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Abstract

In the age of big data, the collection of individual patient information, with

the help of clinical trials, is becoming an increasingly important area of health-

care. These large amounts of data have the potential to provide an improved

medical care for patients. Especially with regard to the health economic eval-

uation of medical interventions, the analysis of this data can lead to a better

patient-oriented medication in terms of evidence-based medicine. Meta-analytic

approaches for the evaluation of clinical drug studies only estimate a weighted

mean value of the measured endpoints. The whole potential of the big amounts of

individual patient data is therefore not nearly exploited. The collected patients’

information, e.g. the differences in the socio-economic parameters of different

patient groups and the associated heterogeneity in the efficacy of a drug, are not

sufficiently considered in the common analysis. For approaches like the subgroup

analysis, which uses such information, the considered groups are often too small

to provide statistically well-founded results. Therefore, new methods are needed

for the analysis of the extensive patient data. The new approaches presented in

this thesis are all based on an innovative endpoint-oriented clustering, developed

by Brieden and Gritzmann. The algorithm identifies hidden multidimensional

structures and forms sufficiently large clusters in which patients are grouped with

similar combinations of their characteristic values. The new invented methods,

which are applied on the identified patient collectives, deal with the evaluation

and prediction of the efficacy of medical interventions and the identification of

clinical heterogeneity in the treatment effects.





Zusammenfassung

Im Zeitalter von ’Big Data’ nimmt das Sammeln von individuellen Patientendaten

mit Hilfe von klinischen Studien einen immer größer werdenden Stellenwert im

Gesundheitswesen ein. Dabei haben diese großen Mengen an Daten das Potential,

eine verbesserte medizinische Versorgung für Patienten zu bieten. Insbesondere

im Hinblick auf die gesundheitsökonomische Bewertung von medizinischen Inter-

ventionen, kann die Auswertungen dieser Daten zu einer besseren patientenori-

entierten Medikation im Sinne der evidenzbasierten Medizin führen. Mit den

herkömmlichen metaanalytischen Methoden für die Auswertung von klinischen

Medikamentenstudien werden lediglich gewichtete Mittelwerte der gemessenen

Endpunkte bestimmt. Das ganze Potential, das die großen Mengen an Daten

mit sich bringt, wird somit nicht annähernd ausgeschöpft. Die gesammelten Pa-

tienteninformationen, wie z.B. die Unterschiede in den sozio-ökonomischen Pa-

rametern von unterschiedlichen Patientengruppen und die damit einhergehende

Heterogenität in der Wirksamkeit eines Medikaments, werden nicht ausreichend

in die Analyse mit einbezogen. Bei Ansätzen wie z.B. der Subgruppenanalyse,

die solche Informationen verwertet, sind oft die betrachteten Gruppen zu klein

um statistisch fundierte Aussagen treffen zu können. Daher ist es notwendig

neue Methoden für die Auswertung der großen Datenmengen zu entwickeln. Die

in dieser Arbeit vorgestellten neuen Ansätze basieren alle auf einem innovativen

endpunkt-orientierten Clustering-Algorithmus, der von Brieden und Gritzmann

entwickelt wurde. Dieser identifiziert versteckte multidimensionale Strukturen

und bildet genügend große Kollektive in denen Patienten gruppiert werden, die im

Hinblick auf die Kombination ihrer charakteristischen Ausprägungen ähnlich sind.

Die darauf aufbauenden Methoden dienen der Bewertung und Vorhersage der Ef-

fizienz medizinischer Interventionen und der Identifizierung der Heterogenität in

der Wirksamkeit eines Medikaments in den identifizierten Patientenkollektiven.
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1. Introduction

In the last few years, the collection of big data has been revolutionary for the

healthcare industry [51]. Large amounts of data have been generated by medical

care and medically relevant researches [54]. Driven by the potential to improve the

quality of healthcare delivery, these massive quantities of data serve to support a

wide range of medical and healthcare functions [54]. Among others, this includes

the health economic evaluation, in terms of evidence-based medicine, to provide

customized, personalized information for all patients. Especially healthcare in-

stitutions, like the Institute for Quality and Efficiency in Health Care (IQWiG)

or pharmaceuticals companies, use this data for the evaluation of the benefit of

new invented drugs. Thereby, the emphasis is on collecting data on the health of

patients with the help of clinical trials. The problem is that this data is becoming

bigger and more complex, especially with the development of new storage tech-

nologies, so that they can not be easily managed with traditional or common data

management tools and methods [67]. Big data in healthcare is overwhelming not

only because of its volume but also because of the diversity of data types [67]. It

covers clinical data, like physician’s written notes and prescriptions, patient data

in electronic patient records, machine generated data, like monitored vital signs,

social media posts and less patient-specific information, including emergency care

data, news feeds and articles in medical journals [54]. Statistical, mathematical,

visualization and computational approaches from a wide range of disciplines are

needed to keep apace of the complexity in big data and to advance medicine [51].

The common way for handling big data, in terms of health economic evaluation, is

the use of meta-analytic approaches. The main assumption of most of these meth-

ods is that there is only one true effect of a medical intervention for all treated

patients. Therefore, these approaches deal with the summary and synthesis of pa-

tient data derived by endpoint-oriented clinical studies to provide evidence about

the efficacy of a medical intervention. With the consideration of several clinical
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1. Introduction

studies, it is possible to achieve more statistical power and a higher accuracy

of the treatment effect estimates. The aggregation of the results of the single

trials to one summary treatment effect is then, roughly speaking, carried out by

considering mean outcomes of the different studies. This implies the assumption

that the benefit of a drug is independent of factors such as gender, age or the

body mass index (BMI). In suitable, multivariate subgroup analyses, such as the

analysis of the efficacy of a drug among women with a certain BMI in a specific

age group, in general the respective collectives are too small to derive significant

results [21]. This clinical variety of characteristic values combinations might lead

to the so-called clinical heterogeneity in the treatment effects. Unfortunately,

it is difficult to consider this heterogeneity with the common meta-analytic ap-

proaches.

In this thesis, new theories for the handling of big patient data and the analysis

of the benefit of medical interventions, in terms of health economic evaluation, are

introduced. The theories are based on the results of the application of an innova-

tive endpoint-oriented clustering technology that just aims to identify sufficiently

large and homogeneous patient collectives by means of similar characteristic val-

ues combinations. With the use of this technology, clinical heterogeneity is taken

into account in the analysis of the treatment’s efficacy. The main assumption is

that there is a treatment effect for each patient collective which has been identified

by the endpoint-oriented clustering algorithm. The new invented cluster-based

methods, which are applied on the identified patient collectives, deal with the

evaluation and prediction of the efficacy of medical interventions and the identi-

fication of clinical heterogeneity in the treatment effects.

To get an understanding of the relevance and necessity of these new invented

cluster-based analyses, in Chapter 2 of this thesis, we will give an introduction

to the health economic evaluation and its methods for the assessment of the ben-

efit of medical interventions in terms of evidenced-based medicine. Thereby, the

role of the scientific IQWiG is condensed. Since the health economic evaluation

methods are based on significant data on the efficacy of the analyzed drug, in

Chapter 3 we will give an overview of meta-analysis, which is currently the main

supplier of summaries and syntheses of patient data derived by endpoint-oriented
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clinical trials. Thereby, we will present the standard treatment effect estimates

for binary and cardinal outcome or the so-called endpoint of a patient. Then,

we will give an overview of the two established models, the fixed-effects and the

random-effects model, for the aggregation of the treatment effect estimates in the

single studies. In this context, in Chapter 4 of this thesis, we will highlight the

causes and the assessment of the resulting heterogeneity in the treatment effects

of the single trials with the help of the Q-statistic and its related indices. Further-

more, we will present methods which take heterogeneity into account in terms of

meta-analysis. Unfortunately, with the use of these methods, like the subgroup

analysis and the meta-regression, several problems arise and we will give a rec-

ommendation how these existent problems can be handled with the help of new

invented cluster-based analysis methods. Therefore, in Chapter 5, the innovative

endpoint-oriented clustering approach is introduced. We will present the general

definitions which are necessary for the formulation of the clustering algorithm.

In this context, we distinguish between supervised and unsupervised learning

approaches which are commonly used in the field of machine learning. Unsuper-

vised techniques discover hidden structures in high-dimensional patient data sets

without prior information. In contrast, supervised learning approaches train a

mapping based on a given set of characteristic values combinations of patients

and their endpoints. For more information, please refer to [45]. On the patient

collectives, identified by the unsupervised or supervised learning clustering ap-

proaches, new statistical cluster-based analysis methods have been developed for

the evaluation of medical interventions, the identification of heterogeneity and

the prediction of the efficacy of the analyzed drugs. In Chapter 6, the empirical

results of the new invented cluster-based analyses and the common meta-analytic

techniques are presented and compared. All methods had been applied on a pa-

tient data set derived by clinical studies on a new invented and two standard

antidepressants. We will see that the existent problem of heterogeneity could be

handled with the help of the new cluster-based approaches. In this context, we

will have a closer look at the cluster-based identification of heterogeneity within

and across clusters. Furthermore, the results of the cluster-based prediction of

the efficacy of all antidepressants and the assessment of the prediction’s reliability

is demonstrated. In Chapter 7, we will summarize the main empirical results and

we will discuss possible future work.
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2. Health economic evaluation

Health economics is an interdisciplinary science which deals with the production,

distribution and consumption of health goods in medicare and combines health

science and economics [75]. Health economist are engaged in analyzing the sup-

ply and demand of health services under consideration of existent information

asymmetries [75]. The health economic efficiency states that the recoverable

services of the statutory health insurances and the services of the medical ser-

vice provisioner have to be sufficient, appropriate and economical [11]. Services,

which are not necessary or uneconomical, may not be used by the insured or

may not be produced by the service providers. Also the health insurance funds

may not authorize them [11][75]. Therefore, health economists’ task is to find a

balance between the medical possibilities, its financing and quality [75]. Methods

and models for the assessment and evaluation of medical interventions and new

health technologies, by means of medication, labor technologies or diagnostics

[11], have been developed. For this so-called health economic evaluation, clin-

ical, economic and epidemiological data is applied [58]. All used data sources

have to be described accurately, their choice has to be motivated and their suit-

ability and validity has to be evaluated [58]. In Chapter 3, we want to give an

overview of the standard method, the meta-analysis, for providing clinical data

for the assessment and evaluation of health services. But since this method is

critical questioned due to suitability and validity of data, we will introduce new

innovative cluster-based methods in Chapter 5, the cluster-based meta-analysis

and further approaches, for the supply of suitable and valid data for the health

economic evaluation.

To give an understanding of the relevance and necessity of the new invented

cluster-based analyses, we want to give an introduction to heath economic evalu-

ation. In Section 2.1 of this chapter, we will give an overview of the general health
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economic evaluation methods for which the cluster-based analysis could provide

its suitable and valid data. We will only give a short introduction, a detailed

description of each method can be found in [58]. In Section 2.2, which is mainly

based on [36], we will highlight the health economic evaluation in Germany as a

task of the scientific IQWiG and give an overview of its legal responsibilities, its

health economic evaluation methods and the role of evidence-based medicine in

the evaluation of medical interventions in Germany.

2.1. General evaluation methods

In health economic evaluation of medical interventions, the costs and the pa-

tients’ outcome, e.g. the influence on the expectancy of life or the health status,

are compared [11]. Since health economic analyses serve as decision support, it

is necessary to provide a minimum of transparency [11]. Therefore, specific stan-

dards for the implementation and publication of the methods in health economic

analysis have been developed [11]. When analyzing the costs and the benefit of

a health economic service or medical intervention, different evaluation methods

can be applied depending on the unit of the measured outcome [11]. A summary

of these methods is shown in Table 2.1. There are three different possibilities for

the measurement of the outcome. If it is in natural one-dimensional units, like

clinical parameters, e.g. the remission or response rate or gained life years, we

choose the cost-efficiency analysis (CEA). In case of outcome measured in util-

ity values, the common approach is the cost-utility analysis (CUA). If we have

monetary units, we take the cost-benefit analysis (CBA) [11]. For each method,

the costs are expressed in a monetary unit. However, the most simplest way for

the evaluation of medical interventions is the cost-minimization analysis (CMA).

The descriptions of the different methods in the following subsections are mainly

based on [11] and [58]. We will start with the CMA.

Cost-minimization analysis

In the CMA, two or more different medical interventions are compared due to

their net costs to identify the most cost-efficient alternative. The evaluation

method is only feasible under the assumptions that the treatment effects are

equal. The equality has to be presented transparently and comprehensible, e.g.
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2.1. General evaluation methods

Method Cost evaluation Patient’ outcome Comparison
Evaluation

CMA monetary none none
CEA monetary natural units costs per outcome unit
CUA monetary utility values costs per QALY
CBA monetary monetary net costs

Table 2.1.: Methods for health economic evaluation

with the help of meta-analysis [76].

The types of interventions, which can be evaluated with this method, are lim-

ited. A common example of a CMA is the comparison of generic equivalents of

medical interventions. If a manufacturer want to launch a generic medication,

he has to demonstrate that its product is biologically equivalent to the already

established medication. Thus, in case the compared medications have the same

chemical composition, dose and pharmaceutical properties, only the cost of the

medication itself needs to be considered due to the same assumed outcome. An-

other example of the conduction of a CMA, is the comparison of costs for a

medication which is administered in different settings. A common example is

the administration of an intravenous antibiotics in a hospital, compared to the

medication of the same antibiotics at home via a home health care service [46].

Cost-efficiency analysis

The next evaluation method we want to discuss is the CEA. In this approach,

the costs and the efficacy of medical interventions are compared. Thereby, the

costs are represented in monetary units and the patients’ outcome is expressed in

non-monetary units, e.g. gained life years or a clinical parameters. The require-

ments for the conduction of the CEA is that the examined interventions have

the same qualitative clinical endpoints, by means of the same effect measure for

the evaluation of the treatment effect. It is used especially for the comparison of

two mutually exclusive interventions. The comparative criterion tCEA is carried

out in costs per outcome unit, where the intervention is chosen with the lower

tCEA value. For the example of measuring the outcome in gained life years, the
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comparative criterion is

tCEA =
costs [monetary unit]

life-years-gained benefit
.

Using this method, it is not possible to evaluate interventions with more than

one effect. For example, if safety-related services not only avoid cases of death

but also assaults, then CEA fails because it does not take into account the ag-

gregation of multi-dimensional effects. Another disadvantage of this method is

that there is indeed a ranking of mutually exclusive interventions but there is

no recommendation [11] for which value a conduction of an intervention is no

longer reasonable. The only feasible application is the evaluation of medical in-

terventions when apportioning a fixed budget among those. In this case, this

intervention should be taken with the lowest tCEA value and continue until the

budget is used up. Thereby, a problem which occurs, is the determination of the

budgets’ amount.

Cost-utility analysis

The next evaluation method is the CUA. Like it is stated above, this method is

used if the outcome is measured in utility values, by means of values of a cardinal

utility function. The costs are also represented in a monetary unit. The CUA

is taken for the comparison of two mutually exclusive interventions. The big

advantage of this method is that all effects of a medical intervention, e.g. the

prolongation of life and the change of the health status, can be considered in the

evaluation by a suitable weighting scheme. For the conduction of a CUA, different

approaches have been developed. The interested reader is referred to [58] for

more information. The most common utility measure is the quality adjusted life

year (QALY). Using this approach, all possible health conditions are evaluated

on a scale where death is rated by 0 and the status of perfectly health is rated by

1. The utility function is then defined in a way that a representative individual

would be indifferent e.g. between the scenario ’survive one year with health

status 0.5’ and scenario ’survive half a year with health status 1’. With this

approach, all effects of a medical intervention can be compared and aggregated

to one summary index. This index can be interpreted as growth in the QALYs.
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2.1. General evaluation methods

For the comparison of interventions, the comparative criterion

tCUA =
costs [monetary unit]

benefit [utility unit]

is used and the intervention with the lower value is taken. In contrast to the

CEA, with this method medical interventions with effects on different clinical

levels can be compared due to the calculated utility values.

But this method also has mentionable disadvantages. For the determination

of the utility function, it has to be fixed who rates the different states of health,

because different persons may have different opinions on the scaling. Also the

CUA only provides a ranking of mutually exclusive interventions but does not

recommend a limit for the comparative criterion tCUA for the conduction of the

intervention. Here, also the splitting of a fixed budget is a feasible application,

with the problem of the optimal determination of the budgets’ amount.

Cost-benefit analysis

The last evaluation method we want to discuss is the CBA. For this method,

e.g. each prolongation of life and each change in the state of health is expressed

in a monetary value. Using this method, each considered intervention can be

evaluated separately. The evaluation criterion is defined by

tCBA =
costs [monetary unit]

utility [monetary unit]
.

An intervention is recommended as long as tCBA < 1 or t′CBA > 0, if

t′CBA = utility [monetary unit]− costs [monetary unit].

In comparison to the CEA and CUA, this method answers the question which

amount should be generally spent for medical interventions to prolong the life

expectancy and to improve the quality of life.

Lemma 2.1.1. The CEA is suitable for the comparison of two mutually exclu-

sive medical interventions with one-dimensional effect. On the other hand the
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CUA is also used for the evaluation of interventions with more than one effect.

However, without the specification of a specific budget there is no conclusion if

the intervention should be conducted. The CBA is a monetary evaluation of life

and health and therefore enables the evaluation of each single intervention.

The big advantage of the CBA is that there is a recommendation for the con-

duction of a medical intervention. Certainly, it is based on another concept for

the measurement of the effects of interventions. Generally, it emanates from the

assumption that there is a subjective utility and uses the willingness to pay of

the affected patients as a measure for the monetary value. The CBA is also used

by IQWiG for the health economic evaluation in Germany.

2.2. Health economic evaluation in Germany

In Germany the scientific IQWiG is responsible for the evaluation of the ben-

efit and harm of medical interventions, as well as their economic implications

to contribute to an continuous improvement of the quality and efficiency of the

German population’s medicare [36]. IQWiG was established as part of the Ger-

man Health Care Reform in 2004 by the Federal Joint Committee (G-BA) and

is largely funded by contributions of Statutory Health Insurance (SHI) members.

For this purpose, a levy is determined by the G-BA and is paid by all German

medical practices and hospitals treating SHI-insured patients. Its legal founda-

tions and responsibilities can be found in the Social Code Book V (SGB V) and

have been adapted and extended within the framework of further German Health

Care Reforms in the last few years [36]. The Institute’s main focus in the eval-

uation of medical interventions is the benefit for patients. Therefore, questions

like ’Does the intervention prolong life or reduce symptoms? Does it improve

the quality of life of the patient?’ need to be answered. Based on this neutral

health information on current medical knowledge and the patient-oriented work,

the population is able to make informed decisions on health care interventions

[36].

26
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2.2.1. Legal responsibility

The Institute takes action in issues on quality and efficiency of services in the

context of statutory health insurance, like the examination of advantages and

disadvantages of medical interventions for patients. IQWiG operates for exam-

ple in areas like research, representation and assessment of the current scientific

evidence on diagnostic and therapeutic procedures for selected diseases. Further-

more, it is responsible for the preparation of scientific reports, expert opinions,

and comments on quality and efficiency issues of the statutory health insurance

service. During the preparation of its reports, the Institute ensures high trans-

parency of their procedures and appropriate involvement of third parties. In all

important phases of report preparation, the law obliges the Institute to provide

the opportunity of comment to experts, manufacturers and relevant organizations

representing the interests of patients and self-help groups of chronically ill and

disabled persons, as well as to the Federal Government Commissioner for Pa-

tients Affairs. Then, the Institute considers these comments in its assessments.

Another task is the appraisal of evidence-based clinical practice guideline on the

most relevant diseases from an epidemiological point of view. But one of the

most important tasks is the assessment of the benefit and costs of drugs and

the associated provision of easily understandable information for all patients and

consumers on the quality and efficiency of health care services, as well as on the

diagnosis and treatment of diseases of substantial epidemiological relevance. In

order to perform the mentioned tasks, IQWiG has to award scientific contracts

to external experts. Just like the Institute’s scientific staff, also the external ex-

perts have to disclose all connections to associations and contract organizations,

particularly to pharmaceutical and medical devices industries, including details

on the type and amount of any remuneration received. This measure ensures the

professional independence of the Institute.

Like it is stated in the SGB V, only the G-BA commissions IQWiG. Fur-

thermore, the institutions which form the G-BA, the Federal Ministry of Health

and the organizations relevant for the fulfillment of the interests of patients and

self-help groups of chronically ill and disabled persons, as well as the Federal Gov-

ernment Commissioner for the needs of the patient, can apply for commissioning

the Institute at the G-BA. After the fulfillment of the tasks the commission’s
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results of the Institute are submitted to the G-BA as recommendations. The

G-BA has to consider these recommendations under its terms of reference.

2.2.2. Economic evaluation

Due to the resolutions made in the context of the Reform of the Market for Medic-

inal Products (AMNOG), at the beginning of 2011, the G-BA can commission

the Institute to assess the benefit of drugs with new active ingredients shortly

after market entry. Therefore, dossiers summarizing the results of studies have

to be submitted by the manufacturer. In connection with this benefit analysis,

the G-BA can also commission the Institute to conduct a health economic evalu-

ation. Therefore, cost-benefit relationships of medical interventions are opposed

to provide information which are considered for cost absorption by the insurance

community. In this context, the cost-benefit analysis of IQWiG, described in

[37], is mainly used if price negotiation between the SHI head association and the

pharmaceutical company fails and there is no compliance in following arbitration

proceedings. Thereby, due to law, the suitability and reasonableness of the cost

absorption by the insurance community has to be considered by the G-BA. To

do so, the G-BA receives information about the suitability on the basis of the

CBA conducted by IQWiG. Information about the reasonableness are provided

by economic impact analysis. The evaluation of suitability and reasonableness,

with regard to cost absorption, is conducted under consideration if there is a

justifiable relation between costs and benefit of the medical intervention which

has to arise from the CBA. With respect to this evaluation, the Institute must

ensure that the assessment of the benefit is conducted according to internation-

ally approved standards of evidence-based medicine and health economics. The

criteria to determine the benefit for patients are named in law like the increase in

life expectancy, the improvement in health status and quality of life (QoL) and

the reduction in disease duration and adverse effects.

As part of the health care structure, law amendments were made in the year

2012 which enables the G-BA to initiate clinical trials for new interventions unless

the benefits hasn’t been sufficiently proved yet and, however, the method reveals

the potential of a necessary treatment alternative. Even external applicants, e.g.
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medical device manufacturers, can apply for a clinical trial by presenting rele-

vant documents of the method’s potential to the G-BA which has established the

criteria for the evaluation of this potential. The G-BA normally contracts the

Institute to check the documents, whether there is a potential for the application.

2.2.3. Evidence-based medicine

An important basis of IQWiG’s work is evidence-based medicine (EBM). Accord-

ing to [57], evidence-based medicine has been defined as ’integrating individual

clinical expertise with the best available external clinical evidence from system-

atic research’. In particular, it means health care for patients that is not based

solely on personal opinions and conventions, but on evidence which has been

surveyed by scientific methods [57]. Therefore, EBM includes approaches which

should protect from wrong decisions and expectations. In this context, a wrong

decision might be that a beneficial medical intervention is not included in the

provision of health care or that an useless or even harmful medication is widely

spread. The Institute submits certain evidence, e.g. that medication A is more

efficient than medication B for the treatment of patients with a specific disease.

Thus, the Institute’s application is not the treatment of single patients but the

identification of evidence for the benefit of patients.

The characteristic standard element of EBM is the structured and systematic

way to find answers to medical questions. Therefore, the approach is to formulate

the scientific question precisely. In medicine there is almost always the decision

between at least two interventions. Furthermore, it has to be defined how the

benefit of a therapy should be measured and which consequences can be expected.

Hereby, the question to be answered is if life can be prolonged and if disorders and

life quality can be improved. The EBM formulates explicitly that in medicine,

for the description of the benefit of medical interventions, only probabilities or

predictions for patient groups are possible. Therefore, to give evidence about

the benefit, studies with a sufficiently large number of participants are required.

For the planning, conduction and evaluation of these clinical trials, rules and

methods have been developed which fulfill international standards. Thereby,

a very important strategy of EBM is the identification of appropriate clinical
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trials due to their design and conduction for the evaluation of interventions by

aggregating the results of the single trials. This statistical method is called meta-

analysis and is introduced in the next chapter. If there are big differences between

the results of the single trials, this heterogeneity has to be considered. To deal

with this arising problem, IQWiG uses subgroup analysis which is also explained

in Chapter 3. The new invented cluster-based technologies introduced in Chapter

5 are based on the idea of this subgroup analysis.
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Meta-analysis has been defined by Glass in 1976 to be the ’statistical analysis

of a large collection of analysis results from individual studies for the purpose of

integrating the findings’ [25]. The term meta-analysis has been adopted within

other disciplines and has proven particularly popular in clinical research, although

Glass was involved in social science [25]. In medicine, the increase in the number

of meta-analyses being conducted began in the 1980s, due to the greater impor-

tance of evidence-based medicine and the requirement of reliable summaries of

the vast and expanding volume of clinical trials [55][77]. In this thesis, we will

focus on meta-analyses of randomized controlled trials (RCTs). Besides fixed

controlled trials and further study forms, especially the RCT design is a very

popular and approved standard for conducting clinical studies to evaluate medi-

cal interventions or to compare two different medications [55]. This study design

gets its name from the mode of carrying out the study. Compared to fixed con-

trolled trials, the participants of RCTs are randomly grouped into control and

treatment group. The treatment group receives the medical intervention and the

control group receives a placebo, an already approved standard therapy or no

intervention at all [25]. For all participants of a study, an outcome is measured,

e.g. a binary outcome which states if the participant has responded to the ad-

ministered medication respectively placebo or not. The evaluation of a clinical

trial is done by estimating and making inferences about the treatment effect, de-

pending on the current medical research question. But if one conducted clinical

trial is analyzed separately, it might be too small or too limited in scope to get

unequivocal or generalizable conclusions about the effect of a medical interven-

tion. To strengthen the evidence about the efficacy, statistical methods, like the

meta-analysis, are needed [24] for the summary of the collected data generated

by RCTs.
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In this chapter, we will give an introduction to meta-analysis of RCTs. We

will start in Section 3.1 with the presentation of the idea of meta-analysis. Then,

on this basis, we will give a detailed description in Section 3.2 how the treatment

effect in the single clinical trials can be determined, depending on the scale of

the measured outcome of the participating patients. Therefore, we will have a

look on effect measures of binary and cardinal patient outcome data. Since in

meta-analysis it is assumed that there is one true treatment effect for all patients,

in Section 3.3 we will give an introduction how the treatment effect estimates of

the single clinical trials can be aggregated to one estimated summary treatment

effect. Therefore, we will present the fixed-effects and the random-effects model

and we will discuss the differences between these two approaches. In the end of

this chapter, in Section 3.4, it is described how meta-analyses are published to

enable evidence-based medicine. The following sections are mainly based on [5]

and [77].

3.1. Overview

Meta-analysis is classified to secondary research and is conducted similar to a

primary study where it is common to analyze the mean value and the standard

deviation of the outcome data in the treatment group of a study [5]. In the first

step, all appropriate studies, including patients with the same administered med-

ical intervention, are collected. In the second step, the treatment effect of each

single study is estimated on the basis of an appropriate effect measure, e.g. the

Risk Ratio for binary outcome. Possible effect measures under consideration of

the type of outcome will be discussed later in this chapter. Since in meta-analysis

it is assumed that there is one true treatment effect for all patients, it is common

to estimate a summary effect by calculating the weighted average of the single

study estimates. Therefore, the so-called fixed-effects and the random-effects

model are usually conducted. We will have a detailed look at these approaches

later in this chapter. There are different ways in which the results of a clinical trial

are available. Most frequently, the treatment effect of a clinical trial is published

e.g. in a scientific paper or a clinical trial report as a summarizing statistic. The

other way, and this is most preferable way, individual patient data, like the out-

come and specific attributes are available for each patient of the included studies.

32



3.2. Treatment effect estimates

In this thesis, we will focus on clinical trials with individual patient data. In this

case, it is also conventional to undertake meta-regression or subgroup analysis.

These approaches will be discussed in Chapter 4, when dealing with heterogeneity.

3.2. Treatment effect estimates

As already mentioned in the introductory paragraph, in meta-analysis we assume

that there is one true treatment effect of a medical intervention for all patients.

This treatment effect can be determined by the weighted aggregation of the sin-

gle estimated effects of the included studies which deal with the same research

question concerning the evaluation of a medical intervention. For this synthesis,

an effect measure based on the patients’ outcome is needed. In this section, we

will give a short overview of the different types of effect measures, depending

on the scale of the measured outcome of the patients participating in a study.

As outlined in [30] and shown in Table 3.1, there are different effect measures

for dichotomous, cardinal and ordinal outcome data. The outcome data of each

participant is called dichotomous or binary if it has one of only two possible oc-

currences, e.g. an event happens or no event happens. The outcome data is called

cardinal if the measurement is numerical and the use of the arithmetic mean as

the measure of average can be justified, e.g. the MADRS Score for the evaluation

of ataractics. Another type of effect measure for cardinal outcome data is the

time-to-event data discussed in [30]. In this case, for each individual of a study,

the time until a defined event occurs is measured. If the outcome is one of several

ordered categories, we talk about ordinal data, e.g. counts or rates which can be

got from counting the number of events each individual has experienced. In the

following, we will give a detailed introduction to the effect measures for dichoto-

mous or binary outcome data and for cardinal outcome data. For the interested

reader a detailed introduction to the effect measures of the other types can be

found in [77].

3.2.1. Binary data

Before we get to the definition of the effect measures for dichotomous or binary

outcome data, with the two possible occurrences success and failure, we need to
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Type of outcome data Effect measures

Binary data Risk ratio (RR)
Odds ratio (OR)
Risk difference (RD)
Number needed to treat (NNT)

Cardinal data Mean difference
Standardized mean difference
Time-to-event

Ordinal data Rates
Counts

Table 3.1.: Effect measures depending on individual outcome data

summarize the individual binary outcomes of study j, j = 1, . . . , nst, where nst is

the number of studies considered for the meta-analysis. For the determination of

the effect measures, we assume that for each study the outcome of an individual

in the treatment group is seen as a Bernoulli distributed random variable

Tj ∼ B(pTj),

with unknown probability of success pTj . The outcome of an individual in the

control group is also assumed to be Bernoulli distributed

Cj ∼ B(pCj),

with unknown probability of success pCj . We consider the individual outcome

in the treatment group as in the control group of all studies as independent

distributed random variables. Then the number of success STj in the treatment

group of study j is binomial distributed,

STj ∼ B(nTj , pTj , sTj),

with known number of individuals nTj in the treatment group and realization sTj
of STj of study j. Analogously, the number of success SCj in the control group of
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Success Failure

Treatment group sTj fTj nTj
Control group sCj fCj nCj

sj fj nj

Table 3.2.: 2× 2-table of binary patients’ outcome of study j

study j is also binomial distributed,

SCj ∼ B(nCj , pCj , sCj),

with known number of individuals in the control group nCj and realization sCj of

SCj . These results can be summarized in the so-called classic 2× 2-table [5][77].

In this table all individuals in the treatment group and the control group of a

study are subdivided into a success and a failure group, as the outcome of an

individual is only one of these two classifications. In Table 3.2 this 2× 2-table is

presented. The number of individuals in the treatment group who experienced a

success is described by sTj and the number of individuals who experienced a fail-

ure is described by fTj . We have an analogue notation for the control group. The

number of all individuals of study j is denoted by nj. To get an estimate for the

unknown probabilities pTj and pCj , it is common to use the maximum-likelihood

estimation (MLE) [5].

Theorem 3.2.1. Let Table 3.2 be the 2× 2-table of the binary patients’ outcome

of study j. Then

P̃Tj :=
STj
nTj

is the maximum likelihood estimator for the probability of success in the treatment

group of study j and

p̃Tj :=
sTj
nTj

the corresponding estimation, for j = 1, . . . , nst.

Proof. To apply the MLE we use the presented 2 × 2-table [5]. The likelihood
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function for the estimator P̃Tj of pTj is

L(sTj , pTj) =

(
nTj
sTj

)
pTj(1− pTj)

(nTj−sTj ).

With the maximization of this function we get the maximum-likelihood estimate

p̃Tj =
sTj
nTj

.

Theorem 3.2.2. Let Table 3.2 be the 2× 2-table of the binary patients’ outcome

of study j. Then

P̃Cj :=
SCj
nCj

is the maximum likelihood estimator for the probability of success in the control

group of study j and

p̃Cj :=
sCj
nCj

the corresponding estimation, for j = 1, . . . , nst.

Proof. The likelihood function for the estimator P̃Cj of pCj is analogously

L(sCj , pCj) =

(
nCj
sCj

)
pCj(1− pCj)

nCj−sCj

and with the maximization of this function we get

p̃Cj =
sCj
nCj

for the maximum-likelihood estimate.

After calculating and before analyzing and aggregating the treatment effects

of the single trials to one summary treatment effect, the values of the discussed

ratio effect measures below, the Risk Ratio and the Odds Ratio, are usually

transformed by applying the natural logarithm to the original value [5][30]. The

untransformed effect measures have three common characteristics:

1. 0 is the lowest value that occurs
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2. Value 1 is referred to no treatment effect

3. The highest value is infinity

This means that the number scale is not symmetric. An example of this asym-

metric scale is given in [30]: Whilst an Odds Ratio of 0.5 (a halving) and an Odds

Ratio of 2 (a doubling) are opposites, such that they should average to no effect,

the average of 0.5 and 2 is not an Odds Ratio of 1 but an Odds Ratio of 1.25.

With the transformation of the original value, by applying the natural logarithm,

the scale becomes symmetric. The natural logarithm of 0 is not defined but

lim
x→0

ln (x) = −∞.

Furthermore, it applies that

ln (1) = 0

and

lim
x→∞

lnx =∞.

In the example for the Odds Ratio of 0.5 the natural logarithm is ln (0.5) = −0.69

and for the Odds Ratio of 2 holds that ln (2) = 0.69. The average of −0.69 and

0.69 is 0 which is the transformed value of an Odds Ratio of 1 (exp (0) = 1).

This correctly implies no average treatment effect. The variance and the stan-

dard error are also calculated for the transformed estimated treatment effect to

yield not only a summary treatment effect but also confidence limits and so on

in logarithmic units. This has the effect of making e.g. the confidence intervals

appear symmetric.

Risk Ratio

The first treatment effect estimate we want to discuss is the Risk Ratio. As stated

in [5] the Risk Ratio is simply the ratio of two risks. To be more specific it is

the ratio of the estimated probability of success in the treatment group p̃Tj and

the estimated probability of success in the control group p̃Cj . The Risk Ratio is

therefore defined as follows [26][77].
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Definition 3.2.3. Let Table 3.2 be the 2×2-table of the binary patients’ outcome

of study j. Then

Θ̃j := ln

(
P̃Tj

P̃Cj

)
is the estimator for the treatment effect of study j. The estimation

RRj :=
p̃Tj
p̃Cj

is called the Risk Ratio and

θ̃j := ln (RRj)

the transformed Risk Ratio of study j, for j = 1, . . . , nst.

As stated in 3.2.1, before aggregating the values of the effect measure of all

studies, they have to be transformed. Therefore, we calculate the estimated

transformed treatment effect θ̃j for each study. Since we assume that there is one

true treatment effect for all patients, θ̃j is the realization of the approximately

normally distributed random variable

Θ̃j ∼ N (θ, var(Θ̃j)),

with unknown expected value θ, the true treatment effect, and variance var(Θ̃j),

which can be asymptotically estimated due to the delta method explained in

[41][77]. A detailed derivation for the distribution of the estimated treatment

effect can be found in Section 3.3.

Theorem 3.2.4. Let Table 3.2 be the 2× 2-table of the binary patients’ outcome

of study j. Then

Σ̃2
j =

1

STj
− 1

nTj
+

1

SCj
− 1

nCj

is the estimator for the variance of the estimated treatment effect Θ̃j of study j,

with the corresponding estimation

σ̃2
j =

1

sTj
− 1

nTj
+

1

sCj
− 1

nCj

and var(Θ̃j) ≈ σ̃2
j , for j = 1, . . . , nst, derived by the delta method.
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Odds Ratio

As the Risk Ratio is the ratio of two risks, the Odds Ratio is logically the ratio

of two odds [5]. It is the ratio of the odds of success in the treatment group and

the odds of success in the control group. It is defined as follows [26][77].

Definition 3.2.5. Let Table 3.2 be the 2×2-table of the binary patients’ outcome

of study j. Then

Θ̃j := ln

(
P̃Tj(1− P̃Cj)
P̃Cj(1− P̃Tj)

)
is the estimator for the treatment effect of study j. The estimation

ORj :=
p̃Tj(1− p̃Cj)
p̃Cj(1− p̃Tj)

is called the Odds Ratio and

θ̃j := ln (ORj)

the transformed Odds Ratio of study j, for j = 1, . . . , nst.

Like the Risk Ratio, the Odds Ratio is calculated for each study and has to

be transformed to θ̃j before interpreting the results. Since θ̃j is the realization of

the approximately normally distributed variable

Θ̃j ∼ N (θ, var(Θ̃j)),

the variance var(Θ̃j) of the treatment effect Θ̃j can be estimated due the delta

method [41]. This is shown in the next theorem [77][26].

Theorem 3.2.6. Let Table 3.2 be the 2× 2-table of the binary patients’ outcome

of study j. Then

Σ̃2
j =

1

STj
+

1

fTj
+

1

SCj
+

1

fCj

is the estimator for the variance of the estimated treatment effect Θ̃j of study j,

with the corresponding estimation

σ̃2
j =

1

sTj
+

1

fTj
+

1

sCj
+

1

fCj
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and var(Θ̃j) ≈ σ̃2
j , for j = 1, . . . , nst, derived by the delta method.

Risk Difference

Last but not least, we want to introduce the Risk Difference which is also an ef-

fect measure for binary outcome data. Unlike the ratio effect measures, the Risk

Difference is, like the name implies, the difference between two risks [5]. In detail

it is the difference between the estimated probability of success in the treatment

group and the estimated probability of success in the control group. The Risk

Difference is defined as follows [77].

Definition 3.2.7. Let Table 3.2 be the 2×2-table of the binary patients’ outcome

of study j. Then

Θ̃j := P̃Tj − P̃Cj

is the estimator for the treatment effect of study j. The corresponding estimation

θ̃j = RDj := p̃Tj − p̃Cj

is called the Risk Difference of study j, for j = 1, . . . , nst.

With θ̃j being the realization of the approximately normally distributed vari-

able

Θ̃j ∼ N (θ, var(Θ̃j)),

the variance var(Θ̃j) can be estimated as follows [41][77].

Theorem 3.2.8. Let Table 3.2 be the 2× 2-table of the binary patients’ outcome

of study j. Then

Σ̃2
j =

sTjfTj
(nTj)

3
+
sCjfCj
(nCj)

3

is the estimator for the variance of the estimated treatment effect Θ̃j of study j,

with the corresponding estimation

σ̃2
j =

sTjfTj
(nTj)

3
+
sCjfCj
(nCj)

3

and var(Θ̃j) ≈ σ̃2
j , for j = 1, . . . , nst, derived by the delta method.
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After calculating the realization θ̃j and the estimate of var(Θ̃j) of the treatment

effect Θ̃j, a summary treatment effect is determined by aggregating the single

transformed effect measure values of all studies. The different models for this

aggregation will be discussed later in Section 3.3. In the end, the aggregated

treatment effect can be re-transformed [5], when using the Risk Ratio or the

Odds Ratio.

Choice of an effect measure

Like it is discussed in [5] and in [77], the selection of one of the introduced ef-

fect measures for meta-analysis depends on different factors. The transformed

Odds Ratio is the preferred effect measure as the adherence of corresponding test

statistics to their asymptotic normal or χ2 distribution is closest [63]. A further

advantage of the use of the transformed Odds Ratio over the use of the trans-

formed Risk Ratio is that if the probability of failure (1− p̃Tj) in the treatment

group respectively (1− p̃Cj) in the control group is used instead of the probability

of success p̃Tj respectively p̃Cj , the resulting transformed Odds Ratio will be of

opposite sign and equal magnitude. The resulting transformed Risk Ratio will

also be of opposite sign but not of equal magnitude [77]. The big disadvantage

of the use of the Risk Difference is that the resulting values are restricted to the

interval [−1, 1]. Therefore, the on asymptotic theory based confidence interval

can include points outside these limits [77]. Nevertheless an appropriate effect

measure should be chosen for the selected trials depending on the underlying

available data. To get a reliable result after aggregation, for each trial the same

effect measure has to be taken.

3.2.2. Cardinal data

For the description of the effect measures for cardinal data, we assume that for

study j, j = 1, . . . , nst, the observed outcome YiTj of individual i, i = 1, . . . , nTj ,

in the treatment group is approximately normally distributed,

YiTj ∼ N (yTj , σ
2
Tj

),

with realization yiTj , unknown expected value yTj and variance σ2
Tj

. The outcome

YiCj of individual i, i = 1, . . . , nCj , in the control group is also assumed to be at
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least approximately normally distributed,

YiCj ∼ N (yCj , σ
2
Cj

),

with realization yiCj , unknown expected value yCj and variance σ2
Cj

. Thereby,

nTj is the number of patients in the treatment group and nCj the number of pa-

tients in the control group of study j. The effect measures for cardinal data we

want to discuss are based on the mean patients’ outcome. Therefore, we use the

arithmetic mean outcome as estimator for the expected outcome in the treatment

group and the control group of study j. Before we get to the definition of this

unbiased estimator, we summarize the patients’ outcome in the treatment group

and the control group to the following sets.

Definition 3.2.9. Let YiTj be the outcome of patient i in the treatment group of

study j with realization yiTj and let YiCj be the outcome of patient i in the control

group of study j with realization yiCj , then

YTj := {yiTj}
nTj
i=1

is the set of patients in the treatment group and

YCj := {yiCj}
nCj
i=1

is the set of patients in the control group of study j, for j = 1, . . . , nst.

With this definition, we can specify the unbiased estimator for the expected

outcome in the treatment and control group [5][77].

Theorem 3.2.10. Let YTj be the set of patients in the treatment group of study

j, then

ỸTj :=
1

nTj

nTj∑
i=1

YiTj

is the unbiased estimator for the expected outcome in the treatment group of study
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j and

ỹTj :=
1

nTj

nTj∑
i=1

yiTj

the corresponding estimation, for j = 1, . . . , nst.

Theorem 3.2.11. Let YCj be the set of patients in the control group of study j,

then

ỸCj :=
1

nCj

nCj∑
i=1

YiCj

is the unbiased estimator for the expected outcome in the control group of study

j and

ỹCj :=
1

nCj

nCj∑
i=1

yiCj

the corresponding estimation, for j = 1, . . . , nst.

The estimators of variance σ2
Tj

and σ2
Cj

of the patients’ outcome in the treat-

ment and control group of study j are given in the following theorems [5][77].

Theorem 3.2.12. Let YTj be the set of patients in the treatment group of study

j and let ỸTj be the estimator for the expected outcome with estimation ỹTj , then

Σ̃2
Tj

:=
1

nTj − 1

nTj∑
i=1

(YiTj − ỸTj)2

is the unbiased estimator for the variance of the outcome in the treatment group

of study j and

σ̃2
Tj

:=
1

nTj − 1

nTj∑
i=1

(yiTj − ỹTj)2

the corresponding estimation, for j = 1, . . . , nst.

Theorem 3.2.13. Let YCj be the set of patients in the control group of study j

and let ỸCj be the estimator for the expected outcome with estimation ỹCj , then

Σ̃2
Cj

:=
1

nCj − 1

nCj∑
i=1

(YiCj − ỸCj)2
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is the unbiased estimator for the variance of the outcome in the control group of

study j and

σ̃2
Cj

:=
1

nCj − 1

nCj∑
i=1

(yiCj − ỹCj)2

the corresponding estimation, for j = 1, . . . , nst.

Absolute difference between means

The first treatment effect for cardinal data we want to discuss, is the absolute

difference between the mean outcome of the treatment and the control group of

study j, j = 1, . . . , nst. This difference is specified in the following definition [77].

Definition 3.2.14. Let ỸTj be the estimator for the expected outcome in the

treatment group with estimation ỹTj and let ỸCj be the estimator for the expected

outcome in the control group with estimation ỹCj of study j. Then

Θ̃j := ỸTj − ỸCj

is the estimator for the treatment effect of study j. The corresponding estimation

θ̃j := ỹTj − ỹCj

is called the absolute difference between the mean outcomes in the treatment and

control group of study j, for j = 1, . . . , nst.

The effect measure value θ̃j is the realization of the approximately normally

distributed random variable

Θ̃j ∼ N (θ, var(Θ̃j)),

with unknown true treatment effect θ and variance var(Θ̃j). The estimation of

var(Θ̃j) is given in the next remark [77].

Remark 3.2.15. Let Σ̃2
Tj

be the estimator for the variance of the outcome in the

treatment group with realizations σ̃2
Tj

. Furthermore let Σ̃2
Cj

be the estimator for
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the variance of the outcome in the control group with realizations σ̃2
Cj

of study j.

Then

Σ̃2
j :=

Σ̃2
Tj

nTj
+

Σ̃2
Cj

nCj

is the estimator for the variance of the estimated treatment effect Θ̃j of study j,

σ̃2
j :=

σ̃2
Tj

nTj
+
σ̃2
Cj

nCj

is the corresponding estimation and var(Θ̃j) ≈ σ̃2
j , for j = 1, . . . , nst.

If we assume, that the variance σ2
Tj

of the outcome YiTj of individuals in the

treatment group and the variance σ2
Cj

of the outcome of individuals in the control

group are the same,

σ2
Tj

= σ2
Cj

=: σ2
Pj
,

like it is assumed in most of the parametric data analysis techniques, then for

the variance of the estimated treatment effect Θ̃j holds

var(Θ̃j) = σ2
Pj

(
nTj + nCj
nTjnCj

)
[5]. But before we get to this definition, we need an estimate for the variance σ2

Pj

which is specified in the following remark [77].

Remark 3.2.16. Let Σ̃2
Tj

be the estimator for the variance of the outcome in the

treatment group with realization σ̃2
Tj

. Furthermore let Σ̃2
Cj

be the estimator for

the variance of the outcome in the control group with realization σ̃2
Cj

of study j.

Then

Σ̃2
Pj

:=
(nTj − 1)Σ̃2

Tj
+ (nCj − 1)Σ̃2

Cj

nTj + nCj − 2
,

is the estimator for the variance of the pooled outcome in the treatment and control

group and

σ̃2
Pj

:=
(nTj − 1)σ̃2

Tj
+ (nCj − 1)σ̃2

Cj

nTj + nCj − 2
,

the corresponding estimation, for j = 1, . . . , nst.

Now the estimator for the variance of the estimated treatment effect Θ̃j can
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be formulated [77].

Remark 3.2.17. Let Σ̃2
Pj

be the estimator for the variance of the pooled outcome

in the treatment and control group with realization σ̃2
Pj

. Then

Σ̃2
j := Σ̃2

Pj

(
nTj + nCj
nTjnCj

)

is the estimator for the variance of the estimated treatment effect Θ̃j of study j,

σ̃2
j := σ̃2

Pj

(
nTj + nCj
nTjnCj

)

is the corresponding estimation and var(Θ̃j) ≈ σ̃2
j , for j = 1, . . . , nst.

