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Abstract

Particle image velocimetry is frequently used to obtain time-averaged solutions for quasi-stationary flows.
Although temporal variance should be small, fluctuations are unavoidable and the magnitude of such fluctu-
ations will naturally vary over the domain. Larger fluctuations in displacement will necessitate more images
to be analysed in order to achieve desired levels of confidence in the solution. Spatial displacement gradients
will also vary over the Field of View (FOV) and, due to cross-correlation modulation effects, influence the
perceived temporal fluctuations, exacerbating the need for more image pairs in these regions. Conventional
image processing routines analyse images in their entirety, implying that further analysis of image pairs may
be solely driven by small, isolated, non-converged regions of the FOV. This represents a potentially signif-
icant inefficiency and is particularly undesirable if time restrictions are imposed, for example, processing
images alongside wind tunnel utilisation, or when processing higher-order statistics, wherein convergence
may require N ~ 20,000 image pairs in some regions. Naive approaches, i.e. imposing a sampling mask
immediately surrounding non-converged regions, truncate information and introduce numerical artifacts to
the solution. This paper investigates the distance at which a sampling mask may be imposed around some
region of interest, such that the solution is unaffected within the region of interest itself. Via experimental
analysis, it is shown that a 44% reduction in the required number of correlations for an ensemble solution
can be achieved, compared to conventional image processing routines.

1 Introduction

The pixel count of PIV cameras continues to rise, enlarging the attainable spatial resolution and/or Field
of View (FOV). While PIV allows for instantaneous displacement measurements over a given FOV, it is
also extensively used to acquire time-averaged solutions of a wide variety of flows including for example,
rotorcraft Jenkins et al. (2009), formula 1 cars Michaux et al. (2018), or cyclists Jux et al. (2018). To
achieve these temporally-averaged solutions, two approaches are commonly adopted. The first is to analyse
each pair of images to obtain N displacement fields, where N is the number of image pairs, and subse-
quently ensemble-average the displacement fields to obtain the mean solution. The alternative is to take the
ensemble-averaged correlation map at each vector location to retrieve a single displacement field equivalent
to the time-averaged solution Meinhart et al. (2002). This approach is frequently used in micro-PIV or when
experimental conditions, such as seeding, are poor Wereley et al. (2012). While both have their advantages
and disadvantages, a primary benefit to the former is the ability to easily obtain statistical quantities about
the flow velocities, such as the temporal standard deviation, skewness, or kurtosis.

Such statistics may be of interest to the experimentalist but must be reliable, i.e. converged. Satisfactory
convergence of the mean displacement field may be obtained using relatively few, N < 100, image pairs for
relatively steady or straightforward flows, although may be several times larger for more unsteady flows.
Conversely, Ullum et al. (1998) note that reliable convergence of higher-order statistics may require a dra-
matic increase in the required number of image pairs towards N = 20,000, posing significant demands on
computational resources. While the computational cost to obtain a single mean displacement field may not
be significant, even simple parameter sweeps can rapidly increase the number of mean displacements to be
analysed. Furthermore, access to wind tunnels (WT) is often restricted due to their running costs, avail-
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Figure 1: Evolution of the confidence interval of the mean displacement for an axisymmetric turbulent jet,
provided for the second PIV challenge Stanislas et al. (2005), using (a) 20 image pairs, (b) 50 image pairs,
(c) 100 image pairs. The CI is capped at 0.1 for the purpose of illustration.

ability, or regulatory bodies, as is the case in Formula 1! Federation Internationale de I’ Automobile (2019).
As such, the experimentalist must often decide which parameter configurations are likely to be the most
informative in advance, in order to maximise wind tunnel (WT) utilisation. Reductions in computational
requirements to obtain mean displacement fields may conversely enable the user to adjust model-parameter
configurations on the fly, based upon preliminary results obtained concurrently with WT run-time, thus
offering a considerable benefit towards maximising efficiency of WT usage.

