
13th International Symposium on Particle Image Velocimetry – ISPIV 2019 
Munich, Germany, July 22-24, 2019 

 

Data assimilation for PIV based on adaptive neuro 
fuzzy inference system (ANFIS) 

Dong Kim1, Kyung Chun Kim1* 

1Pusan National University, School of Mechanical Engineering, Busan, Korea 

*kckim@pusan.ac.kr 

 

Abstract 

For the AI based data assimilation, the multi-dimensional machine learning method is used to learn 
the flow behavior and predict the flow based on the learning process and intelligence of method. An 
adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference system (ANFIS) 
is used with experimental data to predict the flow inside the domain. To built-up the method, 
different number of input membership function, epoch and percentage of training data was used. 
The results show that there is a great agreement between experimental observation and intelligent 
algorithms. This new method is also capable to find all missing points of data that experimental 
observation cannot detect and the ANFIS method predict the flow in the neural mesh. 
 

1 Introduction 

Post-processing of PIV data is a critical step for reducing errors and finding or refining missing 
information in measured velocity data. However, PIV measurements are often challenged by sources 
of various experimental errors, such as equipment alignment, insufficient tracer particles, and 
background noise. Turbulence flows generally represent multidimensional physics including space 
and time, which have high in dimensions with rotating and transforming intermittent structures. 
This feature provides an opportunity for Artificial Intelligence (AI), machine learning to predict the 
modeling and analysis of turbulent flow. The use of neural networks is popular in various areas, 
including self-driving cars and weather forecasts. The use of neural networks began to leave 
footprints in fluid dynamics, especially turbulence modeling by Kutz. J. N (2017). Gamahara, M. et al. 
(2017) introduced an artificial neural network (ANN) as a tool for finding new sub-grid models of 
sub-grid scale (SGS) stress in Large-eddy simulations. In general, soft computing such as Adaptive 
Neuro-Fuzzy Inference System (ANFIS) by developed Jang (1993) is a smart way in the building 
systems which are smart in calculating. ANFIS method with the ability to learn many physical 
models can be very useful in the processes of chemical engineering, pharmaceutics and industry. 
This method of computing changes linguistic concepts into mathematical or computational ones. It 
is possible for the fuzzy logic systems to be employed to transfer linguistic concepts to mathematical 
and computational architecture; however, there is a problem with it that is they detect and learn 
physical processes not in an accurate manner meaning that the boundary condition change. Also, it 
can change its behavior in altering environments and learn to calculate the behavior of lots of 
processes which may not be certain. But using a combination of ANN and fuzzy logic approaches 
help to develop both the learning process and the detection ability. So, the combination is called 
ANFIS combining that is the natural language description of fuzzy systems and learning properties 
of neural-networks. In this study, the fuzzy inference system applied to predict 3D flow field. The 
system has three inputs which are x, y, z and three velocity component outputs which u, v, w. In 
order to begin, the fuzzy learning model was selected for the ANFIS network. 
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2  Method 

Figure 1 shows the simple structure of the employed ANFIS model for predicting 3D flow 

characteristic for the side mirror models with 2 input membership function. Various inputs which 

are x, y, z coordinates are applied to obtain 3 velocity component, 3D velocity components are 

applied as output. The current study used the first-order Sugeno fuzzy model, with fuzzy if-then 

rules as it follows: 

 

Rule 1: if x is A and y is C then 𝑢1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1𝑧 + 𝑠1                            (1) 

Rule 2: if x is B and y is D then 𝑢2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2𝑧 + 𝑠2                           (2) 

 

The output of the ith node in layer l is represented as Ol,i. 

 

Layer 1: Each node i in this first layer is an adaptive node with a node function. 

       Ol,i = μAi(x), for i = 1, 2,  

or  Ol,i = μBi−2(y), for i = 3, 4  

or Ol,i = μCi−4(𝑧), for i = 5, 6             (3) 

 

where x or y or z is the input to node i and Ai or Bi−2  or Ci−4 is an associated linguistic label. To put 

it in another way Ol,i is the membership grade of a fuzzy setA and B and C(= A1, A2, B1, B2, C1, C2). In 

the same example, the membership function can be any appropriate parameterized membership 

function. A fuzzy set is entirely described by the help of its membership function. Several types of 

membership function are existed; For instance, triangular, trapezoidal, gaussian, generalized bell 

and sigmoidal. Triangular and trapezoidal functions are composed of straight-line segment but the 

problem which stays with is that they are not smooth at the corner points which specified by the 

parameters. However, other functions meet these criteria, worth to mention that Smoothness and 

concise notations are 2 reasons that gaussian and generalized bell functions are the well-liked ones 

in order to specify fuzzy sets. The former functions are well known in probability and statistics. The 

latter function has one more parameter than the gaussian function, and therefore it has one more 

degree of freedom to adjust the steepness at the crossover points. The generalized bell function was 

applied in this study because of its great abilities for the generalization of nonlinear parameters: 

  

𝜇𝐴(𝑥) =
1

1+(
𝑥−𝑐𝑖

𝑎𝑖
)

2𝑏𝑖
                                                                   (4) 

                                                                                                           

where {ai, bi, ci} is the variable set. The bell-shaped function differs accordingly as the values of the 

variables change, so it shows various kinds of membership functions for fuzzy set A. Variables in the 

first layer are known as premise variables. 