Standardized difference between means

The second effect measure for cardinal data we want to introduce, is the stan-

dardized difference between the mean outcome of the treatment and the control

group of study j, j = 1, . . . , nst. It is used in meta-analysis when the studies

all assess the equal outcome but measure it in a variety of ways, e.g. all studies

measure depression but they use different psychometric scales. In this circum-

stance, it is necessary to standardize the results of the single studies to a uniform

scale before they can be aggregated [30]. This standardized difference is defined

as follows [26][77].

Definition 3.2.18. Let ỸTj be the estimator for the expected outcome in the

treatment group with estimation ỹTj and let ỸCj be the estimator for the expected

outcome in the control group with estimation ỹCj of study j. Furthermore, let

Σ̃2
Pj

be the estimated variance of the pooled outcome with estimation σ̃2
Pj

of study

j. Then

Θ̃j :=
ỸTj − ỸCj

Σ̃Pj

is the estimator for the treatment effect of study j. The corresponding estimation

θ̃j :=
ỹTj − ỹCj
σ̃Pj
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is called the standardized difference between the mean outcomes in the treatment

and control group of study j, for j = 1, . . . , nst.

As for the absolute difference, the estimated treatment effect θ̃j is the realiza-

tion of the approximately normally distributed random variable

Θ̃j ∼ N (θ, var(Θ̃j)),

with unknown true treatment effect θ and variance var(Θ̃j). The variance of Θ̃j

can be approximated as follows [77].

Remark 3.2.19. Let nj be the number of patients of study j. Furthermore let nTj
be the number of patients in the treatment group and nCj the number of patients

in the control group of study j. Then

Σ̃2
j :=

nj
nTjnCj

is the approximated variance of the estimated treatment effect Θ̃j,

σ̃2
j :=

nj
nTjnCj

is the corresponding estimation and var(Θ̃j) ≈ σ̃2
j , for j = 1, . . . , nst.

For each discussed effect measure holds that the estimated treatment effect θ̃j

is the realization of the approximately normally distributed random variable

Θ̃j ∼ N (θ, σ̃2
j ),

with unknown true treatment effect θ and variance var(Θ̃j) ≈ σ̃2
j . Since

Θ̃j − θ
σ̃j

is then standardized normally distributed, for the (1− α) confidence interval Ij
of the true treatment effect θ of study j, for j = 1, . . . , nst, follows

Ij = [θ̃j − z[1− α

2
]σ̃j, θ̃j + z[1− α

2
]σ̃j],
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where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution.

3.3. Summary treatment effect estimate

In this section, we will give an introduction to the most common models for cal-

culating the estimated summary treatment effect, the fixed-effects model and the

random-effects model. Those two model will be introduced like it is done in [77]

and [5]. In both models the estimation of the true treatment effect of an interven-

tion is based on a weighted aggregation of the estimated treatment effects of the

studies considered for the meta-analysis. In this thesis, we also call the true treat-

ment effect of an intervention the summary treatment effect due to the method of

obtainment. But before we get to the introduction of those two models, we have

to make some assumptions. First of all, the selected clinical trials have the same

study design, comparing a treatment group with a control group. We also assume

that the same individual outcome is recorded in each selected clinical trial. And

last but not least, we assume that the same parametrization of the treatment

effect and the same method of estimating this treatment effect is used in each

study [77]. As stated above, these assumptions might be violated and the results

of the meta-analysis might be unreliable, especially if the used treatment effect

estimates of the studies are taken from summary statistics. Such unreliable re-

sults might lead to wrong decisions when evaluating medical interventions. Beside

the violation of the general assumptions there might be differences in the com-

pilation of each study. This leads to methodological heterogeneity across trials.

This problem occurs especially if a meta-analysis is undertaken retrospectively.

In comparison to prospectively planned multi-center studies, retrospectively con-

ducted meta-analysis haven’t followed a common protocol for e.g. the selection

of the population of a study. Nevertheless, if heterogeneity is derived by study

estimates or if there is a strong presumption that heterogeneity is existent, the

reasons have to be analyzed. Due to the importance of heterogeneity in meta-

analysis, we will discuss this topic more precisely in Chapter 4.
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3.3.1. Fixed-effects model

The first model we want to discuss is the fixed-effects model. At first, we want

to take a look at the estimation of the true fixed treatment effect θ. We assume

that for the conduction of a meta-analysis, nst relevant studies have been collected

with the same study design. In each study the treatment effect of an intervention

is measured by comparing the treatment group with a control group and for these

groups the same individual outcome is reported and the same effect measure is

estimated, e.g. the transformed Odds Ratio for binary individual outcome data.

Let Θ̃j be an independent approximately normally distributed estimated treat-

ment effect of study j,

Θ̃j ∼ N (θ, σ2
j ),

for j = 1, . . . , nst, with correspondent realization θ̃j, unknown expected value θ,

the true fixed treatment effect, and variance σ2
j . The fixed-effect model is given

by

θ̃j := θ + εj,

where εj is the estimation error of study j. The estimation error is a realization

of a normally distributed random variable

Ej ∼ N (0, σ2
j ),

with expected value 0. The variance is denoted by σ2
j and is also called intra-

study variance. In the fixed-effects model the estimated variance of the estimated

treatment effect Θ̃j of study j is treated as if it were the true variance σ2
j [77].

From this it follows that the estimated treatment effect Θ̃j, for j = 1, . . . , nst, is

normally distributed

Θ̃j ∼ N (θ, σ̃2
j ),

with expected value θ, the true treatment effect, and variance σ̃2
j [77].

To get an estimate of the true fixed treatment effect θ, we need to use an esti-

mator Θ̂ determined by the weighted mean of the existent treatment effects of all

included studies, Θ̃1, . . . , Θ̃n. To do so it is common to apply the inverse variance

method. The idea behind this method is, in comparison to the calculation of
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a simple mean value, that the weight wj given to study j is the inverse of the

variance of the estimated treatment effect Θ̃j,

wj =
1

σ̃2
j

,

for j = 1, . . . , nst. For the calculation of the estimated summary treatment effect

θ̂ follows

θ̂ =

∑nst
j=1 θ̃jwj∑nst
i=j wj

,

as a realization of the unbiased estimator

Θ̂ =

∑nst
j=1 Θ̃jwj∑nst
j=1wj

.

Since σ̃2
j is treated as the true variance, Θ̂ is the maximum likelihood estimator

of θ. With the use of this inverse variance method, larger studies, which have

smaller variance by means of a more precise treatment effect, are given more

weight than smaller studies which have larger standard errors [30]. With this

method of weighting, the variance of the estimated summary treatment effect

var(Θ̂) = var

(∑nst
j=1 Θ̃jwj∑nst
j=1wj

)
=

1∑nst
j=1wj

is minimized. Since
Θ̂− θ√
var(Θ̂)

is standard normally distributed, for the (1−α) confidence interval I of the true

treatment effect θ follows

I = [θ̂ − z[1− α

2
]

√
var(Θ̂), θ̂ + z[1− α

2
]

√
var(Θ̂)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution. From

this it follows that P (θ ∈ I) = 1− α.
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3.3.2. Random-effects model

If heterogeneity across studies can not be explained or if data for the analysis of

heterogeneity is not available, however, it is possible to consider the variation in

the study estimates by using the random-effects model. As in the fixed-effects

model, we have to assume that the nst relevant studies considered for the meta-

analysis have the same study design, that the treatment effect is measured by

comparing the treatment group with a control group and that in each study the

same individual outcome is reported and the same treatment effect is estimated.

In the fixed-effects model we assume that there is one true fixed treatment

effect θ for all studies and that the variation of the estimated treatment effect

θ̃j across studies is due to an estimation error εj. In contrast to this model,

the random-effects model allows the variation of the true treatment effect across

studies. For example, the treatment effect might be higher (or lower) in studies

where the participants are older, more educated, or healthier than in others [5].

Thus, it is assumed that the treatment effect θj of study j, for j = 1, . . . , nst, is

a realization of the normally distributed random variable

Θj ∼ N (θ, τ 2),

with expected treatment effect θ and variance τ 2. It holds

θj = θ + νj,

with the study-specific random-effect νj of study j. νj is the realization of a

normally distributed random variable

N ∼ N (0, τ 2),

with expected random-effect 0 and the so-called between-study or inter-study

variance τ 2 [5]. Like for the fixed-effects approach, let Θ̃j be an independent

normally distributed treatment effect observation

Θ̃j ∼ N (θj, σ
2
j ),
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with correspondent unknown expected value θj and variance σ2
j , for j = 1, . . . , nst.

Then, the observed treatment effect of study j can be described by

θ̃j = θj + εj,

where εj is the estimation error and a realization of a normally distributed random

variable

Ej ∼ N (0, σ2
j ),

with expected estimation error 0 and variance σ2
j . The random-effects model is

then given by

θ̃j := θj + εj = θ + νj + εj,

for j = 1, . . . , nst, where εj is the estimation error and νj is the random-effect of

study j. With Ej and N being independent distributed it follows that

Θ̃j ∼ N (θ, σ2
j + τ 2),

where τ 2 is unknown and has to be estimated from the underlying data. Thus,

the distributional assumption is that

Θ̃j ∼ N (θ, w−1
j + τ̂ 2),

where w−1
j + τ̂ 2 is treated as the true variance of Θ̃j. τ̂

2 is the estimate of τ 2 and

w−1
j = σ̃2

j is the observed variance. The estimation of τ 2 is described in the next

section. With

w∗j =
1

w−1
j + τ̂ 2

it follows that

Θ̃j ∼ N (θ, (w∗j )
−1).

If (w∗j )
−1 is treated to be the true variance of Θ̃j, then the asymptotically unbiased

maximum likelihood estimator of the true treatment effect is given by

Θ̂ =

∑nst
j=1 Θ̃jw

∗
j∑nst

j=1w
∗
j

,
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with realization

θ̂ =

∑nst
j=1 θ̃jw

∗
j∑nst

j=1 w
∗
j

.

With this approach of estimating the expected true treatment effect θ, the ap-

proximated variance of the estimated summary treatment effect is

var(Θ̂) = var

(∑nst
j=1 Θ̃jw

∗
j∑nst

j=1w
∗
j

)
=

1∑nst
j=1w

∗
j

.

Since
Θ̂− θ√
var(Θ̂)

is standardized normally distributed, for the (1− α) confidence interval I of the

expected true treatment effect θ follows

I = [θ̂ − z[1− α

2
]

√
var(Θ̂), θ̂ + z[1− α

2
]

√
var(Θ̂)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution.

The weight w∗j will be close to the fixed-effects weight wj if τ 2 is small. If so, it

follows that the estimate of the true effect of the random-effects model is similar

to the estimate of the fixed-effects model and thus, the standard errors and the

confidence intervals are similar in both models. In the other case, if τ is large,

the estimate of θ of the random-effects model gets closer to the mean value and

the standard error and the confidence interval will be larger.

Estimation of τ 2

As stated in [77], one possible approach of estimating τ 2 is based on the method

of moments. The interested reader might refer to [77] for a detailed description

of this method. In the random-effects model, the fixed-effect estimate of the true

treatment effect is given by

θ̂ =

∑nst
j=1 θ̃jwj∑nst
j=1wj

.
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This is an unbiased estimate, but its variance is calculated as

var(Θ̂) = var

(∑nst
j=1 Θ̃jwj∑nst
j=1wj

)
=

1∑nst
j=1wj

+
τ 2
∑nst

j=1(wj)
2

(
∑nst

j=1 wj)
2
.

For the estimation of τ 2, we will apply the so-called Q-statistic which will be

introduced in the next chapter. The realization is defined by

q :=
nst∑
j=1

wj(θ̃j − θ̂)2 =
nst∑
j=1

wj(θ̃j − θ)2 −

(
nst∑
j=1

wj

)
(θ̂ − θ)2.

For now we will take this definition without further explanation. With the cal-

culated var(Θ̂), for the expected value of the Q-statistic follows

E(Q) =
nst∑
j=1

wj var(Θ̃j)−

(
nst∑
j=1

wj

)
var(Θ̂)

= (1− nst) + τ 2

(
nst∑
j=1

wj −
∑nst

j=1w
2
j∑nst

j=1wj

)
.

As described in [23], [24] and [59], with the application of the method of moments,

we get the estimation τ̂ 2 for the inter-study variance τ 2,

τ̂ 2 = max

0;
q − (nst − 1)∑nst

j=1 wj −
∑nst

j=1 w
2
j∑nst

j=1 wj

 .

Since the deviated quotient could be a negative value for the estimation of τ 2,

we need to get the maximum of zero and the given value. τ̂ 2 = 0 leads to the

fixed-effects model [77].

The Q-statistic, as well as the inter-study variance, are very important mea-

sures for dealing with heterogeneity across trials and will be discussed in detail

in the framework of heterogeneity in Chapter 4.
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3.3.3. Comparison of both approaches

When conducting the fixed-effects model approach, we assume that there is one

true fixed treatment effect θ in all included studies, thus, for all participating

patients. The only reason for the variation of the treatment effect is a sampling

error in the corresponding clinical trial. Then the summary treatment effect is

our estimate of this common true effect. Therefore, we choose the fixed-effects

model if we believe that all the considered studies for the meta-analysis are ex-

pected to share a common treatment effect.

In the random-effects model, we assume that there is a true treatment effect

for each study as a realization of the normally distributed random variable

Θj ∼ N (θ, var(Θj)),

with expected true effect θ which varies across the included studies. The sum-

mary treatment effect is our estimate of the expected value θ. The study weights

used for the determination of the summary treatment effect are more balanced

under the random-effects model than under the fixed-effects model. Large studies

are assigned less and small studies more relative weight. Another consequence

is, that the standard error of the summary treatment effect and the confidence

intervals are wider under the random-effects model than under the fixed-effects

model. Thus, if we assume that there is no common treatment effect due to some

random-effect across the single trials or if the single treatment effects are gath-

ered from published literature, it is more justified to use the random-effects model.

3.4. Systematic reviews

Finally, meta-analyses are published as a key component in systematic reviews

(SRs). A SR is commonly prepared to answer a defined research question and

to reduce bias by identifying, collecting and summarizing all relevant studies

that fits the pre-defined criteria. SRs themselves are not only publicized in

academic forums but are also promoted and disseminated by organizations and

databases specifically developed for this purpose. E.g. the Cochrane Collabora-
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tion (www.cochrane.org) is a widely recognized and respected international and

not-for-profit organization that promotes, supports, and disseminates SRs and

meta-analyses on the efficacy of interventions in the health care field [74]. And

as pointed out in Chapter 2, meta-analyses and therefore SRs play an important

role in the health economic evaluation of medical interventions conducted by the

IQWiG.
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Like it is discussed in Section 3.3, it is common to distinguish between the vari-

ability within studies (intra-study variance) and the variability across studies

(inter-study variance). In general, these variabilities or heterogeneity might be

due to differences in the study design and the conduction, as well as in the par-

ticipants, the interventions or the reported outcomes [31][72]. Like it is stated in

[30], it can be helpful to distinguish between different types of heterogeneity. The

variability among the participants, the interventions and the reported outcome

may be described as clinical heterogeneity and the variability in the study design

and conduction as well as the risk of bias may be described as methodological

heterogeneity [27]. Variability in the treatment effects, being estimated in the

different studies, is known as statistical heterogeneity, which is a consequence of

clinical or methodological heterogeneity, or both [27][44]. Statistical heterogene-

ity manifests itself in the observed treatment effects of the considered studies,

being more different from each other than one would expect due to random error

alone [27]. We will follow conventions and refer to statistical heterogeneity simply

as heterogeneity. In general, for the conduction of meta-analysis, it is desirable to

have clinical homogeneity, by means of participating patients with similar combi-

nations of their characteristic values which have an influence on the efficacy of the

analyzed medical intervention [60]. Because if there is clinical homogeneity, the

assumption that there is only one true treatment effect in all studies is intuitively

plausible and the use of e.g. the fixed-effects model is reliable [27]. But unfor-

tunately, the knowledge of the influencing characteristic values combinations is

often not existent [53]. And since a certain number of clinical trials and a certain

number of participants in the considered studies are needed to get high statisti-

cal power, the chance of clinical homogeneity is low and heterogeneity has to be

assumed. Statistical power refers to the likelihood of detecting, within a sample,

an effect or relationship that exists within the population. More formally stated,
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’the power of a statistical test of a null hypothesis is the probability that it will

lead to the rejection of the null hypothesis, i.e., the probability that it will result

in the conclusion that the phenomenon exists’ [22]. Finally, it can be stated that

it is important to analyze, to quantify and to interpret the existing heterogeneity.

In Section 4.1, we will give an overview of the general causes of heterogene-

ity. Thereby, we will have a closer look at methodological heterogeneity, ran-

dom heterogeneity and regional heterogeneity, which might be caused by socio-

demographic, biographical and clinical parameters. Then, in Section 4.2, we

will analyze how heterogeneity can be assessed. Thereby, we will discuss the

Q-statistic and further related indices for the quantification of heterogeneity. On

this basis, we will discuss the limitations of the discussed assessment methods.

In Section 4.3, we will have a look on how heterogeneity can be considered in

meta-analysis. Amongst others, in this context, we will give a short overview of

subgroup analysis and meta-regression. A recommendation for the consideration

of heterogeneity on the basis of the innovative geometric clustering approach is

given in the last Section 4.4.

4.1. Causes of heterogeneity

Like it is stated in [44], there are different reasons for heterogeneity. Clinical

heterogeneity, and especially the associated regional heterogeneity, can occur due

to intrinsic and extrinsic factors, like a variety of regional influencing factors

[21]. Due to scientific literature, examples of these factors have been presented

which can influence results of clinical trials culturally specific or across regions

[43][53], like the traditions of diagnosis and access to the health system, the

therapy according to national guidelines, conventional medical pretreatment and

inpatient treatments in different countries, effects in the placebo response to

the respective treatment results and clinical data for the inclusion into studies

[35][39][49][50][65][66][70]. Especially within the evaluation of European and US-

American studies, parameters of Table 4.1 have been identified as influencing

factors. E.g. there might be different realizations of relevant characteristics of

the patient population in different studies, e.g. in one study there might be pa-

tients with a high BMI, in another study there might be more patients with a
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Conduct clinical studies in general

Intrinsic Socio-demographic data, especially body height,
weight and body mass index (BMI)

Extrinsic Access to health care
Facilities for inpatient / outpatient care
Pretreatment, guidelines compliance
Recruitment (advertising vs. allocation)
Medical education

Conduct psychiatric studies

Intrinsic Psychiatric anamnesis and psychometric
Duration of depressive episode
Severity of disease
Somatization (for depression)
Co-morbidity

Extrinsic Access to mental health care
Stigmatization of mental disorders
Assessment of co-morbidity

Table 4.1.: Intrinsic and extrinsic influencing factors of regional heterogeneity in
treatment studies

low BMI. We expect different results in the estimated treatment effect of the two

studies if the efficacy of the tested medication is dependent on the body mass

index. Consequently, these factors have to be considered and may have an effect

on the composition of the study population, the conduction of studies in the re-

spective centers and the evaluation of endpoints [49][39][35].

Methodological heterogeneity can occur as a result of methodological factors.

If for example the administration or dosage of a medication has an influence

on the treatment effect and differs between two considered studies, we also ex-

pect different results in the estimated treatment effects [30]. Another reason

for methodological heterogeneity might be the usage of different effect measures

in the included studies [27]. Significant statistical heterogeneity arising from

methodological diversity or differences in outcome assessments suggests that the

studies are not all estimating the same quantity, but does not necessarily suggest

that the true intervention effect varies [30].
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A third reason for heterogeneity is the so-called random heterogeneity which is

also assigned to methodological heterogeneity. This type of heterogeneity occurs

by dividing the participants of a study into control group and treatment group

randomly. Even if the distributions of two studies are identical, the same result

can not be expected if there is a random classification into treatment group and

control group, especially if the number of participants in the study is small [44].

4.2. Assessment of heterogeneity

Consequently, if there are distinctive country effects in multinational studies or

if there is evidence of increased heterogeneity in meta-analyses, this has to be

explained. There are different way for the assessment, like the evaluation of the

Q-statistic with the help of the p-value [31][59]. This statistic has been already

introduced in Section 3.3.2 and will be discussed in detail in the following. Re-

lated indices for the quantification of heterogeneity, like the l2 index and the

H2-statistic, are presented in the ensuing section. For further assessment meth-

ods, please refer to [27][72] or [52]. In the end we will address the limitations of

the discussed methods.

4.2.1. Statistical test for the identification of

heterogeneity

In this section, we want to discuss how heterogeneity across trials can be iden-

tified. The most common ways for the identification is the use of the so-called

Cochran’s χ2 test [68][69]. Since this test was also discussed by DerSimonian and

Laird, it is also known as the DerSimonian and Laird Q-test [24] or only Q-test.

The procedure is shown in Figure 4.1. Although this test is an instrument to

check if the data are homogeneous, it is usually called test of heterogeneity [68].

Actually it tests the null hypothesis

H0 : θ1 = · · · = θnst ,

where θj is the true treatment effect of study j, for j = 1, . . . , nst [68]. This implies

that we assume the same treatment effect in all included studies and τ 2 = 0 [38].
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Formulate null
hypothesis H0

Calculate realization
q of test statistic Q

Determine p-value

Set level of
sinificance α

Reject H0 if p-value
is smaller than α

Figure 4.1.: Hypothesis test procedure for the identification of heterogeneity
across trials

The alternative hypothesis, that at least one of the estimated treatment effects

of the nst studies differ from the others, is mathematically denoted by

H1 : ∃k ∈ {1, . . . , nst} : θk 6= θj, ∀j ∈ {1, . . . , nst}, j 6= k.

[68] For the conduction of the Q-test we need the so-called Q-statistic, which

has already been applied in Section 3.3.2 for the estimation of the inter-study

variance. Thus, for the identification of heterogeneity in the treatment effects

across studies, the realization

q =
nst∑
j=1

wj(θ̃j − θ̂)2

of the Q-statistic

Q =
nst∑
j=1

wj(Θ̃j − Θ̂)2

has to be calculated [31][59]. Θ̂ is the estimated summary treatment effect with

realization θ̂, calculated on the basis of the fixed-effects model discussed in Section
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3.3, and Θ̃j with realization θ̃j is the estimated treatment effect of study j. The

weight is denoted by wj and depends on the relied model [30]. Since

θ̂ =

∑nst
j=1 wj θ̃j∑nst
j=1wj

,

it is also conventional to formulate q as

q =
nst∑
j=1

wj θ̃
2
j −

(
∑nst

j=1 wj θ̃j)
2∑nst

j=1wj
.

As it is stated in [68], Q approximately follows a χ2 distribution with (nst − 1)

degrees of freedom. The realization of the Q-statistic is commonly evaluated with

the help of the p-value,

pv = P (Q ≥ q|H0) = 1− Fχ2
(nst−1)

(q),

where Fχ2
(nst−1)

is the cumulative function of the χ2 distribution with (nst − 1)

degrees of freedom. It represents the probability to get a result like the calcu-

lated q or a higher value due to chance under the assumption that all treatment

effects are equal in the single studies [38]. Generally, a level of significance α is

pre-defined. If the p-value is greater than α, one would suggest that the observed

inter-study variance is plausibly due to chance and therefore, the null hypothesis

cannot be safely rejected. Conversely, a p-value smaller than α indicates a small

possibility that the observed inter-study variance is due to chance and therefore

this indicates statistically significant heterogeneity across studies [62] and the

null hypothesis can be rejected.

In fact, the Q-test only gives us the information about the presence or the

absence of heterogeneity but it does not measure the extent of it. The reason

therefore is the missing standardization and the resultant invariance with respect

to the number nst and the size of studies included in the meta-analysis. More

specifically, a higher number of studies leads to a higher Q-statistic value [31].
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4.2.2. Indices for the quantification of heterogeneity

In this section, we want to give an introduction how heterogeneity across tri-

als can be quantified. With the following indices, the assessment of the extent

of heterogeneity of a meta-analysis and the comparison of heterogeneity across

meta-analyses are enabled.

An obvious instrument for the quantification of heterogeneity is the inter-study

variance τ 2 [31] of the estimated treatment effect across trials. The estimation

of the inter-study variance is done as a part of the random-effects model and has

been discussed in Section 3.3.2. It quantifies the difference in the estimated treat-

ment effects that cannot be explained by the intra-study variance alone [38][72].

The advantage of the inter-study variance is that its estimates are invariant due

to either the number or size of studies in a meta-analysis. E.g. the estimates do

not systematically increase with either the number or size of studies [31].

Another way to assess the extent of heterogeneity is the calculation of the

Q-statistic-based l2 index which has been invented by Higgins and Thompson

[30][33]. The l2 index is defined by

l2 := max

{
0,
q − (nst − 1)

q

}
· 100%,

where q is the realization of the Q-statistic and (nst− 1) is the degree of freedom

[30][42]. This index is obviously a standardization of the Q-statistic and therefore,

in contrast to Q, independent of the number nst of studies in the meta-analysis.

l2 is interpreted as the percentage of variability in the treatment effect estimates

which is attributable to heterogeneity between studies rather than to sampling

errors [30]. According to [30], this index can be interpreted as it is listed in Table

4.2.

A further index for the quantification of heterogeneity is the H2-statistic. It is

derived by the Q-statistic and the realization is defined as

h2 :=
q

(nst − 1)
,
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Result Interpretation heterogeneity

0% to 40% might not be important
30% to 60% may represent moderate heterogeneity
50% to 90% may represent substantial heterogeneity
75% to 100% considerable heterogeneity

Table 4.2.: Interpretation of the l2 index

with (nst − 1) degrees of freedom [42]. Like it is stated in [31], H2 describes the

relative excess in Q over its degrees of freedom. The ratio of Q to its degrees of

freedom has been suggested previously as a measure of the extent of heterogene-

ity in [31]. Since Q is χ2 distributed it holds E(Q) = nst − 1. In the absence

of heterogeneity, h2 = 1 indicates homogeneity of the treatment effects [31][56].

Study simulations showed that the value of H2 does not intrinsically depend on

the number of studies (unlike Q) and increases appropriately as τ 2 increases [31].

4.2.3. Limitations of tests and indices

Addressing heterogeneity represents one of the most troublesome aspects of meta-

analyses [31]. Especially methods for testing statistical heterogeneity, like the

Q-test have to be considered critically due to their low statistical power in case

of a low number of studies included [42]. Unfortunately, this is the most common

situations in meta-analysis. And if we do not have an appropriate number of

studies, heterogeneity might exists even if the Q-statistic is not statistically sig-

nificant. Due to this problem, the choice of an appropriate α for the evaluation of

the p-value of the χ2 test is very difficult. It is recommended to use a significance

level of α = 0.10 instead of the usually taken significance level of α = 0.05 [68].

In fact, it is not considered that a not significant test of heterogeneity or a p-value

higher than 0.10 in a meta-analysis with a little number of studies included, is

either due to less statistical power of the Q-test or due to homogeneity of the

result of the studies. Nevertheless, as pointed out in [62], it may be argued that

heterogeneity should be analyzed no matter what p-value is observed. In addition

the Q-test has excessive power to detect clinically unimportant heterogeneity if

there is a high number of clinical trials involved [42]. Due to the common little

number of studies included, this constellation is seldom.

64



4.2. Assessment of heterogeneity

Another factor which has an negative influence on the statistical power of the

Q-test is the weight assigned to the studies. Simulation studies showed that the

statistical power decreases if the sum of the study weights decreases or if the

weights are unequally distributed, especially if one study has a high share in the

sum of the weights [28]. Further simulation studies discovered that the statisti-

cal power of the Q-test is proportional to the inter-study variance and inversely

proportional to the intra-study variance [42]. These results can also be mathe-

matically proven and are discussed in [29][38].

But not only statistical tests for the identification of heterogeneity derive their

limit. Also the indices for the quantification of the extent of heterogeneity show

restrictions in their usage. The inter-study variance τ 2, for the quantification

of heterogeneity across trials, does not enable the comparison of heterogeneity

across meta-analyses of different types of outcomes, such as dichotomous and

continuous outcome. Furthermore, as the inter-study variance depends on the

chosen effect measure, the isolated interpretation of this estimation can be diffi-

cult [31].

With regard to H2, there is a slight average bias for small numbers of studies

(< 8), as it is stated in [31]. Variability in H2 is large for small numbers of

studies, so it will be difficult in practice to distinguish moderate heterogeneity

from chance. The variability can be reduced by increasing the number of studies

[31]. In fact, there is a mathematical relationship between the statistical test

for heterogeneity (based on Q) and the value of H over varying numbers of

studies. This relationship is shown in [31]. With a small number of studies,

statistically significant heterogeneity would be evident only when the impact of

heterogeneity, as measured by the H2-statistic, is high. This explicitly highlights

the poor properties of the test when there are few studies [31].
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4.3. Consideration of heterogeneity in

meta-analysis

We should always keep in mind that there are insuperable problems with regard

to heterogeneity like it is discussed in Section 4.2.3. But there are several ways to

consider heterogeneity in meta-analysis. In the following we want to present the

most common approaches how to deal with heterogeneity in case of individual

patient data [72].

4.3.1. Choice of an appropriate treatment effect measure

The first way to deal with heterogeneity is the choice of an appropriate measure

for the estimation of the treatment effect in each study. Practical applications of

meta-analysis showed that heterogeneity may be a consequence of an inappropri-

ate choice of treatment effect measures. E.g. as described in [30], when studies

collect continuous outcome data using different scales or different units, extreme

heterogeneity may be apparent when using the mean difference. This problem

could be solved when using the more appropriate standardized mean difference.

Furthermore, the choice of an effect measure for dichotomous outcomes (Odds Ra-

tio, Risk Ratio or Risk Difference) may affect the degree of heterogeneity among

results. In particular, when control group risks vary, homogeneous Odds Ratios

or Risk Ratios will necessarily lead to heterogeneous Risk Differences and vice

versa. However, it remains unclear whether homogeneity of treatment effects

in a particular meta-analysis is a suitable criterion for choosing between these

measures.

4.3.2. Fixed-effects model vs random-effects model

Like it is discussed in Section 3.3.3, we choose the fixed-effects model if we believe

that all the studies included in the meta-analysis are expected to share a common

treatment effect and that there is no heterogeneity across the included studies

(τ 2 = 0). This could imply that the participants of all included studies are chosen

due to similarity of their characteristic values combinations which might have an

influence on the efficacy of the administered medical intervention. However, this

is a relatively rare situation. If we assume that there is no common treatment
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effect, it is more justified to use the random-effects model.

The Cochrane Eyes and Vision Group suggests to conduct no meta-analysis

if the p-value of the Q-test for heterogeneity is less than 0.05. If the p-value is

between 0.05 and 0.10 it is recommended to take the fixed-effects model and the

random-effects model and if the p-value is higher than 0.10 they suggest to use

only the fixed-effects model [32]. But the choice between a fixed-effects and a

random-effects model should not be made only on the p-value of the Q-test. The

number of trials and the distribution of the estimated treatment effects need to

be considered additionally [77].

4.3.3. Subgroup analysis

A way to deal with clinical heterogeneity in RCTs, in case of individual patient

data, is the use of subgroup analysis [72]. Also IQWiG uses this method for the

evaluation of medical interventions. Its aim is the identification of either con-

sistency of, or differences in the treatment effects among different characteristics

of patients [78]. For the conduction of a subgroup analysis, the participating

patients are slitted into subgroups within studies, with the intention to compare

the treatment effects of those subgroups [78]. E.g. for the evaluation of the effi-

cacy of an intervention it might be reasonable to separate the patients by gender

if it is known that the investigated intervention has a different effect on men

and women. Subgroup analyses may be also done for subsets of studies, such as

different geographical locations or to answer specific questions about particular

patient groups, types of interventions or types of studies [30]. In case of existent

individual data, such subsets of participants are easily analyzed. It is possible

to conduct meta-analyses within those subgroups or to conduct meta-analyses

that combine several subgroups. The comparison of the treatment effects in the

subgroups then enables the investigation of whether a medical intervention has

different effects in different subgroups. If there are only two subgroups, it is pos-

sible to calculate the summary treatment effects and their confidence intervals

in the two groups. Then the overlap of both confidence intervals has to be in-

vestigated. If there is no overlap, this indicates that the difference is statistical

significance. It has to be considered that the difference may still be statistically

significant if the confidence intervals only overlap to a small degree [30]. Another
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simple approach is recommended by [5]. Here a standard test for heterogeneity

is undertaken by considering the treatment effects of each subgroup instead of

the treatment effects of the studies. For the description of the differences in the

treatment effects in the different subgroups an l2-statistic is calculated. For the

use of this approach it has to be assumed that the subgroups are statistically

independent. In particular this means that a participant should only be assigned

to one subgroup [30].

A problem which arises when presenting the results of a subgroup analysis is

that there might be patients not fitting into one of the defined subsets. This

could lead to a hindrance of an effective intervention or a treatment with an inef-

fective or even harmful intervention [60]. Furthermore, in suitable, multivariate

subgroup analyses, in general the respective collectives are too small to derive

significant results [21]. The new invented endpoint-oriented clustering approach,

introduced in Chapter 5, is based on the idea of the subgroup analysis. It consid-

ers this problem by identifying patient collectives with the help of an innovative

clustering algorithm so that all patients can be assigned to one specific cluster.

4.3.4. Meta-regression

Another very common approach for addressing heterogeneity across the treat-

ment effects of studies is the so-called meta-regression [72]. The conduction of

a meta-regression is similar to a classical multi-linear regression where the rela-

tionship between a scalar outcome variable (dependent variable) and one or more

explanatory variables (independent variables) is modeled. In meta-regression

the normally distributed outcome variable is the estimated treatment effect of a

study, e.g. the transformed Odds Ratio or the transformed Risk Ratio. Charac-

teristics of studies that might influence the treatment effect define the explanatory

variables. These must be at least ordered (binary, ordinal or cardinal) but not

necessary normally distributed. In literature those characteristics are often called

’potential effect modifiers’ or ’covariates’ [30]. Meta-regression can be conducted

with one or more than one covariates. The more common situation is the con-

duction with only one covariate due to rarely published data. Meta-regression

can be used for the analysis of the impact of covariates on the treatment effect,
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as well as for the prediction of treatment effects for studies with patients with

specific characteristic values. The interested reader is referred to [64] for more

information.

Even if appropriate statistical methods have been used for meta-regression,

there are a number of limitations to the interpretation of the results. The most

important problem is that there might be characteristics with a nominal level of

scale, e.g. reason for withdrawal or the cultural background. Then the common

meta-regression can not be applied. Due to a transformation technique used in

the context of the new invented clustering algorithm, also nominal scaled random

variables can be considered for the evaluation of medical interventions on patient

collectives identified by the new invented cluster-based approach.

4.4. Recommendation for the consideration of

heterogeneity

As stated in [71], meta-analysis is critically discussed regarding the heterogene-

ity between studies and the enthusiasm for meta-analysis can not be shared by

the broader medical community [40][73]. Meta-analysis is not seen as an exact

statistical science that give simple answers to complex clinical problems. It is

rather seen as a valuable objective descriptive technique which often furnishes

clear qualitative conclusions about broad treatment policies, but whose quanti-

tative results have to be interpreted cautiously [71]. There are solid arguments

that treatment effects, that are mildly beneficial to the average, may have differ-

ing effects on individuals [40]. However, not only due to this critical perception

on meta-analysis it is important to find new approaches to solve the prevalent

problem of heterogeneity between clinical trials. Therefore, we recommend an

approach which is slightly based on the idea of subgroup analysis: the innova-

tive endpoint-oriented clustering technology introduced in Chapter 5, that aims

to identify sufficiently large and homogeneous patient collectives due to similar

combination of the characteristic values, for the evaluation of medical interven-

tions. The technique and the mathematical optimization model was originally

developed for an agricultural economics application. A more detailed descrip-
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tion of the application can be found for example in [14]. However, the method

can be applied not only for the problem just mentioned, indeed it is a general

and innovative technique, developed by Brieden and Gritzmann, to detect hidden

structures in high-dimensional data. Studies on the structure, complexities or on

efficient approximation of the problem can be found in [7][10][15][16][12][17][18].

For a summary have a look at [8] or [9].
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patient data

In the health care sector, one of the most important tasks is to analyze the ef-

ficacy and safety of medical interventions with the help of the large amounts of

patient data derived by clinical trials. Since the number of participating patients

in a single trial is too low for a reliable evaluation of the efficacy of a medica-

tion, the common way is the application of meta-analytic techniques to evaluate

larger collectives built out of the available data. The aggregation of the results

of the single trials is then, roughly speaking, carried out by only calculating

mean values out of the estimated treatment effects of the different studies, like

it is explained in Chapter 3. Thus, only the patients’ outcome is used for the

analysis and all other patient data, collected in the framework of the conducted

trials, which could provide important information for improved medical care, is

not considered. Furthermore, this disregard could also lead to false decisions in

terms of health economic evaluation of medical interventions. E.g. it might be

dramatic if meta-analysis states that a new drug is not efficient in general and

has to be taken off the market but for a patient collective, with specific character-

istic values combinations, the drug achieves great progress in the healing process.

However, the use of meta-analysis implies the assumption that the efficacy of

a drug is independent of factors such as gender, age, BMI (body mass index),

etc. As we have discussed in Chapter 4, clinical heterogeneity, which has to be

considered when evaluating medical interventions, exists between the outcome

of patients, especially due to different combinations of the patients’ character-

istic values. In a suitable, multivariate subgroup analysis, which considers the

patients’ characteristics and the related heterogeneity, in general the respective

collectives are too small to derive significant results. Another problem which

occurs is that patients might not fit to the analyzed subgroups. The innovative
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endpoint-oriented geometric clustering approach and the new invented cluster

based analyses, which will be presented in this chapter, are based on the idea

of subgroup analysis and take the existent problems into account. With the as-

sumption that the patients’ characteristics do have an influence on the outcome,

it is reasonable to recap the individual patient data of all trials and to classify

homogeneous collectives among the included trials by means of similar combina-

tions of the patients’ characteristic values. Then on these sufficiently large and

homogeneous patient collectives, identified by the endpoint-oriented clustering

algorithm, the new introduced cluster-based approaches can be applied for the

evaluation and prediction of the efficacy of a medical intervention and the identi-

fication of heterogeneity in the treatment effects to enable improved medical care

for patients in terms of evidence-based medicine.

In Section 5.1 to Section 5.6 of this chapter, we introduce the theoretical princi-

ples of the endpoint-oriented geometric clustering approach. They represent the

main ideas of the classification of heterogeneous patient data into homogeneous

patient collectives and are based on the work of Brieden and Gritzmann, see for

example [13], [14] and [15], and the work of Borgwardt [6] and Öllinger [48]. Ba-

sic definitions are given on the mathematical interpretation of a clustering and

how it is related to polytopes. We show the connection between a vertex of a

polytope and a feasible clustering which leads to a partition of the Euclidean

space into convex polyhedral cells. This enables the application of the endpoint-

oriented geometric clustering approach for the classification of patient data in

homogeneous collectives. Additionally, the introduced data transformation tech-

nique allows the computation of a clustering for non-metric data by using the

conditional probabilities. In Section 5.7, the geometric clustering approach is

used as an unsupervised learning approach and composes the basis for the con-

duction of the new invented cluster-based meta-analysis. Therefore, we adopted

the definitions and terms of the classic meta-analysis to the terms of cluster-based

meta-analysis. In Section 5.8, we will have a look at a the unsupervised cluster-

ing algorithm as the basis for the cluster-based identification of heterogeneity of

the patients’ outcome with different characteristic values combinations. In the

last Section 5.9 of this chapter, we examine the new clustering approach as a

supervised learning approach for the cluster-based prediction of the efficacy of an
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administered medication.

5.1. General terminology

We start by providing the necessary terminology for the conduction of an endpoint-

oriented geometric clustering for the identification of sufficiently large and homo-

geneous patient collectives. Therefore, we need to consider the available individ-

ual patient data of all relevant trials as geometric objects. Each patient has to

be expressed by the position of a point in the geometric space and the distance

is measured by the Euclidean norm. We start by the description of a patient as

a geometric object.

Definition 5.1.1. Let d ∈ N be the number of relevant patient characteristics or

attributes and for l = 1 . . . , d let Al be a discrete random variable, the represen-

tative of the ith characteristic and let Ωi be the correspondent sample spaces of

the characteristic Ai with its characteristic values {ai}ai∈Ωi.

When thinking of patients’ attributes, there might be random variables with

non-metric sample spaces which makes it hard to consider a patient as a point

in the geometric space Rd. To handle this problem, we use the transformation

technique explained in Section 5.5. With this transformation of the data, the

patients with their d characteristic values can be treated as the mentioned data

points and the number of the patient attributes d then represents the dimension

of the underlying geometric space in which the geometric clustering can be con-

ducted.

Definition 5.1.2. The number of patients in all considered trials is denoted by

N ∈ N. The patient data set of characteristics is then defined by

Xall := {xj}Nj=1 ⊂ Rd

with xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad), for j = 1, . . . , N and al ∈ Ωl for

l = 1, . . . , d.
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For the estimation of the efficacy of a drug administered to a patient with

specific characteristic values combinations, we also need to define the patient’s

outcome measured in the corresponding trial. Therefore, let Y be a normally or

Bernoulli distributed random variable, which represents the outcome of patient

j, and let Ω be the correspondent sample space of Y . With the consideration of

Y , the d-dimensional space enlarges to the (d+ 1)-dimensional space Rd×Ω and

the patient data set is defined as follows.

Definition 5.1.3. Let Xall be the patient data set of characteristics and Y the

correspondent outcome with its sample space Ω. Then the patient data set is

defined by

Sall := {(xj, yj)}Nj=1 ⊂ Rd × Ω

with xj ∈ Xall and yj ∈ Ω

In RCTs the study participants are divided into control and treatment group.

For the identification, we use the treatment group assignment for patient j, for

j = 1, . . . , N .

Definition 5.1.4. Let Sall = {(xj, yj)}Nj=1 ⊂ Rd×Ω be the patient data set. Then

tj :=

1 if patient j is in the treatment group

0 if patient j is in the control group

is the treatment group assignment for patient j, for j = 1, . . . , N , and defines

whether a patient is in the treatment or in the control group.

Furthermore, we need to know in which study a patient has participated.

Therefore, we define the study assignment vector for patient j, for j = 1, . . . , N .

The following definition gives the required information.

Definition 5.1.5. Let Sall = {(xj, yj)}Nj=1 ⊂ Rd × Ω be the patient data set and

nst the number of studies included. Then stj = (stj1, . . . , stjnst) ∈ {0, 1}nst with

stjm :=

1 if patient j is in study m

0 else
,
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for m = 1, . . . , nst, is the study assignment vector for patient j, j = 1, . . . , N .

If we use the supervised learning clustering approach, e.g. for the prediction of

the efficacy of a certain medication, the patient data set is divided into training

and testing data set. The clustering approach is then conducted on the training

data set. For the comparison with other supervised learning approaches it is

common to take 80% of all data points as training data set and the remaining

20% as testing data.

Definition 5.1.6. Let Xall be the patient data set of characteristics and Y the

correspondent outcome with its sample space Ω. X = {xj}nj=1 ⊂ Xall be the

training patient data set of characteristics for the conduction of the clustering

approach and X te := Xall\X be the correspondent testing patient data set of

characteristics. Then the patient training data set is defined by

S := {(xj, yj)}nj=1 ⊂ Rd × Ω,

with xj ∈ X and yj ∈ Ω. The correspondent testing patient data set is defined by

Ste := {(xtej , ytej )}ntej=1 ⊂ Rd × Ω,

with xtej ∈ X te and ytej ∈ Ω. n denotes the number of patients in the training data

set and nte the number of patients in the testing data set with nte ≤ n ≤ N and

nte + n = N .

With these patient specific definitions, the general terms for the conduction of

the geometric clustering method can be specified.

Definition 5.1.7 (Cluster size). Let k ∈ N represent the number of clusters.

Then κi with
∑k

i=1 κi = n is the number of patients in cluster Cli, for i = 1, . . . , k.

We call κi the cluster size of cluster Cli.

With this basic determination, it is possible to define the partition of a data

set X into k preferably homogeneous clusters as k-clustering.
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Definition 5.1.8 (k-clustering). A k-clustering Cl = (Cl1, . . . , Clk) is a partition

of a set X → Rd into k nonempty sets Cl1, . . . , Clk. The ith entry of Cl is called

the cluster Cli of the clustering Cl for i = 1, . . . , k.

For high statistical power when conducting statistical tests on a cluster, the

size is of high importance. Therefore, we define the shape of a k-clustering, which

is based on the sizes κ1, . . . , κk of a clustering.

Definition 5.1.9 (Shape of a k-clustering). Let Cl = (Cl1, . . . , Clk) be a k-

clustering of a data set X and κi = |Cli| the size of cluster Cli, for i = 1, . . . , k,

then

|Cl| := (|Cl1|, . . . , |Clk|)

is called the shape of a k-clustering.

Statistical power in a cluster can be seen as the power to detect true differ-

ences in the patients’ outcome or treatment effects across clusters. To get this

high statistical power within a cluster with regard to statistical significance, it

is desirable to have a certain number of patients in each cluster. Therefore we

define the (k, l, u)-clustering where the cluster size is restricted by an upper and

especially a lower boundary.

Definition 5.1.10 ((k, l, u)-clustering). A k-clustering Cl = (Cl1, . . . Clk) with

l = (l1, . . . , lk) ∈ Nk, u = (u1, . . . , uk) ∈ Nk and li ≤ κi ≤ ui, for i = 1, . . . , k, is

called (k, l, u)-clustering.

If the number of clusters k and the boundaries l, u ∈ Nk are clear from the

context and fixed, we will call the (k, l, u)-clustering also bounded-shape clus-

tering (BSC). In this case, we use the notation BSC(X) = BSC(k, l, u) :=

C(X, k, l, u).

It is also possible to fix the shape of the clustering by means of fixing the cluster

sizes κi, i = 1, . . . , k. The resulting clustering is called (k, (κ1, . . . , κk))-clustering

and is defined as follows.
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Definition 5.1.11 ((k, (κ1, . . . , κk))-clustering). A k-clustering of X,

Cl = (Cl1, . . . , Clk), with |Cl| = (κ1, . . . , κk)

is called (k, (κ1, . . . , κk))-clustering.

Since we do not need fixed cluster sizes but at least lower boundaries for the im-

provement of the statistical power, in the following we will have a closer look at the

(k, l, u)-clustering. With the specification of the upper and lower boundaries for

the cluster sizes, it is possible to get a fixed number of feasible (k, l, u)-clusterings.

Remark 5.1.12. For a given set X of size n, lower and upper boundaries l, u ∈
Nk and the number of cluster k ∈ N, the number of feasible (k, l, u)-clustering is

∑
li≤κi≤ui,i∈{1,...,k}∑

i κi=n

n!∏k
i=1 κi!

∏k
i=1mi!

with mi := |{κi : κi ∈ {κ1, . . . , κk}|.

These number of feasible (k, l, u)-clusterings can be summarized to a set of

feasible (k, l, u)-clusterings, like it is done in the next definition.

Definition 5.1.13 (Set of feasible (k, l, u)-clusterings). Let X be a data set of

size n and k be the number of clusters then

C(X, k, l, u) := {Cl : Cl is a (k,l,u)-clustering of X}

is the set of (k, l, u)-clusterings of X.

We can also define the set of feasible k-clusterings without the predefined up-

per and lower boundaries for the cluster sizes.

Definition 5.1.14 (Set of feasible k-clusterings). Let X be a set of size n and k

be the number of clusters then

C(X, k) := {Cl : Cl is a k-clustering of X}
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is the set of k-clusterings of X.

