
Splitting Techniques
for Interval Parameters
in Performance Models

JOHANNESLÜTHI

CATALINA M. LLADÓ

Bericht Nr. 2000-07

Dezember 2000

Universität der Bundeswehr München

Fakultät für
.

INFORMATIK
Werner-Heisenberg-Weg 39 • 85577 Neubiberg • Germany





Splitting Te
hniques for Interval Parameters inPerforman
e ModelsJohannes L�uthi1 and Catalina M. Llad�o2Te
hni
al Report No. 2000-071Institut f�ur Te
hnis
he InformatikUniversit�at der Bundeswehr M�un
henWerner-Heisenberg-Weg 39, 85577 Neubiberg, Germanyemail: luethi�informatik.unibw-muen
hen.deURL: www.informatik.unibw-muen
hen.de/inst4/luethi2Department of ComputingImperial College of S
ien
e, Te
hnology and Medi
ine180 Queens Gate, London SW7 2BZ, United Kingdomemail: 
l16�do
.i
.a
.ukAbstra
tDuring early phases of design and implementation, not all the parameter valuesof a performan
e model are usually known exa
tly. In related resear
h 
ontributions,intervals have been proposed as a means to 
apture parameter un
ertainties. Existingmodel solution algorithms 
an be adapted to interval parameters by repla
ing 
onven-tional arithmeti
 by interval arithmeti
. However, the so-
alled dependen
y problemmay 
ause extremely wide intervals for the 
omputed performan
e measures. Intervalsplitting has been proposed as a te
hnique to over
ome this problem. In this work wegive an overview of existing splitting algorithms and propose a new sele
tive splittingmethod that signi�
antly redu
es the 
omputational 
omplexity of interval evaluations.Moreover, the exploitation of partial monotoni
ity properties to further de
rease the
omputational 
omplexity is dis
ussed. The proposed methods are illustrated alongthe lines of two examples: a small performan
e model of the MACA-BI proto
ol forad-ho
 wireless mobile networks and a more 
omplex model of an Enterprise JavaBeansserver implementation.Keywords: Performan
e models; Analyti
 modeling; Parameter un
ertainties; Intervalparameters; Interval splitting
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tionTypi
ally, two types of abstra
tion are required to build a performan
e model: �rstly, thestru
tural properties of a real system are modelled whi
h 
an be 
hara
terized for exampleusing a 
orresponding Petri Net or queueing network stru
ture. Se
ondly, quantitative be-havior su
h as e.g. servi
e or inter-arrival times have to be 
hara
terized. The result of thisabstra
tion step is usually a set of model parameters. However, espe
ially in early phases ofdesign and implementation, not every aspe
t of the real system may be known exa
tly. Su
hun
ertainties may exist in both, stru
tural as well as parametri
al model aspe
ts. This work2



deals with un
ertainties asso
iated with model parameters. The issue of model parametersbeing subje
t to un
ertainties and variabilities is also addressed in more detail in [15℄.The use of intervals to 
hara
terize parameter un
ertainties in performan
e models hasbeen introdu
ed in related works [14, 24, 12℄. There are many situations where parameterintervals o

ur naturally: although an exa
t value for a parameter may not be known,the designer may provide a reasonable range of values for that parameter. If parametersare obtained via measurement, 
on�den
e intervals are an important tool to in
rease thereliability of the results. Parameter intervals may also o

ur in a situation where boundinganalysis is used at one level of a hierar
hi
al model produ
ing input parameter intervalson another level. Parameter intervals are also suitable for worst-
ase analysis as well assensitivity studies. Furthermore, the numeri
al treatment of other approa
hes to modelparameter un
ertainties su
h as e.g. parameter histograms [10℄, or fuzzy number parameters[11℄ is based on intervals.When parameters of an analyti
al model are 
hara
terized by intervals, performan
e mea-sure intervals 
an be obtained by adapting existing solution algorithms and formulae for the
orresponding model 
hara
terized by single value (SV) parameters. This adaptation is doneby repla
ing 
onventional arithmeti
 by so-
alled interval arithmeti
. I.e., basi
 operationsand elementary fun
tions for real numbers are repla
ed by 
orresponding arithmeti
 de�nedfor intervals. There are two major advantages of using interval arithmeti
 as opposed to otherte
hniques for un
ertainty analysis like Monte-Carlo [21℄ and Quasi-Monte-Carlo [19℄ meth-ods and sensitivity analysis (see for example [6℄ for a 
omparison of these two approa
hesin the 
ontext of Markov reward models): (a) results produ
ed by interval analysis are safeperforman
e bounds, i.e., it is guaranteed that the possible range of performan
e measuresis always en
losed by the obtained interval results; (b) if interval splitting is applied, thea

ura
y of the obtained interval results is automati
ally known.However, there is also a major drawba
k of using interval arithmeti
: the so-
alled depen-den
y problem may 
ause extremely wide intervals for the 
omputed performan
e measures[18℄. Interval splitting as an approa
h to over
ome this problem has been proposed by Ma-jumdar and Ramadoss: In [16℄, a brute for
e splitting algorithm is used to obtain reasonabletight performan
e measure intervals. In [20℄, following an approa
h proposed in [22℄, sele
-tive interval splitting with signi�
antly redu
ed 
omputational 
omplexity is 
onsidered. Inthis paper, a new sele
tive splitting algorithm is presented that uses o

asional single valuemodel evaluations to further redu
e the overall 
omputational 
omplexity for produ
ing in-terval results. In the 
ase of so-
alled N-monotoni
ity (i.e., monotoni
ity w.r.t. all inputparameters), L�uthi and Haring use monotoni
ity properties to obtain an eÆ
ient intervalsolution without interval splitting [12℄. In this work we show that monotoni
ity w.r.t. justone or more interval parameters 
an also be exploited to obtain a more eÆ
ient intervalsplitting solution.The appli
ation of the interval splitting algorithms presented in this paper is demon-strated along the lines of two models that we have adapted to interval parameters: a basi
analyti
al model of the MACA-BI proto
ol for ad ho
 wireless mobile networks and a more
omplex queueing network model of an Enterprise JavaBeans implementation. The 
orre-3



sponding models with 
onventional parameters are presented in [3℄ and [9℄, respe
tively.The paper is organized as follows: sin
e many readers may not be familiar with in-terval arithmeti
, the 
orresponding mathemati
al ba
kground is summarized in Se
tion 2.An overview of existing splitting approa
hes as well as our new splitting algorithm is pre-sented in Se
tion 3. This se
tion also in
ludes 
onsiderations on possibilities to exploit singleparameter o

urren
e and partial monotoni
ity properties. Se
tions 4 and 5 provide two ap-pli
ation examples for the proposed te
hniques. In Se
tion 6, the results are summarizedand 
on
lusions are drawn.2 Interval ParametersTypi
ally, performan
e measures in analyti
al models 
an be expressed as mathemati
alfun
tions of a number of input parameters. These input parameters are usually real numbersor integers. Thus, we 
onsider a real fun
tion f as follows:f : IRn ! IR;x = (x1; : : : ; xn) ! f(x):As dis
ussed in Se
tion 1, we are interested in using intervals as input parameters forperforman
e measure fun
tions. In the following, we give some basi
 de�nitions of intervalsand related terms. A detailed introdu
tion 
an be found in books like [18, 1, 17℄.2.1 Basi
 De�nitionsA real interval is a set of the formX = [x; x℄ = fx 2 IR j x � x � xg;where x; x 2 IR and x � x. x and x are 
alled endpoints of the interval. In parti
ular, xis 
alled lower bound, and x is 
alled upper bound of the interval X = [x; x℄. By IIIR wedenote the set of all real intervals. An interval X 2 IIIR is 
alled thin if x = x, and it is
alled thi
k, if x < x. If S is a nonempty bounded subset of IR, we denote the hull of S bytuS = [inf(S); sup(S)℄. The hull is the tightest interval en
losing S. E.g., tufa; bg = [a; b℄, ifa � b, and tufa; bg = [b; a℄, if a > b. We denote the set of interval ve
tors X = (X1; : : : ; Xn)with n 
omponents by IIIRn. An element X 2 IIIRn is interpreted as the set of all ve
torsx 2 IRn su
h that xi 2 Xi, i = 1; : : : ; n. For example, in the 
ase n = 2, this is a re
tangle.An interval ve
tor is also referred to as a box.For a real fun
tion f , 
ontinuous on every 
losed box on whi
h it is de�ned, the range ofa box X is de�ned as: f �(X) = tuff(x) j x 2 Xg = ff(x) j x 2 Xg:Be
ause of the 
ontinuity of f , the range is itself an interval:f �(X) = [f; f ℄:4



