2.2 is sharp.

Now, let  ∶=  =  
 ∈ ℕ0. Estimate (2.9) yields that

,(,) = (, ) cos() ≤  |cos()| .
With the relations between Cartesian and polar coordinates, (, ) =
( cos,  sin) and 2 = 2 + 2, it holds

,(,) ≤  |cos()|

= 


⌊ 
2 ⌋

=0
(−1)



2


(sin)2 (cos)−2



= 



⌊ 
2 ⌋

=0
(−1)



2


2 (sin)2 −2 (cos)−2



= 



⌊ 
2 ⌋

=0
(−1)



2


2 −2


=  0(,)

with the polynomial 0(, ) ∶=
⌊ 
2 ⌋

=0
(−1)



2


2 −2 , where we used 

a multiple-angle formula for the cosinus [40, Chapter 2.6.2]. Hence, 
it is clear that  ∈ 2(Ω). Next, we recall estimate (2.11) and apply a 
multiple-angle formula for the sinus [40, Chapter 2.6.2] to obtain

|∇,| ≤ 




(, )− , +1(, )


cos()


+ 1


(, ) sin()



≤ 
((

−1 − +1
) |cos()|+ −1 |sin()|)

≤ −1 (|cos()|+ |sin()|)

= −1
⎛
⎜⎜⎝



⌊ 
2 ⌋

=0
(−1)



2


(sin)2 (cos)−2



+


⌊ −1
2 ⌋

=0
(−1)




2 + 1


(sin)2+1(cos)−2−1



⎞
⎟⎟⎟⎠

≤ −1
⎛
⎜⎜⎝

⌊ 
2 ⌋

=0



2


|sin|2 |cos|−2

+
⌊ −1

2 ⌋
=0




2 + 1


|sin|2+1 |cos|−2−1

⎞
⎟⎟⎟⎠

≤ −1
⎛
⎜⎜⎝

⌊ 
2 ⌋

=0



2


|sin|2−1 |cos|−2

+
⌊ −1

2 ⌋
=0




2 + 1


|sin|2 |cos|−2−1

⎞
⎟⎟⎟⎠

= 
⎛
⎜⎜⎝

⌊ 
2 ⌋

=0



2


| sin|2−1 | cos|−2

+
⌊ −1

2 ⌋
=0




2 + 1


| sin|2 | cos|−2−1

⎞
⎟⎟⎟⎠

= 

⎛
⎜⎜⎜⎝

⌊ 
2 ⌋

=0



2


||2−1 ||−2 +

⌊ −1
2 ⌋

=0




2 + 1


||2 ||−2−1

⎞
⎟⎟⎟⎠

≤ 1(|| , ||)
with the polynomial

1(,) =
⌊ 
2 ⌋

=0



2


2−1−2 +

⌊ −1
2 ⌋

=0




2 + 1


2−2−1.

Note that for some of the inequalities above it is essential that  ∈ [0, 1]
and |sin| ∈ [0, 1]. Thus, it follows that ∇, ∈ 2(Ω) and , ∈
1(Ω). Similarly, for higher derivatives , for any multi-index 
 ∈ ℕ2

0, there exists a polynomial || such that

,
 ≤ ||(|| , ||) .

Therefore, it is , ∈2(Ω) for all  ∈ℝ2 and we obtain

, ∈(Ω) for all  ∈ ℕ0 .

Using an interpolation argument for the Sobolev-Slobodeckij spaces, it 
immediately follows that , ∈ (Ω) for all  ≥ 0 and the lemma is 
proven. □

Throughout this paper, we will call the eigenfunctions  , with 
 ∈ ℕ0 and  ∈ ℕ smooth in the sense of Lemma 2.3. To conclude the 
regularity analysis, we derive some simple but illustrative conclusions 
from the two lemmata above.

Remark 2.4.

1. For all  ∈ ℕ0 and  ∈ ℕ it is  , ∈1(Ω).
2. The eigenfunctions 0 , of circular sectors with arbitrary angles 

 ∈ (0, 2] are smooth for all  ∈ ℕ.
3. Consider a circular sector whose angle  satises 

 ∈ ℕ, that is, 
 = 

 for some  ∈ ℕ. Then all its Laplace eigenfunctions  ,
are smooth as  =  

 ∈ ℕ for all  ∈ ℕ0.
4. If the angle of a circular sector can not be expressed as a product of 
a rational number and , i.e.,  ≠  for all  ∈ℚ, it is  =  

 ∉ ℕ
for all  ∈ ℕ, that is, none of the eigenfunctions  , for  > 0 is 
smooth.

5. The eigenfunctions 1 , of circular sectors with angles  ∈ (, 2]
do not belong to 2(Ω) for all  ∈ ℕ. They contain the strongest 
singularity among all eigenfunctions, which is of type 1 near the 
conical point of the circular sector, where 1 = 

 ∈
[
1
2 ,1


.
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Fig. 2. Illustration of 12 Laplace eigenfunctions  , of the unit disk with crack. Columns from left to right:  = 0,  =
1
2
,  = 1,  =

3
2
. Rows from top to bottom: 

 = 1,  = 2,  = 3.

Fig. 3. Visualization of the Bessel functions 
to the orders  ∈ {0,0.5,1,… ,5.5,6} in the interval [0,10].

2.4. Eigenfunctions and eigenfrequencies of the unit disk with crack

To gain a deeper understanding of the model problem (2.1) and its 
exact solutions, we will now discuss a specic example: the circular 
sector with angle  = 2, which represents the unit disk with a crack 
located along the positive -axis, as presented in Fig. 1b. All other cir-
cular sectors with smaller angles  < 2 can be interpreted as analogs 
or even simplications of the case  = 2.

The Laplace eigenfunctions of the unit disk with crack are given by 
the formula (2.2) with  = 

2 for  ∈ ℕ0. Utilizing the regularity results 
outlined in Section 2.3, we categorize the eigenmodes into two types:

(A)  ∉ ℕ0, i.e.,  = 2 + 1 for  ∈ ℕ0. The corresponding eigenfunc-
tions + 1

2 ,
have a singularity of type + 1

2 and are only contained 
in (Ω) for all  <  + 3

2 , recall Lemma 2.2. As an example, the eigenmodes 1 , and 3 , for  ∈ {1, 2, 3} have singularities of 
type 1∕2 and 3∕2, respectively, and are presented in the second and 
fourth columns of Fig. 2. It is noteworthy that the crack is clearly 
visible since the angular functions  ↦ cos() = cos(( + 1

2 )) are not 2-periodic.
(B)  ∈ ℕ0, i.e.,  = 2 for  ∈ ℕ0. As indicated in Lemma 2.3, the cor-

responding eigenfunctions , are smooth for all  ∈ ℕ. Exemplary 
eigenfunctions, namely 0 , and 2 , for  ∈ {1, 2, 3}, are show-
cased in the rst and third columns of Fig. 2. Here, the crack is not 

visible in graphical representations of these eigenfunctions. This ab-
sence is due to the product form (2.5) of the eigenmodes and the 
2-periodicity of the angular functions  ↦ cos( ) = cos( ).

As indicated in Remark 2.1, the regularity properties of the Laplace 
eigenmodes of circular sectors are based on the corresponding Bessel 
functions. In Fig. 3, we visualize the Bessel functions  to the orders 
 ∈ {0, 1∕2, 1, 3∕2, … , 11∕2, 6}, which are all the half-integer and inte-
ger Bessel functions with zeros in the interval [0, 10]. The asymptotic 
behavior (2.6) can be clearly observed, i.e.,  () ∼  for  → 0, and 
0 diers from the other Bessel functions in the sense that 0(0) = 1
and  (0) = 0 for  ≠ 0. Bessel functions of half-integer order can be 
expressed explicitly [6, Chapter 10.5]. For instance, it holds

 1
2
() =

√
2


sin ,

which once again highlights the presence of a singularity of type 1∕2 in 
the Bessel function  1

2
.

Table 1 provides the eigenfrequencies of the unit disk with crack 
within the interval [0, 10], listed in ascending order. They are given by 
the zeros of the functions depicted in Fig. 3. Each eigenfrequency is 
associated with a specic root of a Bessel function, indicating the cor-
responding eigenfunction and its regularity. The eigenfrequencies 2 , 
8 and 20, highlighted in dark orange, correspond to eigenfunctions 
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Table 1
The eigenfrequencies (2.4) of the unit disk with crack are listed in ascend-
ing order within the interval [0, 10]. As per equation (2.3), each eigenfre-
quency corresponds to the -th root of a Bessel function 

, denoted 
by  =  , for some  ∈ {0, 1∕2, 1, 3∕2, … } and  ∈ ℕ. Additionally, 
the corresponding eigenfunctions and their regularity are provided, where 
 > 0 is an arbitrarily small constant. Rows containing eigenfunctions with 
the strongest and second strongest singularity are highlighted in dark or-
ange and light orange, respectively.
Eigenfrequency Value  = ∕2  Eigenfunction Regularity
1 2.40 0 1 0,1 smooth
2 3.14 1∕2 1 1∕2,1 3∕2−(Ω)
3 3.83 1 1 1,1 smooth
4 4.49 3∕2 1 3∕2,1 5∕2−(Ω)
5 5.14 2 1 2,1 smooth
6 5.52 0 2 0,2 smooth
7 5.76 5∕2 1 5∕2,1 7∕2−(Ω)
8 6.28 1∕2 2 1∕2,2 3∕2−(Ω)
9 6.38 3 1 3,1 smooth
10 6.99 7∕2 1 7∕2,1 9∕2−(Ω)
11 7.02 1 2 1,2 smooth
12 7.59 4 1 4,1 smooth
13 7.73 3∕2 2 3∕2,2 5∕2−(Ω)
14 8.18 9∕2 1 9∕2,1 11∕2−(Ω)
15 8.42 2 2 2,2 smooth
16 8.65 0 3 0,3 smooth
17 8.77 5 1 5,1 smooth
18 9.10 5∕2 2 5∕2,2 7∕2−(Ω)
19 9.36 11∕2 1 11∕2,1 13∕2−(Ω)
20 9.42 1∕2 3 1∕2,3 3∕2−(Ω)
21 9.76 3 2 3,2 smooth
22 9.94 6 1 6,1 smooth

with the strongest singularity, 1∕2,1 , 1∕2,2 and 1∕2,3, respectively. Like-
wise, the frequencies 4 and 13, marked in light orange, belong to 
eigenfunctions with the second strongest singularity, 3∕2,1 and 3∕2,2, 
respectively, and so forth. Note that the occurrence of eigenfunctions 
characterized by identical singularities becomes rare as the frequencies 
increase. Loosely speaking, as  →∞, we observe that out of 2 eigen-
functions, approximately  contain a singularity of type 1∕2, 3∕2, and 
so on.

