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Abstract
We present a hybrid Lagrangian/Eulerian approach for 3D velocity field estimation from multi-view parti-
cle image sequences. By jointly optimizing over a sparse 3D particle representation and a dense velocity
field we combine advantages of both 3D-PIV and 3D-PTV techniques. The sparse, explicit particle repre-
sentation allows for memory-friendly, high-resolution particle reconstructions while the dense motion field
representation facilitates incorporation of physical constraints. Our approach can handle high particle seed-
ing densities in two-pulse setups. Furthermore, we present a simple extension to multiple time steps. Extra
image information from an additional third time steps helps to resolve ambiguities in the particle recon-
struction and allows for even higher particle seeding densities, up to 0.2ppp. We quantitatively evaluate our
method on a synthetic dataset with varying seeding densities.

1 Introduction
Traditionally, there is a strict methodological distinction between Eulerian 3D-PIV and Lagrangian 3D-PTV
for volumetric fluid velocity measurements from particle image sequences. Representative of the Eulerian
formulation, Tomo-PIV (Elsinga et al., 2006) operates in voxel space and consists of two sequential steps:
tomographic reconstruction and 3D velocity field estimation. While operating on a voxel grid allows for a
straight-forward integration of physical priors (e.g., Heitz et al., 2010; ?) and facilitates motion estimation
also for two-pulse setups, major drawbacks of the method are the voxel-based particle representation and the
necessity of large interrogation volumes for matching, leading to limited spatial resolution and large memory
requirements. Furthermore, the sequential nature of the setup precludes the use of the subsequent motion
estimates to improve particle locations and to remove of ghost particles. Lagrangian 3D-PTV methods
such as Shake-the-Box (Schanz et al., 2016) directly reconstruct sparse 3D particle locations using iterative
particle reconstruction (IPR, Wieneke, 2012) and track those particles over multiple time-steps. However,
physical priors are only incorporated in a post-processing step, where the velocity field is interpolated onto
a regular voxel grid.

In previous work (Lasinger et al., 2018) we have proposed a hybrid formulation that combines the
memory-efficient, sparse representation of Lagrangian 3D particle locations with a dense, grid-based repre-
sentation of the velocity field. The model can incorporate physical priors into the optimization of the motion
field and, most importantly, makes it possible to jointly perform particle reconstruction and motion estima-
tion, hence improving both. Specifically, we have derived a regularizer from the stationary Stokes equations,
which is a reasonable approximation for a two-pulse setup (c.f., Ruhnau and Schnörr, 2007). In experiments
with synthetic data it was quantitatively validated that this joint formulation supports higher particle seeding
densities than traditional sequential approaches, by drastically reducing the amount of falsely reconstructed
ghost particles. Thus, improving spatial resolution and accuracy of the estimated flow field.

Here we extend the joint approach to three consecutive time steps, in order to make further use of
additional image information to better disambiguate particle locations and reduce ghost particles. I.e., for a
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Figure 1: Our joint particle reconstruction and flow estimation pipeline: We alternate between triangulating
new candidate particles from the residual images and jointly optimizing 3D particle positions and dense flow
vectors. While triangulation is performed only for a single reference time step, the joint optimization can be
performed over two or more consecutive time steps.

given time step we do not only consider the forward flow to the next time step but also the backward flow to
a previous time step. This allows the handling of even higher particle seeding densities, as we will show in
an extensive quantitative evaluation.

It is worth noting that, when considering multiple time steps, temporal coherence can be incorporated
into the regularizer. Ruhnau et al. (2006) have derived an energy formulation from the incompressible
vorticity transport equation for spatio-temporal regularization of 2D particle sequences. That energy is
then minimized in an online fashion for consecutive image pairs. Besides penalizing the divergence of the
estimated flow field, their energy term enforces smoothness between the estimated current vorticity and the
vorticity field obtained from the previous image pair. Since vorticity is not known a-priori, the approach
requires multiple initial time steps to converge.

For the scope of this paper we do not consider higher-order regularization but rather focus on the reduc-
tion of ghost particle generation, via joint optimization over multiple time steps. In Section 2 we recapitulate
the joint optimization approach of Lasinger et al. (2018). Our extension to multiple time steps is presented
in Section 3. Finally, we quantitatively evaluate our approach on synthetic data for varying seeding densities
in Section 4 and show that information from additional time step helps to resolve ambiguities in the particle
reconstruction.

