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Abstract

In this paper we give a relation-algebraic model of processes. All stan-
dard operations (including parallel composition/interleaving) of the Calculus
of Communicating Systems CCS are interpreted by purely relational terms
without any inductive methods. We also introduce the notion of a relational
bisimulation which leads to a canonical representative of a bisimulation-class
of processes.

1 Introduction

The standard model for the Calculus of Communicating Systems CCS is the syn-
chronization tree model [4, 8], i.e., operational trees modulo bisimulation. One
of the drawbacks of this approach is that there is no canonical representative of a
bisimulation class and that the definition of interleaving requires inductive methods.

Our relational approach introduces a category of transition graphs with graph ho-
momorphisms. On this category a notion of bisimulation is established, and it is
proven that a bisimulation class, seen as a subcategory, has a terminal object which
serves as a canonical representative of this class. We will interprete the standard op-
erations of CCS: prefixing, relabelling, hiding, sum, interleaving by purely relational
methods as functors on our category. Every process term P[X] has therefore an
associated functor F(X). The semantics of a recursive process definition X = P[X]
is defined to be the terminal object of the bisimulation class of the final F-coalgebra.

The paper is structured as follows: Based on some fundamentals on heterogeneous
relation algebras introduced in the second section we define a category G of labelled
graphs and graph homomorphisms over a given relation algebra in Section 3.



A main contribution of this paper is the introduction of the notion of a relational
bisimulation on G in Section 4. It is proven by purely relational means that every
equivalence class of bisimilar graphs has a terminal representative.

In Section 5 we define the standard operations of process calculi as suitable functors
on this category. Thereby, the interleaving functor | : G X G — G corresponding to
the parallel composition of two processes is defined without any inductive methods
(e.g. using the expansion law [4]). Furthermore, we show that the transition rules
associated with each operation are satisfied.

We assume that the reader is familiar with basic notions of the theory of hetero-
geneous relation algebras and allegories (cf. [2, 5, 7]). We use the notation from

[5].

2 Heterogeneous Relation Algebras

In this section we recall some fundamentals on heterogeneous relation algebras.

Definition 2.1 A (heterogeneous abstract) relation algebra is a locally small cate-
gory R consisting of a class Objg of objects and a set R[A, B] of morphisms for all
A, B € Objg (we also use the notation R : A < B to indicate that R € R[A, B]).

The morphisms are usually called relations. Composition is denoted by “7 and

identities are denoted by 14 € R[A, A]. In addition, there is a totally defined unary
operation ~ 4p : R[A, B] — R[B, A] between the sets of morphisms, called conver-
sion. The operations satisfy the following rules:

1. Every set R[A, B] carries the structure of a complete atomic boolean algebra
with operations Uap,Map, ap, zero element 1 4p, universal element T 45,
and inclusion ordering C 4p.

2. The Schroder equivalences
Q;RCac S <= Q5Cpc R < SR Cup@Q
hold for relations QQ : A<+ B R: B+ C and S: A+ C.

3. The Tarski rule
R 7£ JLAB — —H—CA;R; —”—BD = —”—CD

holds for all R € R[A, B] and C,D € Objg.

All the indices of elements and operations are usually omitted for brevity and can
easily be reinvented.

One might ask for the greatest solution of @; X C R. Using the Schroder equiva-
lences one gets X = Q; R. This operation is called the right residual. By duality

one defines the left residual



Q\R := Q" R, S/T :=T;5".
A symmetric version of the residuals is the symmetric quotient
Q(Q. R) = Q\RM Q"/R".

By definition this relation is the greatest solution of the inclusions @J; X T R and
X;RFC Q"

As usual we define the concept of mappings.

Definition 2.2 A relation R € R[A, B] is called
1. univalent (or partial function) iff R"; R C Ip,
2. total off IyC R; R,
3. ingective iff R™ is univalent,
4. surjective iff R is total,
5. a mapping iff it is uniwalent and total.

We also use the notation f : A — B to indicate that f is a mapping in R[A, B].

If Q : A < B isunivalent the equation (RM.S;Q7); Q = R; Q115 is valid for suitable
R and §, and if @) is total we have Q); Tpe = T 4¢. A proof of these properties can
be found in [7].

Another important class of relations are equivalence relations.

Definition 2.3 A relation R € R[A, A] is called

(2NN

. reflexive iff [, C A,

2. symmetric iff R~ C R,
3. transitive iff R; RC R,
4. idempotent iff R; R = R,
5

. an equivalence relation iff it is reflexive, transitive and symmetric.

The reflexive and transitive closure R* of a relation R is defined as the least relation
containing R which is both reflexive and transitive. It may be computed by R* =
|| R where R' := R;...; R (i times).

€N

We now introduce the notion of unit objects which are the abstract version of sin-
gleton sets.



Definition 2.4 An object I is called a unit iff 1j is the greatest morphism in R[L, 1]
and for every object A there is at least one total morphism in R[AI]. R is called
unitary iff it has a unit.

The unit I may also be characterized as a terminal object in the subcategory of
mappings, and is, hence, unique up to isomorphism. Following the categorical notion
of elements, we define a point as follows.

Definition 2.5 A mapping v : 1 — A is called a point.

Omne might be interested in the set of all points included in an arbitrary relation. The
so-called point axiom guarantees that this set is not empty. It may be formulated
as follows:

Point Axiom: For every relation () # 1L there are two points x,y such that
iy EQ.
Notice, that the point axiom implies representability [6].

