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Abstract

Turbulent inertial particle pair diffusion is investistigated in the limit of Stoke’s drag using Kinematic Sim-
ulations. For large Stokes number, St >> 1, the inertia dominates and we observe ballistic motion for inertial
pair separation. For small Stokes number, St < 1, the turbulent energy dominates the diffusion asymptotes
to the fluid pair diffusion.

1 Introduction

Understanding the transport processes governing inertial particle motion is important because there are many
aplications in industry and natural contexts, from dust storms and pollens, to bubbles, and hail, Calzavarini
et al. (2008); Falkovich and Pumir (2007); Shaw (2003); Sofiev and Bermann (2013); Toschi and Boden-
schatz (2009). The motion of groups of particles, such as dust storms, can often be related to the relative
motion of two particles, or pair diffusion.

The transport equations that describe the motion of individual inertial particles are not fully developed
yet, although simplified descriptions in specific contexts have been proposed by Maxey and Riley (1983).
The suspended particles have finite size, and density different from that of the carrier fluid, and as a con-
sequence the interactions between the particle and the underlying flow structures plays an important role;
heavy particles are expelled out of vortical structures, while light particles tend to concentrate in their cores,
leading to preferential concentration and the formation of strong inhomogeneities in the particle spatial
distribution Qureshi et al. (2007).

Richardson (1926) proposed a theory of fluid partice pair diffusion based upon the idea of a scale depen-
dent pair coefficient, K;(I), where [ is the distance between two particles, and on the locality hypothesis in
which only energy in the turbulent scales which are of a similar size to the pair separation [ itself is effective

in further increasing the pair separation. This yields the 4/3-scaling for the diffusion coefficient, K ~ [*/3.

Obukhov Obukhov (1941) showed that this is equivalent to 67 = (I*) ~ > known as the *— regime. () is
the ensemble average. In the ensuing discussions, we follow the usual convention of replacing the scaling
on [ with its rms value, i.e. [ ~ ©;.

However, a new non-local theory of turbulent fluid particle pair diffusion has been proposed in Malik
(2018a,b) in which both local and non-local processes govern pair diffusion in high Reynolds number tur-

bulence. For Kolomogrov turbulence, E (k) ~ k>3, in the limit of very large inertial subrange the theory

predicts the scalings, Ky ~ 611'53-

A key question is, do the ideas of locality and non-locality extend to inertia particle pair diffusion ?
Inertial particle diffusion has seen growing interest recently, Bec et al. (2010b); Chang et al. (2015); Bec
et al. (2010b); Chang et al. (2015); Bragg et al. (2016); Bragg (2017); Bec et al. (2010a); Gustavsson and
Mehlig (2011); Gustavsson et al. (2014); D and R (2014). However, none of these works specifically address
the the problem of non-local turbulent transport processes.

Here, we investigate the impact of local and non-local turbulent transport processes on inertial particle
pair diffusion inside the inertial subrange. To address this problem, we use Kinematic Simulations (KS)
which can generate very large inertial subranges.
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Figure 1: Log-log of the inertial pair diffusion coefficient K, /nvy against the rms pair separation 6;/1 from

KS simulations with energy spectrum E (k) ~ k=>/3, for inertial subranges of size R; = 107, 10°, and 10*.
Here, the particle Stokes number is St = 0.25.

2 Inertial particles

We investigate numerically turbulent pair diffusion of inertial particles in high Reynolds number turbulence
in the limit of large inertial subrange, Ry = kyn/k; — oo, and in the Stokes drag limit. The particle trajectory

is then obtained by integrating the coupled tansport equations for the particle velocity V¥(X,¢) in a fluid flow
i(X,1) at the location and time (X,1),

dx

7 V(1) (1
dv 1 Y
FAREERUOR ) @

St = — 3)

where #, ~ £71/31?/3 is the Kolmogorov time scale of the turbulence. € is the rate of energy dissipation per
unit mass, and 1 is the Kolmogorov length scale. A local Stoke’s number depending on the local separation
can also be defined,
T
Si(l) = 2 4)
I

where #; ~ €71/312/3 is the turbulence time scale at lengths scale ~ 1/1.

We consider an effective point source release of inertial particles and assume that inertial pair diffusion
can also be described by a diffusion equation with a scale dependent diffusion coefficient. In the limit to
Stoke’s drag, the diffusion coefficient will then be a function of two variables, K, = K, ([, St).

For small separations, the particle inertia is expected to dominate over the small scale turbulent energy,
thus we should observe ballistic motion, and K, should be linear in the separation,

K,(1,St) ~ o, o© <o} (5)
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Figure 2: Same as Figure 1, except here the particle Stokes number is St = 0.5.

where o7 is the scale where the inertia and turbulent energies are balanced, which is expected to occur when
the timescales are equal, i.e. when St(G,*) =1, so that lo; = Tp, Bec et al. (2010Db).

At very large times, the turbulent energy is expected to be dominant, and we expect the inertia pair
diffusion to asymptote towards the fluid pair diffusion provided that the inertial subrange is big enough for
the pair separation to still remain within the subrange. Thus,

K,(I,St) —Ki(l)~ o],  o;>0;. (6)

3 Kinematic Simulations

In KS one specifies the second order Eulerian structure function through the power spectrum, like E (k) ~

K33k <k< ky, Kraichnan (1970); Fung et al. (1992); Malik (2017). KS can generate inertial subranges
sufficiently large to test pair diffusion scaling laws over extended inertial subranges. KS generates turbulent-
like non-Markovian particle trajectories by releasing particles in flow fields which are prescribed as sums
of energy-weighted random Fourier modes. By construction, the velocity fields are incompressible and
the energy is distributed among the different modes by a prescribed Eulerian energy spectrum, E (k). The
essential idea behind KS is that the flow structures in it - eddying, straining, and streaming zones - are
similar to those observed in turbulent flows, although not precisely the same, which is sufficient to generate
turbulent-like particle trajectories.