2.5. Numerical solution process

Having explored the analytical solutions of the Laplace eigenvalue 
problem on circular sectors, we move on to the corresponding vari-
ational problem, which can be solved numerically by a Galerkin ap-
proach, see [3, Section I.3] for more details. The weak formulation of 
our model problem (2.1) reads: Find (, ) ∈ℝ+ × 0 ⧵ {0} such that

(,) = (,) ∀ ∈ 0 , (2.14)
where we dene the spaces

 ∶=1(Ω) and 0 ∶= { ∈  ∶  = 0 on Γ} (2.15)
and the bilinear forms

 ∶  ×  →ℝ, (,) ∶= ∫
Ω

∇ ⋅∇d ,

 ∶  ×  →ℝ, (,) ∶= ∫
Ω

d .

Since both bilinear forms are bounded and  is coercive on 0, the eigen-
value problem (2.14) has an innite sequence of eigenvalues [3, Section 
I.4]

0 < 1 ≤ 2 ≤⋯ ↗ +∞

and corresponding eigenfunctions 1, 2, … ∈ 0.

Let further 0ℎ ⊂ 0 be an -dimensional subspace. The correspond-
ing discrete eigenvalue problem reads: Find (ℎ, ℎ) ∈ ℝ+ × 0ℎ ⧵ {0}
such that

(ℎ,ℎ) = ℎ (ℎ,ℎ) ∀ℎ ∈ 0ℎ , (2.16)
which yields a nite sequence of eigenvalues [3, Chapter 5]

0 < 1,ℎ ≤ 2,ℎ ≤⋯ ≤ ,ℎ

and corresponding eigenfunctions 1,ℎ, 2,ℎ, … , ,ℎ ∈ 0ℎ. Since 0ℎ is 
nite-dimensional, the discrete problem (2.16) is equivalent to a gener-
alized matrix eigenvalue problem. The resulting discrete eigenfunctions 
and eigenvalues converge to the continuous ones for ℎ → 0 if the spaces 
0ℎ are chosen appropriately. While nite element methods (FEM) typ-
ically employ continuous piecewise polynomials, IGA makes use of B-
splines and NURBS, a class of functions that will be introduced in the 
following section.

3. Basics of isogeometric analysis

We present the essential basics of isogeometric analysis and establish 
necessary notation, largely following the framework presented in the 
review paper [41]. A more detailed introduction can be found in the 
books [9] on isogeometric analysis and [42] on spline theory.

3.1. Univariate B-splines and NURBS

First, we introduce the concept of B-splines and NURBS in the uni-
variate case and provide a brief overview of common renement proce-
dures. Let  ∈ ℕ0 and  ∈ ℕ. We call Ξ ∶= {1, 2, … , ++1} a -open 
knot vector if

1 =⋯ = +1 < +2 ≤ +3 ≤⋯ ≤ −1 ≤  < +1 =⋯ = ++1 ,

where  ∈ ℝ for  = 1, … ,  +  + 1 is called the -th knot which is al-
lowed to occur repeatedly. Without loss of generality, we assume that 
1 = 0 and ++1 = 1 and hence all the knots are contained in the unit 
interval [0, 1]. Furthermore, we dene the vector  = {1, … , } of 
knots without repetitions, also called breakpoints, with

Ξ = {1,… , 1
⏞⏞⏟
1 times

, 2,… , 2
⏞⏞⏟
2 times

,… ,  ,… , 
⏞⏞⏞⏞⏞⏞⏟

 times

} ,

where  ∈ ℕ is the total number of pairwise dierent knots and  ∈ ℕ
for  = 1, … ,  denotes the multiplicity of the breakpoint  such that ∑

=1  =  +  + 1. For -open knot vectors, 1 =  =  + 1 always 
holds, and we assume  ≤  +1 for the internal knot multiplicities. The 
entries of  dene a mesh on the unit interval [0, 1].

From the given knot vector, B-spline basis functions of degree , de-
noted by

, ∶ [0,1]→ℝ,  ↦ ,( ) ,  = 1,2,… , ,

can be constructed using the iterative scheme as explained, for instance, 
in [9, Section 2.1]. They build a basis of the space of splines on the 
subdivision  , that is, piecewise polynomials of degree  with  − 
continuous derivatives at the breakpoints  ,  = 1, … ,  . Besides other 
characteristics, the B-spline basis functions are non-negative and form a 
partition of unity.

Classical splines face restrictions in representing important geome-
tries like conic sections. To overcome this limitation, non-uniform ratio-
nal B-splines (NURBS) are introduced, see [43] for more details. There-
fore, the weight function

 ( ) =


=1
 ,( )
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is determined by choosing positive constants  > 0,  = 1, … , , which 
are called weights. The NURBS basis functions are then dened by

,( ) =
 ,( )∑

=1  ,( )
=

 ,( )
 ( )

,  = 1,… , .

We denote the corresponding NURBS space by

(Ξ, ) = span


, ∶  = 1,… ,


.

The NURBS spaces can be rened through knot insertion and degree ele-
vation. In total, three renement types can be constructed by combining 
the algorithms. Knot insertion results in the classical mesh renement 
known as ℎ-renement, while degree elevation enables -renement. 
Consecutive application of degree elevation and knot insertion is called 
-renement. This approach allows to maintain the regularity at the in-
ternal knots of Ξ0 while enhancing dierentiability at all other knots. 
For a more detailed description of these renement procedures we refer 
the interested reader to [16], where they were initially introduced.

3.2. Bivariate B-splines and NURBS

Multivariate B-splines and NURBS are constructed as tensor products 
of their univariate counterparts. This section provides a summary of the 
main concepts and notation. The focus of our paper is on the analysis of 
circular sectors, so we set the spatial dimension  = 2 and specically 
consider bivariate B-splines and NURBS. However, all denitions and 
notations can be easily extended to higher dimensions.

Let  ∈ ℕ, the degrees  ∈ ℕ and the -open knot vectors Ξ =
{,1, ,2… , ,++1} be given for  = 1, 2. We dene the polynomial 
degree vector  = (1, 2) and the bivariate knot vector  = Ξ1 × Ξ2. 
Further, let  ∈ ℕ be the number of knots without repetition for each 
direction such that the corresponding univariate knot vectors of break-
points are given by  = {,1, ,2… , ,

} for  = 1, 2. They form a 
Cartesian grid in the parametric domain Ω = (0, 1)2, which denes the 
parametric Bézier mesh ,

 ∶=

 ⊂ Ω ∶ =(1 ,2) = (1,1 , 1,1+1) × (2,2 , 2,2+1),  ∈ 


,

(3.1)
where we introduce the set of multi-indices  = { = (1, 2) ∶ 1 ≤  ≤
 − 1,  = 1, 2}.

Bivariate B-spline functions are then dened by

, ∶ [0,1]2 →ℝ, ,() = 1 ,1 (1) 2 ,2 (2)

for  ∈  = { = (1, 2) ∶ 1 ≤  ≤  ,  = 1, 2}. The corresponding bivari-
ate NURBS basis functions read

,() =
 ,()

 ()
using the weight function

 () =

∈

 ,() , (3.2)

where we choose weights  > 0 for all  ∈  . The space of NURBS on 
the parametric domain is nally denoted by

(, ) = span


,(),  ∈ 


and the univariate renement algorithms mentioned in Section 3.1 can 
be generalized to the bivariate case.

NURBS surfaces in ℝ,  = 2, 3, are dened as linear combinations 
of the tensor product functions introduced above,

 () =

∈

 ,( ) , (3.3)

where each basis function is associated with a control point  ∈ ℝ, 
 ∈  . The  -image Ω =  (Ω) of the parametric domain Ω = (0, 1)2 is 
commonly referred to as the physical domain. Using this construction, 
exact parameterizations

 ∶ Ω→Ω

of various types of domains Ω ⊂ ℝ2, including circular sectors, can 
be obtained. For further details, the interested reader may consult the 
books [9,43,44].

To dene a mesh in Ω, we consider the image under  of the par-
tition given by the knot vectors without repetitions, i.e., each element 
 ∈  of the parametric Bézier mesh from (3.1) is mapped to an ele-
ment  =  () in the physical domain. We set

 ∶=

 ⊂Ω ∶ =  (),  ∈ 


,

which is commonly known as the physical Bézier mesh, or simply Bézier 
mesh. The meshes for the coarsest knot vector Ξ0 will be denoted by ̂0
and 0.

4. Isogeometric mesh grading for circular sectors

In the following, we demonstrate explicitly how the constructions 
presented in Section 3 can be used to address the numerical solution 
of our model problem (2.1) with isogeometric analysis. We begin by 
describing the single-patch polar-like NURBS parameterization of circu-
lar sectors and discuss the resulting spline spaces on the computational 
domain. The standard spaces go beyond the solution space of the weak 
problem (2.14) due to the low regularity of the parameterization, which 
results in a variational crime [29]. To circumvent this, a modied ap-
proximation space is employed. Finally, we propose a graded mesh 
renement scheme to tackle the singularities of the eigenfunctions ob-
served in Section 2.3 and explore the choice of the associated grading 
parameter.