The relational description of pairing is the relational product [5, 7]. This construc-
tion corresponds to the categorical product in the subcategory of mappings.

Definition 2.6 An object A X B together with two relations m € R[A x B, A] and
p € R[A x B, B] is called a relational product of A and B iff

T =1y, pip =1,
7 5p = Tag, mm Np;p = laxs.

R has relational products iff for every pair of objects the relational product exists.

The relational product of two objects is unique (up to isomorphism) [10]. We use
the following notations

<P,Q>:=P;7 NQ;p, Rx S:=<m R, p; 5>,
whenever the projections exist. It is easy to see that
<P,Q>;<R,S> CP;RMNQ;S".

The validity of the converse inclusion is called the sharpness problem of relational
products. A set of sufficient conditions for sharpness can be found in [1]. Notice,
that sharpness implies the following equalities

<P,Q>(RxS)=<P;R,Q;5>,
(P x Q) (RxS5)=(P;RxQ;5).

However, if P is total we have

<P Q>p=P;n;pNQ=P;TNQ=0Q



and analogously < P,Q) >;m = P if @) is total.

The relational description of disjoint unions is the relational sum [5, 10]. This
construction corresponds to the categorical product!. Here we want to generalize
this concept to not necessarily finite sets of objects.

Definition 2.7 Let {A; | i € I} be a set of objects indexed by a set I. An object

> A; together with relations 1; € R[A;, > A;] for all j € I is called a relational sum
i€l i€l

of {A; |1 €1} iff for all i,7 € I with ¢ # j the following holds
bty = Lag, tisty = dLaa;, || =15 4
i€l el

R has relational sums iff for every set of objects the relational sum does exist.

For a set of two objects {A, B} this definition corresponds to usual the definition of
the relational sum. We use the following notations

\/P,’2:|_|Li;P,' g R,'::\/R,';L,',
el il el el

whenever the injections exist. In the binary case we also write ¢, k instead of ¢1, ¢o,

[P1, Py] instead of \/ P, and R; + R, instead of > R;. It is easy to verify that
ie{1,2} i€{1,2}

i Vies b = P, Lii D ier Bi = Ryiy,
(Vie[ Pi)§ Q = Vie[ P;Q, (Eie[ Ri)§ (Vie[ Pi) = Vie[ R, ;.

As known, categorical products and hence relational sums are unique up to iso-
morphism. Furthermore, every relation algebra may be embedded into one with
relational sums (cf. [2, 9]).

As in set theory, relational products distribute over arbitrary sums. The induced
isomorphism is defined by

distr 2:<\/7T,',Z,0,'> : ZA X B, — A X ZBi'
il el i€l i€l
We have the following property of distr
distr; (R X Z S:) = (Z R x S;); distr.

el el

Given a symmetric idempotent (also known as a partial equivalence relation) one
might consider the object of (existing) equivalence classes and the corresponding
partial function mapping each element to its equivalence class.

!By conversion, a relation algebra is self-dual. Therefore a product is also a coproduct and
hence a biproduct.



Definition 2.8 A relation S : A < A is called a split iff there is an object B and a
relation R : B < A such that

R,R=25, R; R =15.

It can be shown that the object B in the definition above is also unique up to
isomorphism (cf. [2, 9]).

3 Labelled Graphs

Throughout this paper let R be a unitary heterogeneous relation algebra with a
fixed object L from R such that the relational product L x A for every object A
exists?. Furthermore, we suppose that every symmetric idempotent is a split. As
shown in [2, 9], every relation algebra can be embedded into another one such that
the latter property holds.

In contrast to the synchronization tree approach, we model processes by labelled
graphs, also called transition graphs. For example, the recusive defined process

P =cb.a.P+ a.(b.0]c.0) may be modeled by the following graph.

We consider a labelled graph on a set of nodes Z as a relation from Z to L x Z.
To obtain a convenient category we will consider suitable transition preserving (re-
lational) homomorphisms [5].

Definition 3.1 The category G is defined as follows:

1. An object of G is a pair (G, w) consisting of a relation G : Z <» L X Z and a
point w: [ — Z. G = (G,w) is called a L-graph with root w over the state
space Z.

2. A morphism f: Gy — Gy is a mapping f : Zy — Zy in R such that
Gl?(]IL X f) L f;Gz and wl;f = wy.

f s called a homomorphism from Gy to G.

2This requirement gives us sharpness, but do not imply representability (cf. [1, 5]).



An easy verification shows that G is indeed a category.

In the category G a subobject describes a subgraph starting at the same root. To
model a transition P -~ P’ we are interested in subgraphs such that the new root
is successor of the original root.

Definition 3.2 Leta : I — L be a point. An injective morphism f from Gy : Z; +
LXZ1 tOGz:ZzHLXZz with

FiGy=Gri(Iy x f) and wy; f Cwy; Gy (a”ya x Iz);p

is called a transition (in resp. with a) f : Gy s Gy. We write Gy s G, if such a
morphism exists.

Notice, that a transition morphism is not a morphism of the category G (but of R).

Furthermore, the direction of arrows is reversed. Intuitively, G - G indicates
that Gy 1s an a-derivative of G;3. For example, the process P defined above may
reduce (by an a-action) to 0.0 | ¢.0. This situation is modeled by the following

a-transition f.
6/‘\.416.
e

9

-

Within a graph there may be an edge targetting at the root. For several purposes
we need to seperate the root from the rest of the graph in the sense that there are
no edges of this kind.

