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Abstract

Observation is one of the import tasks of scientific work. A quantified observation

over time is termed a signal. A signal is a documentation of changes in the system

and can be used for analysing the past states of the system. This empirical method

is a central concept in science since the European Renaissance.

In this thesis, a method is developed for the computerised analysis of signals. The

problem is the segmentation of a signal in segments with constant system behaviour.

The computer aided analysis has the advantages to decide objectively and to

give reproducible results. In addition to that, it allows to process a large amount of

data in reasonable time. These two points are especially important in intensive care

monitoring, where a reliable segmentation is the precondition for the description of

the patients state.

Other applications of segmentation can be found in almost all scientific areas.

Among them is the study of global climate changes and the detection of trends in

econometrics.

The algorithm presented in this thesis is termed SEMUG and aims specifically

on the segmentation problem where the signal is a linear function on the segments.

The signal is assumed to be composed of adjacent ramp-steps where a ramp-step

is a linear transition between two steady states. It is a generalisation of the often

used step and ramp profiles. Since it includes these profiles as special cases it can

be applied for many traditional segmentation problems, as well.

Segmentation is a search in the finite set of all possible partitions which becomes

challenging for long signals, since the number of partitions grow exponentially mak-

ing a complete search impossible. SEMUG avoids the exponential grow with a

sequential search strategy where the change-points are detected one after another.

The performance of SEMUG has been evaluated on simulated and measured

data. The most notable result is the robustness on either stochastic or deterministic

errors. This thesis does not only provide an algorithm for the segmentation problem,

additionally it provides an easy and transparent system for tuning SEMUG. In the

applications of SEMUG there is typically not much information about the system’s
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statistical properties so that the tuning has to be based on a few known parameters,

only. The tuning system developed in this thesis is based on visually apparent

properties of the least significant change in the data set and it is shown by example

that with this information the segmentation of the data set can be well performed.

This thesis gives a solution for an open problem in change-point analysis. How-

ever, new questions arose from the found insights. A central one is whether a more

complex model could enhance the performance while preserving the reliability of

SEMUG, which will be an interesting question for new research projects in the area

of large-scale gradual change detection.
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Zusammenfassung

Das Beobachten ist eine wichtige Tätigkeit eines Wissenschaftlers. Quantifiziert man

die Beobachtungen und schreibt sie über die Zeit auf, so erhält man Signale, die die

zeitliche Veränderung des beobachteten Systems beschreiben und die für Aussagen

über das System genutzt werden können. Diese empirische Herangehensweise wird

seit der Renaissance in der Wissenschaft genutzt und durchdringt heutzutage alle

Realwissenschaften.

In dieser Dissertation wird eine Methode für die computergestützte Analyse von

systembeschreibenden Signalen entwickelt. Die Aufgabe der Methode soll das Zer-

legen der Signale in Segmente mit konstantem Systemverhalten sein.

Die computergestützte Analyse hat den Vorteil, dass eine objektive und repro-

duzierbare Entscheidung gefällt wird. Des Weiteren können mit dem Computer

Datenmengen verarbeitet werden, die manuell nur mit einem unverhältnismäßi-

gen Personalaufwand möglich wären. Ein Beispiel sind die Analyseverfahren in der

Intensivmedizin. Eine objektive und fortlaufende Segmentierung der gemessenen

Signale bedeutet hier, den Gesundheitszustand des Menschen zu beschreiben, was

Voraussetzung für eine sachgemäße Behandlung ist.

Weitere Anwendungsgebiete der Segmentierung lassen sich in allen Realwissen-

schaften finden, darunter ist die Ursachenforschung der Veränderungen im globalen

Klima, das Erkennen von Trends im Wirtschaftssystem oder die Beurteilung des

Zustands einer Industrieanlage, um die Qualität des Endproduktes zu gewährleis-

ten.

In der Dissertation wird ein spezielles, bisher nicht zufriedenstellend gelöstes,

Segmentierungs-Problem angegangen. Es handelt sich um die Segmentierung eines

zeitdiskreten Signals dessen Verlauf aus einer Verkettung von Rampensprüngen be-

steht. Ein Rampensprung ist ein linearer Übergang zwischen zwei konstanten Pha-

sen. Der Rampensprung beinhaltet die in der Literatur oft vorkommenden Profile

Sprung und Rampe. Deshalb kann der Algorithmus auch auf alle Probleme ange-

wendet werden, bei denen man sich sonst für eines dieser Profile entscheiden musste.

Der Algorithmus wird im folgenden als SEMUG bezeichnet welches ein Akronym
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für Sequential Detection of Multiple Gradual Changes ist.

Die Segmentierung eines zeitdiskreten Signals ist ein endliches Suchproblem in der

Menge aller denkbaren Segmentierungen. Die Mächtigkeit dieser Menge steigt expo-

nentiell mit der Signallänge was eine vollständige Suche unmöglich macht. SEMUG

umgeht das Problem durch die Anwendung einer sequentiellen Methode, die Seg-

mente in chronologischer Reihenfolge detektiert.

Die Güte von SEMUG wird in der Dissertation anhand theoretischer Betrach-

tungen, simulierter Signale und durch die Anwendung auf physiomotorische Signale

bewertet. Neben dem Algorithmus und anderen wissenschaftlichen Erkenntnissen,

wird eine Methode zur Parametrisierung von SEMUG entwickelt, die ausschließlich

auf visuell bestimmbaren Größen beruht. Statistische Kenngrößen der gemessenen

Signale, die üblicherweise zur Parametrisierung notwendig sind, müssen nicht be-

kannt sein. Dadurch wird die Hürde zur Anwendung verringert.

Diese Dissertation bietet eine Lösung für ein offenes Problem aus dem Gebiet

der Segmentierung von Signalen. Durch die Arbeit an diesem Problem sind neue

offenen Fragen entstanden. Eine der wichtigsten ist, ob ein komplexeres Signal-

modell die Güte tatsächlich erhöht und ob durch diese Erhöhung der Komplexität

die Robustheit von SEMUG beeinträchtigt wird. Beides werden wichtige Fragen für

weiterführende Forschungsprojekte sein.
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1. Introduction

This thesis gives a solution to a problem out of the field of change-point analysis.

Methods from change-point analysis are used in signal processing when the mon-

itored signal comprises one or more structural changes. An example for such a

signal is given in Figure 1.1. It is a quarterly index of import prices of petroleum

products for Germany. For this signal, change-point analysis is concerned with two

questions. Does the signal comprise significant abrupt shifts and when do they

happen? In other applications these questions might be formulated more generally

since changes can happen in the internals of the observed system which must not

necessarily cause abrupt shifts in the monitored signal. However, the two questions

are the core problems of change-point analysis. It is the detection whether a change

has happened, termed change detection, and the estimate of its location, termed

change-point estimation.

That the signal in Figure 1.1 comprises significant changes is undoubtedly true.

There are three major shifts in the oil price. The first is caused by the Arab oil

embargo after the Fourth Arab-Israeli War also known as the Yom Kippur war in

1973. The second price increase in 1979 marks the Iranian revolution followed by

the war between Iran and Iraq (1980-1988) which had a negative effect on the oil

production. Finally, in the mid-80s several minor effects cause a decrease of the oil

price. Among them are an increase of production in Great Britain, Norway and

Mexico, and internal quarrels in the OPEC cartel.

An algorithm which might be utilised for the oil price data must be capable to

solve the multiple change-point problem which is the detection and the localisa-

tion of more than one change-point. However, in the early days of change-point
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1. Introduction

Figure 1.1.: A quarterly index of import prices of petroleum products. The data
was obtained from the Statistisches Bundesamt Deutschland (Federal Statistical
Office, Germany). (source: Zeileis et al. [2003])

research, the scientists focussed on a simpler model with a single abrupt change,

only. Solutions for the single change-point problem were developed in the early

30s of the 20th century in the field of process control [Shewhart, 1931] (see also

[Montgomery, 1985, Timmer and Pignatiello Jr., 2003]). Process supervision is typ-

ically a safety critical part with the aim to detect if a process, e. g., a chemical plant,

gets out of control. Both, the methodologies as well as the variety of applications

has evolved since then. Nowadays change-point related problems can be found in

almost every scientific area. The applications range from the partitioning of audio

signals [Desobry and Davy, 2003] over an improved trend analysis in econometrics

[Perron and Zhu, 2005] and ecological science Toms and Lesperance [2003] to life

sciences [Hall et al., 2003, Staude, 2001].

Note, that not in every mentioned application the signals are inherently discrete

like the quarterly index of import prices depicted in Figure 1.1. In fact, most sensors

give an analogue signal which could be analysed by analogue circuits, but the current

and future trend is the sampling of analogue signals via an analogue-to-digital

converter (ADC) resulting in a discrete-time signal, which is then processed by a

digital computer. Thus, this thesis focuses on discrete-time signals and throughout

the thesis, the term signal refers to a discrete-time signal.

This thesis addresses the multiple change-point problem, i. e., the partitioning
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Figure 1.2.: Position of the index fingers (proportional to the depicted voltage value)
recorded during a finger tapping experiment. Aim is to identify and locate single
finger movements. Note, that the bar at time 249,95 is a marker and not part of
the signal. (source: Cong Khac et al. [2007])

of signals in segments with constant system behaviour, which is also termed seg-

mentation. Certainly, what is meant by constant system behaviour depends on

the modelling. Cong Khac et al. [2007] addressed the segmentation of the finger

position recorded during finger tapping experiments (see Figure 1.2). Objective is

to separate rest-phases from movements in order to determine the beginning of a

movement precisely. Following the physical modelling of a moving mass (the finger),

a dynamical system would be an appropriate model for finger tapping. A change

in the output value of a dynamical system is either caused by a change in the input

signal or a change in the system’s internal parameters. However, since neither the

system’s internals nor its input (the signal from the brain to the motor neurons of

the finger) are measurable, the segmentation problem Cong Khac et al. [2007] dealt

with, is to split up the monitored biomechanical signal in movements modelled by

a piecewise linear function.

Because of its simplicity and flexibility the linear model can be found in many

other applications, too. In cognitive science, segmentation is used in studies about

the development of strategies. In Luwel et al. [2001] a study is presented where
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1. Introduction

Figure 1.3.: The time needed for counting the number of coloured blocks on a 10
x 10 grid. Objective is to estimate the number of strategy shifts. The depicted
recording comprises two strategy shifts at approximately 30 and 70 number of
blocks. (source: Luwel et al. [2001])

subjects had to determine the number of coloured square blocks presented in a

10 x 10 grid. The time needed for counting over the number of squared blocks is

depicted in Figure 1.3. Objective is to identify different strategies which is, e. g.,

to count the non-coloured blocks instead of the coloured blocks, typically used if

the number of coloured blocks is high, which causes the decrease for a number

of blocks greater than 70 in Figure 1.3. The linear increase for a low number of

coloured blocks is caused by a second strategy where the number of coloured blocks

are counted. Moreover, the response time pattern in Figure 1.3 shows a third,

qualitatively different, strategy for quantity judgement, the so-called estimation

strategy [Verschaffel et al., 1998].

While the change of a strategy might happen suddenly which is termed an abrupt

change, a change in climatological time series is rather smooth which is called a grad-

ual change. Figure 1.4 displays a temperature time series with annual measurements

in the 20th century. A regression model with two change-points at 1935 and 1980

shows a local warming in the last 20 years, while a linear regression (dashed line)

would falsely suggest a local cooling.
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Figure 1.4.: Maximum December temperature at Angra do Heroismo (Azores),
change-points (1935 and 1960), partial tendencies, in ◦C/decade, and the lin-
ear trend. Aim is to identify trends correctly which involves the partitioning in
segments with constant trend. (source: Tome and Miranda [2004])

Another area where the correct identification of trends is of great importance is

intensive care monitoring. Charbonnier et al. [2004] utilises change-point analysis

to pre-process data describing the patient’s state. The pre-processing splits up the

signal in linear segments in order to identify trends and to remove artefacts. Two

recordings of the oxygen saturation (SaO2) over time are depicted in Figure 1.5.

The recorded signals (thin solid line) as well as the pre-processed signals (thick

solid line) are displayed. Objective is to give an alarm when the oxygen saturation

decreases significantly, whereas all the decreases not detected correspond to artefact

measurements, according to Charbonnier et al. [2004]. Since their algorithm must

be aware of fast transitions it identifies many changes in rather smooth phases so

that it gives a vast amount of segments for the signal in Figure 1.5.

The four examples displayed in the Figures 1.2-1.5 share the common objective

to split up the signal in linear segments. The mathematical problem is to decide

which of the possible segmentations is the most likely one. The standard approach
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1. Introduction

Figure 1.5.: Two recordings of the oxygen saturation (SaO2) over time (thin solid
line) and the pre-processed signals (thick solid line). Pre-processing should
identify trends (segmentation) and remove artefact measurements. (source:
Charbonnier et al. [2004])

to solve such a problem is to define a so-called objective function, which gives for

every possible segmentation a real number representing the likelihood that this

segmentation is the true one. The objective function is then computed for every

possible segmentation, and the segmentation which produces the maximum value

of the objective function is called the optimal, most likely, segmentation.

While this approach solves the problem in principle, it is not feasible in every

situation. It has especially its drawbacks in the large-scale case. Among the exam-

ples, intensive care monitoring and finger tapping are large scale problems. These

problems are long signals with many change-points which results in a huge amount

of possible segmentations so that enumerating every possible segmentation would

not give the result in reasonable time. Note, that the number of segmentations

grow exponentially with the size of the signal. Although previous research has been

done focussing large-scale change-point problems [Vostrikova, 1981, Bai and Perron,

2003, Charbonnier et al., 2004], a complete solution for the large-scale case has not

been found yet.

This thesis makes a contribution for closing this gap. It proposes an algorithm

for the large-scale segmentation problem, where the algorithm is particularly suited

for signals comprising linear and non-abrupt changes. The approach is based on

statistical detection and estimation theory and it was successfully applied to biome-

chanical signals from psychophysiological experiments (see Chapter 4 for a detailed
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description of the problem statement).

The outline of the thesis is organised as follows. Chapter 2 gives a brief overview

about estimation and detection theory in statistical signal processing. Readers

who are familiar with this topic may directly start with Chapter 3 where recent

developments in related scientific areas are presented. This is followed by a detailed

problem description in Chapter 4 with relations to the state of the art. In this

chapter, the problem is defined that should be solved by the proposed algorithm.

A detailed description of the algorithm is provided by Chapter 5. Chapter 6 is

devoted to application engineers facing the problem of tuning the parameters of

the algorithm. Easy to use rules are given in this chapter. The performance of the

algorithm is analysed in Chapter 7 on simulated and measured signals, whereas the

algorithm’s properties when applied to signals with low signal to noise ratio (SNR)

is focussed in Chapter 8, followed by some concluding remarks in Chapter 9.
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2. A Brief Review of Statistical Signal

Processing

Statistical signal processing is part of many modern signal processing systems. An

example are radar systems at the airport which are installed to keep track of the

aircrafts close to the airport. The interesting value is the distance to the aircraft.

A radar system consists of a transmitter and a receiver. The transmitter sends

out short bursts of radio waves. It then shuts off, and the receiver listens for the

echoes which are reflections by the aircraft. The elapsed time is proportional to the

distance.

Statistical signal processing involved in a radar system is responsible to (i) detect

whether the monitored signal comprises a reflection and (ii) a precise estimation of

the reflections onset. Both, detection and estimation theory will be treated in this

chapter. Followed by a brief review of classification.

2.1. Estimation Theory

2.1.1. Introduction

Change-point estimation belongs to the general mathematical field called estimation

theory. While change-point estimation deals with the problem of determining a

single point in time, namely the change-point, estimation theory does generalise

this objective to the problem of determining arbitrary parameters from a monitored

signal. These parameters may describe several properties of the system like its

dynamical behaviour or its structure.
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Mathematically, a finite length discrete-time signal is aN -point data set {y[1], y[2], . . . , y[N ]}
which is for now supposed to depend on a single unknown parameter denoted by θ.

Estimation means to determine θ based on the data, or, in other words, to define

an estimator g(y[1], y[2], . . . , y[N ]), which is a mapping from the data space to the

parameters space. The parameter estimated by g is denoted by θ̂

θ̂ = g(y[1], y[2], . . . , y[N ]) . (2.1)

The major aims of estimation theory are to find suitable estimators for a wide

range of applications and to assess the estimation error due to noise and modelling

errors.

2.1.2. Optimal Estimators

In any application it is desired to have an estimator which gives the best estimation

result. To be able to define and verify optimality with mathematical methods, an

application must be described by a mathematical model. Since monitored signals

are inherently random, due to measurement errors and random effects in the system,

the output of the system is described by its probability density function (PDF). The

PDF is denoted by p(y[1], y[2], . . . , y[N ]; θ). This notation separates the variables

from the parameters of the function p by a semicolon. Note that a parameter is

viewed to have a fixed value which distinguishes it to a variable. Remember, that

a variable represents any element within a specified set.

An easy to understand example from signal processing is the estimation of the

direct current (DC) level. One can do a simple experimental setup with a source

driving, e. g., a motor and measuring the current to the motor. After waiting some

time there are multiple observations modelled by

y[t] = θ + w[t] with t = 1, 2, . . . , N (2.2)

where y[t] is the observation at discrete-time t, θ is the unknown DC level and w[t]

is zero mean white Gaussian noise (WGN) with variance σ2, i. e., y[t] is normally
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2. A Brief Review of Statistical Signal Processing

distributed with mean θ and variance σ2. The discrete time is a nonnegative integer

equal to the time difference to the start of observation divided by the sampling time

of the ADC plus one, where the sampling time is considered to be constant.

Let y = (y[1], y[2], . . . , y[N ])T be a vector collecting the observations, the PDF

of y can be expressed by p(y[t]; θ), the PDFs of the single observation. Since the

observations {y[1], y[2], . . . , y[N ]} are assumed to be statistically independent, the

PDF p(y; θ) is the product of the single PDFs so that

p(y; θ) =
N∏

t=1

1√
2πσ2

exp

[

− 1

2σ2
(y[t]− θ)2

]

(2.3)

=
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

t=1

(y[t]− θ)2
]

. (2.4)

The PDF p(y; θ) is often referred to as the joint PDF of the single PDFs p(y[t]; θ).

After the mathematical model is done, estimators for the DC level must be found.

Two estimators are considered in the following. The first is the mean over the

observations and the second is equal to the first observation

θ̂ =
1

N

N∑

t=1

y[t] (2.5)

θ̌ = y[1] . (2.6)

Two methods to assess the performance of estimators are viewed next. The first

is a Monte Carlo technique which is a numerical approach and the second method

evaluates the PDF of the estimator analytically.

Since the observations are corrupted by noise, the performance of estimators

cannot be compared by using just an one sample sequence. Applying the Monte

Carlo technique, several sequences that attain the model, i. e., that attain (2.4) with

varying value of the parameter θ are generated. For 100 realisations with N = 20,

σ2 = 1, and θ = 1 the histograms are shown in Figure 2.1. It should now be

evident that θ̂ is a better estimator than θ̌ because the values obtained are more

concentrated around the true value.
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Figure 2.1.: Histograms of a Monte Carlo experiment estimating the DC level with
(a) sample mean and (b) first sample estimator. The true value is at θ0 = 1.

Surely, for a real prove this experiment must be repeated for different θ, since

the performance of estimators might depend on the true parameter θ. The compu-

tation effort rises exponentially with the number of parameters, which is the main

drawback of the Monte Carlo technique. However, the power of this technique is

that it can be used for any estimator.

A real prove that θ̂ has a better performance than θ̌ can be done by evaluating

their PDFs. The sum of N normally distributed random variables N (θ, σ2) is a

random variable which is also normally distributed with mean Nθ and variance

Nσ2. Furthermore, a normally distributed variable N (Nθ,Nσ2) multiplied by

1/N results in a random variable that is N (θ, σ2/N) distributed. Consequently,
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θ̂ according to (2.5) is N (θ, σ2/N) distributed in contrast to θ̌ according to (2.6)

which is N (θ, σ2) distributed.

A common performance measure is the bias of an estimator. An estimator is

unbiased if it yields on average to the true value of the unknown parameter. Math-

ematically, an estimator is unbiased if its expectation is equal to the true value

E(θ̂) = θ . (2.7)

Even though θ̂ and θ̌ are both unbiased, the estimator θ̂ is preferable since its

variance var(θ̂) = σ2/N is lower than the variance of the second estimator var(θ̌) =

σ2.

Two methods, the Monte Carlo technique and the evaluation of the PDF have

proven that the estimator θ̂ is better than θ̌. However, there is still the possibility

that there exist a better estimator than θ̂. In searching for optimal estimators one

needs to adopt some optimality criterion. A natural one among many others is the

mean square error (MSE), defined as

mse(θ̂) = E
[

(θ̂ − θ)2
]

. (2.8)

This measures the average mean squared deviation of the estimator from the true

value. The MSE is a trade-off between the variance and the bias of the estimator.

(2.8) can be rewritten as

mse(θ̂) = E

{[(

θ̂ − E(θ̂)
)

+
(

E(θ̂)− θ
)]2
}

(2.9)

= var(θ̂) +
[
E(θ̂)− θ
︸ ︷︷ ︸

bias

]2
(2.10)

which shows that the MSE is composed of errors due to the variance of the esti-

mator as well as the bias. Since the bias depends on the true parameter θ, most

estimators minimising the MSE depend on θ, too. Because of this dependency on

the unknown parameter, those estimators are not realisable. An alternative ap-

proach is to constrain the bias to be zero and find the estimator which minimizes
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the variance. Such an estimator is termed the minimum variance unbiased (MVU)

estimator. In most practical situations engineers try to find the MVU estimator.

