
Relation Algebras are Matrix Algebrasover a Suitable BasisMichael WinterDepartment of Computer ScienceUniversity of the Federal Armed Forces Munich85577 Neubiberg, Germanyemail: thrash@informatik.unibw-muenchen.deAbstractGiven a heterogeneous relation algebraR, it is well-known that the algebraof matrices with coe�cients from R is a relation algebra with (not necessarily�nite) relational sums. In this paper we want to show that under slightlystronger assumptions the other implication is also true. Every relation algebraR with relational sums and subobjects is equivalent to an algebra of matricesover a suitable basis. This basis is the full subalgebra B induced by theintegral objects of R. Integral objects may be characterized by their identitymorphisms. Furthermore, we show that this representation is not a trivial onesince B is always a proper subalgebra of R. Last but not least, we reprovethat every relation algebra may be embedded into a product of simple algebrasusing our concept of a basis.1 IntroductionUnder certain circumstances, i.e. relational products exist or the point axiom isgiven, a relation algebra may be represented in the algebra Rel of concrete binaryrelations between sets. In other words, the algebra may be seen as an algebra ofboolean matrices.As known, not every relation algebra is representable and therefore is not an algebraof boolean matrices. In this paper, we want to show that in every relation algebra Rwith relational sums and subobjects it is possible to characterize a full1 subalgebraB such that the matrix algebra B+ with coe�cients from B is equivalent to R. Thisequivalence is not necessarily an isomorphism since isomorphic objects from R maybe identi�ed under this equivalence. The objects of B are the integral objects ofR. Integral objects are characterized by the fact that their identity morphism is anatom. We call B the basis of R.1in the sense of category theory 1



2As shown in [5], every relation algebra may be embedded into one with relationalsums and subobjects and hence into one which is equivalent to a matrix algebra.This embedding and the equivalence above is not a trivial one. We show that B isnever isomorphic or equivalent to R and hence, a proper subalgebra of R.Furthermore, we use our concept to reprove that every relation algebra may beembedded into a product of simple algebras.The rest of the paper is organized as follows. In Section 2, we brie
y recall some basicde�nitions of the theory of heterogeneous relation algebras. Section 3 is dedicated tomatrix algebras with coe�cients from a given relation algebra. The integral objectsand the basis are introduced in Section 4. Afterwards in Section 5 we prove our maintheorem, i.e. a pseudo-representation theorem for heterogeneous relation algebras.Finally, in Section 6 we reprove the theorem mentioned above.We assume that the reader is familiar with the basic concepts of category theoryand the theory of heterogeneous relation algebras. We use the notation of [3].2 Heterogeneous Relation AlgebrasIn this section we recall some fundamentals on heterogeneous relation algebras. Forfurther details we refer to [1, 2, 3].De�nition 2.1 A (heterogeneous abstract) relation algebra is a locally small cate-gory R consisting of a class ObjR of objects and a set R[A;B] of morphisms for allA;B 2 ObjR. The morphisms are usually called relations. Composition is denotedby \;" and identities are denoted by IA 2 R[A;A]. In addition, there is a totallyde�ned unary operation ÀB : R[A;B] �! R[B;A] between the sets of morphisms,called conversion. The operations satisfy the following rules:1. Every set R[A;B] carries the structure of a complete atomic boolean algebrawith operations tAB;uAB; AB, zero element ??AB, universal element >>AB,and inclusion ordering vAB.2. The Schr�oder equivalencesQ;R vAC S () Q`;S vBC R () S;R` vAB Qhold for relations Q;R and S (where the de�nedness of one of the three for-mulae implies that of the other two).All the indices of elements and operations are usually omitted for brevity and caneasily be reinvented. 2In the next lemma we collect some properties we will need throughout this paper.A proof may be found in [1, 2, 3, 4, 5, 6].