Definition 3.3 Suppose R has relational sums. Then the extension of a graph
G = (G,w) ext(G) = (ext(G), ext(w)) is defined by

1. ext(G) :=[w; G,G; Iy x k) : 1+ Z < L x (14 Z2),
2. ext(w):=c: 11+ 2.

In our example we gain the following graph.




In the next section we will show that G and ext(G) are bisimular. For the moment
we have to be satisfied with the following lemma.

Lemma 3.4 Letg: G, — Gy be a transition morphism. Then the mapping g; k : 73
— I+ Z, is a transition morphism from Gy to ext(Gz) with g; k;ext(wy)” = L.

Proof: Notice, that the composition of two injective mappings is a injective map-
ping again. The calculations
g ryext(Gy) = g; s [wa; Go, Gol; (I X &)
= ¢; G2 (I x k)
= Gi(Iexg); (I x &)
= Gui(lLxg;k)
and
W95 K L Wsy; G27 (a a X ]IZ2)7p7 K
= wyGo(a5ax1g); (I x k) p
= wy Gy (a5a X K);p
= wo; Gy; (]IL X /i)a (a ya X ]IZ2);10
= 4 [wZ; G27 GZ] (]IL X /i)' (av' a X ]IZ2); P
= ext(wz);ext(Gz);(a;a x 1z,);p

show that ¢; x is indeed a transition morphism. The required property follows from

g;kyext(wz) =gy =gy L= L. 0

4 Relational Bisimulation

An important class of equivalence relations on processes are strong bisimulations.
We are now going to establish a corresponding notion on G. First we modify the
definition of a covering [5] of two graphs. We want to allow a covering to iden-
tify two subgraphs which are identically labelled. This reflects the fact that the
corresponding processes are bisimular.

Definition 4.1 A surjective homomorphism f from Gy to Gy with
[ G2 E G (I x f)
s called a L-covering.

We write f : Gy 2 G, if f 1s a L-covering from G; to Go, G 2 @, if such a
morphism exists and Gy &~ G5 if there is a G3 such that G; = G5 and G; = Gs.

The next lemma is used several times throughout the paper. For this reason we do
not explicitly mention it in any case.



Lemma 4.2 Let be f: G = Gy. Then we have
156G E Gy (Ip x f7),

2. If f is injective then f~: Gy = Gi.
Proof:

1. The assertion follows from

[5G C G0 x fif)
556G (T x f); (T x f7)
= [5FiGy(Inx f)

= Gz?(]ILXfV)-

2. If f is injective the C in the proof of 1. is an equality and we have w,; f~ =
wi; fi f7 = wi. O

As mentioned in the last section there is a L-covering f from ext(G) to G. This
morphism identifies the new with the old root of the graph. In our example the
states at the top of the graph are mapped to the original root.

Lemma 4.3 ext(G) > G.

Proof: Consider the surjective mapping [w,Iz] : I+ Z — Z. Then we have

[, 17;G = [w;G,G]
= [w;G,G|(IL x Iy)

[w; G, G)(I}, X k;[w,Iz])

[w; G, G|(I x k); (I x [w,1z])
= ext(G); (I x [w,Iz])

and
ext(w); [w, 7] = ¢; [w, 7] = w. 0

The identification of subgraphs can be seen as a reduction process. In the next
lemma we show that this process is confluent. The required graph G, is just the
graph which is obtained from G; and the equivalence relation induced by the L-
coverings f : G 2 @G, and qg: Gy = Gs.

Lemma 4.4 If G, 2 Gy and Gy S Gs then there is a G4 such that Gy > Gy and
Gs = Gy.
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Proof: Suppose f : Gy = Gy and g : Gi = G5. Then the relation A := (f;fu
g;97)" is an equivalence relation on Z;. Futhermore, suppose R splits A. Then R~
is a surjective mapping. Define

Gy = R;Gi;(IxR),

wy = wp R,
h = fIR,
k = ¢g;R".

Then wy is a point because we have

wywy = Ryw;w R
C RR
= ]L

wyswy, = wi; R Rywy
= wy Ajwy
J wiw
a1 I

Now, we want to show that

(x)  R=Rif:if"
The first inclusion R C R; f; f7 1s given by the totality of f and the other one by

Rifsf =RR R fif =RiAfi f ERAA=RA=RR;R=R

Using (x) we conclude

h™sh = Rifif R

= R;R”

I,
; TSRS R f
fHAf
fif
I

>

>
¢

Il

L]

that h 1s a surjective mapping. The property wy; f = wy gives us wy C wy; f; [ =
wq; {7 and finaly

woih = wey [ R
U)l;RV

Wy.

L]
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The fact that both wy and wq; h are mappings shows that wy; h = wy. Again using
(%) we have

LGIx R) = fif5GuIx fifiR)
= [5G Ix fiIux f5R)
= 515 FG (I x fR)
= fiGu(Iux f5R)
= GuIox fiIox f5R)
= GiIx fif5R)
= Gu(ILx R)
and analogously ¢;¢7;G1; (I x R™) = G1; (I, x R7). This implies
AGi(Ix RY) = (fif Ugig )G (Ix R
= | (i ugg) G (Ix RY)
€N
= Gi;(IxR).
Finaly, the following computation shows that h is a L-covering
hiGy = f5RGRGi(Ix R
= f5AGE(IXR)
= fG;(IxR)
= [5G (Ix fi R
= fGuIx f);(ILx fR)
= [ fiGas(Ipx h)
= Gy (I x h).