2 Joint Optimization
We briefly summarize our 2-pulse approach for joint 3D particle reconstruction and flow estimation (Lasinger
et al., 2018). An overview of the approach is given in Figure 1. The input to our method are images taken
from three or more camera views observing the illuminated measurement volume of a fluid seeded with
tracer-particles. We obtain the velocity field at a reference time step tr from the estimated displacement field
between the multi-view particle image sets obtained at tr and tr+1. To that end we alternate between gener-
ating new candidate 3D particles from triangulation at tr, and a joint optimization of 3D particle positions
and the dense motion field Ur→r+1, while enforcing sparsity of the particles set. Particles are represented at
sparse 3D locations P :={pi}P

i=1, pi∈R3 with intensities C :={ci}P
i=1, ci ∈ R+

0 , within the rectangular do-
main Ω⊂R3. The motion field Ur→r+1 contains motion vectors u∈R3 at a finite set of positions y∈Y ⊂Ω,
which are arranged on a regular grid.

For particle proposal generation we follow a triangulation strategy similar to IPR (Wieneke, 2012).
We start with a stricter triangulation threshold for the initial generation of putative particles and relax the
threshold in later iterations. Triangulation is performed on the residuals between original camera images
and synthetic images rendered from the currently estimated particle positions. The energy for the joint
optimization consists of a data term ED, a smoothness term ES, operating on the motion field, and a sparsity
term ESp operating on the intensities of the particles:

E(P ,C ,U) :=
1
2

ED(P ,C ,U)+
λ

2
ES(U)+µESp(C ). (1)



The data term ED has the following form:

ED(P ,C ,U) :=
K

∑
k=1

∫
Γk

∣∣I tr
k (x)−

P

∑
i=1

Πk(ci ·N (pi,σ)(x))
∣∣2
2dx+

K

∑
k=1

∫
Γk

∣∣I tr+1
k (x)−

P

∑
i=1

Πk(ci ·N (pi +u(pi,Ur→r+1),σ)(x))
∣∣2
2dx.

(2)

Following an additive (in terms of particles) image formation model, we integrate over the image plane
Γk of camera k. Πk(.) denotes the projection from 3D to camera k, which can be implemented for both a
pinhole and a polynomial camera model (Soloff et al., 1997). For the rendering we model particles (pi,ci)
as Gaussian blobs with variance σ2. Simply put, the data term penalizes differences between the original
camera images at both time steps and corresponding images generated by re-projecting the estimated 3D
particle locations. Note that particle triangulation is only performed for the first time step tr. For rendering
tr+1, particles pi are translated by the estimated motion field Ur→r+1.

The smoothness term ES is derived from the stationary Stokes equations and enforces a divergence-free
motion field as well as a quadratic regularization per component of the flow gradient (corresponding to the
viscosity of the fluid):

ES(U) :=
∫

Ω

3

∑
l=1
|∇ul(x,U)|22 +δ{0}

(
∇·u(x,U)

)
dx. (3)

The sparsity term ESp enforces sparsity of the reconstructed particle set, by suppressing (low-intensity)
ghost particles. Furthermore, negative intensities are excluded from the set of feasible solutions:

ESp(C ) :=
Q

∑
i=1
|ci|0 +δ{≥0}(ci). (4)

To minimize energy (1) we employ the inertial variant of the proximal alternating linearized minimiza-
tion method (PALM), which is suitable for our nonconvex and nonsmooth problem (Bolte et al., 2014; Pock
and Sabach, 2016). The key idea of PALM is to split the variables into blocks, such that the problem is de-
composed into one smooth function on the entire variable set, and a sum of non-smooth functions in which
each block is treated separately. Furthermore, the optimization is embedded in a coarse-to-fine scheme,
where we start with both a coarser grid Y for the dense motion field and a larger particle size for rendered
particles to increase their area of influence. Both properties are refined in later iterations. We refer the reader
to Lasinger et al. (2018) for further details about the method, as well as the choice of its free parameters.

3 Multiple Time Steps
In a multi-pulse setup, data from multiple time steps can be used to improve particle reconstruction and flow
estimation. I.e., image data from additional time steps can help resolve ambiguities and reduce the number
of ghost particles in the reconstruction. Moreover, temporal coherence can be enforced, e.g., by deriving
an energy formulation from the full (incompressible) Navier Stokes equations. In this paper we focus only
on improved 3D particle reconstruction and leave a possible extension to spatio-temporal regularization as
future work. For a 2D version of the spatio-temporal regularizer, refer to Ruhnau (2006).