In general, the 
omputation of the range is a 
onstrained optimization problem withbox 
onstraints. I.e., the global minimum f(x) = minx2X f(x) and the global maximumf(x) = maxx2X f(x), subje
t to x 2 X have to be found.In the spe
ial 
ase of so-
alled N -monotoni
 fun
tions, the range 
an be 
omputed us-ing only real value evaluations of f with appropriate 
ombinations of parameter intervalendpoints as input parameters. To be more spe
i�
, let f(x1; : : : ; xn) be monotoni
allyin
reasing w.r.t. all parameters xi, i 2 I and monotoni
ally de
reasing w.r.t. all parame-ters xi, i 2 D, where I [ D = f1; : : : ; ng. Then the range of f with interval parametersX1 = [x1; x1℄; : : : ; Xn = [xn; xn℄ 
an be 
omputed as follows:f �(X1; : : : ; Xn) = [f(y1; : : : ; yn); f(z1; : : : ; zn)℄ ;where yi = xi, zi = xi if i 2 I, and yi = xi, zi = xi if i 2 D. In [12℄, this situation isdis
ussed in detail for the example of the Mean Value Analysis (MVA) algorithm (see forexample the book [8℄) for 
losed single 
lass queueing networks. A generalized monotoni
itytheorem, allowing exploitation of partial N-monotoni
ity is given in Se
tion 3.5.2.2 Interval ExtensionsFor many performan
e measures, monotoni
ity properties do not hold and general optimiza-tion methods are often diÆ
ult to apply and of high 
omputational 
omplexity. Sometimesthe exa
t range of a fun
tion need not be known, but an interval en
losing the range suÆ-
iently tight may be adequate as well. Thus, in the following we introdu
e the 
on
ept ofinterval extensions and interval arithmeti
 for their eÆ
ient 
omputation.An interval fun
tion F : IIIRn ! IIIR is an interval extension of the real fun
tion f :IRn ! IR if (for simpli�
ation purposes we leave aside 
onsideration of de�nition regions)[18℄: F (x) = f(x) for x 2 IR;f(x) 2 F (X) for all x 2 X 2 IIIR: (1)Interval extensions provide en
losures of the range of a real fun
tion:F (X) � ff(x)jx 2 Xg:A property of interval fun
tions that is important for interval splitting te
hniques thatare 
onsidered in Se
tion 3, is in
lusion isotony. An interval fun
tion F : IIIRn ! IIIR is
alled in
lusion isotone if for all X; Y 2 IIIR,X � Y ) F (X) � F (Y ):
5



2.3 Interval Arithmeti
An important 
lass of in
lusion isotone interval extensions is obtained by interval evaluationof arithmeti
 expressions. This is done by de�ning elementary arithmeti
al operations andfun
tions for intervals. Arithmeti
 expressions are subsequently de�ned as re
ursive 
om-binations of 
onstants, interval variables, elementary operations, and elementary fun
tions.For a formal de�nition see the book [18℄. Sin
e most fun
tions representing performan
emeasures are a
tually arithmeti
 expressions, interval arithmeti
 
an serve as a powerfultool to obtain interval extensions of performan
e measures.On the set of intervals, the elementary operations Æ 2 f+;�; �; =; ^g =: 
 are de�ned bysetting: X Æ Y = tufx Æ y j x 2 X; y 2 Y g = fx Æ y j x 2 X; y 2 Y g; 8Æ 2 
;for all X; Y 2 IIIR su
h that x Æ y is de�ned for all x 2 X, y 2 Y .The elements ' of a prede�ned set � of elementary 
ontinuous real fun
tions are extendedto interval arguments by de�ning:'(X) = tuf'(x) j x 2 Xg = f'(x) j x 2 Xg;for all X 2 IIIR su
h that '(x) is de�ned for all x 2 X. Su
h a set � of elementary fun
tionsmay for example in
lude abs (absolute value), the square and square root fun
tions, exp(exponential), ln (natural logarithm), or the trigonometri
 fun
tions sin, 
os, tan.From monotoni
ity properties it follows that the elementary operations Æ 2 f+;�; �; =g
an be 
omputed in terms of the end points of the intervals X = [x; x℄; Y = [y; y℄ 2 IIIR:X Æ Y = tufx Æ y; x Æ y; x Æ y; x Æ yg:In parti
ular, X + Y = [x + y; x+ y℄;X � Y = [x� y; x� y℄;X � Y = [min(xy; xy; xy; xy);max(xy; xy; xy; xy)℄;X=Y = X � [1=y; 1=y℄; if 0 =2 Y:Analogously, (pie
ewise) monotoni
ity of the elementary fun
tions 
an be exploited tode�ne their evaluations along the lines of 
omputations with the interval endpoints of theargument. E.g., be
ause of the monotoni
ity of the exponentiation fun
tion we know thatfor any X = [x; x℄ 2 IIIR, exp(X) = [exp(x); exp(x)℄.Using the interval extensions of elementary operations and fun
tions, an arithmeti
 ex-pression in n variables 
an be evaluated with intervals by substituting the variables by the
orresponding intervals and step by step appli
ation of interval arithmeti
. E.g., given theintervals X1 = [1; 2℄ and X2 = [4; 5℄, the arithmeti
 expression f(x1; x2) = (2x1 + x2)x1 is6



evaluated as follows: f(X1; X2) = (2 � [1; 2℄ + [4; 5℄) � [1; 2℄= ([2; 4℄ + [4; 5℄) � [1; 2℄= [6; 9℄ � [1; 2℄ = [6; 18℄:Given an arithmeti
 expression f(x1; : : : ; xn), in [18℄ it is shown that the 
orrespondinginterval evaluation f(X1; : : : ; Xn) is in
lusion isotone and that it provides an en
losure ofthe range f �(X) = f �(X1; ; : : : ; Xn) of the real arithmeti
 expression. I.e.,X 01 � X1; : : : ; X 0n � Xn =) f(X 01; : : : ; X 0n) � f(X1; : : : ; Xn); (2)and f �(X) = ff(x)jx 2 Xg � f(X): (3)Eq. (2) is originally proved in [17℄, Eq. (3) follows dire
tly from the de�nitions of intervalarithmeti
.2.4 Dependen
y ProblemAs dis
ussed above, interval arithmeti
 
an serve as a tool to obtain interval extensions ofreal fun
tions. However, due to an e�e
t known as dependen
y problem, equality is oftennot obtained in Eq. (3). This e�e
t is also known as overestimation. The root of thedependen
y problem is the memoryless nature of interval arithmeti
 if a parameter o

ursmultiple times in an arithmeti
 expression [18℄. For every o

urren
e of a variable in anexpression it is treated independently. For example, the expression X � X is evaluated tofx1 � x2 j x1; x2 2 Xg = [x� x; x� x℄, instead of fx� x j x 2 Xg = [0; 0℄.Sometimes an expression 
an be re-formulated to redu
e the number of o

urren
es ofan interval parameter. Examples of this te
hnique are presented in Subse
tions 4.1 and 5.2.However, in general the dependen
y problem may often 
ause 
ru
ial overestimation of thea
tual range of an evaluated fun
tion. For example, the iterative nature of the well-knownMVA algorithm (N iterations for a queueing network with N jobs) 
auses an in
reasingnumber of parameter o

urren
es with in
reasing number of jobs. Fig. 1 shows the overesti-mation of the response time interval using the interval arithmeti
al evaluation of the MVA.In this example, a queueing network with two queueing 
enters is analyzed. One of theservi
e demands and the terminal think time are 
hara
terized by interval parameters. Thediagram shows the relative width of the interval evaluation in multiples of the a
tual rangefor the response time. For example with 10 jobs in the network, the response time intervalobtained via interval arithmeti
 is more than 120 as wide as the a
tual interval of possibleresponse times.A way to over
ome overestimation due to the dependen
y problem is to split the originalinput parameter intervals into subintervals and evaluate the arithmeti
 expression usingthese subintervals as input parameters. Approa
hes in that dire
tion are dis
ussed in thefollowing se
tion. 7