3Lemma 2.2 Let R be a relation algebra, A;B objects of R and Q 2 R[A;B]. Thenwe have1. Q v Q;Q`;Q,2. >>AA;>>AB = >>AB,3. >>AB;>>BB = >>AB,4. >>AB;>>BA;>>AB = >>AB. 2An important class of relations are the mappings.De�nition 2.3 Let Q 2 R[A;B] be a relation.1. Q is called univalent i� Q`;Q v IB,2. Q is called total i� IA v Q;Q` or equivalent Q;>>BA = >>AA,3. Q is called a map i� Q is univalent and total. 2In the next lemma we collect two fundamental facts about univalent relations. Aproof may be found in [1, 2, 3, 4, 5, 6].Lemma 2.4 Let Q 2 R[A;B] be univalent and R;S 2 R[B;C]. Then we have1. Q; (R u S) = Q;R uQ;S,2. If Q is further total and hence a mapping then Q;R = Q;R. 2We de�ne the notion of a homomorphism between relation algebras as usual.De�nition 2.5 Let R and S be relation algebras and F : R ! S a functor. ThenF is called a homomorphism between relation algebras i�1. F (i2I Si) = i2I F (Si),2. F (R) = F (R),3. F (R`) = F (R)`,hold for all relations R;Si with i 2 I. 2



4A pair of homomorphisms F : R ! S; G : S ! R is called an equivalence i� F �Gand G�F are naturally isomorphic to the identity functors, e.g. F and G are inverseof each other up to isomorphism.The relational description of disjoint unions is the relational sum [3, 6]. This con-struction corresponds to the categorical product2. Here we want to generalize thisconcept to not necessarily �nite sets of objects.De�nition 2.6 Let fAi j i 2 Ig be a set of objects indexed by a set I. An objectPi2IAi together with relations �j 2 R[Aj;Pi2IAi] for all j 2 I is called a relational sumof fAi j i 2 Ig i� for all i; j 2 I with i 6= j the following holds�i; �ì = IAi; �i; �j̀ = ??AiAj ; Gi2I �ì ; �i = IPi2IAi :R has relational sums i� for every set of objects the relational sum does exist. 2For a set of two objects fA;Bg this de�nition corresponds to usual de�nition of therelational sum. As known categorical products and hence relational sums are uniqueup to isomorphism.For given sets of relations Qi 2 R[Ai; C] and Ri 2 R[Ai; Bi] for all i 2 I andrelational sums (Pi2IAi; �i)i2I and (Pi2IBi; �i)i2I we use the notaion_i2IQi :=Gi2I �ì ;Ri Xi2I Ri :=_i2I Ri; �0i =Gi2I �ì ;Ri; �0i:Wi2IQi is the biproduct morphism, i.e. it is the unique relation S such that �i;S = Qkfor all i 2 I.Lemma 2.7 Let Pi2IAi be the relational sum of fAi j i 2 Ig and Pj2JBj be therelational sum of fBj j j 2 Jg. Then for all Rij 2 R[Ai; Bj ] the following holds1. Fi2I;j2J �ì ;Rij ; �j = Fi2I;j2J �ì ;Rij; �j ,2. �k̀1 ;Rk1l1; �l1 u �k̀2 ;Rk2l2; �l2 = ??Pi2IAi Pj2JBj for all k1; k2 2 I; l1; l2 2 J withk1 6= k2 or l1 6= l2.Proof:2By conversion, a relation algebra is self-dual. Therefore, a product is also a coproduct andhence a biproduct.



51. By Lemma 2.4 we have�k; Gi2I;j2J �ì ;Rij; �j = Gi2I;j2J �k; �ì ;Rij; �j= Gj2J �k; �k̀ ;Rkj; �j= Gj2J Rkj; �jfor all k 2 I. By the uniqueness of the biproduct morphism we getGi2I �ì ;Gj2J Rij; �j =_i2IGj2JRij; �j = Gi2I;j2J �ì ;Rij; �j:Analogously, we conclude from�l;Gj2J �j̀ ;Rìj = Gj2J �l; �j̀ ;Rìj= �l; �l̀ ;Rìl= Rìl= Ril`by the uniqueness of the biproduct morphismGj2J Rij; �j = (Gj2J �j̀ ;Rij`)` = (_j2J Rij`)` = Gj2J �j̀ ;Rìj` =Gj2J Rij; �jand hence Gi2I;j2J �ì ;Rij; �j = Gi2I �ì ;Gj2JRij ; �j= Gi2I �ì ;Gj2JRij ; �j= Gi2I;j2J �ì ;Rij; �j :2. Suppose k1 6= k2. Then by Lemma 2.4 we have�k̀1 ;Rk1l1; �l1 u �k̀2 ;Rk2l2; �l2 = (Gi2I �ì ; �i); (�k̀1;Rk1l1; �l1 u �k̀2 ;Rk2l2; �l2)= Gi2I �ì ; �i; (�k̀1;Rk1l1; �l1 u �k̀2 ;Rk2l2; �l2)= Gi2I �ì ; (�i; �k̀1;Rk1l1; �l1 u �i; �k̀2;Rk2l2; �l2)= Gi2I �ì ;??Ai Pj2JBj= ??Pi2IAi Pj2JBj :