We extend the model of Lasinger et al. (2018) by an additional third time step. In addition to the
estimated forward motion Ur→r+1 we estimate the backward motion from the reference time step to the
previous time step tr−1. Starting from tr, we estimate the two motion fields Ur→r+1 and Ur→r−1 jointly,
together with the 3D particle reconstruction at tr. This requires adaptions of the data term and the smoothness
term. Since particle triangulation is still performed only for the reference time step, the sparsity term remains
unaltered. We schematically summarize the approach in Figure 2.

By extending (2) to three time steps we obtain the following data term:

ED(P ,C ,U) :=
1
K

r+1

∑
j=r−1

K

∑
k=1

∫
Γk

∣∣I t j

k (x)−
Q

∑
i=1

Πk(ci ·N (pi +[ j 6= r] ·u(pi,Ur→ j),σ)(x))
∣∣2
2dx. (5)



Figure 2: 2D Visualization of flow estimation at two selected grid locations (orange and blue vectors). The
estimated flow field is obtained at discrete grid locations from data evidence at nearby particle locations
(ED) and a spatial regularization based on the stationary Stokes equations (ES). Left: For two time steps,
reconstructed particles at tr are advected to the subsequent time step tr+1 with the estimated forward flow
Ur→r+1. Right: In case of three time steps, particle locations are additionally advected by the estimated
backward flow Ur→r−1 to coincide with input images from the previous time step. This significantly reduces
the generation of ghost particles and leads to a more accurate flow estimation.

The smoothness term (3) is performed on both the forward flow Ur→r+1 and the backward flow Ur→r−1.
Alternatively, one could average over the two flow fields and enforce (3) on the flow field Ur =

1
2(Ur→r+1−

Ur→r−1).

4 Evaluation
To quantitatively compare our extension to the 2-pulse baseline and to evaluate the influence of different
particle seeding densities, we generate synthetic particle tracks and ground truth velocity fields using the
Johns Hopkins Turbulence Database (JHTDB, Li et al., 2008; Perlman et al., 2007). We follow the setup
of test case D in the 4th International PIV Challenge (Kähler et al., 2016), where a symmetric four-camera
setting was proposed with ±35◦ w.r.t. the yz-plane of the volume, respectively ±18◦ w.r.t. the xz-plane.
However, we reduce the spatial extent in x-direction by a factor of four and use an image resolution of 1500×
800 pixels. The ground truth velocity field is obtained at discrete DNS grid locations for a measurement
volume of 256× 128× 88 DNS points. Utilizing the proposed discretization level of the PIV challenge of
20 vox/mm the measurement volume correpsonds to 1024×512×352 voxels. Note that the size of a voxel
roughly corresponds to the size of a pixel in this setup. Particles are randomly sampled as floating point
values within the z-range of 0-352. The x- and y-ranges were extended to both sides in order generate also
particles outside the measurement region, reproducing experimental conditions of a thick laser illumnation.
Particles are rendered to the camera images as Gaussian blobs with σ = 1 and varying intensity. We sampled
data from the forced isotropic turbulence simulation of the JHTDB with a time difference of ∆t = 0.004
between consecutive frames, resulting in a maximum flow magnitude of ≈ 7 voxels.

We compare our approach to two additional baseline methods. IPR - sequential independently performs
sequential optimization of first the particle locations then the flow vectors. I.e., we separate (1) into particle
reconstruction and subsequent motion field estimation. The second baseline (HACKER) isolates the flow
estimation from the particle reconstruction. It starts from the ground truth 3D particle locations, hence no
triangulation is required and no ghost particles occur. Since neither of the two baseline methods optimizes
particle reconstruction and flow estimation together, their results for two and three time steps are identical.

In order to avoid triangulation and flow estimation issues at the border of the measurement volume,
we extend the volume to both sides in x- and y-direction by 256 and 128 voxels respectively, resulting
in 1536× 768× 352 voxels. This allows to reconstruct also particles outside of the original measurement
volume. For HACKER we chose to include only 3D particles that are visible in all four camera views.
For quantitative evaluation only particles and flow estimates within the original measurement volume were
considered.

Table 1 shows quantitative results of the four tested methods for seeding densities ranging from 0.075
to 0.225 particles per pixel (ppp). We measure the average endpoint error (EPE) between the estimated flow
field Ur→r+1 and the ground truth velocity field at tr in voxels. Furthermore, we state precision and recall



Table 1: Performance of different reconstruction methods under varying seeding density: our joint approach
for two and three time steps, a sequential IPR approach, and velocity estimation from the ground truth
particle locations. For the flow estimatoin error we measures the average endpoint error (EPE) in voxels,
precision and recall of the particle reconstruction are stated in percentage (%).