Here, we concentrate again on the circular sector Ω with angle  =
2, as illustrated in Fig. 1b, which represents a unit disk with a crack 
on the positive -axis. Just as in Section 2.4, it serves as a prototype for 
all other circular sectors with smaller angles  < 2, where the same 
procedure can be carried out in an analogous or even simplied manner.

4.1. Single-patch parameterization and coarse meshes

First, we construct the single-patch polar-like isogeometric param-
eterization  ∶ Ω → Ω of the unit disk with crack. The approach can 
be described intuitively by the deformations shown in Fig. 4a and has 
been employed similarly in [20]. We combine the typical 9-point NURBS 
discretization of circles with a linear component in radial direction. Var-
ious other possibilities for parameterizing circular sectors and disks have 
been studied in the literature [17,29,45–47]. In particular, we use the 
open knot vectors

Ξ0
1 = {0,0,1,1} and Ξ0

2 =

0,0,0, 1

4
, 1
4
, 1
2
, 1
2
, 3
4
, 3
4
,1,1,1


(4.1)

along with the control points  as illustrated in Fig. 4b and the standard 
weights  for  ∈ 0 = {(1, 2) ∶ 1 ≤ 1 ≤ 2, 1 ≤ 2 ≤ 9}. Note that all the 
control points (1,2) for 2 = 1, … , 9 lie at the conical point  = (0, 0) of 
the circular sector, causing the parametric edge {(0, 2) ∶ 2 ∈ [0, 1]} to 
collapse to this point in the physical domain. The corresponding edge is 
depicted in cyan in Fig. 4a and will be referred to as the singular edge of 
Ω in this paper. We further direct the interested reader to Appendix A for 
an explicit representation of the parameterization  and to Appendix B
for a comparison of  to the classic transformation between Cartesian 
and polar coordinates.

The vectors of knots without repetitions,

1 = {0,1} and 2 =

0, 1

4
, 1
2
, 3
4
,1

,
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Fig. 4. (a) Deforming a unit square to a unit disk with crack. (b) Illustration of the control points  for  ∈ 0 = { = (1, 2) ∶ 1 ≤ 1 ≤ 2,1 ≤ 2 ≤ 9}.

Fig. 5. Illustration of the coarse parametric Bézier mesh (4.2) and the corre-
sponding physical Bézier mesh (4.3).

form a Cartesian grid which denes the coarse parametric Bézier mesh

0 ∶=
{

(1,2) = (0,1) ×


2 − 1
4

,
2
4


∶ 1 ≤ 2 ≤ 4

}
. (4.2)

With identity (B.1) from Appendix B, it follows that

(1,2) =  ((1,2))

=
{
( cos,  sin) ∈ℝ2 ∶  ∈ (0,1), ∈


2 − 1
2

,
2
2


}

for 2 = 1, … , 4. We obtain the coarse physical Bézier mesh

0 ∶=

(1,2) ∶ 1 ≤ 2 ≤ 4


. (4.3)

Both meshes are illustrated in Fig. 5.

4.2. Standard isogeometric approximation spaces

To establish a comprehensive framework for the numerical solution 
of model problem (2.1), we proceed to describe the isogeometric ap-
proximation spaces. Adopting an isoparametric approach, we use the 
discrete function space that denes the parameterization  also for the 
approximation space.

We begin with the coarse bivariate NURBS space in the parametric 
domain, as dened in Section 3.2,

0 (0, ) = span


,0 (),  ∈ 0


,

where 0 = Ξ0
1 × Ξ0

2 and 0 = (01, 
0
2) = (1, 2). By applying the classical 

renement algorithms introduced in Section 3.1, we can construct ner 
parametric spaces (,  ) with 0 (0,  ) ⊂ (,  ).

NURBS spaces in the physical domain are typically dened by the 
 -image of the parametric spaces [41,48,49]. More precisely, if ℎ =
(,  ) = span{ ,(),  ∈ } is a renement of the coarse paramet-
ric NURBS space 0 (0,  ), the approximation space in the physical 
domain is dened by

ℎ =

◦ −1 ∶  ∈ ℎ


.

A basis of this space can be provided by a push-forward of the parametric 
basis,

ℎ = span

,() ∶= ,◦ −1(),  ∈ 


. (4.4)

However, this approach requires certain regularity assumptions on the 
parameterization, for more details see [41]. These requirements are not 
fullled by the polar-like mapping that we constructed in Section 4.1. 
Hence, the approximation space (4.4) needs to be modied which will 
be investigated in detail in the next section.

4.3. Modification of the approximation space due to the singular 
parameterization

It has been shown in [29,30] that the lack of regularity in the iso-
geometric parameterization results in some of the basis functions (4.4)
not belonging to 1(Ω), which implies ℎ ⊄ 1(Ω). As outlined in Sec-
tion 2.5, this constitutes a violation of Galerkin’s principle since the 
discrete space is required to be a subset of the solution space, i.e., 
ℎ ⊂  = 1(Ω). Therefore, we employ the modied approximation 
space proposed in [29], see also [50],

 
ℎ ∶= ℎ ∩1(Ω) .

A corresponding basis can be constructed by replacing all the basis func-
tions associated to the control points collapsing in the conical point of 
the circular sector with a single function consisting of their sum. More-
over, we also have to take the boundary conditions into account and 
obtain the nal approximation space

 
0ℎ =  

ℎ ∩ 0

with 0 from (2.15).

Remark 4.1. The modication of the approximation space results in an 
intervention in standard isogeometric analysis. Our approach can also 
be set up without this modication, accepting that a variational crime 
is committed. It turns out that the method still proves eective and the 
numerical results are very similar, see [51].

Remark 4.2. As mentioned in Section 4.1, there exist several other ways 
to parameterize circular sectors than using the polar-like mapping  . In 
particular, a multi-patch approach based on biquadratic NURBS can be 
employed, which has been proposed in the numerical examples of [28]. 
The multi-patch parameterization contains another type of singularities 
which are located on the circular boundary [29]. Hence, the singularity 
of the Laplace eigenfunctions does not coincide with the singularities of 
the isogeometric mapping, which may simplify the problem. However, 
we prefer the presented single-patch approach for the following reasons:

• As indicated in Section 1, previous results about spectral approx-
imation properties of IGA in the literature have been shown for 
single-patch domains.

• A polar-like discretization seems to be more natural and intuitive 
when considering circular sectors in an isogeometric context.
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Fig. 6. Parametric and physical Bézier meshes  and  after rening with 1 = 6 and 2 = 16. Solid black lines are used for new subdivisions and dashed black 
lines for the initial coarse meshes ̂0 and 0. (a) Uniform renement (b) Graded renement with grading parameter  = 1∕2.

• The multi-patch approach leads to redundant control points at the 
patch junctions which are absent when using only one singularly 
mapped patch.

• Introducing a numerical framework becomes more complicated 
when multiple patches are used instead of a single one. Besides, 
standard approximation theory for IGA can not be applied. Even 
though the singularities in the multi-patch parameterization of cir-
cular sectors are weaker than the singularity in our single-patch 
mapping  , the necessary regularity assumptions, as discussed in 
[41,48], are not fullled. Up to our knowledge, the multi-patch dis-
cretization of circular sectors has only been considered numerically 
so far, but not in the error analysis [28].

4.4. Single-patch mesh grading

After setting up the isogeometric framework for the numerical solu-
tion of our model problem (2.1), we now propose a modied renement 
algorithm to tackle the singularities of the Laplace eigenfunctions dis-
cussed in Section 2.3.

4.4.1. Graded mesh refinement scheme
Isogeometric ℎ-renement is achieved through knot insertion, recall 

Section 3.1. In standard IGA, the univariate knot vectors are rened 
uniformly, with newly inserted knots being equidistantly distributed. 
We propose a more exible knot insertion method that allows local mesh 
renement towards known singularities. The key concept is to abandon 
uniformity in favor of knots concentrated around singularities, creating 
what we refer to as graded ℎ-refinement. The idea of graded meshes is not 
new; it has been proven to be a powerful tool for local a priori renement 
of nite elements towards corner singularities [24–27]. More recently, a 
similar concept has been proposed for IGA in a multi-patch context, but 
the isogeometric parameterization is assumed to be smooth, at least in 
the points towards which the mesh is locally rened [28,49]. However, 
this requirement is not satised by the single-patch parameterization 
that we employ in this paper.

We begin with a detailed description of the standard uniform re-
nement procedure for single-patch circular sectors and subsequently 
introduce the proposed modication to achieve graded ℎ-renement. 
As a starting point, we recall the coarse parametric and physical Bézier 
meshes (4.2) and (4.3), respectively, both of which are illustrated in 
Fig. 5. It is crucial to ensure that the parameterization  and the weight 
function  remain unchanged during renement. This can be done in 
practice by bisecting each interval of the coarse mesh a certain num-
ber of times. For instance, let 1, 2 ∈ ℕ such that 2∕4 ∈ ℕ and dene 
ℎ1 ∶=

1
1
and ℎ2 ∶=

1
2
. Then, the knot vectors

Ξℎ1
1 =

{
0,0, 1

1
, 2
1

,… ,
1 − 1

1
,1,1

}
, (4.5)

Ξℎ2
2 =

{
0,0,0, 1

2
, 2
2

,… ,
2∕4− 1

2
,
2∕4
2

,
2∕4
2

,
2∕4 + 1

2
,

2∕4 + 2
2

,… ,
2∕2− 1

2
,
2∕2
2

,
2∕2
2

,… ,1,1,1
}

are uniform renements of the coarse knot vectors Ξ0
1 and Ξ0

2, respec-tively. The vectors of knots without repetitions are simply given by

ℎ1
1 =

{
0, 1

1
, 2
1

,… ,
1 − 1

1
,1
}

= {1,1 ∶= (1 − 1)ℎ1 ∶ 1 ≤ 1 ≤ 1 + 1} ,

ℎ2
2 =

{
0, 1

2
, 2
2

,… ,
2 − 1

2
,1
}

= {2,2 ∶= (2 − 1)ℎ2 ∶ 1 ≤ 2 ≤ 2 + 1} .