6 The case l1 6= l2 is shown analogously. 2Subsets may be represented in two di�erent ways inside a relation algebra; by vectors(a relation v such that v = >>; v) or partial identities (a relation l v I). These twoconcepts are equivalent and may be used to characterize subobjects.De�nition 2.8 Let l 2 R[A;A] be a partial identity. An object B together with arelation  2 R[B;A] is called subobject of A induced by l i� ; ` = IB;  `; = l:A relation algebra has subobjects i� for all partial identities a subobject exists. 2Notice, that we have Q;R = Q uR for all partial identities Q and R (see [1, 4]).3 Matrix AlgebrasGiven a heterogeneous relation algebra R, an algebra of matrices with coe�cientsfrom R may be de�ned.De�nition 3.1 Let R be a relation algebra. The algebra R+ of matrices with coef-�cients from R is de�ned by:1. The class of objects of R+ is the collection of all functions from an arbitraryset I to ObjR.2. For every pair f : I ! ObjR; g : J ! ObjR of objects from R+, the set ofmorphisms R+[f; g] is the set of all functions R : I � J ! MorR such thatR(i; j) 2 R[f(i); g(j)] holds.3. For R 2 R+[f; g] and S 2 R+[g; h] composition is de�ned by(R;S)(i; k) :=Gj2JR(i; j);S(j; k):4. For R 2 R+[f; g] conversion and negation is de�ned byR`(j; i) := (R(i; j))`; R(i; j) := R(i; j):5. For R;S 2 R+[f; g] union and intersection is de�ned by(R t S)(i; j) := R(i; j) t S(i; j); (R u S)(i; j) := R(i; j) u S(i; j):



76. The identity, zero and universal elements are de�ned byIf(i1; i2) := � ??f(i1)f(i2) : i1 6= i2If(i1) : i1 = i2;??fg(i; j) := ??f(i)g(j); >>fg(i; j) := >>f(i)g(j): 2Obviously, a morphism inR+ may be seen as a (in general non-�nite) matrix indexedby objects from R. The proof of the following result is an easy exercise and is,therefore, omitted.Lemma 3.2 R+ is a relation algebra. 2Furthermore, the possibility to build disjoint unions of arbitrary sets indexed by aset gives us the following.Lemma 3.3 R+ has relational sums. 2Proof: Let ffi : Ji ! ObjR j i 2 Ig be a set of objects of R+. Then the functionh : Pi2I Ji ! ObjR de�ned by h(j) := fi(j) i� j 2 Ji is also an object of R+. Now,we de�ne �i(j1; j2) := � ??fi(j1)h(j2) : j1 6= j2If(j1) : j1 = j2:An easy veri�cation shows that the above de�nition gives us the required relationalsum. 24 Integral Objects and the Basis of RFollowing the notion used in algebra, we call an object A integral if there are nozero divisors within the subalgebra R[A;A]. Later on, the class of integral objectswill de�ne the basis of R.De�nition 4.1 An object A of a relation algebra is called integral i� ??AA 6= >>AAand for all Q;R 2 R[A;A] the equation Q;R = ??AA implies either Q = ??AA orR = ??AA. 2There are two other simple properties characterizing the integral objects of a relationalgebra.Lemma 4.2 The following properties are equivalent:



8 1. A is an integral object,2. Every non-zero relation in R[A;A] is total,3. IA is an atom.Proof:1:) 2: : Suppose ??AA 6= Q. From Q;>>AA v Q;>>AA we deduce Q`;Q;>>AA =??AA using the Schr�oder equivalences. Since A is integral and Q 6= ??AA wehave Q;>>AA = >>AA, i.e. Q is total.2:) 3: : Suppose ??AA 6= Q v IA. Using that Q is total, we obtainIA v Q;Q` v Q; ÌA = Q:3:) 1: : Suppose Q;R = ??AA. Since IA is an atom we have R;>>AA u IA = ??AAor R;>>AA u IA = IA. The �rst case impliesR` = R`;IA u >>AA v R`; (IA uR;>>AA) = R`;??AA = ??AAand hence R = ??AA. From the second case we concludeQ = Q;IA = Q; (R;>>AA u IA) v Q;R;>>AA = ??AA;>>AA = ??AA: 2The special properties of the relations in R[A;A] mentioned in the last lemma canbe transfered to the relation in R[A;B] for an arbitrary object B.Lemma 4.3 Let B be an integral object. Then we have1. if Q;R = ??AC with Q 2 R[A;B] and R 2 R[B;C] then either Q = ??AB orR = ??BC,2. if R 6= ??BC then R;>>CD = >>BD.Proof:1. Q;R = ??AC implies Q`;Q;R;R` = Q`;??AC ;R` = ??BB. Since B is in-tegral, we have either Q`;Q = ??BB or R;R` = ??BB. In the �rst case weconclude using Lemma 2.2 Q v Q;Q`;Q = Q;??BB = ??AB. The other caseis similar.2. Analogously to 1:) 2: of the last lemma by using 1. 2Notice, that the last lemma implies that all non-zero relations in R[B;C] are totalif B is integral.



9De�nition 4.4 Let R be a relation algebra. The basis BR of R is de�ned as thefull subcategory given by the class of all integral objects. 2As usual, we omit the index R in BR when its meaning is clear from the context.Theorem 4.5 Let R be a relation algebra with relational sums, and let B be thebasis of R. Then B is a proper subalgebra of R.Proof: Let A be an object of B. We show that the relational sum A + A is notan object of B. Since R has relational sums, R and B are not equivalent. SupposeIA+A is an atom. Then we haveIA+A = �1̀ ; �1 t �2`; �2 w �1̀ ; �1:Now, we distinguish two cases:1. �1̀ ; �1 = ??A+AA+A : We conclude�1 = �1; �1̀ ; �1 = �1;??A+AA+A = ??AA+Aand IA = �1; �1̀ = ??AA+A; �1̀ = ??AA;but the last equality contradicts to IA beeing an atom.2. �1̀ ; �1 = IA+A: We conclude??AA+A = ??AA; �1 = �2; �1̀ ; �1 = �2and IA = �2; �2̀ = ??AA+A; �2̀ = ??AA:As in case 1 this is a contradiction. 2The last lemma has shown that the de�nition of the basis of an algebra is notsenseless, i.e. the basis usually does not correspond to the whole algebra.In the rest of this section we want to de�ne an equivalence relation � on the basis ofR. Later on, it turns out that the equivalence classes of � characterize the simplecomponents of the algebra.Lemma 4.6 Let A be an integral object. Then we have >>AB;>>BA 2 f??AA;>>AAg.Proof: Since IA is an atom>>AB;>>BAuIA is either??AA or IA. Suppose >>AB;>>BAuIA = ??AA. Then we have>>BA = >>BA;IA u >>BAv >>BA; (IA u >>AB;>>BA)= >>BA;??AA= ??BA:



10It follows >>AB;>>BA = >>AB;??BA = ??AA. If >>AB;>>BA u IA = IAA we concludeusing Lemma 2.2>>AA = >>AA;IA v >>AA;>>AB;>>BA = >>AB;>>BA: 2The last lemma leads to the following de�nition.De�nition 4.7 A � B :() >>AB;>>BA = >>AA. 2To show that � is an equivalence relation on the class of integral objects we needthe following lemma.Lemma 4.8 Let A and B be integral objects. Then we have1. >>AB;>>BA = >>AA if and only if >>BA;>>AB = >>BB,2. >>AB;>>BA = ??AA if and only if >>BA;>>AB = ??BB.Proof:1. Suppose >>AB;>>BA = >>AA and >>BA;>>AB = ??BB. Then using Lemma 2.2>>AB = >>AB;>>BA;>>AB = >>AB;??BB = ??ABwe get a contradiction. The other implication follows by duality.2. The assertion follows from 1. and Lemma 4.6. 2The last lemma and Lemma 4.6 show that objects A 6� B are characterized by theequation >>AB;>>BA = ??AA.Lemma 4.9 � is an equivalence relation on the basis of R.Proof: By Lemma 2.2 � is re
exive. Symmetry is implied by Lemma 4.8. SupposeA � B and B � C. By de�nition we have >>AB;>>BA = >>AA and >>BC;>>CB =>>BB. By Lemma 4.8 we get >>BA;>>AB = >>BB and >>CB;>>BC = >>CC . UsingLemma 2.2 we conclude >>CC = >>CB;>>BC= >>CB;>>BB;>>BC= >>CB;>>BA;>>AB;>>BCv >>CA;>>ACand hence A � C. 2The equivalence classes of � are in a way indepentend.



11Lemma 4.10 Let A and B integral objects. Then the following properties are equi-valent:1. A 6� B,2. >>AB = ??AB.Proof:1:) 2: : SinceA 6� B we have >>AB;>>BA = ??AA by Lemma 4.6. From this we con-clude >>AB = ??AB because otherwise Lemma 4.3 would imply >>AB;>>BA =>>AA.2:) 1: : We immediately conclude>>AB;>>BA = ??AB;>>BA = ??AA 6= >>AA: 2Notice, that the last Lemma implies that R = ??AB for all R 2 R[A;B] if A 6� B.5 A Pseudo Representation TheoremNow, we are able to prove our main theorem.Theorem 5.1 Let R be a relation algebra with relational sums and subobjects andB the basis of R. Then R and B+ are equivalent.Proof: First, we show that every object A of R is isomorphic to a relational sumPi2IAi of objects from B. Let fli j i 2 Ig be set of all atoms li v IA. Because Rhas subobjects, this gives us a set fAi j i 2 Ig of objects and a set f i j i 2 Ig ofmorphisms with  i; ì = IAi;  ì ; i = li:Together with the computations ì ; i; j̀ ; j = li; lj = li u lj = ??AA; i; j̀ =  i; ì ; i; j̀ ; j; j̀ =  i;??AA; j̀ = ??AiAjand Gi2I  ì ; i =Gi2I li = IA:and the uniqueness of a relational sum, we have A �=Pi2IAi.Suppose R v IAi. Then we have ì ;R; i v  ì ; i = li:Now, we distinguish two cases:



12 1.  ì ;R; i = ??AA: We concludeR =  i; ì ;R; i; ì =  i;??AA; ì = ??AiAi :2.  ì ;R; i = li: We concludeR =  i; ì ;R; i; ì =  i; li; ì =  i; ì ; i; ì = IAi:This shows that IAi is an atom and hence Ai in B. Now, we de�ne the requiredequivalence F : R ! B+; G : B+ !R byF (A) := f : I ! ObjB with f(i) = Ai;F (R) := h : I1 � I2 ! MorB with h(i1; i2) =  i1;R; ì2 ;G(f) := Xi2I f(i);G(h) := Gi2I;j2J  ì ;h(i; j); jfor all R 2 R[A;B], objects A �= Pi2I1Ai; B �= Pi2I2Bi, f 2 ObjB+ and h 2 B+[f; g].By Lemma 2.4 and the computationsF (IA)(i1; i2) =  i1;IA; ì2=  i1; ì2= � IAi1 : i1 = i2??Ai1Ai2 : i1 6= i2= If(i1; i2);(F (Q);F (R))(i; k) = Gj2J F (Q)(i; j);F (R)(j; k)= Gj2J  i;Q; j̀ ; j;R; k̀=  i;Q; (Gj2J  j̀ ; j);R; k̀=  i;Q;R; k̀= F (Q;R)(i; k);(F (Q) u F (S))(i; j) = F (Q)(i; j)u F (S)(i; j)=  i;Q; j̀ u  i;S; j̀=  i; (Q u S); j̀= F (Q u S)(i; j);F (Q)(i; j) = F (Q)(i; j)=  i;Q; j̀=  i;Q; j̀



