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Abstract
Let G be a finite group, p a prime number and n € N. Following L.
SOLOMON, one can define a zeta-function of the Z,[G]-module Z,[G]", count-
ing submodules of finite index in Z,[G]". In this article, we present a functional
equation for this zeta function. We modify and extend the proof for n =1 in
[1], in order to cover our more general situation.

Definitions and the main theorem

If A is any (unitary) ring and N a left A-module, we define the zeta function of N

(vl(s) =D IN: U™,

UCN
the sum extending over all A-submodules U of finite index in N. If M is another left

A-module, the partial zeta function of N with respect to M is obtained by restricting
the sum to those submodules isomorphic to M (over A), i.e.

(N(M;s) = Z[N U] ™%,

Analogously, if N and M are right A-modules, we can define the zeta functions

NN (5) and CRE™ (M s). In either case we consider these functions for those s € C

such that the sum converges.

Example. Let A = Z and n be a positive integer. Then
Ca(s) = n~*
n>1

is the Riemann zeta function, and

Con(s) = T Cals — m).

cf. [1, §1]. In particular (zn(s) converges for Re(s) > n — 1.

We now fix a finite group G, a prime number p and some positive integer n
throughout this paper. Let R := Z,[G] be the group ring of G over the ring of
p-adic integers. Then R is a Z,-order in Q,[G] and hence is contained in some

maximal order R of Q,[G]. We put

A = M,(R),
A = M,(R),
A = M, (Q[G])



Then A is a finite dimensional semisimple Q,-algebra, A C A are Zy-orders in A and

A is maximal (cf. |2, Th. 26.25]). We define

_ Cls)
- Gls)

Then, according to Solomon’s First Conjecture proved in [1, Th. 1], da(s) is a
polynomial in p~® with integer coefficients. We can now state the main result of this

paper.

5A(8)

Theorem 1. The quotient 05(s) € Z[p~*] satisfies the following functional equa-
tion:

Sa(s) =[A: A" 6,(1 — s).

MORITA’s Theorem (cf. [3, Sec. 3.12]) induces an isomorphism between the lattice
of left ideals of A = M,,(R) of finite index in M,,(R) and the lattice of submodules
of finite index in the left R-module R™. If I C M, (R) and U C R" correspond to
each other under that isomorphism, the relation

M,,(R) : I| = [R" : U]"
is easily verified. Thus we get

(M (r) (8) = Cre(ns),
and in the same way
right right
G i(R)(s) = Cpr (n5).
But since M,,(R) has a canonical anti-automorphism, given by

(ai;) — (‘P(%‘))Ta

where
9o:R— R, gr—g! forall g € G

is an anti-automorphism of R, the left and right zeta functions coincide in the above
situation. Hence

Ca(s) = Can(ns) = Cpi (ns) = (1" (s).

A similar argument shows
Ci(5) = Cnlns) = (55" (ns) = (T (s);

here the left and right zeta functions are again the same, R and A being maximal
orders.



Using these facts we can reformulate the above theorem, leading to a functional
equation for the zeta function of the free R-module R".

Corollary 2. Let
. Cre(5)
Crn(5)

Then dgn(s) € Z[p~*)] satisfies the following functional equation:

(SRn (8)

Spn(s) =[R: R]™ 2" 6pa(n — s).

Lattices on A

Let t : Q,[G] — Q, be the Q,-linear map

t (Z agg) — ay,

geG

and define a trace map

T:A— Qp, (aij) — t(akk)
k=1

Then the pairing (z,y) — T (zy) is a symmetric, non-degenerate bilinear form, and
we can identify A with its linear dual Homg, (A, Q,) via T". Consider the continuous
character

x:Q, = C,  aw e

this is well-defined, if we choose a decomposition @ = ay + a; with ay € Z[%],
@y € Z, and put €>™@ ;= ¢?™%0_ [etting

0:=xoT : A— C",

the pairing (z,y) — 6(zy) is again symmetric and non-degenerate, and identifies
the locally compact abelian group A with its PONTRJAGIN dual A, where

A := Hom"™ (A, S")

(continuous group homomorphisms), S being the unit circle in C (cf. [4, Ch. 1T §5
Th.3]).