We obtain the rened parametric Bézier mesh
 =


 ⊂ Ω ∶ =(1 ,2) =


1,1 , 1,1+1


×

2,2 , 2,2+1


,  ∈ 



(4.6)
with  ∶= { = (1, 2) ∶ 1 ≤ 1 ≤ 1, 1 ≤ 2 ≤ 2}. Each element of the 
coarse mesh ̂0, given by (4.2), is uniformly split up 1 times in 1-
direction and 2∕4 times in 2-direction. The same eect holds for the 
rened physical Bézier mesh

 = { ⊂Ω ∶ =  (),  ∈ } .

In total, the resulting meshes contain 1 ⋅2 uniformly rened elements. 
An exemplary illustration of such parametric and physical meshes after 
uniform renement with 1 = 6 and 2 = 16 is presented in Fig. 6a.

Now, our objective is to adjust the renement process to achieve a 
physical Bézier mesh that is locally rened around the conical point of 
the circular sector. When the isogeometric mapping  is applied to the 
closure of the parametric domain, the singular edge {(0, 2) ∶ 2 ∈ [0, 1]}
is mapped onto the singular point  = (0, 0). Hence, we need to grade 
the knots in the parametric domain towards the singular edge to obtain 
a ner mesh in the physical domain locally near the singularity. To this 
end, we introduce a grading parameter  ∈ (0, 1] and modify the knot 
insertion process in 1-direction. Instead of the vector (4.5), we use the 
graded knot vector

Ξℎ1 ,
1 = {0,0, (ℎ1)

1
 , (2ℎ1)

1
 ,… , ((1 − 1)ℎ1)

1
 ,1,1} (4.7)

The graded vector of knots without repetitions is then given by

ℎ1 ,
1 = {

1,1
∶=

(
(1 − 1)ℎ1

) 1
 ∶ 1 ≤ 1 ≤ 1 + 1} . (4.8)

Note that the choice  = 1 leads to uniform renement. Thus, the graded 
renement scheme is a generalization of the uniform version. In 2-
direction, no adjustments are needed, and we employ the same knot 
vector Ξℎ2

2 and vector of breakpoints ℎ2
2 as in the uniform renement 

244



T. Apel and P. Zilk Computers and Mathematics with Applications 175 (2024) 236–254

procedure. By combining the two directions, we obtain the graded para-
metric mesh
 =




 ⊂ Ω ∶
 =

(1 ,2)
=


1,1

, 
1,1+1


×

2,2 , 2,2+1


,

 ∈ 


which is locally rened towards the singular edge. The corresponding 
physical Bézier mesh
 =




 ⊂Ω ∶
 =  (

 ),  ∈ 


is locally rened towards the conical point of the circular sector. In 
Fig. 6b, we illustrate this eect by depicting the graded parametric and 
physical Bézier meshes after rening with 1 = 6 and 2 = 16 and a 
grading parameter of  = 1∕2.

4.4.2. Anisotropic elements in the graded meshes
Both the graded parametric and physical Bézier meshes contain 

anisotropic elements. The aspect ratio of the rectangular parametric el-
ements  ∈  close to the singular edge of Ω is given by
ℎ2

ℎ1∕
1

= ℎ1− 1
 →∞ for ℎ1 = ℎ2 = ℎ→ 0 and  < 1 . (4.9)

Thus, the elements are highly stretched in 2-direction. This eect is 
fully induced by the mesh grading and depends on the grading pa-
rameter . For  = 1 and 1

 ℎ2 ≤ ℎ1 ≤ ℎ2, that is, for evenly uniform 
renement in both directions, the aspect ratio (4.9) is constant and the 
mesh is isotropic.

In contrast, the latter does not hold for the physical Bézier mesh. We 
compute the aspect ratio of the elements  ∈ close to the singular 
point  using the lengths of their largest edges,
ℎ1∕
1

ℎ1∕
1 ℎ2

= 1
ℎ
→∞ for ℎ1 = ℎ2 = ℎ→ 0 . (4.10)

The elements are highly stretched in radial direction, corresponding to 
the 1-direction in the parametric domain. Hence, the stretching direc-
tion is reversed from the parametric to the physical mesh. Moreover, 
the physical mesh elements are anisotropic regardless of the mesh grad-
ing as the aspect ratio (4.10) does not depend on the grading parameter 
. Consequently, the anisotropy in the physical mesh is exclusively in-
duced by the singular parameterization  . In Section 5.4, we explore a 
slight modication of our renement approach to avoid this eect.

4.4.3. Choice of the grading parameter
It remains to be discussed how to choose the grading parameter 

such that optimal convergence orders for the singular solutions and cor-
responding eigenvalues are achieved. Here, we capitalize on existing 
knowledge about graded nite element meshes. While there is exten-
sive literature on this topic, we only list a few important works here 
[24–27,52].

According to the results from Section 2.3, the strongest singularity 
that Laplace eigenfunctions of circular sectors can possibly have is of 
type 1 with 1 = 

 ≥ 1
2 . Therefore, if we consider an arbitrary eigen-function  =  ,, where  ∈ ℕ0 and  ∈ ℕ are not known a priori, we 

can only expect that  ∈(Ω) for all  < 1 + 1. If we restrict ourselves 
to classical Sobolev spaces, we can assume no more than  ∈ 1(Ω) for 
circular sectors with angles  > . Besides, it has been shown that the 
convergence of the discrete eigenvalues can be described in terms of 
the 1(Ω)-error of the corresponding Galerkin approximations of the 
eigenfunctions [3,53,54]. Hence, we incorporate a grading parameter 
that has been proven eective to achieve optimal convergence of the 
1(Ω)-error, which is of order  for nite elements of degree . The 
required conditions are [52]

 <
1


and  ≤ 1 . (4.11)

We transfer these conditions to IGA for NURBS of degree  = (1, 2)
with  = min(1, 2). However, there is still some freedom how to pre-
cisely choose  for a numerical computation and several guidelines have 
been discussed in the literature, see for instance [52]. Our experience, 
which we share in the numerical Examples 5.3 and 5.9, has shown that

 = 0.9 ⋅
1


(4.12)

is a good choice, provided that 1 < 1.
In general, it is crucial to be aware of varying regularity proper-

ties of the Laplace eigenmodes of circular sectors. Eigenfunctions of 
low regularity are approximated more accurately by graded meshes due 
to the optimal convergence which is not achieved by uniform meshes. 
In contrast, smooth eigenfunctions are actually approximated better by 
uniform meshes. Unnecessary grading of the mesh has a negative eect 
on the approximation constant, although the optimal convergence rate 
is not aected. We will demonstrate this behavior later in the numerical 
examples. Of course, the choice of the grading parameter also depends 
on the degree of the basis functions and the objective of the computa-
tion. If the goal is to approximate a specic eigenfunction  =  , for 
a given  ∈ ℕ0 and  ∈ ℕ, it is better to choose

 =
⎧
⎪⎨⎪⎩

1 if  ∈ ℕ0 or  ≥  ,

0.9 ⋅



else , (4.13)

where we recall the regularity results of Lemma 2.2 and Lemma 2.3. If 
multiple eigenfunctions have to be approximated at once with a guar-
anteed overall accuracy, the strongest grading parameter (4.12) should 
be chosen. In contrast, if poor approximations of the few eigenfunctions 
of very low regularity are not considered problematic, it may be ad-
visable to use uniform meshes. To gain a better understanding, all the 
described eects of mesh grading will be illustrated numerically in the 
next section.

5. Numerical results
Finally, we perform some numerical tests showing the eciency of 

our proposed approach to approximate the Laplace eigenvalue problem 
on circular sectors (2.1). First, we illustrate optimal convergence orders 
for the eigenpairs with respect to graded ℎ-renement for appropriately 
chosen grading parameters. In a second experiment, we demonstrate the 
advantages of our method for the computation of multiple eigenvalues, 
where we further examine spectral approximation properties of maxi-
mally smooth spline spaces on circular sectors. Finally, we combine our 
method with a hierarchical approach to avoid anisotropic elements in 
the physical Bézier mesh and save unnecessary degrees of freedom. In 
accordance with the main parts of the paper, we provide numerical re-
sults for the most complex circular sector with an inner angle of 2, 
which serves as a prototype for smaller angles.

All numerical experiments are carried out using the Matlab com-
puting package GeoPDEs 3.2.2 [55,56] where the graded ℎ-renement 
algorithm can be implemented easily by adapting one line of the stan-
dard knot rening routine kntrefine that is provided in the package.

Moreover, all integrals are computed using a Gauss-Legendre quadra-
ture rule with 36 quadrature points per mesh element. In more detail, 6
quadrature points are employed in both univariate directions, such that 
the bilinear forms dened in Section 2.5 are computed exactly for ten-
sor product polynomials in the parametric domain up to degree  = 5. 
The 1(Ω)-errors of the eigenfunctions are evaluated using the same 
quadrature formula.

All convergence plots are presented with respect to the total number 
of degrees of freedom ndof, and not the mesh parameter ℎ. Since the 
meshes are constructed by a tensor product approach, ndof ≈ ℎ−2 holds. 
Thus, if the expected convergence rate w.r.t the mesh size is (ℎ ), the 
corresponding rate w.r.t. to ndof can be described by ndof−∕2. However, 
since we are only talking about convergence rates w.r.t to the mesh size 
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Fig. 7. Approximation of the eigenfunction 1 ,1 using NURBS of lowest possible degree  = (1, 2) = (1, 2) and regularity  = (0, 1) while gradually rening 1 =
2
4
= 2, 4, 8, 16 times with grading parameter  = 0.9 ⋅ 1

1
= 0.45, recall (4.11).