2.1.3. Minimum Variance Unbiased Estimators

A special property of the MVU estimators is that there exist a lower bound for

their variance, namely the Cramer-Rao Lower Bound (CRLB). The CRLB allows

to assert that an estimator is the MVU estimator. This will be the case if the

estimator attains the bound for all values of the unknown parameter θ.

It is assumed that the PDF p(y; θ) satisfies the condition

E

{
∂ ln p(y; θ)

∂θ

}

= 0 for all θ (2.11)

often referred as the regularity condition. The MVU estimator θ̂ = g(y) attaining

the CRLB has a variance of

var(θ̂) =
1

I(θ)
(2.12)

which is minimal among the MVU estimators, where I(θ) is called the Fischer

information. The Fischer information I(θ) as well as the estimator g(y) can be

determined from the equation

∂ ln p(y; θ)

∂θ
= I(θ)(g(y)− θ) (2.13)

which holds for every MVU estimator [Cramér, 1946]. This will be illustrated for

the example of an unknown DC level in WGN. The PDF p(y; θ) is given in (2.4).

Taking the first derivative

∂ ln p(y; θ)

∂θ
=

∂

∂θ

[

− ln
[(

2πσ2
)N/2

]

− 1

2σ2

N∑

t=1

(y[t]− θ)2
]

(2.14)

=
1

σ2

N∑

t=1

(y[t]− θ) (2.15)

=
N

σ2

([

1

N

N∑

t=1

y[t]

]

− θ
)

(2.16)
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and comparing (2.16) with (2.13) it is obvious that the sample mean estimator

attains the bound and must therefore be the MVU estimator. Also, the minimum

variance is given by I(θ)−1 = σ2/N which means that there is no unbiased estimator

with a lower variance than that.

2.1.4. Maximum Likelihood Estimators

In many applications there are several unknown parameters. Although the CRLB

can be extended to a vectorial form, it might be that a solution for (2.13) can not

be found for every parameter. In such cases an estimator based on the maximum

likelihood (ML) principle can be applied. The ML principle, originally developed

by R. A. Fisher in the 1920s (see Aldrich [1997] for a historical overview), states

that the desired probability distribution be the one that makes the observed data

most likely. In the sense of ML, the PDF is viewed as a function of the unknown

parameter θ, with y being a fixed (recorded) signal. From this point of view the PDF

migrates to the likelihood function denoted by L(θ; y). The maximum likelihood

estimate (MLE) is obtained by seeking the value of the parameter vector that

maximises the likelihood function. Although ML has a statistical motivation, it does

not generally fulfil an optimality criterion like MSE or MVU estimators, although

sometimes the ML principle produces the MVU estimator. But a distinct advantage

of the likelihood is that it can always be computed for a given data set numerically

(see Section 2.1.6) even though an analytical solution is preferable which will be

discussed next.

An extension of the DC level example is a model with a time varying mean signal

depending on the unknown parameter θ

y[t] = u[t] + w[t] t = 1, 2, . . . , N (2.17)

with u[t] being a function of t and θ. The likelihood for θ when y is observed is

equal to
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L(θ; y) =
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

t=1

(y[t]− u[t])2
]

. (2.18)

Especially when dealing with WGN the log-likelihood function ln L(θ; y) is used

instead of the likelihood function, since it is easier to compute. Thus, the estimate

of θ, according to the ML principle, is the argument which maximises the log-

likelihood function

θ̂ = arg max
θ

ln L(θ; y) . (2.19)

Note that, since the logarithm is strictly increasing, it does not change the location

of the maximum, which means that the log-likelihood gives the same results as the

likelihood. From (2.18) it follows for the log-likelihood

ln L(θ; y) = −N
2

ln
(
2πσ2

)
+

[

− 1

2σ2

N∑

t=1

(y[t]− u[t])2
]

(2.20)

and since the arg maxθ-operator is invariant with respect to summation and multi-

plication with positive factors not depending on θ, (2.19) can be condensed to

θ̂ = arg max
θ

Λ(θ; y) (2.21)

with

Λ(θ; y) = −
N∑

t=1

(y[t]− u[t])2 . (2.22)

The optimisation (2.21) must be performed in order to obtain the MLE. The fact

that the objective function (2.22) is relatively simple is an important reason why

ML is the method of choice in many applications.

The formulas (2.21) and (2.22) show a strong connection of the MLE to another

popular method, namely the least squares (LS) approach. An equivalent minimisa-

tion problem to (2.21) has the objective function

J(θ; y) =

N∑

t=1

(y[t]− u[t])2 (2.23)
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which is (2.22) multiplied by minus one. J(θ; y) is the sum of the squared difference

between the monitored signal y[t] and the model u[t] = f(t, θ), well known as the

objective function of the LS approach. This method dates back to 1795 when Gauss

used the method to study planetary motions. In contrast to the ML principle, the

LS approach is not build on a statistical model of the system making it a popular

method when prior knowledge about the system is limited.

2.1.5. The Basic Change-Point Problem

The ML principle will be used next to solve the basic change-point problem which

is a shift in the DC Level at an unknown change-point ν. Note that because of the

abrupt change, the observation vector’s PDF cannot be differentiated with respect

to the change location and hence, the MVU estimator cannot be found using the

CLRB. Although there exist recent work to overcome this issue (see Tourneret et al.

[2004], Swami and Sadler [1998], Reza and Doroodchie [1996]), it remains unsolved

so that the ML method is still state of the art for solving change-point problems.

Consider the model (2.17) with the mean signal

u[t] =







0 for t ≤ ν
1 for t > ν

with t = 1, 2, . . . , N (2.24)

From (2.21) if follows that the estimate ν̂ is obtained by maximising Λ(ν; y), which

is equal to

Λ(ν; y) = −
N∑

t=1

(y[t]− u[t])2

= −
ν∑

t=1

(y[t])2 −
N∑

t=ν+1

(y[t]− 1)2 (2.25)

when the definition of u[t] (2.24) is taken into account. The most obvious way to

determine the maximum of Λ(ν; y) is to compute (2.25) for every possible change-

point and take the maximum, which is well known as the grid search method.

Figure 2.2 (a) displays a signal corrupted by WGN with
√
σ2 = 0.5 and a change
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Figure 2.2.: (a) A signal corrupted by WGN with a change in DC level at ν0 = 75.
(b) The log-likelihood function Λ(ν; y) which has its maximum at the true change-
point.

of the DC level at ν0 = 75. Λ(ν; y) is displayed in Figure 2.2 (b). It has a clear

maximum at ν = 75 which is equivalent to the true change-point.

2.1.6. Newton-Raphson Method

A distinct advantage of the MLE is that it can always be found for a given data set

numerically, although standard calculus is preferred in the case when the likelihood

function is differentiable. If, as in the change-point example, the likelihood function

is not differentiable but, the unknown parameter is confined to a finite set ν ∈
1, 2, . . . , N − 1 then a grid search over the set can be performed which is guaranteed
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to find the MLE for the given data set, numerically. In cases where θ lives on an

infinite interval so that grid search may not be computationally feasible, iterative

maximisation procedures like the Newton-Raphson method might be applied for a

numerical solution. In general, this method will produce the MLE if the initial guess

is close to the true maximum. If not, convergence may not be attained, or only

convergence to a local maximum. The difficulty with the use of iterative methods

is that convergence can not be guaranteed and, even if convergence is attained, it

can not be guaranteed that the value produced is the MLE. A special issue with

ML is that the function to be maximised is not known a priori, since the likelihood

function changes for each data set, requiring the maximisation of a random function.

Nevertheless, iterative methods can at times produce good results but must be used

with caution.

The Newton-Raphson method dates back to the 17th century where Newton

applied an iterative scheme for finding a root of a polynomial [Newton, 1664–1671].

On top of that Raphson built a method which is close to the current notation

[Raphson, 1690]. See Kollerstrom [1992] for a historical overview.

The Newton-Raphson method attempts to maximise the log-likelihood function

by finding a zero of the derivative function. To do so, the derivative is taken and

set equal to zero, yielding
∂ ln L(θ; y)

∂θ
= 0 . (2.26)

Then, the method solves this equation iteratively. Let

g(θ) =
∂ ln L(θ; y)

∂θ
(2.27)

and assume that θ0 is a good initial guess for the solution to (2.26). Then, if g(θ)

is approximately linear near θ0, it can be approximated by

g(θ) ≈ g(θ0) +
dg(θ)

dθ

∣
∣
∣
∣
θ=θ0

(θ − θ0) (2.28)

which are the first two elements of the Taylor expansion. Next, (2.28) is used to
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solve for the zero θ1, so that upon setting g(θ) equal to zero according to (2.26)

and solving for θ1 one gets

θ1 = θ0 −
[

dg(θ)

dθ

∣
∣
∣
∣
θ=θ0

]−1

g(θ0) . (2.29)

Again the method linearises g(θ) but now at the new guess, θ1, and repeats the

previous procedure to find the new zero. In general, the Newton-Raphson iteration

finds the new guess θi+1 based on the previous one θi using

θi+1 = θi −
[

dg(θ)

dθ

∣
∣
∣
∣
θ=θi

]−1

g(θi) . (2.30)

Note that at convergence θi+1 = θi, and from (2.30) g(θi) = 0, as desired. Since

g(θ) is the derivative of the log-likelihood function, the MLE is found by

θi+1 = θi −
[
d2 ln L(θ; y)

dθ2

]−1
d ln L(θ; y)

dθ

∣
∣
∣
∣
∣
θ=θi

. (2.31)

In most situations there are more than one unknown parameters collected in

a parameter vector. The Newton-Raphson method can easily be extended to the

vector parameter case where the unknown parameters are optimised simultaneously.

The Newton-Raphson iteration becomes

θi+1 = θi − [H(θ; y)]−1 ∂ ln L(θ; y)

∂θ

∣
∣
∣
∣
θ=θi

. (2.32)

where

H(θ; y) =
∂2 ln L(θ; y)

∂θ∂θT
(2.33)

is the Hessian of the log-likelihood function and ∂ ln L(θ;y)
∂θ

is the gradient. When

the number of unknown parameters is ρ, the gradient is a ρ × 1 vector with the

elements
[
∂ ln L(θ; y)

∂θ

]

i

=
∂ ln L(θ; y)

∂θi
i = 1, 2, . . . , ρ (2.34)
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where θi is the i-th element of θ. Similarly, the Hessian is a ρ × ρ matrix with

elements

[H(θ; y)]i,j =
∂2 ln L(θ; y)

∂θi∂θj
i = 1, 2, . . . , ρ ; j = 1, 2, . . . , ρ . (2.35)

Note that, when implementing (2.32), inversion of the Hessian is not required.

Rewriting (2.32) as

H(θ; y)|θ=θi
θi+1 = H(θ; y)|θ=θi

θi −
∂ ln L(θ; y)

∂θ

∣
∣
∣
∣
θ=θi

. (2.36)

the new iterate θi+1, can be found from the previous iterate θi, by solving this set

of ρ linear equations.

In general, the Newton-Raphson method will produce the MLE if the initial

guess is close to the true maximum. If not, it might converge to a local maximum

or convergence may not be attained. The reason for this is that the Newton-

Raphson method is designed to give a one-step convergence for quadratic functions.

When the function values between the current iterate and the minimum cannot be

approximated very well by a quadratic function, the Newton-Raphson method tends

to be unstable.

The effect of the Hessian in (2.32) is to control the step size and to modify the

step direction. If the Hessian is be replaced by the identity matrix, the method

degenerates to a pure gradient method. The influence of the Hessian is especially

important close to the true maximum since the gradient becomes then very small.

The Newton-Raphson method can become more stable when far from the true max-

imum the influence of the Hessian is confined. One common way is the procedure

proposed by Levenberg [1944]. Then an approximation

RL(λ) = H(θ; y) + λI (2.37)

is used for the Hessian where I is the ρ × ρ identity matrix and λ is a positive
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scalar, so that the update rule (2.32) becomes

θi+1 = θi − [H(θ; y) + λI]−1 ∂ ln L(θ; y)

∂θ

∣
∣
∣
∣
θ=θi

. (2.38)

With λ = 0 the Levenberg procedure is equal to the Newton-Raphson method.

Increasing λ means that the step size is decreased and the search direction is turned

towards the gradient. The value of λ is dynamically changed from iteration to

iteration. If the likelihood goes up following an update, it implies that θi+1 is

closer to the maximum so that λ can be reduced (usually by a factor of 10) so that

the influence of the gradient is reduced. On the other hand, if the likelihood goes

down the step is retracted and λ is increased by the same factor, which means that

in the next trial the gradient will have a greater influence.

A popular variation to the Levenberg procedure was introduced by Marquardt

[1963] who replaced the identity matrix in (2.37) by the diagonal of the Hessian

RM (λ) = H(θ; y) + λ diag[H(θ; y)] (2.39)

resulting in the Levenberg-Marquardt update rule

θi+1 = θi − [H(θ; y) + λ diag[H(θ; y)]]−1 ∂ ln L(θ; y)

∂θ

∣
∣
∣
∣
θ=θi

. (2.40)

The Levenberg-Marquardt update rule takes advantage of the Hessian even when

λ is high. This is especially beneficial when the likelihood function forms a valley.

In this case the Levenberg update rule does, when λ is high, a small step along

the valley and a big step up the hill according to the gradient. Since the Hessian

is proportional to the curvature of the function the Levenberg-Marquardt rule has

the superior behaviour doing a big step a long the valley and only a small step up

the hill which prevents the algorithm jumping out of the valley.
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2.2. Detection Theory

2.2.1. Introduction

Detection theory is important in many modern signal processing systems. An ex-

ample is the radar system at an airport keeping track of the aircrafts close to the

airport. A signal processing problem which has to be solved in this context is to

decide whether an aircraft has entered the airspace controlled by the radar system.

To accomplish this task, the radar transmits an electromagnetic pulse, which if

reflected by a large moving object, will indicate the presence of an aircraft. The

received waveform will either consist of the reflected pulse if an aircraft is present

or noise only, if there is no aircraft close to the airport. This kind of decision mak-

ing problem is central in detection theory ; being able to decide when an event of

interest occurs and then to determine more information about that event. Where

the latter is typically done with methods from estimation theory described in the

previous section.

2.2.2. Neyman-Pearson Detector

The simplest detection problem is to decide whether a known signal is present,

which, usually, is embedded in noise, or if only noise is present. Since this is a

decision between two possible alternatives, this is termed binary hypothesis testing

problem. Since the data are inherently random in nature, a statistical approach is

necessary with the goal to use the received data as efficiently as possible.

The discussion about signal detection will be centred around the example, where

on the basis of N observations it should be distinguished if the DC level is zero or

one. The problem is formulated with the two hypotheses

H0 : y[t] = w[t] (2.41)

H1 : y[t] = 1 + w[t] with t = 1, 2, . . . , N (2.42)

where w[t] is a realisation of a WGN process with zero mean and variance σ2. H0
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p(T (y)|H0) p(T (y)|H1)

Type II error, P (H0|H1) Type I error, P (H1|H0)

T (y)

Figure 2.3.: PDFs of the test statistic T (y) if H0 is true and H1 is true, respectively.
Shaded are the two types of error. Type I error: Decision for H1 when H0 is
true. Typ II error: Decision for H0 when H1 is true.

is referred as the noise only hypothesis and H1 as the signal + noise hypothesis. In

statistics literature they are also termed null hypothesis and alternate hypothesis,

respectively.

The decision is based on a test statistic T (y) which is a mapping of the observed

signal to a real value. When the test statistic exceeds a real valued threshold,

denoted by δ, H0 is rejected and H1 is accepted, respectively. Note with this

scheme one can make two types of errors. If the test decides H1 but H0 is true

which is called a type I error. On the other hand, if the test decides H0 but H1 is

true which is called a type II error. Figure 2.3 illustrates the PDF of T (y) when H0

is true and the PDF of T (y) when H1 is true. The probability of the two types of

errors is shaded. The notation P (Hi|Hj) indicates the probability of deciding Hi

when Hj is true. The two errors are unavoidable to some extent but may be traded

off against each other. To do so, the threshold δ must be changed in Figure 2.3.

The type I error, P (H1|H0) is referred to as the probability of false alarm in

engineering literature and is denoted by PFA. The probability of a false alarm is

crucial. E. g., in military applications, a falsely detected enemy aircraft may initiate

an attack; or in intensive care monitoring, too many false alarms may cause that

any further alarm might be ignored by the operator with disastrous effects. In any
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δ
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PFA

T (y)

Figure 2.4.: PDFs of the test statistic T (y) if H0 is true and H1 is true, respectively.
Shaded are the probability of false alarm PFA and the probability of detection
PD.

case, it is often desired that the PFA is small and known a priori which leads to the

Neyman-Pearson approach of optimal detection.

The Neyman-Pearson theorem provides the test statistic that maximises for a

given PFA = α the probability P (H1|H1) which is called the probability of detection,

also denoted by PD. PFA and PD are shaded in Figure 2.4. The test statistic

according to Neyman-Pearson is the quotient of the likelihood for y under H1 and

the likelihood for y under H0. Hence, the Neyman-Pearson detector decides H1 if

TLR(y) =
p(y|H1)

p(y|H0)
> δ (2.43)

where the threshold δ is found from

PFA =

∫

y:TLR(y)>δ
p(y|H0)dy = α. (2.44)

The function TLR(y) is termed the likelihood ratio since it indicates for each value

of y the likelihood of H1 versus the likelihood of H0. The entire test is called the

likelihood ratio test (LRT).
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The PDFs under each hypothesis of the DC level example are

p(y|H0) =
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

t=1

y[t]2

]

(2.45)

p(y|H1) =
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

t=1

(y[t]− 1)2
]

. (2.46)

The LRT decides H1 if

1

(2πσ2)N/2 exp
[

− 1
2σ2

∑N
t=1 (y[t]− 1)2

]

1

(2πσ2)N/2 exp
[

− 1
2σ2

∑N
t=1 y[t]

2
] > δ . (2.47)

Taking the logarithm of both sides results in

− 1

2σ2

(
N∑

t=1

(y[t]− 1)2 −
N∑

t=1

y[t]2

)

> ln δ (2.48)

⇔ − 1

2σ2

(

−2
N∑

t=1

y[t] +N

)

> ln δ (2.49)

which simplifies to

N

σ2

(

1

N

N∑

t=1

y[t]− 1

2

)

> ln δ . (2.50)

The LRT compares basically the sample mean with a threshold. The relation of

the threshold δ and the probability of false alarms PFA is obtained by solving (2.44).

The integral is in this case equal to the complementary cumulative distribution

function of a normally distributed random vector which can be found in tables or

computed numerically.

2.2.3. Generalised Likelihood Ratio Test

Previously, complete knowledge of the PDFs under H0 and H1 has been assumed,

allowing the design of the optimal Neyman-Pearson detector. In the more realistic

problem the PDF is not completely known. For example, the radar return from a

target will be delayed depending on the distance from the sender to the target. As
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a result, the arrival time is generally unknown. The design of good detectors when

the PDFs have unknown parameters is therefore of great practical importance.

The general class of hypothesis tests with unknown parameters are termed com-

posite hypothesis tests. The PDF under H0 or under H1 or under both hypotheses

may not be completely specified. An example is a similar problem as considered in

the previous section with the difference that the DC level under hypothesis H1 is

not known a priori. So, consider the detection problem

H0 : y[t] = w[t] (2.51)

H1 : y[t] = A+ w[t] with t = 1, 2, . . . , N (2.52)

where A is the unknown parameter and w[t] is a realisation of a WGN process.

Since the amplitude A is unknown, the PDF under H1 is not completely specified.

The PDF belongs to a family of PDFs, one for each value of A. The PDF is said

to be parametrised by A.

p(y;A|H1) =
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

t=1

(y[t]−A)2
]

(2.53)

As a result of 2.50 the LRT in this scenario is basically the sample mean. The

test statistic TLR changes therefore its sign with A so that a comparison with a

single threshold for A > 0 and A < 0 is not possible. The Neyman-Pearson detector

can therefore not be applied.

Intuitively the test should be changed so that the absolute value of TLR is com-

pared to the threshold. This is exactly the solution that is obtained with the

generalised likelihood ratio test (GLRT). The GLRT replaces the unknown parame-

ters by their maximum likelihood estimates (MLEs). Unlike the LRT based on the

Neyman-Pearson theorem there is no optimality associated with the GLRT, but it

is a method which works very well in many applications. In general, the GLRT

decides H1 if

TGLR(y) =
p(y; θ̂1|H1)

p(y; θ̂0|H0)
> δ (2.54)
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where θ̂1 is the MLE of θ1 assuming H1 is true, and θ̂0 is the MLE of θ0 assuming

H0 is true. The approach also provides information about the unknown parameters

since the first step in determining TGLR(y) is to find the MLEs.

In the DC level example, θ1 is the unknown post-change level A and there are

no unknown parameters under H0. Thus, the GLRT decides H1 if

TGLR(y) =
p(y; Â|H1)

p(y;H0)
> δ . (2.55)

The MLE of A is the sample mean

Â =
1

N

N∑

t=1

y[t] (2.56)

as derived in Section 2.1.4. Thus, with (2.45), (2.53), and (2.55)

TGLR(y) =

1

(2πσ2)N/2 exp

[

− 1
2σ2

∑N
t=1

(

y[t]− Â
)2
]

1

(2πσ2)N/2 exp
[

− 1
2σ2

∑N
t=1 y[t]

2
] > δ . (2.57)

Taking the logarithm of both sides results in

− 1

2σ2





N∑

t=1

(

y[t]− 1

N

N∑

i=1

y[i]

)2

−
N∑

t=1

y[t]2



 > ln δ (2.58)

⇔ − 1

2σ2



−2
1

N

N∑

t=1

y[t]
N∑

t=1

y[t] +N

(

1

N

N∑

t=1

y[t]

)2


 > ln δ (2.59)

⇔ N

2σ2

(

1

N

N∑

t=1

y[t]

)2

> ln δ (2.60)

or the GLRT decides H1 if
(

1

N

N∑

t=1

y[t]

)2

> δ′ (2.61)

where

δ′ =
2σ2

N
ln δ . (2.62)
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2.2.4. Change Detection

The methods derived in the previous section will be used next to solve the classical

change detection problem. The objective of this problem is to detect a jump at

unknown time, when the level before and after the jump is unknown, too.