Figure 1: Overestimation of response time intervals with MVA.3 Interval SplittingThe prin
ipal idea for interval splitting is to subdivide the input parameter intervals intoseveral subintervals, 
ompute interval evaluations of the arithmeti
 expression with the subin-tervals as input parameters, and �nd the overall result by 
omputing the minimum of alllower bounds and the maximum of all upper bounds of the intermediate results. Analogously,an interval parameter ve
tor (box) is split into subboxes. The basi
 idea is illustrated in thefollowing subse
tion des
ribing a brute-for
e splitting algorithm. Eq. (2) guarantees thatresults obtained via interval splitting yield en
losures of the range that are at most as wideas the interval evaluation using the original input parameter intervals. In [22℄ it is shownthat the results obtained from interval splitting 
onverge to the a
tual range if the widthof the subintervals approa
hes zero. For the sake of readability, in the algorithms dis
ussedin the following se
tions, we restri
t the 
onsiderations to a single interval input parameterX = [x; x℄. The generalization to multiple interval input parameters is straight forward.Considerations regarding 
omputational 
omplexity are however also in
luded for the 
aseof n interval parameters.3.1 Brute For
e Interval SplittingIn the brute for
e splitting (BFS) algorithm, in every iteration the input parameter intervalsare split into two subintervals of equal length. The parameter (sub)intervals 
onsidered initeration s (i.e. splitting degree s) are 
olle
ted in P s, the set of potential input parameterintervals. The respe
tive algorithm is depi
ted in Fig. 2.In step S1 of the BFS algorithm, after the initialization, the interval evaluation of f withthe original parameter interval X is 
omputed.8



Brute-for
e Splitting (f;X; �)S1 s 0P 0  fXgF 0 = [f 0; f0℄ f(X)doS2 s s+ 1P s  ;S3 8Z = [z; z℄ 2 P s�1 do beginm = (z + z)=2P s  P s [ f[z;m℄; [m; z℄gendS4 F s = [f s; f s℄ �minZ2P s f(Z); maxZ2P s f(Z)�S5 until (f s � f s�1 < �) and (f s�1 � f s < �)Figure 2: Brute for
e splitting algorithm with one interval parameter.In every iteration, the splitting degree s is in
remented and a new set of input parameterintervals under 
onsideration (P s) is initialized (step S2). Subsequently, in step S3 of thealgorithm, P s is �lled with subintervals of all intervals X 2 P s�1. Finally, the minimumof all lower bounds as well as the maximum of all upper bounds of evaluations of thesesubintervals is 
omputed in step S4. Steps S2�S4 are iterated until the di�eren
e betweensu

essive iterations be
omes smaller than a prede�ned stopping 
riterion � (step S5).Note that the number of subintervals in 
onsideration with splitting degree s is 2s. Moregeneral, if n parameters are 
hara
terized as intervals (i.e. we have an n-dimensional inputparameter box), it holds that jP sj = 2sn. The appli
ation of the BFS algorithm for thesolution of interval-based 
omputer performan
e models is proposed in [16℄.3.2 Sele
tive Interval SplittingIn the 
ourse of 
omputation in the BFS algorithm, it 
an be observed that not ne
essarilyevery interval in P s needs to be 
onsidered for further splitting. Consider for examplethe following situation: let Y and Z be two parameter subintervals in P s. We denotethe respe
tive interval evaluations by f(Y ) = [f(Y )℄; f(Y )℄ and f(Z) = [f(Z); f(Z)℄. Iff(Z) > f(Y ), we know that the a
tual lower bound f of the range f �(X) = [f; f ℄ 
an notbe obtained by evaluation of any point x 2 Z, sin
e we know that f � f(Y ).More general, if we denote the set of parameter subintervals Z 2 P s�1 [ P s that havealready been evaluated by Pev, we know that:f � minY 2Pev f(Y ):9



Figure 3: 4+1 situations to be 
onsidered in sele
tive interval splitting.Thus, in the situation des
ribed above, the subinterval Z need not be 
onsidered for furthersplitting to �nd the lower bound of the range f �(X). This idea of sele
tive interval splittingwas introdu
ed by Skelboe in the 
ontext of general purpose optimization of rational intervalfun
tions [22℄ and its appli
ation to performan
e models is presented in [20℄.In the following we 
onsider the 
omputation of the lower bound f of the range f �.Computation of the upper bound f 
an be done analogously. If an interval Zi with intervalevaluation f(Zi) = [f(Zi); f(Zi)℄ is 
onsidered to be in
luded in the set of P s that maypotentially produ
e the lower bound f of the range f �(X), four situations have to be distin-guished for eÆ
ient sele
tive interval splitting. These situations are depi
ted in Fig. 3. Inthis �gure, f s = minY 2Pev f(Y ), and minub = minY 2Pev f(Y ):1. In the �rst situation, f(Z1) > minub. Thus, in the sequel Z1 
an be ignored w.r.t. thesear
h for f .2. In the se
ond situation, f(Z2) � minub. This means that Z2 is a parameter intervalthat may eventually produ
e f . However, neither f s nor minub are a�e
ted by f(Z2).3. In the 
ase depi
ted as situation three, additionally, f(Z3) < f s. Thus, by in
lusion ofZ3 in Pev, f s has to be updated to the value f(Z3).4. In the fourth situation, we have f(Z4ab) < minub. Thus, minub has to be updated.Furthermore, there may now eventually be some intervals Y 2 Pev su
h that f(Y ) >minub. Su
h Y are no longer of interest for �nding f . Thus, they should be removedfrom P s or P s�1. Situation 4a in Fig. 3 shows the 
ase where non of the intervals inPev is a�e
ted, whereas in situation 4b the interval C would be dropped from the setof potential interval parameters sin
e f(C) > f(Z4b).The situations des
ribed above 
an be exploited to integrate �ltering me
hanisms into theBFS algorithm that dramati
ally redu
e the number of interval evaluations that have to be10



Sele
tive Interval Splitting (f;X; �)S1 s 0P 0  fXgF 0 = [f 0; f0℄ f(X)minub f 0doS2 s s+ 1f s  1P s  ;S3 8Z = [z; z℄ 2 P s�1 do beginS4 m (z + z)=2Z1  [z;m℄; Z2  [m; z℄S5 for i 1; 2 do beginS6 if (f(Zi) � minub then beginS7 P s  P s [ fZigS8 if (f(Zi) < f s) then f s  f(Zi)S9 if (f(Zi) < minub then beginS10 minub f(Zi)S11 
he
k lb (P s�1); 
he
k lb (P s)endendendendS12 until (f s � f s�1 < �)Figure 4: Sele
tive splitting algorithm with one interval parameter (
onsidering lower boundonly). 
he
k lb (P )S1 8Y 2 P doS2 if f(Y ) > minub then P  PnfY gFigure 5: Che
king routine for the sele
tive splitting algorithm.11




omputed to obtain a suÆ
iently tight en
losure of the range f �(X). In Fig. 4, the sele
tiveinterval splitting (SIS) algorithm is depi
ted. Note, that in the depi
ted algorithm, only thelower bound of the en
losure of the range is 
onsidered. The upper bound 
an be 
omputedanalogously. The initialization (step S1) is extended by setting the minimum of all upperbounds to1 (i.e., MAXREAL or some equivalent value). In the iteration initialization (stepS2), the lower bound of the en
losure is also initialized to 1. As in the BFS algorithm,every parameter interval in P s�1 (step S3)) is split into two intervals (step S4) whi
h aresubsequently 
onsidered for further treatment (step S5). However, situation (1) in Fig. 3 is�ltered by the 
ondition in step S6 of the SIS algorithm. I.e., only those parameter intervalsthat may eventually produ
e the lower bound of the en
losure are 
onsidered. This meansthat in the sequel, we are dealing with situations (2) to (4). In step S7, the parameterintervals of interest are in
luded in the next set P s of potential parameter intervals. Step8 deals with situation (3) of Fig. 3. I.e., it is de
ided whether the lower bound f s of theen
losure of iteration s has to be updated. Situation (4) is managed in step S9 of thealgorithm. The minimum of all upper bounds is eventually updated (step S10) and in stepS11 it is 
he
ked (the 
he
king routine is listed in Fig. 5), whether parameter intervals haveto be removed from P s�1 or from P s due to the update of minub. Steps S2 to S11 areiterated until the 
hange in the lower bound f s of the en
losure is suÆ
iently small (stepS12). In the subroutine depi
ted in Fig. 5, all intervals Y in the set P are 
he
ked (step S1)and eventually removed from P if f(Y ) > minub (step S2).If the lower and upper bounds of the en
losure are 
omputed simultaneously, identi
alparameter evaluations 
an be used to optimize the 
omputational e�ort. To a