To get a feasible (k, l, u)-clustering the upper and lower boundaries for the

cluster sizes have to fulfill a general standard.

Remark 5.1.15. Let X be a set of size n and l, u ∈ Nk lower and upper bound-

aries. A clustering Cl = (Cl1, . . . Clk) is feasible with respect to l, u if

k∑
i=1

li ≤ n ≤
k∑
i=1

ui

holds.

In the following, we will always assume that the boundaries fulfill this require-

ment and allow feasible clusterings.

In the next step, we will have a closer look at the connection between the ver-

texes of a special polytope, the so called bounded-shape partition polytope, and

the determination of a clustering. We will see that each vertex of this bounded-

shape partition polytope represents a clustering, like it is discussed by Brieden

and Gritzmann in [15] and [16]. To get there, we need some more definitions. A

clustering can be identified by the center of gravities of each cluster, which may

be intuitively, or by the sum of data points in a cluster [16]. In the latter case,

upper and lower boundaries can be defined.

Definition 5.1.16 (Cluster sum). Let Cl = (Cl1, . . . Clk) be a clustering of a set

X. Then the cluster sum si of a cluster Cli is defined as

si :=
∑
x∈Cli

x,

for i = 1, . . . , k. The vector v(Cl) := (sT1 , . . . , s
T
k )T ∈ Rk·d is called the cluster

sum vector.

Definition 5.1.17 (Center of gravity). Let Cl = (Cl1, . . . Clk) be a clustering of
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a set X. Then the center of gravity ci of a cluster Cli is defined as

ci :=
si
κi
,

for i = 1, . . . , k.

As it is mentioned above, a clustering can be identified as a vertex of the so-

called bounded-shape partition polytope. Now we want to have a look how this

polytope is defined. To do so, we need the set of the cluster sum vectors of all

feasible (k, l, u)-clusterings of data set X.

Definition 5.1.18 (Set of Cluster Sum Vectors). Let X be a set of size n. Then

V := V (X; k, l, u) := {v(Cl) : Cl ∈ C(X, k, l, u)} is the set of all cluster sum

vectors.

With this definition, we are able to define the bounded-shape partition poly-

tope as the convex hull of the cluster sum vectors of all feasible (k, l, u)-clusterings.

Definition 5.1.19 (Bounded-Shape Partition Polytope (BSPP)). Let X be a

subset of Rd. The bounded-shape partition polytope is defined as the convex hull

of all cluster sum vectors

BSPP = BSPP (k, l, u) = BSPP (k, l1, . . . , lk, u1, . . . , uk) := convV (X; k, l, u)

As it is mentioned above, each vertex of the bounded-shape partition polytope

represents a feasible (k, l, u)-clusterings by its cluster sum. This fact can be for-

mulated as follows.

Lemma 5.1.20. Let v∗ be a vertex of a BSPP . Then there is exactly one (k, l, u)-

clustering Cl = (Cl1, . . . Clk) with v(Cl) = v∗. We call this the clustering of v∗.

Proof. The proof is given in [16] as the bounded-shape partition polytopes are

constrained in the subspace of the described gravity bodies.

Lemma 5.1.20 allows the conclusion that (k, l, u)-clusterings can be identified

by vertices of polytopes, which has already been shown by Barnes, Hoffman and
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Rothblum in [3]. As a result of this conclusion, it can be shown according to

[34] that the bounded-shape partition polytope can also be explained by linear

constraints which form the basis for the linear program defined in Section 5.2.

The solution of this linear program then represents a feasible clustering [3]. To

get there, we need one further definition of the decision variable which indicates

whether a cluster contains a data point or not.

Definition 5.1.21. Let Cl = (Cl1, . . . , Clk) be a clustering of a set X = {xj}nj=1

and for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , n} let

ξij =

1 if xj ∈ Cli
0 if xj 6= Cli

be a decision variable indicating whether cluster Cli contains xj, ξij = 1, or not,

ξij = 0.

Now we have all necessary components for the definition of the bounded-shape

partition polytope with linear constraints.

Definition 5.1.22. Let k, li, ui ∈ N, for i = 1, . . . , k, with
∑k

i=1 li ≤ n ≤
∑k

i=1 ui.

We call the polytope defined by the constraints

n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n)

the bounded-shape partition polytope BSPP (k, l, u).

With this definition, we can formulate the geometric clustering approach as

maximization problem in the following section. Since this resulting linear pro-
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gram is based on the bounded-shape partition polytope, the optimization problem

is also known as the bounded-shape partition problem.

5.2. Clustering as an optimization problem

Our goal is to classify the patients of all available trial into collectives as homoge-

neous as possible with the help of the geometric clustering approach to enable a

more precise evaluation of the underlying medical intervention. Therefore, under

all possible clusterings, we want to find a specific clustering with an upper and

especially a lower boundary for the number of patients in the resulting collectives

which maximizes the target function f . The specific target function is defined in

Section 5.4. As it is stated in [34], this specific clustering, also called bounded-

shape clustering, can be obtained by computing the solution ξ = (ξij) ∈ {0, 1}k×n

of the following linear program with constraints based on the bounded-shape par-

tition polytope.

max f(ξ)
n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ∈ {0, 1} (i ≤ k, j ≤ n)

In [34] it is also shown that this bounded-shape partition problem can be

solved in polynomial time due to the total unimodularity of the underlying matrix

derived from the constraints of the problem formulation. This is also the reason

why the solution of the relaxation is integral and therefore it is sufficient to solve

the relaxation of
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max f(ξ)
n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n).

We can also show according to [3] that the solution of this formulated problem,

as a vertex of the bounded-shape partition polytope, is a separable clustering.

5.3. Separability

To show that the solution of the linear program provides a separable clustering,

we need to know what separability means and what it implies. Thus, we need to

define linear separability first.

Definition 5.3.1 (Weakly linearly separable). Let A,B ⊂ Rd. A and B are

weakly linearly separable, if there is a hyperplane Ha,β ⊂ Rd with a ∈ Rd\{0} and

β ∈ R such that A ⊂ H≥a,β and B ⊂ H≤a,β.

Definition 5.3.2 (Strictly linearly separable). Let A,B ⊂ Rd. A and B are

strictly linearly separable, if there is a hyperplane Ha,β ⊂ Rd with a ∈ Rd\{0}
and β ∈ R such that A ⊂ H>

a,β and B ⊂ H<
a,β.

The separability of a clustering is given, if all pairs of its clusters are separable.

Definition 5.3.3 (Separability of clusterings). Let Cl = (Cl1, . . . Clk) be a clus-

tering of a set X. Cl allows (weak, strict) linear separation (or is weakly, strictly

linear separable) if Cli and Clj are (weakly, strictly) linearly separable for any

i 6= j, i, j ∈ {1, . . . , k}.
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As it is stated by Barnes, Hoffman and Rothblum in [3], with these terms we

have everything to explain the relationship between the vertices of the bounded-

shape partition polytope and the separability of the associated clustering.

Theorem 5.3.4. Let v∗ be a vertex of the bounded-shape partition polytope. Then

the bounded-shape clustering Cl∗ associated with v∗ = v(Cl∗) allows strict linear

separation.

Proof. The proof is given in [3].

The separability of a clustering is one desirable property for a uniquely separa-

tion of a patient data set into patient collectives. As already discussed, another

desirable property would be the separation into patient collectives as homoge-

neous as possible. Therefore, we need a target function for the measurement of

homogeneity which can be maximized under the bounded-shape partition poly-

tope.

5.4. Criterion for homogeneous collectives

Homogeneous collectives out of a heterogeneous patient data set X can be ob-

tained by grouping patients with similar characteristic values combinations to

one collective. For the division of patients into these homogeneous collectives, a

clustering should therefore be separable and the homogeneity in a cluster should

be maximized. This homogeneity can be obtained by maximizing the distances

between the centers of each cluster in the geometric space. Additionally the pre-

defined upper or lower bounds for the number of patients in one collective must

not be exceeded or undershot. Thus, we need a feasible target function for the

optimization problem defined in Section 5.2.

The target function for the maximization of the pairwise distances between the

centers of gravity of a cluster can be formulated as

max
Cl=(Cl1,...,Clk)∈C

k−1∑
i=1

k∑
j=i+1

‖ci − cj‖2
2,
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with the center of gravity

ci =
1

κi

n∑
j=1

xjξij,

of cluster Cli, for i = 1, . . . , k. Here, for the determination of the pairwise dis-

tance, we use the Euclidean norm. Unfortunately, this target function leads to a

nonlinear optimization problem which is known to be NP-hard [4].

To handle this, we piecewise linearly approximate the nonlinear maximization

problem. In [16] it is shown, that in case of
∑

x∈X x = 0, the maximization of the

pairwise distances between the centers of gravity is equivalent to the maximization

of the total linear cluster distance

max
Cl=(Cl1,...,Clk)∈C

k−1∑
i=1

k∑
j=i+1

∑
xi∈Cli

∑
xj∈Clj

(vi − vj)T (si − sj),

with v = (vT1 , . . . , v
T
k )T ∈ Rd·k and si being the cluster sum of cluster Cli,

i = 1, . . . , k. In [48] it is shown, that this is related to the so-called least-square

assignment (LSA).

Definition 5.4.1 (Least-Square Assignment (LSA)). Let Cl = (Cl1, . . . , Clk) be

a (k, l, u)-clustering of a set X and v = (vT1 , . . . , v
T
k )T ∈ Rd·k, Cl is called a least

square assignment (LSA) of X to v, if and only if it minimizes

k∑
i=1

n∑
j=1

ξij‖xj − vi‖2
2

over the BSPP (k, l, u).

As the least-square assignment minimizes the variance of the points assigned

to a cluster, outliers could be allocated to a cluster with only few points. This

property of the LSA isn’t always desirable for the identification of homogeneous

patient collectives. These found collectives should contain enough patients for

the conduction of cluster-based meta-analysis, for a more precise estimate of a

drug’s efficacy or for the conduction of correspondent tests of hypothesis. Only

few patients in the collectives could falsify the results of meta-analysis or the pre-

diction of a drug’s efficacy. It is possible to set appropriate strict lower bounds
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5.4. Homogeneous collectives

or to conduct an approach which is an approximation of the LSA. This approach

leads to proper filled cluster without setting strict lower bounds which is desirable

for the evaluation of drug intervention on homogeneous patient collectives.

Definition 5.4.2 (Cluster Sum Assignment (CSA)). Let Cl = (Cl1, . . . , Clk)

be a (k, l, u)-clustering of a set X and v = (vT1 , . . . , v
T
k )T ∈ Rd·k, Cl is called a

cluster sum assignment (CSA) of X to v, if and only if it maximizes

k∑
i=1

n∑
j=1

ξijv
T
i xj

over the BSPP (k, l, u).

In [48] it is shown that the LSA and the CSA are equivalent and the resulting

clusterings of the correspondent approaches are the same in case of standardized

sites ai. In this case and if data set X is replaced by the centered set

(X)c = X −
∑n

i=1 xi
n

,

so that
∑

x∈Xc x = 0, the CSA can be interpreted as a clustering with the centers

of gravity ci being pushed away from the unit ball with respect to directions ai,

for i = 1, . . . , k, since a norm maximization can be interpreted as scaling up a

unit ball to fit the feasible region.

As the main result of this section, we show that the solution of the maximization

of the cluster sum assignment over the bounded-shape partition polytope,

85



5. Geometric clustering of patient data

max
ξ=(ξij)∈{0,1}k×n

k∑
i=1

n∑
j=1

ξijv
T
i xj

n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n),

is a linearly separable clustering.

Theorem 5.4.3. Let X ⊂ Rd be a data set and k, li, ui ∈ N for all i ∈ {1, . . . , k}
with

∑k
i=1 li ≤ n ≤

∑k
i=1 ui the parameter set. Let BSPP (k, l, u) be the corre-

sponding bounded-shape partition polytope and

v = (vT1 , . . . , v
T
k )T ∈ Rd·k.

Then we can find a vertex ve∗ of the BSPP with vTve∗ ≥ vTve for any ve ∈
BSPP by solving the linear program.

This theorem represents the basis for the division of the patient data set X

into homogeneous patient collectives. The corresponding clustering is optimal

regarding the cluster sum and represents a vertex of the bounded-shape partition

polytope. Furthermore, it allows strict linear separability like it is shown in [34].

It can also be shown that this separability leads to a partition of Rd into convex

polyhedral cells which are known as power diagrams. In [48] it is discussed that

a vertex of a bounded-shape partition polytope induces such power diagram. For

more details about power diagrams please refer to [1].
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5.5. Transformation of data

5.5. Transformation of data

The geometric clustering approach is conducted in a geometric space, therefore,

for each characteristic of a patient, we need quantitative characteristic values.

But since the characteristics of a patient can be of any level of scale, they have

to be quantified first. This transformation then enables the use of the geometric

clustering approach. In the following, we will give an introduction to this trans-

formation technique. It is based on the work of Öllinger [48]. If the clustering

approach is unsupervised, then the training data set is the whole data set and

we set S = Sall. If the clustering approach is supervised and we have a divi-

sion of the patient data Sall, we use the notations S for the training and Ste for

the testing data set. The idea of the transformation technique is to replace the

characteristic value Ai = ai by the conditional expected value E(Y |Ai = ai), for

i = 1, . . . , d, ai ∈ Ωi, of the patients’ outcome or endpoint given the character-

istic value Ai = ai. This is why we call the clustering algorithm endpoint-oriented.

Since the number of characteristic values combinations increases proportion-

ally with the increase in the number of characteristic values, which leads to a

extremely small ratio between the actual and possible combinations, we need to

classify characteristics with a high number of characteristic values. To do so, the

most intuitive way is to define classes of equal class width. A second approach

is the division into classes of equal class density. But we can also set the class

boundaries intuitively.

For the transformation of the classified patient data set S, we assume that

the patients’ outcome Y is a discrete random variable with sample space Ω =

{y1, . . . , yn}. The elements of Ω represent the outcome of all patients in set S. For

the motivation of the idea to replace the characteristic values by the conditional

expected outcome, we take a similar approach to the Naive Bayes classification. In

this approach, the conditional probability for an outcome Y = y of a new patient

given specific characteristic values A1 = a1, . . . , Ad = ad can be predicted. For

the calculation of the conditional probability, the Bayes’ rule

P (Y = y|A1 = a1, . . . , Ad = ad) =
P (A1 = a1, . . . , Ad = ad|Y = y)P (Y = y)∑

z∈Ω

P (A1 = a1, . . . , Ad = ad|Y = z)P (Y = z)
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can be applied. For this approach, we need the conditional probabilities

P (A1 = a1, . . . , Ad = ad|Y = y)

which are not easy to estimate, given the patient data set S. With the implication

of the following definition, these conditional probabilities can be written as the

product of conditional probabilities of the single characteristics Ai, i = 1, . . . , d,

given Y .

Theorem 5.5.1 (Conditional Independence). Let X, Y and Z be random vari-

ables. Then X and Y are conditionally independent given Z if and only if the

probability distribution of X is independent of the value of Y given Z. This is

equivalent to

P (X = xi, Y = yj|Z = zk) = P (X = xi|Z = zk)P (Y = yj|Z = zk), ∀i, j, k.

For the characteristics A1, . . . , Ad, this leads to

P (A1 = a1, . . . Ad = ad|Y = y) =
d∏
i=1

P (Ai = ai|Y = y).

We assume that the characteristics of the patients are conditional independent.

With this assumption we get the new formula

P (Y = y|A1 = a1, . . . , Ad = ad) =

P (Y = y)
d∏
i=1

P (Ai = ai|Y = y)

∑
z∈Ω

P (Y = z)
d∏
i=1

P (Ai = ai|Y = z)

for the calculation of the probability of a specific outcome Y = y under given

characteristic values A1 = a1, . . . , Ad = ad, which is much easier to calculate with

the given set of patient data points.

The approach for the transformation of the characteristic values of a patient

is similar to the Naive Bayes approach and is based on the indirect estimation of
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the conditional expected value

E(Y |A1 = a1, . . . , Ad = ad) =
∑
y∈Ω

yP (Y = y|A1 = a1, . . . , Ad = ad).

This conditional expected value also contains the conditional probabilities of Y =

y, y ∈ Ω, given A1 = a1, . . . , Ad = ad. These probabilities can be written as

P (Y = y|A1 = a1, . . . , Ad = ad) =
d∑
i=1

βiP (Y = y|Ai = ai),

with

βi = β̂i
P (Y = y|A1 = a1, . . . , Ad = ad)

P (Y = y|Ai = ai)
,

d∑
i=1

β̂i = 1.

The conditional expected value can then be calculated as the convex combination

of the one dimensional conditional expected values E(Y |Ai = a1), i = 1, . . . , d

E(Y |A1 = a1, . . . , Ad = ad) =
∑
y∈Ω

yP (Y = y|A1 = a1, . . . , Ad = ad)

=
∑
y∈Ω

y(
d∑
i=1

βiP (Y = y|Ai = ai))

=
d∑
i=1

βiE(Y |Ai = ai).

Similar to the Naive Bayes approach we reduce the multidimensional conditional

expected value to the product of the one dimensional expected values, which are

much easier to estimate, as we will see in the following passages.

Since Y and A1, . . . , Ad are discrete random variables, the one dimensional

conditional expected value E(Y |Ai = ai) can be calculated by the Bayes’ rule

E(Y |Ai = ai) =
∑
y∈Ω

yP (Y = y|Ai = ai)

=
∑
y∈Ω

y
P (Y = y, Ai = ai)

P (Ai = ai)
,

for i = 1, . . . , d.
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In the case of a Bernoulli distributed random variable Y , with the two occur-

rences Ω = {0, 1}, where 1 stands e.g. for response and 0 for no response to a

the administered medication, the conditional expected value is equivalent to the

conditional probabilities.

Remark 5.5.2. If Y is a Bernoulli distributed binary random variable with prob-

ability p, Y ∼ Be(p), for the conditional expected value holds

E(Y |X = x) = P (Y = 1|X = x) =: p|x.

The conditional expected value

E(Y |Ai = ai), i ∈ {1, . . . , d}, ai ∈ Ωi

or the equivalent conditional probability

P (Y = 1|Ai = ai), i ∈ {1, . . . , d}, ai ∈ Ωi,

if Y is a binary random variable, is the new quantified value replacing the original

patient characteristic value ai of characteristic Ai, for i = 1, . . . , d. Each patient

data point xj ∈ X = {x1, . . . xn} ⊂ Rd, xj = (a1, . . . , ad), is then represented by

the vector of their conditional expected values

(a1, . . . , ad)→ (E(Y |A1 = a1) . . . , E(Y |Ad = ad))

or the equivalent conditional probabilities

(a1, . . . , ad)→ (P (Y = 1|A1 = a1) . . . , P (Y = 1|Ad = ad))

in the binary case. With this transformation, the geometric clustering approach

of the following section is applicable.

Since the probability P (Ai = ai) and the joint probability P (Y = y, Ai = ai),

which are needed for the calculation of the conditional expected value, are gener-

ally unknown, they have to be estimated by the corresponding conditional means
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of the given patient data set. First of all, we calculate the estimation for the

training data set.

Theorem 5.5.3. Let S = {(xj, yj)}nj=1 ⊂ Rd × Ω, with xj = (xj1, . . . , xjd) =

(a1, . . . , ad), be a sample of the d characteristics, represented by Ai, i = 1, . . . , d,

and the discrete outcome of a patient is denoted by Y . Then

âi = Θ̂(Y |Ai = ai) :=

∑n
j=1 yj11{xji}(ai)∑n
j=1 11{xji}(ai)

, for i = 1, . . . , d

is an unbiased estimation for the conditional expected value E(Y |Ai = ai).

Proof. As it is stated above, the conditional expected value is defined by

E(Y |Ai = ai) =
∑
y∈Ω

y
P (Y = y, Ai = ai)

P (Ai = ai)
,

for i = 1, . . . , d, based on the Bayes’ rule. The estimator for the joint probability

P̂ (Y = y, Ai = ai) =

∑n
j=1 11{yj}(y)11{xji}(ai)

n

and the estimator of the single probability

P̂ (Ai = ai) =

∑n
j=1 11{xji}(ai)

n

result from the conditional frequencies and lead to a mean estimation of the

conditional expected value E(Y |Ai = ai).

If the patients’ outcome is Bernoulli distributed, the estimation is given by the

following theorem.

Theorem 5.5.4. Let S = {(xj, yj)}nj=1 ⊂ Rd × Ω, with xj = (xj1, . . . , xjd) =

(a1, . . . , ad), be a sample of the d characteristics, represented by Ai, i = 1, . . . , d,

and the binary outcome of a patient is denoted by Y . Then

âi = Θ̂(Y = 1|Ai = ai) :=

∑n
j=1 11{1}(yj)11{xji}(ai)∑n

j=1 11{xji}(ai)
, for i = 1, . . . , d
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is an unbiased estimator for the conditional expected value P (Y = 1|Ai = ai).

With these theorems, we have everything for the transformation of the train-

ing data set S = {(xj, yj)}nj=1, with xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad), into

quantitative values to conduct the geometric clustering approach. In the first

step, for i = 1, . . . d, the values in the sample space Ωi of the characteristic Ai

of a patient have to be transformed into the corresponding estimated conditional

expected values,

ai → âi, ∀ai ∈ Ωi.

This results in a transformed random variable Âi with its transformed sample

space Ω̂i = {âi|ai ∈ Ωi}. In a second step all values of the data set S have to be

replaced by the corresponding estimated conditional expected values,

xji = ai → x̂ji := âi, for j = 1, . . . n, and i = 1 . . . d.

As a result we get a transformed data set

S = {(xj, yj)}nj=1 ⊂ Rd × Ω→ Ŝ = {(x̂j, yj)}nj=1 ⊂ Rd × Ω

with

x̂j = (x̂j1, x̂j2, . . . , x̂jd) = (â1, â2 . . . , âd)

and âi ∈ Ω̂i, for i = 1, . . . , d.

While the training data set is transformed based on the conditional expected

values of the training data set, the testing data set has to be transformed differ-

ently. Due to the fact that the outcome of a patient is unknown, the characteristic

values of the patients have to be replaced by the estimations for the conditional

expected values of the training data set. The testing data set

Ste = {(xtej , ytej )}ntej=1 ⊂ Rd × Ω,

with xtej = (xtej1, x
te
j2, . . . , x

te
jd) = (a1, . . . , ad) is transformed to

Ŝte = {(x̂tej , ytej )}ntej=1 ⊂ Rd × Ω
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by its conditional expected values based on S,

xteji = ai → x̂teji := âi, for j = 1, . . . nte, and i = 1 . . . d.

As a result we get a transformed testing patient data set

Ste = {(xtej , ytej )}ntej=1 ⊂ Rd × Ω→ Ŝte = {(x̂tej , ytej )}ntej=1 ⊂ Rd × Ω

with

x̂tej = (x̂tej1, x̂
te
j2, . . . , x̂

te
jd) = (â1, â2 . . . , âd)

and âi ∈ Ω̂i, for i = 1, . . . , d.

In the next step, we can conduct a geometric clustering on the classified and

transformed training data set Ŝ. Additionally we can assign the transformed

testing data set to a cluster by evaluating its position with respect to the sepa-

rating hyperplanes of the power diagram induced by the clustering.

.

5.6. Geometric clustering algorithm

Now, we have all components for the formulation of the geometric clustering algo-

rithm according to [48], for the division of a patient data set S into homogeneous

patients collectives. In a first step, all relevant characteristics A1, . . . , Ad of a

patient which could have an impact on the efficacy of a medical intervention have

to be identified. Furthermore, the patients’ outcome Y due to the administered

medication has to be defined. Thereby, the patient data set S is determined. In a

second step, based on the identified characteristics and the patients’ outcome, set

S has to classified and transformed to Ŝ by applying the transformation approach

discussed in Section 5.5. With this preparation of the individual patient data, the

geometric clustering approach described in Section 5.4 can be conducted on the

transformed patient data Ŝ. This approach is embedded in an iterative sequence,

in which an optimal clustering is computed in each step with respect to a given

site vector v = (vT1 , . . . , v
T
k )T ∈ Rd·k as a solution of the linear program. The

output by means of an optimal clustering of each step is taken as input for a next
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step by applying the standardized sum of the clustering solution as new sites

(v1, . . . , vk)→ (
c1

‖c1‖
, . . . ,

ck
‖ck‖

) = (
s1

‖s1‖
, . . . ,

sk
‖sk‖

).

In the following, this procedure for the computation of an optimal clustering is

described in each step. We assume that all relevant characteristics A1, . . . , Ad of

the participating patients have been identified and the patients’ outcome Y due

to a medical intervention has been defined. Furthermore, the data set has been

divided into a training and a testing data set in case of a supervised learning

approach. In case of an unsupervised learning approach all patient data serve as

the training data set. The first algorithm deals with the transformation of the

patient data set S.

Algorithm 1: Transformation of the training data set S

Data: S = {(xj, yj)}nj=1 ⊂ Rd × Ω with

xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad) and ai ∈ Ωi;

Result: Ŝ = {(x̂j, yj)}nj=1 ⊂ Rd × Ω with

x̂j = (x̂j1, x̂j2, . . . , x̂jd) = (â1, . . . , âd) and âi ∈ Ω̂i = {âi|ai ∈ Ωi},
i = 1, . . . , d;

/* Transformation of characteristic values */

for i = 1 to d do

for ai ∈ Ωi do
ai → âi

/* Generation of transformed training data set */

for i = 1 to d do

for j = 1 to n do
xij = ai → x̂ij = âi

While the training data set is transformed based on the estimations of the

conditional expected outcome of the training patient data set, the characteristic

values of the testing data set Ste are also replaced by the estimations for the

conditional expected values of the training patient data set.
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Algorithm 2: Transformation of the testing data set Ste

Data: Ste = {(xtej , ytej )}ntej=1 ⊂ Rd × Ω with

xtej = (xtej1, x
te
j2, . . . , x

te
jd) = (a1, . . . , ad) and ai ∈ Ωi, {âi|ai ∈ Ωi}di=1;

Result: Ŝte = {x̂tej , ytej }n
te

j=1 ⊂ Rd × Ω with

x̂tej = (x̂tej1, x̂
te
j2, . . . , x̂

te
jd) = (â1, . . . , âd);

/* Generation of transformed testing data set */

for i = 1 to d do

for j = 1 to nte do
xteij = ai → x̂teij = âi

With the transformation of the data set to quantitative values, the geometric

clustering approach can be conducted.

Algorithm 3: Calculation of a clustering Cl

Data: Ŝ = {(x̂j, yj)}nj=1 ⊂ Rd × Ω with

x̂j = (x̂j1, x̂j2, . . . , x̂jd) = (â1, . . . , âd); boundaries li, ui ∈ N;∑k
i=1 li ≤ n ≤

∑k
i=1 ui; number of cluster k; initial site vector

v = (vT1 , . . . , v
T
k )T ∈ Rd·k;

Result: (k, l, u)-clustering Cl = (Cl1, . . . , Clk); ξ = (ξij) ∈ {0, 1}k×n;

/* Solve the linear program and return a feasible solution */

max
ξ=(ξij)∈{0,1}k×n

k∑
i=1

n∑
j=1

ξijv
T
i xj

n∑
j=1

ξij ≤ ui (i ≤ k)

n∑
j=1

ξij ≥ li (i ≤ k)

k∑
i=1

ξij = 1 (j ≤ n)

ξij ≥ 0 (i ≤ k, j ≤ n),

Lemma 5.6.1. Algorithm 3 computes a (k, l, u)-clustering by linear programming

with k · n variables and (k + 1) · n+ 2 · k constraints.
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5. Geometric clustering of patient data

Algorithm 3 is the basic module of the following final algorithm for the geo-

metric clustering approach for the division of heterogeneous individual patient

data into homogeneous patient collectives.

Algorithm 4: The iterative calculation of the clustering Cl

Data: Ŝ = {(x̂j, yj)}nj=1 ⊂ Rd × Ω with

x̂j = (x̂j1, x̂j2, . . . , x̂jd) = (â1, . . . , âd); boundaries li, ui ∈ N∑k
i=1 li ≤ n ≤

∑k
i=1 ui; number of cluster k; initial site vector

v = (vT1 , . . . , v
T
k )T ∈ Rd·k;

Result: (k, l, u)-clustering Cl = (Cl1, . . . , Clk);

1. To get a (k, l, u)-clustering with the correspondent assignment

(ξij) ∈ {0, 1}k×n, apply algorithm 3 with site vector

v = (vT1 , . . . , v
T
k )T ;

2. Update

(v1, . . . , vk) = (
s1

‖s1‖
, . . . ,

sk
‖sk‖

),

with si :=
∑n

j=1 ξijx̂j;

3. If the objective function value

k∑
i=1

n∑
j=1

ξij
(x̂j)

Tvi
‖vi‖

increases during the last iteration go to 1., else return the current

assignment;

Theorem 5.6.2. Algorithm 4 terminates with a feasible (k, l, u)-clustering that

is a cluster sum assignment.

The proof for Theorem 5.6.2 can be found in [48]. It can also be shown that

the found (k, l, u)-clustering, as a vertex of a bounded-shape partition polytope,

induces a power diagram, like it is shorty discussed in Section 5.4. After the

computation of the (k, l, u)-clustering Cl = (Cl1, . . . , Clk), each data point of the

transformed training data set Ŝ = {(x̂j, yj)}nj=1 ⊂ Rd ×Ω will be assigned to the

corresponding cluster by using the cluster assignment vector.
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Definition 5.6.3 (Cluster assignment vector). Let Cl = (Cl1, . . . , Clk) be the

(k, l, u)-clustering of the transformed patient data set Ŝ and ξ = (ξij) ∈ {0, 1}k×n

the corresponding assignment of Cl. Then

Cl(x̂j) = (Cl1(x̂j), . . . , Clk(x̂j)) ∈ {0, 1}k

with

Cli(x̂j) := ξij, i = 1, . . . , k

is called the cluster assignment vector of x̂j.

For the evaluation of the performance of the clustering with the help of the test-

ing data set Ŝte = {(x̂tej , ytej )}ntej=1 ⊂ Rd × Ω and for the prediction of a treatment

effect of a patient data point {x, y} ∈ Rd×Ω, the assignment is defined as follows.

Definition 5.6.4. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the patient

data set Ŝ = {(x̂j, yj)}nj=1 ⊂ Rd × Ω and ξ = (ξij) ∈ {0, 1}k×n the corresponding

assignment of Cl. With c1, . . . , ck, the centers of gravity, let

di(x) := ‖ci − x‖2, i = 1, . . . , k

be the distance of data point x to the center of gravity ci. Then

Cl(x) = (Cl1(x), . . . , Clk(x)) ∈ {0, 1}k

with

Cli(x) :=

1 if di ≤ dj, ∀j = 1, . . . , k and i 6= j

0 else

is called the cluster assignment vector of x.

In this definition, the assignment of a data point to a cluster is not necessarily

unique. It might hold
∑k

i=1Cli(x) 6= 1. In this case, where a data point is as-

signed to more than one cluster, we will take the cluster with the highest cluster

number.

Definition 5.6.5. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the patient
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5. Geometric clustering of patient data

data set Ŝ and let

Cl(x) = (Cl1(x), . . . , Clk(x))

be the cluster assignment vector of x then

Cl∗(x) = (Cl∗1(x), . . . , Cl∗k(x)) ∈ {0, 1}k

with

Cl∗i (x) :=

1 if Ck(x) = 0, ∀k > i

0 else

is called the corrected cluster assignment vector of x.

As it is stated in Section 5.3, a bounded-shape clustering, as a vertex of the

bounded-shape partition polytope, allows strict linear separation. With this def-

inition, the assignment of a data point x to a cluster is unique and it holds∑k
i=1Cl

∗
vi

(x) = 1.

Definition 5.6.6 (Cluster value). Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering

of the transformed patient data set Ŝ and

Cl(x) = (Cl1(x), . . . , Clk(x))

the cluster assignment vector of x. Then the function

f(x|Cl) =
k∑
i=1

fi(Cli)Cli(x)

is called the cluster value of the clustering Cl for x. fi : Cl → R;Cli → fi(Cli)

is called the cluster value of cluster Cli.

The cluster value in Definition 5.6.6 is not specified yet. The choice of the

cluster value depends on the scientific question. These possible cluster values

will be discussed in the following sections.
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5.7. Cluster-based meta-analysis

In meta-analysis, we assume that there is one true treatment effect θ of a med-

ication for all patients. There are two different models, the fixed-effects model

and the random-effects model, for the determination of an estimated summary

treatment effect by the weighted aggregation of the single estimated treatment

effects of all considered trials. In comparison to that approach, in the new in-

vented cluster-based meta-analysis, we assume that there is one true treatment

effect θi for each patient collective Cli, i = 1, . . . , k. In each cluster we find

individuals with similar characteristic values combinations, which might have a

crucial influence on the efficacy of a medical intervention. E.g. elderly male pa-

tients might respond differently to a medical intervention than younger female

patients. Like it is also discussed in Chapter 4, the assumption of different true

treatment effects in clusters of similar patients, by means of similar characteris-

tic values combinations, is more intuitive than one general true treatment effect

for all patients. The different estimates for the treatment effect in the patient

collectives, depending on the individual outcome, is described in Section 5.7.2.

For the determination of the estimation θ̃i of the true treatment effect for each

patient collective Cli, we present two different new invented model approaches,

the cluster-based fixed-effects and the cluster-based random-effects model which

will be discussed in Section 5.7.3 and Section 5.7.4. For the justification of this

assumption, we use the new invented QCl-statistic which will be introduced in

Section 5.7.5. In Section 5.7.6, we will describe how heterogeneity within clusters

can be assessed. The following theory is based on the joint working paper of

Brieden and Hinnenthal [19].

5.7.1. Clustering

For applying the two new invented models, we use the endpoint-oriented geo-

metric clustering method as unsupervised learning approach. Since we want to

analyze the efficacy of a treatment in the patient collectives, it is important to

include all available characteristics, which might have an influence on the treat-

ment effect, except the administered medication. Then, the patient data set
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5. Geometric clustering of patient data

S = Sall, with all relevant characteristic values and the outcome of a patient, is

transformed like it is discussed in Section 5.5. The clustering Algorithm 4 is then

applied on the transformed patient data set

Ŝ = {(x̂j, yj)}nj=1 ⊂ Rd × Ω.

We then obtain a (k, l, u)-clustering Cl = (Cl1, . . . , Ck) as a partition of the trans-

formed patient data set. Each cluster now represents a collective with patients

of similar combinations of their characteristic values. The required cluster value

according to Definition 5.6.6 for each cluster then results from the new invented

fixed-effects or random-effects model, as summary treatment effect of the corre-

sponding cluster. But before we get to the introduction of those models, we need

some basic terms which are defined in the following. We begin with the definition

of the study index set of cluster Cli.

Definition 5.7.1. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ. Then

ICli := {j| study j is included in cluster Cli} ⊆ {1, . . . , nst}

is the study index set of cluster Cli and includes the indices of all studies included

in cluster Cli, for i = 1, . . . , k. Thereby, nst denotes the number of all studies.

For the definition of the treatment effect for cardinal outcome data, we need

to specify the patient data set of the control and the treatment group of study j

in cluster Cli.

Definition 5.7.2. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ = {(x̂l, yl)}nl=1, ξ = (ξil) ∈ {0, 1}k×n the corresponding

assignment of Cl, stl the study assignment vector and tl the treatment group

assignment for patient l. Then

ŜiTj := {(x̂l, yl)|ξil = 1 ∧ stlj = 1 ∧ tl = 1}nl=1 ⊆ Ŝ
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is the patient data set of the treatment group and

ŜiCj := {(x̂l, yl)|ξil = 1 ∧ stlj = 1 ∧ tl = 0}nl=1 ⊆ Ŝ

is the patient data set of the control group of study j in cluster Cli, for i = 1, . . . , k

and j ∈ ICli.

If there is a low number of patients included in the single trials considered for

the cluster-based meta-analysis, the cardinality of the sets ŜiTj and ŜiCj might be

too low to guarantee high statistical power. In this case, it is possible to include

the characteristic variable ’study’ as influencing variable. The treatment effect of

a patient collective is then not calculated by aggregating the treatment effects of

the singe trials but by calculating a treatment effect estimate, like the Risk Ratio,

out of the outcome of all patients included in the corresponding cluster without

differentiating between the single trials. Therefore, we only have to summarize

all trials to one single trial and set nst = 1. This approach would then increase

the statistical power.

5.7.2. Treatment effect estimates

In Section 3.2 we discussed treatment effect estimates for binary and cardinal

data in meta-analysis. Those treatment effect estimates are calculated for each

study included in the meta-analysis. In the cluster-based meta-analysis, the

treatment effect estimates are determined for each study included in a cluster.

In case of binary outcome data of the participating patients, several estimations

are defined, like the transformed Risk Ratio or the transformed Odds Ratio of a

study in the corresponding cluster. In case of cardinal data, the treatment effect

is represented by the mean difference or the standardized mean difference of the

outcome of the treatment and control group in the identified patient collectives.

Binary data

Before we define the cluster-based treatment effect estimates based on the binary

outcome of the study participants, we need to have a look at the marginal and

joint distribution of the patients of study j in cluster Cli, for i = 1, . . . , k and

j ∈ ICli . We assume that the outcome of an individual in the treatment group
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success failure

Treatment group siTj f iTj niTj
Control group siCj f iCj niCj

sij f ij nij

Table 5.1.: 2× 2-table of binary outcome of study j in cluster Cli

of study j in cluster Cli is seen as a Bernoulli distributed random variable

T ij ∼ Be(piTj),

with unknown probability of success piTj . The outcome of an individual in the

control group of study j in cluster Cli is also assumed to be Bernoulli distributed,

Ci
j ∼ Be(piCj),

with the unknown probability of success piCj . The occurrences success, repre-

sented by 1, and failure, represented by 0, of study j in cluster Cli, for the

treatment and the control group can be summarized in Table 5.1.

For binary data, we define the Risk Ratio RRi
j, the Odds Ratio ORi

j and the

Risk Difference RDi
j of study j in cluster Cli based on Table 5.1. Thereby, niTj

denotes the absolute number of patients in the treatment group and niCj the ab-

solute number of patients in the control group of study j in cluster Cli. The

number of patients with success of study j in cluster Cli is denoted by sij and the

patients with failure is denoted by f ij . For the joint distribution, the number of

patients with success in the treatment group of study j in cluster Cli is defined

by siTj and the number of those in the control group is consequently denoted by

siCj . Analogously, the number of patients with failure in the treatment group f iTj
and in the control group f iCj are defined.

The number of patients with success in the treatment group of study j in

cluster Cli is binomial distributed,

SiTj ∼ B(niTj , p
i
Tj
, siTj),
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just as the number of patients with success in the control group,

SiCj ∼ B(niCj , p
i
Cj
, siCj).

Since the probabilities of success of the treatment and the control group of a

study in the corresponding cluster are also unknown, we need an estimation for

these probabilities.

Theorem 5.7.3. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Table 5.1 be the 2×2-table of the binary patients’

outcome of study j in cluster Cli. Then

P̃ i
Tj

=
SiTj
niTj

and P̃ i
Cj

=
SiCj
niCj

are the estimators for the probability of success in the treatment and the control

group of study j in cluster Cli and

p̃iTj =
siTj
niTj

and p̃iCj =
siCj
niCj

,

the corresponding estimations, for i = 1, . . . , k and j ∈ ICli.

Proof. The likelihood function for the estimator P̃ i
Tj

of piTj is

L(siTj , p
i
Tj

) =

(
niTj
siTj

)
piTj(1− p

i
Tj

)
niTj
−siTj .

With the maximization of this function we get

p̃iTj =
siTj
niTj

,

for i = 1, . . . , k and j ∈ ICli . The same holds for the estimation p̃iCj .

Based on Table 5.1, we are able to define the cluster-based treatment effect

estimations, the Risk Ratio RRi
j, the Odds Ratio ORi

j and the Risk Difference

RDi
j of study j in cluster Cli. We start by defining the Risk Ratio estimation.

103



5. Geometric clustering of patient data

Definition 5.7.4. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Table 5.1 be the 2×2-table of the binary patients’

outcome of study j in cluster Cli. Then

Θ̃i
j := ln

(
P̃ i
Tj

P̃ i
Cj

)
= ln

(
SiTjn

i
Cj

SiCjn
i
Tj

)

is the estimator for the treatment effect of study j in cluster Cli. The estimation

RRi
j :=

p̃iTj
p̃iCj

=
siTjn

i
Cj

siCjn
i
Tj

is called the Risk Ratio and

θ̃ij := ln(RRi
j)

the transformed Risk Ratio of study j in cluster Cli, for i = 1, . . . , k and j ∈ ICli.

Like it is discussed in the next section, we assume that the estimated treatment

effect θ̃ij of study j in cluster Cli is a realization of the approximately normally

distributed random variable

Θ̃i
j ∼ N (θi, var(Θ̃i

j),

with unknown expected value θi and variance var(Θ̃i
j). The variance var(Θ̃i

j) of

the transformed Risk Ratio of study j in cluster Cli can be approximated as

follows by using the delta method.

Theorem 5.7.5. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Table 5.1 be the 2×2-table of the binary patients’

outcome of study j in cluster Cli. Then

(Σ̃i
j)

2 =
1

SiTj
− 1

niTj
+

1

SiCj
− 1

niCj

is the estimator for the variance of the estimated treatment effect Θ̃i
j of study j

in cluster Cli, with the corresponding estimation

(σ̃ij)
2 =

1

siTj
− 1

niTj
+

1

siCj
− 1

niCj
,
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and var(Θ̃i
j) ≈ (σ̃ij)

2, for i = 1, . . . , k and j ∈ ICli.

The next cluster-based treatment effect estimate is the Odds Ratio of study j

in cluster Cli.

Definition 5.7.6. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Table 5.1 be the 2×2-table of the binary patients’

outcome of study j in cluster Cli. Then

Θ̃i
j := ln

(
P̃ i
Tj

(1− P̃ i
Cj

)

P̃ i
Cj

(1− P̃ i
Tj

)

)

is the estimator for the treatment effect of study j in cluster Cli. The estimation

ORi
j :=

p̃iTj(1− p̃
i
Cj

)

p̃iCj(1− p̃
i
Tj

)

is called the Odds Ratio and

θ̃ij := ln(ORi
j)

the transformed Odds Ratio of study j in cluster Cli, for i = 1, . . . , k and j ∈ ICli.

The approximation of the variance of the transformed Odds Ratio of study j

in cluster Cli is given in the next theorem due by using the delta method.

Theorem 5.7.7. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Table 5.1 be the 2×2-table of the binary patients’

outcome of study j in cluster Cli. Then

(Σ̃i
j)

2 :=
1

SiTj
+

1

f iTj
+

1

SiCj
+

1

f iCj

is the estimator for the variance of the estimated treatment effect Θ̃i
j of study j

in cluster Cli, with corresponding estimation

(σ̃ij)
2 :=

1

siTj
+

1

f iTj
+

1

siCj
+

1

f iCj
,

and var(Θ̃i
j) ≈ (σ̃ij)

2, for i = 1, . . . , k and j ∈ ICli.
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The last cluster-based treatment effect estimate is the Risk Difference of study

j in cluster Cli. We close this section with the definition of the Risk Difference

and the determination of the approximated variance by using the delta method.

Definition 5.7.8. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Table 5.1 be the 2×2-table of the binary patients’

outcome of study j in cluster Cli. Then

Θ̃i
j := P̃ i

Tj
− P̃ i

Cj

is the estimator for the treatment effect of study j in cluster Cli. The correspond-

ing estimation

θ̃ij = RDi
j := p̃iTj − p̃

i
Cj

is called the Risk Difference of study j in cluster Cli, for i = 1, . . . , k and j ∈ ICli.

Theorem 5.7.9. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Table 5.1 be the 2×2-table of the binary patients’

outcome of study j in cluster Cli. Then

(Σ̃i
j)

2 :=
SiTjf

i
Tj

(niTj)
3

+
SiCjf

i
Cj

(niCj)
3

is the estimator for the variance of the estimated treatment effect Θ̃i
j of study j

in cluster Cli, with corresponding estimation

(σ̃ij)
2 :=

siTjf
i
Tj

(niTj)
3

+
siCjf

i
Cj

(niCj)
3
,

and var(Θ̃i
j) ≈ (σ̃ij)

2, for i = 1, . . . , k and j ∈ ICli.

Cardinal data

Like it is described in Section 3.2.2, we assume that for study j in cluster Cli,

for i = 1, . . . , k and j ∈ ICli , the outcome Y i
lTj

of individual l, l = 1, . . . , niTj , in

the treatment group is approximately normally distributed,

Y i
lTj
∼ N (yiTj , (σ

i
Tj

)2),
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with realization yilTj , unknown expected value yiTj and variance (σiTj)
2. The out-

come Y i
lCj

of individual l, l = 1, . . . , niCj , in the control group is also assumed to

be at least approximately normally distributed,

Y i
lCj
∼ N (yiCj , (σ

i
Cj

)2),

with realization yilCj , unknown expected value yiCj and variance (σiCj)
2. We use

the arithmetic mean value as estimator for the expected outcome in the treat-

ment and control group of study j in cluster Cli.

Theorem 5.7.10. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let ŜiTj = {(x̂ilTj , y
i
lTj

)}
niTj
l=1 be the patient data set in

the treatment group of study j in cluster Cli. Then

Ỹ i
Tj

:=
1

niTj

niTj∑
i=1

Y i
lTj

is the unbiased estimator for the expected outcome in the treatment group of study

j in cluster Cli and

ỹiTj :=
1

niTj

niTj∑
l=1

yilTj

the corresponding estimation, for i = 1, . . . , k and j ∈ ICli.

Theorem 5.7.11. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let ŜiCj = {(x̂ilCj , y
i
lCj

)}
niCj
l=1 be the patient data set

in the control group of study j in cluster Cli. Then

Ỹ i
Cj

:=
1

niCj

niCj∑
i=1

Y i
lCj

is the unbiased estimator for the expected outcome in the control group of study

j and

ỹiCj :=
1

niCj

niCj∑
i=1

yilCj
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the corresponding estimation, for i = 1, . . . , k and j ∈ ICli.

The estimators of variance (σiTj)
2 and (σiCj)

2 of the patients’ outcome in the

treatment and control group of study j in cluster Cli are given in the following

theorems.

Theorem 5.7.12. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, ŜiTj = {(x̂ilTj , y
i
lTj

)}
niTj
l=1 be the treatment group and Ỹ i

Tj

be the estimator for the expected outcome in the treatment group, with estimation

ỹiTj , of study j in cluster Cli. Then

(Σ̃i
Tj

)2 :=
1

niTj − 1

niTj∑
l=1

(Y i
lTj
− Ỹ i

Tj
)2

is the unbiased estimator for the variance of the outcome in the treatment group

of study j in cluster Cli and

(σ̃iTj)
2 :=

1

niTj − 1

niTj∑
l=1

(yilTj − ỹ
i
Tj

)2

the corresponding estimation, for i = 1, . . . , k and j ∈ ICli.

Theorem 5.7.13. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, ŜiCj = {(x̂ilCj , y
i
lCj

)}
niCj
l=1 be the control group and Ỹ i

Cj
be

the estimator for the expected outcome in the control group, with estimation ỹiCj ,

of study j in cluster Cli. Then

(Σ̃i
Cj

)2 :=
1

niCj − 1

niCj∑
l=1

(Y i
lCj
− Ỹ i

Cj
)2

is the unbiased estimator for the variance of the outcome in the control group of

study j and

(σ̃iCj)
2 :=

1

niCj − 1

niCj∑
l=1

(yilCj − ỹ
i
Cj

)2

the corresponding estimation, for i = 1, . . . , k and j ∈ ICli.
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The absolute difference between the mean outcome of the treatment and the

control group of study j in cluster Cli, for i = 1, . . . , k and j ∈ ICli is then

specified in the following definition.