Consequently, the noise only hypothesis is

H0 : y[t] = µ+ w[t] with t = 1, 2, . . . , N (2.63)

and the noise + signal hypothesis is formulated as

H1 : y[t] =







µ1 + w[t] with t = 1, 2, . . . , ν

µ2 + w[t] with t = ν + 1, ν + 2, . . . , N
(2.64)

where ν is the unknown date of the single change. It is supposed that w[t] is WGN

with a known variance σ2. Thus the assumption σ2 = 1 is done without loss of

generality.

The PDFs under the two hypothesis are defined by

p(y;µ|H0) =
1

(√
2π
)N

exp

[

−1

2

N∑

t=1

(y[t]− µ)2

]

(2.65)

p(y; ν, µ1, µ2|H1) =
1

(
√

2π)N
exp

[

−1

2

ν∑

t=1

(y[t]− µ1)
2

− 1

2

N∑

t=ν+1

(y[t]− µ2)
2

]

(2.66)

Using the GLRT, the test statistic is given by

TGLR(y) =
p(y; ν̂, µ̂1, µ̂2|H1)

p(y; µ̂|H0)
> δ (2.67)
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where µ̂, µ̂1, and µ̂2 are the MLEs defined by

µ̂ =
1

N

N∑

t=1

y[t] (2.68)

µ̂1 =
1

ν

ν∑

t=1

y[t] (2.69)

µ̂2 =
1

N − ν
N∑

t=ν+1

y[t] . (2.70)

The change-point ν is integer valued and lives on the interval [1, N − 1], so that

the MLE of the change-point is guaranteed to be found by a grid search method,

as explained in Section 2.1.5. It follows for the test statistic

TGLR(y) =
maxν p(y; ν, µ̂1, µ̂2|H1)

p(y; µ̂|H0)
(2.71)

and since the denominator is independent of ν

TGLR(y) = max
ν

p(y; ν, µ̂1, µ̂2|H1)

p(y; µ̂|H0)
(2.72)

Using the abbreviations

Sν =
ν∑

t=1

(y[t]− µ̂1)
2 +

N∑

t=ν+1

(y[t]− µ̂2)
2

S =
N∑

t=1

(y[t]− µ̂)2
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and taking the logarithm, the test statistic can be reduced to

ln TGLR(y) = max
ν

ln
p(y; ν, µ̂1, µ̂2|H1)

p(y; µ̂|H0)

= max
ν

ln
exp

[

−1
2

∑ν
t=1(y[t]− µ̂1)

2 − 1
2

∑N
t=ν+1(y[t]− µ̂2)

2
]

exp
[

−1
2

∑N
t=1(y[t]− µ̂)2

]

= max
ν

ln
exp

[
−1

2Sν

]

exp
[
−1

2S
]

= max
ν

1

2
(−Sν + S)

= max
ν

1

2
V (ν,N)

introducing V (ν,N) = S − Sν . The following algebra allows a simplification of

V (ν,N).

V (ν,N) = S − Sν

=
N∑

t=1

(y[t]− µ̂)2 −
ν∑

t=1

(y[t]− µ̂1)
2 −

N∑

t=ν+1

(y[t]− µ̂2)
2

=
N∑

t=1

y[t]2 − 2µ̂
N∑

t=1

y[t] +Nµ̂2

−
ν∑

t=1

y[t]2 + 2µ̂1

ν∑

t=1

y[t]− νµ̂2
1

−
N∑

t=ν+1

y[t]2 + 2µ̂2

N∑

t=ν+1

y[t]− (N − ν)µ̂2
2

(2.73)
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splitting the sum over the samples

V (ν,N) = −2µ̂

(
ν∑

t=1

y[t] +
N∑

t=ν+1

y[t]

)

+ νµ̂2 + (N − ν)µ̂2

+ 2µ̂1

ν∑

t=1

y[t]− νµ̂2
1 + 2µ̂2

N∑

t=ν+1

y[t]− (N − ν)µ̂2
2

= −2νµ̂1µ̂− 2(N − ν)µ̂2µ̂+ νµ̂2 + (N − ν)µ̂2

+ 2νµ̂2
1 − νµ̂2

1 + 2(N − ν)µ̂2
2 − (N − ν)µ̂2

2

= −2νµ̂1µ̂− 2(N − ν)µ̂2µ̂+ νµ̂2 + (N − ν)µ̂2 + νµ̂2
1 + (N − ν)µ̂2

2

= ν
(
µ̂2

1 − 2µ̂1µ̂+ µ̂2
)

+ (N − ν)
(
µ̂2

2 − 2µ̂2µ̂+ µ̂2
)

= ν(µ̂1 − µ̂)2 + (N − ν)(µ̂2 − µ̂)2 (2.74)

so that finally the change-point hypothesis H1 is accepted if

max
ν

1

2
V (ν,N) > ln δ (2.75)

or

max
ν

V (ν,N) > δ′ (2.76)

where V (ν,N) is given by (2.74).

2.2.5. On-line Change Detection

In an on-line setup the change in mean should be detected during data acquisition.

This is a common task in process control where information produced by the sensors

is employed to detect abrupt changes in process variables. The consequence of

detecting a change might be different. In case of a severe failure the process will

be shut down while a small change will effect that the control law is adapted. The

time when the change is detected is commonly referred as the alarm time denoted

by ta. Let n be the current time then a change is detected utilising the GLRT if

maxν V (ν, n) exceeds the threshold δ. The stopping rule is consequently formulated
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Figure 2.5.: (a) A signal corrupted by WGN with a change in DC level at ν0 = 50.
(b) The test statistic maxν V (ν, n). For a threshold δ = 2 the GLRT detects the
change at ta = 63.

as

ta = min{n : max
ν

V (ν, n) > δ} . (2.77)

Figure 2.5 displays an example where the GLRT is applied to a simulated signal

with a change at ν0 = 50. It is evident that the test statistic is less noisy than

the signal. This is due to the sums in V (ν, n) reducing stochastic errors. After the

change has happened at ν0 = 50 the test statistic rises so that the GLRT detects

the change at ta = 63 when a threshold δ = 2 is used.
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2.3. Classification

2.3.1. Introduction

In this section the previous detection scenario is extended to the case where one

wishes to distinguish between c hypotheses, with c > 2. Such a problem arises quite

frequently in communications, in which one of c signals must be detected where the

observed signal is classified to one of the c signals. Beside classification this problem

is sometimes termed multiple hypotheses testing or simply signal detection.

2.3.2. Minimum Probability of Error

Assume that one wishes to decide among the c possible hypotheses {H1,H2, . . . ,Hc}.
A commonly used criterion is the minimum probability of error. The probability of

error Pe is the probability that the decision is wrong and is defined as

Pe =
c∑

i=1

c∑

j=1
j 6=i

P (Hi|Hj)P (Hj) (2.78)

where P (Hj) is the a priori probability for hypothesis j and P (Hi|Hj) is the con-

ditional probability deciding for hypothesis i when hypothesis j is true. Aim is to

find a decision criterion that minimises Pe. Let Ri = {y : decide Hi} be a subset of

R
N where each y ∈ Ri is decided to be a realisation of hypothesis i. Ri is termed

the decision region of Hi. The partitioning of the space R
N is non overlapping

whereas the union extends to the whole space, so that

c⋃

i=1

Ri = R
N i = 1, 2, . . . , c . (2.79)

From this it follows that P (Hi|Hj) can be rewritten to

P (Hi|Hj) =

∫

Ri

p(y|Hj)dy (2.80)
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so that

Pe =
c∑

i=1

c∑

j=1
j 6=i

∫

Ri

p(y|Hj)dyP (Hj) (2.81)

=
c∑

i=1

∫

Ri

c∑

j=1
j 6=i

p(y|Hj)P (Hj)dy . (2.82)

Utilising Bayes law

P (Hj |y) =
p(y|Hj)P (Hj)

p(y)
(2.83)

(2.82) is equal to

Pe =
c∑

i=1

∫

Ri

c∑

j=1
j 6=i

P (Hj |y)p(y)dy . (2.84)

The term

C∗
i =

c∑

j=1
j 6=i

P (Hj |y)p(y)dy (2.85)

is the contribution to Pe if the observation y is assigned to Ri. In order to minimise

Pe, y should assigned to that decision region so that the contribution C∗
i is minimal.

Since p(y) in C∗
i is constant, it can be cancelled so that in summary the minimum

probability error detector decides Hi for which

Ci(y) =
c∑

j=1
j 6=i

P (Hj |y) (2.86)

is minimal. Ci is termed the cost of deciding Hi when y is observed.

There is a strong connection of the minimum Pe detector to a maximum likelihood

based detector. To show this, Ci(y) can be rewritten to

Ci(y) =
c∑

j=1

P (Hj |y)− P (Hi|y) (2.87)

where the sum
∑c

j=1 P (Hj |y) is the probability that y is assigned to any hypothesis,

which is one because of (2.79); Ci(y) is therefore minimised by maximising P (Hi|y).
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Thus, the minimum Pe decision rule is equivalent to decide Hi if

P (Hi|y) > P (Hj |y) with j = 1, 2, . . . , c ; i 6= j . (2.88)

With Bayes law (2.83) it follows that the minimum Pe decides for Hi if the product

of the likelihood p(y|Hi) and the prior probability P (Hi) is maximal

p(y|Hi)P (Hi) > p(y|Hj)P (Hj) with j = 1, 2, . . . , c ; i 6= j . (2.89)

In case that the prior probabilities are equal so that P (Hj) = 1/c the decision

reduces to comparing the likelihoods. This is the maximum likelihood (ML) decision

rule which decides for Hi if

p(y|Hi) > p(y|Hj) with j = 1, 2, . . . , c ; i 6= j . (2.90)

The ML decision rule is often used in applications where the prior probabilities are

not known, so that there is no argument against the uniform distribution. There is

an interesting analogy to the MLE (see Section 2.1.4). In fact the MLE is equal to

the ML decision rule in case that θ represents a finite set.

The ML decision rule is illustrated on the problem of deciding among three DC

levels. Assume that one of the three hypotheses

H1 : y[t] = 1 + w[t] (2.91)

H2 : y[t] = 2 + w[t] (2.92)

H3 : y[t] = 3 + w[t] with t = 1, 2, . . . , N (2.93)

are possibly observed, where w[t] is WGN with variance σ2. Furthermore, if the

prior probabilities are equal or P (H1) = P (H2) = P (H3) = 1/3, then the ML

decision rule applies. Consider first the simple case of N = 1 with the PDFs shown

in Figure 2.6. By symmetry it is clear from (2.90) that the ML decision rule decides

for H2 if y[1] is in the range R2 = [1.5, 2.5], for H1 if y[1] is at the left and H3 if
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1.5 2.5

p(y[1]|H1)

p(y[1]|H2)

p(y[1]|H3)

Decide H1 Decide H2 Decide H3

y[1]→

Figure 2.6.: The PDFs and the decision regions for the three DC levels example
(N=1).

y[1] is at the right of this range.

In order to get the decision regions for multiple samples (N > 1) the conditional

PDFs must be evaluated. The PDF p(y|Hi) is analogue to (2.4)

p(y|Hi) =
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

t=1

(y[t]− i)2
]

. (2.94)

The decision of (2.90) remains unchanged when taking the logarithm on both sides

since it is a strictly increasing function, so that with (2.94) the ML rule decides for
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Hi if

ln p(y|Hi) > ln p(y|Hj) (2.95)

ln
1

(2πσ2)N/2
+

[

− 1

2σ2

N∑

t=1

(y[t]− i)2
]

> ln
1

(2πσ2)N/2

+

[

− 1

2σ2

N∑

t=1

(y[t]− j)2
]

(2.96)

− 1

2σ2

N∑

t=1

(y[t]− i)2 > − 1

2σ2

N∑

t=1

(y[t]− j)2 (2.97)

N∑

t=1

(y[t]− i)2 <
N∑

t=1

(y[t]− j)2

with j = 1, 2, 3 ; i 6= j . (2.98)

The final inequality has a nice geometrical interpretation. The sum of squares is the

squared Euclidean norm a commonly used distance measure in R
N which means

that y is assigned to the closest hypothesis.

2.3.3. Time Varying Templates

In the example of the previous section there are three simple hypotheses representing

different DC levels. This example will now be extended to the case of c hypotheses

H1,H2, . . . ,Hc representing the signals p1,p2, . . . ,pc. This means, when Hi is true

the observation y[t] is equal to pi[t] corrupted by WGN w[t]

Hi : y[t] = pi[t] + w[t] with t = 1, 2, . . . , N . (2.99)

The special case when pi[t] is constant is treated in the example of the previous

section. Proceeding in an analogous way with

p(y|Hi) =
1

(2πσ2)N/2
exp

[

− 1

2σ2

N∑

t=1

(y[t]− pi[t])
2

]

(2.100)
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the ML rule decides for Hi if

N∑

t=1

(y[t]− pi[t])
2 <

N∑

t=1

(y[t]− pj [t])
2 with j = 1, 2, . . . , c ; i 6= j (2.101)

or in a vectorial notation

(y − pi)
T(y − pi) < (y − pj)

T(y − pj) with j = 1, 2, . . . , c ; i 6= j . (2.102)

After factorisation and cancelling the constant term yTy it remains

− 2yTpi + pi
Tpi < −2yTpj + pj

Tpj with j = 1, 2, . . . , c ; i 6= j (2.103)

and, after resorting, one can get the form

2(pj − pi)
T
y < pj

Tpj − pi
Tpi with j = 1, 2, . . . , c ; i 6= j . (2.104)

Finally these inequalities can be written in a convenient matrix form

Aiy < b (2.105)

with

Ai =

















2(p1 − pi)
T

...

2(pi−1 − pi)
T

2(pi+1 − pi)
T

...

2(pc − pi)
T

















and b =

















p1
Tp1 − pi

Tpi
T

...

pi−1
Tpi−1 − pi

Tpi
T

pi+1
Tpi+1 − pi

Tpi
T

...

pc
Tpc − pi

Tpi
T

















. (2.106)

The solution set of the inequality Aiy < b is the decision region Ri and every

y ∈ Ri will be assigned to Hi. In linear algebra, the solution space of Aiy < b is

called convex polyhedron. In case that Ri is bounded, the term convex polytope is
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Figure 2.7.: The Voronoi diagram for the three DC levels example (N=2).

commonly used. The faces of the polyhedron Ri are hyperplanes of the form

2(pj − pi)
T
y = pj

Tpj − pi
Tpi with j = 1, 2, . . . , c ; i 6= j (2.107)

they are also termed decision boundaries. A diagram that displays the decision

boundaries and the vectors pi is called a Voronoi diagram. The Voronoi diagram

for the three DC levels example (N=2) is displayed in Figure 2.7. In this example

the three hypotheses are represented by

p1 = (1, 1)T

p2 = (2, 2)T

p3 = (3, 3)T (2.108)

whereas the decision boundaries are simply straight lines.
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3. State of the Art in Multiple Change

Detection

3.1. Introduction

In a survey about the change-point problem Dragalin [1997] pointed out, that the

change-point problem can be considered to be one of the central problems of sta-

tistical inference. One of the pioneering works is due to Shewhart [1931], who

proposed a control chart for detecting a change in the quality characteristics of a

manufacturing process. Since that time, the subject has undergone tremendous

growth, both in the scope of its applications and in methodological advances.

The currently used, sometimes irritating, terminology is a result of this process.

Several terms are used for the change-point, among them are break-point, jump-

point and switch-point. Similarly the change-point problem is called fault detection,

change detection and segmentation depending on the objective and application of

the analysis. The following classification of the change-point problem tries to clarify

the differences in terminology.

1. Objective The change-point problem can be considered as either the prob-

lem of estimating the location of the change-point, or the problem of quickest

on-line detection of a change, which is also termed fault detection or change

detection.

The former is a typical a posteriori or retrospective problem, performed when

the process of data acquisition is completed, whereas the latter is performed

on-line with the process of data acquisition, which is termed sequential or
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prospective change-point problem.

2. Level of a priori information Depending on available a priori informa-

tion one can distinguish between parametric and non-parametric methods.

Parametric statistical methods are mathematical procedures for statistical

hypothesis testing which assume that the distributions of the variables being

assessed belong to known parametrised families of probability distributions.

In that case we speak of a parametric model. Non-parametric methods were

developed to be used in cases when the researcher has limited knowledge

about the systems structure.

3. Characteristics of data Change-points may occur temporal. E. g., ma-

chinery that is operating satisfactorily may all of a sudden experience diffi-

culty, which is modelled by a random process where the change-point is con-

sidered as a moment in time when some characteristics of the process change.

Changes in system parameters can occur spatially as well. Examples are the

change in the speed of sound as a sound wave traverses a boundary such as

an air-water interface, which is modelled by a change in a random field.

Furthermore the observations can be statistically independent or dependent.

4. Type of changes The majority of publications describe abrupt changes in

the characteristics of observations. Abrupt is meant in the sense that changes

in characteristics occur very fast with respect to the sampling period of the

measurements. Smooth change transitions covering more than a few samples

are termed gradual changes.

Depending on the number of change-points, one can distinguish between single

change and multiple change-point problems.

The focus of this thesis is on the multiple change-point problem in the temporal

characteristics of a random-process with the objective of testing for a change and

dating the change-point. This is well known as the segmentation problem.
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3. State of the Art in Multiple Change Detection

In most physical systems segmentation means to detect and locate gradual changes

rather than abrupt jumps. E. g., position signals in classical mechanics cannot com-

prise jumps because of the ubiquitous masses in these systems. A jump would mean

that the kinetic energy tends to infinity at this moment which is inconsistent with

the law of conservation of energy.

Since even a break needs time to happen, models with gradual changes should be

used for these systems out of the field of classical mechanics. They are commonly

modelled by linear, often time invariant, dynamical systems. For a band limited

input signal these systems give a band limited output allowing to sample the signal

with the possibility of a complete reconstruction from the samples. The well known

Shannon sampling theorem states that an exact reconstruction is possible when

the sampling frequency is greater than twice of the signal’s bandwidth [Shannon,

1948]. When the Shannon sampling theorem is attained, the monitored signal will

comprise smooth gradual changes from one state to another.

Detecting changes in dynamical systems is rather complex [Willsky and Jones,

1976] so that often low order models are used. The computational effort is usually

high, since for each possible change-point the parameters of the dynamical system

model have to be estimated. An objective cost function like the mean squared

error is then used to give an estimate for the change-point [Björklund and Ljung,

2003]. Methods commonly used for system identification are the instrumental vari-

able method [Söderström and Stoica, 2002] and the prediction error method [Ljung,

2002].

In change-point analysis this computational effort is often avoided by approxi-

mating the signal with piecewise linear functions, so that every segment between

two change-points is described by two parameters, only. When the adjoining linear

functions meet at the change-point, the model is a continuous function which is

termed continuous change-point model.

Although continuous change-point models do model the continuous nature of

physical systems more precisely, a lot of work has been done for piecewise linear

models where the adjoining linear functions do not necessarily meet at the change-
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point. These models comprising abrupt changes are termed discontinuous change-

point models. Their usage is valid in two cases. (i) The discontinuous change-point

model is not directly used for the monitored signal. Instead, it is used to model a

systems internal parameter. A method based on a model which is a dynamical sys-

tem with switching parameters was published, e. g., by Timmer and Pignatiello Jr.

[2003]. While the output signal of the dynamical system changes smoothly, its

internal parameters may change abruptly. (ii) When the bias of the wrong mod-

elling is within the desired accuracy bounds, algorithms based on discontinuous

change-point models are especially interesting for large-scale problems. The state

of the art in change-point analysis is that there are efficient algorithms for the

segmentation of large-scale discontinuous problems, but the segmentation of large-

scale continuous problems in reasonable time is still an open problem, which is not

solved satisfactorily. The algorithmic differences will be discussed in the next two

sections.

Finally, it should be mentioned that other than physical systems may comprise

abrupt changes. E. g., in econometrics when an event happens during the clos-

ing hours of the stock exchange. The share prices will then jump suddenly after

the opening of the stock exchange, see e. g. Muggeo [2003]. A second example are

undocumented relocations of meteorological stations, effecting the measured clima-

tological time series like temperature or pressure, see e. g. Ducré-Robitaille et al.

[2003]. Algorithms based on discontinuous change-point models are then used to

homogenise these climatological time series.

3.2. Discontinuous Change-Point Models

A discontinuous change-point model allows the regression function to be discon-

tinuous in the change point which are sometimes referred as jump models. Most

prominent is the single step model where the epochs before and after the change

are restricted to be constant, which was first investigated by Page [1955]. A dis-

continuous model with not constant but linear pre- and post-change function was

53



3. State of the Art in Multiple Change Detection

(a) (b)

Figure 3.1.: Two prominent discontinuous change-point models. (a) the step model
and (b) the two phase jump model.

first considered by Hudson [1966]. In literature, this model is called the two-phase

jump model. Both models are illustrated in Figure 3.1.