The required properties of k are shown analogously. a

In the last lemma we have shown that the identification process of subgraphs is
confluent. Furthermore, as we will show this process is terminating. In the language
of categories this property is expressed by the existence of suitable terminal objects.

Given a graph G we denote with G the subcategory of G which objects are all
graphs G’ &~ GG and morphisms are L-coverings.

Theorem 4.5 The category Gg has a terminal object.

Proof: Let G: Z <+ L x Z be a graph. Consider the operation®

7(R) := (G\(I; x R); G")N(G; (I, x R)/G).

3The definition of this operation and its greatest fixpoint A was motivated by a simular definition

in [3].
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on R[Z, Z]. Obviously, 7 is monotonic (wrt. C) and hence has a greatest fixpoint A.
Notice that A is by definition the greatest relation X in R[Z, Z] with X C 7(X).
This and the universal properties of the residuals show that the inclusions G7; X C
(Ip x X);G7 and X;G C G; (I x X) are sufficient for X T A. Furthermore, if
X is symmetric these inclusions are equivalent and only one has to be mentioned.

Conversely, we have A C A such that A;G C G; (I x A) holds.

First, we want to show that A is an equivalence relation.

A 1s reflexive: Since [ is symmetric and I7; G C G holds we have I, C A.

A 1s transitive: We have

GG\ x A);G); (G\(I x A); G7)
(Iox A); G5 (G \(Ip x 4);G7)
(Ipx A); (I x A); G~

= (Ipox A;A);G.

;
C
C

This gives us

A;A = 7(A);T(A4)
(G x A); G); (G\(IL x A); G)
G\(Ip x A; A);G".

Analogously we compute A; A C G; (I x A; A)/G. Together we have A; A C
7(A; A) and hence A; A C A.

C
C

A i1s symmetric: For an abitrary relation R we have
7(R)” = (G\(Ipx R);G") N(G;(Ir x R)/G)”
(G5 (I x BY)/G) M (G\(IL x R7); G7)
= 7(R").
This implies A" = 7(A4)" = 7(A”) and hence A" C A.

Suppose R splits A. Then we define
Gi:= R;G; (I, x R),

we = w; R
By definition R™ is a surjective mapping. The computations
R:G, = R,R,G;(IpxR)
= A;G (I, xR
= G; (]IL X A), (]IL X Rv)
G; (I, x A, RY)
= G;(I;x R R;R)
G; (]IL X Rv)



13

and w; R” = wy show that R™ 1s a L-covering from G to Gg.

We need some technical properties of Gy for proving that this graph is a terminal
object in Gg. First, consider the operation 7 simular to 7 on R[Z;, Z;] defined by

i(R) = (G x R); &) N (G (I x R)[Gy)

and its greatest fixpoint A;. As above A; is an equivalence relation. We want to show
that A; = Iz holds. Notice, that we have Ay; Gy C Gy; (I, x A¢). The computation

RA:R,G = R:;A;R;:R;R;G
= R;AGR A G

C RGA; R G (I x A)

= R5AGR; G (I x RY); (I x R)
= R A Gy (In x R)

C R:Gy (I x Ay (In x R)

— RR.G:(Ipx R); (I x Ag R)
= AGi(Ipx B AGR)

C G;(Ip,x A);(I,x R A; R)

= G;(I,x AR A;; R)
= G;(I;x R;R;R"; A; R)
G; (I, x R™; Ay R)

and the symmetry of R™; Ay; R gives us R7; Ai; R C A. We follow
A=R;R;A;R,RRCR,AR =R;,R;R;R =1,
and hence A; =1z,

Suppose g : G 5 G,. Using Lemma 4.2 we have

Rig;Ge = R;G;(Ipxg)

Gi; (Ip x R); (I, x g)

Gy (Iz X R; g),

GiRig = (¢ R5G)”

(973G (I x RY))”

(Gt (]IL x g ); (I x R7))”
(I, x R;9);G,.

[

I

This implies R;g C A = Iz and hence ¢ C A;9g = R, R; g = R™. Since g and R~
are mappings they are equal. This shows that R~ is the unique L-covering from G

to Gt.

Suppose G &~ G'. Then there is a graph G” and L-coverings h,k with h : G = G”
and k : G' = G". First, we want to show that R;h;h” = R. The computation

hih™3G T hih7 Gy (I x by h7)
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= hyh G (Ipx h);(Ipx A7)
= kR R G (I xR

= kG5 (I xR

= G;(Ipx h); (I x h7)

= G;(Ipxh;h7)

shows that ~;h” £ A. This implies our assertition by

Rih:h  CRiA=R,R;R=RLC R;I;h".

~
~

Now, we are ready to prove that k;h7; R™: G' = G, as follows

(k;h R ksh 3 R = Ryhkskyh 3 R
= R;h;h ;R
R; R
Iz,
kih™: R Ry hy k™
kih™ hi k™
ki k™
Iz,
k™ Gy (I x RY)
= kh ;G (I x h;h3RY)
= kh ;G (Ipx h);(Ipx h RY)
= kh7 G (I x B RY)
k;G"; (I, x ™3 RY)
G (I x ks A7 RY),
w’ h R
w; R™

Wy.

k™ R (kshs RY)S

| A I

kih™; R G,

w'i ki b R

L]

Suppose [ : G" 5 G,. First, we want to show that k; k1 = I. The symmetry of
[7 k; k751 and

Uik k51 Gy I ks K7 G5 (T x D)
[Tk G (I x k750)
IG5 (I x k3 k750)
Ge; (I x [T ks k5 0)

I

I

implies [7; k; k731 £ Ay = Iz, This gives us

BRI LT BRI IE b k5L
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By using this property a computation simular to the one above shows that h; k™1
is a L-covering from G to G¢. We conclude h; k7l = R™ and
kih s R =Fk:h ikl =k k50 =1.