elerate thede
isions in the 
he
k lb routine, the sets P s�1 and P s 
an be implemented as sorted linearlists as it is also suggested in [22℄. Note that for multiple (n) interval parameters, everyparameter box X 2 P s�1 has to be split in 2n subboxes. However, as it is illustrated inSe
tion 5, after some initial iterations the number of interval evaluations eventually in
reasesonly linearly with the splitting degree s. This is due to the �ltering e�e
t of the SIS algorithm.3.3 Sele
tive Interval Splitting with Midpoint EvaluationGiven an interval Z = [z; z℄ 2 P s�1, 
onsider the lower bound f �(Z) of the range f �(Z). Inthe SIS algorithm dis
ussed in the previous se
tion, we use the fa
t that f �(Z) 2 f(Z) =[f(Z); f(Z)℄ for the sele
tion pro
ess. To be more spe
i�
, the sele
tion threshold minub is
hosen as the minimum of the values f(Z) for all parameter intervals Z that have alreadybeen evaluated. However, by de�nition we also know that f �(Z) � f(z) for any z 2 Z.I.e., the real fun
tion evaluation f(z) for any point z 2 Z is also an upper bound for thelower bound of the range f �(Z). Thus, we know that f �(Z) 2 [f(Z); f(z)℄ for any arbitraryz 2 Z. This yields indeed a sharper threshold than f(Z), sin
e also f(z) � f(Z) holds forany z 2 Z.In the sele
tive splitting with midpoint evaluation (SSME) algorithm, depi
ted in Fig. 6,the interval midpoint z = (z + z)=2 of every interval Z = [z; z℄ 2 P s�1 is used to obtaina sharper threshold for the sele
tion de
ision. Steps S1 to S8 of the SSME algorithm are12



Sele
tive Splitting with Midpoint Evaluation (f;X; �)S1 s 0S2 minub f((x+ x)=2)... ...S9 fm  f((zi + zi)=2)S10 if (fm < minub) then beginS11 minub fmS12 
he
k lb (P s�1); 
he
k lb (P s)endendendendS13 until (f s � f s�1 < �)Figure 6: Sele
tive splitting algorithm with midpoint evaluation, one interval parameter(
onsidering lower bound only).identi
al to the SIS algorithm and are thus not listed in Fig. 6. However, in step S9, fmis assigned the real fun
tion evaluation of the interval midpoint. In the sequel (steps S10to S12), fm is used to determine the threshold minub whi
h is subsequently used to de
idewhi
h parameter intervals are of interest for further investigation.Fig. 7 shows the e�e
t of the sharper de
ision threshold minub obtained via evaluationof the interval midpoints. The bullets in that �gure represent the real fun
tion evaluationsof the respe
tive parameter interval midpoints. Here, the real fun
tion evaluations of themidpoint are assumed to be in the middle of the interval evaluations. This does of 
oursenot hold in general, but does not e�e
t the prin
ipal me
hanism of midpoint evaluation asan additional �ltering te
hnique. We denote the midpoint of parameter interval Y by my.Note that as opposed to Fig. 3, in Fig. 7 the threshold minub is determined as the minimumof all midpoint evaluations. Thus, using the SSME algorithm, the parameter interval Cwould not have been in
luded in Pev in the �rst pla
e be
ause f(C) > f(ma) = minub.Considering the parameter intervals Z1 to Z4b in Fig. 7 we 
an observe that both Z1 and Z2need not be split any further, sin
e from f(Z2) > minub we 
on
lude that f =2 f(Z2). I.e., asopposed to the 
onventional sele
tive splitting algorithm, Z2 is �ltered out due to the sharpersele
tion threshold obtained via midpoint evaluation. Next, 
onsider situation (4a): using
onventional SIS, the threshold minub is updated, but non of the parameter intervals in Pevis a�e
ted by that update. The situation with SSME is di�erent: be
ause f(mZ4a) < (f(B),the parameter interval B 
an be removed from the set of parameter intervals of further13



Figure 7: E�e
t of midpoint evaluation for interval splitting.interest.This example as well as the experimental results presented in Se
tions 4 and 5 illustratesthat the additional �ltering e�e
t of the SSME algorithm may usually be worth the higher
omputational expense due to the additional real fun
tion evaluation ne
essary to obtain thetighter threshold.Due to 
ontinuity properties, fun
tions des
ribing performan
e measures are usually atleast pie
ewise monotoni
. Thus, using interval endpoints instead of the interval midpointto obtain an even tighter threshold may be heuristi
ally argued. However, even with justa single interval parameter, this would double the additional e�ort due to real fun
tionevaluations and experiments have shown that often the improvement of the �ltering e�e
tis almost negligible. Furthermore, this approa
h does not s
ale well to multiple intervalparameters, be
ause in the la
k of knowledge of monotoni
ity behavior, given n intervalparameters, real fun
tion evaluations on all 2n 
orners of the n-dimensional parameter boxwould have to be 
omputed.Instead of the stopping 
riterion of the algorithms listed in Figs. 4 and 6 (f s� f s�1 < �),an alternative stopping 
riterion 
an be used: f s � minub < �. This stopping 
riterionautomati
ally provides a bound (namely �) on the di�eren
e between the lower endpoint fof the a
tual range f �(X) = [f; f ℄ and the lower endpoint f s of the en
losure obtained viainterval splitting, be
ause the relation f 2 [f s; minub℄ holds.3.4 Exploitation of Single Parameter O

urren
eAs it is dis
ussed in Subse
tion 2.4, the overestimation due to the dependen
y problem stemsfrom multiple o

urren
es of one or several input parameters in an expression. However, ifnot all input parameters o

ur more than on
e in the arithmeti
 expression, the followingtheorem holds. 14



Theorem 1 (Moore) Let f(�1; : : : ; �n; �1; : : : ; �m) = f(�; �) be an arithmeti
al expressionin n+m variables. Suppose that the variables �k, k = 1; : : : ; m, o

ur only on
e in f . Giveninterval ve
tors X 2 IIIRn, Y 2 IIIRm, it holds that:f �(X; Y ) = tuff(x; y) j x 2 X; y 2 Y g = [x2X f(x; Y ):A proof of this theorem 
an be found in [17℄ or in [18℄. The interpretation of this theoremis that �nding the range of an expression with interval parameters is a 
lassi
al optimizationproblem only w.r.t. those parameters that o

ur multiple times. Parameters that o

ur onlyon
e in the arithmeti
 expression 
an be treated with interval arithmeti
 without produ
ingadditional overestimation. Regarding interval splitting, this means that in prin
ipal onlyparameters that o

ur more than on
e in the expression have to be split into subintervals.Thus, in the BFS approa
h, the number of splitting 
ombinations in iteration s is redu
edfrom 2s(n+m) to 2sn.However, in the sele
tive splitting approa
hes, avoiding to split 
ertain parameter inter-vals may 
ause extremely low e�e
tiveness of the �ltering me
hanism of these algorithms.In many situations, redu
ing the number of split parameter intervals via exploitation ofsingle o