When calculating ensemble averaged solutions, the underlying displacement field (i.e. flow) is required
to be quasi-stationary, meaning that the flow velocity should be reasonably constant, with small temporal
fluctiations. The magnitude of such temporal fluctuations will naturally vary over the domain due to the un-
derlying flow behaviour. Furthermore, flow features captured within the field of view typically vary spatially,
presenting a range of displacement gradients. Strong spatial gradients in displacements are well-known to
be detrimental to the accuracy of the correlation outcome, thereby introducing increased uncertainty in the
form of artificial displacement fluctuations Westerweel (2008). In addition, it has been previously demon-
strated that cross-correlation response is non-linear and is biased towards regions of curvature Theunissen
and Edwards (2018). While this produces a constant bias to the mean, it also influences the measured tempo-
ral variance, as the amount of bias on a per-image basis will vary depending upon the realisation of particle
images within the correlation window. Due to these factors, the number of image pairs required for local
statistical convergence will vary over the field of view. To exemplify, the captured FOV may contain re-
gions of little temporal variance (e.g. laminar flow), requiring only few velocity samples to reach statistical
convergence in the temporal average, whereas more turbulent regions (actual or artificial) will demand a
large number of realisations. This implies that in some image regions statistical convergence might have
been reached while additional data analyses (and subsequently computational effort) are driven by isolated,
non-converged, image portions. Spatially adaptive sampling strategies may ameliorate the situation by re-
ducing locally the number of correlation windows Theunissen et al. (2007); Edwards and Theunissen (2019),
although such approaches do not consider the local convergence and will continue to place correlation win-
dows, albeit fewer of them, in regions which may already be satisfactorily converged. This paper assesses
whether it is possible to automatically determine such regions of local convergence, to some user-defined
level, as well as whether these regions may be excluded from subsequent analyses, without influencing the
solution in the non-converged regions, thereby reducing computational cost without sacrificing accuracy
beyond some tolerable level.

The level of convergence in a particular statistic can be assessed by considering its Confidence Inter-
val (CI). Doing so requires calculating the standard deviation of the statistic in question, which can be
obtained formally, using standard expressions of variance, or may be approximated using techniques such

'Formula 1 teams are restricted to a certain combined total hours WT run-time or equivalent CPU time for CFD. It is thus the
prerogative of the team to decide how to split their allocated hours between experimental and numerical.



as bootstrapping Hill (1986); Theunissen et al. (2008). The CI is then obtained by scaling the statistics’
standard deviation by a value determined by the desired confidence, typically 95% in engineering applica-
tions, and the frequency distribution of the statistic modelled. Where the standard deviation of the statistic
population is known, or for sufficiently large N, i.e. typically > 1000, the scaling term is obtained from the
standard normal distribution. To obtain the 95% confidence scaling, the distance from the origin to the upper
and lower 2.5% tails must be found, which in this case is £1.96, and is denoted by z*. If the number of
samples is small or the standard deviation is the sample standard deviation, then the Student’s t-distribution
should be used to obtain the scaling term, denoted by ¢. Use of these terms to obtain confidence intervals
of the mean, CI, is shown in Equation 1, where G, is the population standard deviation, S, is the sample
standard deviation, and ¢ and z* are as above, where ¢,S, — 7,0, as N — oo. Other frequency distribu-
tions, such as the Chi-Squared distribution, may be more appropriate to model particular statistics, however,
discussion of such lies beyond the scope of this paper. With the CI calculated, comparison to a threshold
value may indicate convergence. For PIV applications, a suitable threshold value for the confidence interval
of the mean could be 0.1px, in line with the commonly assumed uncertainty of PIV to be about this level
Westerweel and Scarano (2005).
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Considering the turbulent jet provided in the second PIV challenge Stanislas et al. (2005), Figure 1
shows how the confidence interval typically decreases as the number of vector fields contributing to the
mean increases. Regions in which the confidence is sufficient, c.f. regions in Figure 1 where the CI <=
0.1, can be considered to have reached statistical convergence. Conversely, regions not yet converged ne-
cessitate additional samples (i.e. displacement fields) to be taken into account. A simple approach to this
problem would be to impose a mask some distance from the Region of Interest (ROI), similarly to image
masking, thereby isolating regions of non-convergence and reducing the computational effort (cf. number
of cross-correlations). However, this approach artificially truncates information along the flow-mask bound-
ary, which has repeatedly been found to influence correlations near such an interface, unless using advanced
processing techniques Masullo and Theunissen (2017); Gui et al. (2003); Ronneberger et al. (1998). The
challenge thus lies in defining a mask around the ROI, which does not influence the solution within the ROI,
relative to a full conventional solution, while minimising the area of the image to be analysed. The next
section will address how the authors achieve such a selective analysis, followed by a demonstration of the
attainable benefits in the results section.

