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Kurzfassung / Abstract

Flachheit als Eigenschaft linearer und nichtlinearer Systeme ermoglicht eine
vergleichsweise einfache Konstruktion von Steuerungen und Reglern zur Losung
des Trajektorienfolgeproblems. Dieser Ansatz erfordert allerdings die Berech-
nung von flachen Ausgingen fiir das jeweilige System. Je nach Komplexitét
des Systems kann diese Berechnung sehr aufwandig sein. Im Rahmen dieser
Arbeit wurden zwei Toolboxen fiir das Computer-Algebra-System Maple en-
twickelt, die die Berechnung von flachen Ausgéngen fiir lineare Systeme (mit
und ohne Totzeitglieder) und nichtlineare Systeme erméglichen.

Im Falle linearer Systeme basieren die implementierten Datentypen und Meth-
oden auf dem von F. Antritter, F. Cazaurang, J. Lévine und J. Middeke en-
twickelten Algorithmus, der einen Ansatz mit Schiefpolynommatrizen verwen-
det. Im Falle nichtlinearer Systeme basiert die implementierte Toolbox auf dem
von J. Lévine entwickelten Algorithmus, der einen differentialgeometrischen
Ansatz verfolgt.

Flatness as a system property of linear and nonlinear systems allows a rela-
tively simple construction of feed-forward controllers and feedback controllers
in order to solve the tracking problem. However, this approach makes the
computation of flat outputs of the respective system necessary. Depending on
the complexity of the system these computations can be very elaborate. In the
context of this thesis, two toolboxes for the computer algebra system Maple
were developed which allow the computation of flat outputs for linear systems
(with and without delays) and for nonlinear systems.

In case of linear systems, the implemented data types and methods are based
on the algorithm developed by F. Antritter, F. Cazaurang, J. Lévine and J.
Middeke, which uses an approach with skew polynomial matrices. In case of
nonlinear systems, the implemented toolbox is based on the algorithm devel-
oped by J. Lévine, which makes use of a differential geometric approach.
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Chapter 1

Introduction

The concept of differential flatness as a system property for linear and nonlinear
systems was introduced in [13] and [27]. This system property was extended
to describe linear systems with delays as well, for instance in [2]. Roughly
speaking, if a control system is flat, it is possible to describe its inputs and
states by a (fictional) flat output (and its derivatives) of the system, while this
flat output can be expressed by the states and inputs (and their derivatives).
In case of linear systems, this property is equivalent to controllability.

If found, such a flat output will offer a relatively simple way to construct a
flatness-based controller for the system. For linear systems with and without
delays, there exist many approaches for constructing a flat output (for instance
in [2, 4, 10, 12, 23, 31]). In case of nonlinear multi-input systems, there exist
necessary and sufficient conditions (see [21, 22]) which allow an almost auto-
mated flatness determination of nonlinear systems. Nevertheless, constructing
a flat output is very difficult, due to the computational complexity of this
problem.

Since the computations which have to be made in order to determine whether
a control system is flat or not are very elaborate, a toolbox for automated
evaluation seems inevitable. At the moment, there exist a few toolboxes which
are partially able to handle the computations for flatness determination.

In [1] a Maple-toolbox for the flatness determination of linear systems with
delays was presented. It was based on the OreTools-package of Maple.

In [12] a Maple-toolbox was presented which offers features to determine con-
trollability and parametrizability of linear control systems, as well as evaluate
whether a linear system is m-flat.

In [33] a toolbox for the flatness determination of nonlinear systems was de-
veloped. The purpose of that toolbox was to show the feasibility of developing
a toolbox in Maple which is capable of computing the flat output of nonlinear
systems. But that toolbox was neither user-friendly nor laid its focus on a
high computational performance.
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Therefore, no existing toolbox is able to handle the thorough flatness deter-
mination in case of linear systems with delays and nonlinear systems while
providing a high computational performance. In this thesis, two toolboxes
will be developed which are capable of computing the flat output (in case
of nonlinear systems) resp. the defining operators and the polynomial 7 (in
case of linear systems with delays). Therefore, they can be used to explore the
current approaches for flatness determination (for instance of [22]) more deeply.

The development of the two toolboxes follows three main issues: a high com-
putational performance, a high maintainability and the ability to be reused as
a framework for future algorithms and toolboxes.