urren
e of parameters may 
ause the sele
tive approa
hes to behave like the BFSalgorithm. I.e., eventually no �ltering may take pla
e. Consider the following simple ex-ample: f(X; Y ) = X + X + Y , X = [0; 1℄, Y = [0; 10℄. Sin
e Y appears only on
e in theexpression of f , only X might be 
onsidered for splitting. Now 
onsider the evaluation off using the following subintervals of X: X 0 = [0; �℄ and X 00 = [1 � �; 1℄. Evaluation of fyields: f(X 0; Y ) = [0; 10 + 2�℄ and f(X 00; Y ) = [2 � 2�; 12℄ for any arbitrarily small � > 0.Sin
e 2� 2� < 10 + 2�, even X 00 is not �ltered out by sele
tive splitting. From this we may
on
lude that however small the subintervals of X are 
hosen, non of them is �ltered out bysele
tive splitting. Thus, in this 
ase the sele
tive splitting approa
h behaves like the BFSalgorithm. Depending on the desired a

ura
y, redu
ing the number of parameter intervalsthat are split at the 
ost of swit
hing from sele
tive to (almost) brute for
e splitting mayor may not redu
e the total 
omputational 
omplexity. This e�e
t is also illustrated in theexperimental results presented in Se
tion 4.3.5 Exploitation of Partial N-Monotoni
ityMonotoni
ity of the evaluated expression w.r.t. one or more input parameters 
an be ex-ploited to redu
e the number of parameters that have to be split. To obtain the range ofan expression, two separate runs of the interval splitting algorithm 
an be performed. Thisyields the lower and upper bounds of an en
losure of the range, respe
tively. In the two runsof the splitting algorithm, parameter intervals for parameters with monotoni
ity properties
an be repla
ed by appropriate endpoints of the original parameter intervals. This redu
esthe number of interval parameters in the splitting algorithm, and hen
e drasti
ally redu
esthe 
omputational 
omplexity. The following theorem and asso
iated 
orollary provide theformal justi�
ation for this simpli�
ation. 15



Theorem 2 Let f(�1; : : : ; �n; �1; : : : ; �m; �1; : : : ; �l) = f(�; �; �) be an arithmeti
al expres-sion in n +m + l variables. Suppose that f is monotoni
 in
reasing w.r.t. �i, i = 1; : : : ; mif all other parameters are �xed and f is monotoni
 de
reasing w.r.t. �j, j = 1; : : : ; l if allother parameters are �xed. Given interval ve
tors X 2 IIIRn, Y 2 IIIRm, and Z 2 IIIRl itholds that: f �(X; Y; Z) = tuff(x; y; z) j x 2 X; y 2 Y z 2 Zg= " infx2X f(x; y; z); supx2X f(x; y; z)# :The proof of Theorem 2 
an be found in Appendix A.Corollary 3 Under the assumptions of Theorem 2 it holds that:f �(X; Y; Z) � h f(X; y; z); f(X; y; z) i :The 
orollary is proved in Appendix B. Corollary 3 guarantees that an en
losure forthe range f �(X; Y; Z) 
an be obtained as follows: 
ompute the evaluation of the expressionwhere parameters with monotoni
 in
reasing e�e
t are repla
ed by the respe
tive lowerbounds of the parameter intervals, and where parameters with monotoni
 de
reasing e�e
tare repla
ed by the respe
tive upper bounds of the parameter intervals. This evaluation yieldsan interval be
ause the input parameters without monotoni
ity properties are still intervals.The lower bound of this evaluation interval yields the lower bound of the en
losure. Theupper bound of the en
losure is 
omputed analogously. The amount of overestimation ofthat en
losure 
an be redu
ed by interval splitting as des
ribed in the previous se
tions.However, Theorem 2 implies that only the parameter intervals X = (X1; : : : ; Xn) withoutknown monotoni
ity properties have to be split whereas parameters with monotoni
ity 
anbe repla
ed by appropriate single values.3.6 Summary of Splitting ConsiderationsIn the previous subse
tions, possibilities to exploit di�erent parameter 
hara
teristi
s tooptimize the SIS and SSME algorithms are dis
ussed. In parti
ular, three properties areused to handle input parameters: (1) an input parameter 
an be an interval or a single value(i.e., thi
k or thin), (2) it may o

ur on
e or multiple times, (3) monotoni
 behavior of thearithmeti
 expression may exist (and be known) or not. These parameter properties andasso
iated parameter treatment in the splitting algorithm are summarized in Table 1. Inthis table, the notation \�" stands for \don't 
are".Fig. 8 lists the generalized splitting algorithm (GSA), whi
h uses 
alls of the SSME al-gorithm and 
onsiders spe
ial parameter properties. In this listing, XIvM denotes a ve
torof (thi
k) interval parameters that o

ur multiple times in the arithmeti
 expression. XIvSdenotes a ve
tor of interval parameters that are not supposed to be split. XMon+ (XMon�)denotes a ve
tor of parameter intervals that have monotoni
 in
reasing (de
reasing) e�e
t.16



Table 1: Summary of parameter properties for interval evaluation.Parameter properties Treatment in splitting algorithmThin Single o

urren
e Monotoni
ityyes � � Treat as real number(no spe
ial 
onsideration)� yes � Treat as interval without splittingor split in interval splitting algo-rithm(depending on situation)no no yes Double 
all of interval splittingwithappropriate endpoints as single val-uesno no no Split in interval splitting algorithmFinally, xSV denotes a ve
tor of single value parameters (or thin intervals). If there are no pa-rameters with known monotoni
ity properties, the SSME algorithm is 
alled only on
e (stepS1). The notation SSME (f(XIvM; XIvS; xSV); XIvM; �) indi
ates that f is evaluated with allparameters (XMon+ and XMon� are dropped be
ause they do not exist in that 
ase), but onlythe parameters XIvM are supposed to be split. If there are parameters with known mono-toni
ity properties, the SSME algorithm is 
alled with the lower bounds xMon+ of parameterintervals in XMon+ and with the upper bounds xMon� of parameter intervals in XMon� toobtain the lower bound f of the evaluation (step S2). Analogously, the upper bound f ofthe evaluation is obtained by 
alling the SSME algorithm with the upper bounds xMon+ ofparameter intervals in XMon+ and with the lower bounds xMon� of parameter intervals inXMon� (step S3).4 Interval Parameters in a Model for Wireless MobileNetworksAs an illustrative example we use a model of the MACA-BI (Multiple A

ess with CollisionAvoidan
e By Invitation) proto
ol for so-
alled ad ho
 wireless mobile networks des
ribedby Gerla et al. [3℄.4.1 Normalized Throughput for the MACA-BI Proto
olUsing the following parameters:� : : : the aggregate rate of pa
ket generation,17



Generalized Splitting (f(XIvM; XIvS; XMon+; XMon�; xSV); �)if (XMon+ [XMon�) = ; thenS1 F = [f; f ℄ SSME (f(XIvM; XIvS; xSV); XIvM; �)else beginS2 f  SSME(f(XIvM; XIvS; xMon+; xMon�; xSV); XIvM; �)S3 f  SSME(f(XIvM; XIvS; xMon+; xMon�; xSV); XIvM; �)endFigure 8: Generalized interval splitting algorithm 
onsidering di�erent parameter types.
 : : : the 
ontrol pa
ket length,� : : : the maximum propagation time,Æ : : : the data pa
ket length,in [3℄, an expression for the normalized throughput of the single hop 
ase is derived:S = ÆÆ + 2�e���� + (
 + 2�)e�� :In this expression, the pa
ket length parameter Æ o

urs twi
e, � and � o

ur three times, just
 o

urs only on
e. Thus, it is likely that S is subje
t to the dependen
y problem 
ausingoverestimation of throughput intervals if intervals are used for the model parameters. Asdis
ussed in Subse
tion 2.4, the widening e�e
t of the dependen
y problem 
an sometimesbe de
reased if the expression is rewritten su
h that interval parameters o

ur less often. IfS is rewritten in the following way:S 0 = 11 + �2�e���� + (
 + 2�)e��� =Æ ;the pa
ket length parameter Æ o

urs only on
e whereas the number of o

urren
es of theother parameters does not 
hange. In the sequel we refer to the expression S as the originalthroughput expression, S 0 is referred to as the optimized expression.Derivation of the expression w.r.t. the four parameters yields that S is monotoni
ally in-
reasing w.r.t. Æ and S is monotoni
ally de
reasing w.r.t. � and 
 as long as all parameters arepositive. In the following 
omparisons, these monotoni
ity properties 
an be used to redu
ethe number of interval parameters in the splitting algorithms as dis
ussed in Se
tion 3.5.
18