Definition 5.7.14. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, let Ỹ i
Tj

be the estimator for the expected outcome in the

treatment group, with estimation ỹiTj , and let Ỹ i
Cj

be the estimator for the expected

outcome in the control group, with estimation ỹiCj , of study j in cluster Cli. Then

Θ̃i
j := Ỹ i

Tj
− Ỹ i

Cj

is the estimator for the treatment effect of study j. The corresponding estimation

θ̃ij := ỹiTj − ỹ
i
Cj

is called the absolute difference between the mean outcomes in the treatment and

control group of study j in cluster Cli, for i = 1, . . . , k and j ∈ ICli.

The effect measure value θ̃ij is the realization of the approximately normally

distributed random variable

Θ̃i
j ∼ N (θi, var(Θ̃i

j)),

with unknown true treatment effect θi and variance var(Θ̃i
j) which can be ap-

proximated as follows.

Remark 5.7.15. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, let (Σ̃i
Tj

)2 be the estimator for the variance of the

outcome in the treatment group, with realizations (σ̃iTj)
2. Furthermore let (Σ̃i

Cj
)2

the estimator for the variance in the control group, with realizations (σ̃iCj)
2, of

study j in cluster Cli. Then

(Σ̃i
j)

2 :=
(Σ̃i

Tj
)2

niTj
+

(Σ̃i
Cj

)2

niCj

is the estimator for the variance of the estimated treatment effect Θ̃i
j of study j

109



5. Geometric clustering of patient data

in cluster Cli,

(σ̃ij)
2 :=

(σ̃iTj)
2

niTj
+

(σ̃iCj)
2

niCj

is the corresponding estimation and var(Θ̃i
j) ≈ (σ̃ij)

2, for i = 1, . . . , k and j ∈ ICli.

If we assume that the variance (σiTj)
2 of the outcome of individuals in the

treatment group and the variance (σiCj)
2 of the outcome of individuals in the

control group of study j in cluster Cli are the same,

(σiTj)
2 = (σiCj)

2 =: (σiPj)
2,

like it is assumed in most of the parametric data analysis techniques, then for

the variance of the estimated treatment effect Θ̃i
j holds

var(Θ̃i
j) = (σiPj)

2

(
niTj + niCj
niTjn

i
Cj

)

[5]. But before we get to this definition, we need an estimate for variance (σiPj)
2

which is specified in the following remark.

Remark 5.7.16. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, let (Σ̃i
Tj

)2 be the estimator for the variance of the

outcome in the treatment group with realization (σ̃iTj)
2. Furthermore, let (Σ̃i

Cj
)2

be the estimator for the variance in the control group, with realization (σ̃iCj)
2, of

study j in cluster Cli. Then

(Σ̃i
Pj

)2 :=
(niTj − 1)(Σ̃i

Tj
)2 + (niCj − 1)(Σ̃i

Cj
)2

niTj + niTj − 2
,

is the estimator for the variance of the pooled outcome of the treatment and control

group of study j in cluster Cli and

(σ̃iPj)
2 :=

(niTj − 1)(σ̃iTj)
2 + (niCj − 1)(σ̃iCj)

2

niTj + niTj − 2
,

the corresponding estimation, for i = 1, . . . , k and j ∈ ICli.

Now the estimator for the variance of the estimated treatment effect Θ̃i
j can
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be formulated.

Remark 5.7.17. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, let (Σ̃i
Pj

)2 be the estimator for the variance of the

pooled outcome in the treatment and control group of study j in cluster Cli, with

realization (σ̃iPj)
2. Then

(Σ̃i
j)

2 := (Σ̃i
Pj

)2

(
niTj + niCj
niTjn

i
Cj

)

is the estimator for the variance of the estimated treatment effect Θ̃j of study j

in cluster Cli,

(σ̃ij)
2 := (σ̃iPj)

2

(
niTj + niCj
niTjn

i
Cj

)
is the corresponding estimation and var(Θ̃i

j) ≈ (σ̃ij)
2, for i = 1, . . . , k and j ∈ ICli.

The second effect measure for cardinal data is the standardized difference be-

tween the mean outcome in the treatment and control group of study j in cluster

Cli, for i = 1, . . . , k and j ∈ ICli . This standardized difference is defined as

follows.

Definition 5.7.18. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and let Ỹ i
Tj

be the estimator for the expected outcome

in the treatment group, with estimation ỹiTj , and let Ỹ i
Cj

be the estimator for the

expected outcome in the control group, with estimation ỹiCj , and (Σ̃i
Pj

)2 be the vari-

ance of the pooled outcome of the treatment and control group, with realization

(σ̃iPj)
2, of study j in cluster Cli. Then

Θ̃i
j :=

Ỹ i
Tj
− Ỹ i

Cj

Σ̃i
Pj

is the estimator for the treatment effect of study j. The corresponding estimation

θ̃ij :=
ỹiTj − ỹ

i
Cj

σ̃iPj
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5. Geometric clustering of patient data

is called the standardized difference between the mean outcomes in the treatment

and control group of study j in cluster Cli, for i = 1, . . . , k and j ∈ ICli.

As for the absolute difference, the estimated treatment effect θ̃ij is the realiza-

tion of the approximately normally distributed random variable

Θ̃i
j ∼ N (θi, var(Θ̃i

j)),

with unknown true treatment effect θi and variance var(Θ̃i
j). The variance of Θ̃i

j

can be approximated as follows [77].

Remark 5.7.19. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ. Then let nij be the number of patients of study j in

cluster Cli. Furthermore, let niTj be the number of patients in the treatment group

and niCj the number of patients in the control group of study j in cluster Cli. Then

(Σ̃i
j)

2 :=
nij

niTjn
i
Cj

is the estimator for the variance of the estimated treatment effect Θ̃i
j, (σ̃ij)

2 the

corresponding estimation and var(Θ̃i
j) ≈ (σ̃ij)

2, for i = 1, . . . , k and j ∈ ICli.

5.7.3. Cluster-based fixed-effects model

In the following, we will introduce the new invented cluster-based fixed-effects

model for the determination of the summary treatment effects of the patient col-

lectives identified by the endpoint-oriented geometric clustering approach. We

assume that all required assumptions, which are already described in Section

3.3.2, are fulfilled. Like it is discussed in the introductory paragraph of this sec-

tion, in the cluster-based fixed-effects model we assume that there is one true

fixed treatment effect θi for each patient collective i, for i = 1, . . . , k. The esti-

mation θ̃i of the true treatment effect is calculated by the weighted aggregation

of the treatment effect estimates of the single studies included in cluster Cli. For

this aggregation let Θ̃i
j be the independent approximately normally distributed
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estimated treatment effect of study j in cluster Cli, for i = 1, . . . , k and j ∈ ICli ,

Θ̃i
j ∼ N (θi, (σij)

2)

with unknown expected value θi, the true treatment effect in cluster Cli, and

variance (σij)
2. For cluster Cli the cluster-based fixed-effects model is given by

θ̃ij := θi + εij,

where θ̃ij is the observed treatment effect and εij the estimation error of study j

in cluster Cli. The estimation error is a realization of the normally distributed

random variable

E ij ∼ N (0, (σij)
2),

with expected estimation error 0. The variance of E ij is denoted by (σij)
2 and is

also called intra-study variance within study j in cluster Cli. In the cluster-based

fixed-effects model the observed variance of Θ̃i
j is also treated as if it were the true

variance. From this it follows that the estimated treatment effect Θ̃i
j of study j

in cluster Cli is normally distributed,

Θ̃i
j ∼ N (θi, (σ̃ij)

2)),

with expected value θi, the true treatment effect of cluster Cli, and observed

variance (σ̃ij)
2.

To get an estimation of the true treatment effect θi in cluster Cli we need to

use the estimator Θ̃i determined by the weighted mean of the existent estimated

treatment effects of all studies included in cluster Cli. Like it is done in the

already presented fixed-effects model in meta-analysis, for the aggregation we

apply the inverse variance method. With this approach the estimated summary

treatment effect in cluster Cli, for i = 1, . . . , k, is described by

θ̃i =

∑
j∈ICli

θ̃ijw
i
j∑

j∈ICli
wij

,
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5. Geometric clustering of patient data

as a realization of the unbiased estimator

Θ̃i =

∑
j∈ICli

Θ̃i
jw

i
j∑

j∈ICli
wij

with wij =
1

(σ̃ij)
2
,

for j ∈ ICli .

By using the inverse variance method, studies in cluster Cli with a smaller

variance, by means of a more precise treatment effect, are given more weight than

studies with larger variance. The estimator of the summary treatment effect of

cluster Cli is also normally distributed,

Θ̃i ∼ N (θi, var(Θ̃i),

with expected value θi and variance var(Θ̃i). The variance can be determined by

var(Θ̃i) = var

(∑
j∈ICli

Θ̃i
jw

i
j∑

j∈ICli
wij

)
=

1∑
j∈ICli

wij
. (5.1)

With this information, we can specify the confidence interval for the true treat-

ment effect in cluster Cli. Since

Θ̃i − θi√
var(Θ̃i)

is standardized normally distributed, for the (1−α) confidence interval I i of the

true treatment effect θi of cluster Cli follows

I i = [θ̃i − z[1− α

2
]

√
var(Θ̃i), θ̃i + z[1− α

2
]

√
var(Θ̃i)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution. With

this result, we can conclude, that in (1 − α) · 100% of all confidence intervals,

built on the basis of random patients of cluster Cli, the true treatment effect θi

is included,

P (θi ∈ I i) = 1− α.

In a last step, we define the resulting cluster value independent on the chosen
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treatment effect estimate.

Definition 5.7.20. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ and θ̃i the estimated summary treatment effect of cluster

Cli. Then the cluster value is defined by

fi(Cli) := θ̃i,

for i = 1, . . . , k.

5.7.4. Cluster-based random-effects model

In this section, we will discuss the cluster-based random-effects model. This

model is used if we assume that heterogeneity might still exist across the single

studies in a patient collective due to some further random-effect. For the identifi-

cation of the still existent heterogeneity we use the Qi-test introduced in Section

5.7.6. We assume that all required assumptions, which are already described in

Section 3.3.2, are fulfilled. In this model approach, we also assume that there

is a treatment effect θi for each patient collective Cli, for i = 1, . . . , k, which is

estimated by aggregating all treatment effects of the single trials included in the

corresponding cluster. Similar to the random-effects model described in Section

3.3.2, this new invented model allows the variation of the true treatment effect in

the patient collective Cli across all included studies. Thus, we assume that the

treatment effect θij of study j in cluster Cli is a realization of the random variable

Θi
j ∼ N (θi, (τ i)2),

with expected value θi, the true treatment effect in cluster Cli, and variance (τ i)2,

for i = 1, . . . , k and j ∈ ICli . In the cluster-based random-effects model for the

realization of Θi
j holds

θij := θi + νij,

with the study-specific random-effect νij of study j in cluster Cli which is a

realization of the normally distributed random variable,

N ∼ N (0, (τ i)2),
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with expected random-effect 0 and variance (τ i)2. We also call (τ i)2 the between-

study or inter-study variance within cluster Cli. It measures the difference be-

tween the treatment effect of study j and the treatment effect under all patients

in cluster Cli. Furthermore, let Θ̃i
j be an independent normally distributed treat-

ment effect observation,

Θ̃i
j ∼ N (θij, (σ

i
j)

2),

with correspondent unknown expected value θij and variance (σij)
2 in cluster Cli,

for i = 1, . . . , k and j ∈ ICli . The observed treatment effect of study j in cluster

Cli can be described by

θ̃ij = θij + εij,

where εij is the estimation error of study j in cluster Cli and a realization of the

normally distributed random variable

E ij ∼ N (0, (σij)
2),

with expected estimation error 0 and variance (σij)
2. The cluster-based random-

effects model is then given by

θ̃ij := θij + εij = θi + νij + εij,

for i = 1, . . . , k and j ∈ ICli , where εij is the estimation error and νij the random-

effect of study j in cluster Cli. Due to the independence of E ij and N it follows

that

Θ̃i
j ∼ N (θi, (σij)

2 + (τ i)2).

(τ i)2 is unknown and has to be estimated analogously to Section 3.3.2. With the

help of the underlying data of the cluster-based fixed-effects model we get

(τ̃ i)2 = max

0;
qi − (ni − 1)∑

j∈ICli
wij −

∑
j∈ICli

(wij)
2∑

j∈ICli
wij

 ,

where

qi =
∑
j∈ICli

wij(θ̃
i
j − θ̂i)2
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is the realization of the Qi-statistic for cluster Cli, with summary treatment effect

θ̃i and weight wij given by the cluster-based fixed-effects model and observed

treatment effect θ̃ij of study j in cluster Cli. ni = |ICli | denotes the number of

studies included in cluster Cli. Due to the assumption that the true variance of

the estimated treatment effect Θ̃i
j of study j in cluster Cli corresponds to the

variance (σ̃ij)
2 + (τ̃ i)2, we get

Θ̃i
j ∼ N (θi, (wij)

−1 + (τ̃ i)2),

with (wij)
−1 = (σ̃ij)

2 defined like it is done for the cluster-based fixed-effects model.

For the inverse variance method of the cluster-based random-effects model and

the determination of the estimated summary treatment effect in cluster Cli the

weights are given by

(wij)
∗ =

1

(wij)
−1 + (τ̃ i)2

.

The unbiased maximum likelihood estimator of the summary treatment effect of

cluster Cli is then given by

Θ̃i =

∑
j∈ICli

Θ̃i
j(w

i
j)
∗∑

j∈ICli
(wij)

∗ ,

with the realization

θ̃i =

∑ni
j=1 θ̃

i
j(w

i
j)
∗∑ni

j=1(wij)
∗ .

The estimator Θ̃i of the summary treatment effect in cluster Cli is normally

distributed

Θ̃i ∼ N (θi, var(Θ̃i)), (5.2)

with expected value θi and variance var(Θ̃i) which can be determined by

var(Θ̃i) = var

(∑
j∈ICli

Θ̃i
j(w

i
j)
∗∑

j∈ICli
(wij)

∗

)
=

1∑
j∈ICli

(wij)
∗ .
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Now, we can define the confidence interval of the true treatment effect θi of cluster

Cli due to the observation that the quotient

Θ̃i − θi√
var(Θ̃i)

is standardized normally distributed. For the (1− α) confidence interval follows

I i = [θ̃i − z[1− α

2
]

√
var(Θ̃i), θ̃i + z[1− α

2
]

√
var(Θ̃i)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution. From

this it follows that

P (θi ∈ I i) = 1− α.

The resulting cluster value for the cluster-based random-effects model is defined

according to Definition 5.7.20.

5.7.5. Justification of different treatment effects across

clusters

To justify the assumption that there is a true treatment effect θi in each cluster

or patient collective Cli, we assess the heterogeneity across the clusters identified

by the endpoint-oriented clustering algorithm. Therefore, we use a statistical test

procedure in analogy to the Cochrans’s χ2 test, shown in Figure 5.1.

For the justification, our goal is to reject the null hypothesis formulated by

H0 : θ1 = · · · = θk = θ,

where θi, for i = 1, . . . , k, is the underlying true treatment effect of the corre-

sponding cluster Cli. We consequently assume that there is only one true effect

for all clusters and therefore, for all patients independently of their characteris-

tic values combinations. With this test we want to show, that the formulated

null hypothesis can be rejected due to the identification of homogeneous pa-
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Formulate null
hypothesis H0

Calculate real-
ization qCl of

test statistic QCl

Determine p-value

Set level of
sinificance α

Reject H0 if p-value
is smaller than α

Figure 5.1.: Hypothesis test procedure for the justification of different treatment
effects across clusters

tient collectives where patients with similar characteristic values combinations

and therefore with similar true treatment effects are grouped. The alternative

hypothesis is then given by

H1 : ∃l ∈ {1, . . . , k} : θl 6= θi, ∀i ∈ {1, . . . , k}, i 6= l.

In the next step of the hypothesis test procedure, we need to specify a test

statistic. As this hypothesis test is in analogy to the Cochrans’s χ2 test we will

call the test statistic QCl-statistic. For the assessment of the heterogeneity across

the identified clusters, we have to calculate the realization of the test statistic

QCl =
k∑
i=1

wi(Θ̃i − Θ̄)2,

where Θ̄ is the estimator for the mean treatment effect of the defined clusters,

Θ̄ =
1

k

k∑
i=1

Θ̃i.
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(wi)−1 = var(Θ̃i) denotes the variance of the estimated summary treatment effect

of cluster Cli, calculated by equation 5.1 or 5.2, depending on the chosen cluster-

based model. The realization of the QCl-statistic is then given by

qCl =
k∑
i=1

wi(θ̃i − θ̄)2,

with estimation

θ̄ =
1

k

k∑
i=1

θ̃i

of the mean treatment effect of the identified clusters. qCl is the weighted squared

deviation of the summary treatment effects of the single clusters from the esti-

mated mean treatment effect. As we know from Section 4.2.1, QCl approximately

follows a χ2 distribution with (k − 1) degrees of freedom. After the calculation

of qCl, we need to decide whether we reject the null hypothesis or not. Therefore

we use the p-value,

pv = P (QCl ≥ qCl|H0) = 1− Fχ2
(k−1)

(qCl),

where Fχ2
(k−1)

is the cumulative function of the χ2 distribution with (k−1) degrees

of freedom. pv represents the probability to get the result qCl or higher under

the assumption that the null hypothesis is true. For the actual decision, we use

the level of significance α which should be chosen in advance. Is the p-value

smaller than the pre-defined α, we can reject the null hypothesis. It indicates

statistically significant heterogeneity of the treatment effect across the identified

patient collectives. In other case, if the p-value is greater than α, one would

suggest that the null hypothesis can not be rejected safely and the assumption

that there is a true treatment effect in each patient collective can not be justified.

5.7.6. Assessment of heterogeneity within clusters

According to Section 4.2, we use the Qi-test for the evaluation if there is still

heterogeneity across the studies included in the identified patient collectives. For

the conduction of the Qi-test, we follow the test procedure shown in Figure 4.1.
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The null hypothesis is formulated for all patient collectives by

H0 : θil = θik, ∀l, k ∈ ICli and l 6= k,

where θij is the true treatment effect of study j in cluster Cli, for i = 1, . . . , k and

j ∈ ICli . This implies that we assume the same treatment effect in all studies

included in cluster Cli and (τ i)2 = 0. For the conduction of the Qi-test we use

the Qi-statistic,

Qi =
∑
j∈ICli

wj(Θ̃
i
j − Θ̃i)2

with realization

qi =
∑
j∈ICli

wj(θ̃
i
j − θ̃i)2.

Θ̃i is the estimated summary treatment effect with realization θ̃i in cluster Cli,

calculated on the basis of one of the cluster-based fixed-effects model, and Θ̃i
j

with realization θ̃ij is the estimated treatment effect of study j in cluster Cli.

The weight is denoted by wj and is defined according to the chosen model. Qi

is approximately χ2 distributed with (ni− 1) degrees of freedom, where ni is the

number of studies included in cluster Cli. The null hypothesis is rejected if the

p-value

pvi = P (Qi ≥ qi|H0) = 1− Fχ2
(ni−1)

(qi)

is smaller than the pre-defined α. Fχ2
(ni−1)

is the cumulative function of the χ2

distribution with (ni − 1) degrees of freedom, for i = 1, . . . , k.

Since the Qi-test only gives us the information about the presence or the ab-

sence of heterogeneity, we also use the Qi-statistic-based (li)2 index for the quan-

tification of the heterogeneity in cluster Cli. It is defined by

(li)2 := max

{
0,
qi − (ni − 1)

qi

}
· 100%,

where qi is the realization of the Qi-statistic and (ni−1) is the degree of freedom

in cluster Cli. This index can be interpreted as it is listed in Table 4.2.
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5.8. Cluster-based identification of

heterogeneity

In this section, the endpoint-oriented geometric clustering approach is applied

as an unsupervised learning approach for the identification of clinical and es-

pecially regional heterogeneity in the treatment effects within and across the

identified patient collectives. Therefore, in the first step, we will have a look at

the general terminology, like the definitions of different cluster values, adjusted

to the examined characteristics for which heterogeneity is assumed. Based on the

specification of the general terms, the hypothesis tests for the identification of

heterogeneity can be formulated. For this analysis we use two different statistical

hypothesis tests, the nonparametric χ2 test and the parametric one or two tailed

one sample test. The theory is based on the joint working paper of Pogarell,

Brieden an Hinnenthal [21].

5.8.1. Clustering

For the cluster-based identification of heterogeneity, the entire patient data set

S = {(xj, yj)}nj=1 = Sall ⊂ Rd × Ω

is taken as training data set and is transformed to Ŝ like it is discussed in Section

5.5. It is important to consider also the administered drug as additional patient

characteristic to identify how the constitution and the administered medication

influence the response or outcome of a patient. On the transformed patient data

set, the clustering Algorithm 4 is applied and we achieve a (k, l, u)-clustering

Cl = (Cl1, . . . , Ck)

as a partition of the heterogeneous individual patient data, the total population,

into collectives with patients of similar combinations of their characteristic values.
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5.8.2. Cluster-based analysis

Since it is assumed that there are different treatment effects for different patient

collectives, the heterogeneity, and especially the regional heterogeneity, discussed

in Section 4.1, in the treatment effects within and across the identified clusters

has to be analyzed. For this analysis, we consider the unbiased estimator for the

expected value of the outcome of patients or, in the binary case, the probability of

success in cluster Cli as the corresponding cluster value in cluster Cli. Therefore,

we need to define the patient data set of cluster Cli.

Definition 5.8.1. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ = {(x̂j, yj)}nj=1 and ξ = (ξij) ∈ {0, 1}k×n the corre-

sponding assignment of Cl. Then

Ŝi := {(x̂j, yj)|ξij = 1}nj=1 ⊂ Rd × ΩCli ⊆ Ŝ

is the patients data set of cluster Cli. S
i denotes the non-translated patient data

set of cluster Cli, for i = 1, . . . , k.

Another important term is the number of patients with specific characteristic

values in cluster Cli.

Definition 5.8.2. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ and let Si = {(xij, yij)}
κi
j=1 be the non-translated patient data set of cluster

Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

κi(al, . . . , am) :=

κi∑
j=1

11{xijl,...,xijm}(al, . . . , am)

is the number of patients with the characteristic values combination Al = al, . . . , Am =

am, l, . . . ,m ∈ {1, . . . , d}, in cluster Cli, for i = 1, . . . , k.
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Cardinal data

For the assessment of the heterogeneity, the cluster value is defined by the realiza-

tion of the unbiased estimator for the expected value of the patients’ outcome in

cluster Cli. For the definition of this estimator, we assume that the true outcome

in cluster Cli,

Y i ∼ N (yi, (σi)2),

is a normally distributed random variable with expected value yi and standard

deviation σi, for i = 1, . . . , k. We also assume that the outcome of patient j,

Y i
j ∼ N (yi, (σi)2),

for j = 1, . . . , κi, in cluster Cli is also an independent normally distributed ran-

dom variable with realization yij, expected value yi and standard deviation σi.

The sample space of Y i and Y i
j is denoted by ΩCli ⊆ Ω. With these assumptions

the unknown expected outcome

E(Y i) = yi

of patients in cluster Cli can be estimated by the unbiased estimator specified

in the following theorem. For this approach, this estimator then also forms the

cluster value in cluster Cli.

Theorem 5.8.3. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with normally distributed outcome and let Ŝi = {(x̂ij, yij)}
κi
j=1 be the patient

data set of cluster Cli. Then

Ỹ i :=
1

κi

κi∑
j=1

Y i
j ,

is the unbiased estimator for the expected value of the patients’ outcome in cluster

Cli and

fi(Cli) = ỹi :=
1

κi

κi∑
j=1

yij,

the corresponding estimation and cluster value, for i = 1, . . . , k.
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5.8. heterogeneity

For the identification of heterogeneity between patients with different charac-

teristic values combinations, e.g. the expected outcome of male and of female

patients, we define the estimator for the conditional expected value

E(Y i|Al = al) =: yi(al)

of the patients’ outcome in cluster Cli, given characteristic value Al = al.

Remark 5.8.4. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with normally distributed outcome and let Si = {(xij, yij)}
κi
j=1 be the non-

translated patient data set of cluster Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

Ỹ i(al) :=
1

κi(al)

κi∑
j=1

Y i
j 11{xijl}(al),

is the estimator for the expected value of the patients’ outcome given characteristic

value Al = al, l ∈ {1, . . . , d}, in cluster Cli and

ỹi(al) :=
1

κi(al)

κi∑
j=1

yij11{xijl}(al),

the corresponding estimation, for i = 1, . . . , k.

For the conditional variance

var(Y i|Al = al) =: (σi(al))
2

of the outcome of patients with given characteristic value Al = al, we use the

following estimator.

Remark 5.8.5. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with normally distributed outcome and let Si = {(xij, yij)}
κi
j=1 be the non-
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translated patient data set of cluster Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

(Σ̃i(al))
2 :=

1

κi(al)− 1

κi∑
j=1

(Y i
j − Ỹ i(al))

211{xijl}(al),

is the estimator for the variance of the patients’ outcome given characteristic

value Al = al, l ∈ {1, . . . , d}, in cluster Cli and

(σ̃i(al))
2 :=

1

κi(al)− 1

κi∑
j=1

(yij − ỹi(al))211{xijl}(al),

the corresponding estimation, for i = 1, . . . , k.

If we want to consider more than one characteristic value as condition for the

estimation of the conditional expected value

E(YCli |Al = al, . . . , Am = am) =: yi(al, . . . , am)

and the conditional variance

var(Y i|Al = al, . . . , Am = am) =: (σi(al, . . . , am))2

of the patents’ outcome in cluster Cli, we can extend the last two specifications

to the following.

Remark 5.8.6. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with normally distributed outcome and let Si = {(xij, yij)}
κi
j=1 be the non-

translated patient data set of cluster Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)
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5.8. heterogeneity

represented by A1, . . . , Ad. Then

Ỹ i(al, . . . , am) :=

∑κi
j=1 Y

i
j 11{xijl,...,xijm}(al . . . am)

κi(al, . . . , am)

is the estimator for the expected value of the patients’ outcome given characteristic

value combination Al = al, . . . , Am = am, l, . . . ,m ∈ {1, . . . , d}, in cluster Cli

and

ỹi(al, . . . , am) :=

∑κi
j=1 y

i
j11{xijl,...,xijm}(al, . . . , am)

κi(al, . . . , am)

the corresponding estimation, for i = 1, . . . , k.

Remark 5.8.7. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with normally distributed outcome and let Si = {(xij, yij)}
κi
j=1 be the non-

translated patient data set of cluster Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

(Σ̃i(al, . . . , am))2 :=

∑κi
j=1(Y i

j − Ỹ i(al))
211{xijl,...,xijm}(al . . . am)

κi(al, . . . , am)− 1
,

is the estimator for the variance of the patients’ outcome given characteristic

value combination Al = al, l ∈ {1, . . . , d}, in cluster Cli and

(σ̃i(al, . . . , am))2 :=

∑κi
j=1(yij − ỹi(al))211{xijl,...,xijm}(al, . . . , am)

κi(al, . . . , am)− 1
,

the corresponding estimation, for i = 1, . . . , k.

Binary data

In the case of binary outcome Y i, with sample space ΩCli = {0, 1}, where 0 stands

for failure and 1 for success, the random variable is Bernoulli distributed,

Y i ∼ B(pi),

127



5. Geometric clustering of patient data

with probability of success pi = P (Y i = 1). The cluster value is then defined by

the realization of the unbiased estimator of the probability of success in cluster

Cli. Therefore, we assume that the outcome of patient j,

Y i
j ∼ B(pi),

for j = 1, . . . , κi, in cluster Cli is also an independent Bernoulli distributed ran-

dom variable with probability of success pi = P (Y i
j = 1) and realization yij. The

sample space of Y i and Y i
j is denoted by ΩCli = {0, 1}. With these assumptions,

the unknown probability of success of patients in cluster Cli can be estimated by

the unbiased estimator specified in the following theorem.

Theorem 5.8.8. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome and

Ŝi = {(x̂ij, yij)}
κi
j=1 the patient data set of cluster Cli. Then

P̃ i :=
1

κi

κi∑
j=1

11{1}(Y
i
j ),

is the unbiased estimator for the probability of success in cluster Cli and

fi(Cli) = p̃i :=
1

κi

κi∑
j=1

11{1}(y
i
j),

the corresponding estimation and cluster value, for i = 1, . . . , k.

For comparison of the probability of success of patients with different charac-

teristic values combinations, e.g. the probability of success of young and elderly

patients, we define the estimator for the conditional probability of success

P (Y i = 1|Al = al) =: pi(al)

in cluster Cli, given characteristic value Al = al.

Remark 5.8.9. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with Bernoulli distributed outcome and let Si = {(xij, yij)}
κi
j=1 be the non-
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5.8. heterogeneity

translated patient data set of cluster Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

P̃ i(al) :=
1

κi(al)

κi∑
j=1

11{1}(Y
i
j )11{xijl}(al),

is the estimator of the expected value of the patients’ outcome given characteristic

value Al = al, l ∈ {1, . . . , d}, in cluster Cli and

p̃i(al) :=
1

κi(al)

κi∑
j=1

11{1}(y
i
j)11{xijl}(al),

the corresponding estimation, for i = 1, . . . , k.

If we want to consider more than one characteristic value as condition for the

estimation of the conditional probability of success

P (Y i = 1|Al = al, . . . , Am = am) = pi(al, . . . , am)

in cluster Cli, we can extend the last remark to the following.

Remark 5.8.10. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with Bernoulli distributed outcome and let Si = {(xij, yij)}
κi
j=1 be the non-

translated patient data set of cluster Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

P̃ i(al, . . . , am) :=

∑κi
j=1 11{1}(Y

i
j )11{xijl,...,xijm}(Al, . . . , Am)

κi(al, . . . , am)
,

is the estimator for the probability of success given characteristic value combina-
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tion Al = al, . . . , Am = am, l, . . . ,m ∈ {1, . . . , d}, in cluster Cli and

p̃i(al, . . . , am) :=

∑κi
j=1 11{1}(y

i
j)11{xijl,...,xijm}(al, . . . , am)

κi(al, . . . , am)
,

the corresponding estimation, for i = 1, . . . , k.

Proportion

For the comparison of the different shares of patients with specific characteristic

values combinations in cluster Cli, e.g. the share of male patients compared to

the share of female patients, we need an estimator for the proportion

P(Al = al) =: ρi(al),

l ∈ {1, . . . , d}, of characteristic value Al = al in cluster Cli.

Remark 5.8.11. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ and let Si = {(xij, yij)}
κi
j=1 be the non-translated patient data set of cluster

Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

ρ̃i(al) :=

∑κi
j=1 11{xijl}(al)

κi
,

is the estimation for the proportion of characteristic value Al = al, l ∈ {1, . . . , d},
in cluster Cli, for i = 1, . . . , k.

It might also be of importance, to analyze the difference between the shares

of patients considering more than one characteristic value, e.g. the share of

youngsters under the male patients and the share of elderly under male patients

in cluster Cli. Therefore, we use the estimator for the probability

P(Al = al|Af1 = af1 , . . . , Afm = afm) =: ρi(al|af , . . . , am),

130



5.8. heterogeneity

for l, f, . . .m ∈ {1, . . . , d} and l 6= f, . . . ,m.

Remark 5.8.12. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ and let Si = {(xij, yij)}
κi
j=1 be the non-translated patient data set of cluster

Cli with d characteristic values

xij = (xij1, x
i
j2, . . . , x

i
jd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then

ρ̃i(al|af , . . . , am) :=

∑κi
j=1 11{xijl,xijf ,...,xijm}(al, af , . . . , am)

κi(af , . . . , am)

is the estimation for the proportion of characteristic value Al = al, given char-

acteristic value combination Af = af , . . . , Am = am, l, f, . . .m ∈ {1, . . . , d} and

l 6= f, . . . ,m, in cluster Cli, for i = 1, . . . , k.

With these definitions, we can have a closer look at the hypotheses tests for

the identification of heterogeneity.

5.8.3. Two sample hypothesis test

We begin with the description of the two sample t test which is used to determine

if the expected outcome, due to an administered intervention, of patients with

different characteristic values combinations in cluster Cli is equal, or if there is a

significant heterogeneity between the analyzed outcome. The following theory is

based on [61]. We formulate the null hypotheses that the expected outcome of pa-

tients with different characteristic values combinations is equal. Then the goal is

to reject this formulated null hypotheses, to have an indication for heterogeneity

in the patients’ outcome. The two sample t test procedure is shown in Figure 5.2.

In a first approach, we analyze if the patients’ outcome Y i is independent from

a pre-defined characteristic Al, l ∈ {1, . . . , d}. E.g. we want to know, if the

outcome of male patients differs to the outcome of female patients. In the first

step of the procedure, we formulate the null hypothesis.

H0 : yi(al1) = yi(al2),
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Formulate null
hypothesis H0

Calculate realization
t of test statistic T

Determine p-value
and rejection region V

Set level of
sinificance α

Reject H0 if p-value
is smaller than α

of if t lies in the V

Figure 5.2.: Hypothesis test procedure for the two sample test

where yi(alf ), f = 1, 2, is the expected outcome of patients with the characteristic

values al1 and al2 in cluster Cli, for i = 1, . . . , k. The alternative hypothesis is,

that patients with the characteristic values al1 and al2 have different outcomes

due to the administered medication, thus, that there is heterogeneity between

the treatment effects. In the next step of the test procedure, we calculate the

realization t of the test statistic T . We assume that the outcome of patients with

characteristic value al1 is independent of the outcome of those with characteristic

value al2 . The variances of the considered outcome of the two patient groups are

unknown and we assume that they are unequal. The test statistic is then given

by

T =
Ỹ i(al1)− Ỹ i(al2)√
(Σ̃i(al1 ))2

κi(al1 )
+

(Σ̃i(al2 ))2

κi(al1 )

and is an approximately standardized normally distributed random variable with

realization

t =
ỹi(al1)− ỹi(al2)√
(σ̃i(al1 ))2

κi(al1 )
+

(σ̃i(al2 ))2

κi(al1 )

.

With the pre-defined level of significance α, the null hypothesis can be rejected,
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5.8. heterogeneity

if realization t is located in the rejection region

V := {t ∈ R||t| ≥ z[1− α

2
]},

where z[1 − α
2
] is the (1 − α

2
)-quantile of the standard normal distribution. To

evaluate if the null hypothesis can be rejected, we can also use the p-value, which

is the probability to get the result t or an extremer value under the assumption

that the null hypothesis is true. It is determined by

pv = P (T ≥ t|H0) = 1− FN (t),

where FN is the cumulative standard normal distribution function. If the p-value

is smaller than α, the null hypothesis that the outcome of patients with different

characteristic values is equal has to be rejected and statistically significant het-

erogeneity of the outcome can be indicated.

In a second approach, we analyze if the patients’ outcome Y i is independent

from more than one pre-defined characteristics Al, . . . , Am, l, . . . ,m ∈ {1, . . . , d}.
E.g. we want to know if the outcome of young male patients differs to the outcome

of young female patients. In this case the null hypothesis is given by

H0 : yi(al1 , . . . , am1) = yi(al2 , . . . , am2),

where alf ∈ Ωl, . . . , amf ∈ Ωm, f = 1, 2, are the characteristic values of the

characteristics Al, . . . , Am, with sample spaces Ωl, . . . ,Ωm, l, . . . ,m ∈ {1, . . . , d}.
Then yi(alf , . . . , amf ), f = 1, 2, is the expected outcome of patients with the

characteristic values combinations al1 , . . . , am1 and al2 , . . . , am2 in cluster Cli, for

i = 1, . . . , k. The alternative hypothesis is that patients with the characteristic

values combinations al1 , . . . , am1 and al2 , . . . , am2 have different outcomes due to

the administered medication. Thus, that there is heterogeneity between the out-

come.
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The test statistic is then defined by

T =
Ỹ i(al1 , . . . , am1)− Ỹ i(al2 , . . . , am2)√

(Σ̃i(al1 ,...,am1 ))2

κi(al1 ,...,am1 )
+

(Σ̃i(al2 ,...,am2 ))2

κi(al2 ,...,am2 )

.

Since we assume that the outcome of patients with characteristic values com-

bination al1 , . . . , am1 is independent of the outcome of those with characteristic

values combination al2 , . . . , am2 , the test statistic is also approximately standard-

ized normally distributed with realization

t =
ỹi(al1 , . . . , am1)− ỹi(al2 , . . . , am2)√

(σ̃i(al1 ,...,am1 ))2

κi(al1 ,...,am1 )
+

(σ̃i(al2 ,...,am2 ))2

κi(al2 ,...,am2 )

.

The variances of the considered outcome of the two patient groups are unknown

and we assume that they are unequal. In the next step, we set significance level

α. The null hypotheses is then rejected and statistically significant heterogeneity

of the outcome can be indicated if t is located in the rejection region

V := {t ∈ R||t| ≥ z[1− α

2
]}.

or of the p-value, defined by

pv = P (T ≥ t|H0) = 1− FN (t),

is smaller than α.

5.8.4. χ2 test for independence

In case of Bernoulli distributed patients’ outcome Y i ∼ B(pi), with sample space

ΩCli = {0, 1}, we use the χ2 hypothesis test procedure shown in Figure 5.3 for the

identification of heterogeneity. This procedure is used for testing, if patients with

different characteristic values respond differently to an administered intervention

in cluster Cli. Therefore, we formulate the null hypothesis, that probability suc-

cess pi of patients with different characteristic values is equal. Then the goal is

to reject this formulated null hypotheses to have an indication for heterogeneity

in the patients’ outcome. The following theory is based on [61].
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Formulate null
hypothesis H0

Generate con-
tingency table

Calculate realization
t of test statistic T

Determine p-value
and rejection region V

Set level of
sinificance α

Reject H0 if p-value
is smaller than α

of if t lies in the V

Figure 5.3.: Hypothesis test procedure for the χ2 test

In a first approach, we analyze if the patients’ outcome Y i is independent from

one pre-defined characteristic Al, l ∈ {1, . . . , d}. E.g. we want to know, if the

response rate of male patients differs to the response rate of female patients. In

the first step of the procedure, we formulate the null hypothesis,

H0 : pi(al1) = pi(al2),

where pi(alf ), f = 1, 2, is the probability of success of patients with the character-

istic values al1 and al2 in cluster Cli, for i = 1, . . . , k. The alternative hypothesis

is that patients with the characteristic values al1 and al2 respond differently to

the administered medication.

In the next step of the procedure, we have to formulate the test statistic.

Therefore, we need contingency Table 5.2. The entries of this table are specified

in the next remark.
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success failure

Al = al1 a = si(al1) b = f i(al1) a+ b
Al = al2 c = si(al2) d = f i(al2) c+ d

a+ c b+ d n = a+ b+ c+ d

Table 5.2.: Distribution of binary outcome on characteristic Al in cluster Cli

Remark 5.8.13. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with Bernoulli distributed outcome and let Si = {(xj, yj)}κij=1 be the non-

translated patient data set of cluster Cli with d characteristic values

xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then for the entries of contingency Table 5.2 holds

si(alf ) :=

κi∑
j=1

11{1}(y
i
j)11{xjlf }(alf )

f i(alf ) :=

κi∑
j=1

11{xjlf }(alf )− s
i(alf ),

for f = 1, 2 and i = 1, . . . , k.

With Table 5.2, the test statistic is then given by

χ2 =
n(ad− bc)2

(a+ b)(a+ c)(c+ d)(b+ d)
. (5.3)

χ2 is the realization of an approximately χ2
1 distributed random variable with

one degree of freedom. With the pre-defined level of significance α, the null

hypothesis will be rejected, if the test statistic lies in the rejection region

V := {χ2 ∈ R|χ2 > χ2
1[1− α]}, (5.4)

where χ2
1[1− α] is the (1− α)-quantile of the χ2

1 distribution with one degree of

freedom. Another way to evaluate the result of the test statistic is the calculation

of the p-value. As it is stated in 5.7.5, the p-value is the probability to get the
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success failure

Al = al1 , . . . , Am = am1 a = si(al1 , . . . , am1) b = f i(al1 , . . . , am1) a+ b
Al = al2 , . . . , Am = am2 c = si(al2 , . . . , am2) d = f i(al2 , . . . , am2) c+ d

a+ c b+ d n

Table 5.3.: Distribution of binary outcome on characteristic Al, . . . , Am in cluster
Cli

result χ2 or higher under the assumption that the null hypothesis is true. It is

determined by

pv = 1− Fχ2
1
(χ2), (5.5)

where Fχ2
1

is the cumulative χ2
1 distribution function. If the p-value is smaller

than α, the null hypothesis that patients with different characteristic values re-

spond equally has to be rejected and statistically significant heterogeneity of the

treatment effects can be indicated.

If we want to consider more than one different characteristic value when ana-

lyzing different responses to a specific medication in cluster Cli, we need to adapt

the null hypothesis to

H0 : pi(al1 , . . . , am1) = pi(al2 , . . . , am2),

where alf ∈ Ωl, . . . , amf ∈ Ωm, f = 1, 2, are the characteristic values of the char-

acteristics Al, . . . , Am, with the sample spaces Ωl, . . . ,Ωm, l, . . . ,m ∈ {1 . . . , d}.
Thus pi(alf , . . . , amf ), f = 1, 2, is the conditional probability of success of the pa-

tients with characteristic values combinations al1 , . . . , am1 and al2 , . . . , am2 . E.g.

we test, if the response rate of young male patients is significantly different to

the response rate of elderly female patients in cluster Cli. For the formulation of

the test statistic (5.3) we use Table 5.3.

Remark 5.8.14. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with Bernoulli distributed outcome and let Si = {(xj, yj)}κij=1 be the non-
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translated patient data set of cluster Cli with d characteristic values

xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then for the entries of contingency Table 5.3 holds

si(alf , . . . , amf ) :=

κi∑
j=1

11{1}(y
i
j)11{xjlf ,...,xjmf }(alf , . . . , amf )

f i(alf , . . . , amf ) :=

κi∑
j=1

11{xjlf ,...,xjmf }(alf , . . . , amf )− s
i(alf , . . . , amf ),

for f = 1, 2 and i = 1, . . . , k.

With these entries of the contingency table we can formulate the test statistic

for the given null hypothesis according to (5.3). We reject the null hypothesis,

if the result of the test statistic lies in rejection region V (5.4) or if the p-value

(5.5) is smaller than the pre-defined α.

The χ2 test can also be applied to identify heterogeneity between the share of

patients with a specific characteristic value al ∈ Ωl in cluster Cli and the total

population by means of all patients participated in the considered studies. E.g.

we can test, if the share of male patients in the total population differ significantly

from the share of male patients in cluster Cli. Therefore we formulate the null

hypothesis

H0 : ρi(al) = ρ(al),

where ρ(al) is the share of patients with characteristic value Al = al in the total

population and ρi(al) the share in cluster Cli. For the calculation of the test

statistic (5.3), we take the distribution information found in Table 5.4. The

distribution in cluster Cli is defined in the following.

Remark 5.8.15. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with Bernoulli distributed outcome and let Si = {(xj, yj)}κij=1 be the non-

translated patient data set of cluster Cli with d characteristic values

xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad)
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cluster Cli Total population

Al = al1 a b a+ b
else c d c+ d

a+ c b+ d n = a+ b+ c+ d

Table 5.4.: Share of characteristic value al in cluster Cli and total population

represented by A1, . . . , Ad. Then for the entries of contingency Table 5.4 holds

a :=

κi∑
j=1

11{xjl}(al)

c := κi − a.

For the total population the entries of the contingency table are defined as

follows.

Remark 5.8.16. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with Bernoulli distributed outcome and let S = {(xj, yj)}nj=1 be the non-

translated patient data set of with d characteristic values

xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then for the entries of contingency Table 5.4 holds

b :=
n∑
j=1

11{xjl}(al)

d := n− b.

We reject the null hypothesis if the result of the test statistic (5.3) lies in V

(5.4) or if the p-value (5.5) is smaller than α.

In a last application, the test can be used to analyze if there is heterogeneity

between the shares of patients with characteristic value al1 ∈ Ωl given af1 , . . . , am1

and patients with characteristic value al2 ∈ Ωl given af2 , . . . , am2 in cluster Cli.

E.g. we can analyze, if there is a statistically significant difference between the
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5. Geometric clustering of patient data

Al = al1 Al = al1

Af = af1 , . . . , Am = am1 a b a+ b
Af = af2 , . . . , Am = am2 c d c+ d

a+ c b+ d n

Table 5.5.: Share of characteristic Al under patients with characteristic
Af , . . . , Am in cluster Cli

share of young male patients and elderly male patients in cluster Cli. Therefore,

we formulate the null hypothesis

H0 : ρi(al1|af1 , . . . , am1) = ρi(al2|af2 , . . . , am2).

The test statistic (5.3) is then calculated based on contingency Table 5.5.

Remark 5.8.17. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of patient data

set Ŝ with Bernoulli distributed outcome and let Si = {(xj, yj)}κij=1 be the non-

translated patient data set of cluster Cli with d characteristic values

xj = (xj1, xj2, . . . , xjd) = (a1, . . . , ad)

represented by A1, . . . , Ad. Then for the entries of contingency Table 5.5 holds

a :=

κi∑
j=1

11{xjl1 ,xjf1 ,...,xjm1
}(al1 , af1 , . . . , am1)

b :=

κi∑
j=1

11{xjf1 ,...,xjm1
}(af1 , . . . , am1)− a

c :=

κi∑
j=1

11{xjl2 ,xjf2 ,...,xjm2
}(al2 , af2 , . . . , am2)

d :=

κi∑
j=1

11{xjf2 ,...,xjm2
}(af2 , . . . , am2)− c

As for the previous test, the null hypothesis is rejected if the result of the test

statistic (5.3) lies in V (5.4) or if the p-value (5.5) is smaller than α.
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5.9. Cluster-based prediction of treatment effects

5.9. Cluster-based prediction of treatment

effects

In the medical sector, it is important to forecast the efficacy of medical interven-

tion. And since the assumption is reliable that there are different treatment ef-

fects for patients with different characteristic values combinations, in this section

the geometric clustering approach is examined as a supervised learning approach

for the prediction of the efficacy of medical interventions on patient collectives.

Furthermore, an assessment method for the reliability of these predictive effects

is presented. This might be important, e.g. for a more patient-oriented medi-

cation in terms of evidence-based medicine. Therefore, in Section 5.9.2, we will

have a look how the predictive value for each cluster can be determined based

on the available patient data. In this context, we will interpret the accuracy of

the calculated values by analyzing the corresponding confidence intervals. Then,

in Section 5.9.3, we will evaluate the reliability of the predicted values by using

a new invented hypothesis test procedure which will be applied to each patient

collective. The following theory is based on the joint working paper of Brieden,

Öllinger and Hinnenthal [20].

5.9.1. Clustering

For the prediction of the efficacy of medical interventions, the patient data set

Sall = {(xj, yj)}Nj=1 ⊂ Rd × Ω is divided into a training

S = {(xj, yj)}nj=1 ⊂ Rd × Ω

and testing patient data set

Ste = {(xtej , ytej )}ntej=1 ⊂ Rd × Ω.