At first, the used computer algebra system Maple will briefly be introduced in
chapter 2.

Afterwards, in chapter 3, the mathematical basics of flatness determination
will be explained. We will recall the required mathematical framework and
the specific conditions for differential and w-flatness. We will also define al-
gorithms which can be used in order to evaluate whether these conditions are
met for a certain system.

This will allow us to set up the requirements which have to be met by the
toolboxes. For this purpose, we will analyze the desired mathematical struc-
tures and how they can be represented by using suitable data types in Maple
in chapters 4 and 5. At the end of these chapters, we will define data types to
execute the flatness determination in case of linear systems (with and without
delays) and nonlinear systems.

Furthermore, in chapter 6, we are going to look at some specific technical is-
sues of the implementation of the two toolboxes.

In chapter 7, we take a look at the two Maple-toolboxes which were developed
in the context of this thesis. We will describe all features in detail and illus-
trate some of them by using small examples.

Afterwards, in chapter 8, we will demonstrate the power of the toolboxes by
analyzing two linear and two nonlinear systems and computing the defining
matrices resp. the flat outputs of these systems.

Finally, we will take a look at possible future works and what might be the
next developments in future versions of the toolboxes.



Chapter 2

About the Used Computer
Algebra System Maple

In this chapter the features and functionality of the used computer algebra
system (CAS) will be described briefly. Furthermore, additional software of
the used development environment will be listed. At the end of the chapter, a
short overview of the implemented toolboxes will be given.

2.1 Features of Maple

The computer algebra system Maple of the Waterloo Maple Inc. company [34]
was used to develop the toolboxes which are introduced in this thesis. The
used version was version 15.01%.

To implement the algebraic transformations and computations of sections 3.2
and 3.3, the computer algebra system has to meet several requirements:

i) ability to compute numerical and symbolic?
ii) ability to solve partial differential equations

iii) providing a programming language to implement and develop custom
algorithms and toolboxes

Maple meets all of these requirements. Most notably, Maple offers a very
capable solver for symbolic partial differential equations. In addition, it comes
with several useful libraries which extend the functionality of Maple massively.
In this thesis, the following libraries (in Maple also called packages) were used:

! Maple undergoes continuous development, thus several methods of the Maple framework
(like the including libraries) can be enhanced or completely changed over the versions. We
experienced this in case of the integrated solver for partial differential equations. Because of
this, it may be possible that the toolboxes do not work properly or work only with limited
functionality under other Maple-versions.

2Symbolic computation means that the software is able to perform calculations with
not specified variables and functions (such as: f(x1(¢),z2(t)). This is also called algebraic
computation.
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Toolbox Description

LinearAlgebra | This library offers fundamental functionalities for calcula-
tions with matrices and vectors, like computing the kernel
of a matrix.

ListTools A collection of methods for manipulating the Maple data
type list, like searching in lists for a certain element.
Maplets The maplets represent the components to build a GUI in

Maple. Similar to the JComponents of Java, the maplets
match a container pattern which allows to form the user
interface as needed.

PDETools The library PDETools contains methods for handling sym-
bolic partial differential equations.

RandomTools | This library allows to create generators for random num-
bers.

StringTools This library offers methods for manipulating strings.

2.2 Used Development Environment

The computer algebra system Maple is delivered with its own development
environment, the Maple User Interface [26]. This environment can be used
to develop custom Maple programs, which can be interpreted using the Maple
Computation Engine. However, this development environment has several dis-
advantages and restrictions compared to other environments®, e.g. Eclipse (an
integrated development environment for several programming languages from
the Eclipse Foundation). For instance, we have no automatic indenting for
if-statements, loops and other structures which contain code-blocks. Also the
environment will slow down significantly (for no reason) if we have a large
code basis. Even basic behavior like syntax highlighting works very limited.
Because of these disadvantages, we strongly recommend not to use the Maple
User Interface for software solutions with a bigger code basis, but to use an
alternative editor for implementing and to use the Maple User Interface only
for converting the code into Maple packages afterwards.

In this thesis, the editor Notepad++ [35] was used to develop the toolboxes.
The editor Notepad++ can be appropriately enhanced to support Maple code.
Also the plugin Compare, which is able to compare different versions of the
toolboxes, was used.