Figure 9: Single value (SV) as well as various interval (IV) results for the normalized through-put of the example model with varying network load �.4.2 Experimental Results with Interval ModelFor the experiments dis
ussed in this se
tion, we use the single value parameters from [3℄(data pa
ket length = 296 bytes, 
ontrol pa
ket length is 20 bytes, propagation delay is 54�s, 
hannel speed is 1Mbps), as a bases and assume parameter un
ertainties in the way thatevery parameter � is des
ribed as � � 10%, i.e., as the interval [0:9�; 1:1�℄. Along the linesof [3℄, using bits and �s as units, the parameter intervals are:� D = [Æ; Æ℄ = 2368� 10% = [2131:2; 2604:8℄,� G = [
; 
℄ = 160� 10% = [144; 176℄,� T = [� ; � ℄ = 54� 10% = [48:6; 59:4℄.The load parameter � is varied (logarithmi
ally s
aled) from 10�6 to 1:0 and is also subje
tto an un
ertainty of �10%. In ea
h step, the load fa
tor � is in
reased by the fa
tor 1:5.Fig. 9 depi
ts the results of this experiment, in
luding the single value (SV) normalizedthroughput, results from interval evaluation of S (IV/orig) and S 0 (IV/opt) as well as thea
tual range of the interval evaluation (IV/range). 'lb' denotes lower bounds and 'ub' denotesupper bounds. In this �gure, the overestimation 
aused by the dependen
y problem 
an beobserved. Dire
t interval evaluation of S 0 yields almost exa
tly the range, whereas evaluationof S yields mu
h wider intervals. However, this fa
t 
an only be re
ognized if the range is19



known. Thus, interval splitting has to be applied to gain 
ontrol over the a

ura
y of theinterval results.Table 2 lists the results for the 
omputational 
omplexity when using the various intervalsplitting approa
hes (BFS, SIS, SSME) and di�erent values for the desired a

ura
y � =10�2; : : : ; ��6. For a 
omparison of the 
omputational 
omplexity of the di�erent splittingalgorithms, four variants of the interval model are 
onsidered: in the variant denoted as'NAIVE', monotoni
ity properties and the single o

urren
e of parameters are not exploited,i.e., all four parameter intervals are split into subintervals. In the 'ESO' (exploitation ofsingle o

urren
e) variant, monotoni
ity properties are not used but parameter intervalsthat o

ur only on
e in the expression are not split (see Subse
tion 3.4). In the variantdenoted by 'MONO 2', monotoni
ity properties of S w.r.t. Æ and 
 are exploited, whereas �and � are split (see Subse
tion 3.5). Finally, in the variant 'MONO', all known monotoni
ityproperties are exploited and thus only � has to be 
onsidered for interval splitting. For the'NAIVE' and 'ESO' variants, two sub-variants are 
onsidered: using the original expressionS ('orig.') and using the rewritten expression S 0 ('opt.'). This distin
tion is not made forthe 'MONO2' and 'MONO' variants, be
ause in these two, the parameter Æ is treated via itsinterval endpoints anyway (only the number of o

urren
es of Æ is redu
ed if using S 0 insteadof S). The table lists the number of ne
essary interval evaluations for the various splittingalgorithms. In the 
ase of the SSME algorithm, also the number of ne
essary single value(SV) evaluations and the weighted sum iv+sv=2 is listed (a SV evaluation is estimated to beof approximately half the 
omputational 
omplexity as an interval evaluation). The valuesrepresent the total numbers of evaluations ne
essary to gain all results depi
ted in Fig. 9,i.e., results for 35 di�erent � intervals. Omitted results re
e
t experiments that had to beaborted be
ause of time and/or memory 
onstraints.Several observations 
an be inferred from the results of Table 2: in general, BFS is notan option for eÆ
ient interval evaluation as 
ompared to sele
tive interval splitting su
h asSIS or SSME. Comparing SIS and SSME, the SSME approa
h always manages to furtherredu
e the number of interval evaluations. In the SSME algorithm, the redu
tion of intervalevaluations is a
hieved at the 
ost of additional SV evaluations (the midpoint evaluations).However, almost always the total 
ost of SSME is smaller than that of SIS. As dis
ussedin Se
tion 3.4, exploitation of single parameter o

urren
e disables the �ltering e�e
t of thesele
tive splitting te
hniques as soon as the desired a

ura
y gets small. Thus, avoiding tosplit parameter intervals that o

ur only on
e in the evaluated expression only makes sense forBFS. However, as the results in Table 2 suggest, it is more eÆ
ient to use a sele
tive splittingalgorithm (SIS or SSME) without exploitation of single parameter o

urren
e than to useBFS with exploitation of single parameter o

urren
e. Another important 
on
lusion that
an be drawn from the results of these experiments is that rewriting an expression to redu
ethe number of parameter o

urren
es may signi�
antly redu
e the ne
essary 
omputationale�ort for interval splitting. This e�e
t 
an be seen by 
omparing the 'Orig.' with the'Opt.' results. Furthermore, exploitation of monotoni
ity properties is even more important,be
ause only parameters without known monotoni
ity properties have to be split. Thus,with exploitation of monotoni
ity the problem dimension in the splitting algorithms 
an be20



Table 2: Complexity results for example.A

ura
y Variant BFS SIS SSMEIV eval. IV eval. IV eval. SV eval. IV+SV/2� = 10�2 NAIVE/Orig. 1,216,678 414,998 178,822 32,952 195,298NAIVE/Opt. 1,190 1,190 1,190 802 1,591ESO/Orig. 83,830 57,614 31,150 13,166 37,733ESO/Opt. 350 350 350 341 521MONO 2 350 350 350 341 521MONO 210 210 210 178 299� = 10�3 NAIVE/Orig. { 4,741,110 1,302,758 167,421 1,386,469NAIVE/Opt. 247,206 10,790 4,598 1,701 5,449ESO/Orig. { { { { {ESO/Opt. 2,094 2,094 2,038 1,990 3,033MONO 2 2,094 850 634 414 841MONO 414 342 320 256 448� = 10�4 NAIVE/Orig. { { 3,831,862 486,351 4,075,038NAIVE/Opt. { 59,702 20,950 5,726 23,813ESO/Orig. { { { { {ESO/Opt. 168,334 164,962 144,590 143,354 216,267MONO 2 168,334 2,702 1,742 950 2,217MONO 3,110 760 668 511 924� = 10�5 NAIVE/Orig. { { { { {NAIVE/Opt. { 235,302 85,350 21,091 95,896ESO/Orig. { { { { {ESO/Opt. { { { { {MONO 2 { 7,226 4,426 2,197 5,525MONO 28,630 1,652 1,404 1,034 1,921� = 10�6 NAIVE/Orig. { { { { {NAIVE/Opt. { 1,005,974 374,310 90,240 419,430ESO/Orig. { { { { {ESO/Opt. { { { { {MONO 2 { 21,960 12,882 5,951 15,858MONO 301,902 4,718 3,922 2,822 5,333
21



Figure 10: MACA-BI model with interval parameters and interval splitting: 
omputational
omplexity vs. desired a

ura
y.redu
ed to the number of interval parameters without monotoni
ity.In Fig. 10, the 
omparison of the two sele
tive splitting te
hniques SIS and SSME issummarized: the number of ne
essary interval and SV evaluations is depi
ted for varyingvalues of � (desired a

ura
y). The four diagrams show results for the variants 'NAIVE/Orig','NAIVE/Opt', 'MONO2', and 'MONO'. It 
an be seen that with the ex
eption of 'MONO'(here, only one parameter is split), the additional 
ost due to SV evaluations in the SSMEalgorithm is always more than 
ompensated by the de
reased number of interval evaluationsin that approa
h.Fig. 11 illustrates that the 
omputational 
omplexity for interval splitting may stronglydepend on the values of the parameters. This �gure depi
ts the number of expression evalu-ations ne
essary during interval splitting for varying midpoints of the �-interval. For orien-tation purposes, the SV throughput results are also depi
ted (labeled on the right y-axes). Itis interesting to see that in all 
ases the splitting e�ort is highest where S is non-monotoni
(i.e., where S takes its maximum). This means, that interval splitting is more 
ostly when itis a
tually required, i.e., when the upper throughput bound is not obtained by using intervalendpoints of the input parameters. 22