13= F (Q);(F (Q)`)(j; i) = (F (Q)(i; j))`= ( i;Q; j̀ )`=  j;Q`; ì= F (Q`)(j; i)is F a homomorphism. We have shown F (Q)uF (S) = F (QuS). The more generalcase is proven analogously. Conversely, using Lemma 2.4 and 2.7 we getG(If) = Gi1;i22I  ì1;If(i1; i2); i2= Gi2I  ì ;If(i); i= Gi2I  ì ; i= Gi2I li= IA;G(f);G(g) = ( Gi2I;j2J  ì ; f(i; j); j); ( Gj2J;k2K  j̀ ; g(j; k); k)= Gi2I;j1;j22J;k2K  ì ; f(i; j1); j1; j̀2; g(j2; k); k= Gi2I;j2J;k2K  ì ; f(i; j); j; j̀ ; g(j; k); k= Gi2I;k2K  ì ; (Gj2J f(i; j); g(j; k)); k= Gi2I;k2K  ì ; (f ; g)(i; k); k= G(f ; g);G(f) u G(h) = Gi2I;j2J  ì ; f(i; j); j u Gi2I;j2J  ì ;h(i; j); j= Gi1;i22I;j1;j22J  ì1; f(i1; j1); j1 u  ì2;h(i2; j2); j2= Gi2I;j2J  ì ; f(i; j); j u  ì ;h(i; j); j= Gi2I;j2J  ì ; (f(i; j) u h(i; j)); j= Gi2I;j2J  ì ; (f u h)(i; j); j= G(f u h);



14 G(f) = Gi2I;j2J  ì ; f(i; j); j= Gi2I;j2J  ì ; f(i; j); j= Gi2I;j2J  ì ; f(i; j); j= G(f );G(f)` = ( Gi2I;j2J  ì ; f(i; j); j)`= Gi2I;j2J  j̀ ; f(i; j)`; i= Gi2I;j2J  j̀ ; f`(j; i); i= G(f`):Moreover, we have (G�F )(A) =Pi2IAi �= A such that there is a natural isomorphismbetween G � F and the identity on R. Conversely, we have(F �G)(f)(i; j) = F ( Gi2I;j2J ì ; f(i; j); j)=  i; ( Gi2I;j2J ì ; f(i; j); j); j̀= f(i; j): 2In [5] it had been shown that every relation algebra may be embedded into one withrelational sums and subobjects. Together, we gain the following corollary.Corollary 5.2 Every heterogeneous relation algebra may be embedded into an alge-bra which is equivalent to a matrix algebra over a suitable basis. 26 Simple Relation AlgebrasIt is known that every homogeneous relation algebra3 may be embedded into aproduct of simple algebras. This theorem is an application of general concept fromuniversal algebra. In [5] it was shown that this theorem can be extended to arbitraryheterogeneous relation algebras.In this section, we want to reprove this theorem using our notion of the basis of arelation algebra and the induced equivalence relation �.3a relation algebra with just one object



15To avoid any set-theoretic problems we require that all relation algebras in thissection be small, i.e. the collections of all morphisms and of all objects should besets.De�nition 6.1 A collection � of equivalence relations �AB on R[A;B] is called acongruence i�1. Q` �BA R` and Q �AB R for all Q;R with Q �AB R,2. Q;S �AC R;T for all Q;R and S; T with Q �AB R and S �BC T ,3. Q �AB k2KRk for all Q;Rk with Q �AB Rk for all k 2 K. 2As in universal algebra we de�ne the concept of simple relation algebras.De�nition 6.2 A relation algebra is called simple i� there at most two congruences.It is possible to characterize simple algebras by just one equation, the so-calledTarski-rule.Lemma 6.3 Let R be a relation algebra. Then the following properties are equiva-lent1. R is simple,2. Q 6= ??AB implies >>CA;Q;>>BD = >>CD. 2A proof can be found in [5].Lemma 6.4 Let R be a relation algebra with relational sums and subobjects suchthat all objects of basis B are equivalent (in resp. to �). Then R is simple.Proof: We show that B+ is simple. The equivalence of B+ and R then impliesthe assertion. Let be e : I ! B; f : J ! B; g : K ! B and h : L ! B objectsof B+ and ??fg 6= R 2 B+[f; g]. By de�nition there is a j0 2 J and a k0 2 K suchthat R(j0; k0) 6= ??f(j0)g(k0). From Lemma 4.3 and the fact that all objects of B areequivalent we conclude>>e(i)f(j0);R(j0; k0);>>g(k0)h(l) = >>e(i)f(j0);>>f(j0)h(l) = >>e(i)h(l)for all i 2 I and l 2 L. This gives us(>>ef ;R;>>gh)(i; l) = Gj2J;k2K(>>ef (i; j);R(j; k);>>gh(k; l))= Gj2J;k2K(>>e(i)f(j);R(j; k);>>g(k)h(l))= >>e(i)h(l)= >>eh(i; l)