Fig. 8. Approximation errors for the eigenfunction  = 1 ,1 and its corresponding eigenvalue  = 1 ,1 using gradually and uniformly rened NURBS of degree 
 = (, ),  ∈ {2, 3, 4}, and regularity = ( − 1,  − 1). We set  = 0.9 1


= 0.9

2
for graded meshes and  = 1 corresponds to uniform renement.

Fig. 9. Approximation errors for the eigenfunction  = 2 ,1 and its corresponding eigenvalue  = 2 ,1 using gradually and uniformly rened NURBS of degree 
 = (, ),  ∈ {2, 3, 4}, and regularity = ( − 1,  − 1). We set  = 0.9 2


= 0.9


for graded meshes and  = 1 corresponds to uniform renement.

in our manuscript, the experimental orders of convergence displayed in 
all error plots and tables are those w.r.t to ℎ.

5.1. Optimal convergence to the analytical eigenfunctions and eigenvalues

In the rst examples, we show that our method produces optimal 
convergence rates for the approximation of the Laplace eigenpairs of cir-
culars sectors. As discussed in Section 2.4, the sequence of eigenmodes 
consists of both singular and smooth functions which are referred to 
as eigenfunctions of type (A) and type (B), respectively. We exemplar-
ily pick one eigenfunction out of each group and evaluate the resulting 
approximation errors.

Example 5.1 (Eigenfunction of type (A)). We approximate the eigenvalue 
1 ,1 of the unit disk with crack and its corresponding eigenfunction 
1 ,1, which has the strongest possible singularity of type 1 , where 
1 = 1∕2. In Fig. 7, we illustrate the discrete eigenfunction throughout 
the gradual renement process using NURBS of the lowest possible de-
gree  = (1, 2) and regularity  = (0, 1). The solution is showcased for 
various graded mesh renements, ranging from relatively coarse to fur-
ther rened ones. Fig. 8 presents the 1(Ω)- and 2(Ω)-error of the 
eigenfunction and the absolute eigenvalue error using NURBS of poly-
nomial degree  = (, ),  ∈ {2, 3, 4}, and regularity  = ( − 1,  − 1)
with varying grading parameters . Precisely, we set  = 1 for uniform 

and  = 0.9 ⋅ 1∕ for graded renement, as proposed in formula (4.12). 
On uniform meshes, the convergence rate with respect to the 1(Ω)-
and 2(Ω)-error of the eigenfunction is 1∕2 and 1, respectively, for all 
. In contrast, graded meshes yield optimal convergence orders  and 
 + 1, respectively. Consequently, the discrete eigenvalue converges to 
the exact one with order 1 for any  during uniform renement, whereas 
mesh grading recovers the optimal convergence rate of 2.

Example 5.2 (Eigenfunction of type (B)). Next, we approximate the 
eigenvalue 2 ,1 of the unit disk with crack and its corresponding eigen-function  = 2 ,1, where 2 = 1. As shown in Lemma 2.3, this is a smooth 
function. Fig. 9 depicts the 1(Ω)- and 2(Ω)-error of the eigenfunction 
and the absolute eigenvalue error using NURBS of polynomial degree 
 = (, ),  ∈ {2, 3, 4}, and regularity  = ( − 1,  − 1) with dierent 
grading parameters . Here, the convergence orders with uniform and 
graded renement are equal, but the approximation constant of the uni-
form meshes is superior. This result justies the recommended grading 
parameter (4.13) if a specic eigenfunction is approximated.

5.2. Optimal grading parameter

In this section, we validate the recommended grading parameter 
(4.12). Since we already know from Example 5.2 that graded meshes 

246



T. Apel and P. Zilk Computers and Mathematics with Applications 175 (2024) 236–254

Table 2
Approximation errors ‖‖− ℎ

‖‖1(Ω) (and corresponding experimental orders of convergence) 
for the eigenfunction  = 1 ,1 using gradually rened NURBS of degree  = (2, 2) and regular-
ity  = (1, 1) with dierent grading parameters .
ndof  = 0.7 1


= 0.175  = 0.9 1


= 0.225  = 1.1 1


= 0.275  = 1.3 1


= 0.325

19 1.2500+ 00 1.2500+ 00 1.2500+ 00 1.2500+ 00
40 8.4778− 01 (1.18) 7.8366− 01 (1.42) 7.3268− 01 (1.63) 6.9185− 01 (1.81)
106 5.3217− 01 (1.05) 4.1982− 01 (1.41) 3.4478− 01 (1.70) 2.9860− 01 (1.90)
334 2.3431− 01 (1.52) 1.6133− 01 (1.78) 1.1590− 01 (2.02) 9.1099− 02 (2.20)
1174 6.6457− 02 (2.08) 4.1166− 02 (2.26) 2.9150− 02 (2.28) 2.4590− 02 (2.16)
4390 1.6234− 02 (2.18) 1.0125− 02 (2.17) 7.4213− 03 (2.12) 7.0980− 03 (1.92)
16966 4.0166− 03 (2.09) 2.5243− 03 (2.08) 1.9224− 03 (2.02) 2.1679− 03 (1.77)
66694 1.0014− 03 (2.04) 6.3171− 04 (2.04) 5.0293− 04 (1.97) 6.9175− 04 (1.68)
264454 2.5016− 04 (2.02) 1.5817− 04 (2.02) 1.3267− 04 (1.94) 2.2764− 04 (1.62)

Table 3
Approximation errors − ℎ

 (and corresponding experimental orders of convergence) for 
the eigenvalue  = 1 ,1 using gradually rened NURBS of degree  = (2, 2) and regularity 
 = (1, 1) with dierent grading parameters .
ndof  = 0.7 1


= 0.175  = 0.9 1


= 0.225  = 1.1 1


= 0.275  = 1.3 1


= 0.325

19 1.3869+ 00 1.3869+ 00 1.3869+ 00 1.3869+ 00
40 6.4991− 01 (2.31) 5.7113− 01 (2.71) 5.1477− 01 (3.02) 4.7780− 01 (3.25)
106 2.9613− 01 (1.78) 2.1387− 01 (2.22) 1.5767− 01 (2.67) 1.2036− 01 (3.12)
334 7.2689− 02 (2.61) 3.5189− 02 (3.35) 1.8634− 02 (3.96) 1.1722− 02 (4.32)
1174 6.2156− 03 (4.06) 2.4139− 03 (4.43) 1.2198− 03 (4.50) 8.7535− 04 (4.29)
4390 3.7938− 04 (4.33) 1.4801− 04 (4.32) 7.9694− 05 (4.22) 7.3365− 05 (3.84)
16966 2.3343− 05 (4.17) 9.2259− 06 (4.15) 5.3569− 06 (4.04) 6.8598− 06 (3.54)
66694 1.4526− 06 (4.08) 5.7818− 07 (4.07) 3.6684− 07 (3.94) 6.9934− 07 (3.35)
264454 9.0687− 08 (4.04) 3.6253− 08 (4.03) 2.5533− 08 (3.88) 7.5794− 08 (3.24)

Table 4
Approximation errors ‖‖− ℎ

‖‖1(Ω) (and corresponding experimental orders of convergence) 
for the eigenfunction  = 1 ,1 using gradually rened NURBS of degree  = (2, 2) and regular-
ity  = (0, 0) with dierent grading parameters .
ndof  = 0.7 1


= 0.175  = 0.9 1


= 0.225  = 1.1 1


= 0.275  = 1.3 1


= 0.325

19 1.2500+ 00 1.2500+ 00 1.2500+ 00 1.2500+ 00
69 8.4272− 01 (0.69) 7.7901− 01 (0.82) 7.2859− 01 (0.94) 6.8807− 01 (1.04)
265 5.0853− 01 (0.81) 3.8736− 01 (1.12) 3.1956− 01 (1.32) 2.7379− 01 (1.47)
1041 2.0838− 01 (1.36) 1.4368− 01 (1.51) 1.0577− 01 (1.68) 8.5486− 02 (1.77)
4129 6.1687− 02 (1.81) 3.9273− 02 (1.92) 2.8324− 02 (1.95) 2.4196− 02 (1.87)
16449 1.5879− 02 (1.99) 9.9994− 03 (2.00) 7.3687− 03 (1.97) 7.0632− 03 (1.80)
65665 3.9938− 03 (2.01) 2.5163− 03 (2.00) 1.9187− 03 (1.95) 2.1609− 03 (1.72)
262401 9.9992− 04 (2.00) 6.3120− 04 (2.00) 5.0257− 04 (1.94) 6.8945− 04 (1.65)

Table 5
Approximation errors − ℎ

 (and corresponding experimental orders of convergence) for 
the eigenvalue  = 1 ,1 using gradually rened NURBS of degree  = (2, 2) and regularity 
 = (0, 0) with dierent grading parameters .
ndof  = 0.7 1


= 0.175  = 0.9 1


= 0.225  = 1.1 1


= 0.275  = 1.3 1


= 0.325

19 1.3869+ 00 1.3869+ 00 1.3869+ 00 1.3869+ 00
69 6.4264− 01 (1.34) 5.6592− 01 (1.56) 5.1135− 01 (1.74) 4.7551− 01 (1.87)
265 2.8072− 01 (1.32) 1.9449− 01 (1.71) 1.3751− 01 (2.10) 1.0247− 01 (2.45)
1041 5.8947− 02 (2.38) 2.8602− 02 (2.92) 1.5714− 02 (3.30) 1.0398− 02 (3.48)
4129 5.3909− 03 (3.55) 2.2029− 03 (3.80) 1.1530− 03 (3.87) 8.4806− 04 (3.72)
16449 3.6315− 04 (3.95) 1.4437− 04 (3.99) 7.8573− 05 (3.93) 7.2659− 05 (3.59)
65665 2.3079− 05 (4.00) 9.1678− 06 (4.01) 5.3367− 06 (3.91) 6.8164− 06 (3.44)
262401 1.4484− 06 (4.01) 5.7725− 07 (4.00) 3.6631− 07 (3.88) 6.9483− 07 (3.31)

are not required for the approximation of eigenfunctions of type (B), 
we solely conduct a numerical investigation with respect to the opti-
mal grading parameter for an eigenfunction of type (A), recall formula 
(4.13).