CIE = Z* .
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2 Methodology

2.1 Calculating the Region of Interest

As detailed previously, the ROI must first be identified by locally assessing the convergence of the solution
over the field of view. Although this methodology can be applied to any statistic of interest, utilising boot-
strapping where necessary, it shall herein be assumed that ‘convergence’ refers to convergence of the mean
solution, unless otherwise stated. To determine the CI of the mean, the variance of the solution is needed.
In a straightforward manner, this necessitates storage of each displacement field and extending the database
with every additional displacement field. This imposes vast memory requirements to store each displace-
ment field, such that they can be re-referenced to obtain the new mean and variance each iteration. However,
efficient and stable updating algorithms exist, see eq. (2), which can calculate the mean and variance without
the need to store all contributing data Chan et al. (2017).

My =My_+ (uy —My_1)/N (2a)
Sy =Sn—1+ (un —My_1) - (uy —My) (2b)

Here uy signifies a component of the N displacement field, My is the mean of all N samples (u; with
i=1...N)and Sy/(N — 1) is the variance of N data values. Computing the ROI therefore consists of first
updating the variance using (2b) for each pixel, then multiplying by the scaling term z* or ¢, and finally
comparing this to the user-defined CI threshold. Pixels exceeding the threshold thus represent the ROI to
analyse in image pair N + 1.
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Figure 2: Depiction of the analysis support radius for an arbitrary region of interest (yellow), showing; the
interpolation kernel A, the vector validation kernel B, image deformation kernel C, and finally the region
with no influence over the ROI, D, for both bi-linear, (b), and bi-cubic, (c), interpolation kernels. The blue
line encloses the region equivalent to a full solution following the proposed methodology, and is at least as

large as the requested ROIL.

2.2 Masking process

Having determined the pixels which con-
stitute the ROI, the next step is to deter-
mine a sampling mask which minimises
the number of correlations, without in-
fluencing the solution within the ROI,
relative to a full solution (FS) consid-
ering the entire image. Working back-
wards from the final iteration, the sample
mask must extend far enough beyond the
ROI to include vectors whose interpola-
tion kernel would overlap the ROI, and
thus influence it. For bi-linear interpola-
tion this corresponds to the four enclos-
ing vectors, i.e. a 2x2 stencil, whereas
for bi-cubic interpolation the 4x4 sten-
cil of vectors surrounding the pixel must
be considered. This region can be ob-
tained by dilating the ROI, in both x and
v, by an amount % (bi-linear) or 24 (bi-
cubic), where 4 is the spacing between
samples, and is indicated by region A
in Figures 2(b) and 2(c). According to
this methodology, each pixel within a
2x2 stencil would invoke the same four
sample locations. Hence if any pixel in
such a region is defined as ROI, then it
follows that all pixels within the sten-
cil will be equivalent to the FS, and can
contribute to the ensemble statistics. The
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Figure 3: Flow chart showing masking process

same analysis holds true for cubic interpolation, with any pixel in a given 2x2 stencil invoking the same 4x4
interpolation stencil. The total ’valid region’ which can contribute to the ensemble statistics, is therefore
often larger than the ROI itself and is depicted in Figures 2(b) and 2(c) by the blue line. Such behaviour is
beneficial to the method, since converged pixels may still receive additional sample data, further improving
confidence in this location, at no additional computational cost.