Let M C A be a left A-lattice on A, i.e. a full Z,-lattice on A such that AM C M.
We define
Mt ={zxcA|Vye M: Oyzr) =1}

The (algebraic and topological) isomorphism A — A yields isomorphisms
A/M*E =M

and /\
M+~ A/M,

so Mt is an open subgroup of A by the former and compact by the latter. Hence
M* is a full Z,-lattice on A, and thus obviously a right A-lattice on A.

Lemma 3. Let M be a left A-lattice on A.
a) M- ={r e A| Mz C A}.
b) M+ = Homy (M, A) as right A-modules.
c) At =A.
Proof. a) Since §(A) = {1}, the inclusion D follows. Now take » € M~* and

y € M. Let (V) be the matrix in A having a 1 at position (i, j), all other entries
being 0. Then ey € M, and consequently

t((yz)ij) = T(Wyx) € Z,
for all i,j = 1,...,n. Replacing ") by ge(® for ¢ € G we get

t(g(yx)is) € Z, (9 € G),
and this implies (yz);; € Z,[G| = R, by the definition of ¢. Thus yz € M,,(R) = A.
b)  This is clear: Because of M ® Q, = A ® Q, = A, every f € Homy (M, A)

uniquely extends to a f € Hom 4 (A, A). Hence f is given by (right) multiplication
with some x € A satisfying Mz C A.

c) is a direct consequence of a). []

If N C M are full Z,-lattices on A, the index [M : N] is defined and finite. For
arbitrary Z,-lattices M, N on A, we can define a generalized group index by

[M : M NN

(M :N):= m



Lemma 4. Let M, N be A-lattices on A.
a) [M:N]=[N+t:M* if NCM.
b) (M:N)=(N+: M.
¢c) M =M+

Proof. a) We begin by showing that we can identify

M~ =Homy, (M, Z,), (%)
where z € M+ corresponds to the map y — T(yx). Note that Mz C A iff T(Mz) C
Z,. Let by, ..., b, be a Z,-basis of M (with r = n?|G|). Then by,...,b. is a Q,-basis
of A. Let ¢i,...,¢, the dual Q,-basis, i.e. such that T'(b;c;) = d;;. Then ¢y,..., ¢,
is a Z,-basis of M+, and (x) follows.

Now choose a Z,-basis by,...,b, of M such that A;by,..., \b, is a Zy-basis of
N C M, where \; > 1 are integers. Then

[M:N]=A1... A\
Let dy,...,d, be the dual basis of N* with respect to A1b, ..., \.b,, i.e.

for all ¢, 7. This, however, implies that A\idy, ..., \.d, is dual to by, ...,b,, hence is
a Z,-basis of M+ C N*+. Thus

[Nt M) =)0,
and the claim is proved.
b) Using Mt NN+t = (M + N)* we get

o) [M+N:N] [M:MnN]

Lol INFE(M AN (M-
(v 'M)_[Ml:(M—l—N)L]_[M—l—N:M]_[N:MﬂN]_(M'N)'
¢) We have M C M+ and
(M : M*) = (M*+: M*Y) = (M MY(M : M7,
whence M = M*++. []



Fourier transforms and zeta integrals

Let G(A) be the space of SCHWARTZ-BRUHAT functions, i.e. locally constant func-
tions A — C of compact support (cf. [4, VII §2]). Choose a HAAR measure dz on

A. Then for any ® € G(A), we define the FOURIER transform ® € &(A) by

d(y) ::/AfI)(x)Q(xy)dx.

We require the measure dz to be self-dual, i.e. such that the FOURIER inversion
formula

~

(z) = B(—x)
holds for all ® € §(A), x € A. Equivalently, u(A) = 1 (see Lemma 6 below), where
p(E) = / dx
E

for any measurable set £ C A.