In cognitive science the two phase model was utilised by Beem [1995]. For the

same application, namely for modelling strategy shifts, Luwel et al. [2001] had used

a three phase model comprising two change-points (see Figure 1.3 in the introduc-

tion of the thesis). Similar models are used for homogenising climatological series,

too. Inhomogeneities in, e. g., temperature series are often caused by non climate

factors such as: changes in measurement practices, station relocations, changes

in the surroundings of a station over the years, etc. [Ducré-Robitaille et al., 2003,

Lund and Reeves, 2002, Wang, 2003]. Therefore, it becomes essential to take these

factors into account in order to retain only the climate signal of interest. To accom-

plish this, abrupt changes in climatological series are identified and the time series is

then homogenised. Ducré-Robitaille et al. [2003] compare methods for homogenis-

ing climatological series of artificial data with multiple inhomogeneities, where only

methods designed for at most one change-point are incorporated.

Most algorithms that are used in cognitive and geophysical sciences are grid search

algorithms. They compute for each segmentation a real number which represents

the goodness of fit. The computational effort depends then on the number of

possible segmentations. Following the notation that PN,K is the set of possible

segmentations for a signal of length N with K change-points, the size of this set,
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denoted by #PN,K , is equal to the binomial coefficient. This is a well known fact in

enumerative combinatorics, since the number of possible segmentations for a signal

of size N with K change-points is equal to the number of possible combinations

without repetitions where the order does not matter. Thus, the number of possible

segmentations is defined by

#PN,K =

(
N − 1

K

)

=
(N − 1)!

K!(N − 1−K)!
. (3.1)

Since the signals in the previously mentioned applications, namely cognitive and

geophysical sciences, are short with just a view change-points, this number is small

which allows to solve these problems with grid search in reasonable time.

The number calculated by (3.1) gives the number of segmentations when K is

known. The number of segmentations when K is unknown, denoted by #PN , is

the sum over the segmentations for fixed K, which is

#PN =
K=N∑

K=1

#PN,K (3.2)

= 2N−1 . (3.3)

This exponential growth can be explained easily. When a signal is prolonged by

one sample, this sample can be a change-point or not, doubling the possible number

of segmentations in comparison to the original signal. With the fact that a signal

of length two has two possible segmentation, which are a single change (the values

of the two samples are different) and no change, it is evident that the exponent in

(3.3) has to be N − 1.

Because of the exponential growth, the number of possible segmentations rises

drastically for large sample sizes, which triggers the desire for more efficient al-

gorithms. An efficient algorithm is the binary splitting algorithm introduced by

Vostrikova [1981]. The binary splitting algorithm is retrospective and works recur-

sively. First, a statistical test for a single change-point is applied on the complete
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series. If the change hypothesis is accepted, the two subsequences before and after

the change-point are processed in the same manner, separately. In comparison to

grid search, the number of segmentations considered by this algorithm is less than

N2 which is the main reason for its computational efficiency.

Recently another method that scales well with the sample size has gained much

attention. It is the dynamic programming method successfully applied to change

detection by Bai and Perron [2003] and Hawkins [2001] (reviewed in Zeileis et al.

[2003]). The dynamic programming algorithm is build on the Markov property that

is fulfilled for discontinuous change-point models, since the signal properties on

the segments are independent from each other. Dynamic programming decreases

the computational complexity to a more manageable level, i. e., it is proven that

dynamic programming finds the same segmentation that grid search would choose,

by considering a subset of the possible segmentations, only. But, in contrast to

grid search and binary splitting the computational effort of dynamic programming

increases linearly with the sample size, making it the method of choice. However,

when the model is continuous at the change-point so that the Markov property is

not fulfilled, dynamic programming may give suboptimal results, i. e., it does not

necessarily choose the same segmentation as grid search.

3.3. Continuous Change-Point Models

Continuous change-point models comprise smooth, continuous change transitions.

They are sometimes referred as join models. Early work was contributed by Hudson

[1966] and Hinkley [1969] who utilised the two phase join model, depicted in Fig-

ure 3.2 (a).

Beside the classical two-phase model, a second continuous change-point model

namely the ramp-step model gained much attention (see Figure 3.2 (b)). The

ramp-step model is, e. g., used by Friede et al. [2001] to model dose-response curves.

A dose-response curve relates the amount of a drug or toxin given, to the re-

sponse of the organism to that drug. The first point where a response above
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(a) (b)

Figure 3.2.: (a) The two phase join model which is the most used continuous change-
point model. (b) The ramp-step, a three phase join model is a generalisation of
the step model (see Figure 3.1).

zero is reached, is usually referred to as the threshold-dose. Aim is to identify

the threshold-dose and the slope of the dose-response curve for doses greater than

that [Pastor-Barriuso et al., 2003].

Another application where the ramp-step model is utilised is the modelling of

bacterial growth. Aim is to identify the parameters of the bacterial growth curve

which is roughly divided into the lag, exponential growth and a stationary growth

phases. During the lag phase, the cells are assumed to be non-replicating, as they

adapt themselves to their environment. Once adapted, the cells begin to grow at a

rate that is maximal for the microorganism in the specific environment. Once the

stationary phase has been reached, there is no increase in population and the specific

growth rate (the logarithm of the growth rate) returns to zero [Buchanan et al.,

1997, Garthright, 1997, Lopez et al., 2004]. Figure 3.3 shows a measurement of the

specific growth rate together with fits of the ramp-step model (solid line) and two

smooth change models (dashed lines).

In geophysical science, the ramp-step model is not utilised so often, although

examples can be found, e. g., Mudelsee [2000], see Figure 3.4. In this scientific area

the more general piecewise linear join model is utilised more frequently [Solow, 1987,

Tome and Miranda, 2004], see Figure 1.4 in the introduction of the thesis. The

piecewise linear join model is an extension to the two-phase join model comprising
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3. State of the Art in Multiple Change Detection

Figure 3.3.: The fits of the ramp-step model (solid line) compared to two smooth
models (dashed lines). The circles are measurements of the specific bacterial
growth rate (source: Buchanan et al. [1997])

Figure 3.4.: The ratio of strontium isotopes 87-Sr/86-Sr (solid line) which documents
the geochemical cycling of strontium used to infer hydrothermal circulation at
mid-ocean ridges in the late Neogene ocean around two to eight million years ago.
The heavy line is the fit of the ramp-step function. (source: Mudelsee [2000])
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more than two linear phases. Recent work is contributed by Tome and Miranda

[2004] fitting a piecewise linear join model to climate data. The proposed algorithm

is computationally expensive, since a least squares fit must be performed for every

possible segmentation. The method of Tome and Miranda [2004] has the benefit

that the global optimum is found at the cost of a high computational burden.

However, for problems where the number of possible segmentations is small, this is

the method of choice. Note, that the methods used to fit the two-phase join model

and the ramp-step model can be viewed as variations of the generally applicable

approach of Tome and Miranda [2004].

A method that scales well with the signal size was proposed by Charbonnier et al.

[2004]. It is a sequential method which finds application in the analysis of physiolog-

ical parameters of a patients state in an intensive care unit (ICU). Analysing ICU

signals is quite challenging. Changes can be very quick, or rather slow. Variations

can occur on the monitored signal that do not correspond to a physiological change

but that are due to extraneous causes (measurement artefacts, patient turning in

bed, coughing, etc.) [Avent and Charlton, 1990]. Therefore, Charbonnier et al.

[2004] utilised a rather complex general piecewise linear model where the func-

tion might be continuous or discontinuous in the change-points. The algorithm of

Charbonnier et al. [2004] is a two stage method using an on-line change detection al-

gorithm at the first stage. Once a change is detected, the change-point is estimated

at the second stage. This sequential approach of testing for a change and estimating

the change-point is a common strategy in change-point analysis which was utilised

before by, e. g., Staude [2001]. This strategy allows to solve large-scale problems

in reasonable time, since not every possible segmentation is considered. However,

since it does a locally optimal estimation of the change-point, the segmentation is

satisfactory in many applications.

The method of Charbonnier et al. [2004] faces the problem that the estimation

step involves the decision whether the change is continuous or not, solved in an

heuristic way, which is computationally efficient but does not fulfil an optimisation

criterion and might therefore give suboptimal results.
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4. The Large-Scale Gradual Change

Detection Problem

The algorithm presented in this thesis should be able to automatically perform

a segmentation of a signal composed of adjacent gradual changes, modelled by

linear transitions between two constant phases, namely the ramp-step model (see

Figure 3.2 (b)). The algorithm should satisfy two important requests, (i) to process

large-scale signals in reasonable time, and (ii) to be reliable and easily tunable.

Whether a signal is large-scale depends on the length of the signal as well as

on the number of change-points, since both have an influence on the number of

possible segmentations which is an objective measure for the size of the problem.

But, whether the runtime needed for solving the problem is reasonable depends on

the application. Reasonable time can therefore be months when, e. g., computing

climate models, or just a millisecond for, e. g., on-line applications. The algorithm

presented in this thesis should be particularly well suited for biomechanical signals

from psychophysiological experiments. In this application, signals are traditionally

analysed by visual inspection. In order that the algorithm will gain acceptance,

reasonable time means to be at least as fast as a well trained operator. So that for

a signal with 100 change-points assuming that the operator’s decision time is 2s per

change-point the desired runtime is approximately 3 min or less.

The second request demands that the influence of the tuning parameters on the

achieved segmentation is predictable for the operator. This implies a clear coupling

of the segmentation to the tuning parameters as well as a definite and reliable

guideline how tuning parameters should be adopted to a particular segmentation

task.
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Straight forward and transparent tuning is an important contribution to the

reliability of an algorithm. Beside that, a reliable algorithm should indicate when

its results have to be taken with caution. In signal processing it is crucial to know

how random errors obfuscate the results, i. e., to be aware of the behaviour of the

algorithm for signals with a low SNR.

The ancestor of the ramp-step model is the step model so that it seems to be

natural to review algorithms based on the step model when dealing with the seg-

mentation of ramp-step change profiles. Indeed, algorithms like binary splitting

and dynamic programming might be applied with good results when the transi-

tion phase covers only a few samples, however, since the problem should not be

restricted to fast transitions these algorithms give biased results since they do not

have the necessary complexity of the ramp-step model.

An algorithm based on the piecewise linear join model could be used for the

segmentation of a signal composed of ramp-steps. Since the ramp-step is a spe-

cial case of the piecewise linear model, it can be expected that algorithms based

on the more general piecewise linear model give unbiased results. The globally

optimal solution to the piecewise linear segmentation problem can be obtained by

the algorithm published by Tome and Miranda [2004]. This method reviews ev-

ery possible segmentation and chooses the optimal one utilising the least squares

method. As explained in Section 3.3 this complete search strategy does not scale

well with the size of the problem. The size of the problem is given by the number of

possible segmentations defined by (3.1). Which means that for the climatological

time series addressed in [Tome and Miranda, 2004], the number of segmentations

to be tested is 4,950 (N = 100 and K = 2). However, in a large-scale application,

e. g. tapping, this number rises significantly. So that for a one minute recording of

a typical tapping signal (see Cong Khac et al. [2007]) approximately 7.67 × 10453

different segmentations might be found (N = 60, 000 and K ≈ 150). With the cur-

rent computer architecture and the usually estimated annually doubling of speed,

this problem cannot be solved completely in reasonable time in the foreseeable fu-

ture. Therefore, grid search algorithms cannot be used, instead an algorithm which
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4. The Large-Scale Gradual Change Detection Problem

does not enumerate every possible segmentation must be applied. A modern one

is a sequential algorithm and was published by Charbonnier et al. [2004], which is

based on the general piecewise linear model. In order to satisfy the complexity of

this model, the method of Charbonnier et. al. has several shortcomings. So is the

localisation of a change-point suboptimal since it is based on a heuristic and the

tuning process is obfuscated by the necessity to define additional parameters.

The algorithm presented in this thesis overcomes these shortcomings by attaining

locally optimal dating of the change-point as well as providing a transparent tun-

ing. The details are described in the chapters 5 and 6 followed by Chapter 7 that

analyses the performance of the presented algorithm on simulated and monitored

data whereas the performance evaluation is round up in Chapter 8 by considering

signals with very low SNR.
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5. Sequential Detection of Gradual

Changes

5.1. Model

The signal of interest is modelled by a deterministic function over time with an

additional error term. When the considered signal is denoted by y[t] it is assumed

to have the time varying mean u[t], and the additive error term is zero-mean white

Gaussian noise w[t] with constant variance σ2. This follows the notation introduced

in Section 2.1.4.

y[t] = u[t] + w[t] t = 1, 2, . . . , N (5.1)

A single change in u[t] is modelled by a three-phase linear function (ramp-step)

defined on the interval [a, b], as depicted in Figure 5.1. The change-point k and

the rise time τ define the beginning and the duration of the change, respectively.

Moreover, the offset d and the magnitude h are introduced since neither the level

before nor the level after the change is known a priori.

By principle, the offset d and the magnitude h are real-valued whereas the change-

point k and rise time τ are integer-valued, due to the discrete signal representation

in the time domain. The change-point is an element of the interval [a, b−1] and the

rise time of the interval [1, b − k] so that k + τ ≤ b holds. If τ = 1, the ramp-step

model migrates to the simple step model, and for τ = b − k, it migrates to a pure

ramp model. The ramp-step model is therefore capable to model abrupt, gradual

and ongoing changes.

The regression model of the complete signal (length N) is considered to be com-
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d+ h

d

a k k + τ b

u(t)

t

h

Figure 5.1.: The ramp-step function (defined on [a, b]) modelling a single gradual
change in mean from an initial level d to a new level d+ h with rise time τ . The
objective is to precisely estimate the change-point k.

posed of K adjacent ramp-steps, one for each change. The number K and the

locations of the ramp-steps are supposed to be unknown.

5.2. Method

The method described next is based on a statistical framework namely the likelihood

approach. Evaluating the likelihood is a well established approach in the field of

change-point analysis (see Basseville and Nikiforov [1993]). The main concepts and

properties of the likelihood principle are described in Chapter 2. Basic methods and

formulas for detecting an abrupt change as well as estimating its location are covered

by this chapter. In this section these methods are extended to the gradual change

detection problem.

The change detection algorithm described below consists of two subsequent units:

(i) a GLRT starts at the first sample of y[t] to search for the first change. If

indicated, then (ii) a local estimate of the ramp-step parameters is established by

using the ML method. Afterwards, step (i) is restarted at the next available sample.

This two-step procedure is repeated until the end of the signal is reached. Separating

the detection from the localisation of the change is a common paradigm of modern

change detection algorithms, which was formerly suggested by Charbonnier et al.

[2004] and Staude [2001].

The outcome of this process will be a list of change-points together with their
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ramp-step parameters k(i), τ (i), h(i) and d(i) which are defined on [a(i), b(i)] with

i = 1, 2, . . . ,K; for the initial condition, a(1) = 1.

5.2.1. Detection of a Change

A change is detected by using a GLRT to choose among two competing hypotheses

which are the “no change hypothesis”H0 against the “change hypothesis”H1 that

a relevant change has happened at time ν with a(i) ≤ ν < n. The test statistic of

the GLRT for this problem can be formulated as

TGLR(y) =
p(y; ν̂, µ̂1, µ̂2|H1)

p(y; µ̂|H0)
(5.2)

This is the ratio of the PDFs under H1 and H0. The mean values before and after

the supposed change-point as well as the mean value in the no change hypothesis

are replaced by their MLE, i. e.,

µ̂(n) =
1

n− a(i) + 1

n∑

t=a(i)

y[t] (5.3)

µ̂1(ν, n) =
1

ν − a(i) + 1

ν∑

t=a(i)

y[t] (5.4)

µ̂2(ν, n) =
1

n− ν
n∑

t=ν+1

y[t] . (5.5)

The standard GLRT computes the test statistic for each possible change-point

ν in order to get an estimate for ν which causes a high computational load. In

this thesis, a sliding window algorithm is preferred which assumes the change to

be happen L samples before the current time n so that the variable ν can be

eliminated by replacing ν with n − L. This approach is called the approximated

GLRT (see [Staude, 2001]). Working on-line, the test statistic of the approximated

GLRT denoted by V (n;L) is computed for each time n and the first time instant n

where V (n;L) exceeds an appropriately chosen threshold δ is called the alarm time
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denoted by ta. This is consequently formulated as the stopping rule

ta = min{n : V (n;L) > δ} (5.6)

with

V (n;L) = (n− L)(µ̂1(n− L, n)− µ̂(n))2 + L(µ̂2(n− L, n)− µ̂(n))2 . (5.7)

This formula follows directly from the test statistic of the standard GLRT by setting

ν = n− L. The detailed calculus for the GLRT can be found in Section 2.2.4.

The sliding window technique is an approximation of the standard GLRT. Whether

an approximation makes sense, depends on the errors and uncertainties that it in-

troduces. This problem is discussed in Chapter 6 and it turns out that the sliding

window technique has the same reliability as the standard approach in case that

the window width L is chosen appropriately.

5.2.2. Estimation of the Ramp-Step Function

Once a change has been indicated, the ML method is used to fit a ramp-step to the

signal on the interval [a(i), b(i)] with b(i) = ta. To enhance the readability, a vectorial

notation will be chosen next. The vectors y = (y[a(i)], y[a(i) + 1], . . . , y[b(i)])T ,

u = (u[a(i)], u[a(i) + 1], . . . , u[b(i)])T , and w = (w[a(i)], w[a(i) + 1], . . . , w[b(i)])T , are

introduced so that the signal model (5.1) is rewritten to the vectorial form

y = u + w . (5.8)

The vector u is supposed to be a ramp-step, with parameters (k, τ, h, d), i. e.,

ut =







d if a(i) ≤ t≤ k
h
τ (t− k) + d if k < t≤ k + τ

d+ h if k + τ < t≤ b(i)
(5.9)
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where ut denotes the t-th element of the vector u. The parameters (k, τ, h, d)

are estimated using the likelihood principle which gives an optimal fit of u to the

observed signal y.

In order to derive formulas for the MLEs of (k, τ, h, d) the parameters are sepa-

rated by introducing p, which is a ramp-step with unit norm and zero mean, i. e.,

it depends on the variables (k, τ), only. The elements of p are defined by

pt =







dp if a(i) ≤ t≤ k
hp

τ (t− k) + dp if k < t≤ k + τ

dp + hp if k + τ < t≤ b(i)
(5.10)

with the magnitude

hp =
2
√

3mτ
√

2m(τ(6k + 2τ − 3) + 1)− 3τ(2k + τ − 1)2
(5.11)

and the offset

dp = −
√

3τ(2m− 2k − τ + 1)
√
m
√

2m(τ(6k + 2τ − 3) + 1)− 3τ(2k + τ − 1)2
(5.12)

where m is the length of the vector p, i. e., the length of the interval [a(i), b(i)]

m = b(i) − a(i) + 1 . (5.13)

The formulas for hp and dp are derived by solving the linear equation system

uTu = 1 (5.14)

ū = 0 (5.15)

where ū denotes the mean over the elements of u.

Now, the scale factor α and the offset β are introduced which allows to formulate

u in terms of p

u = αp + β1 (5.16)

67



5. Sequential Detection of Gradual Changes

where 1 is defined as an vector of length m with elements that are equal to one.

The estimation of α and β is the standard linear regression problem (see e. g.

Kundu and Ubhaya [2001]) with the solution

α̂ = yTp (5.17)

β̂ = ȳ (5.18)

With that and the definitions (5.9) and (5.10) the MLEs of h and d can be inferred

as

ĥ = α̂hp (5.19)

= yTphp (5.20)

and

d̂ = α̂dp + β̂ (5.21)

= yTp dp + ȳ, (5.22)

respectively. The MLEs of the remaining parameters, namely the change-point k

and the rise time τ , are finally derived by replacing u in the equation

J(k, τ ; y) =
N∑

t=1

(yt − ut)
2 (5.23)

=
N∑

t=1

(

yt − (α̂pt + β̂)
)2

(5.24)

with (5.16) and performing its minimisation. J(θ; y) is the sum of the squared

difference between the monitored signal y and the model u which is well known as

to be the objective function of the least squares method. Note that in Section 2.1.4

it is shown that least squares produces the MLE.

Equation (5.24) can further be simplified so that the estimates of k and τ are
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obtained by

(k̂, τ̂) = arg max
(k,τ)

∣
∣yTp

∣
∣ . (5.25)

The complete derivation is given in the Appendix A. The method described there is

called scale and shift invariant MLE which solves the problem in a broader context

and is not bounded to the ramp-step template.

Since the number of pairs (k, τ) is finite, a complete grid search algorithm can

be used for the maximisation in (5.25). While this guaranties to give the global

optimum, other methods with a significant better performance can be utilised as

described in Section 5.3.

5.2.3. Recursive Estimates on a Growing Domain

When the signal to noise ratio is high, the algorithm usually detects a change while

it is still ongoing, i. e., the interval [a(i), b(i) = ta] does not necessarily cover the

whole transition. Therefore, the upper bound of the interval [a(i), b(i)] is recursively

increased until it covers a whole transition. The post-change duration s = b(i) −
(k(i) + τ (i)), i. e., the duration of the constant-signal epoch after the transition,

serves as a decision criterion for this condition. The recursion is performed by

increasing b(i) and fitting the ramp-step on [a(i), b(i)] until s exceeds an adequately

chosen threshold smin.

Figure 5.2 illustrates this process. The shaded epoch in Figure 5.2 (a) indicates

the interval [a(i), ta] where the change is initially detected; the change is still in the

transition phase. Subsequently, as shown by Figure 5.2 (b), the estimation of the

ramp-step function is continued with a growing window until s fits to the threshold

criterion smin resulting in the final interval [a(i), b(i)].