Prior to interpolation, vectors are typically subject to validation, using schemes such as the normalised



median theshold test (NMT) Westerweel and Scarano (2005) to detect outliers. The NMT compares each
vector to its eight surrounding neighbours from a 3x3 grid. If the vector disagrees with its neighbours
beyond some pre-defined threshold, then it is replaced by the analysis routine. The replacement vector is
typically calculated as the mean of the valid eight neighbours, or zero if all are invalid. The consequence
of this process is that for outlier detection equivalent to a FS, the interpolation region must be dilated by
another sample spacing, 4, to include neighbouring vectors. However, to reproduce the equivalent outlier
replacement, the validity of all neighbouring vectors must be known, necessitating that the mask be dilated
instead by 2h.

While dilation by 24 is required to guarantee numerical equivalence to the FS, dilating by 4 is generally
sufficient for approximate results; vectors at the edge of the sampling mask are guaranteed to have at least
three immediate neighbours, and typically five, which can be used for an approximate vector validation
attempt. The frequency of incorrect classification from the reduced number of neighbours is relatively
low. Drastically anomolous vectors are still reliably detected using just five neighbours, while the reduced
neighbour validation typically only fails when the scrutinised vector is only subtly different to its neighbours,
in turn leading to only small changes in the replaced vector. Herein, dilation by 24 for vector validation,
maintaining numerical equivalence, will be herein referred to using NMT, whereas dilation by 4, accepting
some numerical differences, will be referred to as NMT*. Differences of ensemble mean values using NMT
compared to NMT* are typically < 1%, i.e. at least two orders of magnitude smaller than the imposed
"acceptable’ threshold, yet, require fewer correlations to obtain.

For a single pass analysis the aforementioned approach, i.e. correlating all vectors within region B,
would be sufficient to ensure equivalence within the ROI. However, many PIV analyses make use of iterative
routines to obtain improved spatial resolution Scarano (2002). This necessitates the consideration of image
deformation in the selection of the sampling mask, such that the correlation response of all the windows
within region B are equivalent to a FS. For this methodology to hold true at the final iteration, K, the image
within every pixel of every correlation window within ‘B’ must be deformed following iteration K — 1 in
accordance with the FS. This region can be found by convoluting each ’active’ sample location with the
current window size (WS), as indicated by region ‘C’ in Figure 2. Since image deformation, following the
methodology of Unser et al. (1993), requires the predictor for iteration K — 1 at each of these pixels to be
correct, region C effectively serves as the ROI for iteration K — 1. The process is repeated until the first
iteration is reached and a sample mask is obtained for each iteration. The described approach is presented
as a flowchart in Figure 3, and with each specific sampling region graphically highlighted in Figure 2 for
clarity. A standard image analysis routine can then be trivially modified to correlate only sample locations
which lie within this region, and ignore everything else, i.e. region ‘D’, with no negative effects on the
solution in the ROI.

It is relatively trivial to modify vector validation and structured interpolation codes to consider only the
“active’ region. In doing so, the computational cost for these processes is proportional to the number of
vector locations. Image deformation requires reconstructing the image based on the predictor values over
the image. This reconstruction operates pixel-wise and hence the code can be easily modified to exclude
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Figure 4: Influence of the composition of the ROI on the number of samples required for (a) a single
contiguous ROI, requiring 56 samples for six "blocks’ of ROI, and (b) several distributed ROIs, requiring
150 samples for six "blocks’ of ROI.



Table 1: Values used for each setting as part of the parameter sweep

Parameter Default Parameter sweep values
Initial Window Size 97 N/A

Final Window Size 25 (15, 35, 55)
Window Overlap Ratio 0.5 (0, 0.5, 0.75, 0.85)
Number of main iterations 3 (2,3,4)
Number of refinement iterations 1 0,1,2,3,4)
Interpolation method Linear (Linear, Cubic)
Vector validation method NMT (none, NMT, NMT%#)

pixels outside of the sampling mask from the deformation process, resulting in a computational cost scaling
with the number of pixels in the ROI. The reconstruction is applied to filtered versions of the raw images,
and such filtering is not be easily reduced to arbitrary sub-regions. However, this step is only required once
per image and yields a marginal computational overhead. Hence the methods computational costs scales
roughly linearly with increasing ROI extent. The method therefore reduces overall computational costs
relative to a conventional analysis, for ROI’s which cover ~<<= 95 — 97% of the available domain, due to
the small overhead of calculating the sampling masks.