Lemma 5. Let ® be the characteristic function of a left A-lattice M on A. Then
® is the characteristic function of M+, multiplied by u(M).

Proof. 1f y € M+, then §(xy) = 1 for all z € M. Hence
b() = [ Olwy)ds = [ o =u(a0)
M M
On the other hand, if y ¢ M+, there is an element z, € M with (zy) # 1, and
B) = [ bay)ds
M
= / 0((zo + x)y)dx
M
= O(zoy) | O(zy)dx

= O(zoy) B(y);

therefore ®(y) = 0 in this case. []
Lemma 6.
o) u(A) =1.

b) If M is a left A-lattice on A, then (M) = (M : A).
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Proof. Let ® be the characteristic function of A = AL. Then ®(z) = pu(A)®(x).
Using FOURIER inversion we infer

[l

The units A* form a locally compact topological group (the topology being the
subset topology from A). If z € A*, we let

ol := (N : V)

for any full Z,-lattice N on A (this is independent of the particular N chosen). Note
that [lzy[l = ||z[| [ly|| for z,y € A*. Now

d'r .= —
]l

is a (left and right invariant) HAAR measure on A*. As before, if £ C A* is a
measurable subset, we write
pw(E) ::/d*x.
E

Next we define the zeta integral for ® € S(A) as

Z(@:5) = /A ()| d".

This integral converges certainly for Re(s) > 1, and admits analytic continuation to
a meromorphic function on C (cf. [1, Appendix]|).

The main tool towards a proof of Theorem 1 is the following functional equation
for the zeta integrals, a special case of which is proven in TATE’s thesis.

Theorem 7. Let ®,¥ € G(A). Then
Z(®is) __Z(¥;s)

Z(®:1—s) Z(U;l1—s)

Proof.  See |1, Appendix|. Note that a different pairing 04 (instead of 6) is used
there to define the FOURIER transform, and consequently a different Haar measure

7



dax on A is used to obtain self-duality again. But d 4z = ¢ - dx for some constant
¢ > 0, and this constant obviously disappears in the above formula. ]

If M is a left A-lattice on A, we define
M :={x € A" | Mz = M}.

Then M* is precisely the group of units of the Z,-order {x € A | Mz C M}, hence
is a compact open subset of A* having finite and nonzero measure p*(M*).

Lemma 8. Let M be a left A-lattice on A, and let ® be the characteristic function
of M*+. Then
Z(®;s) = p' (M7) (A : M) A (M;s).

Proof. If N C A is a full left ideal with V = M, there exists z € A* with N = Mx.
Since Mz C A we have x € A* N M+, and for arbitrary =,y € A*:

Mz =My <= zy~ ' e M*.

Now the partial zeta function (4 (M;s) can be rewritten as

(M;s) = Z [A: My]™*

ye(A*NML)/M*

= (A Yl

Fe(A*NML) /M~

Further, using FUBINT’s theorem, we can decompose the zeta integral as

- ¥ [ owllan

YEA* /M*

If y ¢ M+, then yzr ¢ M* for all z € M*, hence ®(yx) = 0 for all z € M*, while

y € M+ leads to
| aalylae = ol / |x|| ra

ly[°

Putting everything together we get



Z(®;s) = p(M) Yl
Fe(A* NML)/M*
= p (M) (A: M)*Ca(M;s),

as desired. []

Lemma 9. Let ¥ be the characteristic function of the maximal order A. Then

Z(W;5) = p*(K%) x(s).