5.2.4. Sequential Detection of Multiple Changes

For detecting and locating multiple changes, the steps described in the previous

sections are repeated with the detection of the next change being initialised by

a(i+1) = k̂(i) + τ̂ (i). A side effect of this initialisation is that the adjacent ramp-
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Figure 5.2.: Illustration of the recursive estimation process using a growing window.
(a) The end of the shaded epoch is the alarm time ta at which the change is
detected. During the recursive estimation procedure, the window is enlarged until
the post-change duration s exceeds a minimal value smin. (b) The final range
[a(i), b(i)] covers the whole transition, so that the ramp-step function (dashed line)
is correctly estimated.
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a← 1
while a < N do

b← detect change on [a,N ]
(k̂, τ̂ , ĥ, d̂)← estimate ramp-step on [a, b]
while b− (k̂ + τ̂) < smin do

b← b+ 1
(k̂, τ̂ , ĥ, d̂)← estimate ramp-step on [a, b]

end while

a← k̂ + τ̂
end while

Figure 5.3.: Pseudo code representation of the algorithm for a sequential detection
of multiple gradual changes (SEMUG).

steps overlap which improves the accuracy of the estimated mean µ̂0 before change

in contrast to a non-overlapping initialisation

The complete algorithm for a SEquential detection of MUltiple Gradual changes

(SEMUG) is summarised in pseudo code in Figure 5.3.

5.3. Computational Aspects

Computational efficiency is very important for the acceptance of an algorithm.

This section presents several ideas how to increase the computational efficiency of

SEMUG. They range from an intelligent implementation of the formulas, over the

use of heuristics, to an iterative optimisation procedure.

5.3.1. Effecient Implementation

When implementing SEMUG, the program listed in Figure 5.3 must be realised

in the desired programming language. This involves implementation of (5.6) and

(5.7) for the detection of a change and (5.20), (5.22) and (5.25) for the estimation of

the ramp-step. They have in common that several sums must be computed for the

mean values needed in (5.7) or for the inner products in (5.20), (5.22) and (5.25).

This can efficiently be implemented by once calculating the cumulative sum (CS)
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5. Sequential Detection of Gradual Changes

over the signal samples

CS[t] =







0 if t = 0;

∑t
j=1 y[j] if t > 0

(5.26)

and inferring the desired values from this sum. With that, the mean values of

(5.3)-(5.5) are then computed with a few instructions by

µ̂(n) =
1

n− a(i) + 1
(CS(n)− CS(a(i) − 1)) (5.27)

µ̂1(ν, n) =
1

ν − a(i) + 1
(CS(ν)− CS(a(i) − 1)) (5.28)

µ̂2(ν, n) =
1

n− ν (CS(n)− CS(ν)) . (5.29)

The inner product yTp found in (5.20), (5.22) and (5.25) cannot be rewritten in

terms of the simple cumulative sum, only. Additionally another cumulative sum

denoted by CSI must be used in order to obtained an efficient implementation. CSI

is defined as

CSI[t] =







0 if t = 0;

∑t
j=1 jy[j] if t > 0 .

(5.30)

The inner product yTp can be rewritten as

yTp =
k∑

j=a(i)

dpy[j] +
k+τ∑

j=k+1

[
hp

τ
(j − k) + dp

]

y[j] +
b(i)∑

j=k+τ+1

(hp + dp)y[j] (5.31)

=
k∑

j=a(i)

dpy[j] +
k+τ∑

j=k+1

hp

τ
jy[j]−

k+τ∑

j=k+1

hp

τ
ky[j] +

k+τ∑

j=k+1

dpy[j]

+
b(i)∑

j=k+τ+1

hpy[j] +
b(i)∑

j=k+τ+1

dpy[j] (5.32)
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which is in terms of CS and CSI

yTp = dp(CS(k)− CS(a(i) − 1)) +
hp

τ
(CSI(k + τ)− CSI(k))

− hp

τ
k(CS(k + τ)− CS(k)) + dp(CS(k + τ)− CS(k))

+ hp(CS(b(i))− CS(k + τ)) + dp(CS(b(i))− CS(k + τ)) (5.33)

= dpCS(k)− dpCS(a(i) − 1) +
hp

τ
CSI(k + τ)− hp

τ
CSI(k)

− hp

τ
kCS(k + τ) +

hp

τ
kCS(k) + dpCS(k + τ)− dpCS(k)

+ hpCS(b(i))− hpCS(k + τ) + dpCS(b(i))− dpCS(k + τ) (5.34)

=
hp

τ
CSI(k + τ)− hp

τ
CSI(k)− dpCS(a(i) − 1) +

hp

τ
kCS(k)

−
(
hp

τ
k + hp

)

CS(k + τ) + (hp + dp)CS(b(i)) . (5.35)

Using these equations instead of the original ones, the computational costs reduces

drastically. However, the problem of estimating the parameters of a ramp-step is

still of order O(n2) due to the grid search of k and τ . This issue will be treated in

the next section.

5.3.2. Reducing Computational Costs using Heuristics

The grid search used for estimating the change-point k and the rise time τ demands

a high computational effort. This effort is multiplied by the number of recursive es-

timates which are done until the ramp-step covers the complete change as described

in Section 5.2.3. While being computationally expensive, this method guarantees

that the global optimum is found, since the complete grid is computed. In the

following, three heuristics will be presented which have the effect that parts of the

grid, which are unlikely to contain the optimum, will be omitted, which reduces the

computational load.

Ramp Pre-Estimate

This heuristic utilises the fact that the estimation of the ramp-step is preceded by

a detection with the GLRT. When the mean time between changes is high, the
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5. Sequential Detection of Gradual Changes

detected change will be at the end of the interval [a, b] for adequately chosen tuning

parameters. In this case, the grid search will waste a lot of time investigating

the beginning of [a, b]. In order to avoid this, a lower bound for the change-point

denoted by aR is estimated before starting the grid search which then only considers

change-points in the range [aR, b]. The lower bound aR is determined by fitting a

ramp on [a, b] which is done in O(n). In Hofer et al. [2007] it is derived that the

ramp has the lowest change-point estimate among the ramp-step templates which

gives a data driven estimate of aR.

Adaptively Growing Domain

In SEMUG, it is checked if the estimated ramp-step covers the whole change by

comparing the post-change duration s with a minimal threshold denoted by smin.

The size of the domain is then increased by one if the estimated duration after

change is lower than smin. When s is significantly lower than smin it is unlikely that

a ramp-step fitted to a domain which is just one sample greater fulfils the criterion

s > smin. In order to avoid unnecessary growing steps, this heuristic introduces an

adaptively growing domain. The domain is always increased by smin − s.

Fixed Change-Point

The idea to this heuristic is closely coupled to the aforementioned. It utilises the

fact that on can expect an unbiasede change-point estimate, invariant with respect

to the size of the domain as long as the domain covers the true change-point. Thus,

after the first complete ramp-step estimate, the change-point is kept fixed, which

has the advantage that the following ramp-step fit on the bigger domain has only

a computational complexity of O(n) since the only remaining parameter is the rise

time. Although this heuristic works perfectly when the true signal shape is an

undisturbed signal it is recommended to perform a complete ramp-step estimate

after the recursive estimation phase is completed. This will enhance the accuracy

in many applications with unexpected disturbances.
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5.3.3. Iterative Maximisation Procedure

The basics of iterative maximisation procedures are described in Section 2.1.6.

These procedures start with an initial guess, followed by a directed search to-

wards the optimal parameter combination. In change-point analysis many scientists

make use of iterative methods, see e. g. Buchanan et al. [1997], Chiu [2002], Muggeo

[2003], Pastor-Barriuso et al. [2003]. In this section a prominent one, namely the

Levenberg-Marquardt algorithm is utilised for estimating the change-point and the

rise time. This problem is solved by maximising the objective function

F (θ; y) =
∣
∣yTp

∣
∣ (5.36)

with the parameter vector θ = (k, τ)T . Note, that standard techniques from lin-

ear programming like the simplex method [Dantzig, 1963, Nash, 2000] cannot be

applied, since the objective function does not depend linearly on the parameter

vector.

The Levenberg-Marquardt update rule (2.40) for this problem is

θi+1 = θi − [H(θ; y) + λ diag[H(θ; y)]]−1 ∂F (θ; y)

∂θ

∣
∣
∣
∣
θ=θi

(5.37)

where ∂F (θ;y)
∂θ

is the gradient

∂F (θ; y)

∂θ
=





∂F (θ;y)
∂k

∂F (θ;y)
∂τ



 . (5.38)

and H(θ; y) is the Hessian

H(θ; y) =





∂2F (θ;y)
∂k2

∂2F (θ;y)
∂k∂τ

∂2F (θ;y)
∂τ∂k

∂2F (θ;y)
∂τ2



 . (5.39)

Note that for the given size of the Hessian, which is only 2 × 2, there exist the
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5. Sequential Detection of Gradual Changes

explicit formula for the inverse in (5.37), which is

[H(θ; y) + λ diag[H(θ; y)]]−1 = C





∂2F (θ;y)
∂τ2 −∂2F (θ;y)

∂k∂τ

−∂2F (θ;y)
∂τ∂k

∂2F (θ;y)
∂k2



 (5.40)

with

C =

(

(λ+ 1)2
∂2F (θ; y)

∂k2

∂2F (θ; y)

∂τ2
− ∂2F (θ; y)

∂k∂τ

∂2F (θ; y)

∂τ∂k

)−1

. (5.41)

This avoids a time consuming computation needed for higher order problems.

A numerical solution for the partial derivatives in (5.38)–(5.41) can be obtained

by a Taylor expansion. For the change-point k the Taylor expansion is

F (k + ε, τ ; y) = F (k, τ ; y) + ε
∂F (k, τ ; y)

∂k
+
ε2

2!

∂2F (k, τ ; y)

∂k2

+
ε3

3!

∂3F (k, τ ; y)

∂k3
+ · · · . (5.42)

With that, it is apparent that

F (k + ε, τ ; y)− F (k, τ ; y)

ε
=
∂F (k, τ ; y)

∂k
+
ε

2!

∂2F (k, τ ; y)

∂k2

+
ε2

3!

∂3F (k, τ ; y)

∂k3
+ · · ·

=
∂F (k, τ ; y)

∂k
+O(ε) (5.43)

holds, which gives an approximation for the partial derivative along k with an er-

ror term of order ε. This formula is known as the forward difference derivative.

Advanced and more often applied is the central difference formula which uses infor-

mation from both before and after the point to be evaluated. With the backward

Taylor expansion

F (k − ε, τ ; y) = F (k, τ ; y)− ε∂F (k, τ ; y)

∂k
+
ε2

2!

∂2F (k, τ ; y)

∂k2

− ε3

3!

∂3F (k, τ ; y)

∂k3
+ · · · (5.44)

76



if follows for the central difference formula

F (k + ε, τ ; y)− F (k − ε, τ ; y)

2ε
=
∂F (k, τ ; y)

∂k

+
ε2

3!

∂3F (k, τ ; y)

∂k3
+ · · ·

=
∂F (k, τ ; y)

∂k
+O(ε2) (5.45)

that the error term is of order ε2 which is superior for small ε. Note, for the

endpoints of k (k = 1 and k = m − 1) the central difference formula can not be

applied. For these two points the formula

−F (k + 2ε, τ ; y) + 4F (k + ε, τ ; y)− 3F (k, τ ; y)

2ε
=
∂F (k, τ ; y)

∂k

− 2
ε2

3!

∂3F (k, τ ; y)

∂k3
+ · · ·

=
∂F (k, τ ; y)

∂k
+O(ε2) (5.46)

must be used instead.

With (5.45) and (5.46) the gradient can be computed, where the partial derivative

along τ is derived analogously and the Hessian is computed by building simply the

derivative of the derivative. Since k and τ are integer-valued, the smallest possible

ε is one, which is numerically not optimal. This is a major drawback, since a

less accurate estimate of the gradient may lead to a divergence of the Levenberg-

Marquardt procedure.

The fact that k and τ are constrained to integers raises another issue that an

iteration step lower than 0.5 does not change anything due to rounding. The con-

sequence would be that the algorithm gets stuck especially close to the maximum

where the step sizes are typically small. To overcome this issue, a local grid search

around the current position is performed when the computed step size is lower than

0.5.

The Levenberg-Marquardt procedure was applied to the signal depicted in Fig-

ure 5.4 which was monitored during a finger tapping experiment (see Section 7.3
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Figure 5.4.: A segment of a typical signal recorded in a tapping experiment.
Two subsequent tapping movements are shown. The normalised position in-
dicates the location of the tip of the index finger with respect to ground level
[Cong Khac et al., 2007].

for more details on finger tapping). The initial guess θ0 was obtained by a ramp-

estimate and the method was combined with an adaptively growing domain as

described in Section 5.3.2. The results were compared with the grid-search method

and the optimised grid-search which makes use of the heuristics introduced in Sec-

tion 5.3.2. The estimated change-points and rise times are summarised in Table 5.1

and Table 5.2. The grid-search serves as a reference since it is guaranteed to find

the best fitting segmentation. The optimised grid-search gives almost the same esti-

mates for the k and τ and also for a, which is evident since an iteration is initialised

by a(i+1) = k(i) + τ (i).

The Levenberg-Marquardt algorithm attains convergence and gives results which

are close to the grid-search with difference of just a few samples. The only exception

is b(1) which deviates 15 samples. However, this difference has had not influence on

the estimated change-point and rise time.

For this particular signal, the optimised grid-search is preferable to the Levenberg-

Marquardt procedure, because of accuracy and reliability. Comparing the compu-

tation time the two algorithms are almost identical, processing the signal in approx-

imately 100 ms on a PC with a 2.8 GHz Intel c© Pentium c© 4 CPU, but one order

lower than the computation time of the complete grid-search algorithm, which was

78



Table 5.1.: The estimated change-points and rise times when applying SEMUG on
the signal depicted in Figure 5.4.

Grid-Search Grid-Search optimised Levenberg-Marquardt
(Diff. to Grid-Search) (Diff. to Grid-Search)

i k(i) τ (i) k(i) τ (i) k(i) τ (i)

1 92 111 0 0 -2 4
2 320 76 0 0 1 -2
3 581 132 2 -3 -1 2
4 866 87 0 0 2 -4

Table 5.2.: The boundaries of the domains [a(i); b(i)] of the estimated ramp-steps
when applying SEMUG on the signal depicted in Figure 5.4.

Grid-Search Grid-Search optimised Levenberg-Marquardt
(Diff. to Grid-Search) (Diff. to Grid-Search)

i a(i) b(i) a(i) b(i) a(i) b(i)

1 1 294 0 0 0 15
2 203 486 0 0 2 -1
3 396 803 0 -1 -1 2
4 713 1000 -1 0 1 0

approximately 6 s.

It is impossible to generalise these results. Which method should be used depends

on the application. But, when the computation time of grid search is acceptable it

should be preferred over the others.
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6. Tuning Parameters

6.1. Introduction

The application of signal processing algorithms is often handicapped by the prob-

lem that their parametrisation is difficult due to the lacking knowledge about the

properties of the signal. Thus, parameters are usually tuned by a tedious trial and

error process, which often ends up with frustration, since the more complex the

algorithm, the larger is the available parameter space, and the less probable is the

chance to find some optimum.

SEMUG has three tuning parameters, namely the detection threshold δ, the win-

dow width L and the minimal post-change duration smin. Especially δ is hard to

guess appropriately since it is not directly linked to visually apparent signal proper-

ties. To overcome this problem, a method was developed which determines reason-

able tuning parameters from the signal’s apparent properties like change magnitude

and rise time of the individual changes.

This approach is not the standard method in detection theory. In the sense of

detection theory the threshold δ is a trade of between the probability of a false alarm

and a miss. Though this method is preferable, it needs to know the probability

density function of the test statistic. In general, the derivation of the test statistics’

PDF is not a trivial for change-point problems (see i. e. Basseville and Nikiforov

[1993]) and it has yet not been done for the detection of a gradual, ramp-step like

change.

The approach presented next is based on the noise-free deterministic case. Al-

though there is no proof that the found equations can be used for stochastic signals,

they have been successfully applied to biophysical signals with moderate noise level
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(see Chapter 7).

6.2. Tuning with the Signal’s Deterministic Properties

As explained in Section 5.2.1, SEMUG uses a sliding window algorithm which as-

sumes the change to happen L samples before the current time n. In contrast, the

standard GLRT considers every sample before n as a potential change-point, which

is the only difference between the standard GLRT and the windowed algorithm.

Figure 6.1 is a contour plot of the test statistic of the standard GLRT, denoted by

V (ν, n), when the signal is ramp-step with true parameters d0 = 1, h0 = 1, k0 = 50,

and τ0 = 50. Since the ramp-step is a continuous but piecewise defined function,

V (ν, n) is continuous and piecewise defined, too. It comprises the nonoverlapping

regions (see also Figure 6.1)

• Region A: 1 ≤ n ≤ k0 and 1 ≤ ν ≤ k0

• Region B: k0 < n ≤ k0 + τ0 and 1 ≤ ν ≤ k0

• Region C: k0 < n ≤ k0 + τ0 and k0 < ν ≤ k0 + τ0

• Region D: k0 + τ0 < n ≤ N and 1 ≤ ν ≤ k0

• Region E: k0 + τ0 < n ≤ N and k0 < ν ≤ k0 + τ0

• Region F: k0 + τ0 < n ≤ N and k0 + τ0 < ν ≤ N

Formulas for V (ν, n) for every region are derived and listed in Appendix B. Fur-

thermore, it is proven there that V (ν, n) is strictly increasing with n in all regions.

Together with the fact that V (ν, n) is strictly increasing with ν in region D but

strictly decreasing with ν in region F, it can be concluded that the global maxi-

mum of V (ν, n) always occurs in region E.

The sliding window approach does not compute every single value of V (ν, n)

which is the reason for its high computational efficiency. Since n−ν = L is constant,

the first value computed is V (1, L + 1), the second is V (2, L + 2) and so on. This

fact is illustrated by the dashed line in Figure 6.1; it has unit slope and intersects
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Figure 6.1.: A contour plot of the test statistic V (ν, n) obtained for a ramp-step
with d0 = 1, h0 = 1, k0 = 50 and τ0 = 50 serving as the input signal. Increasing
brightness indicates larger values of V (ν, n). V (ν, n) is defined on six regions
indicated by capital letters A to F. The maximum of V (ν, n) always occurs in
region E (see text for details). The sliding window technique does not scan the
complete area, but it walks on a straight line defined by the sliding window width
L. The dashed line is the special case for L = 75.
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the abscissa at n = L. The windowed detection walks on this straight line. For a

window width L that is smaller are higher than the displayed one, the maximum

value of V (n;L) would be smaller than the maximum of V (ν, n). This means

that in this case the change is detected only for a smaller threshold. But a small

threshold causes a rising number of false alarms. Therefore, an appropriately chosen

window width L maximises V (n;L) with the consequence that the maximum value

of V (ν, n) (standard GLRT) is equal to the maximum value of V (n;L) (windowed

detection).

Equivalent to V (ν, n), the global maximum of V (n;L) occurs in region E, which

means that k0 + τ0 < n ≤ N and n− (k0 + τ0) < L ≤ n− k0, holds. For this case

the sums in (5.3)-(5.5) can explicitly be solved with

µ̂(n) =
1

n





k0∑

j=1

d0 +

k0+τ0∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)

+
n∑

j=k0+τ0+1

(d0 + h0)





µ̂1(n) =
1

n− L





k0∑

j=1

d0 +
n−L∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)




µ̂2(n) =
1

L





k0+τ0∑

j=n−L+1

(
h0

τ0
(j − k0) + d0

)

+
n∑

j=k0+τ0+1

(d0 + h0)





so that after further calculations the test statistic of the sliding window algorithm

(5.7) can be reformulated to

VE(n;L) =
h2

0

4

1

L(n− L)nτ2
0

(
(−1 + k0 + L− n)(k0 + L− n)n

+ (L− n)(1− 2k0 + 2n)k0 + (−L+ n)τ2
0

)2
. (6.1)

With this formula it is apparent that individual changes with a smaller magnitude

h0 give a smaller test statistic VE(n;L), i. e., they are less significant. Generally,

a change is only detected when the maximum value of the test statistic VE(n;L)

is smaller or equal to the threshold δ. But a small δ causes more false alarms so

that it is advisable to choose δ equal to maximum of the test statistic for the least
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6. Tuning Parameters

significant change.

As stated above, the maximum of VE(n;L) is reached for n = k0 + τ0 + s0.