3 Results

3.1 Numerical investigation

Changing PIV interrogation parameters such as window size, window overlap ratio (WOR), choice of inter-
polation kernel and so on, will naturally influence the extent of the resulting sampling masks. For example,
cubic interpolation requires dilation by 24, instead of & for linear interpolation, therefore demanding more
correlations to be performed for a given ROI (Figure 2). To understand the extent to which each parameter
affects the total number of correlations required for a given ROI size, a parameter study was conducted. The
shape of ROI in this study was kept as a central square with varying area. As illustrated in Figure 4, un-
doubtedly the composition of the ROI will also influence the total number of correlations. While this effect
is difficult to quantify, a generally valid tendency is that fewer, larger, contiguous ROIs, (which are typically
encountered in practical situations), will be more effective at reducing the required number of correlations
than many scattered regions.

The default parameter configuration for this study is shown in Table 1. For each parameter, a range
of typical values were substituted, keeping everything else fixed, and the resulting number of correlations
recorded and compared to the total number of correlations required for the full analysis with the same set-
tings. Additionally, each configuration was applied to a range of ROI sizes. Results are presented in Figure
5. In each iteration, the sampling mask dilates by = m#A, including the dilation by an amount WS/2 (i.e.
the correlation window size around each sample) prior to iteration K — 1. Parameter 1 is a function of the
analysis settings, e.g. 1 = 4.5 when invoking cubic interpolation with NMT validation. With each additional
iteration the sampling mask in earlier iterations increases in size, correlating a larger proportion of the over-
all image and reducing the efficiency of the method, see Figures 5(d) and 5(e). Settings such as interpolation
or vector validation method influence the scaling term 1, and thus increase or decrease the extent of the
sampling mask around the ROI by some fixed proportion, shown in Figures 5(f) and 5(c). Finally, the WOR,
and final WS have a much more significant impact on the overall efficiency as can be deduced from Figures
5(b) and 5(a), due to their influence on the vector spacing itself. Reducing 4, either by reducing the WS or
by increasing the overlap ratio, does not significantly influence the number of correlations performed?, i.e. 1
is unchanged. However, a smaller spacing increases the total number of sample locations which must all be
correlated by the FS, and thus a smaller fraction of correlations are performed by the proposed method, im-
proving its efficiency. The corollary of the above is that more intensive interrogation parameters, i.e. smaller
final WS, larger overlap ratio, with simple vector validation schemes benefit the most from the methodology
presented here.

Zbeyond the fact that there may exist more sample locations within the ROI itself
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Figure 5: Comparison of the speedup effect of a locally selective WIDIM approach for changing (a) fi-
nal WS. (b) WOR. (c) Vector validation approach. (d) Number of Iterations. (¢) Number of Refinement

Iterations. (f) Interpolation method.

3.2 Experimental analysis

To verify the methodology in a real application, it was ap-
plied to the flow behind a blunt trailing edge, investigated
by Elsahhar et al. (2018) for its aeroacoustic properties. In
this study, the effect of trailing edge bluntness on the gen-
eration of wake-vortex noise was investigated using Parti-
cle Image Velocimetry. Shown in Figure 6 is the reference
flow field for this particular case. Since a moderate pro-
portion of the FOV is relatively uniform freestream flow,
these images serve as exemplary candidates for the pro-
posed method. Figure 7 shows one of the (in total) 115
raw images, and highlights the strong reflection present
in nearly all of the images. An ensemble-minimum back-
ground subtraction was applied to all images, removing
the majority of the reflections (Figure 7(b)). The reflection
is not identical in every image, and hence remnants remain
in the images, varying throughout the ensemble. While
more advanced pre-processing techniques could certainly
be employed to remove such remnants, it does not ad-
versely affect the current investigation and hence these
techniques have not been investigated further.