This implies that G¢ is indeed a terminal object in G¢. O

In contrast to the tree approach this terminal object can be taken as a canonical
representation of its equivalence class.

The following theorem shows that G provides convenient models for processes.

Theorem 4.6 If the point-axiom is valid, then the relation = is a strong bisimula-

tion with respect to .

Given G; ~ G5 and G — (1 the idea of the proof is reflected by the following
diagram:

G, ~ G ~ G,

G G ~ G

~
~o ~o

The existence of G, and G} is guaranteed by the following lemma.

Lemma 4.7 1. If Gy s G, and G, 5 G5 then there is a G such that G = G,
and G = Gs;

2. IfG, 3 G5, Gy - G5 and the point-axiom is valid then there is a G such
that G, = Gy and G, = G,

Proof:

1. Suppose f is a a-transition from G to G; and g is a L-covering from G to
G3. Then the relation A := ¢7; f7; f; g is partial identity on Z5. Suppose that
h splits A. Then h is a injective mapping and we define G% := h; Gs; (I, x h7)
and wh = wy; f;9; k7. From

wyiwy = wis fr9;h7 g7 el

wii fig: A [ wg

wi f595975 f 5 f 95975 f w0

wi; £33 f5 f T w)

Wy ; Wy

I
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L]

Iy,
/v- / —_
Wy ;W3 —

C k™
=1

hyg™s friwyswes frgih”

we conclude that wj is a point and hence G5 a L-graph. Next, we want to

show that h; Gs = h; Gs; (I, x A) holds. First we have
LigA=Ffa95f g5 F9=1g,

and f;g; A C f;¢g. Furthermore, we get

L hiGs = A;Gs

= ¢g:f:fi9:Gs
= ¢ f5 ;G (Ipxg)
= ¢ fG:ILx fig)

which gives us h; Gz = h; L7 0 Gs = hy g7 [T G

h; Gs; (I, x A) =

13 (Ip % fig). Together we aim

hig f5 G (Inx frg; A)

= hgs G A% fig)

Now, the computation

Gy (I x h) =

hy Gs; (I, x h7); (I, x h)

= h;Gs; (I x h75h)
= h;Gs; (I x A)

h; Gs,
waih =
wy; f59; A
wys i g

1

wh; fi9:h75h

wy; Gy (a5a x 1) pyg

wy; Gr;(a5a x 1) (Ix g);p
wy; Gy (a5a X g);p

wy; G (Ix g);(a5a x D);p

= wi39;Gs;(asaxI)p

= ws; Gi(a5a xT)p

shows that h is a a-transition.

To see that G 5 G define k := f; ¢;h”. By the definition of w} the equation
whsk = wy; fig;h” = w} holds. The computations

Kk =

higs f5 figih”
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= h AL

iR~ hy b
I
k™ = fighshgs f
fig95F 5995 F
LS hF
I
Figih75 hy G (I x )
f19; A Gs; (I x A7)
= f19:G5 (I x 1)
= fiGy;(Ip x g; 1)
= G x figh)
= G (I x k)

L]

k; G

gives us the assertation.

2. Suppose f is a L-covering from G to Gs, and ¢ is a a-transition from G4
to Gs. Then the relation A := f;¢97;¢9; f M1z is a partial identity on Z,.
Suppose h splits A and define

G/2 = h, Gz, (]IL X hv),
w’2 as a point contained in wé; fiq,

k:=h;fig.

Here the point axiom is used to obtain the root w). In general, the relation
w4 f3 ¢ is not univalent. Simular to point 1. it is shown that /4 is a a-transition
from G to Gy and k is a L-covering from G to GY. O

5 G as a Model of Processes

Now, we want to define functors corresponding to the standard operations of CCS.
Furthermore, we show that every transition rule associated with each operation is

fulfilled.

Definition 5.1 Suppose R has relational sums, and let a : 1 — L be a point. The
prefizing functor P, : G — G is defined by

1. P(G):=[<a,w>Gl;(Ipxk): I+ Z < L x(1+ 2),
2. Py(w):=0:1—1+Z,

3. Pa(f) = ]II—I- f,
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forG:Z < Lx Z,w:1— Z and homomorphism f.

The transition rule associated with the prefixing is just the simple axiom

a.P 25 P
P,(G) is, by definition, the graph containing a new root and exactly one transition
from this new root to old one via the label a.

Lemma 5.2 P, is a functor such that G s P.(G).

Proof: Let f be a homomorphism from Gy : Zy « L X Zy to Gy : Zy < L X Z,,
and (I4+ Zy,01, k1) respectively (I 4 Za, 12, k2) be relational sums. Then we have

Pa(w1)§ Pa(f) = l1; (]II‘|‘ f) =l = Pa(w2)7

and from
Pu(G): (L x Pal ) = [<aswn >, Gli (I x w1): (L x Palf))
= [<a,wy>,G]; (Ip x k1; (L1 + f))
= [<a,wy>,Gi]; (I X f;K2)

= [<a,wy>,G]; (Ir x f); (In X K2)
[<a,wy>; (I x f), Gy (I x f)]; (I X k)
[<a,wy; f>,Gr; (I x f)]; (I X k2)

= [<a,wy>, Gy (In x f)]; (I X K2)
[<a,wy>, f; Gal; (I X k)

= (It+ f);[<a,wy>, Ga; (I, X K2)

= Fu(f); Pu(Ga)

we conclude that P,(f) is a homomorphism between P,(G;) and P,(G2). The other
properties of a functor are easely verified and therefore omitted.