If we use an external editor, we can use the following approach: With the editor
(in this case Notepad++), the Maple source code is saved into ANSI-encoded
text files (in this thesis the complete source code was saved into map-files).
Afterwards we can import it in the Maple User Interface and transform it into
a mla-library. Here an example of this approach using the source code of the
toolbox DifferentialDelays:

3Remark: The disadvantages we sum up here are based on the version 15.01 of Maple.
They may be solved in later versions of Maple.

4
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Listing 2.1: Transformation of the source code

> restart;
#Maple searches there for packages
libname := libname, ”DifferentialDelays”;
#Import the source code
read(” DifferentialDelays.map”);
#Create a directory for the toolbox
mkdir(” DifferentialDelays”);
#Create the mla—file
march (’create ', ”DifferentialDelays\\ DifferentialDelays.mla”);
#Define where the library shall be saved
savelibname := ”DifferentialDelays\\ DifferentialDelays.mla”;
#The actual transformation into a mla—file
savelib (’ DifferentialDelays ’) ;

2.3 Overview of the Developed Toolboxes

In this section, the functionalities of the developed toolboxes shall be described
briefly. First of all a short remark: Libraries are implemented in Maple in form
of modules. To stay general, we will call associated modules which serve a cer-
tain common purpose toolbox, in this thesis.

The implemented toolboxes are strictly separated according to the mathe-
matical use they fulfill. Both toolboxes have so called submodules, i.e. inner
libraries, which are able to compute a very certain kind of mathematical tasks.
They can be accessed using the [..] command in Maple.

Toolbox Description

DifferentialDelays The main part of the toolbox offers all meth-
ods for handling skew polynomials and matri-
ces over skew polynomials in order to find a flat
output of a given linear system, except for the
functionality in the subordinate packages.
—[Decompose] This submodule can be used to decompose ma-
trices using minimal basis decomposition in case
of flatness determination of linear systems with
and without delays.

—[LeftFractionUtils] This submodule contains all methods for han-
dling matrices over left fractions.
—[PiFlatUtils] This submodule offers methods to compute and

verify the operator 7, which is used in case of
linear systems with delays.

DifferentialForms The main part of the toolbox contains all meth-
ods to compute the flat output of a nonlinear
system, except for the minimal basis decompo-
sition.

—[MinimalbasisDecomp]| | This submodule can be used to decompose ma-
trices using minimal basis decomposition in case
of flatness determination of nonlinear systems.

b}
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Chapter 3

Mathematical Basics

In this chapter we are going to recall differential flatness as a system property
of linear and nonlinear systems and n-flatness as a system property of linear
systems with delays. Therefore, we will introduce the mathematical framework
which we need in order to express conditions for flatness at the beginning of
this chapter.

Then, we are going to introduce differential and 7-flatness of linear systems
and present a procedure to compute the defining operators referring to [1].
Furthermore, necessary and sufficient conditions for differential flatness of non-
linear systems will be recalled from [22], leading to the construction of a flat
output.

3.1 Introduction of the Mathematical Frame-
work

In this section, we will briefly explain the theoretical basics and concepts which
are fundamental for the following considerations.

3.1.1 The Skew Polynomial Rings K [4], K [¢]

For the determination of flatness according to [, 1], we need detailed infor-
mation about skew polynomials and how to handle them. Generally speaking,
we handle polynomials over a non commutative ring whose multiplication has
specific properties, introduced by @. Ore in [30].

First, we have to introduce the o-derivation in order to describe skew polyno-
mials:

Definition 1 ([9, 29, 30]). Let K be a ring without zero divisors and o : K —
K an injective endomorphism. Any map ¥ : K — K 1is called o-derivation if
and only if it fulfills the conditions

i) Y(a+0b) =1(a)+ I(D)
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ii) U(ab) = o(a)d(b) +V(a)b (o-Leibniz rule)
Va,b e K.
The elements of the skew polynomial ring over K are given by polynomials in
7 of the structure
p=poZ° +p1Zt + ..+ p.Z", deg(p) =n (3.1)
with p; € K. The multiplication of Z with elements of field K is given by
([4, 9, 30])
Za=o0(a)Z+9(a), Va€ K. (3.2)
Therefore, the degree of the product of two skew polynomials p and ¢ is given

by

deg(pq) = deg(p) + deg(q). (3.3)