The ensemble of images were analysed according to
3 different schemes. First, a reference conventional solu-
tion was established using conventional WIDIM Scarano
(2002) adopting the default parameters as in Table 1. How-
ever, the discrete displacement data (following the cross-
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Figure 6: Ensemble averaged, reference
flow field obtained by averaging all 115
measured displacement fields in their en-
tirety

correlation of interrogation windows) was interpolated pixel-wise using bi-cubic kernels rather than the
bi-linear scheme listed in Table 2. Subsequently, the presented methodology was used to obtain the ensem-
ble mean at a 95% confidence, of being within 0.1px and 0.05px, using the same parameter configuration
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Figure 7: Exemplary PIV image from Elsahhar et al. (2018). (a) raw image with zoom inset showing
reflection, (b) pre-processed image with inset showing diminished reflection. Contrast enhanced for clarity.

as the reference solution. Due to the relatively small number of samples (115) and the unknown standard
deviation, (1b) was used to obtain the pixel-wise confidence interval after each timestep, using the Student’s
t-distribution to calculate ¢. Regions where the temporally adaptive method uses all 115 images, e.g. regions
where the CI exceeds the threshold, such as in the wake region of Figure 6, the solution is numerically
equivalent to the reference solution. Outside of these regions, where less than the full 115 images have been
considered, the solution is expected to differ from the reference to some degree, depending on the thresh-
old level. Figure 8 shows how much the temporally adaptive solutions differ from the reference WIDIM
solution.

The number of samples contributing to the ensemble mean, over the entire domain, for each threshold
setting is shown in Figure 9. In both cases, the freestream requires relatively few samples to reach con-
vergence compared to the wake. This is in line with the expressions for the confidence levels in (1. As
the local standard deviation increases, the number of independent samples required to reach a pre-defined
confidence level increases quadratically. It can also be seen that the stricter tolerance requires more sam-
ples in the fringes of the wake, relative to the more relaxed threshold. Although the majority of the image

10.05

Figure 8: Effect of changing confidence intervel threshold on the magnitude difference to a reference full
solution, for (a) 0.1px threshold and (b) 0.05px threshold.
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Figure 9: Number of contributing samples for a threshold of (a) 0.1px, and (a) 0.05px.

reflection was removed, sections of this remained which varied through time. When the relection is present,
the displacement will be biased towards 0, and may in fact register as zero displacement, depending on
whether this is identified as an outlier. As such, in these locations the recorded displacement will be varying
between the ‘true’ displacement, a displacement biased towards zero, and, occasionally, zero displacement.
This results in significantly increased standard deviation in this region and thus necessitates further sampling
according to the current criteria. Comparing the total number of correlations for the entire ensemble, Table
2, the strength of the proposed method is made apparent. A reduction of 44% and 28% in the number of
correlations is achieved for the 0.1px and 0.05px thresholds, respectively. While overheads exist beyond
the correlations, such as interpolation and image deformation, these typically represent a small proportion
of the overall computational cost. The number of total correlations is further reduced by using the NMT*
approach as described previously, reducing the number of correlations by ~5% in both cases.

Table 2: Comparison of the number of correlations performed for each of the approaches

Number of correlations

Reference Full Solution 11,867,770 (1.00)
0.05px threshold 8,583,713 (0.72)
0.1px threshold 6,689,502 (0.56)

4 Conclusions

A method has been proposed which automatically reduces the interrogation area subject to satisfactory
convergence of arbitrary flow statistics. Convergence is determined by calculating the confidence interval
for any arbitrary statistic and comparing to a user-defined threshold value. An automatic Region of Interest
(ROI) is obtained which is used to determine a set of sampling masks, one for each iteration. Such a mask
identifies which locations influence the solution within the ROI, such that if all are correlated the final
solution within said ROI remains numerically identical to an equivalent conventional solution.

This approach can significantly reduce the computational cost required to obtain domain-wide ensemble
statistics converged to a pre-defined level. The method was applied to the flow behind a blunt trailing edge,
being investigated for its aero-acoustic properties. For typical PIV settings, the number of correlations
to obtain the ensemble mean was reduced by 44%. The method is particularly of use when rapid mean
solutions are required, i.e. analysing images concurrently with wind tunnel utilisation, or when processing
higher-order statistics.
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