Example 5.3. We approximate the eigenvalue 1 ,1 of the unit disk with crack and its corresponding eigenfunction 1 ,1, which has the strongest possible singularity of type 1 with 1 = 1∕2, this time using gradually 
rened NURBS of degree  = (2, 2) and regularity  = (1, 1) with dier-
ent grading parameters . In Tables 2 and 3, we list the 1(Ω)-errors 

of the eigenfunction and the absolute eigenvalue errors, respectively, 
together with the corresponding experimental convergence rates. We 
observe suboptimal convergence orders for grading parameters  > 1


and optimal rates for  < 1

 as stated in condition (4.11). Among the 
two suciently graded meshes, the moderate grading for  = 0.9 1


is preferable over the strong mesh grading with  = 0.7 1

 due to an 
improved approximation constant. These observations explain our rec-
ommendation (4.12). For 0-continuous splines, we observe a similar 
behavior. In Tables 4 and 5, we show the 1(Ω)-errors of the eigen-
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Fig. 10. Relative eigenvalue errors, ordered by discrete eigenvalue size, using gradually and uniformly rened NURBS of degree  = (, ) and regularity  = (, ). 
A total of 916 degrees of freedom is used in all the computations. We set  = 0.9 1


= 0.9

2
for graded meshes and  = 1 corresponds to uniform renement.

function and the absolute eigenvalue errors, respectively, together with 
the corresponding experimental convergence rates for NURBS of de-
gree  = (2, 2) and regularity  = (0, 0). Again, we see that the choice 
 = 0.9 1

 leads to the best approximation constant while guaranteeing 
optimal convergence rates. Moreover, a comparison of Tables 2 and 4
indicates that the approximation constant regarding the 1(Ω)-error of 
the eigenfunction is about four times smaller for for smooth splines than 
for 0-continuous splines, while approximately the same number of de-
grees of freedom is employed. Hence, smooth splines lead to a better 
convergence on a per-degree-of freedom basis than their 0-continuous 
counterparts.

5.3. Spectral approximation properties of smooth splines on circular sectors

Naturally, the solution of an eigenvalue problem is not just given 
by single eigenvalues and eigenfunctions but by an innite sequence of 
such. Therefore, we use our approach to compute multiple solutions of 
the model problem (2.1) in the next numerical experiment. The dierent 
regularity properties of the exact Laplace eigenfunctions, outlined in 
Section 2.3, will be crucial to understand the numerical results.

In this context, it is of interest whether some of the spectral ap-
proximation properties of smooth splines, which have been shown for 
rectangular domains in the literature [9,12,14,15] can be extended to 
circular sectors. In most of the related works, the full discrete spectrum 
is approximated, that is, one discrete eigenvalue is computed per compu-
tational degree of freedom. The power of smooth splines in this setting is 
twofold. First, nite elements produce so called spectral branches, i.e., 
the eigenvalue error jumps for higher frequencies, a phenomenon which 
does not occur with maximally smooth splines. Second, the overall ap-
proximation constant of smooth splines is better over the whole discrete 
spectrum. In the following, we conduct numerical studies to investigate 
comparable properties of the discrete spectrum of circular sectors.

At this point, smooth splines on circular sectors should be consid-
ered cautiously. In 2-direction, the geometry mapping  is based on 
the classical quadratic NURBS parameterizations of circles. Typically, 
circles are constructed from multiple arcs smaller than 180◦ , and the 
resulting bases are no more than 0-continuous at the junctions of 
the arcs [9, Chapter 2.4.1.1]. In particular, we use four arcs of 90◦
for the discretization of the unit disk with crack. Therefore, the uni-
variate NURBS basis functions in 2-direction are only 0-continuous 
at the points {1∕4,1∕2,3∕4}. We explicitly compute these functions in 
Appendix A. Consequently, the coarse tensor product basis functions 
(4.4) are 0-continuous along the lines {( cos,  sin) ∶  ∈ (0, 1),  ∈
{∕2, , 3∕2}}. After renement, these 0-lines will still be present. 
However, this is considered a minor limitation for the smoothness of 
the NURBS basis functions since, in all the regions between the speci-
ed lines of 0-continuity, the regularity can be increased as desired by 
using the -renement algorithm introduced in Section 3.1.

Example 5.4. We compute the full discrete spectrum of the unit disk 
with crack using dierent parameters, all of which result in systems with 

a total of 916 degrees of freedom. We compare bicubic 2-continuous 
NURBS and biquintic 4-continuous NURBS on uniform and graded 
meshes with their 0-continuous counterparts. As outlined in Sec-
tion 4.4.3, we choose the strong grading parameter  = 0.9 ⋅ 1∕ from 
(4.12) for the graded meshes since we want to compute all discrete 
eigenvalues at once and some of them have corresponding eigenfunc-
tions with the strong singularity of type 1 . Fig. 10 presents the relative 
eigenvalue errors, ordered by the discrete eigenvalue size. For both types 
of mesh, it becomes evident that the approximation accuracy of the dis-
played spectrum increases with higher NURBS regularity, except for the 
very upper part of the spectrum. Hence, the positive ndings concerning 
the approximation constant of smooth splines, which have been illus-
trated in the literature for rectangular domains, can be extended to the 
case of circular sectors, at least in the lower part of the spectrum. How-
ever, we cannot identify the appearance of spectral branches. Our results 
on uniform meshes optically resemble those in [57], where the Laplace-
Beltrami eigenvalue problem has been considered on the unit sphere. In 
general, higher eigenvalues are approximated better by uniform meshes, 
which is attributable to their superior approximation constant on coarse 
renement levels, as it can also be observed in Example 5.1 and 5.2.

Remark 5.5. In Example 5.4 and Fig. 10, each discrete eigenvalue is as-
sociated to an exact eigenvalue by ordering both sequences in ascending 
order. However, this matching is not always correct, that is, a discrete 
eigenvalue ,ℎ might be an approximation of the exact eigenvalue 
with  ≠ . Techniques for a proper association of discrete and exact 
eigenvalues have been proposed in the literature, but it has also been 
observed that the impact of mismatching is marginal [8,14,15,58].

To demonstrate the strength of our proposed graded renement ap-
proach, we need to adopt a slightly dierent point of view. The primary 
benet of gradually rened NURBS is the optimal approximation of 
eigenfunctions with low regularity and their corresponding eigenval-
ues. This property is asymptotic which only comes into eect for an 
increasing number of computational degrees of freedom. Therefore, we 
decide to compute a xed number of discrete eigenvalues and increase 
the number of degrees of freedom. Since our objective is to approximate 
the eigenvalues of circular sectors in the best possible way and the accu-
racy of Galerkin methods generally decreases for higher frequencies [59, 
Chapter 6.3], it is natural to consider only the lower discrete eigenvalues 
and rene the mesh. The analysis of spectral branches up to the high-
est discrete frequencies is of specic interest for related time-dependent 
problems in explicit numerical schemes as the critical time-step size 
calculation is inversely proportional to the maximum discrete eigenfre-
quency [60], but we do not consider this here.

Example 5.6. We compare the relative errors for the 100 smallest 
Laplace eigenvalues of the unit disk with crack using suitably graded 
and uniform meshes. Again, we choose the strong grading parameter 
 = 0.9 ⋅ 1∕ from (4.12) since we want to approximate multiple eigen-
values at once with a guaranteed optimal convergence rate.
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Fig. 11. Relative errors for the rst 100 eigenvalues, ordered by discrete eigenvalue size, using gradually and uniformly rened NURBS of degree  = (, ) and 
regularity  = (, ). In total, 67731 degrees of freedom are used in all the computations. We set  = 0.9 1


= 0.9

2
for graded meshes and  = 1 corresponds to uniform 

renement.

Fig. 12. Hierarchical parametric and physical Bézier meshes  and  after rening with 1 = 6 and 2 = 16. Solid black lines are used for new subdivisions 
and dashed black lines for the initial coarse meshes ̂0 and 0. Note the dierence to the tensor product meshes in Fig. 6. (a) Uniform renement. (b) Graded 
renement with grading parameter  = 1

2
.

First, we employ biquadratic, 1-continuous NURBS in a system 
with 67731 degrees of freedom, which arises for 128 subdivisions of 
the coarse mesh in each parametric direction as discussed in Section 4. 
The results are presented in the left hand plot of Fig. 11. The uni-
form mesh produces some very poor approximations along with many 
accurate ones. More precisely, the approximates of the eigenvalues 
2, 8, 20, … are signicantly less accurate compared to the rest. In 
Table 1, we can see that these are the eigenvalues that belong to eigen-
functions of the lowest possible regularity. As outlined in Example 5.1, 
uniformly rened approximations do not converge optimally. Hence, 
these eigenvalues produce outliers in the spectral approximation since 
the remaining eigenvalues are associated with eigenfunctions of higher 
regularity which are also approached accurately on uniform meshes. In 
contrast, the eigenvalue errors achieved by the graded mesh are evenly 
distributed. All the eigenvalues are approximated with a comparable ac-
curacy, which is naturally decreasing for higher eigenvalues. In particu-
lar, the outliers of the uniform version, 2, 8, 20, … , are approximated 
much better on the graded mesh. However, the graded approximation of 
the remaining eigenvalues with corresponding eigenfunctions of higher 
regularity is worse than the uniform variant. For this type of eigenvalues, 
the grading is unnecessary and has a negative eect on the approxima-
tion constant, as discussed in Section 4.4.3 and Example 5.2.