KS has been used to examine single particle diffusion Turfus and Hunt (1987); Murray et al. (2016), and
pair diffusion Fung et al. (1992), Murray et al. (1996), Fung and Vassilicos (1998), Malik and Vassilicos
(1999), Nicolleau and Nowakowski (2011). KS has also been used in studies of turbulent diffusion of
inertial particles Meneguz and Reeks (2011), Farhan et al. (2015). Meneguz & Reeks Meneguz and Reeks
(2011) found that the statistics of the inertial particle segregation in KS generated flow fields for statistically
homogeneous isotropic flow fields are similar to those generated by DNS.

KS pair diffusion statistics have been found to produce close agreement with DNS at low Reynolds
numbers, incuding the flatness factor of pair separation Malik and Vassilicos (1999).

An individual Eulerian turbulent flow field realization in KS is generated as a truncated Fourier series,

Ny
ux,t) = Y ((Ayxk,)cos(k, x+m,t)+ (B, x k,)sin(k, - X+ 0,t)) (7)
n=1

where N is the number of representative wavenumbers, typically hundreds for very long spectral ranges,
R > 1. k,, is a random unit vector; K, = k,k, and k, = |k,|. The coefficients A, and B, are chosen such
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Figure 3: Same as Figure 1, except here the particle Stokes number is St = 1.0.

that their orientations are randomly distributed in space and uncorrelated with any other Fourier coefficient
or wavenumber, and their amplitudes are determined by (A2) = (B2) o E(k,)dk,, where E (k) is the energy
spectrum in some wavenumber range k; < k < ky. The angled brackets (-) denotes the ensemble average
over space and over many random flow fields. The associated frequencies are proportional to the eddy-

turnover frequencies, ®, = A\/kJE(k,). There is some freedom in the choice of A, so long as 0 < A <
1. The construction in equation (7) ensures that the Fourier coefficients are normal to their wavevector
which automatically ensures incompressibility of each flow realization, V - u = 0. The flow field ensemble
generated in this manner is statistically homogeneous, isotropic, and stationary.

The energy spectrum E (k) can be chosen freely within a finite range of scales, even a piecewise contin-
uous spectrum, or an isolated single mode are possible. To incorporate the effect of large scale sweeping of
the inertial scales by the energy containing scales, the simulations are carried out in the sweeping frame of
reference by setting E (k) = 0 in the largest scales, for k < k; Malik (2017). We choose the energy spectrum
in the inertial subrange,

E(k) =GPk B,k <k <ky (8)

where C; is a constant. The largest represented scale of turbulence is 27t/k; and smallest is the Kolmogorov
micro-scale 1 = 27t/ky. A particle trajectory, X(¢), is obtained by solving equations (1) and (2) in time. Pairs
of trajectories are harvested from a large ensemble of flow realizations and pair statistics are then obtained
from it for analysis.

4 Simulation Results

KS was run with the spectrum of E (k) ~ k=33, for an ensmeble of about 30,000 inertial particle pairs, and
the results are presented below for several inertial subranges and for different Stoke’s numbers.

Figure 1 shows the pair diffusion coefficient, K, /vy, against the rms separation, 6;/m, when the particle
Stokes number is St = 0.25, for different sizes of the inertial subrange as indicated. A line of slope 1 is shown
for comparison with ballistic motion, and a line of slope 1.53 is shown for comparison with the fluid particle
asymptotic limit.

Figures 2 to 4 are similar except for the Stokes numbers of, St = 0.5, 1.0, and 5.0 repectively.

The results show initial ballistic regimes, equation (5) that penetrate further and further in to the inertial
subrange as Ry increases.

At long times, the inertial particle pair diffusion appears to be asymptoting towards the fluid particle
non-local regime K, — K; ~ 6} as Ry — oo, Malik (2017, 2018a). However, it will require bigger Ry to
fully confirm.

There also exists a transition regime, over an extended range of scales, between these two limiting cases.
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Figure 4: Same as Figure 1, except here the particle Stokes number is St = 5.0.

5 Discussion

A theory of inertial particle pair diffusion has been developed which extends the concept of local and non-
local diffusional processes to inertial particles, Malik (2017, 2018a).

For Kolmogorov energy spectrum, E (k) ~ k~>/3, Kinematic Simulations has been used to investigate
the scaling laws for inertial particle pair diffusion in the limit of Stokes drag law. For very large inertial
subranges, the long time regime approches the fluid particle non-local scaling, which vindicates our inital
assumption of extending the concept of local and non-local diffusional processes to inertial particle pair
diffusion.

The results indicate that inertial pair diffusion coefficient is a two parameter function K (Sz,7) in general.
For short times, the pair diffusion displays ballistic motion where the paticle inertia is dominant over the
trubulence energy at that pair separation scale.

In the future we will complete the paramteric study for larger inertial subranges, and for more generalised
inverse power law energy spectra, and over s wide range of Stokes numbers.
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