Proof. The proof of the preceding Lemma yields the formula

29 = w®) 3l

ye(A*NA)/A*

= wl) Y ARy

yE(A*NA)/A*

Since A is a maximal order, every left A-ideal I is isomorphic to K, i.e. there exists
y € A* such that I = Ay (cf. [2, Prop. 31.2]). Therefore the above sum is simply
(;(s), and the assertion follows. []

Proof of the main theorem

Let W be the characteristic function of A. By Lemma 5 and Lemma 6 b), U is the
characteristic function of A+, multiplied by the constant factor [A : A]. Since A is
a full left A-lattice on A, there exists o € A* satisfying A+ = Aa. Thus

U(z) =[A: Al U(za™).
Now

2(T:s) = [A:A]/A*W(xa_l)||x||sd*x

~ A A]/* (@) |z d
— (R Aol Z(%;)
= [A: Allaf]® p* (A7) ¢z (s),




where the last equality follows from Lemma 9. Note that

laf| 7 = (§:Ka) N
= (A:A)(A: Aa)
= (A:A)(AR: A
= [A:AP,

whence

Z(W;s) = [N A7 0 (A) G ().
Combining this result with Lemma 9 yields the formula

Z(¥; )

IR . ATL=2s (z(s) e
Zan-s TGS )

GG(1—s)

Next let M C A be a full left A-ideal and let ® be the characteristic function
of M+. Then Z({I\);s) is the characteristic function of M*+ = M, multiplied by
p(M+) = (M+ : A) = [A: M]. Applying Lemma 8 for both M+ and M (in the
latter case we have to exchange left and right) we find

Z(
Z(

) = W) A M G M),
) = [N M) (s MY G ()
=AM () G ).

P: s
d; s

Thus we get the formula

Z((I);S) — CA(M;S) (***)

Z(EI;;I—S) C/r\ight(Ml;l—s)'

Now the proof of the following Theorem follows from Theorem 7 and the formulas

Theorem 10. Let M C A be a full left A-ideal. Then

QOGS G
T

Corollary 11. (5 (5
Cals X 1-25 _ Cx(s

————=[A:A —a

I R =y
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Proof. By the JORDAN-ZASSENHAUS Theorem (cf. |2, §24|), there are only finitely
many isomorphism classes of full left A-ideals. Let My, ..., M} be a set of repre-
sentatives of these isomorphism classes. Then M-, ..., M clearly form a set of
representatives of the isomorphism classes of full right A-ideals. Thus the result fol-
lows from the formula in the above Theorem by summing over M, ..., M, keeping
in mind that ¢y (s) = 8" (s).

This completes the proof of Theorem 1.

Examples

Suppose that G is a finite group of order m with m coprime to p. Then obviously
|G| is invertible in Z,, whence R = R is a maximal order (cf. [2, Prop. (27.1)]) and
A = A. In this case Theorem 1 is trivial since

(SA(S) == (SMn(Zp[G])(S) =1.
We now consider for the rest of this paper the (more interesting) situation where
G is a finite cyclic p-group. Let
G| =",
where we fix an integer & > 1. We first give a formula for the index [R : R].

Lemma 12. Let R = Z,[G] where G is the cyclic group of order p*. Let RC Q,[G]
be the maximal order containing R. Then

[E : R] _ p1+p+---+Pk71_

Proof. This is proved in [5]. []
Now the functional equation of Corollary 2 reads

5Rn (S) = p(n2—2ns)(1+p+---+pk_1)5Rn (n — S).

Substituting
r:=p°
we can define the polynomial dpn (x) € Z[x] by
Opn(p~*) = Opn (s).

Thus we can reformulate the above equation as follows:

~ 5 L+pt-+pF=t 1
dpn(T) = (p" x2”> O n < ) :

p'r

We conclude this article by giving formulas for the polynomials S\Rn (x) in the cases
k =1 and k = 2. Proofs of these results can be found in [5].

11



k=1:
Here G is the cyclic group of order p. We have the following formula:
n n e—1
Spn (1) = [ ] pr(n=e)gAn=e) 1—pz) |,
e =3 ([1], [o-r

where [Z]p is the number of e-dimensional subspaces of I}, i.e.