IPR - joint IPR - sequential HACKER
2 time steps 3 time steps

ppp EPE prec. recall EPE prec. recall EPE prec. recall EPE
0.075 0.174 90.23 99.86 0.163 93.19 99.87 0.169 91.46 99.20 0.148
0.1 0.149 89.14 99.79 0.140 91.50 99.84 0.171 70.99 96.20 0.132
0.125 0.138 84.14 99.70 0.126 89.70 99.79 0.235 32.55 74.41 0.122
0.15 0.125 77.00 99.29 0.116 83.48 99.67 0.304 22.59 53.46 0.114
0.175 0.122 72.34 98.00 0.110 75.33 99.30 0.361 17.58 40.35 0.110
0.2 0.122 61.54 96.00 0.108 75.42 98.28 0.393 14.17 34.28 0.108
0.225 0.128 47.53 92.59 0.111 61.94 96.26 0.444 11.57 27.44 0.106

Figure 3: Visualization of xy-slice at z = 40 of the X-component of the flow estimated with our joint approach
from 3 time steps. Left to right: 0.1ppp, 0.2ppp, ground truth. Note that with higher particle density details
are recovered better.

of the reconstructed 3D particle set at tr. The performance of HACKER serves as upper bound for the other
methods. Based on a perfect particle set, it naturally improves with increasing seeding densities, due to the
increased spatial evidence that allows for more accurate motion estimation. We observe that the sequential
IPR approach starts to degrade already at relatively low seeding densities. Our joint approach handles higher
seeding densities much better, resulting in both better particle reconstruction and flow estimation. The
proposed extension to three time steps outperforms the two-time step variant in all tested seeding densities.
Performance is on-par with HACKER up to 0.2ppp. Only at the highest tested seeding density of 0.225 the
error of the estimated flow field starts to increase slightly. In Figure 3 we visualize the X-component of
the flow field estimated with our joint 3-time-step approach for seeding densities of 0.1 and 0.2ppp togheter
with the corresponding ground truth. Details at high frequency changes are recovered better with the higher
seeding density.

5 Conclusion
We have presented a joint particle reconstruction and flow estimation approach for variational multi-camera
3D-PIV measurements. Our hybrid Eulerian/Lagrangian formulation makes it possible to handle high parti-
cle seeding densities, even in two-pulse setups. It also allows the use of the Stokes prior to obtain divergence-
free motion fields. As a first step towards joint optimization over longer time sequences, we have extended
the method to three time steps and demonstrated empirically that this already reduces ambiguities in the
particle reconstruction and makes it possible to handle even higher seeding densities. Natural directions for
future work are to use longer multi-pulse sequences, and to incorporate temporally coherent physical priors
for multi-pulse sequences, e.g., by employing the full incompressible Navier-Stokes equations. While such
upgrades will likely yield relatively small, diminishing returns in terms of the reconstructed velocity fields,
they would allow one to extract additional properties of the fluid volume, such as for instance accelerations.
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Heitz D, Mémin E, and Schnörr C (2010) Variational fluid flow measurements from image sequences: syn-
opsis and perspectives. Experiments in Fluids 48:369–393

Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, and Cierpka C (2016) Main
results of the 4th international piv challenge. Experiments in Fluids 57:97

Lasinger K, Vogel C, Pock T, and Schindler K (2018) 3d fluid flow estimation with integrated particle recon-
struction. in Pattern Recognition - 40th German Conference, GCPR 2018, Stuttgart, Germany, October
9-12, 2018, Proceedings. pages 315–332

Li Y, Perlman E, Wan M, Yang Y, Meneveau C, Burns R, Chen S, Szalay A, and Eyink G (2008) A pub-
lic turbulence database cluster and applications to study lagrangian evolution of velocity increments in
turbulence. Journal of Turbulence 9:N31

Perlman E, Burns R, Li Y, and Meneveau C (2007) Data exploration of turbulence simulations using a
database cluster. in SC ’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. pages
1–11

Pock T and Sabach S (2016) Inertial proximal alternating linearized minimization (iPALM) for nonconvex
and nonsmooth problems. SIAM Journal on Imaging Sciences 9:1756–1787

Ruhnau P (2006) Variational Fluid Motion Estimation with Physical Priors. Ph.D. thesis. Universität
Mannheim
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