 

Layer 2: Each node in the 2nd layer is a fixed one and its output is the consequent of the whole 

incoming signals: 

 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇Ai(𝑥)𝜇Bi(𝑦)𝜇Ci(𝑧),  i = 1, 2, 3                                  (5)        
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Every node output indicates the firing strength of a rule.  

 

Layer 3: Each node in the 3rd layer is a fixed one. The ith node computes the proportion of the firing 

strength of the ith rule to the sum of the firing strength of all rules’: 

 

O3,i = 𝑤𝑖̅̅ ̅ =
𝑤𝑖

𝑤1+𝑤2
  , i = 1, 2, 3                                                        (6)                

                                                                                     

For the sake of convenience, outputs of this layer are called normalized firing strengths. 

 

Layer 4: Each node I in this 4th layer is an adaptive node with a node function 

 

𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖𝑢𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖𝑧 + 𝑠𝑖)                               (7)               

                                                                                  

where wi̅̅ ̅ is a normalized firing strength from the 3rd layer; in addition, {pi, qi, ri} is this node’s 

variable set. In the mentioned layer, variables are referred to as consequent parameters.  

 

Layer 5: In this 5th layer, the single node is a fixed node, and therefore the fixed node computes the 

total output as the summation of all incoming signals: 

 

𝑂5,𝑖 = ∑ 𝑤𝑖̅̅ ̅𝑢𝑖𝑖 = ∑ 𝑤𝑖𝑢𝑖𝑖 / ∑ 𝑤𝑖𝑖                                            (8)          

                                                                                 

Different variables in the ANFIS structures are identified by using the hybrid learning method. In 

its forward pass, functional signals move forward until they reach Layer 4. Also, Consequent 

variables are identified by the least squares estimate. In the backward pass, the error rates move 

backwards. The gradient descent updating the premise parameters. 

Figure 2 shows the simple example of the ANFIS prediction process. The ANFIS setup was used 

with 2 input membership function using generalized bell function and 8 rules. Input 1, 2, 3 mean 

x/H, y/H, z/H value, respectively and output is the 𝑈/𝑈∞. Each horizontal axis of the input 

represents the value of the coordinate and the vertical axis represents the value of the generalized 

bell function. On the first layer of ANFIS, this layer calculates generalized bell function value for each 

input, and then multiply each value on 2nd layer. Then, 3rd and 4th layer calculate the proportion of 

the weighting factor for predicting the target velocity component. For optimizing the generalized 

bell function and node variable set, the gradient descent updating the premise parameters in 

backward pass.  

The effect of various ANFIS setting parameters which include membership function and percentage 

of training data and epoch on the prediction accuracy. The performance and accuracy of the ANFIS 

method is calculated based on the statistic parameters. 

Root Mean Square Error (RMSE) is used to calculate the difference between the ANFIS prediction 

values and measurement data 

RMSE = √
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

𝑛
                (9) 

 

where O is the measurement data, P is predicted data and n is the number of data. 
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Coefficient of determination (R2) is a criterion that illustrates how well the ANFIS data fits a 

statistical model. 

 

R2=[∑ (𝑂𝑖 − 𝑂𝑖̅)(𝑃𝑖 − 𝑃𝑖̅)
𝑛
𝑖=1 ]2 / ∑ (𝑂𝑖 − 𝑂𝑖̅) ∑ (𝑃𝑖 − 𝑃𝑖̅)

𝑛
𝑖=1

𝑛
𝑖=1       (10) 

 

 
Figure 1: The ANFIS structure with 3-input first order Sugeno fuzzy model 

 

 
Figure 2: The ANFIS prediction with 2 input membership function and 8 rules 

 

3  Sensitivity and accuracy of ANFIS setting prameters 

The MATALB R2017b has been used to develop the ANFIS model. Figure 5.3 shows the flow chart 

of the ANFIS prediction process. The first step is to load the measured 3D PIV data and set the 

domain of the desired area. After that, ANFIS parameters are applied for training AI. The ANFIS 

generation parameters include percentage of the training and testing data, number of membership 

function, input membership function type, output membership function type. For training ANFIS 

structure, parameters include number of epochs, error goal, initial step size, step size decrease and 

increase rate. After setting up the ANFIS parameters, it can start the ANFIS training using the 

measured data and check the convergence. In this study, the values of convergence criteria are 

based on R2 > 0.99, RMSE < 0.01. If the values of convergence criteria are satisfied, the obtained 