It is common to use 80% of the available data for the training data set and re-

spectively 20% of the data for the testing data set. The choice of this ratio is

important with regard to the comparability of different, already existent predic-

tive algorithms. After this division, the training and the testing data set are
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5. Geometric clustering of patient data

transformed to Ŝ and Ŝte with respect to the outcome variable like it is discussed

in Section 5.5. It is important to consider the medication as additional patient

characteristic, to identify how the constitution and the administered intervention

influence the response or outcome of a patient. The goal is the prediction of the

outcome of patients with specific characteristic values combinations and specific

administered medication, e.g. the response of young male patients, if they are

medicated with drug A. Then the clustering Algorithm 4 is applied and we get

a (k, l, u)-clustering

Cl = (Cl1, . . . , Clk)

as a partition of the transformed training data set Ŝ. Each resulting cluster rep-

resents a collective with patients of similar combinations of their characteristic

values which are identified by the clustering algorithm.

5.9.2. Cluster-based analysis

Since we assume that there is a treatment effect for each identified patient col-

lective, we want to do predictive analysis for each cluster. Therefore, we firstly

define the patient data set of cluster Cli, for i = 1, . . . , k.

Definition 5.9.1. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ = {(x̂j, yj)}nj=1 and ξ = (ξij) ∈ {0, 1}k×n the corre-

sponding assignment of Cl. Then

Ŝi := {(x̂j, yj)|ξij = 1}nj=1 ⊂ Rd × ΩCli ⊆ Ŝ

is the patients data set of cluster Cli. S
i denotes the non-translated patient data

set of cluster Cli.

Cardinal data

In the next step, we define the cluster value according to Definition 5.6.6. For

the prediction of the efficacy of a medical intervention for a patient collective,

we use the unbiased estimator of the expected patients’ outcome in cluster Cli.
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Therefore, we assume that there is a true normally distributed outcome

Y i ∼ N (yi, (σi)2),

with expected value yi and variance (σi)2 in cluster Cli. Furthermore, let

Y i
j ∼ N (yi, (σi)2)

be an independent normally distributed random variable for the outcome of pa-

tient j in the training patient data set in cluster Cli with outcome yij, expected

outcome yi and unknown variance (σi)2. The sample space of Y i and Y i
j is

denoted by ΩCli , for i = 1, . . . , k and j = 1, . . . , κi. Then the unbiased estima-

tors for the expected value and the unknown variance of Y i are defined as follows.

Theorem 5.9.2. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and

Ŝi = {(x̂ij, yij)}
κi
j=1 the patient data set of cluster Cli. Then

Ỹ i :=
1

κi

κi∑
j=1

Y i
j ,

is the unbiased estimator for the expected value of the patients’ outcome in cluster

Cli and

fi(Cli) = ỹi :=
1

κi

κi∑
j=1

yij,

the corresponding estimation, for i = 1, . . . , k.

Theorem 5.9.3. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and

Ŝi := {(x̂ij, yij)}
κi
j=1 the patient data set of cluster Cli. Then

(Σ̃i)2 :=
1

κi − 1

κi∑
j=1

(Y i
j − Ỹ i)2,

is the unbiased estimator for the unknown variance of the patients’ outcome in
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cluster Cli and

(σ̃i)2 =
1

κi − 1

κi∑
j=1

(yij − ỹi)2,

the corresponding estimation, for i = 1, . . . , k.

Based on these estimations, in the next step, we define the (1− α) confidence

interval I i of the expected outcome yi of patients in cluster Cli with the pre-

defined significance level α. The unbiased estimator Ỹ i is normally distributed

with expected value

E(Ỹ i) = yi

and standard deviation

σỸ i :=
σ̃i
√
κi
.

Then, if the number of patients κi in the training patient data set in cluster Cli

is sufficiently large (κi > 30), due to the central limit theorem the quotient

Ỹ i − yi

σỸ i
(5.6)

is approximately standardized normally distributed. For the (1 − α) confidence

interval I i of the expected outcome yi in cluster Cli then follows

I i = [ỹi − z[1− α

2
]σỸ i , ỹ

i + [1− α

2
]σỸ i ],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution.

In case of a small random sample, Quotient (5.6) is student’s t-distributed with

(κi−1) degrees of freedom. For the (1−α) confidence interval I i of the expected

outcome yi in cluster Cli follows

I i = [ỹi − t(κi−1)[1−
α

2
]σỸ i , ỹ

i + t(κi−1)[1−
α

2
]σỸ i ],

where t(κi−1)[1− α
2
] is the (1− α

2
)-quantile of the student’s t-distribution. From

this it follows that in (1− α) · 100% of all cases the expected value yi lies in I i,
P (yi ∈ I i) = 1− α.
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Binary data

For the prediction of the efficacy of a medical intervention for a patient with the

two possible outcomes success and failure, we use the unbiased estimator of the

probability of success in cluster Cli. Therefore, we assume that there is a true

Bernoulli distributed outcome

Y i ∼ B(pi),

with probability of succes pi = P (Y i = 1) for all patients in cluster Cli. Further-

more, let

Y i
j ∼ B(pi)

be an independent Bernoulli distributed random variable for the outcome of pa-

tient j, j = 1 . . . , κi, in the training patient data set in cluster Cli with realization

yij and unknown probability of success

pi = P (Y i
j = 1).

The sample space of Y i and Y i
j is denoted by ΩCli = {0, 1}, for i = 1, . . . , k and

j = 1, . . . , κi. For Bernoulli distributed random variables holds

E(Y i
j ) = pi and var(Y i

j ) = pi(1− pi).

Then the estimators for the probability of success and the variance of Y i
j in clus-

ter Cli are defined as follows.

Theorem 5.9.4. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome and

Ŝi := {(x̂ij, yij)}
κi
j=1 the patient data set of cluster Cli. Then

P̃ i :=
1

κi

κi∑
j=1

11{1}(Y
i
j ),

is the unbiased estimator for the patients’ probability of success in cluster Cli and
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fi(Cli) = p̃i :=
1

κi

κi∑
j=1

11{1}(y
i
j),

the corresponding estimation, for i = 1, . . . , k.

Remark 5.9.5. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome and

Ŝi := {(x̂ij, yij)}
κi
j=1 the patient data set of cluster Cli. Then

(Σ̃i)2 := P̃ i(1− P̃ i),

is the estimator for the unknown variance of the patients’ probability of success

in cluster Cli and

(σ̃i)2 = p̃i(1− p̃i),

the corresponding estimation, for i = 1, . . . , k.

Also in the binary case, we determine the (1 − α) confidence interval I i of

the true probability of success pi of patients in cluster Cli with the pre-defined

significance level α. The unbiased estimator P̃ i is normally distributed with

expected value

E(P̃ i) = pi

and standard deviation

σP̃ i :=
σ̃i
√
κi
.

Then due to the central limit theorem, the quotient

P̃ i − pi

σP̃ i

is approximately standardized normally distributed and for the (1−α) confidence

interval I i of the true probability of success pi in cluster Cli follows

I i = [p̃i − z[1− α

2
]σP̃ i , p̃

i + z[1− α

2
]σP̃ i ],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution. From

this it follows that P (pi ∈ I i) = 1− α.
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Formulate null
hypothesis H0

Calculate realization
t of test statistic T

Determine p-value
and rejection region V

Set level of sig-
nificance α

Reject H0 if p-value
is smaller than α
or if t lies in V

Figure 5.4.: Hypothesis test procedure for the right and left tailed tests

Finally it can be concluded, that the cluster value fi(Cli) of cluster Cli, for i =

1, . . . , k, is then the predictive outcome or the predictive probability of responding

to a medication for each patient who would be assigned to this corresponding

cluster due to his characteristic values combination. In the next step, we need to

analyze the reliability of this predictive value in the training patient data set.

5.9.3. Statistical evaluation

For the evaluation of the reliability of the predictive value, by means of the pre-

dicted outcome or the predicted response to an administered medication in cluster

Cli we use the hypothesis test procedure shown in Figure 5.4. This procedure

is relying on the patient collectives, Cl1, . . . , Clk, determined by the endpoint-

oriented geometric clustering approach and consists of left and right tailed hy-

pothesis tests for each cluster based on the cluster values.

The geometric cluster Algorithm 4 separates the underlying training patient

data set into k clusters Cl1, . . . , Clk. Then for each cluster the cluster value, by

means of the expected outcome or the probability of responding to an adminis-
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tered medication in the binary case, is calculated according to Definition 5.9.2

or 5.9.4. For the evaluation of the reliability of the predictive values, we use the

non-restricting condition that the clusters are sorted and renumbered with regard

to their cluster values. Thus, for the cluster values of Cl1, . . . , Clk holds

f1(Cl1) ≤ f2(Cl2) ≤ · · · ≤ fk(Clk).

Cardinal data

The main assumption for the evaluation states that the true prediction yi for the

normally distributed outcome in cluster Cli satisfies inequation

fi(Cli) · δil ≤ yi ≤ fi(Cli) · δiu,

for i = 2, . . . , k − 1, and for the left and right border it holds

y1 ≤ f1(Cl1) · δ1
u and yk ≥ fk(Clk) · δkl ,

where δil is a lower and δiu an upper parameter for the adjustment of fi(Cli). In

the first step of the hypothesis test procedure, we formulate the null hypotheses.

Like it is common for hypothesis testing, the goal is to reject the null hypothesis.

Therefore, we set for the right tailed hypothesis test

H i
0,l : yi ≤ fi(Cli) · δil =: ỹil , for i = 2, . . . , k,

which indicates the assumption that the true patients’ outcome yi is at most

fi(Cli) · δil . Furthermore, we formulate the null hypothesis of the left tailed

hypothesis test,

H i
0,u : yi ≥ fi(Cli) · δiu =: ỹiu, for i = 1, . . . , k − 1,

which stand for the assumption that yi is at least fi(Cli) · δiu. Thus, for each

cluster we obtain a set of null hypotheses which can be summarized to one big

set of hypotheses.

Definition 5.9.6. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-
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formed patient data set Ŝ and f1(Cl1), . . . , fk(Clk) the corresponding sorted clus-

ter values. Then the set

H0 := {H1
0,u, (H

2
0,l, H

2
0,u), . . . , (H

(k−1)
0,l , H

(k−1)
0,u ), Hk

0,l}

of the left and right tailed hypotheses tests is called set of null hypotheses for

clustering Cl. The corresponding set

∆ := {δ1
u, (δ

2
l , δ

2
u), . . . , (δ

(k−1)
l , δ(k−1)

u ), δkl },

is called set of parameters for clustering Cl.

For the final determination of the set of null hypotheses for clustering Cl, we

need to define the adjusting parameters δil and δiu for the corresponding hypothe-

ses. There are different approaches for the setting of these parameters. The first

one is based on the convex combination of the neighbored cluster values.

Definition 5.9.7. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, f1(Cl1), . . . , fk(Clk) the corresponding sorted cluster

values and H0 the set of null hypotheses for clustering Cl. Then the parameters

of set ∆ are given by

δiu := 1− βi +
βifi+1(Cli+1)

fi(Cli)
, for i = 1, . . . , k − 1

δil := 1− βi +
βifi−1(Cli−1)

fi(Cli)
, for i = 2, . . . , k,

with βi ∈ [0, 1].

A second approach for the determination of the parameters of set ∆ is the use

of the borders of the confidence intervals defined in Section 5.9.1. If we have a

sufficiently large random sample (κi > 30) and the patients outcome is normally

distributed, we use the following parameters.

Definition 5.9.8. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome, f1(Cl1), . . . , fk(Clk)
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the corresponding sorted cluster values and H0 the set of null hypotheses for clus-

tering Cl. Then the parameters of set ∆ are given by

δiu := 1 +
βiz[1− α

2
]σ̃i

fi(Cli)
√
κi

, for i = 1, . . . , k − 1

δil := 1−
βiz[1− α

2
]σ̃i

fi(Cli)
√
κi

, for i = 2, . . . , k.

if κi > 30, with βi ∈ R, the (1 − α
2
)-quantile z[1 − α

2
] of the standard normal

distribution and the estimation for the variance σ̃i of the patients’ outcome in the

training patient data set in cluster Cli.

If the number of patients in the training data set in cluster Cli is small, we use

the quantile of the student’s t-distribution with (κi − 1) degrees of freedom.

Definition 5.9.9. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome, f1(Cl1), . . . , fk(Clk)

the corresponding sorted cluster values and H0 the set of null hypotheses for clus-

tering Cl. Then the parameters of set ∆ are given by

δiu := 1 +
βit(κi−1)[1− α

2
]σ̃i

fi(Cli)
√
κi

, for i = 1, . . . , k − 1

δil := 1−
βit(κi−1)[1− α

2
]σ̃i

fi(Cli)
√
κi

, for i = 2, . . . , k.

if κi ≤ 30, with βi ∈ R, the (1 − α
2
)-quantile t(κi−1)[1 − α

2
] of the student’s t-

distribution and the estimation or the variance σ̃i of the patients’ outcome in the

training patient data set in cluster Cli.

Like it is stated above, the cluster value is estimated on the basis of the un-

derlying training patient data set. For the evaluation of the reliability of this

estimation, we need to formulate the test statistic. Therefore, in the next step of

the hypothesis test procedure, we determine the cluster value on the basis of the

testing patients data set. But first of all, we define the testing data set of cluster

Cli.
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Definition 5.9.10. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ, Ŝte = {(x̂tej , ytej )}ntej=1 be the testing patient data set and

{Cl(xtej )}ntej=1 be the set of cluster assignment vectors for the testing patient data

set. Then

ŜteCli := {(x̂tej , ytej )|Cli(xtej ) = 1}ntej=1 ⊂ Rd × ΩCli ⊆ Ŝte

is the testing patient data set of cluster Cli and κtei := |ŜteCli | the number of patients

in the testing data set of cluster Cli, for i = 1, . . . , k.

For the calculation of the cluster value of the testing data set of cluster Cli, let

Y i,te
j ∼ N (yi, (σi)2)

be a independent normally distributed random variable for the outcome of patient

j, j = 1, . . . , κtei , in the testing patient data set in cluster Cli with realization

yi,tej , expected value yi and unknown variance (σi)2. The sample space of Y i,te
j is

denoted by ΩCli , for i = 1, . . . , k and j = 1, . . . , κtei . Then the unbiased estimator

for the expected value is defined as follows.

Theorem 5.9.11. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and

ŜteCli = {(x̂i,tej , yi,tej )}κ
te
i
j=1 be the testing patient data set of cluster Cli. Then

Ỹ i,te :=
1

κtei

κtei∑
j=1

Y i,te
j ,

is the unbiased estimator for the expected value of the patients’ outcome in cluster

Cli and

f tei (Cli) = ỹi,te :=
1

κtei

κtei∑
j=1

yi,tej

the corresponding estimation and cluster value of the testing patient data set of

cluster Cli, for i = 1, . . . , k.

This unbiased estimator in cluster Cli, i = 1, . . . , k, is normally distributed
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with expected value

E(Ỹ i,te) = yi

and standard deviation

σỸ i,te =
σi√
κtei

.

Since the standard deviation σi is unknown, we need to use an estimator which

is given in the next theorem.

Theorem 5.9.12. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and

ŜteCli = {(x̂i,tej , yi,tej )}κ
te
i
j=1 be the testing patient data set of cluster Cli. Then

(Σ̃i,te)2 :=
1

κtei − 1

κtei∑
j=1

(Y i,te
j − Ỹ i,te)2,

is the unbiased estimator for the unknown variance of the patients’ outcome in

cluster Cli and

(σ̃i,te)2 =
1

κtei − 1

κtei∑
j=1

(yi,tej − ỹi,te)2,

the corresponding estimation, for i = 1, . . . , k.

In case of normally distributed patients’ outcome the test statistics T il and T iu

for the null hypotheses of set H0 and the corresponding realizations til and tiu are

defined in the following.

Definition 5.9.13. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome. Then the test statis-

tics of set H0 are given by

T iu :=
Ỹ i,te − ỹiu

σ̃i,te√
κtei

, for i = 1, . . . , k − 1

T il :=
Ỹ i,te − ỹil

σ̃i,te√
κtei

, for i = 2, . . . , k,
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with the estimator Ỹ i,te for the patients’ outcome and the estimation σ̃i,te for the

variance in cluster Cli. The set of test statistics of H0 is denoted by

T := {T 1
u , (T

2
l , T

2
u ), . . . , (T

(k−1)
l , T (k−1)

u ), T kl }.

Remark 5.9.14. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome. Then the realiza-

tions of the test statistics in T of set H0 are given by

tiu :=
f tei (Cli)− ỹiu

σ̃i,te√
κtei

, for i = 1, . . . , k − 1

til :=
f tei (Cli)− ỹil

σ̃i,te√
κtei

, for i = 2, . . . , k

with the estimation f tei (Cli) of the patients’ outcome in cluster Cli.

Since the standard deviation of Ỹ i,te has to be estimated, the test statistics

are quotients built from two random variables. For a sufficient large number of

random samples κtei in the testing patient data set in cluster Cli, the test statistic

converges to the standard normal distribution due to the central limit theorem.

Now, the null hypotheses of H0 can be rejected, if the realization of the test

statistics lies in the rejection region. In the case of standardized normally dis-

tributed test statistics in T the rejection region is defined as follows.

Definition 5.9.15. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and let T be the

set of test statistics of H0 for clustering Cl. The refection regions for the test

statistics in T are given by

V i
u := {T iu ∈ R|T iu < z[α]}, for i = 1, . . . , k − 1

V i
l := {T il ∈ R|T iu > z[1− α]}, for i = 2, . . . , k,

if κtei > 30. z[α] is the α- and z[1 − α] is the (1 − α)-quantile of the standard

normal distribution. The set of the rejection regions is denoted by

V := {V 1
u , (V

2
l , V

2
u ), . . . , (V

(k−1)
l , V (k−1)

u ), V k
l }.
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5. Geometric clustering of patient data

If the number of patients is not sufficiently large we need to use the quantiles of

the student’s t-distribution. This approach is specified in the following definition.

Definition 5.9.16. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and let T be the

set of test statistics of H0 for clustering Cl. The refection regions for the test

statistics in T are given by

V i
u := {T iu ∈ R|T iu < t(κtei −1)[α]}, for i = 1, . . . , k − 1

V i
l := {T il ∈ R|T iu > t(κtei −1)[1− α]}, for i = 2, . . . , k,

if κtei ≤ 30. t(κtei −1)[α] is the α- and t(κtei −1)[1 − α] is the (1 − α)-quantile of the

student’s t-distribution with (κtei − 1) degrees of freedom. The set of the rejection

regions is denoted by

V := {V 1
u , (V

2
l , V

2
u ), . . . , (V

(k−1)
l , V (k−1)

u ), V k
l }.

The more intuitive way to evaluate the realization of the test statistics is the

use of the p-value already discussed in the previous sections. We reject a null

hypothesis of set H0 if the corresponding p-value is smaller than the predefined α.

Hence, if the probability to get the realization of the test statistic of set T or an

extremer value, under the assumption that the null hypothesis is true, is smaller

than α we reject the null hypothesis. Thus the smaller the p-value the stronger

the presumption against the null hypothesis in set H0. For this approach, we also

differentiate between small and large random samples.

Definition 5.9.17. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and let T be the set

of test statistics of H0 for clustering Cl. The p-values for the test statistics in T
are then given by
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5.9. Cluster-based prediction of treatment effects

pviu := P (T iu < tiu|H i
0,u) = FN (tiu), for i = 1, . . . , k − 1

pvil := P (T il > til|H i
0,l) = 1− FN (til), for i = 2, . . . , k,

if κtei > 30. FN denotes the cumulative distribution function of the standard

normal distribution. The set of the p-values is denoted by

P := {pv1
u, (pv

2
l , pv

2
u), . . . , (pv

(k−1)
l , pv(k−1)

u ), pvkl }

Definition 5.9.18. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with normally distributed outcome and let T be the set

of test statistics of H0 for clustering Cl. The p-values for the test statistics in T
are given by

pviu := P (T iu < tiu|H i
0,u) = Ft

(κte
i
−1)

(tiu), for i = 1, . . . , k − 1

pvil := P (T il > til|H i
0,l) = 1− Ft

(κte
i
−1)

(til), for i = 2, . . . , k,

if κtei ≤ 30. Ft
(κte
i
−1)

denotes the cumulative distribution function of the student’s

t-distribution with (κtei −1) degrees of freedom. The set of the p-values is denoted

by

P := {pv1
u, (pv

2
l , pv

2
u), . . . , (pv

(k−1)
l , pv(k−1)

u ), pvkl }.

With set P we now have an indication how plausible the predictive value fi(Cli)

in cluster Cli, for i = 1, . . . , k, is. The elements of P can be seen as probability

for trusting the predictive values.

Binary data

Also for patients’ outcome with only two occurrences the assumption is that the

true prediction pi for the probability of success in cluster Cli satisfies inequation

fi(Cli)δ
i
l ≤ pi ≤ fi(Cli)δ

i
u,
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5. Geometric clustering of patient data

for i = 2, . . . , k − 1, and for the left and right border holds

p1 ≤ f1(Cl1)δ1
u and pk ≥ fk(Clk)δ

k
l ,

where δil is a lower and δiu an upper parameter for the adjustment of fi(Cli). In

the binary case the right tailed hypothesis test is given by

H i
0,l : pi ≤ fi(Cli)δ

i
l =: p̃il, for i = 2, . . . , k,

which indicates the assumption that the true probability of success pi is at most

p̃il. The null hypothesis of the left tailed hypothesis test is then formulated by

H i
0,u : pi ≥ fi(Cli)δ

i
u =: p̃iu, for i = 1, . . . , k − 1,

which stand for the assumption that pi is at least p̃iu. These null hypotheses and

the adjusting parameters can be summarized to set H0 and set ∆ like it is already

specified in Definition 5.9.6.

The parameter of set ∆ can be chosen according to Definition 5.9.7 or as ad-

justed borders of the confidence interval defined in Section 5.9.1.

Definition 5.9.19. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome, f1(Cl1), . . . , fk(Clk)

the corresponding sorted cluster values and H0 the set of hypotheses of clustering

Cl. Then the parameters of set ∆ are given by

δiu := 1 +
βiz[1− α

2
]σ̃i

fi(Cli)
√
κi

, for i = 1, . . . , k − 1

δil := 1−
βiz[1− α

2
]σ̃i

fi(Cli)
√
κi

, for i = 2, . . . , k.

with βi ∈ R, the (1− α
2
)-quantile z[1− α

2
] of the standard normal distribution and

the standard deviation of the patients’ probability of success σ̃i in cluster Cli.

For the evaluation of the reliability in the binary case, we also need to formulate

the corresponding test statistics of setH0 with the help of the testing patient data

set ŜteCli of cluster Cli, for i = 1, . . . , k, specified in Definition 5.9.10. Therefore,
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5.9. Cluster-based prediction of treatment effects

let

Y i,te
j ∼ B(pi)

be a independent Bernoulli distributed random variable for the probability of suc-

cess of patient j, j = 1, . . . , κtei in the testing patient data set in cluster Cli with

realization yi,tej , expected value pi and unknown variance pi(1− pi). The sample

spaces of Y i,te
j is denoted by ΩCli = {0, 1}, for i = 1, . . . , k and j = 1, . . . , κtei ,

. The unbiased estimator for the unknown probability of success is given in the

next theorem.

Theorem 5.9.20. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome and

ŜteCli = {(x̂i,tej , yi,tej )}κ
te
i
j=1 the testing patient data set of cluster Cli. Then

P̃ i,te :=

∑κtei
j=1 1{1}(Y

i,te
j )

κtei
,

is the unbiased estimator of the expected value of the patients’ outcome in cluster

Cli and

f tei (Cli) = p̃i,te :=

∑κtei
j=1 1{1}(y

i,te
j )

κtei

the corresponding estimation and cluster value of the testing patient data set of

cluster Cli, for i = 1, . . . , k.

Then the test statistics T il and T iu for the null hypotheses of set H0 and the

corresponding realizations til and tiu are defined in the following.

Definition 5.9.21. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome. Then the test

statistics of set H0 are given by

T iu :=
P̃ i,te − p̃iu√

p̃iu(1−p̃iu)
κtei

, for i = 1, . . . , k − 1

T il :=
P̃ i,te − p̃il√

p̃il(1−p̃
i
l)

κtei

, for i = 2, . . . , k,
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5. Geometric clustering of patient data

with the estimator P̃ i,te of the probability of success in cluster Cli, for i = 1, . . . , k.

The set of test statistics of H0 is denoted by

T := {T 1
u , (T

2
l , T

2
u ), . . . , (T

(k−1)
l , T (k−1)

u ), T kl }.

Remark 5.9.22. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ. Then the realizations of the test statistics in T of set

H0 are given by

tiu :=
f te(Cli)− p̃iu√

p̃iu(1−p̃iu)
κtei

, for i = 1, . . . , k − 1

til :=
f te(Cli)− p̃il√

p̃il(1−p̃
i
l)

κtei

, for i = 2, . . . , k

with the estimation f te(Cli) of the probability of success in cluster Cli, for i =

1, . . . , k.

Due to the central limit theorem the test statistics of set T are approximately

standardized normally distributed. According to this knowledge the null hy-

potheses of H0 can be rejected if the realization of the test statistics are located

in the rejection region defined in the following.

Definition 5.9.23. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome and let T be the

set of test statistics of H0 for clustering Cl. The refection regions for the test

statistics in T are then given by

V i
u := {T iu ∈ R|T iu < z[α]}, for i = 1, . . . , k − 1

V i
l := {T il ∈ R|T iu > z[1− α]}, for i = 2, . . . , k,

where z[α] is the α and z[1 − α] is the (1 − α)-quantile of the standard normal

distribution. The set of the rejection regions is denoted by

V := {V 1
u , (V

2
l , V

2
u ), . . . , (V

(k−1)
l , V (k−1)

u ), V k
l }.

Here also the p-value is the approach for the evaluation of the realization of
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5.9. Cluster-based prediction of treatment effects

the test statistic. We reject a null hypothesis of set H0 if the probability to get

the realization of the test statistic of set T or an extremer value, under the as-

sumption that the null hypothesis is true, is smaller than the pre-defined α.

Definition 5.9.24. Let Cl = (Cl1, . . . , Clk) be a (k, l, u)-clustering of the trans-

formed patient data set Ŝ with Bernoulli distributed outcome and let T be the set

of test statistics of H0 for clustering Cl. The p-values for the test statistics in T
are given by

pviu := P (T iu < tiu|H i
0,u) = FN (tiu), for i = 1, . . . , k − 1

pvil := P (T il > til|H i
0,l) = 1− FN (til), for i = 2, . . . , k,

where FN denotes the cumulative distribution function of the standard normal

distribution. The set of the p-values is denoted by

P := {pv1
u, (pv

2
l , pv

2
u), . . . , (pv

(k−1)
l , pv(k−1)

u ), pvkl }

The new approach for the cluster-based prediction of treatment effects enables

the computation of a probability for trusting the predicted outcome of a patient in

the identified collectives. It enhances the fundamental concept of predicting the

efficacy of a medical intervention by an additional measure of trust. Especially

when the treatment effect of different patient collectives are compared, a trade-off

between accuracy and reliability is an upcoming effect. This can be seen in the

practical part of this thesis presented in Chapter 6.
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6. Practical application -

Empirical results

For the practical application and comparison of the meta-analysis approach de-

scribed in Chapter 3 and the new invented cluster-based approaches described in

Chapter 5, we analyzed individual patient data of 12 equally conducted RCTs

including 6010 patients treated with three different antidepressants and placebo.

Thereby, two of the administered drugs are already approved standard therapies

of depression and the third drug, which is available in four different dosages, is a

new invented therapy with not sufficiently proven benefit but with the potential

of a necessary treatment alternative. Therefore, this new drug was analyzed due

to the additional benefit for patients in terms of health economic evaluation.

In Section 6.1, a detailed description of the individual patient data of the

available clinical trials is given. In Section 6.2, the results of the conducted meta-

analysis of the available data are presented. Then, in Section 6.3, the results of

the new invented cluster-based meta-analysis, applied on the same individual

data, are demonstrated. In terms of health economic evaluation, the results of

the comparison of the both approaches, with regard to the additional benefit

of the new introduced drug, are shown. In Section 6.4, we will have a closer

look on the clinical heterogeneity identified by the endpoint-oriented geometric

clustering approach. In the last Section 6.5, we used this new approach for the

prediction of the efficacy of the three different antidepressant for the identified

patient collectives. As level of significance, we used α = 0.1 for all analyses.
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6. Practical application - Empirical results

6.1. Data description

Altogether, individual patient data from N = 6010 participants in 12 RCTs have

been available to assess the efficacy of three different antidepressants in the acute

treatment of depression. Hereafter, the N = 6010 participating patients represent

the patient data set

Sall = {(xj, yj)}6010
j=1 .

This data set can also be seen as total population and can be described in sta-

tistical terms as marginal distribution. The goal of the conducted trials was the

comparison of the new introduced antidepressant, here called A, with its dosages

5mg, 10mg, 15mg and 20mg, to already established treatments, here called C1

and C2.

The following characteristics have been available on an individual patient level:

• Name of the study (study)

• Region where the study has been conducted (region)

• Administered medication (treatment)

• Body Mass Index at the beginning of the study (BMI): The BMI is a value

derived from the weight and height of an individual; it is defined as the body

mass divided by the square of the body height and is universally expressed

in units of [kg/m2]

• MADRS total score at the beginning of the study (MADRS): MADRS

is the abbreviation of Montgomery-Asberg Depression Rating Scale and

is a ten-item diagnostic questionnaire which psychiatrists use to measure

the severity of depressive episodes of patients with mood disorders; the

overall score ranges from 0 to 60, where a higher score indicates more severe

depression

• CGI-S total score at the beginning of the study (CGI-S): CGI-S is the

abbreviation of Clinical Global Impression - Severity Scale and is a 7-point

scale that requires the clinician to rate the severity of the patient’s illness

at the time of assessment, relative to the clinician’s past experience with

162



6.2. Meta-analysis

patients who have the same diagnosis. Considering total clinical experience,

a patient is assessed on severity of mental illness at the time of rating: 1,

normal, not at all ill; 2, borderline mentally ill; 3, mildly ill; 4, moderately

ill; 5, markedly ill; 6, severely ill; or 7, extremely ill

• Duration of the depressive episode in days at the beginning of the study

(duration)

• Age (age)

• Gender (sex)

• For drop-outs: Primary Reason for withdrawal (withdrawal)

The individual binary outcome (endpoint) was measured as follows:

• Response (yes/no): a patient has responded, if the MADRS total score has

been reduced by at least 50% at the end of the study

• Remission (yes/no): a patient has remitted, if the MADRS total score has

been reduced to ≤ 9 points at the end of the study

Based on the available data, we were able to conduct a meta-analysis. The

results are discussed in the next section.

6.2. Meta-analysis

In this section, we will present the results of the conducted meta-analysis accord-

ing to the described theory in Chapter 3. The goal was the assessment of the

efficacy of the three different antidepressants A, C1 and C2, on the basis of the

response shown by the participating patients. The correspondent control group

was treated with placebo. For the comparison of the efficacy of the different in-

terventions, we conducted a meta-analysis for each medication. In Table 6.1 the

distribution of the 6010 participating patients in studies and treatments is shown.
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Study A5mg A10mg A15mg A20mg C1 C2 PBO Total

T11 107 97 110 102 416
T12 150 147 143 145 585
T13 150 144 142 436
T14 141 146 142 153 582
T15 187 200 189 576
T21 282 275 557
T22 150 141 139 430
T23 137 137 137 411
T24 139 140 142 150 571
T25 149 141 152 442
T26 142 137 144 423
T27 141 147 147 146 581

Total 1117 1006 417 774 570 252 1874 6010

Table 6.1.: Meta-analysis: Distribution of patients in study and treatment

6.2.1. Treatment effect estimates

Due to the recorded binary outcome for each patient in the treatment and the

control group of study j, j = 1, . . . , nst, with the two occurrences ”response” (= 1)

and ”no response” (= 0), for each administered drug we used the transformed

Risk Ratio for the estimation of the treatment effect. Thereby, nst is the number

of studies in which the correspondent drug was administered. The results of the

meta-analyses on the basis of the transformed Odds Ratio and the Risk Difference

can be found in Appendix A. For the approximation of the transformed Risk

Ratio, we had to estimate the probability of success or in our case the response

rate

p̃Tj =
sTj
nTj

in the treatment group and the response rate

p̃Cj =
sCj
nCj

in the control group. The estimations are based on Table 6.2. The table of each

medication can be found in Appendix A. With the help of the probabilities, the

transformed Risk Ratio,

θ̃j = ln

(
p̃Tj
p̃Cj

)
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Response No response

Treatment group sTj fTj nTj
Control group sCj fCj nCj

sj fj nj

Table 6.2.: Meta-analysis: 2× 2-table of binary outcome of study j

Treatment group: A5mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.6729 0.3787 0.0160 0.1705 0.5868
T12 2 0.4621 0.5733 0.2158 0.0130 0.0283 0.4032
T13 3 0.3732 0.5867 0.4522 0.0165 0.2408 0.6637
T21 4 0.4764 0.4894 0.0269 0.0077 -0.1174 0.1712
T22 5 0.3525 0.4400 0.2217 0.0217 -0.0206 0.4640
T23 6 0.2409 0.4526 0.6306 0.0318 0.3372 0.9241
T27 7 0.3973 0.4965 0.2229 0.0176 0.0048 0.4410

Table 6.3.: Meta-analysis: Transformed Risk Ratio, antidepressant A5mg

and the correspondent variance

σ̃2
j =

1

sTj
− 1

nTj
+

1

sCj
− 1

nCj

for study j were estimated. Additionally, the (1− α) confidence interval

Ij = [θ̃j − z[1− α

2
]σ̃j, θ̃j + z[1− α

2
]σ̃j],

for the treatment effect of study j, for j = 1, . . . , nst, was calculated, where

z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution.

The results of medication A5mg can be found in Table 6.3. E.g. for study

j = 6 (T23) we got

p̃T6 = 0.4526

and

p̃C6 = 0.2409,
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with a Risk Ratio of
p̃T6
p̃C6

=
0.4526

0.2409
= 1.8788.

This implies that the response under the patients treated with A5mg is 1.8788

times higher than the response under patients with no verum treatment. The

resulting transformed Risk Ratio is

θ̃6 = 0.6306.

The (1− α) confidence interval is given by

I6 = [0.3372, 0.9241],

for α = 0.1. The transformed Risk Ratios in the single studies vary from

θ̃4 = 0.0269 to θ̃6 = 0.6306. This is due to the high variation in the control

groups of the seven studies. In the treatment groups, the probabilities of suc-

cess or the response rates seem to be equal. Nevertheless, this results in a high

variation of the transformed Risk Ratio. Also the confidence intervals show less

overlapping which leads to the assumption, that there is heterogeneity which had

to explained.

The results for the further dosages of medication A, dosage A10mg, A15mg

and A20mg can be found in Table 6.4, Table 6.5 and Table 6.6. The results of

the already established depression therapies C1 and C2 are listed in Table 6.7

and Table 6.8. All medications show correspondent results in the analysis of the

treatment estimates of the single trials.

6.2.2. Fixed-effects model

For the weighted aggregation of the treatment effects in the single studies, we

firstly used the fixed-effects model. It is assumed that there is one true treatment

effect θ for each administered medical intervention and that the variation in

the treatment effects across trials is due to estimation errors. The estimated

treatment effect of study j is given by

θ̃j := θ + εj,
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Treatment group: A10mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.6907 0.4048 0.0161 0.1962 0.6134
T12 2 0.4621 0.5714 0.2124 0.0131 0.0239 0.4009
T15 3 0.3069 0.4920 0.4720 0.0175 0.2546 0.6894
T23 4 0.2409 0.4964 0.7230 0.0304 0.4362 1.0098
T25 5 0.2961 0.3356 0.1253 0.0289 -0.1545 0.4051
T26 6 0.3403 0.3803 0.1111 0.0249 -0.1486 0.3709
T27 7 0.3973 0.5442 0.3148 0.0161 0.1061 0.5234

Table 6.4.: Meta-analysis: Transformed Risk Ratio, antidepressant A10mg

Treatment group: A15mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T14 1 0.3333 0.5816 0.5566 0.0182 0.3348 0.7783
T24 2 0.3933 0.4604 0.1575 0.0187 -0.0675 0.3825
T26 3 0.3403 0.3723 0.0898 0.0258 -0.1742 0.3539

Table 6.5.: Meta-analysis: Transformed Risk Ratio, antidepressant A15mg

where εj is the estimation error, for j = 1, . . . , nst. With the inverse variance

method, the summary treatment effect is given by

θ̂ =

∑nst
j=1 θ̃jwj∑nst
i=j wj

,

with weights

wj =
1

σ̃2
j

,

for j = 1, . . . , nst. The variance was calculated by

var(Θ̂) =
1∑nst

j=1 wj
.

Then for the (1− α) confidence interval I of the true treatment effect θ follows

I = [θ̂ − z[1− α

2
]

√
var(Θ̂), θ̂ + z[1− α

2
]

√
var(Θ̂)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution.
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Treatment group: A20mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T14 1 0.3333 0.6233 0.6259 0.0172 0.4101 0.8417
T15 2 0.3069 0.6000 0.6705 0.0153 0.4671 0.8738
T24 3 0.3933 0.4500 0.1346 0.0190 -0.0922 0.3614
T25 4 0.2961 0.4113 0.3289 0.0258 0.0647 0.5931
T27 5 0.3973 0.5102 0.2502 0.0169 0.0362 0.4642

Table 6.6.: Meta-analysis: Transformed Risk Ratio, antidepressants A20mg

Treatment group: C1

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T12 1 0.4621 0.5944 0.2518 0.0128 0.0658 0.4379
T13 2 0.3732 0.6875 0.6108 0.0150 0.4095 0.8122
T14 3 0.3333 0.7535 0.8156 0.0154 0.6117 1.0196
T22 4 0.3525 0.5319 0.4114 0.0195 0.1820 0.6408
T24 5 0.3933 0.5634 0.3593 0.0157 0.1529 0.5657

Table 6.7.: Meta-analysis: Transformed Risk Ratio, antidepressant C1

For each medication, the estimated summary treatment effect, the variance

and the (1− α) confidence interval, for α = 0.1, is shown in Table 6.9. E.g. the

summary treatment effect for medication A5mg is

θ̂ = 0.2452,

with variance

var(Θ̂) = 0.0022.

The (1− α) confidence interval is presented by

I = [0.1688, 0.3215],

for α = 0.1. This summary treatment effect is interpreted as the estimated true

treatment effect for all patients. When looking back at the result of study 6,

this estimation is even not lying in the confidence interval I6. This leads to the

assumption that there is unexplained heterogeneity across the considered trials.

As can also be seen in Table 6.3 to Table 6.8, the treatment effects in the single
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Treatment group: C2

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.7273 0.4564 0.0149 0.2557 0.6570

Table 6.8.: Meta-analysis: Transformed Risk Ratio, antidepressant C2

Fixed-effects model

Drug θ̂ var(Θ̂) I q pv l2

A5mg 0.2452 0.0022 0.1688 0.3215 14.6834 0.0229 59.14%
A10mg 0.3299 0.0027 0.2438 0.4159 11.0165 0.0879 45.54%
A15mg 0.2888 0.0068 0.1532 0.4243 6.4023 0.0407 68.76%
A20mg 0.4192 0.0036 0.3198 0.5185 4.1820 0.3819 4.35%
C1 0.4847 0.0031 0.3935 0.5760 13.6952 0.0083 70.79%
C2 0.4564 0.0149 0.2557 0.6570 0.0000

Table 6.9.: Meta-analysis: Risk Ratio estimated by the fixed-effects model

trials vary for each medication. This might be due to estimation errors in the

single trials but might have further reasons. Therefore, a common way to identify

heterogeneity is the use and evaluation of the realization of the Q-statistic,

q =
nst∑
j=1

wj(θ̃j − θ̂)2.

For the evaluation of the result of the Q-statistic, we used the p-value

pv = 1− Fχ2
(nst−1)

(q),

where Fχ2
(nst−1)

is the cumulative function of the χ2 distribution with (nst − 1)

degrees of freedom. Another way to assess heterogeneity is e.g. the Q related l2

index

l2 = max

{
0,
q − (nst − 1)

q

}
· 100%.

When considering medication A5mg, for the realization of the Q-statistic fol-

lowed

q = 14.6834.
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For the evaluation of this result, we calculated the p-value

pv = 1− Fχ2
2
(14.6834) = 0.0229.

This indicates that, under the assumption that the treatment effects are equal in

the seven studies, the probability to get this result or a higher value for q, is only

2.29%. For α = 0.1 this implies, that we can reject the null hypothesis that the

treatment effects in the single trials are equal. Another way for the assessment

of heterogeneity is the l2 index. The result for medication A5mg is

l2 = 59.14.%

According to Table 4.2, this result can be interpreted as there may be substan-

tial heterogeneity across the single trials. Therefore, it is reliable to reject the

hypothesis that the treatment effects of the single trials are equal for each admin-

istered medication. Similar results can be found for all other medication, except

for A20mg. Here, we have no statistical significant heterogeneity. The p-value is

pv = 0.3819.

6.2.3. Random-effects model

Since there is heterogeneity that cannot readily be explained for all medications,

except A20mg, we used the random-effects model. This model allows the vari-

ation of the true treatment effect across studies, i.e. that there is a treatment

effect θj in each study. The estimated treatment effect is given by

θ̃j := θj + εj = θ + νj + εj,

for j = 1, . . . , nst, where εj is the estimation error and νj is the random-effect

of study j. Therefore, we assume that the variation of the estimated treatment

effects in the single trials are due estimation errors and the already mentioned

random-effects. With the inverse variance method, the summary treatment effect

is given by

θ̂ =

∑nst
j=1 θ̃jw

∗
j∑nst

j=1w
∗
j

.
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with weights

w∗j =
1

w−1
j + τ̂ 2

for j = 1, . . . , nst. The variance is given by

var(Θ̂) =
1∑nst

j=1w
∗
j

and the inter-variance is estimated by

τ̂ 2 = max

0;
q − (nst − 1)∑nst

j=1wj −
∑nst

j=1w
2
j∑nst

j=1wj

 .

Then for the (1− α) confidence interval of the true treatment effect θ follows

I = [θ̂ − z[1− α

2
]

√
var(Θ̂), θ̂ + z[1− α

2
]

√
var(Θ̂)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standardized normal distribution.

The estimated summary treatment effect, the variance and the (1 − α) con-

fidence interval for each medication is shown in Table 6.10. E.g. the summary

treatment effect for medication A5mg is given by

θ̂ = 0.2476,

with variance

var(Θ̂) = 0.0022.

For the (1− α) confidence interval resulted

I = [0.1698, 0.3255],

for α = 0.1. When analyzing all results of the random-effects model, by using

the indirect comparison, the new invented medication A, with its dosages 5mg,

10mg, 15mg and 20mg, don’t show an additional benefit for all patients in com-

parison to medication C1 or C2. The new invented medication with the highest
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Random-effects model

Drug θ̃ var(Θ̃) I

A5mg 0.2476 0.0022 0.1698 0.3255
A10mg 0.3300 0.0028 0.2433 0.4167
A15mg 0.2870 0.0075 0.1447 0.4294
A20mg 0.4177 0.0040 0.3138 0.5216
C1 0.4854 0.0034 0.3900 0.5808
C2 0.4564 0.0149 0.2557 0.6570

Table 6.10.: Meta-analysis: Risk Ratio estimated by the random-effects model

treatment effect is A20mg with θ̃ = 0.4177 in comparison to medication C2 with

a treatment effect of θ̃ = 0.4854.

Note that a random-effects model does not ’take account’ of heterogeneity in

the sense, that it is no longer an issue. There might be heterogeneity due to

e.g. socio-demographic, biographical or clinical parameters, which hasn’t been

considered. The geometric clustering approach deals with the classification of pa-

tient data into patient collectives with similar characteristic values combinations.

With this approach, this heterogeneity can be taken into account.

6.3. Cluster-based meta-analysis

According to the new theory described in Chapter 5, in this section the results

of the conducted cluster-based meta-analysis are presented. The clustering ap-

proach has been applied on the same clinical trials available for the meta-analysis

presented in Section 6.2, respectively on the data set Sall described in Section 6.1.

Since the cluster-based meta-analysis is based on an unsupervised clustering ap-

proach, we used all available data for the identification of the patient collectives.

In the following, the efficacy of the three different antidepressants A, C1 and C2

has been assessed on patient collectives classified by the endpoint-oriented geo-

metric clustering algorithm. We assume that there is one true treatment effect for

each patient collective. By using this approach, we have been able to address het-

erogeneity due to socio-demographic, biographical or clinical parameters, which

is not considered in the common meta-analysis approach.
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Ai Characteristic Values

A1 Region EU, non-EU
A2 BMI 13 to 68.41 kg/m2

A3 MADRS 13 to 52
A4 CGI-S 3 to 7
A5 Duration 28 to 7976 days
A6 Sex Female, Male
A7 Age 18 to 88 years
A8 Withdrawal Adverse events, Lack of efficacy,

Lost to follow-up, Withdrawal of consent

Outcome Values

Response yes, no
Remission yes, no

Table 6.11.: Cluster-based meta-analysis: Independent and dependent variables
used for the clustering approach

6.3.1. Clustering

For the application of the clustering approach explained in Chapter 5, to identify

patient collectives as a partition of the data set

S = Sall = {xj, yj}6010
j=1 ,

in the first step, the available characteristics with their characteristic values had

to be picked, which might have an influence on the response of a patient. For

the cluster-based meta-analysis we have chosen those random variables listed in

Table 6.11. Since the random variables ’BMI’, ’duration’ and ’age’ have plenty of

values and therefore, the number of value combinations would increase propor-

tionally, we classified those characteristics like it is described in Section 5.5. In

Table 6.12, the characteristic values of those three variables are divided into five

classes of equal class density. Since the attributes ’treatment’, ’region’, ’sex’, and

’withdrawal’ have a nominal level of scale, we needed to transform the existing

data according to Section 5.5. With this transformed data, we had been able to

apply the clustering algorithm to get a predefined number of patient collectives.

The parameter setup for the clustering consisted of k = 6 clusters, lower bounds

li = 100, for i = 1, . . . , 6, and no upper bounds. In this thesis, the setting k = 6
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Ai Characteristic Class number Class

A2 BMI 1 ]0, 22.53]
2 ]22.53, 25.28]
3 ]25.53, 28.39]
4 ]28.39, 32.91]
5 ]32.91,∞]

A5 Duration (in days) 1 ]0, 113]
2 ]113, 142]
3 ]142, 197]
4 ]197, 323]
5 ]323,∞]

A7 Age (in years) 1 ]0, 34]
2 ]34, 44]
3 ]44, 51]
4 ]51, 60]
5 ]60,∞]

Table 6.12.: Cluster-based meta-analysis: Classification of random variables

Cluster Cli 1 2 3 4 5 6 all

Patients κi 1096 476 1400 1948 335 755 6010
Response p̃i 0.6086 0.1639 0.4800 0.5524 0.1791 0.4689 0.4837

Table 6.13.: Cluster-based meta-analysis: Clustering results with respect to ’re-
sponse’ for defining 6 clusters

has been arisen due to corresponding preliminary analysis. In general, the clus-

ter number can be set freely in principle, but should be selected goal-oriented.

Each cluster is uniquely defined by combinations of those characteristic values

of the various attributes that have been identified as similar by the algorithm.

