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Abstract 
 
A new concept developed for the performance of Particle Tracking Velocimetry by using sysnthetic streak 

images. To evaluate the PTV performance with long exposure particle images, synthetic particle streaks of 

Hill’s vortex are generated by integration of Gaussian particle image profile with normalized exposure time.  

To evaluate the performance of PTV algorithm, the match yield and the match reliability in quantitative 

analysis of PTV are adopted. In addition, the performaces of  PTV and PIV for particle streak images are 

compared with variations of particle image diameter, particle image intesnity and particle image density 

with different exposur times. The results show that reliabilty and match yield were 98% and 75% and 

dropped to 50% and 35%, respectively, due to long exposure time. PTV performance can be justified with 

its peak-finding criteria for normalized exposure time up to 0.05. The range of the appropriate normalized 

exposure time tested in this study is from 0 to 0.14. As the exposure time increases from 0.43 to 1.0, PTV 

can not longer efficiently resolved the flow. The comparision with PIV shows that the mesurement 

uncertainity is higher as compared to PTV. PTV performance validate the results only for short exposure 

time whereas PIV performed also with longer exposure time, with the measurement uncertainity range form 

0.3 to 7.32. Under the appropriate exposure range, PIV performs as good as PTV for long exposure images.        

 

1-Introduction 

In the last decades, the great invention in the fluid mechanics obtained for the flow visualization are the 

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry(PTV). As described in Raffel et al. 

(2018) and Adrian et al. (2011), PTV and PIV are nonintrusive, whole-field, quantitative flow visualization 

techniques for veloicty measurements of the flows. The main difference in the two methods is that PTV 

tracks the motion of individual particles whereas PIV measures the average displacement of a cluster of 

particles. PIV method will be preffered in the case of high density medium and small velocity gradient inside 

a cross-correlation interrogation window. The computational process is very fast because the cross-

correlation function is the simple algebraic product of logical variables. The advantages and disadvantages 

of this method as compared to the four-frame method; the speed and the velocity recovery ratio are 

improved. The cross-correlation algorithm performs less accurate to strongly rotation and/or high shearing 

flow images. On the otherhand, PTV is prefferd for low density medium and moderately distributed 

particles, and with the same particle image it can achieve higher spatial resolution than PIV.  

In the last two decades, different particle tracking algorithms proposed by the researchers as Nishino et al. 

(1989) described the automated digital image processing technique in three-dimensional particle tracking 

velocimetry. With the help of this technique three dimensional instantaneous velocity components were 

measured in an unsteady laminar Couette flow between two concentric cylinders. The results was justified 

with the measurement uncertainties evaluated systematically. Another type of particle tracking algorithm is 

the cluster matching. In this technique, the first frame particle and the candidate particle of the second frame 

forms a cluster together with their respective neighbours. Best matches criteria based on the deformation 

index specified between every pair of clusters. The deformation index proposed by Okamoto et al. (1995) 

propose a spring model technique using the elastic restoring force. This algorithm is applied on the flow 

fields which charactarized such as rotation, shear and expenstion. This technique was verified with the 

synthetic data for both 2D and 3D-flow, and high degree of accuracy can be achieved for 2D and 3D 

evaluation. A Muti-layer neural network proposed by Grant et al. (1995) is designed for double-exposure 

single frame particel images. The basic concept can be extended for the use of single-exposure image pairs. 
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The demerit point is that only basic learning of the estimation on the flow field to be considered. A relaxation 

method proposed by Baek et al. (1996) finds the most sutable connection with the reference particle with 

the assumtion that the displacements are similar with its neighbour particles (also called quasi-rigidity 

condition). This algorithm has an ability to evaluate wide range of deformation of particle distribution. A 

hybrid digital particle tracking velocimetry technique by Cowen et al. (1997) used in digital particle tracking 

velocimetry (DPTV) based on cross-correlation digital particle image velocimetry (DPIV). This approach 

provide the alternative  method of interpolation of randomly located velocity vectors. This technique allows 

the the direct measurement of mean squared fluctuating gradiaents and capable to measure the turbulence 

statistics.  