We denote the skew polynomial ring over K with the two maps ¢ and ¢ by

K[Z; 0,7, referring to the mathematical notation from [10].
Let 0 =1d, 9 = E and let us roughly choose % as symbol. If we choose the

field of meromorphic functions K as ring K, we obtain the skew polynomial

ring of differential operators K [dt, id, dt] =K [%] (see [1]) with
d d .
E (ak) = (lka + ag, Va, € C (34)
and
d d" d [ d* d d"
% (ak%) = aka (%) + %(ak)ﬁ (35)

with aki—i an arbitrary monomial € IC [%}. Obviously, the given ring K [%}
is generally not commutative because we have

d d
o () # ar . (3.6)
If £ =R, we obtain the skew polynomial ring over the field of real numbers.

In this special case, the ring is commutative according to multiplication since
La; =0, Va; € R. Because of that the equation (3.5) leads to

d dk dk+1
dt (a’“ﬁ) — kg (37)

The sum of two skew polynomials a,b € K [4£] with deg(a) = n,deg(b) =

m,n > m also results in a skew polynomial:

dt

c = a+b
= Zazdﬂ Zadw
“ d’ dj
= 2 (ai+b) 5+ Z (3.8)
=0 j=m+1
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In fact, we have deg(c) = n.
The multiplication of two skew polynomials a,b € K [%} with deg(a) =
n,deg(b) = m is given by:

In fact, we have deg(c) = deg(a) + deg(b) ([29]).

If we set K = K, ¥ = 0 and ¢ = §, we obtain the skew polynomial ring
of delay operators K [0;6,0] = K [0] ([1]). In this case, 0 is defined as a delay
operator with the following properties:

i) 6(f(t) = f(t —7) (delay)
ii) 07 1(f(t)) = f(t+ 7) (prediction)
iii) 0 f(t) = f(t—7)0

with a fixed 7 € R in each property. Because of property iii) K [§] is not
commutative.

Similar to (3.8), the sum of two skew polynomials a,b € K [§] with deg(a) =
n,deg(b) = m,n > m is given by:

c = a+b

= Zn: CLZ'(Si + Zm: bjéj
=0 7=0

= (a; +b;) 6" + Z ;0. (3.10)

=0 j=m+1

L.e. we have deg(c) = n.
Similar to (3.9), the multiplication of two skew polynomials a,b € K [§] with

9
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deg(a) = n,deg(b) = m is given by:

c = a-b
n

= Z ai(Si . i bjdj
i=0 7=0

=S <ai 3 51‘(@)5]'“) | (3.11)
In fact, we have deg(c) = deg(a) + deg(b).

3.1.2 The Skew Polynomial Ring K [5, %}

As written in [2, 1], we are able to enhance the skew polynomial ring K [%] to
have elements € K [d] as coefficients. We denote this extended skew polynomial
ring by K[Z;01,%][Y;02,0U5] and set 91 = 0, 01 = 0, 09 = id and ¥y = %
and choose the field of meromorphic functions K as ring K. Thus, we obtain
the skew polynomial ring K[5;8,0][4;id, 4] = K [4, 4]. This is possible since

dtr "% at v dt
both maps § and < commute by the chain rule (see [2, 1] for more details).
Therefore, we have the computation rules
d
—()=0 3.12
0 (3.12)
and
d d
d— = —o. 3.13
dt dt (3:13)

3.1.3 The Field of Left Fractions, lclm and gcrd

For the analysis of linear systems with delays, it is also important to consider
the field of left fractions, denoted by K (§). Elements in K (6) are of the form
b~ta with a,b € K[d]. In this section, we will discuss some of the more im-
portant properties of this field. Detailed information about this field and its
construction can be found e.g in [18].

To define addition and multiplication for the field of left fractions, it is re-
quired to compute the least common left multiple of two skew polynomials in
K [6] and the corresponding cofactors. These are important to multiply the
denominators and numerators of left fractions:

Definition 2 ([, 9]). Let a,b be two skew polynomials € K [0]\{0}. ra € K 4]
and sb € K [d] are called common left multiple of a and b if and only if

ra=sb, r,se€ K[0]\{0}. (3.14)

10
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In addition, ra € K [d] and sb € K [0] are called least common left multiple
of a and b (denoted by lclm(a, b)) if and only if Vr',s" € K [0] \{0} which satisfy
r'a = s'b exists t € K [6] \{0} such that tr =1 Nts ="

The two skew polynomials r and s are called cofactors of a and b.