The clustering results can be found in Table 6.13. E.g. in cluster Cl1, κ1 = 1096

patients are grouped with a response rate of p̃1 = 0.6086. A detailed presentation

of the results is given in Appendix B.
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6. Practical application - Empirical results

6.3.2. Cluster-based analysis

Since the number of patients in some trials of the clusters is low, see Table B.7

in the Appendix, and therefore the statistical power is decreased, in a first step,

we have analyzed the patient collectives, identified by the clustering algorithm,

without differentiating between the single trials. The response rates and the con-

ditional response rates have been calculated according to the introduced theory in

Section 5.8 and the treatment effect estimates according to the theory described

in Section 5.7.

Cluster Cl2 and Cl5 include all participants who have dropped out of a study.

In both clusters, EU and non-EU patients are grouped. In cluster Cl1, only

EU patients and in cluster Cl3 and Cl4, only non-EU patients are included. In

cluster Cl6, EU and non-EU patients are grouped with a higher share of non-EU

participants in comparison to the marginal distribution,

ρ̃6(non-EU) = 0.8053

ρ̃(non-EU) = 0.7656.

The mean response rates in cluster Cl6 stratified by region also differ,

p̃6
1(EU) = 0.5034

p̃6
1(non-EU) = 0.4605.

In Table 6.14, all response rates stratified by region and medication are presented.

This table shows regional differences in the response rates for all medications. In

cluster Cl1 the response rates are very high for all medications and the PBO

response is low which leads to high transformed Risk Ratios,
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6.3. Cluster-based meta-analysis

θ̃1(A5mg, EU) = 0.4340

θ̃1(A10mg, EU) = 0.4492

θ̃1(A15mg, EU) = 0.5192

θ̃1(A20mg, EU) = 0.5667

θ̃1(C1, EU) = 0.7123

θ̃1(C2, EU) = 0.7648,

where the transformed Risk Ratios are defined by

θ̃i(drug, region) = ln

(
p̃i(drug, region)

p̃i(PBO, region)

)
,

for i = 1, . . . , k. Medication C2 shows the highest and A5mg the lowest trans-

formed Risk Ratio. In comparison to the EU cluster Cl1, in the non-EU clusters

Cl3 and Cl4 the response rates in the control groups are higher and those of the

treatment groups are lower. This results in lower transformed Risk Ratios, which

can be seen in the following. For cluster Cl3, we have

θ̃3(A5mg, non-EU) = 0.1397

θ̃3(A10mg, non-EU) = 0.0692

θ̃3(A15mg, non-EU) = −0.1098

θ̃3(A20mg, non-EU) = 0.2559

θ̃3(C1, non-EU) = 0.5061.

The transformed Risk Ratios are significantly lower than in cluster Cl1. Medica-

tion C1 shows the highest and A15mg the lowest treatment effect. In cluster Cl4

the results are
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θ̃4(A5mg, non-EU) = 0.3598

θ̃4(A10mg, non-EU) = 0.2456

θ̃4(A15mg, non-EU) = −0.2905

θ̃4(A20mg, non-EU) = 0.3226

θ̃4(C1, non-EU) = 0.4614.

Here, also for medication C1 we have the highest and for A10mg the lowest trans-

formed Risk Ratio. In the mixed cluster Cl6, there are also significant regional

differences. The placebo treated patients in the EU regions show a lower response

rate than in the control group in the non-EU group. The treatment group in the

EU regions shows a higher response than those patients in the non-EU regions.

This results in significant higher treatment effects in the EU group in cluster Cl6.

The results are

θ̃6(A5mg, EU) = 0.8216

θ̃6(A10mg, EU) = 1.5343

θ̃6(A15mg, EU) = 1.5884

θ̃6(A20mg, EU) = 1.6837

θ̃6(C1, EU) = 1.3007

θ̃6(C1, EU) = 1.4830.

θ̃6(A5mg, non-EU) = 0.5566

θ̃6(A10mg, non-EU) = 0.3932

θ̃6(A15mg, non-EU) = 0.3276

θ̃6(A20mg, non-EU) = 0.2376

θ̃6(C1, non-EU) = 0.5010

θ̃6(C2, non-EU) = n/a.

For the EU patients in cluster Cl6, the most efficient medication is indeed

A20mg and for the non-EU group the highest treatment effect has medication

A5mg, which implies an additional benefit for the new invented medication A.

These results are very interesting due to the findings of the meta-analysis ap-

proach in Section 6.2, where medication A seems to have no additional benefit.

We can conclude that there is very high regional heterogeneity in the PBO re-

sponse rates. Non-EU patients showed a higher and EU patients a lower PBO

response. A more detailed examination of the heterogeneity can be found in the

Section 6.4.
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6.3. Cluster-based meta-analysis

Response No response

Treatment group siTj f iTj
Control group siCj f iCj

Table 6.15.: Cluster-based meta-analysis: 2× 2-table of binary outcome of study
j in cluster Cli

When analyzing the patients characteristics in the corresponding clusters, it is

noticeable that in the EU cluster Cl1 more patients with a lower BMI, a higher

depression at baseline and a shorter duration of the last episode can be found.

In the non-EU cluster Cl3 patients with a higher BMI, a lower depression and

longer duration of the last espisode are represented. And in the non-EU cluster

Cl4 patients with a higher BMI, a lower depression and a shorter duration of the

last episode are grouped. In cluster Cl6 there is no conspicuousness concerning

the distribution of the BMI and the duration of the last depression episode, but

we find more patients with a lower depression. In the drop-out cluster Cl2, EU

and non-EU patients are grouped with a rather low BMI, a rather low depression

and a short duration of the last episode. In cluster Cl5, EU and non-EU patients

are included with a rather low depression, a long duration of the last episode and

the share of male patients was increased. It is noteworthy that the participants

in Cl2 and Cl5 are rather young. As we can see, socio-demographic, biographical

and clinical parameters vary across the identified patient collectives.

Although the number of patients is low in some trials of the identified clusters,

we will have a look at the results of the cluster-based meta-analysis in the next

section.

6.3.3. Treatment effect estimates

In this section, we will present the results of the cluster-based meta-analysis.

Therefore, in the first step, we analyzed the treatment effects in the single trials

of the clusters. Since the recorded outcome for each patient in the treatment

group and in the control group of study j in cluster Cli, j ∈ ICli and i = 1, . . . , k,

is binary, with the two occurrences ”response” (= 1) and ”no response” (= 0), for

each administered drug, we used the transformed Risk Ratio for the estimation
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of the treatment effect. The results of the cluster-based meta-analyses on the

basis of the transformed Odds Ratio and the Risk Difference can be found in

Appendix B. The set of indices of the studies included in cluster Cli, in which the

correspondent drug is administered, is denoted by ICli . . For the approximation

of the transformed Risk Ratio of study j in cluster Cli, we had to estimate the

response rate

p̃iTj =
siTj

siTj + f iTj

in the treatment group and the response rate

p̃iCj =
siCj

siCj + f iCj

in the control group. The estimations are based on Table 6.15. The table of

each medication can be found in Appendix B. Based on the response rates, the

transformed Risk Ratio

θ̃ij = ln

(
p̃iTj
p̃iCj

)
,

and the correspondent variance

(σ̃ij)
2 =

1

siTj
− 1

siTj + f iTj
+

1

siCj
− 1

siCj + f iCj

for study j in cluster Cli were estimated. Additionally the (1 − α) confidence

interval

I ij = [θ̃ij − z[1− α

2
]σ̃ij, θ̃

i
j + z[1− α

2
]σ̃ij],

for the treatment effect of study j in cluster Cli was calculated, where z[1 − α
2
]

is the (1− α
2
)-quantile of the standard normal distribution.

The results of medication A5mg can be found in Table 6.16. E.g. study T12 is

represented in all clusters except cluster Cl1, which implies, that this study was

conducted in non-EU regions. In the non-EU cluster Cl3, Cl4 and in the mixed

cluster Cl6 the response rates in the treatment group are given by

p̃3
T2

= 0.5667, p̃4
T2

= 0.7162 and p̃6
T2

= 0.5294

180



6.3. Cluster-based meta-analysis

Treatment group: A5mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.7204 0.2502 0.0137 0.0575 0.4428
T23 8 0.2925 0.5146 0.5650 0.0320 0.2709 0.8592

2 T12 2 0.1333 0.3529 0.9734 0.5412 -0.2366 2.1835
T21 6 0.2308 0.0769 -1.0986 0.5897 -2.3618 0.1645
T22 7 0.1111 0.1765 0.4626 1.1634 -1.3115 2.2368

3 T12 2 0.4857 0.5667 0.1542 0.0557 -0.2342 0.5425
T13 3 0.3333 0.4878 0.3808 0.0769 -0.0753 0.8369
T21 6 0.4944 0.5165 0.0437 0.0218 -0.1990 0.2865
T22 7 0.4634 0.3778 -0.2043 0.0648 -0.6232 0.2145
T27 12 0.4490 0.4615 0.0276 0.0475 -0.3308 0.3860

4 T12 2 0.5313 0.7162 0.2987 0.0191 0.0712 0.5263
T13 3 0.4583 0.6914 0.4111 0.0219 0.1675 0.6546
T21 6 0.5538 0.5680 0.0252 0.0123 -0.1570 0.2075
T22 7 0.3279 0.5789 0.5686 0.0464 0.2144 0.9228
T27 12 0.4286 0.5690 0.2834 0.0369 -0.0325 0.5992

5 T12 2 0.1429 0.0833 -0.5390 1.7738 -2.7297 1.6517
T21 6 0.1538 0.0833 -0.6131 1.3397 -2.5170 1.2908
T22 7 0.2000 0.2727 0.3102 0.6424 -1.0082 1.6285

6 T12 2 0.5417 0.5294 -0.0229 0.0875 -0.5096 0.4638
T13 3 0.4118 0.7143 0.5508 0.1126 -0.0011 1.1028
T21 6 0.4118 0.6071 0.3883 0.1071 -0.1501 0.9267
T22 7 0.3889 0.5000 0.2513 0.1373 -0.3582 0.8608
T23 8 0.0952 0.3077 1.1727 0.5389 -0.0348 2.3802
T27 12 0.4000 0.6471 0.4810 0.0821 0.0097 0.9522

Table 6.16.: Cluster-based meta-analysis: Risk Ratio, antidepressant A5mg
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and the response rates in the control group are

p̃3
C2

= 0.4857, p̃4
C2

= 0.5313 and p̃6
C2

= 0.5417.

For the transformed Risk Ratios we got

θ̃3
2 = 0.1542, θ̃4

2 = 0.2987 and θ̃6
2 = −0.0229.

The correspondent (1− α) confidence intervals were then given by

I3
2 = [−0.2342, 0.5425],

I4
2 = [0.0712, 0.5263] and

I6
2 = [−0.5096, 0.4638]

for α = 0.1. In study T12 we see, that there is heterogeneity in the treatment

effects across the patient collectives Cl3, Cl4 and Cl6 for medication A5mg.

As we have seen in the cluster-based analysis, in the EU cluster Cl1, the mean

PBO response is not so high in comparison to the non-EU cluster Cl3 and Cl4.

This results in higher Risk Ratios for the single trials in cluster Cl1, especially

for study T23. There we have a Risk Ratio of

θ̃1
8 = 0.5650.

When analyzing the non-EU cluster Cl3, the transformed Risk Ratios in the

single studies vary from

θ̃3
7 = −0.2043 to θ̃3

3 = 0.3808.

The response rates of the control and the treatment groups don’t vary as much

as in the meta-analysis approach like it is assumed due to the cluster-based ap-

proach. For the control group the mean response rate is higher then in the EU
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6.3. Cluster-based meta-analysis

cluster Cl1 and the values vary from

p̃3
C3

= 0.3333 to p̃3
C6

= 0.4944.

For the treatment group we have a lower response than the EU cluster and the

values vary from

p̃3
T7

= 0.3778 to p̃3
T2

= 0.5667.

The same effects can be observed in the non-EU cluster Cl4. Although the

response rates in the treatment groups are high, the Risk Ratio vary across the

included trials from

θ̃4
6 = 0.0252 to θ̃4

7 = 0.5686.

This can be explained by to the response rates in the control groups. In the mean

the rate is very high which could also be observed in the cluster-based analysis,

except for study T22. There, we have

p̃4
C7

= 0.3279 and p̃4
T7

= 0.5789,

which results in a high transformed Risk Ratio of

θ̃4
7 = 0.5686

.

In the mixed cluster Cl6, the Risk Ratios are higher. They vary from

θ̃6
2 = −0.0229 to θ̃6

8 = 0.1.1727.

This is a result of higher response rates in the treatment and response rates in

the control groups which are similar to those in cluster Cl3.

The results for the further dosages of medication A, dosage A10mg, A15mg

and A20mg can be found in Table 6.17, Table 6.18 and Table 6.19. The results

of the already established depression therapy C1 and C2 are listed in Table 6.20

and Table 6.21.
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6. Practical application - Empirical results

We can conclude that in all clusters we have overlapping confidence intervals

for all medications, except in cluster Cl4, which leads to the assumption, that

the existing heterogeneity across trials has been considered in the cluster-based

approach. Furthermore, for all medications we have a high variation in the single

trials across the patient collectives and within a cluster the variation across trials

seems to be less pronounced than in the meta-analysis approach.
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Treatment group: A10mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.7750 0.3232 0.0132 0.1344 0.5120
T23 8 0.2925 0.5048 0.5458 0.0322 0.2508 0.8408

2 T11 1 0.1000 0.2000 0.6931 1.3000 -1.1823 2.5686
T12 2 0.1333 0.1154 -0.1446 0.7282 -1.5482 1.2591
T15 5 0.2105 0.2727 0.2589 0.4398 -0.8320 1.3497
T25 10 0.4000 0.1111 -1.2809 1.1889 -3.0744 0.5126

3 T12 2 0.4857 0.4783 -0.0155 0.0777 -0.4739 0.4430
T15 5 0.5455 0.4688 -0.1515 0.0607 -0.5567 0.2536
T25 10 0.2593 0.3654 0.3431 0.0863 -0.1401 0.8264
T26 11 0.2787 0.4038 0.3709 0.0708 -0.0668 0.8087
T27 12 0.4490 0.5600 0.2210 0.0408 -0.1111 0.5530

4 T12 2 0.5313 0.7532 0.3492 0.0180 0.1282 0.5701
T15 5 0.2844 0.5263 0.6155 0.0310 0.3260 0.9050
T25 10 0.4074 0.3393 -0.1830 0.0617 -0.5916 0.2256
T26 11 0.4400 0.5000 0.1278 0.0518 -0.2464 0.5021
T27 12 0.4286 0.5965 0.3306 0.0357 0.0199 0.6413

5 T25 10 0.3750 0.3125 -0.1823 0.3458 -1.1496 0.7850
T26 11 0.3636 0.2727 -0.2877 0.4015 -1.3299 0.7546

6 T12 2 0.5417 0.7059 0.2648 0.0598 -0.1373 0.6669
T15 5 0.2381 0.4815 0.7042 0.1923 -0.0170 1.4254
T23 8 0.0952 0.7647 2.0831 0.4705 0.9549 3.2113
T25 10 0.1290 0.3750 1.0669 0.3219 0.1336 2.0001
T26 11 0.3125 0.3438 0.0953 0.1972 -0.6350 0.8257
T27 12 0.4000 0.6800 0.5306 0.0688 0.0991 0.9621

Table 6.17.: Cluster-based meta-analysis: Risk Ratio, antidepressant A10mg

6.3.4. Cluster-based fixed-effects model

For each cluster we have applied the cluster-based fixed effect model for the

weighted aggregation of the treatment effects in the single studies which are

included in the corresponding cluster. It is assumed that there is one true treat-

ment effect θi for each administered medical intervention in each cluster. We

assume that the variation of the treatment effects across clusters is due to socio-

demographic, biographical and/or clinical parameters. Whereas the variation of

the treatment effects across trials within a cluster is due to estimation errors.

Like it is defined in Section 5.7.3, for cluster Cli the fixed-effects model is given
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Treatment group: A15mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.6667 0.5754 0.0199 0.3431 0.8076

2 T14 4 0.0833 0.0714 -0.1542 1.8452 -2.3885 2.0802
T26 11 0.1667 0.2000 0.1823 1.2333 -1.6444 2.0090

3 T24 9 0.4848 0.4107 -0.1659 0.0417 -0.5019 0.1700
T26 11 0.2787 0.3443 0.2113 0.0737 -0.2351 0.6577

4 T24 9 0.4565 0.6500 0.3533 0.0393 0.0271 0.6796
T26 11 0.4400 0.5000 0.1278 0.0549 -0.2574 0.5131

5 T24 9 0.1000 0.2353 0.8557 1.0912 -0.8625 2.5739
T26 11 0.3636 0.2308 -0.4547 0.4155 -1.5150 0.6055

6 T14 4 0.2857 0.8333 1.0704 0.1302 0.4770 1.6639
T24 9 0.2941 0.5294 0.5878 0.1935 -0.1357 1.3113
T26 11 0.3125 0.4211 0.2982 0.2099 -0.4554 1.0517

Table 6.18.: Cluster-based meta-analysis: Risk Ratio, antidepressant A15mg

by

θ̃ij := θi + εij,

where θ̃ij is the observed treatment effect and εij the estimation error of study j in

cluster Cli. With the inverse variance method, the estimated summary treatment

effect in cluster Cli was calculated by

θ̃i =

∑
j∈ICli

θ̃ijw
i
j∑

j∈ICli
wij

,

with weights

wij =
1

var(Θ̃i
j)
,

for i = 1, . . . , k and j ∈ ICli . The variance was calculated by

var(Θ̃i) =
1∑

j∈ICli
wij
.
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Treatment group: A20mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.6991 0.6229 0.0187 0.3980 0.8478

2 T14 4 0.0833 0.0909 0.0870 1.8258 -2.1355 2.3095
T15 5 0.2105 0.1429 -0.3878 0.6259 -1.6891 0.9136
T25 10 0.4000 0.2500 -0.4700 0.6750 -1.8214 0.8814

3 T15 5 0.5455 0.5897 0.0781 0.0431 -0.2634 0.4195
T24 9 0.4848 0.5600 0.1441 0.0318 -0.1493 0.4375
T25 10 0.2593 0.4211 0.4849 0.0770 0.0284 0.9415
T27 12 0.4490 0.6364 0.3488 0.0380 0.0280 0.6696

4 T15 5 0.2844 0.7217 0.9313 0.0264 0.6638 1.1987
T24 9 0.4565 0.4390 -0.0391 0.0570 -0.4319 0.3538
T25 10 0.4074 0.5319 0.2667 0.0457 -0.0848 0.6181
T27 12 0.4286 0.5263 0.2054 0.0396 -0.1219 0.5328

5 T24 9 0.1000 0.1875 0.6286 1.1708 -1.1512 2.4084
T25 10 0.3750 0.2727 -0.3185 0.4508 -1.4228 0.7859

6 T14 4 0.2857 0.9167 1.1658 0.1266 0.5804 1.7511
T15 5 0.2381 0.4583 0.6549 0.2016 -0.0837 1.3935
T24 9 0.2941 0.4545 0.4353 0.1957 -0.2924 1.1630
T25 10 0.1290 0.2222 0.5436 0.4122 -0.5124 1.5996
T27 12 0.4000 0.5161 0.2549 0.0802 -0.2110 0.7208

Table 6.19.: Cluster-based meta-analysis: Risk Ratio, antidepressant A20mg
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Treatment group: C1

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.8087 0.7685 0.0169 0.5544 0.9826

2 T12 2 0.1333 0.1905 0.3567 0.6357 -0.9548 1.6681
T14 4 0.0833 0.2857 1.2321 1.2738 -0.6243 3.0886
T22 7 0.1111 0.2778 0.9163 1.0333 -0.7558 2.5883

3 T12 2 0.4857 0.6364 0.2701 0.0562 -0.1199 0.6602
T13 3 0.3333 0.7692 0.8362 0.0590 0.4368 1.2357
T22 7 0.4634 0.7027 0.4163 0.0397 0.0887 0.7439
T24 9 0.4848 0.6667 0.3185 0.0244 0.0614 0.5756

4 T12 2 0.5313 0.6986 0.2739 0.0197 0.0430 0.5047
T13 3 0.4583 0.8358 0.6008 0.0193 0.3720 0.8296
T22 7 0.3279 0.5714 0.5555 0.0470 0.1989 0.9121
T24 9 0.4565 0.5897 0.2561 0.0437 -0.0879 0.6000

5 T12 2 0.1429 0.1111 -0.2513 1.7460 -2.4248 1.9222
T14 4 0.2500 0.5000 0.6931 0.6250 -0.6072 1.9935
T22 7 0.2000 0.1538 -0.2624 0.8231 -1.7546 1.2299
T24 9 0.1000 0.2857 1.0498 1.0786 -0.6584 2.7581

6 T12 2 0.5417 0.8333 0.4308 0.0464 0.0766 0.7850
T13 3 0.4118 0.4091 -0.0065 0.1497 -0.6429 0.6299
T14 4 0.2857 0.6250 0.7828 0.1565 0.1320 1.4336
T22 7 0.3889 0.5882 0.4138 0.1285 -0.1757 1.0034
T24 9 0.2941 0.4375 0.3971 0.2215 -0.3771 1.1713

Table 6.20.: Cluster-based meta-analysis: Risk Ratio, antidepressant C1

Treatment group: C2

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.8523 0.4182 0.0115 0.2417 0.5947

2 T11 1 0.1000 0.1667 0.5108 1.3167 -1.3766 2.3982

Table 6.21.: Cluster-based meta-analysis: Risk Ratio, antidepressant C2
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Then, for the (1 − α) confidence interval I i of the true treatment effect θi in

cluster Cli we got

I i = [θ̃i − z[1− α

2
]

√
var(Θ̃i), θ̃i + z[1− α

2
]

√
var(Θ̃i)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution.

The estimated summary treatment effect, the variance of this estimated treat-

ment effect and the (1 − α) confidence interval for each medication is shown in

Table 6.22. E.g. the summary treatment effect for medication A5mg in the single

clusters Cl1, Cl3, Cl5 and Cl6 are given by

θ̂1 = 0.3447, θ̂3 = 0.0631, θ̂4 = 0.2472 and θ̂6 = 0.3556,

with correspondent variances

(σ̃1)2 = 0.0096, (σ̃3)2 = 0.0088, (σ̃4)2 = 0.0044 and (σ̃6)2 = 0.0196.

The (1− α) confidence intervals are therefore given by

I1 = [0.1835, 0.5058],

I3 = [−0.0914, 0.2176],

I4 = [0.1383, 0.3562] and

I6 = [0.1252, 1.5860].

When looking at Table 6.16 to Table 6.21 it is noticeable, that the treatment

effects in the single trials of a cluster do not vary as much as in the meta-analysis

for each medication. For the verification, we calculated the realization of the

Qi-statistic for cluster Cli,

qi =
∑
j∈ICli

wij(θ̃
i
j − θ̂i)2,

for i = 1, . . . , k. The results can be found in Table 6.22. For the evaluation of
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Cluster-based fixed-effects model

Drug i θ̃i (σ̃i)2 Ii qi pvi (li)2

A5mg 1 0.3447 0.0096 0.1835 0.5058 2.1691 0.1408 52.47%
2 0.0758 0.2271 -0.7081 0.8596 3.9563 0.1383 49.45%
3 0.0631 0.0088 -0.0914 0.2176 2.6078 0.6254 0.00%
4 0.2472 0.0044 0.1383 0.3562 7.6385 0.1058 46.30%
5 -0.0972 0.3488 -1.0687 0.8743 0.5670 0.7531 0.00%
6 0.3556 0.0196 0.1252 0.5860 3.4944 0.6242 0.00%

A10mg 1 0.3879 0.0093 0.2288 0.5469 1.0928 0.2958 8.48%
2 -0.0293 0.1902 -0.7467 0.6880 1.9262 0.5879 0.00%
3 0.1500 0.0126 -0.0344 0.3343 3.0962 0.5419 0.00%
4 0.3173 0.0066 0.1835 0.4510 7.6808 0.1040 46.70%
5 -0.2311 0.1858 -0.9401 0.4779 0.0149 0.9030 0.00%
6 0.5138 0.0214 0.2733 0.7543 8.3031 0.1403 38.63%

A15mg 1 0.5754 0.0199 0.3431 0.8076 0.0000
2 0.0475 0.7392 -1.3667 1.4618 0.0368 0.8479 0.00%
3 -0.0295 0.0266 -0.2980 0.2389 1.2335 0.2667 18.68%
4 0.2592 0.0229 0.0102 0.5081 0.5398 0.4625 0.00%
5 -0.0934 0.3009 -0.9957 0.8089 1.1397 0.2857 12.26%
6 0.7199 0.0568 0.3281 1.1118 1.8818 0.3903 0.00%

A20mg 1 0.6229 0.0187 0.3980 0.8478 0.0000
2 -0.3497 0.2757 -1.2134 0.5140 0.1282 0.9379 0.00%
3 0.2322 0.0106 0.0625 0.4019 1.9819 0.5762 0.00%
4 0.4445 0.0098 0.2821 0.6070 15.1980 0.0017 64.92%
5 -0.0552 0.3255 -0.9936 0.8832 0.5531 0.4570 0.00%
6 0.5836 0.0304 0.2966 0.8706 4.1644 0.3842 3.91%

C1 1 0.7685 0.0169 0.5544 0.9826 0.0000
2 0.7262 0.3007 -0.1758 1.6281 0.4507 0.7982 0.00%
3 0.4214 0.0099 0.2577 0.5852 3.7595 0.2886 20.03%
4 0.4272 0.0068 0.2914 0.5631 3.7719 0.2872 20.27%
5 0.3754 0.2318 -0.4165 1.1672 1.3024 0.7286 0.00%
6 0.4104 0.0213 0.1703 0.6505 2.0567 0.7253 0.00%

C2 1 0.4182 0.0115 0.2417 0.5947 0.0000
2 0.5108 1.3167 -1.3766 2.3982 0.0000

Table 6.22.: Cluster-based meta-analysis: Risk Ratio estimated by the cluster-
based fixed-effects model

190



6.3. Cluster-based meta-analysis

the results, we used the p-value

pvi = 1− Fχ2
(ni−1)

(qi),

where Fχ2
(ni−1)

is the cumulative function of the χ2 distribution with (ni − 1)

degrees of freedom and the number of studies ni in cluster Cli. Another way to

assess heterogeneity is the use of e.g. the Qi related (li)2 index

(li)2 = max

{
0,
qi − (ni − 1)

qi

}
· 100%.

When considering medication A5mg, for the realization of the Q3-statistic of

cluster Cl3 followed

q3 = 2.6078.

For the evaluation of this result we calculated the p-value

pv3 = 1− Fχ2
4
(2.6078) = 0.6254.

This implies that the probability to get this result or a higher value for q3 is

62.54%, under the assumption that the treatment effects are equal in the five

studies in cluster Cl3. This means that we can not safely reject the hypothesis

that the treatment effects in the single trials are equal. The result for the (l3)2

index for medication A5mg is

(l3)2 = 0.0000%.

According to Table 4.2, this result can be interpreted that there is no considerable

heterogeneity across the single trials in cluster Cl3. As can be seen, there are also

results which can be interpreted that there is still heterogeneity within clusters,

e.g for medication A5mg in cluster Cl1 or Cl4. This heterogeneity might be due

to further random-effects across trials within a cluster. To address this specific

heterogeneity, we use the cluster-based random-effects approach. The results are

discussed in the next section.
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Cluster-based fixed-effects model

Drug qCl pv

A5mg 8.1732 0.1469
A10mg 13.4022 0.0199
A15mg 12.6795 0.0266
A20mg 16.9318 0.0046
C1 6.7260 0.2418
C2 0.1878 0.9992

Table 6.23.: Cluster-based meta-analysis: Risk Ratio estimated by the cluster-
based fixed-effects model, QCl-statistic

But first, for the further justification of the assumption that there is one true

treatment effect for each patient collective, we used the realization of the QCl-

statistic

qCl =
k∑
i=1

wi(θ̃i − θ̄)2,

where θ̃i is the estimated summary treatment effect in cluster Cli, (wi)−1 =

var(Θ̃i) is the corresponding variance and θ̄ the mean treatment effect of all

clusters. The results are shown in Table 6.23. For the evaluation of the results

of qCl, we used the p-value

pv = 1− Fχ2
(k−1)

(qCl).

E.g. for medication A10mg, the realization of the QCl-statistic is given by

qCl = 13.4022.

The corresponding p-value is

pv = 0.0199,

This implies that the probability to get this result for qCl or a higher value is only

1.99%, under the assumption that the true treatment effects are equal in each

cluster. Therefore, the null hypotheses, that there is only one true treatment

effect for all patients, can be rejected. This implies that there are significant

differences between the treatment effects across clusters and that it is reliable to

assume that there is one true treatment effect for each patient collective. Similar
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results can be found for medication A5mg, A15mg and A20mg. The p-value for

the realization of the QCl-statsitic for medication C1 is pv = 0.2418. With a look

at Table 6.22, this result seems to be plausible, since the treatment effects are

more equal in the patient collectives than for medication A. And since medication

C2 was only administered in two clusters, where the treatment effects seem to be

equal, the high p-value of pv = 0.9992 is also plausible.

6.3.5. Cluster-based random-effects model

For the remaining heterogeneity that cannot readily be explained, we used the

random-effects model. As for the meta-analysis approach, this model allows

the variation of the true treatment effect across studies within a cluster. The

variation in the effects within a cluster can be explained with the random-effect.

The estimated treatment effect of study j in cluster Cli is given by

θ̃ij := θij + εij = θi + νij + εij,

for i = 1, . . . , k and j ∈ ICli , where εij is the estimation error and νij is the

random-effect of study j in cluster Cli. With the inverse variance method, the

summary treatment effect of cluster Cli is given by

θ̃i =

∑
j∈ICli

θ̃ij(w
i
j)
∗∑

j∈ICli
(wij)

∗ ,

with weights

(wij)
∗ =

1

(wij)
−1 + (τ̃ i)2

,

for i = 1, . . . , k and j ∈ ICli . The variance was calculated by
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var(Θ̃i) =
1∑

j∈ICli
(wij)

∗

and the inter-variance was estimated by

(τ̃ i)2 = max

0;
qi − (ni − 1)∑

j∈ICli
wij −

∑
j∈ICli

(wij)
2∑

j∈ICli
wij

 .

Then, for the (1−α) confidence interval of the true treatment effect θi of cluster

Cli follows

I i = [θ̃i − z[1− α

2
]

√
var(Θ̃i), θ̃i + z[1− α

2
]

√
var(Θ̃i)],

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution.

The estimated summary treatment effect, the variance and the (1 − α) confi-

dence interval for each medication and each patient collective is shown in Table

6.24. E.g. the summary treatment effects for medication A5mg in cluster Cl1,

Cl3, Cl4 and Cl6 are given by

θ̂1 = 0.3466, θ̂3 = 0.0631, θ̂4 = 0.2488 and θ̂6 = 0.3556,

with correspondent variances

(σ̃1)2 = 0.0100, (σ̃3)2 = 0.0088, (σ̃4)2 = 0.0045 and (σ̃6)2 = 0.0196.

The (1− α) confidence intervals are therefore given by

I1 = [0.1820, 0.5112],

I3 = [−0.0914, 0.2176],

I4 = [0.1385, 0.3590] and

I6 = [0.1252, 1.5860].
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For the justification of the assumption that there is a treatment effect for each

patient collective, we also used the realization of the QCl-statistic for the cluster-

based random-effects model,

qCl =
k∑
i=1

wi(θ̃i − θ̄)2.

The results can be found in Table 6.25. For the evaluation of the results of qCl,

we used the p-value

pv = 1− Fχ2
(k−1)

(qCl).

E.g. for medication A10mg, the realization of the QCl-statistic is given by

qCl = 15.1587,

with corresponding p-value

pv = 0.0097.

The probability to get this result for qCl or a higher value is only 0.97%, under the

assumption that the true treatment effects are equal in each cluster. Therefore

the null hypothesis, that there is only one true treatment effect for all patients,

can be rejected. This implies that there are significant differences between the

treatment effects and that it is reliable to assume that there is one true treatment

effect for each patient collective. Similar results can be found for the other dosages

of mediaction A.
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Cluster-based random-effects model

RR i θ̃i (σ̃i)2 Ii

A 5mg 1 0.3466 0.0100 0.1820 0.5112
2 0.0758 0.2271 -0.7081 0.8596
3 0.0631 0.0088 -0.0914 0.2176
4 0.2488 0.0045 0.1385 0.3590
5 -0.0972 0.3488 -1.0687 0.8743
6 0.3556 0.0196 0.1252 0.5860

A 10mg 1 0.3879 0.0093 0.2288 0.5469
2 -0.0293 0.1902 -0.7467 0.6880
3 0.1500 0.0126 -0.0344 0.3343
4 0.3158 0.0069 0.1796 0.4521
5 -0.2311 0.1858 -0.9401 0.4779
6 0.0845 0.0037 -0.0150 0.1840

A 15mg 1 0.5754 0.0199 0.3431 0.8076
2 0.0475 0.7392 -1.3667 1.4618
3 -0.0294 0.0267 -0.2983 0.2396
4 0.2592 0.0229 0.0102 0.5081
5 -0.0934 0.3009 -0.9957 0.8089
6 0.7199 0.0568 0.3281 1.1118

A 20mg 1 0.6229 0.0187 0.3980 0.8478
2 -0.3497 0.2757 -1.2134 0.5140
3 0.2322 0.0106 0.0625 0.4019
4 0.3996 0.0168 0.1867 0.6126
5 -0.0552 0.3255 -0.9936 0.8832
6 0.5836 0.0304 0.2966 0.8706

C1 1 0.7685 0.0169 0.5544 0.9826
2 0.7262 0.3007 -0.1758 1.6281
3 0.4215 0.0099 0.2575 0.5856
4 0.4272 0.0068 0.2912 0.5632
5 0.3754 0.2318 -0.4165 1.1672
6 0.4104 0.0213 0.1703 0.6505

C2 1 0.4182 0.0115 0.2417 0.5947
2 0.5108 1.3167 -1.3766 2.3982

Table 6.24.: Cluster-based meta-analysis: Risk Ratio estimated by the cluster-
based random-effects model
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Cluster-based random-effects model

Drug qCl pv

A5mg 8.0847 0.1516
A10mg 15.1587 0.0097
A15mg 12.6649 0.0267
A20mg 14.8588 0.0110
C1 6.7183 0.2424
C2 0.1878 0.9992

Table 6.25.: Cluster-based meta-analysis: Risk Ratio estimated by the cluster-
based random-effects model, QCl-statistic

Drug θ̃(drug,C1) σ̃2(drug,C1)

A5mg -0.2378 0.0056
A10mg -0.1554 0.0061
A15mg -0.1983 0.0109
A20mg -0.0676 0.0074

Table 6.26.: Meta-analysis random-effects model: Indirect comparison of the Risk
Ratios of medication A5mg, A10mg, A15mg and A20mg with C1

6.3.6. Indirect comparison

For the comparison of the results of the meta-analysis and cluster-based meta-

analysis presented in Section 6.2 and Section 6.3, we used the indirect comparison

method. Since medication C1 is one of the already established standard depres-

sion therapy, and is represented in each cluster, we calculated the difference

between the treatment effects of medication A, with its different dosages, and C1

estimated by the random-effects approaches. The estimated summary treatment

effects and its confidence intervals (α = 0.1) for each medication derived by the

random-effects model and the cluster-based random-effects model are illustrated

in Figure 6.1. It is noticeable that for the drop-out cluster Cl2 and Cl5, the

summary treatment effects are low with wide ranged confidence intervals. For all

other clusters, the differences in the effects of the analyzed medication is clearly

obvious.

For the indirect comparison of the results of the meta-analysis, we calculated

the differences of the treatment effects of medication A and its different dosages
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Figure 6.1.: Confidence intervals of Risk Ratio estimated by the random-effects
model and the cluster-based random-effects model
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Drug i θ̃i(drug,C1) (σ̃i)2(drug,C1)

A5mg 1 -0.4238 0.0265
2 -0.6504 0.5278
3 -0.3583 0.0187
4 -0.1800 0.0112
5 -0.4726 0.5806
6 -0.0548 0.0409

A10mg 1 -0.3806 0.0263
2 -0.7555 0.4909
3 -0.2715 0.0225
4 -0.1099 0.0134
5 -0.6065 0.4176
6 0.1034 0.0427

A15mg 1 -0.1931 0.0369
2 -0.6786 1.0399
3 -0.4510 0.0365
4 -0.1681 0.0297
5 -0.4687 0.5327
6 0.3095 0.0781

A20mg 1 -0.1456 0.0356
2 -1.0758 0.5764
3 -0.1892 0.0206
4 0.0173 0.0166
5 -0.4306 0.5572
6 0.1732 0.0517

Table 6.27.: Cluster-based meta-analysis random-effects model: Indirect compar-
ison of the Risk Ratios of medication A5mg, A10mg, A15mg and
A20mg with C1
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and the treatment effect of medication C1,

θ̃(drug,C1) = θ̃(drug)− θ̃(C1)

and the variances

σ̃2(drug,C1) = σ̃2(drug) + σ̃2(C1).

The difference can also be treated as additional benefit for the patients treated

with the corresponding intervention. The results are shown in Table 6.26. It can

be seen that there is no additional benefit for patients who have been treated with

medication A, when applying the meta-analysis approach. In terms of health eco-

nomic evaluation, in the worst case, this would imply that medication A has to

be taken off the market due to no considerable additional benefit for the patients

in the depression therapy.

For the indirect comparison of the results of the cluster-based meta-analysis,

we also calculated the cluster-based difference for each dosage of medication A

and C1,

θ̃i(drug,C1) = θ̃i(drug)− θ̃i(C1)

and the variance

(σ̃i)2(drug,C1) = (σ̃i)2(drug) + (σ̃i)2(C1),

for i = 1, . . . , k. The results can be found in Table 6.27. Dosage A5mg has

no additional benefit in all clusters, but the other dosages show positive results.

Medication A10mg has an additional benefit in cluster Cl6,

θ̃6(A10mg,C1) = 0.1034,

with variance

(σ̃6)2(A10mg,C1) = 0.0427,

and medication A15mg has a higher treatment effect than the standard therapy

C1, also in cluster Cl6,

θ̃6(A15mg,C1) = 0.3095,
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6.4. Cluster-based identification of heterogeneity

with variance

(σ̃6)2(A15mg,C1) = 0.0781.

For medication A20mg the cluster-based random-effects model indicated an ad-

ditional benefit for patient collective Cl4 with treatment difference

θ̃4(A20mg,C1) = 0.0173

and for patient collective Cl6 with

θ̃6(A20mg,C1) = 0.1732.

This implies that in the mixed cluster Cl6, medication A has a higher effect

than C1 as well as in the non-EU cluster Cl4. Both collectives include patients

with lower depression. With regard to health economic evaluation, this means

that medication A is a considerable alternative in the treatment of depression for

patients with characteristic values combinations similar to those of cluster Cl4

and Cl6.

6.4. Cluster-based identification of

heterogeneity

In Chapter 4, we carved out that clinical and especially regional heterogeneity is

one important factor which has to be explained if there are distinctive country

effects in multinational studies or if there is evidence of increased heterogeneity

in meta-analyses. Transferred to the data of these existing drug studies, this

means that in particular the baseline data should be considered in terms of e.g.

socio-demographic and biographical parameters. Due to the complexity of the

existing data, the process of endpoint-oriented cluster optimization was used to

explain regional heterogeneity. Within this framework, different clusters, which

ware the outcome of a multivariate cluster optimization with respect to response

data, have been analyzed in detail. The aim of this analysis was to identify fac-

tors explaining the heterogeneity in global conducted placebo-controlled clinical

trials. For the identification, we used the χ2 tests of independence introduced in

Section 5.8.4.
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Ai Characteristic Values

A1 region EU, non-EU
A2 treatment PBO (placebo), A (5mg, 10mg, 15mg, 20mg), C1, C2
A3 BMI 13 to 68.41 kg/m2

A4 MADRS 13 to 52
A5 CGI-S 3 to 7
A6 duration 28 to 7976 days
A7 sex female, male
A8 age 18 to 88 years
A9 withdrawal adverse events, lack of efficacy,

lost to follow-up, withdrawal of consent

Outcome Values

Response yes, no
Remission yes, no

Table 6.28.: Cluster-based identification of heterogeneity: Independent and de-
pendent variables used for the clustering approach

6.4.1. Clustering

For the application of the endpoint-oriented clustering approach explained in

Chapter 5, to identify patient collectives as a partition of data set

S = Sall = {xj, yj}6010
j=1 ,

the characteristics in the available trials were picked, which value combinations

might have an influence on the outcome of a patient. There are different multi-

variate quantitative methods for the selection of influencing factors, the interested

reader is referred to [2] for more information. For the cluster-based explanation

of clinical heterogeneity, we have chosen those random variables listed in Table

6.28. Since the random variable ’BMI’, ’duration’ and ’age’ have plenty of values

and therefore the number of value combinations would increase proportionally,

we classified those characteristics, like it is described in Section 5.5. In Table

6.29, the characteristic values of those three variables are divided into 5 classes

of equal class density. For the evaluation of the medical intervention, we consider

the outcome variables ’response’ and ’remission’ which are binary with the two oc-
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6.4. Cluster-based identification of heterogeneity

Ai Characteristic Class number Class

A3 BMI 1 ]0, 22.53]
2 ]22.53, 25.28]
3 ]25.53, 28.39]
4 ]28.39, 32.91]
5 ]32.91,∞]

A6 duration (in days) 1 ]0, 113]
2 ]113, 142]
3 ]142, 197]
4 ]197, 323]
5 ]323,∞]

A8 age (in years) 1 ]0, 34]
2 ]34, 44]
3 ]44, 51]
4 ]51, 60]
5 ]60,∞]

Table 6.29.: Cluster-based identification of heterogeneity: Classification of ran-
dom variables

Cluster Cli 1 2 3 4 5 6 all

Patients κi 496 584 2388 1641 674 227 6010
Response p̃i1 0.5262 0.1798 0.5674 0.4052 0.7240 0.1454 0.4837
Remission p̃i2 0.3327 0.0873 0.3585 0.2681 0.4941 0.0617 0.3093

Table 6.30.: Cluster-based identification of heterogeneity: Clustering results with
respect to ’response’ for defining 6 clusters

currences ’response/remission’ (= 1) and ’no response/no remission’ (= 0). Then

the transformation method explained in Section 5.5 was applied with respect to

the target variable ’response’. With this transformed data, we had been able to

apply the clustering algorithm to get a predefined number of patient collectives.

The parameter setup for the clustering approach consisted of k = 6 clusters, lower

bounds li = 100, for i = 1, . . . , 6, and no upper bounds. In this thesis, the setting

k = 6 has been arisen due to corresponding preliminary analysis. Thereby, it

is selectable freely in principle but should be set goal-oriented. Each cluster is

uniquely defined by combinations of the characteristic values of the various at-

tributes that have been identified as similar by the algorithm. The distribution of

the 6010 participating patients into the six patient collectives is shown in Table
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Figure 6.2.: Cluster-based identification of heterogeneity: Cluster Cl6, response
rate and remission rate stratified by region

6.30. ’Response’ is referred to the response rate and means e.g. that 40.52%

of those patients who are assigned to cluster Cl4, due to their individual com-

bination of characteristic values, have actually responded. In addition, for each

cluster, which has been identified by the target response, the remission rates have

been determined. The group of remitters per cluster has been analyzed analo-

gously to the group of responders and has been evaluated in the relevant sections

under specific consideration. The following results are based on the analysis of

[21].

6.4.2. Cluster-based analysis

Cluster Cl6: Placebo dropouts

This cluster includes κ6 = 227 placebo treated patients with a response rate of

p̃6
1 = 0.1454

and a remission rate of p̃6
2 = 0.0617. Despite these rates, all individuals of this

cluster have dropped out of the study. As shown in Figure 6.2, there are different
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6.4. Cluster-based identification of heterogeneity

response rates between EU and non-EU patients. The response rates are

p̃6
1(EU) = 0.0889 and p̃6

1(non-EU) = 0.1593,

with pv = 0.2299. The remission rate is p̃6
2(EU) = 0.0444 in the EU, compared

to p̃6
2(non-EU) = 0.0659 in the non-EU regions, with pv = 0.5916.

The main reasons for withdrawal of the responding and remitting patients are

of further interest. It is noticeable that in the EU regions nobody drops out

because of ’adverse events’ and all drop-outs are due to ’lost to follow-up’,

ρ̃6(adverse events|EU) = 0 and

ρ̃6(lost to follow-up|EU) = 1.

From a clinical point of view, this constellation appears to be understandable

and obvious for a placebo group with response and remission. The non-EU group

shows significant differences in the reasons for withdrawal. The share of patients

with reasons ’adverse events’ and ’lost to follow-up’ are

ρ̃6(adverse events|non-EU) = 0.4138 and

ρ̃6(lost to follow-up|non-EU) = 0.5862.

Thus, for the available sample can be concluded that the reasons for withdrawal

are regionally different.

Also in terms of gender composition, regional descriptive differences can be

found in cluster Cl6. In the EU regions, male patients show no response in

comparison to non-EU men,

p̃6
1(EU, male) = 0 and p̃6

1(non-EU, male) = 0.1333.

For women, however, the response rates are balanced with

p̃6
1(EU, female) = 0.1176 and p̃6

1(non-EU, female) = 0.1776.

The male patients show consequently no remission, p̃6
2(EU, male) = 0, in the EU
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Figure 6.3.: Cluster-based identification of heterogeneity: Cluster Cl6 vs. total
population, share of male patients

regions compared to the non-EU men with remission rate p̃6
2(non-EU, male) =

0.0667. For women the remission rates are also balanced with p̃6
2(EU, female) =

0.0559 in comparison to p̃6
2(non-EU, female) = 0.0654. It is interesting that

in cluster Cl6 the share of non-EU patients under the male participants is de-

scriptively increased versus the corresponding marginal distribution (of the total

sample), as can be seen in Figure 6.3. The shares are

ρ̃6(non-EU|male) = 0.8721 and ρ̃(non-EU|male) = 0.7512,

with pv = 0.2300.