The polynomial oz (z) satisfies the functional equation

~ 2 gn 1
Spn (1) = p" 2" Opn ( ) :

p'r

k= 2:

Here G is the cyclic group of order p?. In this case we do not know of a nice formula
in closed form as before, but there is an algorithm (described in [5|) allowing the

computation of the polynomial Spn (x) for arbitrary p and n. We present the results
for p € {2,3,5} and n € {1,2,3}.

e p=2andn=1:

825 — 82° + 62* + 322 — 22 + 1,

e p=2andn=2:

409622 — 61442 + 640020 — 23042° + 28162% — 230427 + 195228
— 5762° 4+ 1762* — 362 + 2522 — 62 + 1,

e p=2andn=3:

134217728718 — 23488102417 4 27892121625 — 14365491221
+ 1367080962 — 11010048023 + 102023168z — 43696128z

12



+ 17389568110 — 43765762° + 21736962 — 68275227 + 1992641°
— 26880x° + 41722* — 54823 + 13322 — 14z + 1,

e p=3and n=1:

81z% — 54x™ + 36x° + 925 + 3zt + 323 + 422 — 21 + 1,

e p=3and n=2:

21216 — 382637522 + 30823578z 4 708588z1% + 1535274212
+ 33854762 + 211920320 — 135594027 + 116712928 — 15066027
+ 261632° 4 46442° + 2342* + 1223 + 5822 — 8z + 1,

e p=3and n=3:

15009463529699912122* — 1445355747304435987% + 123122896992600102x>
— 54675533967356792% + 63775413632774612*° + 14396280763046013z1°

+ 6581267202259089z18 — 4740422864535540217 + 491629626972198021

— 868287187367289x° + 200488295095218x* + 15476501507688 213

+ 777744240183 x'% + 5732037595447 + 2750182374427

— 44113559283x° + 9250878780z — 330368220x" + 169874012°

+ 137627125 + 225812* — 71723 + 59822 — 261 + 1,

e p=>5and n=1:

15625212 — 62502 + 3750210 + 18752° + 12528
+ 37527 + 252°% + 752° + bt + 1523 + 622 — 2x + 1,

e p=5and n=2:

59604644775390625x** — 2861022949218750022
+ 1869201660156250022% + 7209777832031250z!
+ 7629394531250 + 2210998535156250x°

— 56915283203125x'8 + 45007324218750027
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— 12957763671875x'° 4 90329589843 750z

+ 20233642578125x1* — 6640722656250

+ 5911884765625z — 265628906250z

+ 3237382812520 + 57810937502° — 331718752 + 4608750027
— 2331252% + 3622502° + 502* + 18902° + 1962? — 12z + 1,

e p=5and n=23:

555111512312578270211815834045410156252:¢

— 275335310107038822025060653686523437502°

+ 1828226459110737778246402740478515625023*

+ 6658211759713594801723957061 76757812533

— 84406792666413821280002593994140625232

+ 222914991354628000408411026000976562523!

— 97134670795639976859092712402343750x3°

+ 45690922888752538710832595825195312512°

— 20771263370988890528678894042968750x2

+ 916390800557564944028854370117187502>

+ 17826733196852728724479675292968 75022

— 58045001490972936153411865234375002

+ 59192114890553057193756103515625002*

— 3266706466628238558769226074218752

+ 481739926870912313461303710937502

+ 61979194982349872589111328125002*!

— 475388055503368377685546875002°

+ 65995047889947891235351562500z'° — 560464551913738250732421875x'8
+ 5279603831195831298828125007 — 30424835552215576171875002'°
+ 31733347830963134765625002 4 197320674046325683593750x
—107043437498474121093752" + 155168577658691406250022

— 12172919096679687500x! + 299082953417968750x°
+122995891210937502° —2230297421875025+39248203906252" —66750437502°
+ 12254881252 — 371225z* + 2342652° + 51462% — 622 + 1.

In each case one can verify the functional equation

B (0) = (p"2x2">l+p 5 < 1 )

px

predicted by Corollary 2.
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