In a second test, we employ biquintic, 4-continuous NURBS in a 
system with 67731 degrees of freedom on a uniform and graded mesh. 
The relative eigenvalue errors are depicted in the middle plot of Fig. 11. 
Here, in addition to the poor approximations of 2, 8, 20, … , the uni-
form mesh produces a second group of outliers, given by the eigenvalues 
4, 13, 26, … . In Table 1, we observe that these eigenvalues belong to 
eigenfunctions with the second strongest singularity. Due to the high 
degree of the NURBS, the dierence between optimal and reduced 
convergence rates also becomes noticeable for this group of eigenval-
ues. Contrarily, the graded mesh produces an evenly distributed error 

point cloud, but less accurate results for eigenvalues that correspond to 
smoother eigenfunctions.

Lastly, we compare biquintic 4-continuous NURBS with their 0-
continuous counterparts on uniform and graded meshes. The results are 
presented in the right hand plot of Fig. 11. For both types of mesh, 
the approximation is more accurate with smooth splines, although the 
same number of degrees of freedom is used. The superiority of smooth 
splines is even clearer on graded meshes as they do not produce out-
liers. Hence, we can again conrm the excellent spectral approximation 
constant of smooth splines on circular sectors. Since we consider only 
the very lower part of the spectrum here, which can not be analyzed in 
the study conducted in Fig. 10, this series of results complements the 
previous ndings of Example 5.4.

In summary, the two numerical examples of this section show that 
the combination of single-patch mesh grading with maximally smooth 
splines on circular sectors is a very powerful approach to approximate 
the Laplace eigenvalues of circular sectors. It is computationally cheap, 
accurate and produces an evenly distributed error throughout the con-
sidered eigenvalues.

5.4. Hierarchical meshes in combination with graded refinement

Finally, we present a variation of our method that aims at improving 
the constructed graded meshes. As discussed in Section 4.4.2, the phys-
ical Bézier mesh is anisotropic next to the conical point of the circular 
sector due to the singular geometry mapping. To prevent these highly 
stretched elements, we can replace the tensor product meshes used so far 
by hierarchical meshes. In Fig. 12, we illustrate the hierarchical mesh 
scheme exemplarily for the unit disk with crack in combination with 
both uniform and graded renement. Again, this serves as a prototype 
for other circular sectors. Note that the renement is xed a priori and 
not chosen in an adaptive way as it is typically the case in the context of 
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Fig. 13. Sketch of the physical mesh elements near the conical point during renement. (a) tensor product renement. (b) hierarchical renement. The scaling 
between the renement steps is manipulated for better visibility.

Fig. 14. Approximation errors for the eigenfunction  = 1 ,1 and its corresponding eigenvalue  = 1 ,1 using gradually and uniformly rened hierarchical NURBS 
of degree  = (,),  ∈ {2, 3, 4}, and regularity  = ( − 1,  − 1). We set  = 0.9 1


= 0.9

2
for graded meshes and  = 1 corresponds to uniform renement.

Fig. 15. Approximation errors for the eigenfunction  = 1 ,1 and its corresponding eigenvalue  = 1 ,1 using NURBS of degree  = (4, 4) and regularity  = (3, 3) on 
tensor product and hierarchical meshes. We set  = 0.9 1

4
= 0.1125 for graded meshes and  = 1 corresponds to uniform renement.

hierarchical splines. Similar ideas have been mentioned in the context 
of singularly parameterized triangles [45], subdivision based isogeomet-
ric analysis [61], or nite element methods on spherical domains [62]. 
In GeoPDEs, the hierarchical renement scheme can be implemented by 
using the extension of the package presented in [63]. It leads to a purely 
isotropic mesh in the physical domain; the corresponding aspect ratio 
(4.10) simplies to

ℎ1∕
1

ℎ1∕
1

= 1 .

Besides, the hierarchical meshes oer another advantage. As outlined in 
Section 4.3, the physical approximation space has to be modied since 
the standard basis functions associated to the control points in the center 
of the circular sector do not belong to the solution space of the weak 
problem. By employing a hierarchical approach, the number of mesh 
elements in the vicinity of the conical point and thus the number of 
such problematic basis functions is held constant over the renement 
steps, which is not the case for standard tensor product renement. We 
visualize this eect in Fig. 13.

In the following numerical examples, we test the described hierar-
chical approach for approximating the Laplace eigenvalues and eigen-
functions of circular sectors.

Example 5.7 (Eigenfunction of type (A)). We perform the same exper-
iment as in Example 5.1, this time employing a hierarchical rene-
ment approach. In more detail, we compute the eigenvalue 1 ,1 of the unit disk with crack and its corresponding eigenfunction 1 ,1, which is characterized by its low regularity, on both uniform and graded hi-
erarchical meshes. The approximation errors for NURBS of polynomial 
degree  = (, ), where  ∈ {2, 3, 4}, and regularity  = ( − 1,  − 1)
are presented in Fig. 14 and closely resemble those obtained with ten-
sor product meshes in Fig. 8. Optimal convergence rates for the 1(Ω)-
and 2(Ω)-error of the eigenfunction and the absolute eigenvalue error 
are recovered by using an appropriate grading parameter. An explicit 
comparison of the approximation errors generated by hierarchical and 
tensor product meshes is depicted in Fig. 15, where NURBS of degree 
 = (4, 4) and regularity  = (3, 3) are rened gradually and uniformly 
with grading parameters  = 0.9 ⋅ 1

4 = 0.1125 and  = 1, respectively. 
The results indicate that the approximation constant of hierarchical 
meshes is slightly better than the one of tensor product meshes. This ef-
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Fig. 16. Approximation errors for the eigenfunction  = 2 ,1 and its corresponding eigenvalue  = 2 ,1 using gradually and uniformly rened hierarchical NURBS 
of degree  = (,),  ∈ {2, 3, 4}, and regularity  = ( − 1,  − 1). We set  = 0.9 2


= 0.9


for graded meshes and  = 1 corresponds to uniform renement.

Fig. 17. Approximation errors for the eigenfunction  = 2 ,1 and its corresponding eigenvalue  = 2 ,1 using NURBS of degree  = (4, 4) and regularity  = (3, 3) on 
tensor product and hierarchical meshes. We set  = 0.9 2

4
= 0.225 for graded meshes and  = 1 corresponds to uniform renement.

fect can be explained by the omission of redundant degrees of freedom 
during the hierarchical renement procedure. As illustrated in Fig. 13, 
the circular elements close to the singularity are subdivided fewer times 
while the same approximation accuracy is achieved.

Example 5.8 (Eigenfunction of type (B)). Finally, we repeat the exper-
iment from Example 5.2, but now using the hierarchical renement 
scheme. We approximate the smooth eigenfunction 2 ,1 and its cor-responding eigenvalue 2 ,1 of the unit disk with crack on both uni-form and graded hierarchical meshes. The approximation errors for 
NURBS of polynomial degree  = (, ), where  ∈ {2, 3, 4}, and regu-
larity  = ( − 1, − 1) are illustrated in Fig. 16 and clearly dier from 
the ones obtained with tensor product renement in Fig. 9. Indepen-
dent from the NURBS degree, the convergence rates for the 1(Ω)- and 
2(Ω)-error of the eigenfunction and the absolute eigenvalue error gen-
erated by uniform hierarchical renement are 1, 2 and 2, respectively, 
and thus not optimal. In contrast, graded hierarchical meshes do pro-
duce optimal convergence rates of ,  +1 and 2, respectively. The dif-
ferent precisions obtained with hierarchical and tensor product meshes 
are demonstrated explicitly in Fig. 17, where NURBS of degree  = (4, 4)
and regularity  = (3, 3) are rened both gradually and uniformly with 
grading parameters  = 0.9 ⋅ 1

4 = 0.1125 and  = 1, respectively. These 
results indicate that mesh grading restores optimal convergence of the 
hierarchically rened solutions. However, in this case, the grading is not 
required by the regularity of the approximated eigenfunction but by the 
hierarchical structure of the mesh, which is consistent with the theoret-
ical ndings in [61]. This is because the size of the hierarchical mesh 
elements close to the singularity, as illustrated in Fig. 13b, does not 
decrease fast enough during uniform renement. Yet, with suciently 
strong mesh grading towards the singularity, this issue is addressed.

Next, we perform a numerical test to assess the optimal grading pa-
rameter for hierarchical meshes. The results for eigenfunctions of type 

(A) are very similar to the ones for tensor product meshes shown in Sec-
tion 5.3 and are thus not carried out again here. However, as shown in 
Example 5.8, the approximation properties of hierarchical meshes dier 
for eigenfunctions of type (B), which is why we investigate the optimal 
grading parameter for this setting in the following example.

Example 5.9. We approximate the eigenvalue 2 ,1 of the unit disk with crack and its corresponding smooth eigenfunction 2 ,1, this time using gradually rened NURBS of degree  = (2, 2) and regularity  = (1, 1)
with dierent grading parameters . In Tables 6 and 7, we list the 
1(Ω)-errors of the eigenfunction and the absolute eigenvalue errors, 
respectively, together with the corresponding experimental convergence 
rates. We observe suboptimal convergence orders for grading parame-
ters  > 2

 and optimal rates for  < 2
 . Among the suciently graded 

meshes, the moderate grading with  = 0.9 2
 is preferable over the 

strong grading with  = 0.7 2
 due to an improved approximation con-

stant.