Which means that the least significant change is the one with minimal values for

k0, τ0 and s0 and since the post-change duration s0 of the i-th change is identical

to the change-point of the (i+1)-th change, the equation k0 = s0 holds for the least

significant change. So that VE(n;L) migrates to V ∗
E(L) for n = k0 + τ0 + s0 and

k0 = s0 so that

V ∗
E(L) = VE(n;L)

= −h
2
0

4

1

L(L− (2s0 + τ0))τ2
0 (2s0 + τ0)

(
(2s0 + τ0)L

2

− (4s20 + τ2
0 + s0(2 + 4τ0))L+ s0(1 + s0)(2s0 + τ0)

)2
(6.2)

when

n = k0 + τ0 + s0 and k0 = s0 (6.3)

holds. With theses two constraints the definition range of L shrinks to L ∈ ]s0, τ0 +

s0]. V ∗
E(L) is a rational function in L with singularities outside of the definition

range. It can be shown that this function has a single maximum in the definition

range. This allows to derive the maximum by partial derivation although L is

an integer valued variable. Hence the optimal window width L, which maximises

V ∗
E(L), is the solution of the differential equation

∂V ∗
E(L)

∂L
= 0 with s0 < L ≤ τ0 + s0 . (6.4)

With standard calculus it is found that

L =
τ0 + 1

2
+ s0 for odd τ0 (6.5)

and

L =
τ0
2

+ s0 for even τ0 . (6.6)
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With (6.5) and (6.6) formulas are found for tuning the window width L. With

those a tuning formula for δ can be found by replacing L in (6.2). For even τ0 the

window width is replaced by (6.6) so that (6.2) reduces to

V ∗
E(L) =

h2
0(4s0 + τ0)

2

16(2s0 + τ0)
. (6.7)

As stated above, the threshold δ should tuned to be equal to V ∗
E(L) for minimal

values of h0, τ0 and s0. So that finally the tuning equations are

L = round
(τ0 min

2
+ s0 min

)

(6.8)

and

δ =
h2

0 min(4s0 min + τ0 min)2

16(2s0 min + τ0 min)
. (6.9)

Beside L and δ, SEMUG has a third tuning parameter smin which is used for

terminating the recursive increase of the interval [a, b] (see Section 5.2.3). It stops

when the post-change duration will be greater than or equal to smin. Hence, smin

will simply be set to the minimal expected post-change duration

smin = s0 min . (6.10)

The equations (6.8), (6.9), and (6.10) define SEMUG’s tuning parameters L, δ

and smin using expert knowledge about the least significant change in the signal

(h0 min, τ0 min, and s0 min). Note that this does not mean that every change with

τ0 < τ0 min will be rejected. There is the chance to detect such steep changes if

their magnitudes are high enough. The magnitude h0 min is squared in (6.9) and,

therefore, it is the most influential parameter among the three.
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7. Performance Evaluation

7.1. Introduction

A performance evaluation does support a theory by testing an algorithm on either

simulated or measured data. In this chapter both will be done for evaluating the

performance of SEMUG. Simulated data are computer generated signals that attain

the signal model of SEMUG. In contrast to that measured signals do not exactly

attain the model. There are always aspects in measured data that are not reflected

in the model. This usually causes performance degeneration in comparison to the

simulated signals. Hence, the performance evaluation on simulated data is often

used as a reference.

For performance analysis the measured signals have the disadvantage that the

true values for the parameters of interest, e. g., the true change-points, are rarely

known. However, to overcome this issue the estimation results can be compared to

the decision of an expert who has done a visually inspection of the signal. This is

not the same as the comparison of the algorithms’ results to the true values like

in the performance analysis with simulated signals. This is a comparison of two

algorithms where the decision of the expert is viewed as a decision of an algorithm

which is based on the experience of the expert. This decision may have a bias

and it surely comprises random effects since decisions of humans are not exactly

reproducible.

Reproducibility is one advantage of the performance evaluation with simulated

data. Another is that it gives the freedom to choose the signal profile so that special

properties and effects of the algorithm can be demonstrated. Simulated signals can

also be used to give error bounds and confidence intervals. However, these values
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cannot directly transferred to measured data because of modelling issues. It is

important to keep in mind that a model does describe the reality only to some

extent.

7.2. Results on Simulated Data

A set of data was created, consisting of 10,000 simulated signals. Each simulation

consists of three ramp-step changes where the first two have positive magnitude

modelling an interrupted gradual change and the last has a negative magnitude so

that the signal is in the end back to the initial level. This means that the data set

is composed of 30,000 gradual changes. This large number does allow statistical

evident reasoning.

The simulated signals are corrupted by WGN as well as by a deterministic error

in the rest phase before the second gradual change which is modelled by a ramp-step

with small negative magnitude. The algorithm should be tuned so that the three

major ramp-steps are found but not the one considered as a deterministic error.

Figure 7.1 displays a representative simulated signal in the upper panel and its

regression function in the lower panel. For each simulated signal, the parameters

of the ramp-steps I-IV are randomly chosen with the restriction that the offset of

I is zero and that the magnitude of IV is determined by the fact that the signal

should be back to zero in the last steady range. Except that, it holds that for the

ramp-steps I, III and IV the change-point is in [1, 50], the rise-time is in [40, 80]

and the magnitude is in [0.5, 1] for I, III and [−2,−1] for IV. The ramp-step in

II uses the same range for the change-point but the rise-time is in [1, 40] and the

magnitude is in [−0.25, 0]. The simulated signals were obfuscated by WGN with a

standard deviation up to 75% of the magnitude of the ramp-steps in I, III and IV.

SEMUG has analysed the 10, 000 simulated signals with the same tuning param-

eters which are h0 min = 0.4, τ0 min = 40, and s0 min = 30. One can expect that with

these tuning parameters almost every change will be detected since h0 min = 0.4 is

20 % less than the true minimal value which results in a more sensitive detection.
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Figure 7.1.: (a) A representative simulated signal and (b) the regression function
of the signal. The signal comprises four parts, with three gradual changes (I, III
and IV) and one deterministic error (II) which are all modelled by ramp-steps.
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Figure 7.2.: The receiver operating characteristic (ROC) of SEMUG obtained by
analysing the simulated data set with different tuning parameters. The ROC
curve is a graphical plot of the probability of true positives (probability of detec-
tion PD) over the probability of false positive (probability of a false alarm PFA).

In fact, only 63 out of 30, 000 changes where missed which is around 0.2 %. In

contrast to that 7.6 % of the detected changes are false alarms. This high number

has several reasons. One is the sensitive tuning in combination with the high noise

level of some signals. Another is the deterministic error in II. It is the reason why

the false alarms are not equally distibuted among the four parts (I-IV) of the signal.

With 38 % of all false alarms being in II there is a significant increase of the false

alarm rate. In general, there is always a trade-off between the probability of a flase

alarm denoted by PFA and the probability of a correctly detected change denoted

by PD. This trade-off is visualised by the receiver operating characteristic (ROC)

displayed in Figure 7.2.

Until know, only the detection performance of SEMUG was regarded. In table 7.1

the median of the estimation errors is listed. Note, that the median is used in favour

of the mean since outliers have such a big influence to the mean so that it would

not be a good measure for the average result. The outliers are caused by those

simulated signals with low SNR which will be discussed in detail in Chapter 8.

Apparent in Table 7.1 is the difference of the figures in column two to the first

and the last column. The estimation errors listed in the second column are caused
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Table 7.1.: The median of the estimation error of SEMUG when applied to the set
of 10,000 simulated signals.

Intervals
SEMUG

I II+III IV

median(k̂(i) − k(i)
0 ) 2.0 7.0 1.0

median(τ̂ (i) − τ (i)
0 ) −3.0 −10.0 −1.0

median(ĥ(i) − h(i)
0 ) −0.0088 −0.0763 0.0055

median(d̂(i) − d(i)
0 ) 0.0008 0.0563 −0.0025

Table 7.2.: The median of the estimation error of MLE when applied to the set of
10,000 simulated signals.

Intervals
MLE

I II+III IV

median(k̂(i) − k(i)
0 ) 0.0 5.0 0.0

median(τ̂ (i) − τ (i)
0 ) −1.0 −5.0 0.0

median(ĥ(i) − h(i)
0 ) 0.0007 −0.0586 −0.0011

median(d̂(i) − d(i)
0 ) −0.0001 0.0599 0.0004

by both, stochastic and the deterministic error in the interval II resulting in a

biased estimation. The negative magnitude of the neglected ramp-step in II causes

a negative bias of the offset which is the reason for the positive bias of the magnitude.

Note, that the two errors are almost offset against each other so that the bias of

the offset in III is one magnitude lower. This means that the deterministic error in

II has only a local influence on the performance.

Since SEMUG is a rather complex algorithm to determine the exact cause for

the estimation errors in Table 7.1. For that reason the data set was analysed by a

second algorithm. It is an algorithm that knows the boundaries of the intervals I-IV

and computes the MLE of the ramp-steps. This algorithm gives the best results

that can be reached with likelihood based algorithms. The estimation error of the

MLE is listed in table 7.2. Apparent is again the bias of the k and τ in the second

column which is caused by the deterministic error. The overall performance of

SEMUG is worse but close the MLE.
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The results obtained on the simulated data show that the segmentation algorithm

is able to almost eliminate deterministic and random errors of the signal while still

providing the correct segmentation, when the signal is made up of ramp-steps. In

the next section these restriction are relaxed. SEMUG will be applied to signals

obtained from finger tapping experiments. These signals have less predictable errors

and their regression lines are not known a priori.

7.3. Application to Finger Tapping

7.3.1. Experimental Setup

The data was taken from a research project investigating the behaviour of the

human motor system in dual-task situations. For a detailed description of material

and methods, see [Cong Khac et al., 2007]. In short, the subject was sitting at a

table and was required to tap with the left and right index fingers, according to the

given instruction. Two laser distance sensors fixed above the finger tips measured

their vertical position which was digitised by an ADC at a sampling frequency of 1

kHz. Figure 7.3 displays a representative section of the position signal. The finger of

the right hand moves down (flexion movement) in the beginning and hits the table

top at approximately n = 100; afterwards, it starts to move upwards (extension

movement) towards the resting position at approx. n = 300. While the subject was

instructed to tap rhythmically with the index finger of the right hand, a single tap

should be executed with the other index finger in response to a visual stimulus. The

unexpected movement of the second finger interferes with the periodic movement;

e. g., it sometimes causes an interruption of the flexion movement (see Figure 7.3).

7.3.2. Demonstration on Short-Term Signals

SEMUG is utilised next for the segmentation of two short term signals recorded in a

tapping experiment (see Figure 7.3 and Figure 7.5 (a)). First, a signal comprising a

flexion and an extension movement as well as an interrupted flexion movement which

consists of three changes (see Figure 7.3) were investigated. After a visual inspection
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Figure 7.3.: A segment of a typical kinematic signal recorded in a tapping experi-
ment. Two subsequent tapping movements are shown. The normalised position
indicates the location of the tip of the index finger with respect to ground level.
Note that the second flexion movement is interrupted, which occurs frequently
in coordination experiments [Cong Khac et al., 2007].

of the small changes during the interrupted flexion movement, the minimal change

magnitude was set to h0 min = 0.2, the minimal rise time was set to τ0 min = 40, and

the minimal duration after change was set to s0 min = 30. Using these parameters,

SEMUG detected five changes as depicted in Figure 7.4, shaded are the estimated

transitions. The segmentation shows by example that SEMUG can be successfully

applied to data that does not strictly fulfil the ramp-step model.

The signal shown in Figure 7.5 (a) comprising an extension and a flexion move-

ment serves as a second example. This example will show how to control the

segmentation with properly chosen tuning parameters. The extension movement is

prolonged by a short pause splitting the transient into two submovements. The anal-

ysis was done twice, (i) with the parameters already used in the previous example

(h0 min = 0.2, τ0 min = 40, and s0 min = 30) and (ii) by using less sensitive parame-

ters (h0 min = 0.4, τ0 min = 70, and s0 min = 90) in order to detect only the major

changes. Figure 7.5 (b) and (c) display the detected changes and the estimated

ramp-steps. The results confirm the expected behaviour of the algorithm. SEMUG

detected the major changes with the less sensitive tuning parameters, whereas the

submovements were detected additionally using the more sensitive setup.
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Figure 7.4.: Estimated ramp-step functions for the analysed signal of Figure 7.3.
The five detected transitions are shaded. Dotted lines indicate positive magni-
tudes and dashed lines indicate negative magnitudes, respectively. The character-
istics h0 min, k0 min and τ0 min of the small change during the interrupted flexion
movement were used for tuning the algorithm.

7.3.3. Analysis of a Long-Term Signal

In order to investigate the sensitivity of the method to varying tuning parameters

in a real world setup, SEMUG was applied to a long-term segment recorded during

a tapping experiment of 27 s duration (i. e. a signal length of 27,000 samples).

A Monte-Carlo-Simulation was performed on this signal with randomly varying

window width L and detection threshold δ. Since, as will be shown below, smin

does not have direct influence on the test statistic, it was kept fixed at smin = 40.

The simulation comprised 10.000 runs with the aim to find parameter combinations

(L, δ) with which SEMUG detected the changes correctly. The reference was given

by an expert, who visually inspected the signal. The expert provided tolerance

intervals for every parameter so that an outcome of SEMUG was labelled to be

correct, only if every parameter of every detected change was in the respective

tolerance interval. Neither a single false alarm (false positive) nor a single miss

(false negative) was allowed.

Figure 7.6 shows a segment of the long-term tapping recording comprising a single

movement. The tolerance intervals specified by the expert define an upper and a

lower bound for correct ramp-step estimates, as indicated by the dashed lines.
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Figure 7.5.: (a) An extension movement comprising two submovements followed
by a flexion movement. (b) Using sensitive tuning parameters (h0 min = 0.2,
τ0 min = 40, and s0 min = 30), the extension movement is modeled by two ramp-
step functions. (c) With less sensitive tuning parameters (h0 min = 0.4, τ0 min =
70, and s0 min = 90), the major changes are detected.
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Figure 7.6.: A signal segment out of the long-term tapping recording. The area en-
closed by the dashed lines is the tolerance region specified by an expert. When the
estimated ramp-step is within this region, it is considered as a correct detection
of this movement.

The expert identified 100 major changes with five of them comprising submove-

ments (as in Figure 7.5). If the parameters (L, δ) were located in region A (Fig-

ure 7.7), SEMUG detected all the 100 major movements. If they were located in the

more narrow region B (Figure 7.7), all submovements were additionally detected.

These results show, that the segmentation is predictable. Tuning parameters

resulting in the same segmentation built contiguous intervals so that small changes

in the tuning parameters do not change the segmentation significantly. This fact is

studied in detail, next.

To round up the performance evaluation on measured data, an analysis of the

robustness of change localisation against the tuning parameters was performed.

The long-term tapping signal was analysed with (i) constant δ = 8 and smin = 40

and varying L ∈ {100, 125, 150, 175, 200}, (ii) constant L = 150 and smin = 40

and varying δ ∈ {6, 7, 8, 9, 10}, and (iii) constant δ = 8 and L = 150 and varying

smin ∈ {30, 35, 40, 45, 50}. The mean values of the alarm time ta and the change-

point k across the 100 changes are depicted in Figure 7.8.

Since ta and k are strongly dependent on the true change-points (which are not

exactly known for measured data by principle), only relative differences are shown

with the outcome of the parameter combination (δ = 8, L = 150, and smin = 40)
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Figure 7.7.: Parameter mapping for the Monte-Carlo-Simulation performed on the
long-term tapping signal. Tuning parameters (L, δ) in region A detected the 100
major taps. Parameters in region B are more sensitive and all the five submove-
ments were detected additionally. The parameter combinations labelled by dots
were used for the analysis shown in Figure 7.5.
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serving as a reference.

Despite the large deviation of alarm times (Figure 7.8 (a), (b)), the change-

point estimates in Figure 7.8 (d) to (f) show small fluctuations resulting in an

average standard deviation below one. Note, that different scales are used for the

panels (a), (b) and (c) to (f), respectively. The minimal post-change duration smin

does not have any direct influence on the alarm time (Figure 7.8 (c)), since this

tuning parameter is used in the estimation process, only. The small deviation of

ta caused by smin is due the fact that a difference in the estimation result in the

i-th iteration causes a variation of a(i+1) which may cause a variation of ta in the

(i+1)-th iteration. But, since the effect of smin on the change-point estimate k is

below one sample (Figure 7.8 (f)), the effect on ta is small, too. In summary, the

results depicted in Figure 7.8 show that the change-points estimated with SEMUG

are robust against some variation of tuning parameters.

This observation is supported by another study where the long-term tapping

signal was analysed with in total 10, 000 randomly chosen parameter combinations

(L, δ, smin). The sample standard deviation of the alarm time ta, the change-point

k, the rise time τ , the magnitude h, and the offset d were computed for each change.

The average standard deviation of the alarm time was high with σta = 31.89 samples

in contrast to the standard deviation of the change-point σk = 1.34 samples. Thus,

it can be concluded that the localisation of the changes is robust against the time

instant where the change is detected, which means in addition that it is robust

against changes in the tuning parameters L and δ. The average standard deviation

of the remaining parameters στ = 4.73 samples, σh = 0.013, and σd = 0.003 was

small, too. The reason for these good results is that the intervals [a(i), b(i)] where

the ramp-steps are defined on, are fairly constant with σa = 3.51 and σb = 17.40

samples.
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Figure 7.8.: The mean of the alarm time ta and the change-point k obtained by
analysing the long-term tapping signal. Depicted are the results relative to the
outcome obtained by the parameter combination δ = 8, L = 150, and smin = 40.
Note, that different scales are used for panels (a), (b) and (c) to (f), respectively.
Despite the large variability of alarm times in (a), (b), the estimated change-
point in (d) to (f) varies only in the sub-sample range, which demonstrates the
robustness of the method.
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8. Systems with High Disturbances

8.1. Introduction

In the last sections, it has been shown that SEMUG gives reliable results for signals

with moderate and high SNR. Next, the behaviour of the algorithm will be studied

on a simulated signal where noise has a significant influence. In addition, the case

will be treated that the observed signal does not have a deterministic component at

all, i. e., a pure noise signal. The simulated signal was composed of 10,000 adjacent

ramp-step templates with randomly chosen parameters. The change magnitude

was either positive or negative with an absolute value |h0| ∈ [0.2, 1], a rise time

τ0 ∈ [10, 21] and a post-change duration of at least 20 samples. SEMUG analysed

the signal with four different noise levels. The first without noise as a reference

study, the second with significant noise σ = 0.1, which is equivalent to half of the

minimal change magnitude, the third with high noise σ = 1, and the last is a pure

noise signal (σ = 1, h0 = 0). In Figure 8.1, change patterns for the four different

noise levels are depicted. It is obvious that the higher the noise level the more

difficult the change is to detect.

SEMUG was tuned with h0 min = 0.2, τ0 min = 10, and s0 min = 20. The most

interesting outcome of this study, is the estimated rise time τ̂ . Figure 8.2 displays

histograms of τ̂ for the different noise conditions. The first panel shows the outcome

of a perfect detection result. Since SEMUG detects every change correctly, τ̂ is

uniformly distributed in the same range as the true rise time τ0.

Adding significant noise blurs this distribution as depicted in panel (b) of Fig-

ure 8.2. Most of the changes were detected correctly and there was almost no false

alarms and only a few of the smaller changes were missed.
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Figure 8.1.: Example change patterns for four different noise levels. The dashed
line is the change pattern without noise and the solid line is disturbed by WGN
with (a) σ = 0, (b) σ = 0.1, (c) σ = 0.5, and (d) is pure noise with σ = 1, h0 = 0.
In (a), (b) and (c) the change magnitude is kept constant with h0 = 0.6.
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Figure 8.2.: Histograms of τ̂ . The true rise time was randomly chosen out of the
range [10, 21]. The study was repeated with four different noise conditions (a)
σ = 0, (b) σ = 0.1, (c) σ = 0.5, and (d) a pure noise signal with σ = 1, h0 = 0.
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This changes for σ = 0.5. The number of false alarms raises drastically resulting

in twice as many detected changes as there are in the signal. The noise is dominant

which is clearly shown by the similarity to panel (d) representing the pure noise

condition. The typical random effect of blurring the results visualised in panel (b)

changed for a lower SNR to a seemingly deterministic result in panel (c) and (d).

This chapter will clarify the reason for this.

Analysing systems with random effects can lead to wrong results when the noise

component of the signal changes the signal’s shape. This effect is illustrated in

Figure 8.3. Displayed are two fragments of the simulated signal together with the

true regression function (dashed line) and the estimated ramp-step (solid line).

The error signal has a standard deviation σ = 0.1, which is therefore related to

Figure 8.2 (b). The time is normalised to the beginning of the estimated ramp-

step’s domain. In the upper panel in Figure 8.3 the estimation result is good

despite the presence of significant noise. In the lower panel random effects are the

cause that the rise time is underestimated. The additive error signal is positive in

the beginning of the transition phase and negative in the end which changes the

signal’s shape to a ramp-step with lower rise time. The frequency of these cases is

depicted by the first two bars in the histogram of Figure 8.2 (b).

The histograms Figure 8.2 (c) and (d) cannot be reasoned by occasionally oc-

curring noise effects since they are significantly different to the histograms in (a)

and (b). The outcome in the pure noise case will next be explained by (i) interpret-

ing the ML estimate in terms of classification and (ii) calculating the probability

that a signal is classified to a ramp-step with a specific rise time.

8.2. Scale and Shift Invariant Classification

In this section, the estimation of a ramp-step (see Section 5.2.2) will be treated in

terms of classification. Classification is the problem of making a decision among

multiple hypotheses.

The part of SEMUG that can be solved by classification is the estimation of the
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Figure 8.3.: Two fragments of the simulated signal displayed together with the true
regression function (dashed line) and the estimated ramp-step (solid line). The
standard deviation of the error signal is σ = 0.1 and the time is normalised to the
beginning of the estimated ramp-step’s domain. In the upper panel the estimated
ramp-step is close the the true function despite the influence of the error signal.
In the lower panel the rise time is underestimated due to an unfortunate noise
signal during the transition phase. The additive error signal is positive in the
beginning of the transition phase and negative in the end which changes the
signal’s shape to a ramp-step with lower rise time.
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ramp-steps’ change-point k and rise time τ . For this problem it is supposed that

the signal is one of the c hypotheses H1,H2, . . . ,Hc where every hypothesis has a

unique parameter combination (k, τ). The number of possible combinations of these

two parameters is finite which gives a finite number of hypotheses. For, e. g., m = 3

there are three combinations (k = 1, τ = 1), (k = 1, τ = 2), and (k = 2, τ = 1). In

general, there are c = m(m− 1)/2 combinations for m >= 2.