Another concept used in particle tracking is the use of different types of cost functions. One example is the 

PTV using Hopfield neural network proposed by Knaak et al. (1997). With this approach, the fluid 

mechanics of hydraulic turbomachinery and artificial heart valves were investigated. For valid particle 

matching, a particular cost function is elaborated and then mapped onto a two-dimensional Hopfield 

network. In comparison with classical nearest neighbor technique, Hopfield neural network provides better 

amount of correct match pairs. Shen et al. (2001) utilizes fuzzy logic on  particle tracking velocimetry for 

simultaneously measuring the velocities and sizes of falling particles. This method can recognize particles 

from the image not only with high recognition ratio but also with high precision even the particles are 

overlapped very heavily. The method is examined by a numerical experiment with computer-generated 

images. Genetic algorithm (GA) implemented by  Ohmi et al. (2009) is based on the movement of a group 

of particles and it is more feasible for increased particle image density. In this study, the particle images are 

recorded and identified to be used for GA, and the best-match in particle pairs are found by minimization of 

the fitness function depends upon the total sum of squares of particle displacements or some other 

geometrical distances. The results are acceptable if the physical problem can be carefully solved by genetic 

encoding. The disadvantage of this genetic algorithm is the high usage of random numbers in the 

computation, which results in high computational cost. Ohmi et al. (2010) described ant colony optimization 

(ACO) method for the particle tracking. In this approach particle cluster matching in its mechanism of 

individual particle matching. This method works well with the minimization strategy of the particle cluster 

relaxation.  

In Particle Image Velocimetry(PIV), two types of lasers are used continuous wave (CW) and pulsed lasers. 

Most commonly used lasers in continuous wave are argon–ion lasers producing in the range of few watts 

whereas, pulsed lasers are frequency-doubled Nd:YAG (neodymium: yttrium aluminum garnet). The pulsed 

lasers have short duration of the laser pulse, typically a several nanoseconds, which produces short exposure 

time and expensive in cost whereas, the low cost lasers have long exposure time approximately in 

milliseconds and lower cost. Particle image generated by long laser exposure elongates into streak. PTV 

performance depends on how precise the individual particle image can be identified and located by the peak-

finding algorithm. In practice, hardware limitations sometimes cause image streaking due to long exposure 

time, but few studies have been focused on effect of image streaking to the performance of PTV. In this 

paper, the performance of PTV is evaluated by synthetic streak images. The goal of this study is to 

understand how the particle image streak is created and discuss the influence of the particle image streaking 

to the performance of PIV and PTV using synthetic particle images. The comparison between PIV and PTV 

is also discussed by setting the parameters particle image diameter, particle image density and particle image 

intensity with different exposure time.  
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2-Method 

2.1-Synthetic Particle Image Generation 

  In this research the prerequisit step to produce particle streak is the particle image generation. Because the 

particle streak can be simulated as a normal particle image with a minimum exposure time (integration by 

time) and stretch by extending the integration time interval to the extreme condition (long streak). Synthetic 

particle image generation is based on the known characteristics: diameter, shape, dynamic range, spatial 

density and image depth with respect to each other. The shape of the individual particle image is described 

by the Gaussain intensity profile as described in Raffel et al. (2018),  

 

                           I(x,y)= I0 exp [
−(𝑥−𝑥0)2−(𝑦−𝑦0)2
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where the center of the particle image is located at (𝑥0, 𝑦0) with a peak intensity of I0. For simplicity the 

magnification factor between object plane and image plane is chosen to be unity, such that (x, y) ≡ (X, Y). 

The particle image diameter, dτ , is defined by the 𝑒−2  intensity value of the Gaussian bell which by 

defination contains 95% of the scattered light.  

To evaluate the PTV performance with streak images, synthetic images of Hill’s vortex are generated by 

MATLAB code. Hill’s vortex is highly rotational and has strong velocity gradient as compared to a simple 

pipe or duct flow. Therefore, it is adopted as a good evaluation tool for the PTV performance. The method 

is used to generate the random particle coordinate list for four consecutive frames with constant time interval 

of 0.6. The analytical solution of  Hill’s vortex in terms of velocity components 𝑉𝑥 and 𝑉𝑦 are 
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where x and y are the random particle center coordinates(pixels), U is the velocity of random particles which 

was set to pixels / time = 15. R is the radius of the vortex set to 700 pixels. 