I

Obviously, k : Z — I+ Z is injective. Furthermore, we have
/Ry Po(G) = Ky [<a,w>,Gl; (I x k) = G; (I, x &)
and

Po(w); Pu(G)i(asaxI);p = yl<a,w>, Gl (Ix k)i (asa xI)ip
= <a,w>;(Ixk);(a;axD)p
= <a,w>;(aja X K);p
= <a;a;a,w;K>;p
= <a,W;K>;p

= wW;kK.
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Hence, k is the required transition morphism. a

Relabelling and hiding are simular operations, i.e., hiding is a relabelling with a
partial identity. This implies that both operations can be described by a common
class of functors.

Definition 5.3 Letl: L + L be univalent. Then the functor F;: G — G is defined
by

1. Fi(G):=G; (I x1y),

w

e

2. Fi(w):
3. Fl(f) .

Y

forG:Z < Lx Z,w:1— Z and homomorphism f.

Given a relabelling function f and a set £ of labels, the corresponding transition

rules are
p % pr P2 P
i T a L
P(f 1 Py P\L = P\L

The second rule indicates that hiding has to be interpreted by Fj; where [ is the
partial identity induced by L.

Lemma 5.4 Fj is a functor such that

a a;l
1. if 1 is total then Gy — Gy implies Fi(G1) — Fi(G2),

2. if | T 1y, then Gy s Gy and a”;a Tl = 1L implies Fj(Gy) s Fri(G3).

Proof: Let f be a homomorphism from Gy : Z; ++ L X Z; to Gy : Zy < L X Z,.
Then we have

Fi(w); f = wi; f = 1wy = Fi(ws)

and from

F(G1); (I x Fi(f)) = F(G); (I % f)

G (I x Iz ); (I x f)
Gr; (Ix f)

Gus (I x £); (I X 1z,)
fiGa; (1 x 1 z,)
Ei(f); Fi(Go)

we conclude that Fi(f) is a homomorphism between Fj(G;) and Fj(G3). The other

properties of a functor are trivial.

I [



1. Suppose [ is total and ¢ : Gy — G3. Then we have

9 Fi(Ga) = g;Ga; (1 x 1)
= G (I x g); (1 x 1z,)
= Gi;(Ixg)
= G1;(I x1z);(ILxg)
= F(Gi)g

From the computation

F(wi);g = wig
C wyGos(asaxlyz)p
C wy Goy (I x Ig); (" x1g);(a5a x1g);p
= F(ws); Fi(Gq); (ITa5a x I g,);p
= F(w2); Fi(Ga); (5 (a3 1) a5 Mpip7)s p
= F(w2); Fi(Ga); (75 (a;1) 505 T M p)
= Fi(wy); Fi(Ge); (m;(a;1) a3, T M p)
= Fi(wy); F(Ga); (s (a; )5 a5 lm Mops p7)s p
= F(ws); Fi(Ga); ((a;1)5a;1 x Ig,);p

we conclude g : Fi(Gy) >a—l> F(Gy).

2. Suppose | C 1,9 : Gy - Gy and ¢ ;a1 = 1. Analogously to 1., we have
9; Fiu(G2) = Fy(Gh); g Using

a;alNl=1 & a;allC L
s ahal Lul=1
= aaCINI;.

and the inclusion? a C a;a”; a we conclude from

Finﬂ(w1)§g w1 g

we; Ga; (a5a x 1 g,);p

IR

we; Gy (asasa75a x Lz, p

I

w27G27 ( ]IL) X ]IZ2) (a a X ]IZ2) P
ll‘l]I(w2 ) ( ) (a ;a X ]IZ2)7107

(a”
(a”
we; Ga; (a5a x I g);(a5a x1g,);p
(
)i B

that g : B y(Gy) > Fiy(Go). O

4This formula is valid for all relations. A proof can be found [2, 5, 7, 9]
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The sum operation of CCS is defined for arbitary sets [ of processes. In our frame-
work a set of objects (resp. morphisms) of G is represented by a function from a set
I to the objects (resp. morphisms) of G. The obvious definition of composition and
the identities turns this structure into a category Gf. We call this category the I’s
power of G. For simplicity we use a tuple-like notation (..., G,,...).

Definition 5.5 Suppose R has relational sums, and let I be a set. The functor
Sr: Gl — G is defined by

1. Si(...,Giy. ) i= Ry (O] ext(G,)); distr; (I, x R7),

el

2. 51(. . w0 = (R V ext(w;)7)7,
el

3. S[( ey Jige ) = R; (E ]II—I- fl), R/v,
el

where R:C < Y 1+ Z; resp. R': C' & > I+ Z! splits the equivalence relation

i€l i€l
Si= (| ] iextw)ext(w;); ) UTx 1y,
ijel el
resp. S':= ( |_| vy ext(w;) s ext(w)); o) U sz
ijel el

The sum of a set of graphs is, roughly, given by the disjoint union of the graphs and
identifying all roots. Associated with the sum operation is the following transition

rule

S PP
el

Lemma 5.6 Sy is a functor such that G! G implies G, — Si(e.. Gyl ).