16and hence >>ef ;R;>>gh = >>eh. 2Let B� the set of equivalence classes of �, and Bk be the full subcategory of Binduced by the equivalence class k. By the last lemma B+k is simple.De�nition 6.5 Let K be a set, and Rk for all k 2 K be relation algebras. Theproduct relation algebra Qk2KRk is de�ned as follows:1. An object of Qk2KRk is a function f : K ! Sk2KObjRk such that f(k) 2 ObjRk .2. A morphism in Qk2KRk[A;B] is a function Q : K ! Sk2KRk[A;B] such thatQ(k) 2 Rk[A;B].3. The operations and constants are de�ned in componentwise manner by(Q;S)(k) := Q(k);S(k);(Q u R)(k) := Q(k) u R(k);(Q t R)(k) := Q(k) t R(k);Q`(k) := Q(k)`;Q(k) := Q(k);If(k) := If(k);>>fg(k) := >>f(k)g(k);??fg(k) := ??f(k)g(k);for all Q;R 2 Qk2KRk[f; g] and S 2 Qk2KRk[g; h]. 2An easy veri�cation shows that Qk2KRk is indeed a relation algebra.Theorem 6.6 Let R be a small relation algebra. Then B+ and Qk2B� B+k are iso-morphic.Proof: Let f : I ! ObjB and g : J ! ObjB be objects of B+ and R 2 B+[f; g].Furthermore, let Ik := fi 2 I j f(i) is a object of Bkg;Jk := fj 2 J j g(j) is a object of Bkg;fk : Ik ! ObjBk such that fk(i) = f(i);Rk : Ik � Jk ! MorBk such that Rk(i; j) = R(i; j):



17Then we de�ne a functor F : B+ ! Qk2B� B+k byF (f)(k) := fk;F (R)(k) := Rk:Using Lemma 4.10 we getF (R;S)(k)(i; l) = (R;S)k(i; l)= (R;S)(i; l)= Gj2JR(i; j);S(j; l)= Gj2JkR(i; j);S(j; l)= Gj2JkRk(i; j);Sk(j; l)= Gj2Jk F (R)(k)(i; j);F (S)(k)(j; l)= (F (R)(k);F (S)(k))(i; l)and hence F (R;S) = F (R);F (S). An easy veri�cation shows the other requiredproperties of F and is, therefore, omitted. 2Combining our two main theorems we aim the following.Corollary 6.7 LetR be a small relation algebra with relational sums and subobjects.Then R and Qk2B� B+k are equivalent. 2Corollary 6.8 Every small heterogeneous relation algebra may be embedded into analgbra which is equivalent to a product of simple matrix algebras. 27 ConclusionIn this paper we have shown that every relation algebra R may be considered as asubalgebra of a matrix algebra over a suitable basis. This basis is a proper subalgebraof the global completion [1] of R. This shows that a lot of non-�nite algebras arecompletely determined by a �nite subalgebra.The computer system RELVIEW works with Boolean matrices and hence with con-crete relations to visualize computations with them. Using the result of this paper,it seems possible to build another computer system working with arbitrary hetero-geneous relation algebras. These algebras may be represented by a matrix algebraover a basis given by the user.
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