2.2- Synthetic Streak Generation 

Particle streak (PS) is defined as the tracer particles imaged by the long exposure time 𝑡𝑒𝑥𝑝.  Particle image  

streak is produced by the integration of 2D-Gaussian function which represents a particle traveling along a 

trajectory X(t) and Y(t), t∈ (0, 𝑡𝑒𝑥𝑝)  during the exposure time 𝑡𝑒𝑥𝑝. Streaks of this vortex was produced by 

the time-integral to model the 2D Gaussian function described Voss et al. (2012) as, 

 

                                               G(x,y) = 
1

𝑡exp −  𝑡0   
∫ 𝐺 ((𝑥 − 𝑋(𝑡)) + (𝑦 − 𝑌(𝑡)))

𝑡𝑒𝑥𝑝

𝑡0
𝑑𝑡             (4) 

 
where G (x,y) is a two-dimensional Gaussian distribution. The result is an image that contain information 

on the particle trajectories recorded during the exposure time as shown in Figure 1.  
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Figure 1: Particle streaks generation with 8340 particles at the normalized exposure time of 0.4 

2.3- PTV-Algorithm and The Performance Evaluation Method 

Particle image tracking algorithm tested in this study is the vision-based PTV (VB-PTV) algorithm by Lei 

et al. (2012). This vision-based PTV algorithm is based on three matching rules: proximity, exclusion and 

similarity. Proximity prefers a smaller distance match as compared to a long one. Exclusion requires one-

to-one mapping between characteristics in multiple frames. Similarity matches particle images to the similar 

ones. To evaluate the performance of VB-PTV algorithm, two commonly used parameters in quantitative 

analysis of PTV were adopted in this study: reliability(MR) and match yield (MY) defined as,  

                                                     

                         MR= 
Matches Correct

Matches Found
                                      (5) 

 

where matches correct is the total number of correct vectors found by tracking algorithm and matches 

possible is the total number of particle pairs between the frames. 

 

            MY= 
Matches correct

Matches Possibles
                           (6)                            

 

where matches found is the total number of vectors (correct and incorrect) identified by the PTV algorithm. 

Each match results in a vector found by the tracking algorithm, which is one pairing of particle center 

locations from two consecutive frames. 

All tests were done by increasing the normalized exposure time from 0 to 1.0. For the PTV tracking 

algorithm tested in this study, the interrogation window size is set to 64 by 64 pixel2, the Mask size is 5 

pixels, the particle diameter is 3 pixels. The contrast threshold is set to 1, outlier tolerance is 1 and the outlier 

threshold is set to 1.5. In the present work, the number of particles are 8340 and the image area 1000 by 

1000 pixels2. Therefore, the particle image density is 0.0083. This low value suggests that the synthetic 

image is free from the two-phase flow effect (Lei et al. (2012)).  

This research evaluated the reliability and match yield of the PTV algorithm as well as to compare the PIV 

and PTV performance on the basis of exposure time by the variation in four parameters particle image 

diameter, particle image intensity, particle image density and kept the other two parameters constant 

simultaneously and discussed in results section. To compare the performance between PTV and PIV, the 

particle image diameter was set within the range from 2 to 6 pixels with constant particle image intensity of 

0.5 pixel and particle image density 0.01 for PTV and 0.02 for PIV, respectively. For particle image intensity 

set within the range from 0.1 to 1.0 pixel, the constant particle image diameter is 2 pixels and the particle 

image density is 0.02. For the case of particle image density within the range from 0.01 to 0.05 pixel, particle 

image diameter was fixed to 2 pixel and particle image intensity was set to 0.5 pixel. Detailed discussion is 

presented in the following result section.     
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3-Results 

3.1 PTV performance 

a. Match Yield and Reliability 

The results of the streak images analyzed with PTV performance show that the match reliability (MR) and 

match yield (My) are kept at 98% and 75%, respectively, for the range of the normalized exposure time(ET) 

is from 0 to 0.1. As the normalized exposure time increases from 0.1 to 1, the match reliability and match 

yield drop to 50% and 35%, respectively, as shown in Figure 2. Based on these results, the threshold of 

exposure time in this study is proposed to be smaller than 0.05, since the particle image center location from 

the elongated particle image still satisfies the PTV peak-finding criteria and the high PTV performance can 

be kept. 