In summary, in cluster Cl6 a higher drop-out rate due to ’adverse events’ in the

non-EU countries and a descriptive higher placebo response and placebo remission

can be found. These effects occur primarily due to the male patients, whereupon

the percentage of male patients was significantly increased in the non-EU regions.
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Non-responder Responder

EU: EU:
0.5094 adverse events 0.6667 adverse events
0.2547 lack of efficacy [0 lack of efficacy (or N/A)]
0.0472 lost to follow-up 0.0667 lost to follow-up
0.1887 withdrawal of consent 0.2667 withdrawal of consent

non-EU: non-EU:
0.4799 adverse events 0.3778 adverse events
0.1260 lack of efficacy [0 lack of efficacy (or N/A)]
0.1930 lost to follow-up 0.3556 lost to follow-up
0.2011 withdrawal of consent 0.2667 withdrawal of consent

Table 6.31.: Cluster-based identification of heterogeneity: Cluster Cl2, reasons
for withdrawal of non-responder stratified by region

EU non-EU
0

20

40

60

50.94
47.99

25.47

12.6

4.72

19.318.87 20.11

D
ro

p
-o

u
t

ra
te

[%
]

Drop-out rates of non-responder
in cluster Cl2

χ2 test: pv = 0.0012
χ2 test: pv = 0.0003

adverse events lack of efficacy lost to follow-up withdrawal of consent

Figure 6.4.: Cluster-based identification of heterogeneity: Cluster Cl2, reasons
for withdrawal of non-responder stratified by region
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Non-remitter Remitter

EU: EU:
0.5175 adverse events 0.7143 adverse events
0.2368 lack of efficacy [0 lack of efficacy (or N/A)]
0.0439 lost to follow-up 0.1429 lost to follow-up
0.2018 withdrawal of consent 0.1429 withdrawal of consent

non-EU: non-EU:
0.4749 adverse events 0.3182 adverse events
0.1122 lack of efficacy [0 lack of efficacy (or N/A)]
0.2005 lost to follow-up 0.4545 lost to follow-up
0.2124 withdrawal of consent 0.2273 withdrawal of consent

Table 6.32.: Cluster-based identification of heterogeneity: Cluster Cl2, reasons
for withdrawal of non-remitter stratified by region

Cluster Cl2: Verum drop-outs

The cluster of the verum (medication A, C1 and C2) drop-outs includes κ2 = 584

patients with a response rate of

p̃2
1 = 0.1798

and a remission rate of p̃2
2 = 0.0873. This cluster is important because here

regional differences can contribute particularly to influence study results as a

whole. A high drop-out rate of verum treated patients due to causes ’adverse

events’, ’lost to follow-up’ and ’lack of efficacy’ reduces the verum-placebo differ-

ence. This is of importance because in cluster Cl6 it was found that the placebo

response and placebo remission in non-EU regions appears to be higher compared

to the EU study centers. Also in cluster Cl2, the response rate shows differences

between EU and non-EU patients. The response rates are

p̃2
1(EU) = 0.1944 and p̃2

1(non-EU) = 0.1240,

with pv = 0.0725. The remission rate is p̃2
2(EU) = 0.0579 in the EU regions

compared to p̃2
2(non-EU) = 0.0950 in the non-EU regions, with pv = 0.0598.

The primary reasons for withdrawal of non-responders and non-remitters are

of particular interest. One would expect that the majority drops out due to ’lack
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of efficacy’ and ’adverse events’. Here, however, the differences between EU and

non-EU patients are shown in Table 6.31. With regard to non-responders, the

data of the EU-group seams plausible by having especially ’adverse events’ or

’lack of efficacy’ as reasons for withdrawal. On the other hand the non-EU group

has a significant lower rate of ’lack of efficacy’,

ρ̃2(lack of efficacy|no response, EU) = 0.2547

ρ̃2(lack of efficacy|no response, non-EU) = 0.1260,

with pv = 0.0012, and a higher rate of persons not remaining in the study due

to ’lost to follow-up’,

ρ̃2(lost to follow-up|no response, EU) = 0.0470

ρ̃2(lost to follow-up|no response, non-EU) = 0.1930,

with pv = 0.0003, as can be seen in Figure 6.4. This unequal distributed group of

’lost to follow-up’ tend to affect the study results in an adverse way. At a higher

retention rate the patient would possibly still have responded. Upon further

review of the cluster data, there is generally a higher rate of ’lost to follow-up’

drop-outs in the group of non-EU patients, even in the group of responders. Here,

in this cluster, the response rates are

ρ̃2(lost to follow-up|response, EU) = 0.0667

ρ̃2(lost to follow-up|response, non-EU) = 0.3567,

with pv = 0.0257. As can be seen from Table 6.32, correspondent distributions of

the reasons for withdrawal can be found among the non-remitters. The non-EU

group shows a significant lower rate of ’lack of efficacy’,

ρ̃2(lack of efficacy|no remission, EU) = 0.2368

ρ̃2(lack of efficacy|no remission, non-EU) = 0.1122,

with pv = 0.0006, and a higher rate for patients with primary reason ’lost to
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follow-up’,

ρ̃2(lost to follow-up|no remission, EU) = 0.0439

ρ̃2
2(lost to follow-up|no remission, non-EU) = 0.2005,

with pv = 0.0001. There is also a higher rate for patients with primary reason

for withdrawal ’lost to follow-up’ in the group of non-EU patients, also among

the remitters,

ρ̃2(lost to follow-up|remission, EU) = 0.1429

ρ̃2(lost to follow-up|remission, non-EU) = 0.4545,

with pv = 0.0806.

Upon the review of socio-demographic data, cluster Cl2 includes a dispropor-

tionate number of young patients (age class 1: to 34 years). In this class there is

a clear regional difference:

ρ̃2(age class 1|EU) = 0.2397 and ρ̃2(age class 1|non-EU) = 0.2829.

By stratification of this data, considering the reasons for withdrawal, it appears

that especially young patients show a higher drop-out rate due to ’lost to follow-

up’ which is again more pronounced in the non-EU group. The shares of young

patients with primary reason for withdrawal ’lost to follow-up’ are

ρ̃2(lost to follow-up|age class 1, EU) = 0.0690

ρ̃2(lost to follow-up|age class 1, non-EU) = 0.3893,

with pv = 0.0009, as can be seen in Figure 6.5.

In summary, in cluster Cl2 there is a descriptively high number of young pa-

tients in age class 1 (to 34 years) who show differences between the regions (EU

vs. non-EU). With stratification by reasons for withdrawal it appears that espe-

cially young patients show a higher drop-out rate due to ’lost to follow-up’. This

effect is more pronounced in the non-EU group. Altogether the primary reasons
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Figure 6.5.: Cluster-based identification of heterogeneity: Cluster Cl2, reasons
for withdrawal of young patients stratified by region

for withdrawal in the EU group is clinical plausible, because especially drop-outs

due to ’adverse events’ or ’lost to follow-up’ have been reported. Compared to

this, the non-EU group show higher rates of ’lost to follow-up’. Verum responders

and remitters of cluster Cl2 outside the EU drop-out more often due to ’lost to

follow-up’.

Cluster Cl4: Placebo completer

Also of interest are the placebo-treated patients who have gone through the study

until the end. This group is found in cluster Cl4 with κ4 = 1641 patients with a

response rate of

p̃4
1 = 0.4052.

Descriptive, the response rate shows the following regional differences:

p̃4
1(EU) = 0.3671 and p̃4

1(non-EU) = 0.4154,

with pv = 0.1034. Furthermore p̃4
2(EU) = 0.2283 of the EU patients and

p̃4
2(non-EU) = 0.2779 of the non-EU patients remitted (pv = 0.0599). Over-
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Figure 6.6.: Cluster-based identification of heterogeneity: Cluster Cl4 vs. total
population, response rate stratified by region

all there is a high placebo response rate in comparison to a response rate of the

total population of

p̃1 = 0.4837.

With regard to the differences of the response rates in cluster Cl4 and the corre-

sponding marginal distribution (of the total population) stratified by region there

are in turn significant differences in cluster Cl4 in comparison to the marginal

distribution. For the EU regions holds

p̃4
1(EU) = 0.3671 and p̃1(EU) = 0.5394,

with pv = 0.0000, and for the non-EU region we have

p̃4
1(non-EU) = 0.4154 and p̃1(non-EU) = 0.4666,

with pv = 0.0011. These effects can be seen in Figure 6.6. Differences in placebo

response with regard to verum-placebo differences pooled analyses are important

as it can be derived by the comparison of the placebo response data in cluster

Cl4 and the response rates of the verum cluster Cl1 and Cl3 (see below). In
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6.4. Cluster-based identification of heterogeneity

the verum cluster Cl1 and Cl3, significant response differences between EU and

non-EU regions are shown,

p̃1
1(EU) = 0.6495 and p̃1

1(non-EU) = 0.4962, pv = 0.0067

p̃3
1(EU) = 0.6412 and p̃3

1(non-EU) = 0.5439, pv < 0.0010.

Lower non-EU verum response rates (cluster Cl1 and cluster Cl3) front higher

non-EU placebo response rates (cluster Cl4), as indication for lower verum-

placebo differences in the non-EU regions. This disparity is also evident in the

relation EU response to non-EU-response in clusters Cl1 and Cl3 compared to

cluster Cl4. The relationship EU responders to non-EU responders is higher than

1 in cluster Cl1 and Cl3 and lower than 1 in cluster Cl4. Also in the placebo

cluster Cl6, the response relationship EU to non-EU is lower than 1.

Similar results can be identified for the remission data. There is a high placebo

remission rate of p̃4
2 = 0.2681, compared to a remission rate of the total population

of p̃2 = 0.3093. With regard to the differences of the remission rates in cluster

Cl4 and the marginal distribution stratified by region, there are also differences:

Among the EU patients a remission rate of p̃4
2(EU) = 0.2283 can be found in

placebo cluster Cl4, in comparison to the marginal distribution, here we have

a remission rate of p̃2(EU) = 0.3620 (pv = 0.0000). This difference is more

pronounced than in the non-EU group with a remission rate of p̃4
2(non-EU) =

0.2788 in placebo cluster Cl4 in comparison to the marginal distribution with

a remission rate of p̃2(non-EU) = 0.2932 (pv = 0.3120). These effects can be

seen in Figure 6.7. Also in the verum cluster Cl1 and Cl3, there are significant

differences in the remission rates between EU and non-EU regions,

p̃1
2(EU) = 0.4742 and p̃1

2(non-EU) = 0.2982, pv = 0.0010

p̃3
2(EU) = 0.4159 and p̃3

2(non-EU) = 0.3401, pv = 0.0009.

With regard to the age classes the response rate within age class 1 (patients to

34 years) is

p̃4
1(age class 1) = 0.4915.

In all other age classes, the response rates are between 0.3600 and 0.3900. Corre-
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Figure 6.7.: Cluster-based identification of heterogeneity: Cluster Cl4 vs. total
population, remission rate stratified by region

sponding data are also found for the remission rates. In age class 1 the remission

rate is p̃4
2(age class 1) = 0.3531, in the other age classes the remission rates are

between 0.2218 and 0.2807. A closer analysis of age class 1 shows

ρ̃4(EU|age class 1) = 0.1780,

but

ρ̃4(non-EU|age class 1) = 0.8220,

see Figure 6.8. In comparison to the marginal distribution the share of non-EU

patients in age class 1 is descriptively higher in this cluster,

ρ̃4(non-EU|age class 1) = 0.8220

ρ̃(non-EU|age class 1) = 0.7919.

This is of relevance, because the further stratification by response in this age class
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Figure 6.8.: Cluster-based identification of heterogeneity: Cluster Cl4, distribu-
tion of age classes stratified by region

shows also regional differences, as can be seen in Figure 6.9. The results are

p̃4
1(age class 1, EU) = 0.3651

p̃4
1(age class 1, non-EU) = 0.6189

with pv = 0.0268. The stratification by remission in this age class shows the

following differences: p̃4
2(age class 1, EU) = 0.2540 of the young patients of EU

regions have remitted in comparison to p̃4
2(age class 1, non-EU) = 0.3746 of the

young patients of non-EU regions (pv = 0.0694). Age class 1 is over-represented

in the group of placebo responders in the non-EU centers and shows a higher

placebo response rate and respectively a higher placebo remission rate. In the

other age classes these differences can not be found, see Figure 6.10. In age class

1 the described regional effect is mainly due to the young man with a the response
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Figure 6.9.: Cluster-based identification of heterogeneity: Cluster Cl4, response
rate and remission rate in age class 1 stratified by region

rates

p̃4
1(male, age class 1, EU) = 0.1905

p̃4
1(male, age class 1, non-EU) = 0.5378,

with pv = 0.0036. For young female patients aged to 34 years, the ratio is well-

balanced,

p̃4
1(female, age class 1, EU) = 0.4524

p̃4
1(female, age class 1, non-EU) = 0.5081,

with pv = 0.5144, as can be seen in Figure 6.11. For the remission rates the differ-

ences among the young men were more significant: p̃4
2(male, age class 1, EU) =

0.0952 in comparison to p̃4
2(male, age class 1, non-EU) = 0.3773 (pv = 0.0121).

For the young female patients aged to 34 years, the ratio was also well-balanced

with regard to remission, p̃4
2(female, age class 1, EU) = 0.3333 in comparison to

p̃4
2(female, age class 1, non-EU) = 0.3729 (pv = 0.6301), as can be seen in Figure
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Figure 6.10.: Cluster-based identification of heterogeneity: Cluster Cl4, response
and remission rate in age classes stratified by region

6.12. The share of non-EU patients under young male participants is increased,

ρ̃4(non-EU|male, age class 1) = 0.8346

with tendency towards significance in comparison to the marginal distribution

ρ̃(non-EU|male, age class 1) = 0.7571,

with pv = 0.0663.

The data in the placebo cluster Cl4 indicates significant regional differences

with regard to the recruitment behavior of younger patients - as shown in the

analysis of cluster Cl2 - they also have a higher drop-out rate respectively a lower

retention rate. It is striking, especially the high placebo response / placebo re-

mission of the younger age class which is expected to cause a reduction in the

verum-placebo response. The stratification of the data by gender shows that the
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Figure 6.11.: Cluster-based identification of heterogeneity: Cluster Cl4, response
rate in age class 1 stratified by gender and region

ratio women to men in age class 1 is about two to one. Here, there are no signifi-

cant differences between the regions; however, young male patients in the non-EU

region are over-represented and have also a higher placebo-response/placebo re-

mission rate. Young male patients of non-EU regions contribute significantly to

the response/ remission rate in this cluster.

Cluster Cl5

Cluster Cl5 includes patients treated with verum medication C1 and C2, who

have gone through the study until the end. In this cluster, κ5 = 674 patients are

included with a response rate of

p̃5
1 = 0.7240

and a remission rate of p̃5
2 = 0.4949. Stratification by region shows a lower share

of non-EU patients in comparison to the marginal distribution,
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Figure 6.12.: Cluster-based identification of heterogeneity: Cluster Cl4, remission
rate in age class 1 stratified by gender and region

Cl5 Total
0

20

40

60

80

100

33.09

23.44

66.91

76.56

S
h

ar
e

[%
]

Regional distribution of patients
in cluster Cl5

χ2 test: pv = 0.0000

EU non-EU

Figure 6.13.: Cluster-based identification of heterogeneity: Cluster Cl5 vs. total
population, regional distribution
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Figure 6.14.: Cluster-based identification of heterogeneity: Cluster Cl5, response
rate and remission rate stratified by region

ρ̃5(non-EU) = 0.6691

ρ̃(non-EU) = 0.7656,

with pv = 0.0000. In cluster Cl5 we also have a lower response rate in the

non-EU regions,

p̃5
1(EU) = 0.8117

p̃5
1(non-EU) = 0.6807,

with pv = 0.0003, and a remission rate p̃5
2(EU) = 0.6099 vs. p̃5

2(non-EU) =

0.4368, with pv = 0.0000. These results can be seen in Figure 6.13 and Figure

6.14.

Upon the review of the socio-demographic parameters, an imbalance in the

highest age class strikes in comparison to the total population: Compared to the
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6.4. Cluster-based identification of heterogeneity

EU: non-EU:

age class 1: 0.1704 age class 1: 0.1596
age class 2: 0.2422 age class 2: 0.1663
age group 3: 0.2224 age class 3: 0.1486
age class 4: 0.2466 age class 4: 0.1508
age class 5: 0.1166 age class 5: 0.3747

Table 6.33.: Cluster-based identification of heterogeneity: Cluster Cl5, age dis-
tribution stratified by region

quite equal distributed age classes 1 to 4, th share of age class 5 is

ρ̃5(age class 5) = 0.2893

in cluster Cl5. The response rate in this age class is

p̃5
1(age class 5) = 0.7333

and the remission rate is p̃5
2(age class 5) = 0.4941. Overall, the age distribution

shows the regional differences (EU/non-EU) presented in Table 6.33. In the EU

regions, the different age classes are almost equal distributed, whereupon age

class 5 seems to be under-represented. On the other hand in the non-EU group a

higher rate of age class 5 can be identified. The share of elderly non-EU patients

in Cluster Cl5 tends to be increased compared to the total population

ρ̃5(non-EU|age class 5) = 0.8667

ρ̃(non-EU|age class 5) = 0.8119,

with pv = 0, 0664, as can be seen in Figure 6.15. This could indicate that the

lower percentage of responders/remitters in the non-EU group maybe due to a

higher number of older patients in this group.

Cluster Cl1 and cluster Cl3

Cluster Cl1 includes κ1 = 496 and cluster Cl3 κ3 = 2388 patients. All patients

have been treated with medication A and have gone through the study until the

end. For the overall evaluation, the comparison of verum cluster Cl1 and Cl3
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Figure 6.15.: Cluster-based identification of heterogeneity: Cluster Cl5 vs. total
population, regional distribution of elderly patients
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Figure 6.17.: Cluster-based identification of heterogeneity: Cluster Cl1, Cl3 and
Cl5, response and remission rates

(medication A) and verum cluster Cl5 (medication C1 and C2) is of particular

importance. The overall response rates in cluster Cl1, Cl3 and Cl5 are

p̃1
1 = 0.5262

p̃3
1 = 0.5674

p̃5
1 = 0.7240.

The remission rate in cluster Cl1 is p̃1
2 = 0.3327, in cluster Cl3 it is p̃3

2 = 0.3585

and in cluster we have Cl5 p̃
5
2 = 0.4941. This contrasts with the shares of non-EU

patients, which are

ρ̃1 = 0.8044

ρ̃3 = 0.7587

ρ̃5 = 0.6691.

This comparison shows that the higher shares of non-EU patients seams to go

hand in hand with a lower verum response rate/remission rate, see Figure 6.16

and Figure 6.17. Also within the clusters, the correspondent differences in the

response rates can be found with stratification by region: in cluster Cl3, EU
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Figure 6.18.: Cluster-based identification of heterogeneity: Cluster Cl3 and Cl5,
response rates stratified by region
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Figure 6.19.: Cluster-based identification of heterogeneity: Cluster Cl3 and Cl5,
remission rates stratified by region

patients show a response rate of

p̃3
1(EU) = 0.6412,
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Figure 6.20.: Cluster-based identification of heterogeneity: Cluster Cl1, Cl3 and
Cl5, distribution of BMI classes of non-EU patients

compared to a response rate of

p̃3
1(non-EU) = 0.5439

of non-EU patients, with pv = 0.0000. The response rates in Cluster Cl5 are

p̃5
1(EU) = 0.8117

p̃5
1(non-EU) = 0.6807,

with pv = 0.0003, see Figure 6.18. With stratification by region, correspon-

dent differences in the remission rates can be found: in cluster Cl3 the remis-

sion rate is p̃3
2(EU) = 0.4159 in the EU regions and p̃3

2(non-EU) = 0.3401 in

the non-EU regions, with pv = 0.0009. The remission rate in cluster Cl5 is

p̃5
2(EU) = 0.6099 in the EU regions and p̃5

2(non-EU) = 0.4368 in the non-EU

regions, with pv = 0.0000, see Figure 6.19.
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Figure 6.21.: Cluster-based identification of heterogeneity: Cluster Cl1, Cl3 and
Cl5 (pooled), response and remission rate stratified by BMI classes
and region

As part of the evaluation of the different response and remission rates a further

possible explanation comes up when considering the distribution of BMI classes.

Overall, the distribution of the BMI appears to be balanced, however, in all verum

cluster an increased share of non-EU patients in the higher BMI classes can be

identified, especially in cluster Cl1 and cluster Cl3, see Figure 6.20. Altogether

the response rates/remission rates of the verum clusters are lower in the higher

BMI classes. With stratification by region this correlation can be found especially

in the non-EU regions in cluster Cl3, as can be seen in Figures 6.21, 6.22 and 6.23.

Summary of verum cluster

Cluster Cl5 (medication C1 and C2) shows an overall good response rate of

p̃5
1 = 0.7240, whereupon the EU responder are significantly over-represented with

p̃5
1(EU) = 0.8117 in comparison to the non-EU responder with p̃5

1(non-EU) =

0.6807. Furthermore, cluster Cl5 shows a high remission rate of p̃5
2 = 0.4941,

whereupon the remission rate is p̃5
2(EU) = 0.6099 for EU and p̃5

2(non-EU) =

0.4368 for non-EU patients. In this cluster, a lower response/remission rate of

226



6.4. Cluster-based identification of heterogeneity

to
22

.5
3

to
25

.2
8

to
28

.3
9

to
32

.9
1

to
68

.4
1

0

20

40

60

80

100
63
.8

9

64
.7

1

61
.4

3

68
.0

4

62
.7

9

5
9.

36

57
.2

3

52
.8

1

55
.7

9

4
8.

0
4

R
es

p
on

se
ra

te
[%

]

Response rate
of BMI classes in Cluster Cl3

EU non-EU

to
22

.5
3

to
25

.2
8

to
28

.3
9

to
32

.9
1

to
68

.4
1

0

20

40

60

80

100

38
.8

9

4
7.

0
6

3
9
.2

9

41
.2

4

39
.5

3

3
5.

9
6

39
.0

8

31
.1

8

3
3.

4
2

31
.3

7

R
em

is
si

on
ra

te
[%

]

Remission rate
of BMI classes in Cluster Cl3

EU non-EU

Figure 6.22.: Cluster-based identification of heterogeneity: Cluster Cl3, response
and remission rate stratified by BMI classes and region

old patients strikes who again appears to be over-represented in the non-EU

group, see Figures 6.24 and 6.25.

Differences in the BMI distribution can be found between cluster Cl1, Cl3

and Cl5, whereupon higher BMI classes are less represented in Cluster Cl5 than

in clusters Cl1 and Cl3. Stratified by region higher BMI values can be found

in non-EU regions like it is known in the literature [47]. The EU group shows

a consistently high response rate of at least 0.7500 and a remission rate of at

least 0.5000 in all BMI classes. Overall, with stratification by BMI, there is a

relationship between response rate or remission rate and BMI classes in all verum

clusters. The lower the BMI the merrier the response and the remission seems to

be, where this effect especially appears in the non-EU group. The comparison,

stratified by BMI and response or remission, however, indicates that the region

my have a greater impact on the response and remission than the BMI.
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Figure 6.23.: Cluster-based identification of heterogeneity: Cluster Cl5, response
and remission rates stratified by BMI classes and region

6.5. Cluster-based prediction of treatment

effects

As can be seen in the previous cluster-based analyses, it is reliable to assume that

there are different treatment effects in different patient collectives with similar

characteristic values combinations. In this section, the results of the endpoint-

oriented clustering approach, with regard to the prediction of the treatment ef-

fects of the administered antidepressants A, C1 and C2 in the identified patient

collectives, are presented. The analysis is based on the theory introduced in Sec-

tion 5.9.

6.5.1. Clustering

For the prediction of the efficacy, we needed to identify homogeneous groups by

the application of the endpoint-oriented clustering algorithm described in Chapter
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Figure 6.24.: Cluster-based identification of heterogeneity: Cluster Cl5, age dis-
tribution stratified by region

5. Since the predictive clustering approach is supervised, in the first step, the

set Sall, described in Section 6.1, has been divided. We used random 80% of the

available patient data as training data set S and 20% as testing patient data set

Ste. Consequently we got

S = {(xj, yj)}4808
j=1

and

Ste = {(xtej , ytej )}1202
j=1 ,

with n = 4808 and nte = 1202. For the endpoint, we chose the binary outcome

variable ’response’, with the two occurrences ’yes’ (= 1) and ’no’ (= 0). For

applying the clustering algorithm, in the next step, the characteristics with their

characteristic values, which might have an influence on the response of a patient,

had to be identified. All picked random variables are listed in Table 6.34. For

the attributes ’BMI’, ’duration’ and ’age’ we used the classification shown in Ta-

ble 6.12. Since the characteristic values of the attributes ’treatment’, ’region’,
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Figure 6.25.: Cluster-based identification of heterogeneity: Cluster Cl5, response
rate and remission rate stratified by region and age classes

’gender’ and ’withdrawal’ have a nominal level of scale, for the quantification we

used the transformation technique described in Section 5.5. Then, we were able

to apply the clustering algorithm to get a set of patient collectives Cl on the

basis of the transformed training patient data set Ŝ. The parameter setup for

the clustering consisted of k = 6 clusters, lower bounds li = 100, for i = 1, . . . , 6,

and no upper bounds. Each cluster Cli ∈ Cl is uniquely defined by combinations

of the characteristic values of the various attributes that have been identified as

similar by the algorithm.

6.5.2. Cluster-based analysis

Since the patients’ outcome Y i in the training patient data set Ŝi of cluster

Cli is Bernoulli distributed, with the two occurrences ’response’ (= 1) and ’no

response’ (= 0), we used the estimated response rate p̃i for the definition of the
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Ai Characteristic Values

A1 Treatment A5mg, A10mg, A15mg, A20mg, C1, C2, PBO
A2 Region EU, non-EU
A3 BMI 13 to 68.41 kg/m2

A4 MADRS 13 to 52
A5 CGI-S 3 to 7
A6 Duration 28 to 7976 days
A7 Sex Female, Male
A8 Age 18 to 88 years
A9 Withdrawal Adverse events, Lack of efficacy,

Lost to follow-up, Withdrawal of consent

Outcome Values

Response yes, no
Remission yes, no

Table 6.34.: Cluster-based prediction: Independent and dependent variables used
for the predictive clustering approach

i 1 2 3 4 5 6 all

κi 1322 496 717 357 289 1627 4808
p̃i 0.4085 0.5504 0.5411 0.1541 0.2042 0.6404 0.4902

Table 6.35.: Cluster-based prediction: Results with respect to ’response’; number
of patients and response rate per cluster

cluster value,

fi(Cli) = p̃i =
1

κi

κi∑
j=1

11{1}(y
i
j),

where κi is the number of patients in cluster Cli, for i = 1, . . . , k. The variance

is given by

(σ̃i)2 = p̃i(1− p̃i).

The cluster value represents the predictive outcome or the predictive probability

of responding to a medication for a patient who would be assigned to this cor-

respondent cluster due to his characteristic values combination. For the (1− α)

confidence interval of the true response rate pi in cluster Cli holds

I i = [p̃i − z[1− α

2
]
σ̃i
√
κi
, p̃i + z[1− α

2
]
σ̃i
√
κi

],

231



6. Practical application - Empirical results

i p̃i (σ̃i)2 Ii

1 0.4085 0.2416 0.3862 0.4307
2 0.5504 0.2475 0.5137 0.5871
3 0.5411 0.2483 0.5105 0.5718
4 0.1541 0.1303 0.1226 0.1855
5 0.2042 0.1625 0.1652 0.2432
5 0.6404 0.2303 0.6209 0.6600

Table 6.36.: Cluster-based prediction: Response rates, variances and confidence
intervals for each cluster

i 1 2 3 4 5 6 Total

. 1322 496 717 1627 4162
Adverse Event(s) 142 142 284
Lack of Efficacy 69 37 106
Lost to Follow-up 58 57 115
Withdrawal of Consent 88 53 141

Total 1322 496 717 357 289 1627 4808

Table 6.37.: Cluster-based prediction: Distribution of patients classified by reason
for withdrawal

where z[1− α
2
] is the (1− α

2
)-quantile of the standard normal distribution. In the

following we set α = 0.1.

The distribution of the n = 4808 patients into the patient collectives with its

predictive cluster values is shown in Table 6.35. The corresponding variances and

the confidence intervals can be found in Table 6.36. E.g. the predictive cluster

values for clusters Cl2 and Cl3 are

p̃2 = 0.5504 and p̃3 = 0.5411,

with overlapping confidence intervals. For the predictive clustering approach, it is

reliable to combine clusters with similar cluster values. Thus, we merged cluster

Cl2 and Cl3. As can be seen in Table 6.37, in cluster Cl4 and Cl5 all drop-outs

are grouped with a low response rate of

p̃4 = 0.1541 and p̃5 = 0.2042
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6.5. Cluster-based prediction of treatment effects

i 1 2 3 4 all

κi 1322 1213 646 1627 4808
p̃i 0.4085 0.5449 0.1765 0.6404 0.4902

Table 6.38.: Cluster-based prediction: Merged results with respect to ’response’;
number of patients and response rate per cluster

i p̃i (σ̃i)2 Ii

1 0.4085 0.2416 0.3862 0.4307
2 0.5449 0.2480 0.5214 0.5684
3 0.1765 0.1453 0.1518 0.2011
4 0.6404 0.2303 0.6209 0.6600

Table 6.39.: Cluster-based prediction: Merged response rates, variances and con-
fidence intervals for each cluster

and overlapping confidence intervals. Consequently, we also merged these two

clusters. Then, the cluster numbers have been renamed and the number of clus-

ters has been reduced to k = 4. The results can be found in Table 6.38. The

corresponding variances and the confidence intervals are shown in Table 6.39. As

we can see, there is no overlapping of the confidence intervals. Therefore, we

can conclude that it is reliable to assume that the response rates are significantly

different across all four clusters.

6.5.3. Statistical evaluation

For the evaluation of the reliability of the predictive response rates in the iden-

tified patient collectives, we used the hypothesis test procedure introduced in

Section 5.9.3. In the first step, we put the cluster values in the right order and

renumbered the clusters,

f1(Cl1) = 0.1765, f2(Cl2) = 0.4085, f3(Cl3) = 0.5449, f4(Cl4) = 0.6404.

Thus, for the cluster values holds

f1(Cl1) ≤ f2(Cl2) ≤ f3(Cl3) ≤ f4(Cl4).
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In the next step, we set the system of hypotheses. The right tailed hypotheses

tests are given by

H i
0,l : pi ≤ fi(Cli)δ

i
l =: p̃il

which indicates the assumption that the true response rate pi is at most p̃il, for

i = 2, . . . , 4. The null hypotheses of the left tailed hypotheses tests are formulated

by

H1
0,u : pi ≥ fi(Cli)δ

i
u =: p̃iu

which stands for the assumption that pi is at least p̃ir, for i = 1, . . . , 3. The

corresponding elements of the parameter set ∆ are specified by

δiu = 1− 0.4 +
0.4fi+1(Cli+1)

fi(Cli)
, for i = 1, . . . , 3

δil = 1− 0.4 +
0.4fi−1(Cli−1)

fi(Cli)
, for i = 2, . . . , 4.

In the next step, we assigned the patients in the transformed testing data set

Ŝte to the corresponding clusters, due to their characteristic values combination.

Then, we were able to calculate the response rate of the resulting set ŜteCli in

cluster Cli,

f tei (Cli) = p̃i,te =

∑κtei
j=1 11{1}(y

i,te
j )

κtei
,

for the comparison with the response rate of the patients in the training data

set Ŝi of cluster Cli. Then, all requirements were met for the formulation of the

realization of the test statistics,

tiu :=
f tei (Cli)− p̃iu√

p̃iu(1−p̃iu)
κtei

, for i = 1, . . . , 3

til :=
f tei (Cli)− p̃il√

p̃il(1−p̃
i
l)

κtei

, for i = 2, . . . , 4.

For the evaluation of the results of the test statistics, we used the p-values,

pviu := P (T iu < tiu|H i
0,u) = FN (tiu), for i = 1, . . . , 3

pvil := P (T il > til|H i
0,l) = 1− FN (til), for i = 2, . . . , 4,
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6.5. Cluster-based prediction of treatment effects

where FN denotes the cumulative distribution function of the standard normal

distribution. In case of a p-value smaller than the predefined α = 0.15 we rejected

the null hypothesis.

On the basis of the underlying patient data set, for the right tailed hypotheses

tests we got

H2
0,l : p2 ≤ 0.3157

H3
0,l : p3 ≤ 0.4903

H4
0,l : p4 ≤ 0.6022

and the null hypotheses of the left tailed hypothesis test were formulated by

H1
0,u : p1 ≥ 0.2693

H2
0,u : p2 ≥ 0.4631

H3
0,u : p3 ≥ 0.5831.

In Table 6.40 the distribution of the nte = 1202 patients into the four clusters

and the corresponding response rates are presented. The comparison of the pre-

dictive values in the training and the testing data set is shown in Figure 6.26.

Here a very accurate prediction is visible. The evaluation of the reliability of the

predicted response rates are based on the realizations of the statistics T il and T iu

shown in Table 6.41. For the decision, if a hypothesis test can be rejected we

used the p-values, which can also be found in Table 6.41. All null hypotheses

could be rejected due to a p-value smaller than α = 0.15, expect null hypothesis

H4
0,l. E.g. in cluster Cl1, the null hypothesis H1

0,u could be rejected due to the

p-value of pv1
u = 0.0002. This implies that the probability to get this result or

a higher value for the realization of the test statistic T 1
u is only 0.2% under the

assumption that the true response rate p1 is greater than p̃1
u = 0.2693.

In these results, we identified a trade-off between the accuracy and reliability

of the predicted response rates in the patient collectives identified by the cluster-
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i 1 2 3 4 all

κi 646 1322 1213 1627 4808
p̃i 0.1765 0.4085 0.5449 0.6404 0.4902

κtei 165 317 310 410 1202
p̃i,te 0.1455 0.3912 0.5226 0.5854 0.4576

Table 6.40.: Cluster-based prediction: Merged results with respect to ’response’;
number of patients and response rate per cluster

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2
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0.6

0.8

train p̃i

te
st
p̃
i,
te

Response rate

Figure 6.26.: Cluster-based prediction: Comparison of response rates of training
and testing sets

ing approach. The accuracy of the prediction is high, but the reliability of the

response rate in cluster Cl4 has to be questioned and the prediction has to be

done conditionally under the consideration of the p-value.
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7. Conclusion

In this thesis, we introduced new cluster-based statistical methods for the anal-

ysis of big patient data to improve the quality of healthcare delivery in terms of

health economic evaluation and evidence-based medicine. These new approaches

deal with the evaluation and prediction of the efficacy of medical interventions

and the identification of clinical heterogeneity in the treatment effects for different

patient collectives. For the determination of these sufficiently large and homoge-

neous collectives, by means of similar combinations of the characteristic values,

an innovative endpoint-oriented clustering technology, supervised and unsuper-

vised, has to be applied for all introduced statistical methods. For determining

the corresponding clusters, the underlying clustering algorithm uses geometrical

proximity after the transformation of the patient data into its one-dimensional

conditional expected values. With the use of the transformation technique, it is

possible to consider also nominal patient characteristics as independent variable

if it is assumed that this characteristic has an influence on the outcome of a pa-

tient or the measured endpoint. The clustering theory is based on the work of

Brieden and Gritzmann and a short overview was given in this thesis in Chapter 5.

For the application of the new invented cluster-based theories, as data base

we used patient data derived by RCTs on three different antidepressants in the

acute treatment of depression. Thereby, the goal was to analyze the measured

endpoints if there is an additional benefit for patients treated with a new invented

drug, here called A, in comparison to the standard therapies C1 and C2.
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7.1. Cluster-based meta-analysis

In Section 5.7, we introduced the new invented cluster-based meta-analysis for pa-

tient collectives which have been identified by the unsupervised endpoint-oriented

clustering algorithm. Since the collectives are determined by patients with similar

combinations of their characteristic values, the main assumption is that for the

patients of a cluster the efficacy of an intervention is equal and the treatment ef-

fects across cluster vary. Thus, for the evaluation of the efficacy of a medication in

a patient collective, we adjusted the common meta-analytic approaches presented

in Chapter 3 and introduced the cluster-based fixed-effects and random-effects

model. With these approaches, clinical and especially regional heterogeneity in

the treatment effects, which is a crucial problem in meta-analysis, can be con-

sidered. For this purpose, we developed new methods for the assessment and

evaluation of the heterogeneity within a cluster and across clusters on the basis

of the statistical theory presented in Chapter 4.

The empirical results of this new approach were compared to those of the com-

mon meta-analysis. The new invented drug A, with its dosages 5mg, 10mg, 15mg

and 20mg, showed no additional benefit compared to C1 and C2 when applying

the meta-analytic methods. But with the use of the cluster-based meta-analysis,

on specific patient collectives medication A was more efficient than medication

C1 and C2. This implies that the assumption of meta-analysis, that there is one

true treatment effect for a drug, should be regarded cautiously. Moreover, with

the new invented statistical assessment method of heterogeneity across clusters,

it was shown that it is reliable to assume that there are different treatment effects

for patients with different combinations of their characteristic values.

7.2. Cluster-based identification of

heterogeneity

In the presented cluster-based identification of heterogeneity of Section 5.8, the

discovery of hidden structures, in terms of region-specific patterns of clinical or

socio-demographic parameters of patient data derived by RCTs, was introduced.
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The identification methods are applied on the patient collectives identified with

the help of the unsupervised endpoint-oriented clustering algorithm. Then, the

differences in the conditional mean outcomes or shares of patients with differ-

ent combinations of their characteristic values can be evaluated with the help of

common statistical tests, like the χ2 test for independence. The calculation of

the conditional mean outcome is thereby dependent on the level of scale of the

patients outcome.

In the underlying patient data, the cluster-based identification of the hetero-

geneity in the treatment effects was applied to response and remission data.

Thereby, the focus has been on the differences in the centers of EU vs. non-EU

regions and in the clinical and demographic parameters. Both, in the response

analysis as well as in the ensuring analysis of remitting patients, in the correspon-

dent clusters, consistent indications could be found that can also attribute diver-

gent clinical endpoint data to region-specific constellations. Using multivariate

cluster analysis, significant differences were found in the gender composition, age

cohorts, the drop-out rates, the placebo response rates and in clinical parameters,

e.g. BMI. The described structures, which can be attributed to a different com-

position of the base population as well as to the recruitment behaviour, may have

contributed to the differences in the endpoints in the regions EU vs. non-EU of

the medication A studies. Comparable factors are known from literature as ther-

apeutic effect influencing parameters. [70, 47, 66, 39]. Impacts on verum-placebo

differences, which can be associated with clinical and demographic parameters,

appear to be of particular importance. The placebo response seems to be higher

in non-EU regions due to different listed factors (gender, age, region). The effects

shown here fit in the known scientific literature [43, 53]. The reported results,

which point to correspondent regional differences in the analyzed clusters, pro-

vide a mathematical founded and also clinical reasonable explanation for high

heterogeneity identified in the meta-analyses of 6.2.
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7.3. Cluster-based prediction of treatment

effects

In Section 5.9, we introduced how the efficacy of medical interventions can be

predicted for patient collectives identified by the supervised endpoint-oriented

clustering approach. Thereby, a training patient data is used for determining

the different clusters. Then, dependent on the level of scale of the outcome data

of the participating patients, a mean outcome or a general treatment effect for

each collective can be calculated as predictive value. For the assessment of the

reliability of the given predictive values, we presented statistical tests based on

the comparison of the cluster values of the training and the testing data set. For

the correspondent test statistics, the patients of the testing data set are assigned

to the corresponding clusters and the mean outcome or treatment effects of these

testing patients in the correspondent clusters are calculated.

In the practical application, after the identification of the patient collectives by

the endpoint-oriented clustering approach, we had clusters with similar predictive

values. Since the goal is to predict the efficacy of a medical intervention, it was

reliable to merge clusters with similar predictions. The empirical results of the

cluster-based prediction of the treatment effects then showed a very high accuracy

in the predictive values for the different patient collectives. Also the results of

the statistical tests showed a high reliability of the calculated predictive cluster

values.

7.4. Outlook

The new introduced cluster-based theories are based on the innovative endpoint-

oriented clustering approach, which allows adjustments in many ways. The clus-

tering algorithm of the individual patient data can be divided into two com-

ponents. The data transformation, and the clustering itself, including the cell

decomposition. Like it is stated in [48], in each of these steps there are param-

eters and procedures that can be modified. For the data transformation, the

one-dimensional conditional expected values could be extended to multidimen-

sional conditional expectations. For the computation of the clustering, there are
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numerous adjustable parameters to be investigated, like lower and upper bounds,

the approximation of the ellipsoidal norm and last but not least the number of

clusters. Additionally, the calculation of good initial sites or improvements of the

iterative procedure, like steepest descent, could be analyzed.

The cluster-based meta-analysis, which is conducted on the patient collectives,

could take into account the cluster-based identified heterogeneity by calculating

the treatment effects for the corresponding patient groups with different clinical or

socio-demographic parameters in a cluster, instead of differentiating between the

single trials. The heterogeneity across trials in a cluster, caused by the random-

effect, could be taken into account by using the trial information as influencing

independent variable for the clustering approach. If it is necessary, the summary

treatment effect for a patient collective could then be calculated by the weighted

aggregation of the single treatment effect of the patient groups by considering

the heterogeneity with a specific regional-effect. With such an approach the het-

erogeneity could be eliminated as well as possible.

For the cluster-based identification of heterogeneity, beside the statistical tests,

new indices for the assessment of heterogeneity could be developed. Also the anal-

ysis if clinical heterogeneity could be completely considered when increasing the

cluster number is an interesting topic of future work.

The assessment of the reliability of the cluster-based prediction of the treat-

ment effects for the clusters is based on a statistical hypothesis testing approach.