In [9] an algorithm for the computation of the least common left multiple of
two skew polynomials was developed. This algorithm was used and improved
for automated computation of the cofactors of two skew polynomials in K [6]
as part of this thesis:

Algorithm 1: Computation of Cofactors

Input: Two arbitrary skew polynomials A, B € K [0]\{0} with deg(A) >
deg(B)*

Output: A; (cofactor of A), —B; (cofactor of B)

Ap=1
A =0
BQZO
B =1
Ry=A
Ry =B
1=2

while true do

Qo = % 6%, A =deg(R;_2) — deg(R;—1)

Ci=Ri_o—Qo-Ri1
if deg(Cz) < deg(Ri_l) then

Qi—1 = Qo
else
Q1 = 590 55 | A = deg(Cy) — deg(Ri1)
Qi—1=Qo+ Q1
Ri=C;—Q1-Ri
end if

Ai=Ai 2= Qi1-Ai
B =B 2—Qi-1-Bi1
if deg(R;) = —oo then
break

end if
i=1i+1

end do

return A;, —B;

The two return values A; and —B; represent the cofactors of A and B, i.e.:
A;-A=—-B;-B=Ilcm(A, B) (3.15)

Now, we are able to describe the addition and multiplication of left fractions

over KC[d]:

'Tf deg(A) < deg(B), we have to switch A and B.

11
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Theorem 1 ([1]). The sum of two left fractions b~'a and d~'c with a,b,c,d
€ K[4] and rb = sd = lclm(b, d) is given by

b la+d e = (rb)'(ra) + (sd)"'(sc)
(rb) ' (ra + sc). (3.16)

Theorem 2 ([1]). The product of two left fractions b~ a and d~*c with a,b, c,d
€ K[d] and ra = sd = lclm(a, d) is given by

b la-d'c = (rb) ' (ra)- (sd)"'(sc)
= (rb)(sc). (3.17)

In the field of left fractions, we also need to define the notion greatest common
right divisor of two skew polynomials in K [d].

Definition 3 ([9, 19, 28]). Let a,b be two skew polynomials € K [6]\{0}. A
polynomial f € KC[0] is called common right divisor of a and b if and only

if
rf=aandsf=0 rsek[d]\{0}. (3.18)

In addition, f € K[0] is called greatest common right divisor of a and b
(denoted by gerd(a, b)) if and only if Vg € K [6]\{0} which satisfy r'g = a and
s'g=0b with r',s" € K[0] \{0} exists t € KC[0]\{0} such that tg = f.

3.1.4 The Skew Polynomial Ring K (9) [%]

Since we also need to be able to express predictions, we have to extend the skew
polynomial ring K [4, 4] and introduce the skew polynomial ring K (6) [4].
Similar to the skew polynomial ring & [%}, we choose the maps o = id and

¥ =4 but decide to use the field of left fractions over K [§] as ring K. So we

obtain the skew polynomial ring K (6) [4] [1].
Because of the properties of 9, it is now possible to get derivatives of left

fractions. Thus, we have to introduce the following computation rule:

Theorem 3 ([1, 18]). The derivative of a left fraction b= a with a,b € K [§]
and %(b) = 0 with respect to t is given by

d, o\ .

pr (b~"a) = (sb) (sa(a) ra) (3.19)

with b = s (b) = lclm(b, £(b)). If &(b) = 0, the derivative is given by

d, .\ . .d
E(b a)—b E(a). (3.20)

12
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3.1.5 Hyper-regularity as Property of Matrices over Skew
Polynomials

In this section, we consider all matrices to be matrices over the ring of skew
polynomials K [%}. Thus, there is no commutativity in general.

Furthermore, the inverse M~! of a skew polynomial matrix M € K [%} is,
in general, no skew polynomial matrix itself, because it may contain fractions
with % in the denominator. In this thesis, we want to focus on matrices which

have a skew polynomial matrix as inverse.