Proof: Notice, that R is total and surjective, and hence Si(..., fi,...) is total.
Furthermore, we have®

5;(Zﬂl+fi)

el

= (|| arext(wi)ext(w;)i;) UIx10z): (O Li+ fi)
ijel el el

= (1] extlen)extluw,)i)s (S L+ f) U S L+
ijel el el

>Notice, that different occurrences of ¢ may point to different injections, i.e., first injections to
relational sums with different second component.
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= | aextlwi) s ext(w;); (It )50 ) T+ fi

n,3€l el
= || arext(w) s (Tt £ 0 ) Tit fi
n,3€l el
= |_| ext(w;)” LJI_IZ]II—I—f
17]61 lEI
= |_| o] yext(w;) s ext(w’); ¢ U Z]II + fi
n,3€l el
= |_|L 7y ext(w L]LIZ]II—I—f
17]61 lEI
= UL;;(]II—I-]C)L ext(w LJI_IZ]II—I—f
n,3€l el
= |_| o (I fi); ext(w!) ™ ext(w!); e U Z I+ f;
n,3€l el
= O _ T+ fi)i (| s extuwf) s ext(w)); ) U Y Tit fi
il ijel icl
= (Z L+ £:); 5"
el

We refer to the last property by (*). Using (%) we conclude

S[(..., ,’,...)V;S[(..., ,,)
= RO _Li+f) R R () I+ fi); R”

el el
= RO L+ £SO Lt fi); R”
el el
= RO _Li+ ;O i+ fi); S R”
el el
R'; 5" R”
_ R';R™;R'; R”
= I
that Sy(..., fi,...) is a mapping. Furthermore, we have
() ext(Gi); (Y T x (Ii+ fi))
1€l el
= ) ext(G))i (I x (Ii+ fi)
el
= Y lwi Giy Gil; (T x w); (L x (T + £i))
el

= Z[wi; G, Gils (I, x s (It + £2))

el



- Z;[w,»; Gi, Gil; (I x fi; k)
= i[wz; Gi, Gil; (I x fi); (I X &)
- i[wi; Gis (I x fi), Gis (I, x fi); (I x k)
C Ze;[wz;fz; G, fi: Gl (I x )
ic

= Y Wi G, fi G (I x k)

= Z(]II—I—f) [wl; G, G (I X k)
= Z(H1+fz);ext(G§)
= (ZH1+ fi);(ZeXt(Gi»))-

Using the last property and (*) we get

5}(...,(;“...);(HL X 5}(..., “...))
= R; (Z ext(G;)); distr; (I, x R7); (I x R; (Z I+ fi); R™)
i€l i€l
= R; (Z ext(G,;)); distr; (I, x R™; R; (Z Ii+ f); R7)
i€l i€l

= R; (Z ext(G,;)); distr; (I, x S; (Z I+ fi); R")

el el

= R; (Z ext(G;)); distr; (I, x (Z I+ £,); 8" R™)
iel i€l

= R; (Z ext(G;)); distr; (I, x (Z Ii+ fi); R R, R™)
el el

= R; (Z ext(G;)); distr; (I, x (Z I+ fi); R™)
el el

= R;(Zext Z]ILX (It + f;)); distr; (I, x R™)
1€l el

C Z I+ fi); Zext( 9)); distr; (I, x R™)
el el

C R; (Z Ii+ fi); R R (Z ext(G1)); distr; (I, x R™)
iel i€l

== 5}(..., i,...);S}(...,(?;...).

23
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The other properties of a functor are trivial. Suppose h : G! — G,;.

g: G — ext(G,;) such that g;ext(w;)” = L. The computations

(g;t: R) 59505 R

R;u5975 950 R

C Ry R
C RR
= I,
g R (950 R = gy RG R 0597
= g9
2 gt g
= ;9
J Iz

Then there is

show that g;¢;; R” is a mapping. Using the fact that g;ext(w;)” = L we have

gt RS0
R; (Z ext(G,;)); distr; (I, X R7)

= g R

Gy )

el

= g;4;;8; (Z ext(G,;)); distr; (I, x R”)

= g ]

i,5€l

el

iel el

vy ext(w;) s ext(w;); ) Uls 7,); (Z ext(G,;)); distr; (I, X R7)

= g¢; ((|_| ext(w;) 7 ext(w;); ;) U ) (Z ext(G,;)); distr; (I, x R7)

jel

el

= ((| ] grext(wi)sext(w;); ;) U gie); (> ext(Gi)); distr; (I x RY)

jel

el

= g (Z ext(G,;)); distr; (I, X R7)
el

= g;ext(G,); ¢ distr; (Ip x RY)

= G5 (I x g); 0; distr; (I, x R7)

= G (Ipxg);(Inxu);(Ipx R

= G5 (I xg;u; R).

By computing

I . L. ~
wiagablaR E

ext(w;); ext(G;); (a5a x 1g); p; s R
ext(w,),ext(G,),(a axz);(Ipxu;R);p
ext(w;);ext(G;); (a5a X ;3 R)5p
ext(w;); ext(G;); (I X ¢;);(a5a X R7)5p
ext(w;); ext(G;); i distr; (a5 X R7);p
ext(w;); ext(Gy); v distr; (I, x RY);(a5a x Iy z,)5p

i€l
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C (| ] ext(wi); ext(Gy); ) distr; (I x R); (a75a x Ty 2,);p

i€l el
= (\/ ext(Gy) sext(w;)”) s distr; (I, x RY);(a5a xIsz)ip
iel el
= ((Z ext(G;)7); (\/ ext(w;)”)) s distr; (Ir x R7);(a5a x Isz)5p
i€l i€l el
= (\ext(w))3 (O ext(Gi) )i distr; (I x R); (a0 x Iy z)ip
iel iel el
C (\/ext(wi))38; (D ext(Gi)); distr; (I x R); (¢73a x Ty 7);p
i€l i€l el
= (B; \/ ext(wi)); B; (Y ext(Gy)); distr; (T, x BY); (a7 x Ty z);p
i€l i€l el
= Si(. w810 LGy (asa x Iy z)ip
i€l
we conclude that ¢;¢;; R is a transition morphism from G, to S(...,G;,...). O