Figure 11: MACA-BI model with interval parameters and interval splitting: 
omputational
omplexity vs. �.5 Model of an EJB Server ImplementationAs a more 
omplex example we use a model of an EJB (Enterprise JavaBeans) serverimplementation, whi
h in this 
ase works as the 
entral s
heduler of a distributed, three-tier, 
lient-server ar
hite
ture. The real appli
ation modelled is the Kensington EnterpriseData Mining system [7, 2℄ whose appli
ation server (or s
heduler) implements the EJB-1.1spe
i�
ation [23℄.Spe
i�
ally, the behavior of a method exe
ution is modelled sin
e it is the most 
ommonoperation in the system. Detailed des
ription of this exe
ution and derivation of the model
an be found in [9℄.5.1 EJB Submodel to be Adapted to Interval ParametersThe model that is used to illustrate the appli
ation of interval splitting te
hniques 
orre-sponds to a sub-model of the system des
ribed above whi
h is also derived in [9℄. Thissub-model is shown in Fig. 12 and it was obtained via the appli
ation of the Flow EquivalentServer method (FES) (see [5℄, for example) in order to redu
e the 
omplexity of the original23
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Figure 13: Container (sub)Modelmodel.Blo
king is the 
riti
al non-standard 
hara
teristi
 in this network. A 
lient that has
ompleted servi
e in the outer node may be blo
ked under 
ertain 
ir
umstan
es (see [9℄ fordetails). In this 
ase blo
king time is the time required for the �rst of the M parallel serversto 
lear its queue in a blo
king-after-servi
e dis
ipline.The M parallel servers are aggregated into a single node as it is shown in Fig. 13. At
onstant population N (j 
lients at the outer server and k = N�j at theM parallel servers)the servi
e rate fun
tions �1(j) and �2(k), are estimated as follows:�1(j) = ( 1=(m1 + �N�jb(N � j)); if (N � j) �M;1=m1; otherwise; (4)where m1 is the mean servi
e time for server 1 (the outer server) when there is no blo
kingand �N�j is the dynami
 blo
king probability. b(N � j) is the mean blo
king time whenthere are j 
ustomers at the outer server (N � j 
ustomers at the parallel servers) and itis estimated by b(k) = k=(M2�) (see [4℄), where � is the servi
e rate of ea
h of the parallelservers. The 
omputation of the probabilities �N�j is beyond the s
ope of this paper; the
24



details 
an be found in [9℄. The servi
e rate of the aggregated se
ond server is:�2(k) = MXn=1 �knn�; (5)where the parameter �kn is the probability that n out of the M servers are busy, given thatthere are k 
ustomers at the parallel servers altogether. The probabilities �kn are 
omputed
onsidering an M-state Markov 
hain for ea
h population size k �M at the parallel servers,where ea
h state 
orresponds to the number of busy queues in the system. The followingre
ursive fun
tion for the 
orresponding equilibrium probabilities �k(n) is derived from thebalan
e equations determined by the M-state Markov 
hain:�k(n) = 8>><>>: 1; if n = 1;(I�n+1)(k�1)n(n�1)m1�I �k(n� 1); if 2 � n < M;(I�n+1)(k�1)(m1M2�+(1��)k)M2m21�2In(n�1) �k(n� 1); if n =M: (6)The parameter I is related to the blo
king behavior, a detailed explanation is beyond thes
ope of this paper. Normalizing the �k(n) gives the probabilities�kn = �k(n)PMl=1 �k(l) : (7)Clearly the visitation rate is the same for both servers (see Fig. 13). The steady state queuelength probability distribution for this network { p(j) for the state with j tasks at server 1and N � j at server 2 { is then 
al
ulated as a produ
t form in standard fashion. Finally,the throughput of the FES submodel given N threads in the submodel 
an be 
omputed:T (N) = NXj=1 p(j)�1(j) : (8)5.2 EJB Submodel with Interval ParametersThe 
omputational steps for the solution of the submodel throughput, given that the servi
edemand parameters � and m1 are intervals are adapted to interval arithmeti
. Duringthis adaptation several equations are re-formulated to de
rease overestimation due to thedependen
y problem. Moreover, monotoni
ity properties of 
ombined 
omputation steps areexploited to further redu
e the amount of overestimation. As an example for the adaptationpro
ess we dis
uss the interval adaptation of the probabilities �kn (see Eqs. (6) and (7)). The
omplete adaptation pro
ess is des
ribed in more detail in [13℄.Due to the re
ursion in Eq. (6), m1 and � o

ur multiple times in ea
h of the expressions�k(n). Sin
e with the ex
eption of the 
ase n = M , m1 as well as � appear only in thedenominator, this does not 
ause overestimation of intervals for �k(n). However, in thenormalization step, the dependen
y problem is in e�e
t, be
ause by having �k(n) in the25



numerator and the sum PMl=1 �k(l) in the denominator, m1 and � have both in
reasing aswell as de
reasing in
uen
e on �kn.In the following we rewrite the expressions for �k(n) in a way that allows to 
an
el asmany o

urren
es of m1 and � as possible in the normalization. In a �rst step, we extra
tthe interval parameters m1 and � from the re
ursion of Eq. (6). This 
an be done by de�ningthe following re
ursive expression �k(n) that does not depend on m1 and �:�k(n) = ( 1; if n = 1;(I�n+1)(k�1)n(n�1)I �k(n� 1); if 2 � n � M: (9)Using these �k(n), the probabilities �kn 
an be rewritten to redu
e the e�e
t of the dependen
yproblem. For n < M , the re
ipro
als ��1kn 
an be 
omputed as follows:��1kn = 1 + 1�k(n) 24n�1Xl=1 �k(l)(m1�)n�l + MXl=n+1 �k(l)(m1�)l�n + �k(M)(1� �)kM2(m1�)M�n+135 :Note that in this expression for ��1kn , 1 � n < M , the 
omputation is separated in a part wherem1 and � 
ontribute with an in
reasing e�e
t and a part where m1 and � 
ontribute with ade
reasing e�e
t, respe
tively. Within these parts, the parameters m1 and � are 
an
elled asoften as possible. This signi�
antly redu
es the e�e
t of the dependen
y problem as 
omparedto the original expressions in Eqs. (6) and (7). The 
ase n = M is treated separately:��1kM = 1 + M2�k(M) [M2 + (1� �)k=(m1�)℄ M�1Xl=1 �k(l)(m1�)M�l:Sin
e in this expression m1 and � 
ontribute solely with an in
reasing e�e
t to ��1kM , theprobability �kM is monotoni
ally de
reasing w.r.t. the parameters m1 and �. Thus, aninterval XkM = [�kM ; �kM ℄ 
an be obtained by single value evaluation of �kM using theendpoints of m1 and �'s parameter intervals. I.e., �kM = �kM(m1; �) and �kM = �kM(m1; �).5.3 Experimental Results with Interval-Based EJB ModelIn the following 
omparison we use two di�erent adaptations of the EJB model to intervalarithmeti
. In the version denoted as 'orig.', the normalization step during the 
omputationof the probabilities �kn is done along the lines of the original equations given in [9℄. For the
omputation of results labeled 'rewr.', the rewritten expressions as dis
ussed in Subse
tion 5.2are used redu
ing the dependen
y problem in this spe
i�
 
omputational step. Note thatfor SV parameters, the original and rewritten equations are mathemati
ally equivalent, there-formulation only makes a di�eren
e for interval evaluations.In the experiments we use parameter values taken from evaluations des
ribed in [9℄:M = 6 bean servers per 
ontainer and I = 20 di�erent bean instan
es. The estimatesfor the servi
e rate of the bean servers � and the mean servi
e time of the outer server26