Definition 4. A matricr M € K [%}nxn is called unimodular if and only if
its inverse Mt is in K [%}nxn. The set of such unimodular matrices is also

possibly referred to as the linear group Gl, (K [%D

A very important tool for the determination of a flat output of linear and
nonlinear systems is the decomposition of skew polynomial matrices. To serve
this purpose, we introduce the Smith-Jacobson decomposition:

Theorem 4 ([10]). Every matriz M € K [%rxs can be transformed into the

Smith-Jacobson form? by using two unimodular matrices V € K [%}rw,
U e K [%]SXS:

( Ar Orx(s—r) ) Zf r<s
VMU = ( A > if > s (3.21)
0(rfs)><s

A, and A, must satisfy® A, = diag(\1, ..., \) resp. Ay = diag(Ai, ..., \s)

Definition 5 ([23]). A matrizc M € K [%rxs 18 called hyper-regular if and
only if it satisfies Theorem 4 and in (3.21) we have A, = I, resp. As = I.

Let us recall, that the inverse M ! of an unimodular matrix M is always
unimodular itself and both left and right inverse of M?®.

Theorem 5. Fvery square hyper-regular matric M € K [%rw 15 also uni-
modular®.

2The Smith-Jacobson form is also called Smith form or Jacobson form.

3The order of elements on the diagonal can be changed using simple row or column
operations. That means we can always transform A, and Ay into the needed form by
switching the rows or columns of V and U. The matrices V and U will stay unimodular.

;|| A; means \; totally divides \j, i.e. Ja € K [L] : \;|lal|Aj A ko = ak,Vk € K [4].

5This can easily be shown by computing the left and right inverse of M from VMU = I.

6This can also easily be shown by an algebraic transformation of VMU = I.

13
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3.1.6 Minimal Bases for the Decomposition of Skew Poly-
nomial Matrices

The decomposition of skew polynomial matrices via minimal bases is a special
case of the Smith-Jacobson decomposition and will be described in detail in
this section. All matrix decompositions in the developed toolboxes will be done
via minimal bases since the minimal basis decomposition is very convenient
for the automated evaluation of linear and nonlinear systems’. In a first step
the terms module and submodule will be defined.

Definition 6 ([19]). An abelian group M together with a bilinear map
R x M — M s called left R-module over the ring R if and only if the
map satisfies

i) lrm=m Vm e M (identity element)

ii) r((m+n)=rm+rn Vr € R and m,n € M
iii) (r+s)ym=rm+sm Vr,s € R and m € M
w) (rs)ym =r(sm) Vr,s € R and m € M

The right R-module is similarly defined with a bilinear map M x R — M.
If R is a commutative ring, the left 'R-module and the right R-module are
identical. In this case it is simply called R-module.

Definition 7 ([19]). A subgroup N C M is called submodule of the module
M over the ring R if and only if rn € NV Vr € R andn € N.

Definition 8 ([10, 19]). Let M be a module over the ring R. M is called free
if and only if Ym € M we have

dmy,....mpeM: m=rmy+--+r,m, (3.22)
with r; € R.

Definition 9 ([19]). Let M be a free module over the ring R. The distinct
set of elements {my,...,m,} which satisfy (3.22) with my,..., m, linearly
independent is called basts of M over R.

The K [%]—module M over the ring of skew polynomials I [%], which is
spanned by the basis {b,...,b,},b; € K [%] lxn, admits the representation

M= {riby + ...+ b, |15 € K [4] b, € K [4]7"}. (3.23)

Furthermore, the terms row degree, column degree, row order and column order
will be recalled:

It should be mentioned at this point that the decomposition via minimal bases is only
able to decompose hyper-regular matrices. In general, minimal basis decomposition cannot
create a Smith-Jacobson form for non-hyper-regular matrices.

14
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Definition 10 ([23, 33]). The highest degree in & among the elements of the

i’th row M; of a skew polynomial matrix M € K [%rxs 15 called row degree
of the i’th row:

degree,,,(M;) = max{deg(M, ;)}, j=1l.s. (3.24)

row

The column degree of the j'th column M; is defined similar as the highest
occurring degree in % of the j’th column:

M;) = max{deg(M, )}, i=1.r (3.25)

degreecolumn(

]

Definition 11 ([28]). Let M € K [4]""". The row order of M is given by

order,.,, (M) = Z degree, ., (M;). (3.26)

i=1

The column order of M is given by
order copumn (M) = Z degree,oyumn (Mj). (3.27)

j=1

Now we are able to recall the definition for minimal basis:

Definition 12 ([17, 28]). Let the rows of a skew polynomial matriz G
e K [%}rxs be a basis for a submodule U € K [%FXS. The rows of G are
called minimal basis if G has the lowest row order among all bases for the
submodule U .