Every hypothesis Hi is represented by a unique change pattern. The problem of

classification is now to make the decision which hypothesis best fits to the measured

signal. A common criterion for this decision is to minimise the probability for

a wrong decision, i. e., minimise the probability of an error denoted by Pe. In

Section 2.3.2 it is shown that there is a strong connection between classification and

maximum likelihood when the minimum Pe criterion is used. In fact both methods

give the same results when the hypotheses have equal prior probabilities. For the

ramp-step estimation there is no reason to not assign equal prior probabilities to

the hypotheses.

The notable difference between maximum likelihood and classification is that

classification is rather a selection than an estimation and it is restricted to a finite

set of hypotheses. In classification a template is represented by a point in R
m

denoted by p where the t-th component of p is equal to the ramp-step signal at

time index t. This definition allows to transfer the formulas from Section 5.2.2

one-to-one so that with (5.25) the minimum Pe method decides for Hi if

∣
∣yTpi

∣
∣ ≥

∣
∣yTpj

∣
∣ with j = 1, 2, . . . , c ; i 6= j ; pi,pj ∈ P . (8.1)

where P denotes the set of possible templates and the templates pi and pj have

zero mean and unit norm so that they fulfil the regularity conditions

p̄i = 0 (8.2)

‖pi‖ = 1 with j = 1, 2, . . . , c ; pi ∈ P (8.3)

as defined in Section 5.2.2. With (8.1) the decision is done in favour of Hi when
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the absolute value of the inner product of the signal y and template pi is maximal.

Without loss of generality, it can be assumed, that for each pi ∈ P there exist a

pj ∈ P with pi = −pj . As a result, if the minimum Pe method decides for Hi,

the hypothesis Hj is true, too and vice versa. As a consequence, the absolute value

operation in (8.1) can be cancelled, so that the final decision rule is

yTpi ≥ yTpj with j = 1, 2, . . . , c ; i 6= j (8.4)

These inequalities can be written in a convenient matrix form

Aiy ≤ 0 (8.5)

with

Ai =

















(p1 − pi)
T

...

(pi−1 − pi)
T

(pi+1 − pi)
T

...

(pr − pi)
T

















. (8.6)

A geometrical interpretation of (8.5) is that Aiy ≤ 0 defines a region in R
m and

if the measured signal y is in this region, the ML rule decides for pi. This region is

termed decision region and is denoted by Ri. Its size and shape is defined by the

templates in P . As in the general case, treated in Section 2.3.3, the geometrical

shape of the decision region is a convex polyhedron.

In 2-dimensions a convex polyhedron is termed convex polygon which is a closed

path composed of a finite sequence of straight line segments. The straight line seg-

ments are called edges and they are the decision boundaries of Ri. In 3-dimensions

the decision boundaries are planes and in higher dimensions they are termed hy-

perplanes.

The convex polyhedron defined by (8.5) has some special properties. One is that

the decision boundaries are always in the middle of two templates. Since they are
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8. Systems with High Disturbances

defined by

yTpi = yTpj (8.7)

⇔ (pi − pj)
T
y = 0 . (8.8)

This defines a hyperplane through the origin which is orthogonal to the vector

(pi − pj) and since ‖pi‖ = ‖pj‖ = 1 the midpoint between pi and pj is on this

hyperplane, which is simply proven by replacing y with the midpoint (pi + pj)/2

in (8.8)

(pi − pj)
T

(
pi + pj

2

)

=
1

2

(
pi

Tpi − pj
Tpj

)
(8.9)

= 0 . (8.10)

A second property is that independent from Ai, the origin attains (8.5) which

means that the origin is element of every decision region and if an observation y

attains (8.5) the scaled observation αy attains (8.5), too when α ≥ 0, which means

that the decision regions are unbounded (α→∞). A simple proof follows from the

commutativity law that Ai(αy) = αAiy and since Aiy ≤ 0, multiplication with a

positive constant does not change the sign.

A polyhedron with these properties is called a polyhedral cone. Note that it has

the origin as an extreme point. In 3-dimensional space this extreme point is called

apex of the cone. Figure 8.4 displays a polyhedral cone in the 3-dimensional space.

8.3. The Pure Noise Case

In the previous section it has be explained that a scale and shift invariant classi-

fication leads to a partitioning of R
m where every decision region is a polyhedral

cone (see Figure 8.4).

Since y is normally distributed with mean zero—in the pure noise case—and

since the normal distribution is rotationally symmetric, the probability that a par-
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y1

y2

y3

Figure 8.4.: A polyhedral cone in 3-dimensional space.

ticular template pi is selected in a pure noise signal, denoted by P (y ∈ Ri|u = 0),

depends only on the size of Ri and since Ri is solely defined by the templates in P

other statistical properties like the noise variance σ have no influence. A rotational

symmetric distribution of y means that many realisations of y build up a spherical

cloud with a centre in the origin. A higher variance σ does only expand this cloud

but since the decision regions are polyhedral cones, the expansion does not change

the decision region where the individual y are placed.

This is especially important in practical applications where statistical properties

like σ2 are scarcely known. The invariance from σ2 in the pure noise case means

that, i. e., the histogram in Figure 8.2 (d) is unique, it is obtained when noise is too

high for reliable results. Application scientists should be alerted when observing

such a distribution when they have doubts that the signal comprises only abrupt

changes.

The histogram in Figure 8.2 (d) can be determined by computing the size of

the surface area of the m-dimensional unit sphere that intersects the individual

decision regions. This surface area divided by the complete surface area of the

m-dimensional unit sphere is called solid angle.
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8. Systems with High Disturbances

When Ωi is the solid angle of the polyhedral cone Ri the equation

P (y ∈ Ri|u = 0) = Ωi/Sm (8.11)

holds. Sm is the surface area of the m-dimensional unit sphere

Sm = 2
πm/2

Γ(m/2)
(8.12)

where Γ is Euler’s Gamma function. An alternative formula is

Sm =







m(2π)m/2

2·4···m if m is even;

2m(2π)(m−1)/2

1·3···m if m is odd.

(8.13)

The computation of the solid angle in higher dimensions is an open problem

in computational geometry (see Hajja and Walker [2002], Nunemacher [1999]). A

prove of concept will be given next for low dimensions.

8.4. Solid angle in the 2-dimensional space

For m = 3 there are three ramp-step templates with parameters (k = 1, τ = 1),

(k = 1, τ = 2), and (k = 2, τ = 1). The templates are accordingly

p1 =

(

−2
√

6

6
,

√
6

6
,

√
6

6

)T

(8.14)

p2 =

(

−
√

2

2
, 0,

√
2

2

)T

(8.15)

p3 =

(

−
√

6

6
,
−
√

6

6
,
2
√

6

6

)T

. (8.16)

The set of templates is extended by the negative counterparts of p1, p2, and

p3, which allows an easier computation as explained in the previous section (see

page 105). Consequently the templates P = {p1,p2, . . . ,p6} with p4 = −p1,

p5 = −p2, and p6 = −p3 are considered, where each template fulfils two regularity
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u1
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Figure 8.5.: The ramp-step templates for N = 3. The templates are all element of
the plane Um = {y ∈ R

m|∑m
i=1 y[i] = 0} which allows a 2d-plot. The decision

regions that belong together are shaded in the same colour.

conditions which are (i) zero mean and (ii) unit norm. From the first regularity

condition it follows that each template is element of the plane

Um =
{
y ∈ R

m|
m∑

i=1

y[i] = 0
}
, (8.17)

which is a plane trough the origin. The intersection RU
i = Ri ∩ Um is also a

polyhedral cone with solid angle ΩU
i and the ratio of this ΩU

i to the sphere Sm−1 is

the same as the ratio of Ωi to Sm so that the equation

ΩU
i

Sm−1
=

Ωi

Sm
(8.18)

holds. The probability that pi is selected in a pure noise signal, defined by (8.11),

can therefore be solved in the subspace Um. The projections of the template vectors

on U3 using the orthonormal basis u1 = (−1, 1, 0)T /
√

2 and u2 = (−1,−1, 2)/
√

6

are displayed in Figure 8.5. Apparent is the symmetry of the templates which

results in a symmetry of the decision regions R1, . . . , R6. The decision boundaries

are rays from the origin through the midpoint of the line segment between two

templates.
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8. Systems with High Disturbances

Table 8.1.: The solid angle of the decision regions and the probability that y is in
Ri if y is pure noise, denoted by P (y ∈ Ri |u = 0) = Ωi/S2.

V1 V2 V3 V4 V5 V6

Solid angle Ωi 75◦ 30◦ 75◦ 75◦ 30◦ 75◦

P (y ∈ Ri |u = 0) 0.208 0.083 0.208 0.208 0.083 0.208

The solid angle for each decision region can be computed using simple trigonom-

etry. They are listed in Table 8.1 together with the probability that y is in Ri

for a pure noise signal. This probability can be computed according to (8.11) by

dividing the solid angle by 360◦. The distribution over the estimated rise time can

be obtained by combining the templates with equal rise time. The templates p1,

p3, p4, and p6 have a rise time of one where as the templates p2, and p5 have a

rise time of two. Thus the probability that a signal with estimated rise time τ̂ = 1

is observed

P (τ̂ = 1|u = 0) = (Ω1 + Ω3 + Ω4 + Ω6)/S2 (8.19)

= 300◦/360◦ = 0.833 . (8.20)

Analogous the probability for observing τ̂ = 2

P (τ̂ = 2|u = 0) = (Ω2 + Ω5)/S2 (8.21)

= 60◦/360◦ = 0.167 . (8.22)

The higher probability for the step template is apparent which has also been ob-

served in a more general setup (see Figure 8.2 (d)).

8.5. Solid angle in the 3-dimensional space

For m = 4 the number of possible ramp-step templates rises to six. Adding the

negative counterpart (pi+6 = −pi) results in a set of templates comprising twelve

templates P = {p1,p2, . . . ,p12} summarised in Table 8.2. Objective is to determine
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Table 8.2.: The change-point and the rise time of the ramp-step templates form = 4.

τ
1 2 3

1 p1,p7 p2,p8 p3,p9

k 2 p4,p10 p5,p11 —
3 p6,p12 — —

the solid angle of the decision regions Ri. As explained in the previous section, the

problem can be transformed on the plane U4 defined by (8.17), where the orthonor-

mal basis u1 = (1,−1, 0, 0)T /
√

2, u2 = (0, 0, 1,−1)/
√

2, and u3 = (1, 1,−1,−1)/2

can be used.

The first step in order to compute the solid angle of Ri is to find the neighbours

of pi. A template pj is termed a neighbour of pi if the decision region Ri increases

when removing pj from P . Finding the neighbours is equal to removing redundant

inequalities from (8.5). This is a subject of a so-called vertex enumeration algo-

rithm like presented in Avis and Fukuda [1992]. A vertex enumeration algorithm

determines the vertices of a polyhedron where redundant inequalities have no effect

on the result. The algorithm of Avis and Fukuda [1992] implies that the polyhe-

dron is bounded. This can be achieved by adding the constraint pi
Ty ≤ pi

Tpi which

restricts the extend of the polyhedral cone to pi
Tpi. Note that this polyhedron

would not be bounded in the degenerated case when all templates are on a single

plane, but in this case the problem can be transformed in two dimensions by using

a orthonormal basis of this plane and can then be treated as shown in the previous

section.

In the non degenerated case the polyhedron R′
i = {y|A′

iy ≤ b′} is bounded with

A′
i =




Ai

pi
Ty



 and b =




0

pi
Tpi



 . (8.23)

The result of vertex enumeration will be a minimal set of points {o, v1, v2, ..., vmi}
that define R′

i where o is the origin and mi is the number of neighbours of pi.
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8. Systems with High Disturbances

p1

p2

p5 p4

p3

v◦4

v◦3

v◦2

v◦1

Ω1

u1

u2

u3

Figure 8.6.: The decision region R1. Its solid angle is the sum of the four spherical
triangles p1v

◦
1v

◦
2, p1v

◦
2v

◦
3, p1v

◦
3v

◦
4, and p1v

◦
4v

◦
1.

This allows to describe Ri by the minimal set of rays {−→ov1,
−→ov2, . . . ,

−→ovmi}. The

points where these rays intersect the unit sphere, define the solid angle Ωi. They

are denoted by {v◦1, v◦2, ..., v◦mi
}. Figure 8.6 illustrates an example where p1 has

four neighbours namely p2, p3, p4, and p5. The solid angle Ω1 is shaded and

the vertices {v◦1, v◦2, v◦3, v◦4} are depicted. The solid angle Ω1 is now calculated by

summing up the area of the spherical triangles p1v
◦
1v

◦
2, p1v

◦
2v

◦
3, p1v

◦
3v

◦
4, and p1v

◦
4v

◦
1.

Measuring the area of a spherical triangle dates back to work of Euler [1778] and

Lagrange [1798]. Although solved, it lasts until present days until a simple formula

was found. Eriksson [1990] proposes that the area Ωijk of a spherical triangle

piv
◦
j v

◦
k can be expressed in terms of the inner products and the triple product

[pi, v
◦
j , v

◦
k] = pi

T(v◦j × v◦k) as

tan
Ωijk

2
=

|[pi, v
◦
j , v

◦
k]|

1 + pi
Tvj + pi

Tvk + vj
Tvk

. (8.24)

Table 8.3 lists the probabilities of the ramp-step templates in the pure noise

condition. The last row sum up the probabilities for the templates with equal rise
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Table 8.3.: The probability that a ramp-step template is estimated in a pure noise
signal for m=4.

τ
1 2 3

1 0.239 0.06 0.087
k 2 0.179 0.256 —

3 0.179 — —

Σ 0.597 0.316 0.087

time. The preference for low rise times is evident as in higher dimensions (see

Figure 8.2 (d)).
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9. Conclusions

The problem addressed in this thesis is the computer-aided segmentation of sig-

nals comprising gradual changes. The segmentation problem has a long history

dating back to the 1930s. In the early days the solutions allowed at most a single

change-point which splits up the signal in two segments. In parallel to the progress

of the computer systems other segmentation problems with higher computational

effort were solved so that algorithms were developed for the segmentation of signals

with complex modelling and for the segmentation of large scale signals with many

segments. This thesis presents an algorithm termed SEMUG that fits in the latter

branch of research.

SEMUG is based on the often made assumption that the signal is a linear function

on the segments (see examples in the chapters 1 and 3). This model is not only

suitable for systems where the output is a linear function but it may also be used

for systems where the output value comprises complex change patterns. Because

for some cases, the complex change patterns in the output value can be traced back

to linearly changing internal parameters so that the model is used for the internal

parameters except of the output value.

As described in Chapter 3 the piecewise linear segmentation problem can be

divided in two groups. The first tackles the problem where the signal may jump at

the change-points. This problem can be viewed to be solved even in the large-scale

case. The second group deals with the problem where the signal is continuous in the

change-points. The principle solution to this problem fits the model by considering

every possible segmentation. This has the shortcoming that it does not scale well

with the number of change-points and the signal size, which also means that it
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is hardly on-line applicable since with proceeding time the computational effort

rises unrestrictedly. SEMUG fills this gap. It is an algorithm specifically suited for

processing large-scale segmentation problems.

SEMUG solves the segmentation problem by separating the detection from the

localisation of a change event. It works sequentially where the change-points are

detected one after another. This approach has two advantages. (i) The computa-

tional complexity does only rise linearly with the signal size so that it is a suitable

method to solve large scale problems. (ii) It is on-line applicable since no future

samples are used in the computations.

The detection of the next change is done with a windowed GLRT. It is faster

than the standard GLRT while having the same reliability with a proper tuning

(see Chapter 6). Other authors propose other change detection methods like the

CUSUM which is utilised by Charbonnier et al. [2004]. However, Han and Tsung

[2005] show that the GLRT outperforms the CUSUM when detecting a dynamic

mean change that finally approaches a steady state.

SEMUG uses not only the likelihood principle for detecting a change but also for

determining its location. The localisation is based on the ramp-step model. The

ramp-step is a change profile with a linear transition between two steady states. It

is the generalisation of the often used step and ramp profiles. Since it includes these

profiles as special cases it can be applied for many change-point problems with fast

or slow transitions.

Despite its wide applicability, the ramp-step model depends on four parameters,

only, which define the beginning of the change (the change-point) and the duration

of the linear transition as well as the level of the two steady states. For the latter

two, explicit formulas are found to compute their MLE which is describe in Sec-

tion 5.2.2 and in the Appendix A in more detail. These explicit formulas reduce the

objective function for the remaining parameters to a single inner product allowing

a very easy and efficient implementation.

Note that for more complex transition models the objective function would not

reduce so nicely. Imaginable are transition profiles with additional change-points
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9. Conclusions

in order to model the beginning phase and the end phase of a transition more ac-

curately. The ramp-step can therefore be seen as a trade-off between modelling

accuracy and computational complexity so that large scale signals can be processed

in reasonable time which is the first important request on SEMUG defined in Chap-

ter 4.

In this chapter it is stated that the per change computation time should be below

2 s. SEMUG is far below this threshold on a standard PC with a 2.8 GHz Intel c©

Pentium c© 4 CPU. It process a biomechanical signal with 100 gradual changes in 15 s

which is a per change computation time of 0.15 s (see Section 7.3 for a description

of the biomechanical signal).

The locally optimal MLE of the ramp-step has a good performance, influences

of stochastic and deterministic errors are rather low as shown in the sections 7.2

and 7.3 for simulated and measured data, respectively.

Important for sequential algorithms is that errors do not propagate from one

iteration to another. The performance evaluation on simulated data show that a

deterministic error does not effect the localisation of the next change. SEMUG is

especially robust against variations of the time instant when the change is detected

(the alarm time). It has been demonstrated on measured data that a varying

alarm time, due to variations in the tuning parameters, has only little effect on

the estimated change-point location and change duration and since the detection

of a subsequent change is initialised with these estimates, the overall process gives

robust and reliable results, too. The reliability is the second important request on

the algorithm stated in the problem definition in Chapter 4.

Another request found in the problem definition is that the tuning should be

easy and transparent. The tuning system developed in Chapter 6 is based on

prototypical change transitions defined by the operator. The signal characteristics

used are the minimal values of the change’s magnitude and rise time as well as the

minimal post-change duration. These are only a few and visually apparent signal

characteristics. This is a big advantage in comparison to specifying the detection

threshold directly. However, a tuning system that suits every needs can hardly
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be found. A good tuning system depends only on available knowledge about the

system. It is therefore always a trade-off between the amount of required knowledge

against accuracy of the results.

The proposed tuning system does not require to know detailed statistical prop-

erties of the system, e. g., the variance of the error signal, but it requires that the

operator has some knowledge about the least significant change in the data set. The

performance analysis on simulated and measured data has shown that the tuning

system gives the expected segmentation.

In summary SEMUG does attain the following requests:

• Automatically perform a segmentation of a signal composed of adjacent ramp-

step profiles.

• Process large-scale signals in reasonable time.

• To provide a reliable and transparent tuning system.

With that, the goals specified in Chapter 4 are fulfilled completely.

This thesis provides a solution for a specific change-point problem which can be

used as it is or it can serve as a source of ideas for the solution of related prob-

lems. E. g., the separation of detection and estimation has many advantages in

a large-scale setup. It allows a fine grained and time consuming estimation with

locally optimal results while preserving an acceptable overall computational com-

plexity. However, a globally optimal solution for the segmentation of the continuous

piecewise linear model does remain as a topic for future research.

The exponential growth of the number of possible segmentations is the key prob-

lem that has to be solved for algorithms based on the continuous piecewise linear

model. In a large-scale setup it is necessary to ignore segmentations which are

unlikely to be the true one.

This idea let to the dynamic programming algorithm. It is a sophisticated search

strategy starting from a two segment partition which will be used to reduce the

number of considered three segment partitions (see Bai and Perron [2003] for de-
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tails). The number of change-points is determined in a post-processing step by

using an information criterion.

A different search strategy is utilised by the algorithm presented by Vostrikova

[1981]. This algorithm starts with the two segment partition, too, but it then splits

the signal at the found change-point and does further processing on the two parts

separately.

These two approaches reduce the considered segments by objective criteria. Other

approaches use a-priori knowledge about the application. This would be a minimal

size of the segments or maximal number of change-points. When it is known that

the change-points are uniformly distributed the signal could be split up in sufficient

long parts in a pre-processing step, where every part is processed separately. The

list of possible constraints is long and a good algorithm is able to profit from them.

In Section 5.3.2 examples are given how a priori knowledge can be incorporated

into SEMUG.

In fact, the two stage approach of SEMUG does a significant contribution in this

sense. Based on the assumption of a reliable detection the signal is split up in

segments with exactly one change which is then located on the second stage. It is

not an easy task to define the conditions in which this data-driven split gives good

results. This will be a topic for future work.

Additionally, future work will ease the restriction of the linear model by using a

model which incorporates more information about the change transition profile to

increase the accuracy of the method. A prominent one are dynamical system. In

the introduction of Chapter 3 it is explained that dynamical systems are common

models in classical mechanics and other scientific areas. In comparison to the linear

model they give a better approximation close to the true change-point since the

transition of one to another segment is smooth in many applications. However,

the estimation of the dynamical system’s parameters must be repeated for every

possible change-point which is time consuming.

In change-point analysis the identification of the system is different to the stan-

dard identification problem since the input signal is not necessarily measurable
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which is termed blind identification. E. g., for finger tapping the input signal is the

signal of the brain to the motor neurons of the finger. As a first approximation

this excitation can be modelled by an impulse which is the initial trigger for the

movement. With this input signal and the monitored output the parameters of the

system can be identified, where it makes sense to use a weighting mechanism so

that the samples right after the impulse have a greater impact since the other parts

of the output signal might be obscured with subsequent excitation of the motor

neurons.