Similar investigations as in Example 5.9 can be carried out for fur-
ther eigenfunctions of type (B) and lead to comparable results. Thus, we 
conclude that the recommended grading parameter for the approxima-
tion of a specic eigenfunction  , on hierarchical meshes is

 = 0.9


.

Note that there is a heavy dierence to the previous recommendation 
(4.13) for tensor product meshes, since the approximation of all eigen-
functions, independently of their regularity, requires an appropriate 
grading of the mesh.

In summary, the combination of the presented hierarchical mesh 
structure and graded renement is very promising for approximating the 
Laplace eigenvalues of circular sectors and their corresponding eigen-
functions of both type (A) and type (B). However, the implementation 
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Table 6
Approximation errors ‖‖− ℎ

‖‖1(Ω) (and corresponding experimental orders of convergence) 
for the eigenfunction  = 2 ,1 using gradually rened hierarchical NURBS of degree = (2, 2)
and regularity  = (1, 1) with dierent grading parameters .
ndof  = 0.7 2


= 0.35  = 0.9 2


= 0.45  = 1.1 2


= 0.55  = 1.3 2


= 0.65

32 5.6582− 01 6.0335− 01 6.1669− 01 6.1087− 01
74 4.3238− 01 (0.75) 3.3039− 01 (1.68) 2.6714− 01 (2.33) 2.3424− 01 (2.67)
238 1.2868− 01 (2.21) 8.2363− 02 (2.53) 6.7629− 02 (2.50) 7.1675− 02 (2.16)
918 3.0357− 02 (2.18) 1.9502− 02 (2.17) 1.7540− 02 (2.04) 2.2973− 02 (1.72)
3750 7.4289− 03 (2.01) 4.7691− 03 (2.01) 4.6465− 03 (1.90) 7.5817− 03 (1.58)
15430 1.8469− 03 (1.97) 1.1794− 03 (1.98) 1.2449− 03 (1.86) 2.5485− 03 (1.54)
63110 4.6106− 04 (1.97) 2.9289− 04 (1.98) 3.3634− 04 (1.86) 8.6597− 04 (1.53)
256262 1.1522− 04 (1.98) 7.2890− 05 (1.99) 9.1552− 05 (1.86) 2.9603− 04 (1.53)

Table 7
Approximation errors − ℎ

 (and corresponding experimental orders of convergence) for 
the eigenvalue  = 2 ,1 using gradually rened hierarchical NURBS of degree  = (2, 2) and 
regularity  = (1, 1) with dierent grading parameters .
ndof  = 0.7 2


= 0.35  = 0.9 2


= 0.45  = 1.1 2


= 0.55  = 1.3 2


= 0.65

32 4.0667− 01 4.0420− 01 3.9597− 01 3.8085− 01
74 2.0471− 01 (1.91) 1.3166− 01 (3.13) 8.8493− 02 (4.17) 6.9630− 02 (4.73)
238 2.0781− 02 (4.16) 8.7422− 03 (4.94) 5.9965− 03 (4.90) 6.7821− 03 (4.24)
918 1.2085− 03 (4.29) 5.0176− 04 (4.31) 4.0802− 04 (4.06) 7.0223− 04 (3.42)
3750 7.3097− 05 (4.01) 3.0168− 05 (4.01) 2.8704− 05 (3.79) 7.6576− 05 (3.16)
15430 4.5285− 06 (3.94) 1.8474− 06 (3.95) 2.0615− 06 (3.73) 8.6548− 06 (3.09)
63110 2.8239− 07 (3.94) 1.1397− 07 (3.96) 1.5053− 07 (3.72) 9.9936− 07 (3.07)
256262 1.7639− 08 (3.96) 7.0592− 09 (3.97) 1.1154− 08 (3.71) 1.1679− 07 (3.06)

and mathematical analysis are more dicult. Our numerical results can 
be a starting point for further investigations, especially in context with 
the theoretical explanations in [61].

6. Conclusion and outlook

In this paper, we studied the Laplace eigenvalue problem on circular 
sectors both analytically and numerically. We veried crucial regularity 
properties of the exact eigenfunctions and developed an eective nu-
merical method to address the occurring singularities. In particular, we 
introduced a single-patch graded mesh renement algorithm for isoge-
ometric analysis on circular sectors, enabling local renement towards 
the conical point, where some of the eigenfunctions show singular be-
havior. Since the polar-like isogeometric parameterization of circular 
sectors is also singular at the conical point, a modied approximation 
space is used. We demonstrated optimal convergence rates for the eigen-
values and eigenfunctions numerically. Furthermore, we illustrated that 
smooth splines have a better approximation constant than their 0-
continuous counterparts on both uniform and graded meshes, at least 
for the lower part of the Laplace spectrum. Hence, we were able to ex-
tend some of the excellent spectral approximation properties of smooth 
splines, which have been discovered in the literature mainly for domains 
of rectangular nature, to circular sectors. In addition, we demonstrated 
the power of smooth splines on graded meshes for an accurate ap-
proximation of the 100 smallest eigenvalues. Lastly, we considered a 
hierarchical renement approach to avoid anisotropic elements in the 
physical Bézier mesh. We showed the eciency of graded hierarchical 
meshes to simulate eigenfunctions with and without singularities and 
compared them with the previously used tensor product meshes. Here, 
we observed two advantages of the hierarchical scheme: redundant de-
grees of freedom are omitted and the number of mesh elements in the 
vicinity of the conical point is held constant.

This contribution serves as motivation for various directions of fur-
ther research. In general, we are lacking theoretical error estimates for 
isogeometric analysis on singularly parameterized circular sectors, both 
for tensor product and hierarchical meshes. We aim to address this gap 
in future work and, specically, prove optimal approximation of non-
smooth functions using our graded renement algorithm. In addition, 
the presented method is extendable to other eigenvalue and boundary 

value problems on arbitrary two-dimensional single-patch domains with 
corner singularities. Here, our results serve as a proof of concept since 
the local neighborhood of a singular point can always be described 
by a circular sector. More work remains to be done for an extension 
of the method to multi-patch IGA and three-dimensional bodies with 
corner and edge singularities. Besides, it is well-established in nite ele-
ment analysis that the ℎ-method is eective for handling singularities. 
Therefore, another idea for future research is to explore the - and -
versions of graded renement or to consider graded multi-degree polar 
splines [50]. Finally, our ndings provide a basis for future work on 
spectral approximation properties of smooth splines on circular sectors 
and, more generally, of singularly parameterized domains. Particularly, 
the appearance of spectral branches and the approximation constant in 
the upper part of the discrete spectrum remain to be investigated.
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Appendix A. Explicit representation of the single-patch 
parameterization

To gain a better understanding, we indicate an explicit representa-
tion of the single-patch parameterization of the unit disk with crack that 
is used throughout this paper. It can be shown that the weight function 
(3.2) only depends on 2,
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Fig. B.18. (a): Isogeometric mappings 1 and 2 versus scaled polar angular mappings. (b): Dierence between the corresponding functions.

 () =
2

1=1

1 ,1(1)
9

2=2

2 ,2(2)(2,2) ≡(2) ,

and is bounded away from zero,

2 +

2

4
≤ (1, 2) ≡(2) ≤ 1 ,

see [19,20] for more details. By inserting the control points  , we ob-
tain a compact representation of the resulting NURBS parameterization 
 ∶ Ω→Ω,

 () =
2

1=1

9
2=1

(1 ,2)
(1 ,2)

1 ,1(1) 2 ,2(2)
(2)

= 1
9

2=1
(2,2)

(2,2)
2 ,2(2)

(2)

=∶ 1
(
1(2),2(2)

) , (A.1)
with functions 1, 2 ∶ [0, 1] →ℝ depending only on 2.

Appendix B. Comparison with polar coordinates

As the geometry mapping  resembles the classic transformation 
from polar to Cartesian coordinates,

̊ ∶ (0,1) × (0,2)→Ω, (,)↦ ( cos,  sin) ,

we point out some properties to compare the two parameterizations. 
First, let (, ) ∈ (0, 1) × (0, 2) and (1, 2) ∈ (0, 1) × (0, 1) such that 
̊ (, ) =  (1, 2). Using the representation (A.1) of  and the fact that (
1(2)

)2 + (
2(2)

)2 = 1 for all 2 ∈ [0, 1], see [20], it follows that

 = |̊ (,)| =  (1, 2) = 1
(

1(2)
)(2) + (

2(2)
)(2) = 1 .

Hence, the radial component  in polar coordinates corresponds one-to-
one with the isogeometric 1-component. However, the same does not 
apply for the angular components  and 2. Fig. B.18a presents the iso-
geometric mappings 1 and 2 from representation (A.1) in comparison 
with the scaled polar angular mappings [0, 1] → ℝ,  ↦ cos(2) and 
[0, 1] →ℝ,  ↦ sin(2). Fig. B.18b depicts the dierence of the corre-
sponding functions. We observe that
1()− cos(2) ≤  and 2()− sin(2) ≤  for all  ∈ [0,1] ,

that is, the parameterizations coincide up to a maximal dierence of 
 ≈ 0.015. The mappings are even identical in a few points,

1() = cos(2) and 2() = sin(2) for  = 
8
,  = 0,… ,8 . (B.1)

Furthermore, we can show another useful correlation. Let  =  () ∈ be an element of the Bézier mesh. Then,  can be represented in 
polar coordinates, that is, we can nd ̊ ⊂ (0, 1) × (0, 2) such that

 =  () = ̊
(
̊
)
.

In more detail, if  =  =

1,1 , 1,1+1


×

2,2 , 2,2+1


for some 

 ∈  , there are polar angles 2 , 2+1 ∈ [0, 2] such that ̊ =
1,1 , 1,1+1


×

2 ,2+1


. This can be proven using the bijectivity of 

the parameterizations away from the singular edge {(0, 2) ∶ 2 ∈ [0, 1]}.
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