ANFIS result was applied to testing data. After checking convergence of the test data, the ANFIS 

model for data assimilation of 3D PIV data was adopted. A good ANFIS model can be used for a 

completely new prediction in which none of data has used in the training process. A new ANFIS 

mesh domain was generated and then the developed ANFIS model is used to predict the required 

results. 
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Figure 3 shows the ANFIS model’s error of average streamwise velocity compared with 

measurement data for reference model. Figure 5.3 (a) shows the comparison with measurement 

data (target) and ANFIS result (output). For training, the RMSE value of streamwise velocity is 

0.0078. This result shows that the error between the predicted data and measurement value is less 

than 0.78 % for streamwise velocity component. Consequently, this shows the high degree of linear 

dependence R2 between the ANFIS and measurement result in the training process. Consequently, 

the ANFIS model can accurately predict the 3D PIV velocity and aerodynamics with an error of less 

than 0.78 %. This error can be reduced with more input membership function. 

 

 
(a) Streamwise velocity compared with raw data and ANFIS 

 
(b) Error value of ANFIS                         (c) Histogram of predicted error 

 

Figure 3: Accuracy of ANFIS model for average streamwise velocity for reference model 

 

4  Results and discussion 

The ANFIS method can predict the aerodynamics of side mirror models in less computational time 

and provide continuous results. The number of raw data in x/H, y/H, and z/H mesh coordinate is 28 

x 30 x 26 nodes which have total of 21,840 data. This coordinate has a step size of 0.05 mm between 

the node. For ANFIS based data assimilation of 3D PIV, x/H, y/H, and z/H from 0 to 1.5, -0.7 to 0.7, 

and 0 to 1.3 with step size of 0.00625 are predicted using the ANFIS model. This means the spatial 

resolution of raw data will increase 8 times. The total number of nodes for each case is 241 x 225 x 

209 nodes (11,333,025 data). 

The increase in spatial resolution is that the vorticity, which a function of the gradient of velocity 

and space, can be well distinguished. Figure 4 shows the comparison of average streamwise vortex 

between raw data and ANFIS data assimilation on side view mirror model. In the case of reference 

model, the connection of horseshoe vortex from the bottom of model was very well discovered. Raw 
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data as shown in Figure 4 (b) shows that horseshoe vortex is broken due to a lack of spatial 

resolution, while it is recovered by ANFIS data assimilation. 

Figure 4 (c), (d) shows a sub-volume of the space in which horseshoe vortex occurs to ensure a 

detailed view of these results. As the vector field became dense, the missing data could be found. 

To identify the advantages of AI data assimilation, instantaneous velocity field on reference model 

was used for data assimilation. Instantaneous velocity field have more vortex structure, so high 

spatial resolution is essential to discover vortex structure. Figure 5 shows the instantaneous 

streamwise vortex for the side view mirror model. Comparing with the results of the averaged 

results, the effect of data assimilation is certainly greater. Compared with raw data, the data 

assimilation results show small vortex structure was found by increasing spatial resolution. These 

data assimilation results provide a better understanding of the small turbulence structure and allow 

for more in-depth analysis through missed data. 

 

 
(a) raw data                                                      (b) step size x 8 by ANFIS 

 
(c) raw data in sub-volume                         (d) step size x 8 by ANFIS in sub-volume 

 

Figure 4: Comparison of average streamwise vortex between raw data and ANFIS. 
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(a) raw data                                                      (b) step size x 8 by ANFIS 

 
(c) raw data in sub-volume                         (d) step size x 8 by ANFIS in sub-volume 

 

Figure 5: Comparison of instantaneous streamwise vortex between raw data and ANFIS. 

 

5 Conclusion 

In this study, to increase spatial resolutions of velocity field, Artificial Intelligence (AI) based data 

assimilation method has applied. For the AI based data assimilation, this work shows that there is a 

possibility to train ANFIS model in multiple dimensions which is very interesting to deal with fluid 

flow geometry analysis. This type of analysis enables us to learn from each node (image pixels), 

showing local learning model and present the results in neural network nodes which is fully 

independent of PIV technique and complex mesh analysis of it. Optimization of fluid parameters is 

very time consuming and computationally expensive. The ANFIS model can be a great assistant tool 

for numerical and experimental method to optimize few case studies without doing those conditions 

with exp methods. This method can also enable us for mesh refinement with small computational 

time. This research shows us how we can use train ANFIS model in different dimensions to make 
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independent methods for learning and prediction. There is a great agreement between experimental 

and ANFIS method showing that intelligent algorithm can be replaced with numerical method and 

avoid expensive computational time. Using the developed technique, accurate real-time turbulence 

quantities will be obtained, which are almost impossible to measure experimentally through the 

combination between experiment and AI. The measurement of the 4D instantaneous field data will 

enable to analyze sound pressure spectra and noise sources to be determined at any location within 

the space, enabling the design of features to eliminate the main noise source. As a result, 

understanding of the flow noise mechanism and developing a new turbulence model will be possible. 
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