Future work will incorporate this approach in SEMUG seamlessly, where SEMUG

with the ramp-step template is responsible for a reliable detection and localisation

of the change transitions. Then, the advanced dynamical system model is used to

improve the estimate of the change-point.

The performance of SEMUG for systems with high disturbances will be addressed

in future work, too. This thesis started by focusing on pure noise signals where it

could be shown that the distribution of the rise time can serve as an indicator

whether the segmentation is reliable (see Chapter 8). Future work may regard

signals with arbitrary SNR, which will require research about the properties of

polyhedral cones in high dimensional spaces. Together with the dynamic model of

the transition profile it is another item on the task list on the route to the goal to

provide a most sophisticated but simple to use segmentation algorithm for signal

processing.
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A. Scale and Shift Invariant Template

Estimation

Estimation theory deals with the problem to determine the parameters of the model

which describes the monitored signal y[t]. Aim is to gain information describing

the state of the observed process. The signal model

y[t] = u[t] + w[t] (A.1)

is considered which is equal to that used in Section 2.1.4, where u[t] is termed the

(noise-fee) regression function and w[t] is a pure noise component. In Section 2.1.4 it

is described that the ML method is a widely used and flexible method for estimating

the parameters θ on those u[t] depends. Aim in this appendix is to extend the ML

method in order to give a scale and shift invariant estimate. The scale and shift

invariant MLE should be preferred when the amplitude and the offset of u[t] holds

only minor information.

The derivation of the scale and shift invariant MLE is based on Section 2.1.4

where the MLE for a change in mean is derived for a model with an arbitrary mean

signal u[t]. u[t] depends an a parameter θ which is estimated by seeking the value

of the parameter that maximises the likelihood function

θ̂ = arg max
θ

ln L(θ; y)
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which in the Gaussian case is equal to maximising Λ

θ̂ = arg max
θ

Λ(θ; y)

with

Λ(θ; y) = −
N∑

t=1

(y[t]− u[t])2 .

Suppose now that the regression function denoted by p[t] depends on several

unknown parameters collected in the parameter vector θ. The MLE of θ should

be invariant with respect to multiplication or summation of p[t] with any constant,

denoted by α and β, respectively. The model for the observed signal is consequently

y[t] = αp[t] + β + w[t] t = 1, 2, . . . , N (A.2)

or in vectorial notation

y = αp + β1 + w (A.3)

where 1 is a vector with every element equal to 1 and w is a Gaussian distributed

random vector.

Viewing the regression function u as a scaled and shifted template p

u = αp + β1 (A.4)

the results from Section 2.1.4 can directly be transferred so that the MLE of α, β

and θ can be computed by the maximisation of Λ(α, β,θ; y)

θ̂ = arg max
α,β,θ

Λ(α, β,θ; y) (A.5)

with

Λ(α, β,θ; y) = −(y − u) T (y − u) . (A.6)
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A. Scale and Shift Invariant Template Estimation

It follows then for Λ(α, β,θ; y)

Λ(α, β,θ; y) = −(y − (αp + β1))T(y − (αp + β1))

= −yTy − α2pTp−mβ2 + 2αyTp + 2mβȳ − 2mαβp̄ (A.7)

with ȳ and p̄ denoting the mean over the elements of y and p respectively.

The parameters α and β are real valued. The MLE of α and β can therefore be

computed by setting the partial derivatives to zero

∂Λ(α, β,θ; y)

∂α
= 2 (−αpTp + yTp−mβp̄) (A.8)

∂Λ(α, β,θ; y)

∂β
= 2m (−β + ȳ − αp̄) . (A.9)

Let α̂ and β̂ be the solutions of the system of equations

∂Λ(α, β,θ; y)

∂α
= 0 (A.10)

∂Λ(α, β,θ; y)

∂β
= 0 (A.11)

so that

2 (−α̂pTp + yTp−mβ̂p̄) = 0 (A.12)

2m (−β̂ + ȳ − α̂p̄) = 0 (A.13)

which is equal to

α̂ =
yTp

pTp
−mβ̂ p̄

pTp
(A.14)

β̂ = ȳ − α̂p̄ . (A.15)
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This system of equations can be solved in the following way

(A.15) in (A.14)−−−−−−−−−−−→ α̂ =
yTp

pTp
−m (ȳ − α̂p̄)

p̄

pTp

⇔ α̂pTp = yTp−mȳp̄ + α̂mp̄2

⇔ α̂ =
yTp−mȳp̄

pTp−mp̄2
(A.16)

(A.16) in (A.15)−−−−−−−−−−−→ β̂ = ȳ − yTp−mȳp̄

pTp−mp̄2
p̄

⇔ β̂ =
ȳpTp− ȳmp̄2 − yTpp̄ +mȳp̄2

pTp−mp̄2

β̂ =
ȳpTp− p̄yTp

pTp−mp̄2
. (A.17)

Note that the same results are obtained when viewing the problem as a linear

regression problem of y = αp + β1 [Kundu and Ubhaya, 2001].

Now, the maximisation of the likelihood is simplified by substituting α and β by

their estimates in (A.4).

u = α̂p + β̂1 (A.18)

=
yTp−mȳp̄

pTp−mp̄2
p +

ȳpTp− p̄yTp

pTp−mp̄2
1 (A.19)

After factorisation, the terms −mȳp̄21 +mȳp̄21 are added to the numerator. Re-

sorting leads then to the equations

u =
yTp (p− p̄1)−mȳp̄ (p− p̄1) + ȳ (pTp−mp̄2)1

pTp−mp̄2
(A.20)

=
(yTp−mȳp̄) (p− p̄1) + ȳ (pTp−mp̄2)1

pTp−mp̄2
(A.21)

=
(yTp−mȳp̄) (p− p̄1)

pTp−mp̄2
+ ȳ1 (A.22)

=
(y − ȳ1)T

p (p− p̄1)

pTp−mp̄2
+ ȳ1 . (A.23)

Without loss of generality one can assume that p has zero mean and unit norm,
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A. Scale and Shift Invariant Template Estimation

i. e. that the conditions

p̄ = 0 (A.24)

‖p‖ = 1 (A.25)

hold, which are termed the regularity conditions of the templates. A prove that

these conditions do not effect the generality is given next.

An arbitrary template p′ can be constructed from a template p that fulfils the

regularity conditions by multiplying and adding constants to p, i. e.

p′ = φp + ψ1 . (A.26)

With this definition the mean and the norm of p′ is equal to

p̄′ =
1

m
φp̄T1 +

1

m
ψ1T1

= φp̄ + ψ (A.27)

and

p′Tp′ = (φp + ψ1)T(φp + ψ1)

= φ2pTp + 2φψpT1 + ψ21T1

= φ2pTp + 2φψmp̄ +mψ2 . (A.28)

Replacing p with p′ in (A.23) leads to

u =
(y − ȳ1)T

p′ (p′ − p̄′1)

p′Tp′ −mp̄′2
+ ȳ1 (A.29)
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so that with (A.27) and (A.28)

u =
(y − ȳ1)T(φp + ψ1) (φp + ψ1− (φp̄ + ψ)1)

φ2pTp + 2φψmp̄ +mψ2 −m(φp̄ + ψ)2
+ ȳ1 (A.30)

=
(φyTp + ψyT1− φȳpT1− ψȳ1T1) (φp + ψ1− φp̄1− ψ1)

φ2pTp + 2φψmp̄ +mψ2 −mφ2p̄2 − 2mφψp̄−mψ2
+ ȳ1 (A.31)

=
(φyTp + ψmȳ − φȳpT1− ψmȳ) (φp− φp̄1)

φ2pTp−mφ2p̄2
+ ȳ1 (A.32)

=
(φyTp− φȳpT1) (φp− φp̄1)

φ2pTp−mφ2p̄2
+ ȳ1 (A.33)

=
(y − ȳ1)T

p (p− p̄1)

pTp−mp̄2
+ ȳ1 (A.34)

which is identical to (A.23). Since the mapping (A.26) does not change u one can

assume that the templates fulfil the regularity conditions without loss of generality.

Incorporating the regularity conditions in (A.16) and (A.17) simplifies the esti-

mates of the magnitude and offset

α̂ = yTp (A.35)

β̂ = ȳ (A.36)

as well as u when incorporating them in (A.23) which leads to

u = (y − ȳ1)T
pp + ȳ1 . (A.37)
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A. Scale and Shift Invariant Template Estimation

The final step is to replace u by (A.37) in (A.6) which is the definition of Λ .

Λ(α̂, β̂,θ; y) = −(y − u) T (y − u)

= − (y − u)2

= −
(

y −
(

(y − ȳ1)T
p p + ȳ1

))2
(A.38)

= −
(

y − (y − ȳ1)T
pp− ȳ1

)2
(A.39)

= −
(

(y − ȳ1)− (y − ȳ1)T
p p
)2

(A.40)

= −(y − ȳ1)T(y − ȳ1) + 2(y − ȳ1)T
p (y − ȳ1)T

p

−
(

(y − ȳ1)T
p
)2

pTp (A.41)

= −(y − ȳ1)T(y − ȳ1) + 2
(

(y − ȳ1)T
p
)2

−
(

(y − ȳ1)T
p
)2

(A.42)

= −(y − ȳ1)T(y − ȳ1) +
(

(y − ȳ1)T
p
)2

(A.43)

= −(y − ȳ1)T(y − ȳ1) +
(
yTp−m ȳp̄

)2
(A.44)

= −(y − ȳ1)T(y − ȳ1) +
(
yTp
)2

(A.45)

Since the first term is independent from θ, it can be cancelled when estimating θ

so that the scale and shift invariant ML estimate of θ is equal to

θ̂ = arg max
θ

Λ(α̂, β̂,θ; y)

= arg max
θ

(
yTp
)2

(A.46)

= arg max
θ

∣
∣yTp

∣
∣ . (A.47)

Note that this equation does only hold when p has unit norm and zero mean which

does not effect the generality as stated above.
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B. The Test Statistic if the Signal is a

Ramp-Step

In this appendix closed form expressions are given for the test statistic V (ν, n) in the

deterministic case where noise is supposed to be zero. As explained in Section 6.2,

V (ν, n) is piecewise defined on six regions termed A-F. The derived formulas prove

that V (ν, n) is strictly increasing with n in all regions, strictly increasing with ν in

region D and strictly decreasing with ν in region F; so that the global maximum is

in region E.

Region A: 1 ≤ n ≤ k0 and 1 ≤ ν ≤ k0

This case is trivial. Since y[i] = d the mean values µ̂, µ̂1 and µ̂2 are identical and

therefore V (ν, n) is equal to zero for each pair (ν, n).

VA(ν, n) = 0 (B.1)
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B. The Test Statistic if the Signal is a Ramp-Step

Region B: k0 < n ≤ k0 + τ0 and 1 ≤ ν ≤ k0

In this case ν is smaller than k0 and n is greater than k0 so that it follows for the

mean values

µ̂1 =
1

ν

ν∑

j=1

d0

µ̂2 =
1

n− ν





k0∑

j=ν+1

d0 +
n∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)




µ̂ =
1

n





k0∑

j=1

d0 +
n∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)


 .

The test statistic V (ν, n) is then

VB(ν, n) =
h2

0

4

ν(n− k0)
2(n− k0 + 1)2

nτ2
0 (n− ν) . (B.2)

Substituting ϕ = ν − k0 and ψ = n − k0 the partial derivatives ∂VB(ν,n)
∂n and

∂VB(ν,n)
∂ν are

∂VB(ν, n)

∂n
=
h2

0

4

ψ2(1 + ψ)2

τ2
0 (ϕ+ ψ)2

∂VB(ν, n)

∂ν
=
h2

0

4

1

τ2
0 (ϕ+ ψ)2(ϕ+ ψ + ν)2

(
νψ(1 + ψ)(2(ϕ+ ψ)

(ϕ+ 2ϕψ + ψ2) + (2ϕ+ ψ + 4ϕψ + 3ψ2)ν)
)
.

Since ϕ and ψ are positive by definition the partial derivatives contain only positive

summands and factors and are therefore positive, too. As a consequence, VB(ν, n)

is a strictly increasing function.
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Region C: k0 < n ≤ k0 + τ0 and k0 < ν ≤ k0 + τ0

The mean values in this case are

µ̂1 =
1

ν





k0∑

j=1

d0 +

ν∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)




µ̂2 =
1

n− ν
n∑

j=ν+1

(
h0

τ0
(j − k0) + d0

)

µ̂ =
1

n





k0∑

j=1

d0 +
n∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)


 .

The function V (ν, n) is then equal to

VC(ν, n) =
h2

0

4

(n− ν)(νn− k2
0 + k0)

2

ντ2
0n

. (B.3)

The partial derivative ∂VC(ν,n)
∂n is equal to

∂VC(ν, n)

∂n
=
h2

0

4

1

τ2
0 (ϕ+ ψ + k0)2

(
ϕ2 + 3ϕψ + 2ψ2

+ (1 + 2ϕ+ 3ψ)k0)(ϕ(ϕ+ ψ) + (1 + 2ϕ+ ψ)k0)
)

(B.4)

where the substitutions ϕ = ν−k0 and ψ = n−ν are used. Both are again positive

and for the same reason as in case B, VC(ν, n) is strictly increasing along n. Along

k there is a local maximum.
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B. The Test Statistic if the Signal is a Ramp-Step

Region D: k0 + τ0 < n ≤ N and 1 ≤ ν ≤ k0

The mean values in this case are

µ̂1 =
1

ν

ν∑

j=1

d0

µ̂2 =
1

n− ν

(
k0∑

j=ν+1

d0 +

k0+τ0∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)

+
n∑

j=k0+τ0+1

(d0 + h0)

)

µ̂ =
1

n

(
k0∑

j=1

d0 +

k0+τ0∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)

+
n∑

j=k0+τ0+1

(d0 + h0)

)

.

The function V (ν, n) is then equal to

VD(ν, n) =
h2

0

4

ν(2n− 2k0 − τ0 + 1)2

n(n− ν) . (B.5)

The partial derivative

∂VD(ν, n)

∂ν
=
h2

0

4

(2n− 2k0 − τ0 + 1)2

(n− ν)2

is positive so that VD(ν, n) is strictly increasing with ν. The proof that VD(ν, n) is

strictly increasing with n is more sophisticated. VD(ν, n) is a rational function of

the form

VD(ν, n) = α
(n− β)2

n(n− ν)

with α and β

α =
h2

0ν

4

β = k0 +
τ0 − 1

2
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not depending on n. VD(ν, n) is not defined at n = 0 and n = ν and since ν is a

positive integer, VD(ν, n) is not negative for n ≥ ν. If β ≥ ν the function VD(ν, n)

is strictly increasing for n > β with the limit α as n approaches infinity. So if it

can be proven, that β ≥ ν and β ≤ k0 + τ0 then it is proven that VD(ν, n) is strictly

increasing on [k0 + τ0,∞[.

Since ν ≤ k0 and β ≥ k0 (for τ0 = 1) and β ≤ k0 + τ0 by definition, this proof is

trivial

Region E: k0 + τ0 < n ≤ N and k0 < ν ≤ k0 + τ0

The mean values in this case are

µ̂1 =
1

ν





k0∑

j=1

d0 +
ν∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)




µ̂2 =
1

n− ν





k0+τ0∑

j=ν+1

(
h0

τ0
(j − k0) + d0

)

+
n∑

j=k0+τ0+1

(d0 + h0)





µ̂ =
1

n





k0∑

j=1

d0 +

k0+τ0∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)

+
n∑

j=k0+τ0+1

(d0 + h0)



 .

The function V (ν, n) is then equal to

VE(ν, n) =
h2

0

4

(n(ν − k0 + 1)(ν − k0)− (2n− 2k0 + 1)ντ0 + ντ2
0 )2

n(n− ν)ντ2
0

. (B.6)

The proof that VE(ν, n) is strictly increasing with n will be done in the same

manner as in Case D. VE(ν, n) is a rational function of the form as VD(ν, n)

VE(ν, n) = α
(n− β)2

n(n− ν)

with

α =
h2

0

4ντ2
0

β =
−τ0(2k0 + τ0 − 1)ν

ν2 − (2(k0 + τ0)− 1)ν + k0(k0 − 1)
.
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B. The Test Statistic if the Signal is a Ramp-Step

Since α is not negative the proof the VE(ν, n) is strictly increasing with n follows

directly, as in Case D, from the proof that β ∈ [ν, k0 + τ0].

This time β depends on ν and it is a rational function in ν of the form

β =
−τ0(2k0 + τ0 − 1)ν

(ν − ν1)(ν − ν2)

which is not defined for

ν1,2 = k0 + τ0 − 0.5±
√

4τ2
0 + 8k0τ0 + τ0 − 4τ0 + 1

Since k0 and τ0 are positive integers, the value of the square root is greater than 2τ0

with the consequence that ν1 is at the right and ν2 at the left side of the domain

ν ∈ [k0, k0 +τ0]. So, if the range ]ν1, ν[ is denoted by Dν and the domain is denoted

by D, this means that Dν is a subset of D.

From simple calculus it follows that β has one local minimum on D at νmin =
√

k2
0 − k0 which is at the left of Dν so that β is increasing on Dν with the conse-

quence that the maximum value of β is at ν = k0 + τ0

max
ν

β = k0 + τ0 for ν ∈ Dν

which proves the first condition that β ≤ k0 + τ0. The second condition that β ≥ ν
is proven by evaluating the function

β∗ = β − ν

=
−τ0(2k0 + τ0 − 1)ν − (ν − ν1)(ν − ν2)ν

(ν − ν1)(ν − ν2)

=
−ν(ν − (k0 + τ0 − 1))(ν − (k0 + τ0))

(ν − ν1)(ν − ν2)
.

It has the same domain as β and is not negative on Dν so that it can be concluded

that β ≥ ν with the consequence that and VE(ν, n) is strictly increasing with n.
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Region F: k0 + τ0 < n ≤ N and k0 + τ0 < ν ≤ N

The mean values in this case are

µ̂1 =
1

ν





k0∑

j=1

d0 +

k0+τ0∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)

+
ν∑

j=k0+τ0+1

(d0 + h0)





µ̂2 =
1

n− ν
n∑

j=ν+1

(d0 + h0)

µ̂ =
1

n





k0∑

j=1

d0 +

k0+τ0∑

j=k0+1

(
h0

τ0
(j − k0) + d0

)

+
n∑

j=k0+τ0+1

(d0 + h0)



 .

The function V (ν, n) is then equal to

VF (ν, n) =
h2

0

4

(n− ν)(2k0 + τ0 − 1)2

nν
. (B.7)

Since the partial derivative along n

∂VF (ν, n)

∂n
=
h2

0

4

(n− ν)(2k0 + τ0 − 1)2

n2

is positive, VF (ν, n) is strictly increasing with n. In contrast, the partial derivative

∂VF (ν, n)

∂ν
= −h

2
0

4

(n− ν)(2k0 + τ0 − 1)2

ν2

is negative so that VF (ν, n) is strictly decreasing with ν.
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Glossary of Symbols and Abbreviations

Symbols

(Boldface characters denote vectors. All others are scalars.)

ˆ denotes an estimate

¯ denotes the sample mean

| · | denotes the absolute value of a scalar

‖ · ‖ denotes the norm of a vector

0 (0 subscript) denotes the true value

T (T superscript) denotes the transpose of a vector

a a ramp-step is defined on [a, b]

b a ramp-step is defined on [a, b]

c number of classes, i. e., hypotheses in a multiple hypotheses test

d offset of the ramp-step

δ threshold

k change-point of the ramp-step

K the number of change-points in a signal

E expectation

h change magnitude of the ramp-step

H(θ; y) the Hessian of the log-likelihood function
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H0 noise only hypothesis or null hypothesis

H1 noise + signal hypothesis or alternate hypothesis

Hi i-th hypothesis in multiple hypotheses tests

I Fisher information

L likelihood function

ln L log-likelihood function

m number of observations for the local ramp-step fit

(m = b− a+ 1)

µ mean

n current time in an on-line setup

ν time of an abrupt change when testing for a change in mean

N number of observations

N (µ, σ2) normal distribution with mean µ and variance σ2

Ωi solid angle of Ri

P set of templates in a multiple hypotheses test

p(y; θ) probability density function of y with θ as parameter

P (Hi|Hj) probability of deciding Hi when Hj is true

PD probability of detection (P (H1|H1))

Pe probability of error in a multiple hypotheses test

PFA probability of false alarm (P (H1|H0))

#PN number of segmentations of a signal with size N

#PN,K number of segmentations of a signal with size N and K change-points

Ri the decision region for hypothesis Hi

t sequence index
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Glossary of Symbols and Abbreviations

τ rise time of the ramp-step

Sm surface area of the m-dimensional unit sphere

σ2 variance

TLR likelihood ratio function

TGLR generalised likelihood ratio function

θ(θ) unknown parameter (vector)

u[t] time varying mean at time t

w[t] observation noise at time t

y[t] observation at time t

y vector of observations (y[1], y[2], ..., y[N ])T

Abbreviations

ADC analogue-to-digital converter

CUSUM cumulative sum chart

DC direct current

GLRT generalised likelihood ratio test

ICU intensive care unit

LS least squares

LRT likelihood ratio test

ML maximum likelihood

MLE maximum likelihood estimate

MSE mean squared error

MVU minimum variance unbiased

OPEC organisation of the petroleum exporting countries

PDF probability density function
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ROC receiver operating characteristic

SEMUG sequential detection of multiple gradual changes

WGN white Gaussian noise
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