Notice, that using just G; instead of ext(G;) does not give an adequate definition
of the sum operation. Consider the processes Py = a.P; and P, = b.0. They are
modeled by the graphs:

G G
ol

Not using the extension of Gy and G5 we would gain the following graph.

O

This graph seen as a process may produce the stream ab, which is not in the be-

haviour of P, + Ps.

Last but not least we define the interleaving functor.

Definition 5.7 Suppose R has relational products. Then the interleaving functor
| : G X G — G is defined by

1. Gi | Gy = (m; Gy (I x n) M p; pTsp7 ) U (w7 p7 M p; Gos (I X p7)) a relation
mn R[Zl X ZQ,L X (Zl X Zz)],

2. wy | wy =< wy,wy >,
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8. filf2:=f x fa,

for Gy : Zy & L X Z1,Gy : Zy & L X Zy and a homomorphism f.

By definition the state space of Gy | G; is the product Z; x Z,. The next picture
shows an example of the interleaving of two graphs.

G G Gi | Gy

, Id
C

The transition rule associated with interleaving is
PP Q— Q'
PlQ—P|Q PlQ-—=P|Q

The commutativity of relational products implies that our definition of the inter-
leaving lead to a commutative functor. Therefore, it is sufficient to consider the first

rule.

Lemma 5.8 | is a functor such that Gy s Gy implies Gy | G s Gy | Gs.

Proof: We only show the second assertion. Suppose f: G, - G3. Then we have

(f x1z); (G2 | Gs)
= (f xIz); ((m; G (I x 7)) Mpspp7) U (mim s p7 M ps G (I x p7)
= (f xIz);(m; G (Iox a) Mpsp7sp ) U(f x Lz); (mmsp M p; Gs; (I x p7)
(75 f5Go; (L x 7)) Mops pTsp ) U (s f5m 5 p7 M p; G (I X 7))
(M G (I x f);(Texa)MpspTsp ) U(ms fimp Mpy Gsy (I X p7))
= (MG x fim ) Npspp ) U(m fimsp TMpsGa; (I x p))
= (m G (Lo x 75 (f X Iz)) Npip7s (f X Lz)ip7)
U(m; w75 (f x Dz )ip M ps Gas (L X p75 (f X 1))
= (m G (T x ) (L x (f x Xz,)) MpipTsp7s (L x (f x 1z,)))
U(ms 7775 (I x (f x 1z,)) T p; Gs; (I x p7); (I x (f % 1z,)))
= ((m Gy x ) Mpipp); (I x (f x1z))
U(ms 7 p T ps Gas (Ip x p7)); (I x (f % 1z,))
= ((m Gy (I xa ) Mpipp ) U(mmsp MpsGsy (I x p7))); (I x (f X 1z,))
= (G1 ] Gs); (I x (f x 1z)).
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Since (a™;a x Iz,) is a partial identity and hence (a™;a X Iz,); p univalent the com-
putation

| w3)7 (f X ]IZ?,)
<wy,ws>; (f X 1gz,)
<wy; f,ws>

(w

—_

C <wy; Gai(asax1z,);p,ws>

= wy;Gys(asa X Tg,);p3m Mws;p

= wy; Gy (aia x 1) (Ip X 7)) pMws; p”

= wo; Gy (I x 77);(a5a x Iz,);p Mwg; p-

= (wy; Gos (I x m7) Mwgs psp7 (a5a x Lz,)); (a5a x Ig);p

C (wy; Gos (I x 7)) Mawss p75p7 )5 (a5 a X D z,)5 p

T ((wa; G (Ix 7)) Mwgs psp7) U (wa; 5 p7 Maws; G (I p7)))
(aa X Iz,uz)ip

= (<wy,ws>; (MG (Ix 77 ) Mp;p s p U <wayws>;(mym 5p Mp; Gs; (Ix p7)))
s(aa x Izxz, )i p

= <wyws>; (MG (I x 7)) Mpspsp ) U (w50 Mp;Gs; (I x p7)))
(aa X Iz,uz)ip

= (wa | w3); (G2 | G3);(a”a x Uzynz,);p

shows that f | I, is a a-transition. O

We have not introduced a notion of communication. As usual this can be done by
splitting L into L; + L, 4 I of input resp. output labels and a distinguished symbol
T.

6 Conclusion

We established a categorical model of process calculi based on abstract relation
algebra. The main advantage of this approach is the existence of a canonical repre-
sentation of an equivalance class by its terminal object.

Considering concrete relations, the representative of the interpretation of a process
built up by finite summation (but arbitrary recursion) is a finite graph. The equality
(up to isomorphism) of finite graphs is decidable and thus implies the decidability
of strong bisimulation of such processes. This result corresponds to the theory of
finite state machines. But notice, that our graphs are not necessarily finite. As
an example consider the graph Sy(Po(), P1(0), P2(0)...) where 0,1,2,... are the

points induced by the natural numbers.
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