Similarly, the columns of a skew polynomial matrix G € K [%]Ms are called

manimal basis if the columns of G are a basis for a submodule U € K [%rﬂ
and if G has the lowest column order among all bases for the submodule U .

In conjunction with this definition, we are able to find another way to check a
skew polynomial matrix for hyper-regularity:

Theorem 6 ([, 29, 33]). The skew polynomial matrizc M € K [%]m with
r > s is hyper-regular if and only if the rows of M are a basis of R®.
If r < s, the columns of M have to be a basis of R".

Remark about Theorem 6: The two assertions

e the rows resp. columns of M are a basis of R® resp. R”

4

e the minimal basis of M has degree 0 in 3

are equivalent.

Based on Theorem 6, we are now able to construct an algorithm to check
skew polynomial matrices for hyper-regularity. The algorithm described in this
section is adapted from [25] to run in Maple. But first, we have to introduce
the leading coefficient matriz:

15
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Definition 13 ([28]). Let C(i) be for each row M; a set of column indexes
such that
M)}, i=1l.ur, j=1.s. (3.28)

row (

C(i) = {j| deg(M;;) = degree

Additionally, let 1c(M;;) be the leading coefficient of the polynomial M;;. Then
we obtain the row leading coefficient matriz LC,,, (M) € K"**, whose
elements are defined by

_ 0 if jEC6E) . _ . _
LCrow (M)ZJ - { IC(M”) Zf j c C(Z) , 1= 1..7’, ] = 1..s. (329)
Similar to that, we are able to define the leading coefficient matriz of M
column-wise: Let R(j) be for each column M; a set of row indexes such that

R(j) = {il deg(My) = degrecyypn(M;)}, i =17, j=1L.s. (330

Then we obtain the column leading coefficient matrixz LC oymn (M) €
KT‘XS :

_ 0 if i ¢ R(j)

LCotumn (M); = { le(My;) if i € R(j) ° i=1.r, j=1.s. (3.31)

Now it is possible to determine whether the corresponding matrix M is a
minimal basis by evaluating the rank of the leading coefficient matrix:

Definition 14 ([28]). The matrizx M € K [%]m is called row-reduced if
and only if its row leading coefficient matriz has full rank.
Similar to that, the matric M € K [%rxs 15 called column-reduced if and
only if its column leading coefficient matrixz has full rank.

Theorem 7 ([28]). Let M € K [%]MS be a skew polynomial matriz whose
rows (in case of r > s) resp. columns (in case of r < s) span the submodule

UCK [%}max{r’s}. In this case both assertions are equivalent:
o M 1is row- resp. column-reduced
e the rows resp. the columns of M are a minimal basis of U

Theorem 7 is a simplified and abridged version of the main theorem of minimal
bases, which is described in greater detail in [28].

From Theorems 6 and 7 results that a matrix M € K [%rxs is hyper-regular
if and only if its leading coefficient matrix has full rank and the rows (in case
of r > s) resp. columns (in case of r < s) of M span the module R™"{m=}8,
To construct the minimal basis of a skew polynomial matrix M, it is necessary
to reduce the row degrees resp. column degrees step by step to zero using row
resp. column operations. In case of r > s the reduction has to be done by row

8This is equivalent to the assertion that the minimal basis of M has degree 0 in %.
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operations and in case of r < s by column operations. In the special case of a
square matrix (i.e. 7 = s) both ways are possible ([33]).

The leading coefficient matrix of M has full rank if and only if M is a minimal
basis. That means, as long as M is no minimal basis, there exists a linear
combination of rows resp. columns of M to reduce the degree of a row resp. a
column at least by 1.

First, we want to describe the algorithm for row-wise reduction:

Algorithm 2: Row-wise Decomposition
Input: An arbitrary skew polynomial matrix M € K [%]MS with r > s.
Output: If M is hyper-regular, an unimodular skew polynomial matrix
Vek [%]MT which transforms M into a Smith-Jacobson form. Else NULL.

V=I
while 3a #0: a7 LCppy (M) =0 do
n = index of the uppermost row of M with highest row degree