 

 
 
    (a) Reliability     (b) Match Yield  

Figure 2: Streak analysis by Reliability and Match yield on the basis of exposure time 

 

  b. Particle Image Diameter 

Table 1 and Figure 3 illustrates the measurement RMS (root-mean-squared) uncertanity with respect to 

particle size and exposure time. The results suggest the existance of an optimum particle image diameter for 

the evaluation of PTV performance at constant particle image intensity of 0.5 and particle image density of 

0.01 (1/pixel2). Observations shows that with small particle size of 2 and 3 pixel in diameter, the PTV 

performance can be justified for long exposure time due to less particle overlaping and easier particle image 

identification by peak-finding algorithm. For larger particle size from 4 to 6 pixels, results in table 1 shows 

the worse results for long exposure time because of high overlaping ratio and PTV unable to identify the 

particle locations.  

Table 1  The effect on PTV results from the normalized exposure time on the particle image diameter  

Particle Image 

Diameter 

Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS 

2 0 1.42 0.14 1.25 0.43 1.83 0.71 1.78 1 1.87 

3 0 1.18 0.14 1.78 0.43 1.86 0.71 1.92 1 NA 

4 0 1.34 0.14 1.77 0.43 1.89 0.71 NA 1 NA 

5 0 1.77 0.14 1.61 0.43 NA 0.71 NA 1 NA 

6 0 1.56 0.14 1.92 0.43 NA 0.71 NA 1 NA 
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Figure 3: Measurement Uncertainity (RMS random error) for PTV with particle image diameter 

                         with respect to varying exposure time 

 

c.Particle Image Intensity 

To illustrate the PTV results with respect to particle image intensity by varying exposure time with constant 

particle image diameter of 2 pixel and image density of 0.02 (1/pixel2) as shown in Table 2 and Figure 4. 

PTV performance were evaluated by changing the normalized particle image intensity from 0.2 to 1 with 

different exposure times. The results show that PTV performance is justified from intensity 0.2 to 0.4 for 

long exposures because the image intensity within the range is good for particle image identification, 

whereas worse conditions was observed for the range of 0.5 to 1.0 due to over exposure.  

Table 2  The effect on PTV results from the normalized exposure time on the particle image intensity 

Particle Image 

Intensity 

Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS 

0.2 0 1.29 0.14 1.82 0.43 1.69 0.71 1.78 1 1.74 

0.3 0 2.76 0.14 1.56 0.43 1.89 0.71 1.53 1 1.67 

0.4 0 1.54 0.14 1.41 0.43 1.38 0.71 1.31 1 1.79 

0.5 0 2.11 0.14 1.49 0.43 1.59 0.71 1.59 1 NA 

0.6 0 0.79 0.14 2.74 0.43 2.46 0.71 1.01 1 NA 

0.8 0 3.14 0.14 1.42 0.43 NA 0.71 NA 1 NA 

1.0 0 2.15 0.14 1.42 0.43 NA 0.71 NA 1 NA 

 

 

Figure 4: Measurement uncertainity (RMS random error) for PTV with particle image 

                                 intensity with respect to varying exposure time 
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d.Particle Image Density 

PTV performance was also investigated by changing the particle image density from 0.01 to 0.05 (1/pixel2) 

with different exposure times at constant particle size of 2 pixel and normalized particle image intensity of 

0.5 as shown in Table 3 and Figure 5. The results show that the probability of valid displacement detection 

increases when more particle image pairs enter into the tracking algorithm for short exposure time of 0.01 

and 0.015, whereas the worst performace was found at high image density from 0.02 to 0.05 (1/pixel2) and 

long exposure time. This is because PTV is based on the peak-finding algorithm to identify the particle 

image locations, and it is difficult to identify the particle image locations accurately with particle streaks 

generated by long exposure time. 