The setting of the underlying hypotheses and the detailed analysis of the trade-off

between the accuracy and the reliability of the prediction could be investigated

in the future. We introduced the comparing distance as a first parameter scheme

for the statistical hypotheses setting. Additional analysis of different parameter

settings in combination with different cluster numbers could also be an interest-

ing extension of this part.
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A. Meta-analysis

Study j = 1 (T11)

s f n

A5mg 72 35 107
PBO 47 55 102

119 90 209

Study j = 3 (T13)

s f n

A5mg 88 62 150
PBO 53 89 142

141 151 292

Study j = 5 (T22)

s f n

A5mg 66 84 150
PBO 49 90 139

115 174 289

Study j = 7 (T27)

s f n

A5mg 70 71 141
PBO 58 88 146

128 159 287

Study j = 2 (T12)

s f n

A5mg 86 64 150
PBO 67 78 145

153 142 295

Study j = 4 (T21)

s f n

A5mg 138 144 282
PBO 131 144 275

269 288 557

Study j = 6 (T23)

s f n

A5mg 62 75 137
PBO 33 104 137

95 179 274

Table A.1.: Meta-analysis: 2× 2-table of patients treated with A5mg
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A. Meta-analysis

Study j = 1 (T11)

s f n

A10mg 67 30 97
PBO 47 55 102

114 85 199

Study j = 3 (T15)

s f n

A10mg 92 95 187
PBO 58 131 189

150 226 376

Study j = 5 (T25)

s f n

A10mg 50 99 149
PBO 45 107 152

95 206 301

Study j = 7 (T27)

s f n

A10mg 80 67 147
PBO 58 88 146

138 155 293

Study j = 2 (T12)

s f n

A10mg 84 63 147
PBO 67 78 145

151 141 292

Study j = 4 (T23)

s f n

A10mg 68 69 137
PBO 33 104 137

101 173 274

Study j = 6 (T26 )

s f n

A10mg 54 88 142
PBO 49 95 144

103 183 286

Table A.2.: Meta-analysis: 2× 2-table of patients treated with A10mg
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Study j = 1 (T14)

s f n

A15mg 82 59 141
PBO 51 102 153

133 161 294

Study j = 3 (T26)

s f n

A15mg 51 86 137
PBO 49 95 144

100 181 281

Study j = 2 (T24)

s f n

A15mg 64 75 139
PBO 59 91 150

123 166 289

Table A.3.: Meta-analysis: 2× 2-table of patients treated with A15mg

Study j = 1 (T14)

s f n

A 20mg 91 55 146
PBO 51 102 153

142 157 299

Study j = 3 (T24)

s f n

A 20mg 63 77 140
PBO 59 91 150

122 168 290

Study j = 5 (T27)

s f n

A 20mg 75 72 147
PBO 58 88 146

133 160 293

Study j = 2 (T15)

s f n

A 20mg 120 80 200
PBO 58 131 189

178 211 389

Study j = 4 (T25)

s f n

A 20mg 58 83 141
PBO 45 107 152

103 190 293

Table A.4.: Meta-analysis: 2× 2-table of patients treated with A20mg
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A. Meta-analysis

Study j = 1 (T12)

s f n

C1 85 58 143
PBO 67 78 145

152 136 288

Study j = 3 (T14)

s f n

C1 107 35 142
PBO 51 102 153

158 137 295

Study j = 5 (T24)

s f n

C1 80 62 142
PBO 59 91 150

139 153 292

Study j = 2 (T13)

s f n

C1 99 45 144
PBO 53 89 142

152 134 286

Study j = 4 (T22)

s f n

C1 75 66 141
PBO 49 90 139

124 156 280

Table A.5.: Meta-analysis: 2× 2-table of patients treated with C1

Study j = 1 (T11)

s f n

C2 80 62 142
PBO 59 91 150

139 153 292

Table A.6.: Meta-analysis: 2× 2-table of patients treated with C2
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Treatment group: A5mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.6729 -1.3565 0.0819 -1.8272 -0.8857
T12 2 0.4621 0.5733 -1.2560 0.0550 -1.6418 -0.8703
T13 3 0.3732 0.5867 -0.8985 0.0576 -1.2932 -0.5037
T21 4 0.4764 0.4894 -1.2921 0.0288 -1.5711 -1.0131
T22 5 0.3525 0.4400 -0.7928 0.0586 -1.1909 -0.3947
T23 6 0.2409 0.4526 -0.2475 0.0694 -0.6807 0.1858
T27 7 0.3973 0.4965 -0.9695 0.0570 -1.3621 -0.5768

Table A.7.: Meta-analysis: Odds Ratio, antidepressant A5mg

Treatment group: A10mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.6907 -1.3863 0.0877 -1.8735 -0.8992
T12 2 0.4621 0.5714 -1.2549 0.0555 -1.6425 -0.8673
T15 3 0.3069 0.4920 -0.5718 0.0463 -0.9256 -0.2180
T23 4 0.2409 0.4964 -0.2385 0.0691 -0.6709 0.1940
T25 5 0.2961 0.3356 -0.6346 0.0617 -1.0431 -0.2261
T26 6 0.3403 0.3803 -0.7833 0.0608 -1.1889 -0.3776
T27 7 0.3973 0.5442 -0.9773 0.0560 -1.3666 -0.5879

Table A.8.: Meta-analysis: Odds Ratio, antidepressant A10mg

Treatment group: A15mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T14 1 0.3333 0.5816 -0.7201 0.0586 -1.1181 -0.3221
T24 2 0.3933 0.4604 -0.9593 0.0569 -1.3516 -0.5669
T26 3 0.3403 0.3723 -0.7917 0.0622 -1.2019 -0.3816

Table A.9.: Meta-analysis: Odds Ratio, antidepressant A15mg

Treatment group: A20mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T14 1 0.3333 0.6233 -0.7559 0.0586 -1.1540 -0.3578
T15 2 0.3069 0.6000 -0.6124 0.0457 -0.9640 -0.2607
T24 3 0.3933 0.4500 -0.9630 0.0568 -1.3550 -0.5710
T25 4 0.2961 0.4113 -0.5521 0.0609 -0.9578 -0.1463
T27 5 0.3973 0.5102 -0.9698 0.0558 -1.3585 -0.5812

Table A.10.: Meta-analysis: Odds Ratio, antidepressants A20mg
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A. Meta-analysis

Treatment group: C1

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T12 1 0.4621 0.5944 -1.2706 0.0568 -1.6624 -0.8787
T13 2 0.3732 0.6875 -1.0195 0.0624 -1.4305 -0.6085
T14 3 0.3333 0.7535 -0.9903 0.0673 -1.4171 -0.5635
T22 4 0.3525 0.5319 -0.7824 0.0600 -1.1853 -0.3795
T24 5 0.3933 0.5634 -0.9692 0.0566 -1.3604 -0.5780

Table A.11.: Meta-analysis: Odds Ratio, antidepressant C1

Treatment group: C2

Study j p̃Cj p̃Tj θ̃j σ̃2
j I

T11 1 0.4608 0.7273 -1.4606 0.0853 -1.9409 -0.9802

Table A.12.: Meta-analysis: Odds Ratio, antidepressant C2

Treatment group: A5mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.6729 0.2121 0.0045 0.1019 0.3224
T12 2 0.4621 0.5733 0.1113 0.0033 0.0161 0.2064
T13 3 0.3732 0.5867 0.2134 0.0033 0.1195 0.3074
T21 4 0.4764 0.4894 0.0130 0.0018 -0.0567 0.0827
T22 5 0.3525 0.4400 0.0875 0.0033 -0.0068 0.1818
T23 6 0.2409 0.4526 0.2117 0.0031 0.1195 0.3039
T27 7 0.3973 0.4965 0.0992 0.0034 0.0031 0.1953

Table A.13.: Meta-analysis: Risk Difference, antidepressant A5mg

Treatment group: A10mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.6907 0.2299 0.0046 0.1179 0.3420
T12 2 0.4621 0.5714 0.1094 0.0034 0.0137 0.2050
T15 3 0.3069 0.4920 0.1851 0.0025 0.1035 0.2667
T23 4 0.2409 0.4964 0.2555 0.0032 0.1630 0.3479
T25 5 0.2961 0.3356 0.0395 0.0029 -0.0486 0.1276
T26 6 0.3403 0.3803 0.0400 0.0032 -0.0533 0.1333
T27 7 0.3973 0.5442 0.1470 0.0033 0.0521 0.2418

Table A.14.: Meta-analysis: Risk Difference, antidepressant A10mg
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Treatment group: A15mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T14 1 0.3333 0.5816 0.2482 0.0032 0.1555 0.3410
T24 2 0.3933 0.4604 0.0671 0.0034 -0.0285 0.1627
T26 3 0.3403 0.3723 0.0320 0.0033 -0.0620 0.1260

Table A.15.: Meta-analysis: Risk Difference, antidepressant A15mg

Treatment group: A20mg

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T14 1 0.3333 0.6233 0.2900 0.0031 0.1990 0.3810
T15 2 0.3069 0.6000 0.2931 0.0023 0.2138 0.3724
T24 3 0.3933 0.4500 0.0567 0.0034 -0.0387 0.1520
T25 4 0.2961 0.4113 0.1153 0.0031 0.0239 0.2067
T27 5 0.3973 0.5102 0.1129 0.0033 0.0179 0.2080

Table A.16.: Meta-analysis: Risk Difference, antidepressants A20mg

Treatment group: C1

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T12 1 0.4621 0.5944 0.1323 0.0034 0.0364 0.2282
T13 2 0.3732 0.6875 0.3143 0.0031 0.2221 0.4064
T14 3 0.3333 0.7535 0.4202 0.0028 0.3338 0.5066
T22 4 0.3525 0.5319 0.1794 0.0034 0.0834 0.2754
T24 5 0.3933 0.5634 0.1700 0.0033 0.0752 0.2649

Table A.17.: Meta-analysis: Risk Difference antidepressant C1

Treatment group: C2

Study j p̃Cj p̃Tj θ̃j σ̃2
j Ij

T11 1 0.4608 0.7273 0.2665 0.0042 0.1594 0.3736

Table A.18.: Meta-analysis: Risk Difference antidepressant C2
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A. Meta-analysis

Fixed-effects model

Drug θ̂ var(Θ̂) I q pv l2

A5mg -1.0188 0.0076 -1.1622 -0.8754 14.7534 0.0223 59.33%
A10mg -0.8175 0.0086 -0.9702 -0.6648 14.3076 0.0264 58.06%
A15mg -0.8257 0.0197 -1.0566 -0.5947 0.5224 0.7701 0.00%
A20mg -0.7668 0.0110 -0.9393 -0.5942 2.6977 0.6096 0.00%
C1 -1.0092 0.0121 -1.1900 -0.8285 2.0965 0.7180 0.00%
C2 -1.4606 0.0853 -1.9409 -0.9802 0.0000

Table A.19.: Meta-analysis: Odds Ratio estimated by the fixed-effects model

Fixed-effects model

Drug θ̂ var(Θ̂) I q pv l2

A5mg 0.1200 0.0004 0.0857 0.1543 14.0933 0.0286 57.43%
A10mg 0.1405 0.0005 0.1054 0.1757 13.7101 0.0330 56.24%
A15mg 0.1175 0.0011 0.0632 0.1718 8.3689 0.0152 76.10%
A20mg 0.1841 0.0006 0.1439 0.2242 16.6561 0.0023 75.98%
C1 0.2517 0.0006 0.2102 0.2933 19.2615 0.0007 79.23%
C2 0.2665 0.0042 0.1594 0.3736 0.0000

Table A.20.: Meta-analysis: Risk Difference estimated by the fixed-effects model

Random-effects model

Drug θ̂ var(Θ̂) I

A5mg -1.0115 0.0086 -1.1641 -0.8590
A10mg -0.8189 0.0097 -0.9806 -0.6573
A15mg -0.8257 0.0197 -1.0566 -0.5947
A20mg -0.7668 0.0110 -0.9393 -0.5942
C1 -1.0092 0.0121 -1.1900 -0.8285
C2 -1.4606 0.0853 -1.9409 -0.9802

Table A.21.: Meta-analysis: Odds Ratio estimated by the random-effects model
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Random-effects model

drug θ̂ var(Θ̂) I

A5mg 0.1201 0.0004 0.0857 0.1545
A10mg 0.1405 0.0005 0.1053 0.1758
A15mg 0.1175 0.0011 0.0622 0.1727
A20mg 0.1837 0.0006 0.1430 0.2245
C1 0.2513 0.0007 0.2089 0.2938
C2 0.2665 0.0042 0.1594 0.3736

Table A.22.: Meta-analysis: Risk Difference estimated by the random-effects
model
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B. Clustering

i 1 2 3 4 5 6

Study j = 1 (T11)

A5mg 67 26 0 7 0 0 0 0 1 1 4 1
PBO 46 36 1 9 0 0 0 0 0 5 0 5

Study j = 2 (T12)

A5mg 0 0 6 11 17 13 53 21 1 11 9 8
PBO 0 0 2 13 17 18 34 30 1 6 13 11

Study j = 3 (T13)

A5mg 0 0 1 9 20 21 56 25 1 3 10 4
PBO 0 0 0 11 13 26 33 39 0 3 7 10

Study j = 6 (T21)

A5mg 0 0 2 24 47 44 71 54 1 11 17 11
PBO 0 0 6 20 44 45 72 58 2 11 7 10

Study j = 7 (T22)

A5mg 0 0 3 14 17 28 33 24 3 8 10 10
PBO 0 0 1 8 19 22 20 41 2 8 7 11

Study j = 8 (T23)

A5mg 53 50 0 5 0 0 0 0 1 2 8 18
PBO 31 75 0 8 0 0 0 0 0 2 2 19

Study j = 12 (T27)

A5mg 0 0 1 7 24 28 33 25 1 5 11 6
PBO 0 0 0 4 22 27 24 32 0 7 12 18

Table B.1.: Cluster-based meta-analysis: 2 × 2-table of patients treated with
A5mg
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i 1 2 3 4 5 6

Study j = 1 (T11)

A10mg 62 18 2 8 0 0 0 0 1 4 2 0
PBO 46 36 1 9 0 0 0 0 0 5 0 5

Study j = 2 (T12)

A10mg 0 0 3 23 11 12 58 19 0 4 12 5
PBO 0 0 2 13 17 18 34 30 1 6 13 11

Study j = 3 (T15)

A10mg 0 0 3 8 15 17 60 54 1 2 13 14
PBO 0 0 4 15 18 15 31 78 0 7 5 16

Study j = 4 (T23)

A10mg 53 52 2 9 0 0 0 0 0 4 13 4
PBO 31 75 0 8 0 0 0 0 0 2 2 19

Study j = 5 (T25)

A10mg 0 0 1 8 19 33 19 37 5 11 6 10
PBO 0 0 2 3 14 40 22 32 3 5 4 27

Study j = 6 (T26)

A10mg 0 0 0 9 21 31 19 19 3 8 11 21
PBO 0 0 1 5 17 44 22 28 4 7 5 11

Study j = 7 (T27)

A10mg 0 0 0 7 28 22 34 23 1 7 17 8
PBO 0 0 0 4 22 27 24 32 0 7 12 18

Table B.2.: Cluster-based meta-analysis: 2 × 2-table of patients treated with
A10mg
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B. Clustering

i 1 2 3 4 5 6

Study j = 4 (T14)

A15mg 66 33 1 13 0 0 0 0 0 10 15 3
PBO 42 70 1 11 0 0 0 0 2 6 6 15

Study j = 9 (T24)

A15mg 0 0 2 7 23 33 26 14 4 13 9 8
PBO 0 0 0 11 32 34 21 25 1 9 5 12

Study j = 11 (T26)

A15mg 0 0 2 8 21 40 17 17 3 10 8 11
PBO 0 0 1 5 17 44 22 28 4 7 5 11

Table B.3.: Cluster-based meta-analysis: 2 × 2-table of patients treated with
A15mg

i 1 2 3 4 5 6

Study j = 4 (T14)

A20mg 79 34 1 10 0 0 0 0 0 10 11 1
PBO 42 70 1 11 0 0 0 0 2 6 6 15

Study j = 5 (T15)

A20mg 79 34 1 10 0 0 0 0 0 10 11 1
PBO 42 70 1 11 0 0 0 0 2 6 6 15

Study j = 9 (T24)

A20mg 0 0 4 7 28 22 18 23 3 13 10 12
PBO 0 0 0 11 32 34 21 25 1 9 5 12

Study j = 10 (T25)

A20mg 0 0 2 6 24 33 25 22 3 8 4 14
PBO 0 0 2 3 14 40 22 32 3 5 4 27

Study j = 12 (T27)

A20mg 0 0 1 10 28 16 30 27 0 4 16 15
PBO 0 0 0 4 22 27 24 32 0 7 12 18

Table B.4.: Cluster-based meta-analysis: 2 × 2-table of patients treated with
A20mg
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i 1 2 3 4 5 6

Study j = 1 (T11)

C1 0 0 1 10 28 16 30 27 0 4 16 15
PBO 0 0 0 4 22 27 24 32 0 7 12 18

Study j = 2 (T12)

C1 0 0 4 17 14 8 51 22 1 8 15 3
PBO 0 0 2 13 17 18 34 30 1 6 13 11

Study j = 3 (T13)

C1 0 0 2 6 30 9 56 11 2 6 9 13
PBO 0 0 0 11 13 26 33 39 0 3 7 10

Study j = 7 (T22)

C1 0 0 5 13 26 11 32 24 2 11 10 7
PBO 0 0 1 8 19 22 20 41 2 8 7 11

Study j = 9 (T24)

C1 0 0 6 7 40 20 23 16 4 10 7 9
PBO 0 0 0 11 32 34 21 25 1 9 5 12

Table B.5.: Cluster-based meta-analysis: 2× 2-table of patients treated with C1

i 1 2 3 4 5 6

Study j = 1 (T11)

C2 75 13 2 10 0 0 0 0 0 6 3 1
PBO 46 36 1 9 0 0 0 0 0 5 0 5

Table B.6.: Cluster-based meta-analysis: 2× 2-table of patients treated with C2
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B. Clustering

i Study j A5mg A10mg A15mg A20mg C1 C2 PBO Total

1 T11 1 93 80 88 82 343
T14 4 99 113 115 112 439
T23 8 103 105 106 314

2 T11 1 7 10 12 10 39
T12 2 17 26 21 15 79
T13 3 10 8 11 29
T14 4 14 11 7 12 44
T15 5 11 14 19 44
T21 6 26 26 52
T22 7 17 18 9 44
T23 8 5 11 8 24
T24 9 9 11 13 11 44
T25 10 9 8 5 22
T26 11 9 10 6 25
T27 12 8 7 11 4 30

3 T12 2 30 23 22 35 110
T13 3 41 39 39 119
T15 5 32 39 33 104
T21 6 91 89 180
T22 7 45 37 41 123
T24 9 56 50 60 66 232
T25 10 52 57 54 163
T26 11 52 61 61 174
T27 12 52 50 44 49 195

4 T12 2 74 77 73 64 288
T13 3 81 67 72 220
T15 5 114 115 109 338
T21 6 125 130 255
T22 7 57 56 61 174
T24 9 40 41 39 46 166
T25 10 56 47 54 157
T26 11 38 34 50 122
T27 12 58 57 57 56 228

5 T11 1 2 5 6 5 18
T12 2 12 4 9 7 32
T13 3 4 8 3 15
T14 4 10 10 4 8 32
T15 5 3 8 7 18
T21 6 12 13 25
T22 7 11 13 10 34
T23 8 3 4 2 9
T24 9 17 16 14 10 57
T25 10 16 11 8 35
T26 11 11 13 11 35
T27 12 6 8 4 7 25

6 T11 1 5 2 4 5 16
T12 2 17 17 18 24 76
T13 3 14 22 17 53
T14 4 18 12 16 21 67
T15 5 27 24 21 72
T21 6 28 17 45
T22 7 20 17 18 55
T23 8 26 17 21 64
T24 9 17 22 16 17 72
T25 10 16 18 31 65
T26 11 32 19 16 67
T27 12 17 25 31 30 103

Total 1117 1006 417 774 712 110 1874 6010

Table B.7.: Cluster-based meta-analysis: Distribution of patients in study and
treatment
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B. Clustering
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B. Clustering
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B. Clustering

Treatment group: A5mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.7204 -1.8475 0.1029 -2.3752 -1.3199
T23 8 0.2925 0.5146 -0.5036 0.0845 -0.9817 -0.0256

2 T12 1 0.1333 0.3529 0.3950 0.8345 -1.1076 1.8976
T21 6 0.2308 0.0769 -1.4410 0.7583 -2.8734 -0.0086
T22 7 0.1111 0.1765 0.1507 1.5298 -1.8837 2.1851

3 T12 2 0.4857 0.5667 -1.3471 0.2501 -2.1697 -0.5244
T13 3 0.3333 0.4878 -0.6937 0.2130 -1.4529 0.0654
T21 6 0.4944 0.5165 -1.3649 0.0890 -1.8555 -0.8743
T22 7 0.4634 0.3778 -1.3013 0.1926 -2.0232 -0.5794
T27 12 0.4490 0.4615 -1.1874 0.1599 -1.8451 -0.5298

4 T12 2 0.5313 0.7162 -1.7185 0.1292 -2.3098 -1.1272
T13 3 0.4583 0.6914 -1.3776 0.1138 -1.9325 -0.8227
T21 6 0.5538 0.5680 -1.6212 0.0637 -2.0364 -1.2059
T22 7 0.3279 0.5789 -0.6937 0.1464 -1.3230 -0.0644
T27 12 0.4286 0.5690 -1.1178 0.1432 -1.7403 -0.4953

5 T12 2 0.1429 0.0833 -0.7802 2.2576 -3.2516 1.6913
T21 6 0.1538 0.0833 -0.8672 1.6818 -3.0003 1.2660
T22 7 0.2000 0.2727 -0.2314 1.0833 -1.9435 1.4806

6 T12 2 0.5417 0.5294 -1.5568 0.4039 -2.6022 -0.5114
T13 3 0.4118 0.7143 -1.2326 0.5929 -2.4991 0.0339
T21 6 0.4118 0.6071 -1.0766 0.3926 -2.1072 -0.0460
T22 7 0.3889 0.5000 -0.9343 0.4338 -2.0176 0.1490
T23 8 0.0952 0.3077 0.7049 0.7332 -0.7035 2.1133
T27 12 0.4000 0.6471 -1.0713 0.3965 -2.1070 -0.0356

Table B.18.: Cluster-based meta-analysis: Odds Ratio, antidepressant A5mg
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Treatment group: A10mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.7750 -1.9917 0.1212 -2.5643 -1.4190
T23 3 0.2925 0.5048 -0.5029 0.0837 -0.9787 -0.0270

2 T11 1 0.1000 0.2000 0.3646 1.7361 -1.8026 2.5319
T12 2 0.1333 0.1154 -0.4103 0.9537 -2.0166 1.1961
T15 5 0.2105 0.2727 -0.2960 0.7750 -1.7440 1.1521
T25 10 0.4000 0.1111 -1.9095 1.9583 -4.2114 0.3923

3 T12 2 0.4857 0.4783 -1.3310 0.2886 -2.2147 -0.4474
T15 5 0.5455 0.4688 -1.5725 0.2477 -2.3912 -0.7539
T25 10 0.2593 0.3654 -0.4117 0.1794 -1.1083 0.2849
T26 11 0.2787 0.4038 -0.4730 0.1614 -1.1339 0.1879
T27 12 0.4490 0.5600 -1.1960 0.1637 -1.8614 -0.5306

4 T12 2 0.5313 0.7532 -1.8079 0.1326 -2.4069 -1.2089
T15 5 0.2844 0.5263 -0.4663 0.0803 -0.9323 -0.0003
T25 10 0.4074 0.3393 -1.1207 0.1564 -1.7711 -0.4702
T26 11 0.4400 0.5000 -1.1451 0.1864 -1.8553 -0.4349
T27 12 0.4286 0.5965 -1.1366 0.1458 -1.7646 -0.5085

5 T25 10 0.3750 0.3125 -1.0270 0.8242 -2.5203 0.4663
T26 11 0.3636 0.2727 -1.0581 0.8512 -2.5757 0.4594

6 T12 2 0.5417 0.7059 -1.7391 0.4512 -2.8440 -0.6343
T15 5 0.2381 0.4815 -0.2245 0.4109 -1.2788 0.8298
T23 8 0.0952 0.7647 0.5361 0.8796 -1.0065 2.0787
T25 10 0.1290 0.3750 0.4587 0.5537 -0.7652 1.6827
T26 11 0.3125 0.3438 -0.7006 0.4294 -1.7785 0.3773
T27 12 0.4000 0.6800 -1.1196 0.3227 -2.0540 -0.1852

Table B.19.: Cluster-based meta-analysis: Odds Ratio, antidepressant A10mg
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B. Clustering

Treatment group: A15mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.6667 -0.9933 0.0835 -1.4687 -0.5178

2 T14 4 0.0833 0.0714 -0.3153 2.1678 -2.7371 2.1065
T26 11 0.1667 0.2000 -0.2231 1.8250 -2.4452 1.9989

3 T24 9 0.4848 0.4107 -1.3581 0.1344 -1.9612 -0.7550
T26 11 0.2787 0.3443 -0.5374 0.1542 -1.1832 0.1085

4 T24 9 0.4565 0.6500 -1.3063 0.1975 -2.0373 -0.5752
T26 11 0.4400 0.5000 -1.1451 0.1988 -1.8786 -0.4117

5 T24 9 0.1000 0.2353 0.4820 1.4380 -1.4904 2.4545
T26 11 0.3636 0.2308 -1.1691 0.8262 -2.6642 0.3260

6 T14 4 0.2857 0.8333 -1.0578 0.6333 -2.3668 0.2512
T24 9 0.2941 0.5294 -0.5143 0.5194 -1.6998 0.6712
T26 11 0.3125 0.4211 -0.6231 0.5068 -1.7941 0.5479

Table B.20.: Cluster-based meta-analysis: Odds Ratio, antidepressant A15mg
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Treatment group: A20mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 1 0.3750 0.6991 -1.0481 0.0802 -1.5139 -0.5824

2 T14 4 0.0833 0.0909 -0.0953 2.1909 -2.5300 2.3394
T15 5 0.2105 0.1429 -0.7783 0.9000 -2.3388 0.7821
T25 10 0.4000 0.2500 -1.2685 1.5000 -3.2830 0.7460

3 T15 5 0.5455 0.5897 -1.6014 0.2282 -2.3871 -0.8156
T24 9 0.4848 0.5600 -1.3402 0.1418 -1.9596 -0.7207
T25 10 0.2593 0.4211 -0.3617 0.1684 -1.0367 0.3133
T27 12 0.4490 0.6364 -1.2588 0.1807 -1.9580 -0.5596

4 T15 5 0.2844 0.7217 -0.6826 0.0884 -1.1716 -0.1936
T24 9 0.4565 0.4390 -1.2269 0.1867 -1.9376 -0.5163
T25 10 0.4074 0.5319 -1.0157 0.1622 -1.6780 -0.3533
T27 12 0.4286 0.5263 -1.1014 0.1433 -1.7240 -0.4788

5 T24 9 0.1000 0.1875 0.3156 1.5214 -1.7132 2.3444
T25 10 0.3750 0.2727 -1.1069 0.9917 -2.7449 0.5311

6 T14 4 0.2857 0.9167 -1.6556 1.3242 -3.5485 0.2372
T15 5 0.2381 0.4583 -0.2301 0.4303 -1.3091 0.8489
T24 9 0.2941 0.4545 -0.5191 0.4667 -1.6428 0.6045
T25 10 0.1290 0.2222 0.1542 0.6085 -1.1289 1.4372
T27 12 0.4000 0.5161 -0.9819 0.2681 -1.8335 -0.1303

Table B.21.: Cluster-based meta-analysis: Odds Ratio, antidepressant A20mg
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B. Clustering

Treatment group: C1

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.8087 -1.3554 0.0943 -1.8605 -0.8503

2 T12 2 0.1333 0.1905 0.0023 0.8857 -1.5458 1.5503
T14 4 0.0833 0.2857 0.8087 1.7909 -1.3926 3.0099
T22 7 0.1111 0.2778 0.4731 1.4019 -1.4745 2.4206

3 T12 2 0.4857 0.6364 -1.4064 0.3108 -2.3234 -0.4894
T13 3 0.3333 0.7692 -1.0356 0.2598 -1.8740 -0.1971
T22 7 0.4634 0.7027 -1.4192 0.2275 -2.2037 -0.6348
T24 9 0.4848 0.6667 -1.4435 0.1357 -2.0493 -0.8376

4 T12 2 0.5313 0.6986 -1.6832 0.1278 -2.2713 -1.0952
T13 3 0.4583 0.8358 -1.8191 0.1647 -2.4866 -1.1515
T22 7 0.3279 0.5714 -0.6891 0.1473 -1.3204 -0.0578
T24 9 0.4565 0.5897 -1.2447 0.1936 -1.9684 -0.5210

5 T12 2 0.1429 0.1111 -0.5232 2.2917 -3.0133 1.9668
T14 4 0.2500 0.5000 -0.2877 1.6667 -2.4112 1.8358
T22 7 0.2000 0.1538 -0.6526 1.2159 -2.4663 1.1612
T24 9 0.1000 0.2857 0.6080 1.4611 -1.3803 2.5962

6 T12 2 0.5417 0.8333 -2.1411 0.5678 -3.3806 -0.9017
T13 3 0.4118 0.4091 -1.0632 0.4309 -2.1430 0.0165
T14 4 0.2857 0.6250 -0.5345 0.5000 -1.6976 0.6285
T22 7 0.3889 0.5882 -0.9659 0.4766 -2.1015 0.1696
T24 9 0.2941 0.4375 -0.5266 0.5373 -1.7323 0.6791

Table B.22.: Cluster-based meta-analysis: Odds Ratio, antidepressant C1

Treatment group: C2

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.8523 -2.3174 0.1398 -2.9323 -1.7024

2 T11 1 0.1000 0.1667 0.2231 1.7111 -1.9285 2.3748

Table B.23.: Cluster-based meta-analysis: Odds Ratio, antidepressant C2
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Treatment group: A5mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.7204 0.1595 0.0052 0.0412 0.2777
T23 8 0.2925 0.5146 0.2221 0.0044 0.1133 0.3309

2 T11 1 0.1000 0.0000 -0.1000 0.0090 -0.2560 0.0560
T12 2 0.1333 0.3529 0.2196 0.0211 -0.0195 0.4587
T13 3 0.0000 0.1000 0.1000 0.0090 -0.0560 0.2560
T21 6 0.2308 0.0769 -0.1538 0.0096 -0.3147 0.0070
T22 7 0.1111 0.1765 0.0654 0.0195 -0.1645 0.2952
T27 12 0.0000 0.1250 0.1250 0.0137 -0.0673 0.3173

3 T12 2 0.4857 0.5667 0.0810 0.0153 -0.1227 0.2846
T13 3 0.3333 0.4878 0.1545 0.0118 -0.0241 0.3331
T21 6 0.4944 0.5165 0.0221 0.0056 -0.1005 0.1447
T22 7 0.4634 0.3778 -0.0856 0.0113 -0.2604 0.0891
T27 12 0.4490 0.4615 0.0126 0.0098 -0.1505 0.1756

4 T12 2 0.5313 0.7162 0.1850 0.0066 0.0510 0.3190
T13 3 0.4583 0.6914 0.2330 0.0061 0.1047 0.3613
T21 6 0.5538 0.5680 0.0142 0.0039 -0.0881 0.1164
T22 7 0.3279 0.5789 0.2511 0.0079 0.1050 0.3972
T27 12 0.4286 0.5690 0.1404 0.0086 -0.0122 0.2929

5 T11 1 0.0000 0.5000 0.5000 0.1250 -0.0815 1.0815
T12 2 0.1429 0.0833 -0.0595 0.0239 -0.3136 0.1945
T13 3 0.0000 0.2500 0.2500 0.0469 -0.1061 0.6061
T21 6 0.1538 0.0833 -0.0705 0.0164 -0.2810 0.1400
T22 7 0.2000 0.2727 0.0727 0.0340 -0.2307 0.3762
T23 8 0.0000 0.3333 0.3333 0.0741 -0.1143 0.7810
T27 12 0.0000 0.1667 0.1667 0.0231 -0.0836 0.4169

6 T11 1 0.0000 0.8000 0.8000 0.0320 0.5058 1.0942
T12 2 0.5417 0.5294 -0.0123 0.0250 -0.2723 0.2478
T13 3 0.4118 0.7143 0.3025 0.0288 0.0233 0.5818
T21 6 0.4118 0.6071 0.1954 0.0228 -0.0528 0.4436
T22 7 0.3889 0.5000 0.1111 0.0257 -0.1526 0.3748
T23 8 0.0952 0.3077 0.2125 0.0123 0.0301 0.3948
T27 12 0.4000 0.6471 0.2471 0.0214 0.0062 0.4879

Table B.24.: Cluster-based meta-analysis: Risk Difference, antidepressant A5mg
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B. Clustering

Treatment group: A10mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.7750 0.2140 0.0052 0.0956 0.3324
T23 8 0.2925 0.5048 0.2123 0.0043 0.1040 0.3206

2 T11 1 0.1000 0.2000 0.1000 0.0250 -0.1601 0.3601
T12 2 0.1333 0.1154 -0.0179 0.0116 -0.1953 0.1594
T15 5 0.2105 0.2727 0.0622 0.0268 -0.2070 0.3314
T23 8 0.0000 0.1818 0.1818 0.0135 -0.0095 0.3731
T25 10 0.4000 0.1111 -0.2889 0.0590 -0.6883 0.1106
T26 11 0.1667 0.0000 -0.1667 0.0231 -0.4169 0.0836

3 T12 2 0.4857 0.4783 -0.0075 0.0180 -0.2280 0.2131
T15 5 0.5455 0.4688 -0.0767 0.0153 -0.2801 0.1267
T25 10 0.2593 0.3654 0.1061 0.0080 -0.0411 0.2534
T26 11 0.2787 0.4038 0.1252 0.0079 -0.0213 0.2716
T27 12 0.4490 0.5600 0.1110 0.0100 -0.0533 0.2753

4 T12 2 0.5313 0.7532 0.2220 0.0063 0.0914 0.3526
T15 5 0.2844 0.5263 0.2419 0.0041 0.1372 0.3466
T25 10 0.4074 0.3393 -0.0681 0.0085 -0.2195 0.0833
T26 11 0.4400 0.5000 0.0600 0.0115 -0.1164 0.2364
T27 12 0.4286 0.5965 0.1679 0.0086 0.0154 0.3204

5 T11 1 0.0000 0.2000 0.2000 0.0320 -0.0942 0.4942
T12 2 0.1429 0.0000 -0.1429 0.0175 -0.3604 0.0747
T15 5 0.0000 0.3333 0.3333 0.0741 -0.1143 0.7810
T25 10 0.3750 0.3125 -0.0625 0.0427 -0.4025 0.2775
T26 11 0.3636 0.2727 -0.0909 0.0391 -0.4160 0.2342
T27 12 0.0000 0.1250 0.1250 0.0137 -0.0673 0.3173

6 T11 1 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000
T12 2 0.5417 0.7059 0.1642 0.0226 -0.0828 0.4113
T15 5 0.2381 0.4815 0.2434 0.0179 0.0234 0.4634
T23 8 0.0952 0.7647 0.6695 0.0147 0.4701 0.8688
T25 10 0.1290 0.3750 0.2460 0.0183 0.0236 0.4683
T26 11 0.3125 0.3438 0.0313 0.0205 -0.2041 0.2666
T27 12 0.4000 0.6800 0.2800 0.0167 0.0674 0.4926

Table B.25.: Cluster-based meta-analysis: Risk Difference, antidepressant A10mg
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Treatment group: A15mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.6667 0.2917 0.0043 0.1833 0.4000

2 T14 4 0.0833 0.0714 -0.0119 0.0111 -0.1852 0.1614
T24 9 0.0000 0.2222 0.2222 0.0192 -0.0057 0.4502
T26 11 0.1667 0.2000 0.0333 0.0391 -0.2921 0.3588

3 T24 9 0.4848 0.4107 -0.0741 0.0081 -0.2222 0.0740
T26 11 0.2787 0.3443 0.0656 0.0070 -0.0720 0.2032

4 T24 9 0.4565 0.6500 0.1935 0.0111 0.0203 0.3666
T26 11 0.4400 0.5000 0.0600 0.0123 -0.1223 0.2423

5 T14 4 0.2500 0.0000 -0.2500 0.0234 -0.5018 0.0018
T24 9 0.1000 0.2353 0.1353 0.0196 -0.0949 0.3655
T26 11 0.3636 0.2308 -0.1329 0.0347 -0.4392 0.1735

6 T14 4 0.2857 0.8333 0.5476 0.0174 0.3304 0.7648
T24 9 0.2941 0.5294 0.2353 0.0269 -0.0343 0.5049
T26 11 0.3125 0.4211 0.1086 0.0263 -0.1580 0.3751

Table B.26.: Cluster-based meta-analysis: Risk Difference, antidepressant A15mg
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B. Clustering

Treatment group: A20mg

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.6991 0.3241 0.0040 0.2207 0.4275

2 T14 4 0.0833 0.0909 0.0076 0.0139 -0.1862 0.2014
T15 5 0.2105 0.1429 -0.0677 0.0175 -0.2852 0.1499
T24 9 0.0000 0.3636 0.3636 0.0210 0.1251 0.6022
T25 10 0.4000 0.2500 -0.1500 0.0714 -0.5896 0.2896
T27 12 0.0000 0.0909 0.0909 0.0075 -0.0517 0.2335

3 T15 5 0.5455 0.5897 0.0443 0.0137 -0.1484 0.2369
T24 9 0.4848 0.5600 0.0752 0.0087 -0.0784 0.2287
T25 10 0.2593 0.4211 0.1618 0.0078 0.0162 0.3074
T27 12 0.4490 0.6364 0.1874 0.0103 0.0204 0.3544

4 T15 5 0.2844 0.7217 0.4373 0.0036 0.3385 0.5362
T24 9 0.4565 0.4390 -0.0175 0.0114 -0.1931 0.1581
T25 10 0.4074 0.5319 0.1245 0.0098 -0.0381 0.2871
T26 11 0.4400 0.0000 0.0000 0.0000 0.0000 0.0000
T27 12 0.4286 0.5263 0.0977 0.0087 -0.0561 0.2516

5 T14 4 0.2500 0.0000 -0.2500 0.0234 -0.5018 0.0018
T15 5 0.0000 0.1250 0.1250 0.0137 -0.0673 0.3173
T24 9 0.1000 0.1875 0.0875 0.0185 -0.1364 0.3114
T25 10 0.3750 0.2727 -0.1023 0.0473 -0.4601 0.2556

6 T14 4 0.2857 0.9167 0.6310 0.0161 0.4223 0.8396
T15 5 0.2381 0.4583 0.2202 0.0190 -0.0064 0.4469
T24 9 0.2941 0.4545 0.1604 0.0235 -0.0916 0.4125
T25 10 0.1290 0.2222 0.0932 0.0132 -0.0960 0.2824
T27 12 0.4000 0.5161 0.1161 0.0161 -0.0923 0.3246

Table B.27.: Cluster-based meta-analysis: Risk Difference, antidepressant A20mg
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Treatment group: C1

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T14 4 0.3750 0.8087 0.4337 0.0034 0.3373 0.5301

2 T12 2 0.1333 0.1905 0.0571 0.0150 -0.1446 0.2589
T13 3 0.0000 0.2500 0.2500 0.0234 -0.0018 0.5018
T14 4 0.0833 0.2857 0.2024 0.0355 -0.1076 0.5124
T22 7 0.1111 0.2778 0.1667 0.0221 -0.0780 0.4113
T24 9 0.0000 0.4615 0.4615 0.0191 0.2341 0.6890

3 T12 2 0.4857 0.6364 0.1506 0.0177 -0.0679 0.3692
T13 3 0.3333 0.7692 0.4359 0.0102 0.2694 0.6024
T22 7 0.4634 0.7027 0.2393 0.0117 0.0613 0.4173
T24 9 0.4848 0.6667 0.1818 0.0075 0.0395 0.3242

4 T12 2 0.5313 0.6986 0.1674 0.0068 0.0320 0.3028
T13 3 0.4583 0.8358 0.3775 0.0055 0.2555 0.4994
T22 7 0.3279 0.5714 0.2436 0.0080 0.0966 0.3905
T24 9 0.4565 0.5897 0.1332 0.0116 -0.0439 0.3104

5 T12 2 0.1429 0.1111 -0.0317 0.0285 -0.3093 0.2458
T13 3 0.0000 0.2500 0.2500 0.0234 -0.0018 0.5018
T14 4 0.2500 0.5000 0.2500 0.0859 -0.2322 0.7322
T22 7 0.2000 0.1538 -0.0462 0.0260 -0.3114 0.2191
T24 9 0.1000 0.2857 0.1857 0.0236 -0.0669 0.4383

6 T12 2 0.5417 0.8333 0.2917 0.0181 0.0706 0.5127
T13 3 0.4118 0.4091 -0.0027 0.0252 -0.2640 0.2586
T14 4 0.2857 0.6250 0.3393 0.0244 0.0825 0.5960
T22 7 0.3889 0.5882 0.1993 0.0275 -0.0732 0.4719
T24 9 0.2941 0.4375 0.1434 0.0276 -0.1298 0.4166

Table B.28.: Cluster-based meta-analysis: Risk Difference, antidepressant C1

Treatment group: C2

i Study j p̃iCj p̃iTj θ̃ij (σ̃ij)
2 Iij

1 T11 1 0.5610 0.8523 0.2913 0.0044 0.1818 0.4008

2 T11 1 0.1000 0.1667 0.0667 0.0206 -0.1693 0.3026

6 T11 1 0.0000 0.7500 0.7500 0.0469 0.3939 1.1061

Table B.29.: Cluster-based meta-analysis: Risk Difference, antidepressant C2
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B. Clustering

Cluster-based fixed-effects model

OR i θ̃i (σ̃i)2 Ii qi pvi l2

A5mg 1 -1.1094 0.0464 -1.4637 -0.7552 9.6393 0.0019 52.47%
2 -0.4190 0.3154 -1.3427 0.5048 2.3836 0.3037 49.45%
3 -1.2163 0.0319 -1.5100 -0.9227 1.6413 0.8013 0.00%
4 -1.3770 0.0217 -1.6195 -1.1346 5.4970 0.2400 46.30%
5 -0.5482 0.5100 -1.7229 0.6265 0.1769 0.9153 0.00%
6 -0.9743 0.0775 -1.4323 -0.5164 4.8525 0.4341 0.00%

A10mg 1 -1.1110 0.0495 -1.4770 -0.7450 10.8178 0.0010 8.48%
2 -0.4604 0.2919 -1.3491 0.4283 1.5019 0.6818 0.00%
3 -0.9256 0.0394 -1.2521 -0.5991 5.4471 0.2444 0.00%
4 -1.0500 0.0259 -1.3147 -0.7853 8.7072 0.0688 46.70%
5 -1.0423 0.4187 -2.1067 0.0221 0.0006 0.9808 0.00%
6 -0.6193 0.0768 -1.0752 -0.1635 7.5666 0.1818 38.63%

A15mg 1 -0.9933 0.0835 -1.4687 -0.5178 0.0000
2 -0.2653 0.9908 -1.9026 1.3721 0.0021 0.9632 0.00%
3 -0.9758 0.0718 -1.4166 -0.5350 2.3338 0.1266 18.68%
4 -1.2260 0.0991 -1.7437 -0.7082 0.0655 0.7980 0.00%
5 -0.5666 0.5247 -1.7581 0.6249 1.2040 0.2725 12.26%
6 -0.7102 0.1826 -1.4130 -0.0073 0.2796 0.8695 0.00%

A20mg 1 -1.0481 0.0802 -1.5139 -0.5824 0.0000
2 -0.7850 0.4476 -1.8855 0.3154 0.3730 0.8299 0.00%
3 -1.1168 0.0437 -1.4605 -0.7731 4.8780 0.1810 0.00%
4 -0.9473 0.0335 -1.2485 -0.6461 1.4065 0.7040 64.92%
5 -0.5456 0.6003 -1.8200 0.7289 0.8052 0.3695 0.00%
6 -0.5952 0.0944 -1.1005 -0.0899 2.6519 0.6177 3.91%

C1 1 -1.3554 0.0943 -1.8605 -0.8503 0.0000
2 0.3297 0.4165 -0.7319 1.3913 0.2638 0.8764 0.00%
3 -1.3481 0.0531 -1.7271 -0.9691 0.4762 0.9241 20.03%
4 -1.3664 0.0387 -1.6899 -1.0429 5.2204 0.1564 20.27%
5 -0.2051 0.3932 -1.2365 0.8264 0.6654 0.8813 0.00%
6 -1.0272 0.0996 -1.5463 -0.5081 3.1480 0.5334 0.00%

C2 1 -2.3174 0.1398 -2.9323 -1.7024 0.0000
2 0.2231 1.7111 -1.9285 2.3748 0.0000

Table B.30.: Cluster-based meta-analysis: Odds Ratio estimated by the cluster-
based fixed-effects model
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Cluster-based fixed-effects model

RD i θ̃i (σ̃i)2 Ii qi pvi l2

A5mg 1 0.1934 0.0024 0.1133 0.2735 0.4112 0.5213 52.47%
2 0.0136 0.0020 -0.0601 0.0873 8.2494 0.0162 49.45%
3 0.0308 0.0019 -0.0413 0.1029 2.7097 0.6075 0.00%
4 0.1444 0.0012 0.0869 0.2020 7.3741 0.1174 46.30%
5 0.0750 0.0046 -0.0363 0.1863 5.4136 0.0667 0.00%
6 0.2422 0.0032 0.1498 0.3346 13.2773 0.0209 0.00%

A10mg 1 0.2131 0.0024 0.1332 0.2930 0.0003 0.9860 8.48%
2 0.0206 0.0034 -0.0748 0.1160 5.5056 0.1383 0.00%
3 0.0736 0.0021 -0.0021 0.1493 2.4500 0.6536 0.00%
4 0.1536 0.0014 0.0926 0.2146 9.2524 0.0551 46.70%
5 0.0354 0.0045 -0.0745 0.1453 5.0814 0.0242 0.00%
6 0.2961 0.0030 0.2058 0.3864 13.9964 0.0156 38.63%

A15mg 1 0.2917 0.0043 0.1833 0.4000 0.0000
2 0.0677 0.0060 -0.0593 0.1947 1.8442 0.1745 0.00%
3 0.0009 0.0038 -0.0999 0.1017 1.2924 0.2556 18.68%
4 0.1302 0.0058 0.0046 0.2557 0.7626 0.3825 0.00%
5 -0.0619 0.0082 -0.2105 0.0867 3.6403 0.0564 12.26%
6 0.3339 0.0075 0.1911 0.4768 4.9158 0.0856 0.00%

A20mg 1 0.3241 0.0040 0.2207 0.4275 0.0000
2 0.0740 0.0031 -0.0174 0.1654 6.1933 0.0452 0.00%
3 0.1229 0.0024 0.0419 0.2039 1.3087 0.7271 0.00%
4 0.2468 0.0017 0.1785 0.3150 20.2449 0.0002 64.92%
5 0.0054 0.0052 -0.1136 0.1245 4.4382 0.0351 0.00%
6 0.2436 0.0034 0.1479 0.3393 12.3744 0.0148 3.91%

C1 1 0.4337 0.0034 0.3373 0.5301 0.0000
2 0.2208 0.0043 0.1134 0.3281 4.9901 0.0825 0.00%
3 0.2567 0.0027 0.1715 0.3418 4.5447 0.2083 20.03%
4 0.2502 0.0018 0.1795 0.3209 5.1457 0.1614 20.27%
5 0.1090 0.0059 -0.0170 0.2351 2.9505 0.3993 0.00%
6 0.2033 0.0048 0.0894 0.3171 3.0031 0.5573 0.00%

C2 1 0.2913 0.0044 0.1818 0.4008 0.0000
2 0.0667 0.0206 -0.1693 0.3026 0.0000

Table B.31.: Cluster-based meta-analysis: Risk Difference estimated by the
cluster-based fixed-effects model
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B. Clustering

Cluster-based random-effects model

OR i θ̃i (σ̃i)2 Ii

A5mg 1 -1.1673 0.3743 -2.1736 -0.1610
2 -0.4190 0.3154 -1.3427 0.5048
3 -1.2163 0.0319 -1.5100 -0.9227
4 -1.3757 0.0221 -1.6203 -1.1310
5 -0.5482 0.5100 -1.7229 0.6265
6 -0.9743 0.0775 -1.4323 -0.5164

A10mg 1 -1.2347 0.5569 -2.4622 -0.0073
2 -0.4604 0.2919 -1.3491 0.4283
3 -0.9272 0.0405 -1.2581 -0.5962
4 -1.0688 0.0312 -1.3593 -0.7783
5 -1.0423 0.4187 -2.1067 0.0221
6 -0.1292 0.0170 -0.3435 0.0851

A15mg 1 -0.9933 0.0835 -1.4687 -0.5178
2 -0.2653 0.9908 -1.9026 1.3721
3 -0.9700 0.0904 -1.4646 -0.4755
4 -1.2260 0.0991 -1.7437 -0.7082
5 -0.5666 0.5247 -1.7581 0.6249
6 -0.7102 0.1826 -1.4130 -0.0073

A20mg 1 -1.0481 0.0802 -1.5139 -0.5824
2 -0.7850 0.4476 -1.8855 0.3154
3 -1.1178 0.0468 -1.4735 -0.7620
4 -0.9473 0.0335 -1.2485 -0.6461
5 -0.5456 0.6003 -1.8200 0.7289
6 -0.5952 0.0944 -1.1005 -0.0899

C1 1 -1.3554 0.0943 -1.8605 -0.8503
2 0.3297 0.4165 -0.7319 1.3913
3 -1.3481 0.0531 -1.7271 -0.9691
4 -1.3657 0.0421 -1.7031 -1.0282
5 -0.2051 0.3932 -1.2365 0.8264
6 -1.0272 0.0996 -1.5463 -0.5081

C2 1 -2.3174 0.1398 -2.9323 -1.7024
2 0.2231 1.7111 -1.9285 2.3748

Table B.32.: Cluster-based meta-analysis: Odds Ratio estimated by the cluster-
based random-effects model
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Cluster-based random-effects model

RD i θ̃i (σ̃i)2 Ii

A5mg 1 0.1934 0.0024 0.1133 0.2735
2 0.0002 0.0000 -0.0088 0.0092
3 0.0308 0.0019 -0.0413 0.1029
4 0.1446 0.0012 0.0869 0.2023
5 0.0750 0.0046 -0.0363 0.1863
6 0.2428 0.0033 0.1487 0.3369

A10mg 1 0.2131 0.0024 0.1332 0.2930
2 0.0206 0.0034 -0.0748 0.1160
3 0.0736 0.0021 -0.0021 0.1493
4 0.1532 0.0014 0.0917 0.2147
5 0.0354 0.0045 -0.0745 0.1453
6 0.8514 0.0007 0.8090 0.8938

A15mg 1 0.2917 0.0043 0.1833 0.4000
2 0.0677 0.0060 -0.0593 0.1947
3 0.0009 0.0038 -0.1000 0.1017
4 0.1302 0.0058 0.0046 0.2557
5 -0.0623 0.0083 -0.2122 0.0876
6 0.3320 0.0079 0.1855 0.4785

A20mg 1 0.3241 0.0040 0.2207 0.4275
2 0.0740 0.0031 -0.0178 0.1657
3 0.1229 0.0024 0.0419 0.2039
4 0.2243 0.0023 0.1456 0.3031
5 0.0000 0.0000 -0.0053 0.0053
6 0.2439 0.0037 0.1445 0.3433

C1 1 0.4337 0.0034 0.3373 0.5301
2 0.2208 0.0043 0.1134 0.3282
3 0.2567 0.0027 0.1714 0.3420
4 0.2502 0.0019 0.1793 0.3210
5 0.1090 0.0059 -0.0170 0.2351
6 0.2033 0.0048 0.0894 0.3171

C2 1 0.2913 0.0044 0.1818 0.4008
2 0.0667 0.0206 -0.1693 0.3026

Table B.33.: Cluster-based meta-analysis: Risk Difference estimated by the
cluster-based random-effects model
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Figure B.1.: Cluster-based meta-analysis: Confidence intervals of Risk Ratio es-
timated by the fixed-effects model and the cluster-based fixed-effects
model
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Drug i θ̃i(drug,C1) (σ̃i)2(drug,C1)

A5mg 1 -0.4238 0.0265
2 -0.6504 0.5278
3 -0.3583 0.0187
4 -0.1800 0.0112
5 -0.4726 0.5806
6 -0.0548 0.0409

A10mg 1 -0.3806 0.0263
2 -0.7555 0.4909
3 -0.2715 0.0225
4 -0.1099 0.0134
5 -0.6065 0.4176
6 0.1034 0.0427

A15mg 1 -0.1931 0.0369
2 -0.6786 1.0399
3 -0.4510 0.0365
4 -0.1681 0.0297
5 -0.4687 0.5327
6 0.3095 0.0781

A20mg 1 -0.1456 0.0356
2 -1.0758 0.5764
3 -0.1892 0.0206
4 0.0173 0.0166
5 -0.4306 0.5572
6 0.1732 0.0517

Table B.34.: Cluster-based meta-analysis fixed-effects model: Indirect compari-
son of the Risk Ratios of medication A5mg, A10mg, A15mg and
A20mg with C1

Drug θ̃(drug,C1) σ̃2(drug,C1)

A5mg -0.2396 0.0052
A10mg -0.1549 0.0058
A15mg -0.1960 0.0099
A20mg -0.0656 0.0067

Table B.35.: Meta-analysis fixed-effects model: Indirect comparison of the treat-
ment effects of medication A5mg, A10mg, A15mg and A20mg with
C1
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Figure B.2.: Confidence intervals of Odds Ratio estimated by the fixed-effects
model and the cluster-based fixed-effects model
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Figure B.3.: Confidence intervals of Risk Difference estimated by the fixed-effects
model and the cluster-based fixed-effects model
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Figure B.4.: Confidence intervals of Odds Ratio estimated by the random-effects
model and the cluster-based random-effects model
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Figure B.5.: Confidence intervals of Risk Difference estimated by the random-
effects model and the cluster-based random-effects model
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