(a) (b)Figure 14: Comparison of original and rewritten expressions: (a) throughput interval resultsand (b) 
omputational 
omplexity for interval splitting with varying number of threads (withdesired a

ura
y � = 10�2).m1 are subje
t to un
ertainty. Thus, these parameters are 
hara
terized by the intervals�(iv) = 1=4:1� 5% = [0:2317; 0:2561℄ and m(iv)1 = 0:4� 5% = [0:38; 0:42℄.Fig. 14 shows the e�e
t of using the original respe
tively rewritten expressions for theintermediate probability intervals �kn when 
omputing intervals for the submodel throughputT (N). Fig. 14(a) depi
ts throughput intervals for populations N = 1; : : : ; 25. It 
an be seenin this �gure that using the original expressions for �kn, the throughput interval is mu
hmore overestimated than the throughput interval obtained using the rewritten expressionsfor �kn.Unfortunately, due to the dependen
y problem o

urring in the 
omputation of T (N),even the throughput intervals obtained by using the rewritten expressions are more than 10times as wide as the a
tual range of the throughput (the innermost intervals in Fig. 14(a)).Thus, in both 
ases, interval splitting has to be applied to obtain reasonable tight en
losuresof the throughput range. However, even though interval splitting may be ne
essary for both,original as well as optimized (w.r.t. interval 
omputation) expressions, the 
omputationale�ort is signi�
antly redu
ed when using the rewritten formulae. Fig. 14(b) depi
ts the 
om-putational 
omplexity required to obtain the range for the throughput with an a

ura
y of� < 10�2. To obtain the range of the throughput, the SSME approa
h is used, whi
h per-forms both, interval as well as 
onventional evaluations . For ea
h version of the expressions(original and rewritten), three di�erent plots are shown: the number of ne
essary intervalevaluations (iv), the number of ne
essary single value evaluations (sv), and the weighted sum27



(a) (b)Figure 15: Computational e�ort for interval splitting for the EJB model with interval pa-rameters and varying a

ura
y � = 20; : : : ; 2�13.iv+sv=2 (total) | the 
omputational 
omplexity for an interval evaluation is approximatelytwi
e as high as for a single value evaluation. Note that using the rewritten �kn-expressionsde
reases the number of evaluations during the interval splitting algorithm by a fa
tor ofmore than 5.In Fig. 15, the splitting 
omplexity of the SIS algorithm is 
ompared to that of the SSMEalgorithm. In this 
omparison, the number of threads is N = 20. Fig. 15(a) depi
ts 
omplex-ity results using the original expressions for the probabilities �kn, whereas Fig. 15(b) shows
omplexity results obtained using the rewritten expressions. Both diagrams show 
omplexityvalues for logarithmi
ally s
aled a

ura
y values � = 20; : : : ; 2�13 (i.e, deviation of obtainedinterval results from the a
tual range). Again, the 
omputational e�ort is shown in terms ofthe number of ne
essary IV evaluations. In both 
ases, the SSME algorithm out-performsSIS by a fa
tor of about 2. Note that with BFS (not depi
ted here), the 
omputational
omplexity would have grown exponentially, whereas the �ltering e�e
t of both sele
tivesplitting algorithms 
auses an almost perfe
tly linear in
rease of the 
omputational e�ortwhen the a

ura
y is in
reased.By 
omparing Fig. 15(a) and Fig. 15(b) it 
an also be seen that using expressions thatare rewritten in order to redu
e overestimation, the 
omputational e�ort of interval splitting
an be signi�
antly redu
ed. For example, to obtain an a

ura
y of � = 2�13 with SSME,the equivalent of 87930 interval evaluations is ne
essary if the original expressions are used,whereas only 12415 interval evaluations are ne
essary when using the rewritten expressions.Hen
e this example illustrates that the adaptation of existing solution te
hniques to intervalparameters has to be done with great 
are. For as many steps as possible, intermediateexpressions have to be optimized for an eÆ
ient interval 
omputation. I.e., wherever possible,monotoni
ity properties as well as possibilities to 
an
el o

urren
es of interval parametersshould be exploited. 28



6 Con
lusionsRe
ent studies have shown that using intervals as input parameters for models of 
om-puter and 
ommuni
ation systems is appropriate to represent un
ertainties in parametervalues that are usually provided as single value numbers. The representation of un
ertain-ties in performan
e models is of spe
ial importan
e in early phases of system design andimplementation and for situations with restri
tions to obtain data for input parameters viameasurement. If intervals are used to 
hara
terize model parameters, any given parameterun
ertainty is also re
e
ted in the model output, i.e., in 
orresponding performan
e mea-sures. This 
an be gained by adaptation of an existing 
onventional solution algorithm tointerval parameters: every arithmeti
al operation of the original solution is repla
ed by a
orresponding interval arithmeti
 operation.However, the so-
alled dependen
y problem, well-known in interval mathemati
s, often
auses signi�
ant overestimation on the obtained performan
e measure intervals. This meansthat the a
tual range of possible results, given the 
onstraints de�ned by the set of intervalparameters, may be a mu
h smaller interval than the one obtained via interval arithmeti
.This e�e
t 
an be over
ome if the original input parameter intervals are split into smallerintervals. For every 
ombination of subintervals, the interval solution is 
omputed and theoverall minimum and maximum yield the bounds for a tighter performan
e measure interval.In this paper we give an overview of existing interval splitting algorithms su
h as brutefor
e splitting and sele
tive interval splitting. We introdu
e a new splitting te
hnique 
alledsele
tive splitting with midpoint evaluation (SSME) that 
ombines 
onventional and intervalmodel evaluations to redu
e the overall 
omputational 
omplexity. Furthermore, we showhow partial monotoni
ity properties 
an be exploited to give a more eÆ
ient interval solution.Two example models are in
luded in this work to illustrate the appli
ation of the proposedinterval splitting te
hniques. Along the lines of these examples a 
omparison of the varioussplitting algorithms is in
luded and it shows that in most situations the new SSME approa
hperforms better than plain sele
tive splitting.A
knowledgementsThe authors would like to thank Shikharesh Majumdar, Carleton University, Ottawa, Canada,for his 
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ollab-oration.A Proof of Theorem 2By de�nition, the range f �(X; Y; Z) is:f �(X; Y; Z) = tuff(x; y; z) j x 2 X; y 2 Y z 2 Zg= " infx2X;y2Y;z2Z f(x; y; z); supx2X;y2Y;z2Z f(x; y; z)# :29



Thus, we have to prove that infx2X;y2Y;z2Z f(x; y; z) = infx2X f(x; y; z) (10)and that supx2X;y2Y;z2Z f(x; y; z) = supx2X f(x; y; z): (11)Clearly, infx2X;y2Y;z2Z f(x; y; z) � infx2X f(x; y; z):Thus, to proof Eq. (10), it is suÆ
ient to show that:infx2X;y2Y;z2Z f(x; y; z) � infx2X f(x; y; z) (12)This inequality follows dire
tly from the monotoni
ity properties of f : let x = (x1; : : : ; xn) 2IRn, y = (y1; : : : ; ym) 2 IRm, and z = (z1; : : : ; xl) 2 IRl be arbitrarily 
hosen. Sin
e f ismonotoni
 in
reasing w.r.t. yi, i = 1; : : : ; m it holds:f(x; y; z) = f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl)� f(x1; : : : ; xn; y1; y2; : : : ; ym; z1; : : : ; zl)� � � � � f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl):Be
ause f is monotoni
 de
reasing w.r.t. zj, j = 1; : : : ; l we 
ontinue:f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl) � f(x1; : : : ; xn; y1; : : : ; ym; z1; z2; : : : ; zl)� � � � � f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl):I.e., for any x 2 IRn, y 2 IRm, z 2 IRl we have:f(x; y; z) � f(x; y; z);whi
h proves Eq. (12) and hen
e Eq. (10). Eq. (11) is proved analogously. This 
ompletesthe proof of Theorem 2.B Proof of Corollary 3From the properties of interval extensions (see Eq. (1)) it follows that for all x 2 X:f(x; y; z) 2 f(X; y; z):Thus, infx2X f(x; y; z) 2 f(X; y; z) = h f(X; y; z); f(X; y; z) i :Hen
e it follows that: f(X; y; z) � infx2X f(x; y; z):Analogously, f(X; y; z) � supx2X f(x; y; z);whi
h 
ompletes the proof of Corollary 3. 30
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