 

Table 3  The effect on PTV results  the normalized exposure time on the particle image density 

Particle Image 

Density 

Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS Exposure 

Time 

RMS 

0.01 0 1.35 0.14 1.62 0.43 1.84 0.71 1.61 1 2.17 

0.015 0 2.29 0.14 1.06 0.43 1.52 0.71 1.58 1 1.77 

0.02 0 0.91 0.14 1.97 0.43 1.32 0.71 1.50 1 NA 

0.025 0 2.62 0.14 1.17 0.43 1.02 0.71 NA 1 NA 

0.03 0 4.02 0.14 0.98 0.43 1.12 0.71 NA 1 NA 

0.04 0 0.71 0.14 NA 0.43 NA 0.71 NA 1 NA 

0.05 0 0.74 0.14 NA 0.43 NA 0.71 NA 1 NA 

 

 

Figure 5: Measurement uncertainity (RMS random error) for PTV with particle image density with respect 

                to varying exposure time 

 

3.2 PIV Performance 

a.Particle Image Diameter 

Figure 6 shows the PIV performance evaluated by measurements of RMS-uncertainity on the basis of the 

particle image diameter range from 2 pixels to 6 pixels with different exposure times. The results show that 

RMS-uncertainity increases as the  particle size increases with exposure time. The reason behind this may 

be due to the “peak-locking” effect, which means the displacement bias error has a periodic pattern on 

integer pixel intervals. Mostly it is caused by improper sub-pixel displacement estimation.  
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Figure 6: Measurement uncertainity (RMS random error) for PIV with particle image diameter with 

                      respect to varying exposure time 

 

b.Particle Image Intensity 

Particle image generation based on Gaussian function and its peak depends upon the particle image intensity. 

Therefore, it is necessary to study the effect of intensity of particle image to the performance of PIV. Figure 

7 represents the measurments of RMS-uncertainity on the basis of particle image intensity with different 

exposure times. The results show that RMS-uncertainities increase with the increase of exposure time, 

because exposure time based on the time-integral of the Gaussaain function. Therefore, as the length of 

streak increases, the intensity also increased. PIV performed a better space whereas for short exposure time 

and justify the partcle image intensity.  

 

 
Figure 7: Measurement uncertainity (RMS random error) for PIV with particle image intensity with 

                      respect to varying exposure time 

 

c.Particle Image Density 

To evaluate the PIV images, the particle image density represents two effects. One effect  is the probability 

of the correct diplacement detection increses with the increase of particle image density that is more image 

pairs involved in the correlation calculation . Other effect is the direct influence on the measurement of 

uncertaininty. Figure 8 represents the measurements of uncertainity on the basis of particel image density 

with different exposure time at constant particel size of 2 pixel and intensity of 0.5. The results show that at 

high image density and short exposure time PIV performs better.  
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Figure 8: Measurement uncertainity (RMS random error) for PIV with particle image density with 

                       respect to varying exposure time 

 

4-Comparision between PTV and PIV 

From the above discussion, comparision between PTV and PIV can be made based on three parameters: 

particle image diameter, particle image intensity and particle image density with respect to exposure time. 

Observation  of the results shows that PTV performed better at low values of the above parameters and low 

RMS-uncertianity values obtained  for long exposure time as compared to PIV. In case of higher values of 

these parameters, the PTV stopped but PIV still worked with higher RMS-uncertainity values. It suggests 

that PIV performs good as compared to PTV in the cases of long exposure time, but it also depends upon 

the justification of high RMS-uncertainity values for PIV either.   

 

5- Conclusion  

In conclusion, the performance of PTV on synthetic images generated to simulate particle streak due to long 

exposure time was successfully evaluated in this study. Synthetic particle streak can be generated by 

integration of Gaussian particle image profile with normalized exposure time. The results of analytical Hill’s 

vortex show that reliabilty and match yield were 98% and 75% and dropped to 50% and 35%, respectively, 

due to long exposure time. PTV performance can be justified with its peak-finding criteria for normalized 

exposure time up to 0.05. For the effects of different particle image parameters with particle streaks on PTV 

performance, the PTV performance were obtained for diameter range from 2 to 6 pixel, intensity range from 

0.2 to 1.0 pixel and density range from 0.01 to 0.05. The range of the appropriate normalized exposure time 

tested in this study is from 0 to 0.14. As the exposure time increases from 0.43 to 1.0, PTV can no longer 

efficiently resolved the flow. The comparision with PIV shows that the mesurement uncertainity is higher 

as compared to PTV. PTV performance validate the results only for short exposure time whereas PIV 

performed also with longer exposure time with the measurement uncertainity range form 0.3 to 7.32. Under 

the appropriate exposure range, PIV performs as good as PTV for long exposure images.  
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